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Rearranging Tasks by a Robot Using Motion Feasibility

and a Monte Carlo Tree Search”

Pedro Miguel URIGUEN ELJURI

Abstract

In this dissertation, I focus on how to solve the problem of rearranging tasks with
a robot. Developing a method to obtain the sequence of robot actions to manipulate
items in an environment to realize a rearranging task while explicitly considering the
motion capabilities of the robot. The resulting solution has a high success rate because
it only uses actions that can be performed by the robot.

First, I propose to combine symbolic planning with motion planning to generate
a sequence of instructions and confirm them before the execution with the robot. I
propose to use a Motion Feasibility Checker (MFC) to verify if an instruction can be
executed with the robot. This is achieved by estimating the final pose of the item if the
robot executed the instruction and the item was picked and placed with a set of pick
and place poses. The MFC uses a set of feasible poses stored in a feasibility database,
which is created in advance to know the poses the robot end-effector can reach in the
environment. A feasible pose is a pose of the end-effector where the robot can perform
a pick or place maneuver.

Second, I propose to use the MFC with a Monte Carlo Tree Search (MCTS) to
search for a solution to the rearranging task in a tree with possible states of the envi-
ronment. Each state in the tree is the result of an action of the robot. The combination
of symbolic planning with motion planning is achieved when the MFC verifies the in-
structions of the MCTS. The MCTS prunes the tree using the output of the MFC to
keep only valid states. As the tree only has valid states, the path of states selected by
the MCTS should also be valid and the robot should be able to execute them.

“Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science and
Technology, March 17, 2021.



Finally, I evaluate our proposed method by doing a shelf rearranging task in a con-
venience store setup. We compare our proposed method to a conventional approach
(i.e., symbolic and motion planners are independent) and to a conventional approach
that uses the MFC. We evaluate the results based on the task completion time and a
score assigned to the rearrangement task based on some rearranging rules. The pro-
posed method uses more time to find the solution, but the obtained score is higher than
the scores of the other methods.

Keywords:

Rearranging task, task planning, symbolic planning, motion planning, manipulation,
service robot
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Chapter 1

Introduction

1.1 Background

In recent years, the use of robots in our daily-life has been becoming more common [1,
2]; nowadays some robots are specifically designed to help in a house environment
doing tasks such as floor sweeping or vacuum cleaning, e.g., Roomba! and RURO?.

Nevertheless, the use of robots in this field is still under development [3, 4], where
many repetitive and time-consuming tasks are yet being done by the human and could
be relegated to a robot. One of these tedious and time-consuming tasks that humans do
daily is a rearranging task.

A rearranging task can be something small as moving items on a shelf or organizing
items on a desk to something big such as tidying up a room. In a daily-life routine all
these rearranging tasks are the second most common tasks [5] so their automation using
robots is expected.

A rearranging task is challenging because it has many technical difficulties such as
the manipulation of the item specifically determining how to pick and place the items
with the robot and where to place them in the environment. Deciding how to pick
and place the item is difficult because the robot often requires to perform at least one
re-grasp to be able to place the item in the target pose.

In this work, I focus on the task planning of rearranging tasks. Specifically, I focus
on the symbolic and motion planning, i.e., how to obtain the sequence of instructions
that the robot needs to execute to reach the goal state or final rearrangement. Further-
more, | consider realistic conditions where re-grasps are needed and disturbances are
expected.

The most common approach to solve a rearranging task is to first solve the problem
logically at the symbolic level by obtaining a set of instructions and then execute them

with the robot [6]. This approach is time-consuming because, when the robot fails to

I'Roomba robot from iRobot, https://www.irobot.com/roomba
ZRURO robot from Panasonic, https://panasonic.jp/tourist/en/soji/



execute an instruction (e.g., due to a failure in creating the trajectory during motion
planning), the robot needs to obtain a new set of instructions. This pattern of getting
new instructions without knowing if the robot will be able to execute them increases
the risk of falling into a loop of invalid instructions, thus spending time trying to find a
solution that ultimately may be executable with the robot.

1.2 Contributions

The contributions of this research are twofold. First, a Motion Feasibility Checker
(MFC) to validate the instruction to be executed with the robot using pre-computed
poses obtained from a database. Second, a method to solve rearranging tasks by com-
bining symbolic and motion planning using a Monte Carlo Tree Search (MCTS) [7,8]
and the MFC.

The following is a brief description of each contribution:

1. To avoid spending time in poses where the motion planning can fail by using a
valid set of pre-computed poses obtained using a motion planner. The MFC uses
the pre-computed poses to estimate the intermediate states of the item during its
manipulation with the robot and determines is its possible to execute or not the

instruction.

2. A method to solve a rearranging task by using a MCTS as the symbolic planner
and validating the states of the tree using the MFC. The MCTS will only do the
tree search between the valid states determined by the MFC. The advantage of
the MCTS is that it can find a solution at any moment.

Fig. 1 shows an overview of the proposed method to solve a rearranging task. First,
the initial state is given to the proposed method. Second, the proposed method uses
an MCTS and MFC to create a tree of states and search for a sequence of instructions.
Third, the proposed method founds a sequence of instructions. Finally, the robot exe-

cutes those instructions and reaches the goal state.
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Figure 1: Overview of the proposed method.



1.3 Dissertation Layout

The rest of this dissertation is organized as follows. Chapter 2 explains related works
on solving rearranging tasks. Chapter 3 describes our proposed method. Chapter 4
introduces the rearranging task used to test our method and compare it to other meth-
ods. Chapter 5 presents the results obtained in the experiments. Chapter 6 includes a
discussion. Finally, Chapter 7 concludes this dissertation and provides some directions

for future work.



Chapter 2
Related Works

Rearranging tasks are a complex problem that has been tried to be solved before e.g., [9—
14]. The goal of a rearranging task is to find a sequence of instructions to move a set
of items from an initial state to a target arrangement (goal state). There are multiple
approaches to solve a rearranging task, such as hierarchical [13,15,16] where they focus
on rearranging the items using some guidelines of the sequence of items that need to
be moved (e.g., in a desk moving the books first, then the other items). There is also
randomized approaches [17-19], where there is no specific sequence in how to move
the items to reach the goal state. Some approaches focus on verifying how the actions
of the robot would affect the environment using a geometric planner and selecting the
first solution that has no collisions with the environment [10, 20].

To combine the symbolic and motion planner to perform an organizing task has
been proposed [21]. However, that approach focuses on using a Probabilistic Roadmap
Method [22] to generate new states, validate them and select the state that has the lowest
cost among them. Dantam et al. [23,24] proposed to obtain multiple solutions, to be
saved in a set, regardless of the cost. In such a case that the robot can not execute the
task, the task planner will attempt to execute the next solution from the set.

In most recent works, it has been proposed to use a machine learning approach to
solve rearranging tasks [13,19,25-27]. These works focus mainly on how to reach the
goal state with less movements of the items or on rapidly obtaining a new state to move
the items [26,28]. One of their limitations is that they assume that the motion planning
can always execute the pick and place motion and that the pick and place approach to
the items is always from above.

In our proposed method, we try a different approach to solve a rearranging task by
pre-validating the motion of the robots before executing them. We do these validations
using a database of feasible poses of the robot, which avoids failures in the motion

planning.



Chapter 3
Proposed Method

3.1 Overview

This dissertation proposes to combine the symbolic and motion planning when gener-
ating the solution for a rearranging task.

Assuming that a rearranging task can be achieved by repeating the following actions
to manipulate an item: 1) a robot moves to pick an item, 2) returns to a neutral pose
keeping the grasp of an item, 3) moves to release an item in the target location, and
4) returns to a neutral pose. We consider that the robot temporarily releases the item
before a re-grasp. We also consider the possible grasping points of the items as known
information, which is determined beforehand based on the geometry of the items. These
grasping points are manually defined and the proposed method automatically chooses
the grasping point to do the pick and place of the item.

Thus, the symbolic planning should decide what item to pick, how to grasp it, and
where to release it, whereas motion planning should generate the robots movements
to achieve the instructions in the symbolic plan. Since the robot always returns to a
neutral pose, the movements can be classified into those between a picking pose and
a neutral pose, and those between a placing pose and a neutral pose. Fig. 2 shows the
components of the proposed method, the input and output of each component.

The Motion Feasibility Checker (MFC) verifies if the trajectory between the neutral
pose and the given pose to pick or place exists. The MFC considers the feasibility of
the robot and does not consider collisions to other items. To accelerate the judgment,
we use a pre-computed feasible motion database.

The Monte Carlo Tree Search (MCTS) explores various object arrangements, i.e.
states, and selects the path with the highest ratio between cumulative reward of the
nodes and number of visits to each node. One of the advantages of the MCTS is that it
can obtain a solution at any moment.

Since it is useless to explore states that the robot cannot achieve, the MCTS collab-
orates with the MFC for rejecting invalid states that can not be executed with the robot
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Figure 2: Components of the proposed method.

based on its feasibility. The MFC evaluates the validity with respect to the kinematics
(e.g., picking an item with a certain grasping pose and being able to release it at the
target configuration). Thanks to the MFC and the feasibility database, checking the
validity of the state and their transition is very quick.

Calculating the collision-free movement is not a task for the MCTS and the MFC,
but for motion planning. After the MCTS finds the state transitions to reach the re-
arrangement goal, the method generates the actual robot movements using the MFC’s
output and motion planning. It is also important to mention that the poses are obtained
offline, which allows the motion planner, when executed online, to find a trajectory be-
tween the neutral configuration and the pick or place pose faster. This is because all the
poses were already tested offline so the probability of failure in finding a trajectory is
relatively low.



3.2 State Representation

To solve a rearranging task, we need to create first a representation of the environment
that can be used by the symbolic planner. We use the properties of the items in the
environment as a state. The properties considered are the geometry of the item, its
pose in the environment, and the type of item.

From that state, we can obtain an occupancy grid representation of m columns by n
rows to keep track of the spaces occupied by the items and the available spaces, which
are candidates for place positions. In cases where an item uses more than one grid
space, all the spaces used by that item are considered occupied. We also consider that
more than one item can be sharing the same grid. The initial state of the environment

is considered as the root of the tree for the symbolic planning.

3.3 Symbolic Planning

At the symbolic level, solving a rearranging task is creating the instructions the robot
needs to execute. We chose an MCTS [7, 8] as a symbolic planner because it searches
for a solution in a tree with multiple possible states, and can obtain a solution at any
time and its randomness allows a balance between exploration and exploitation of the
tree [19,28,29]. One of the advantages is that an MCTS does not require exploring all
the nodes of the tree to find a solution. This is very useful to decide for a solution that
has a high probability of success.

The MCTS efficiently explores and exploits the nodes of a tree to solve a complex
problem. Examples of these problems can be games such as chess, Go, or tic-tac-toe.
The decisions of the MCTS are represented as a tree of states. Each state in the tree is
linked by an action of the robot. The MCTS always chooses the solution which has the
highest ratio between rewards and visits. The MCTS generates new states, moving the
items to the available spaces in the occupancy grid. The MCTS considers moving the
item to the target goal pose. The MFC checks if this movement of the item is feasible
or not. Fig. 3 shows the four stages of the MCTS: selection, expansion, simulation, and
back-propagation [7,8,30]. The execution of these four stages constitutes one iteration
of the MCTS. In our proposed method, we modified the expansion and simulation stages
of the MCTS to use the MFC.

In the expansion stage, the MCTS generates one or more states that have yet to
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be explored. From the generated states, one state is randomly selected to be used in
the simulation stage. During the expansion stage, we prune the tree using the MFC to
remove the invalid states. We perform this tree pruning to avoid the MCTS spending
time in invalid states during its iterations.

In the simulation stage, from the new state created in the expansion stage, the MCTS
generates random valid states, moving one item randomly, until one of the following
three conditions is met: it reaches a final state that cannot be further explored, it reaches
the goal state or it reaches the maximum depth of the simulation. These generated states
are validated with the MFC, to ensure that all the states used in the MCTS are feasible.
The maximum depth of simulation allows the MCTS to finish the simulation stage early
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if it does not reach a final state and to continue with the execution of the algorithm. The
last simulated state is evaluated using the rearranging rules. The rearranging rules are
a set of instructions that we need to follow while executing the rearranging task. These
rules are the guidelines of how and where to place the items in the environment.

The back-propagation stage updates the reward values and number of visits to each
states in the path until the expanded state in the tree. We use a reward r(s;), where s; is
the last simulated state in the simulation stage. The reward is based on the rearranging
rules.

Once we complete an iteration of the MCTS, the process is repeated until the tree
search is finished. The tree search ends when one of the following stopping conditions is
achieved: we obtain the maximum score in the rearranging task or a set time has passed.
In case that the search ends because of the maximum score, the path that reaches the
maximum score is selected. Otherwise, the sequence selected is based on the states in
the tree that have the highest ratio between the accumulative reward and the number of

Visits.

3.4 Motion Feasibility Checker

The MFC validates the received state in regard to the robot motions, searches for a
combination of pick and place poses from the feasibility database, and determines the
number of pick-place actions that the robot needs to reach the states in the MCTS. The
input of the MFC is the current state and the target state of the item. The output of
the MCEF is the validity of the state, and the sequence of pick and place poses of the
end-effector to reach the target state, if the state is deemed valid.

The target state of the MCTS has the information of the item to be moved, namely,
the initial pose Tipjja1 and target pose Tiarger Of the item. Based on Tiyiga, the MFC
decides the grasping point of the item and then obtains a set of pick and place candidates
that are close to the grasping point from the feasibility database. These candidates can
be slightly deviated from the planned grasping point because of the sampling of the
database. Then, the MFC uses these poses to search for a combination of pick and
place poses that closely approximates the final pose of the item to the required target
pose in the state of the MCTS.

The MFC obtains Tpedicted by calculating the transform of the item, if it were picked
and placed with a pick and place poses from the databases. This is an approximation

11



of how would the robot places the item in the environment. Then, the MFC compares

and calculates the difference between Tpredicted and Tiarger using (1).

f ( Ttarget ’ Tpredicted ) = Wi f d ( Ttarget ) Tpredicted )

+wa f, g ( Ttarget ) Tpredicted ) )

)

where f; is the Euclidean distance between the positions and f, is the difference in the
orientation. We use the geodesic unit sphere [31] to calculate the difference between
the two quaternions of the target and predicted poses. We use w; and w; to represent
the respective weights for the position and orientation. In case that the MFC receives
multiple pick and place candidates from the feasibility database, the MFC will calcu-
late all the possible combinations between those pick and place poses, then select the
combination that places the item the closest to Tareet. We use a threshold £/21 to compare
with the result of (1) between Tiarger and Thredicred- If the value is greater than rhy, we
need to do a re-grasp of the item to achieve the task. The intermediate pose of the item
for the re-grasp is the place pose of the item Tpegicteq from the previous search that was
the closest to Tiarget- This Tpredicted 18 considered as the new initial pose Tiyja for the
new search.

The total number of pick-place actions required to reach Tiyrget is also considered
when the MCTS needs to evaluate the state. We compare the total number of pick-place
actions to a maximum number of actions already defined. In case that the total number
of actions is greater than the maximum number of actions, the MFC will determine that
the tentative state is invalid and the MCTS will erase that invalid state from the tree. In
case that the tentative state is valid, the MFC will return the combination of pick and
place poses and the total number of actions of the robot that are necessary to reach the
tentative state. Fig. 4 shows a flowchart of how the MFC validates a state.

The process to obtain the pick and place candidates from the database is the follow-
ing. First, based on the initial pose of the item Tipja, We select a grasping point. The
grasping points are defined before-hand depending on the geometry of the item (e.g.,
center of the faces). Second, we obtain the pose of the grasping point with respect to
the robot. Finally, we search and select in the database for the poses that are within a
range to the grasping point. The distance range that we consider to the poses from the
grasping point depends on the sampling of the database. To select the place candidates
we use the grasping obtained for the pick. Then, using the target pose of the item Tiarget,

12



we obtain the ideal pose of the grasping point in the target. Finally, we search in the
database for the poses close to that point, as we did for the pick.

Note that the MFC is an approximation of the motion planner. Thus, the MFC has
some limitations compared to the motion planner. These limitations are on the sampling
of the feasibility database and the collisions of the robot with the environment that the
MEFC does not consider when it checks if a state is executable. The limitation of the
collisions with the environment can be solved by adding the environment information

at the moment of creating the feasibility database.

3.5 Feasibility Database

The feasibility database contains valid poses of the robot’s end-effector. We consider as
a feasible pose, a pose that is reachable by the robot in different orientations and where
we can execute a pick or place maneuver.

We consider as a pick or place maneuver the motion from a neutral configuration
(home position) of the robot to a hovering pose over the grasping point, from the grasp-
ing point back to the hovering pose, and finally from the hovering pose to the neutral
configuration, as shown in Fig. 5. The neutral configuration of the robot is defined as a
joint angle configuration; this ensures the trajectories to the pick and place poses start
always from the same robot configuration.

The process of creating the feasibility database is the following. First, we create a
set of pick and place pose candidates IP and Q respectively. Then, each pose is validated
with the motion planner moving from the neutral configuration to hovering pose and
finally to the pick or place pose. We discard the invalid poses from the set.

To validate the pose, we use the motion planner to create a trajectory to the pose of
X, ¥» Zhovering> TOll, pitch, yaw, where zpovering 18 an offset in the height of the pose and
roll, pitch, yaw are the orientation of the end-effector. Second, in case that the planner
can create a trajectory to the hovering pose, we attempt to create the trajectory to reach
the pick or place pose. Finally, we return to the neutral configuration. If the motion
planner succeeds in creating a trajectory for the pick or place pose, we add that pose to
the set of valid poses. A reachable pose is not always a feasible pose, the reason of this

is because we need to reach the pose from an specific orientation.

13



After checking all the poses for pick and place, we obtain
P= |:P17P2,P37 tee 7Pn]>
Q=[Q1,Q:Qs, -+, Q.

where P and Q are the pick and place poses sets, respectively. Each element P and Q
is an x, y, z, roll, pitch, yaw pose of the end-effector, n and m are the numbers of valid
poses for the sets of pick and place respectively.

The reason why we use two different sets of valid poses is because we consider
that we can pick an item from multiple directions, but for placing the item. We have
to comply with the rearranging rules, so we have to add more restrictions in how the

robot place the item in the environment.

14
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1. Neutral configuration 2. Go to hovering pose 3. Go to pick or place pose

f- 0
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Figure 5: Illustration of the pick or place maneuvers.
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Chapter 4

Experimental Setup

4.1 Simulation Environment

To evaluate our proposed method, we executed a sandwich rearranging task in a simu-
lation environment. We used a simulation environment in Gazebo>. We used a robot-
arm KUKA LBR iiwa 14 R820" controlled through the open-source package iiwa_stack [32]
in ROS.

The robot arm has 7 DOF and is mounted on a fixed base in front of a shelf, as
shown in Fig. 6a. The position of the shelf’s bin is at 0.34 m, -0.60 m and -0.15 m in x,
v, 2, respectively, from the base of the robot arm, considering the right front corner as
the origin of the bin. To manipulate the objects, we used a custom-made end-effector

with an extra DOF and a suction cup, as shown in Fig. 6b.

4.2 Rearranging Rules

The rearranging task is based on the restock task of the Future Convenience Store
Challenge (FCSC) [33,34], one of the challenges in the World Robot Challenge 2018°
(WRC) held in the World Robot Summit 2018. The aim of the FCSC is to automate
various tasks done in a convenience store.

We consider this sandwich rearranging task challenging because it requires to pick
and place items complying with a set of rules. Also, during WRC 2018, none of the
teams that participated were able to complete the sandwich rearranging task. One of
the many challenges of this task is to change the orientation of the item. To achieve
this, the robot requires to do multiple re-grasps of the item.

The sandwich rearranging task consists of rearranging four sandwiches in a shelf.

3Gazebo, http://gazebosim.org/

4KUKA LBR iiwa 14 R820, https://www.kuka.com/en-de/products/
robot-systems/industrial-robots/lbr-iiwa

SRobot Operating System, http://www.ros.org/

%World Robot Challenge, https://worldrobotsummit.org/en/index2018.html

17



-—Suction cup

(a) Simulation environment. (b) End-effector.

Figure 6: Simulation environment and end-effector used in the experiments.

The rules of the rearranging task are the same as in the restock and disposal task of
FCSC’:

* The bottom surface of the product must be in contact with the shelf.

The label of the product faces the front.

The tolerance of the orientation is 30°.

All products should be placed within 0.05 m from the edge of the shelf.

Items of the same type must be grouped and placed within 0.04 m from each
other.

We evaluate the final rearrangement based on the rearranging rules. The score for
each item in correct position and orientation is three points. The maximum score is 12

points. Fig. 7 shows an illustration of a correctly rearranged state.

FCSC rule book, https://worldrobotsummit.org/en/wrc2018/service/pdf/
Rulebook_taskl.pdf
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Sandwich type 1 | Sandwich type 2

<30 deg.

<0.04m

_______________________________________________________________________

Figure 7: Illustration of a correct final state, all the items are in the correct position
and orientation on the shelf. Item B is not aligned as the others, but its orientation
is still valid by the rules. Items of the same type are together. The total score of this

rearrangement is 12 points, which is the maximum score.

4.3 Methods for Comparison

To execute this sandwich rearranging task, we consider the following three methods

and their variations:

* Conventional method (symbolic planner independent of the motion planner).
In this method, if there is a failure in the motion planner while executing the in-
structions with the robot, the symbolic planner is executed again. The symbolic
planner is just a greedy algorithm that searches for the first valid solution for
moving an item. This algorithm receives the information of the items, checks if
there is an item of the same type in the front of the shelf and selects the closest
empty grid to the existing item. If there are not other items of the same type, it
selects the grid with more empty grids next to it in the front of the shelf. We
consider two variations of this method for the experiments. In the variation A,
the symbolic planner only obtains the information of the environment one time.
Then, the robot executes the instructions from the symbolic planner. In the varia-
tion B, after moving an item, the symbolic planner obtains again the information

of the environment and generates a new set of instructions for moving the items.
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* Conventional method using MFC. This method is similar to the Conventional
method, but the instructions are validated with the MFC before executing them
with the robot. If an instruction is not valid, the symbolic planner is executed
again. Similar to the Conventional method, we consider the variations A and B
for this method.

* Proposed method. This method uses an MCTS and the MFC to combine the
symbolic and motion planning. The MCTS creates a tree of states and validates
the states with the MFC. Then, the MCTS finds the instructions that can be exe-
cuted with the robot. In the proposed method, we also consider two variations for
the experiments. In the variation A, the stop condition is when the MCTS finds
a state that obtains the maximum score. In case that there is a disturbance in
the environment during the execution, the previously obtained solution is aban-
doned and the MCTS will search for a new solution from the current state. This
variation obtains the instructions for moving all the items before the execution.
In the variation B, the stop condition is a set time. When the stop condition is
reached, the MCTS will select the state with highest possibility of success. After
each movement of the item, the MCTS will update the information of the envi-

ronment. This variation obtains the instructions for moving one item at a time.

During the execution of the instructions, before grasping the item, the robot receives
the information of the pose of the item. This is done for all the methods to compensate
for disturbances in the environment during the pick. In the case of the methods that
use the MFC, a new search of the MFC is done and a new sequence of pick and place
poses of the robot end-effector is obtained. Because all the methods obtain the current
pose of the item before the robot grasps it. We can say that all the methods are robust

for picking the item.

4.4 Evaluation

We evaluate the performance of the proposed method using the score (i.e., score us-
ing the FCSC 2018 rules), task completion time, symbolic planning time, and motion
planning time. The task completion time of the rearranging task considers the time to
obtain a symbolic solution, time to plan and execute the trajectories with the robot.

We consider two conditions for the experiments, one where there are not external
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disturbances in the environment and two, where there are external disturbances. We
consider that in the real world, while the robot is doing the rearranging task, a user can
take an item and move it to a different part of the shelf. The second condition is to sim-
ulate those actions of the user. We consider the disturbance as a random movement of
an item after the robot executes an instruction. These are the considerations to simulate

external disturbances to the items:

* The random movement is in the range of -0.1 m to +0.1 m in x-axis and y-axis.
* The item is moved while collision with the other items does not happen.

* The final pose of the item must be inside the area of the bin of the shelf.

We consider the difficulty of the rearranging task based on the initial state of the
environment. We want to evaluate how the proposed method behaves with different
difficulties for the same task. Furthermore, a low-difficulty state is where the robot
needs few actions to reach the goal, whereas a high-difficulty state is where the robot
needs to do multiple actions to reach the goal state. In Appendix A, we explain how we
define the difficulty for the initial state.

We evaluate the performance of the proposed method using the score (i.e., score
using the FCSC 2018 rules), task completion time, symbolic planning time, and motion
planning time. The task completion time of the rearranging task considers the time to
obtain a symbolic solution, time to plan and execute the trajectories with the robot.

There are two conditions for the experiments, one where the environment does not
have any external disturbances and two, where there are external disturbances. We
consider that in the real world, while the robot is doing the rearranging task, a user can
take an item and move it to a different part of the shelf. The second condition its to
simulate those actions of the user. We consider the disturbance as a random movement
of an item, before or after the robot executes an instruction. These are the conditions

to simulate external disturbances to the items:
* The random movement is in the range of -0.1 m to +0.1 m in x-axis and y-axis.
* The item is moved while collision with the other items does not happen.

* The final pose of the item must be inside the area of bin of the shelf.
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We set the stop conditions for the MCTS in the variation A to be only when it found
a branch of the tree that has the maximum score. In the variation B, the stop condition
is when the search time is 1 minute the state with the highest possibility of success is
selected.

In total, we performed 200 trials with each method, 100 per disturbance condition.

Each trial is a rearranging task with four items on random poses on top on the shelf.

4.5 Feasibility Database

The feasibility database was created by validating possible pick and place poses on the
top of the bin of the shelf. The size of the bin is 0.9 m in length by 0.4 m in depth. We
sampled poses on the bin at every 0.01 m in x-axis and y-axis and we sampled in the
z-axis every 0.01 m starting from the surface of the bin to a height of 0.1 m. To plan
the trajectories from the neutral configuration to the pick and place poses, we used an
RRT planner [35].

We considered nine possible directions to pick an item and six possible directions
to place an item, these pick and place orientations can be observed in Fig. 8. In each
direction for pick, we consider five rotations of the end-effector: 0°, £30° and +45°.
In the case of the place rotations we consider three rotations: 0° and £45°.

The created feasibility database has a total of 620714 valid pick poses and 136679

valid place poses.

4.6 Other Parameters

Based on the rearranging rules, we set a threshold to determine if the item complies with
the rearranging rules or the robot needs to do a re-grasp. The value of the threshold th
is 0.3, any value greater than this means that the item does not complies with the rules
and the robot needs to do a re-grasp of the item. We set the values of wy and w» in (1)
to 0.5 to give the same importance to the orientation and position of the items.

To represent the occupancy of the state we use a grid of two rows by eight columns.
Using this representation the number of rows can be used to determine if an item is on
the back, front or middle of the shelf in case that is using both rows. The width of the
columns is approximately the same as the width of the sandwiches. This helps to sim-
plify the number of possible movements of an item in the symbolic planning, because

we can only have one correct item per grid, in case that we have items of different sizes,
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Figure 8: Pick and place directions of the end-effector used in the creation of the feasi-
bility database.

the grid size is determined by the smallest item that we have to manipulate. Fig.9 shows
an example of an initial state and its grid representation.

In the MFC, we set the maximum number of actions of the robot to move an item to
six, based on some preliminary experiments, we know that in the worst case the robot
needs 6 actions to put an item in front of the shelf. In the simulation stage of the MCTS,

we set the depth of simulation to five.
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(a) Environment to rearrange.

(b) Grid representation.

Figure 9: Grid representation of the environment. The occupied grids are marked in
gray, items of the same type have the same color. The letter next to each item is the face

of the item that is facing up.
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Chapter 5

Results

We divided the results of the experiments in three subsections. Subsection 5.1 shows
the results of the experiments without external disturbances, whereas 5.2 shows the
results with the disturbances. In addition, we separated the experiments based on the
difficulty of their initial states in three levels: low, medium and high. Subsection 5.3

shows the results of experiments rearranging different types of items.

5.1 Score and time results

In the experiments without disturbances, we evaluate the time and performance of the
methods. We consider the variation A of the Conventional and Conventional using
MEFC methods because, without external disturbances in the environment, the poses of
the items do not change apart from when the robot does the pick and place motion.
Thus, the solution of variations A and B should be the same.

Fig. 10 shows the score of the methods based on the difficulty of their initial states
and the statistical significance using ANOVA. We can observe the advantage of using
any of the variations of the Proposed method compared to the other methods. The Pro-
posed method outperforms the others in all the difficulties. Fig. 10 also shows that when
the level of difficulty of the initial state is high, the greedy approach of the Conventional
method does not perform well.

Table 1 shows the score and task completion time of the methods. As we can see
in this table, the scores of the Proposed method are higher than the other methods. Re-
garding the task completion time, the Proposed method A and B take more to complete
the task. This is because the proposed method builds a tree with multiple states and
searches between those states for a solution. The Proposed method A uses more time
to find a solution compared to the variation B, which is directly related to its stop con-
dition. In the variation B, we stop the search after one minute and select a state with a
high possibility of success. In the variation A, there is a deeper exploration of the tree,
i.e., until a state with the maximum score is reached.

The advantage of the proposed method is that it confirms that the instructions gen-
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erated are valid. In this way, the proposed method ensures that the solution can be
executed with the robot. This is a trade-off between the time to find a solution and the
score obtained.

Fig. 11 shows the time that each method used in searching for a solution and per-
forming the actions with the robot. The Proposed methods A and B use most of their
time searching for the solution, but in the execution, their planning an execution time
is similar than the planning and execution time of the Conventional method.

We can observe that between the Conventional and Conventional using MFC meth-
ods, the latter is multiple times faster than the former. This proves that it is better to
validate the instructions before executing them with the robot. Moreover, using the
MEC reduces the failures in the motion planner compared to the Conventional method.
Using the MFC to confirm the trajectories before executing them is a better approach
than just attempting to execute the motion with the motion planner.

Overall, the Proposed method proved to be efficient in finding a solution for the

rearranging task.

5.2 Experiments with disturbances

We compare our proposed methods A and B to the Conventional using MFC A and B.
The results obtained in the environment without disturbances showed that the Conven-
tional method obtains a lower score compared to the others methods. In the experiments
with disturbances, the Conventional method is not used, because its results will not be
useful as a benchmark to compare with the others.

Fig. 12 shows the scores obtained by the methods. The Conventional using MFC A
and B have a lower score compared to the Proposed method. The Conventional using
MFC only obtains a solution for moving one item at a time, whereas the Proposed
method explores the tree considering the whole sequence to move the items. This shows
the robustness of our Proposed method when there are disturbances in the environment.

Table 2 and Fig. 13 show the score and task completion time of the methods. Similar
to the results previously obtained, the Proposed method takes more time to complete
the task, but obtains a higher score than the others.

We can conclude that in all the cases the variations of the Proposed method obtain
a higher score than the other methods, regardless of the difficulty of the initial state and

the presence of disturbances in the environment.
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Fig. 14 shows how the robot re-grasps an item multiple times to move it to the
front of the shelf. Whereas Fig. 15 shows he robot performing the rearranging task, the
instructions are obtained using the Proposed method B, and the MFC is used to verify
the instruction and obtain the poses to move the item. This YouTube playlist® contains
the videos of the experiments.

8Playlist of the robot rearranging an environment, ht tps: //www.youtube.com/playlist?
list=PLMnssJ3KtZsmVXuuibJdgJddjU-NhpiGLla
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Figure 10: Scores divided in three groups by the difficulty level of the initial state,
without disturbances in the environment.
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Figure 11: Task completion time divided in three groups by the difficulty level of the
initial state, without disturbances in the environment.
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Figure 12: Scores divided in three groups by the difficulty level of the initial state, with

disturbances in the environment.
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Figure 13: Task completion time divided in three groups by the difficulty level of the
initial state, with disturbances in the environment
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(@) 0 [s]

(d) 28 [s]

(2) 50 [s] (h) 64 [s]

Figure 14: Screenshots of the robot rearranging an item performing multiple re-grasps
of it.
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(@) 0 [s] (b) 27 [s]

(c) 45 [s] (d) 62 [s]

(e) 65 [s] () 72 [s]

Figure 15: Screenshots of the robot rearranging an environment. The sequence of ac-

tions were obtained from the MCTS, and the re-grasp poses come from the MFC.
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5.3 Experiments using different types of items

We evaluated the proposed method A and B doing rearranging experiment using differ-
ent types of items. For these experiments, we used three rice balls in a clear packaging
and two sandwiches. The rearranging rules are the same as in chapter 4. For these new
experiments we do not consider disturbances in the environment, because our main fo-
cus is to analyze how the propose method deals with multiple items of different sizes.
We executed 10 trials in 10 different initial states for each variation of the proposed
method.
The information of the items for these experiments is the following:

¢ Rice ball size: 0.9 x 0.077 x 0.045 m
e Sandwich size: 0.07 x 0.11 x 0.11 m

Table 3 shows the scores obtained by the methods, as we can see the proposed
method A and B obtain a score higher than 75%. It is important to mention that for
the new item (rice balls), we had to consider more orientations of the end-effector. We
considered these orientations 0°, +30° and +45°. In these experiments the orientations
considered to pick and to place the items is the same, so there is only one feasibility
database.

The table also shows that the time for rearranging five items is multiple times higher
than rearranging four items. This shows that our proposed method will require more
time to find a solution every time we add new items to the environment. This increase
of time is a issue that can be improved later in a future work.

Fig. 16 shows an execution of one of the experiments rearranging items of different

size.
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Table 3: Results of the experiments using different items.

Rearranging five items (2 sandwiches, 3 rice balls)

Score [%] Time [s]
Standard Standard
Method Mean o Mean o
deviation deviation
Proposed A 74.54 23.34 6020.81 2702.95
Proposed B 86.06 16.68 2929.87 977.90
Rearranging four items (4 sandwiches)
Score [%] Time [s]
Standard Standard
Method Mean o Mean o
deviation deviation
Proposed A 95.34 11.98 1744.23 993.25
Proposed B 97.61 9.92 1075.35 653.51
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(d) 24 [s] () 52 [s]

(g) 60 [s] (h) 70 [s]

Figure 16: Screenshots of the robot rearranging an environment with items of different
size. The sequence of actions were obtained from the MCTS, and the re-grasp poses
come from the MFC.
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Chapter 6

Discussion

In Chapter 5, we showed that the proposed method variations A and B obtain a higher
score than the other methods. We also verified that the proposed method can solve the
task even when disturbances in the environment occur and obtain a score higher than
the other methods.

Recent works on rearranging tasks [25-27] assume that the motion planning will
always be successful when moving the items. Theoretically speaking, these approaches
are equivalent to having the motion and symbolic planning separated as in the Conven-
tional method A and B in our experiments. On the other hand, the approach of Dan-
tam et al. [23] is similar to what we do by validating the instructions beforehand but
they do not consider the disturbances in the environment. In the case of a disturbance,
their solution requires to search for a new solution, which is similar to the proposed
method A that turned out to be time-consuming.

Itis also important to mention that the recent works in rearranging tasks [23,25-27]
only consider grasping the items from the top and they do not consider the re-grasping
of the items, which is usually necessary in realistic scenarios. In contrast, our proposed
method was evaluated in a realistic rearranging task scenario where, to reach the goal
state, the items need to be re-grasped more than once.

We consider that, in such scenarios, our proposed method B is a better solution
because it leverages the advantages of the MCTS combined with the MFC. This allows
the proposed method B to find a solution with a high rate of success, and the MFC
ensures that the robot can perform the instructions. The MFC also obtains the number
of actions required to perform the re-grasping of the items and the pick and place poses
for the end-effector. The advantage of the proposed method compared to only using the
MEQC, is that the proposed method considers the whole sequence for rearranging the
items, where as the conventional methods focus on finding the first valid solution for
all the items.

It is also important to mention that the proposed method A and B did not obtain

the maximum score in the experiments without disturbances because of the following
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reasons: The MCTS in the proposed method finds a solution that can be executed, but
during the execution of the instructions there are collisions between the items that were
not considered in the solution. The proposed method only considers the collisions of
the robot with the environment, but does not consider the collision of between items or
between the item and the shelf.

The current implementation of the proposed method is affected by the number of
items it needs to rearrange. If the number of items is increased, the size of the tree will
increase and it will require more time to expand the states and search for a solution,
likewise if we change the size of the grid. With a smaller grid, the proposed method
will be faster because the the possible movements of the items in the grid decreases
directly affecting the size of the tree. This was proved by the experiments rearranging
five items, where the proposed method A required thrice the time as before to find the
solution.

Finally, to be able to use the proposed method in new environments or with different
types of items this is some of the information that we need to have in consideration. The
feasibility database is specific to the robot, in case that the robot changes. We will need
to create a new database, or in case that the environment changes (e.g., the height of
the shelf, or the items). Also, the geometry of the items to rearrange is important,
because based on that we manually defined the grasping points and the sampling of the
orientations of the end-effector to pick and place the items.

To avoid these possible issues, we can create a more general feasibility database
considering not only the workspace of the robot such as the shelf, but the whole reachi-
bility of the robot using multiple end-effector orientations even if they are not required
for picking and placing the items to rearrange. There is a disadvantage in using this
approach, that it is too time consuming. The advantage is that the database would only
be built once and then could be used in different environments. Also, having a big
database will also increase the time it takes for the MFC to find the possible candidates
and test the possible combinations, we could prune the database to reduce the size of
the database depending the environment, we just keep the poses that are within our
target workspace. This would only add an extra step in the MFC before getting the pick
and place candidates.
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Chapter 7

Conclusions

In this dissertation, we proposed a novel approach to solve a rearranging task by com-
bining the symbolic and motion planning. Our proposed method finds a solution by
combining an MCTS and the MFC.

The proposed MFC validates the instructions using a pre-computed feasible motion
database to determine if there is a pick-place sequence to manipulate the item that
satisfies the instruction received. This early validation rejects invalid instructions early
so we do not waste time trying to execute those instructions. The MCTS uses the MFC
to validate the states in the tree, in this way the motion and symbolic planning are
combined. The solution found by the MCTS can be executed directly by the robot with
a low probability of failure in the motion planning.

We evaluated our proposed method doing a shelf rearranging task with different
types and shapes of items, the results obtained show that the proposed method outper-
forms the other methods and it is robust against disturbances in the environment. We
proposed two variations of the proposed method A and B, B being our preferred ap-
proach to solve the rearranging tasks. The variation B of the proposed method is faster
than A and in general obtains a higher score than the other methods in all the scenarios
evaluated.

We consider as future work, to reduce the time that the MCTS uses in the tree
search. We think that this could be achieved by first, modifying the MFC so it does
not verify all possible combinations of pick and place candidates, instead we could
use a threshold and if the comparison between target and predicted poses is less than
the threshold. We use directly that pick and place combination. Second, we could
use a machine learning approach to accelerate the tree search, where we will train a
model using different patterns of how to rearrange the environment. Finally, we could
fine-tune the parameters of the MCTS such as the exploration constant or depth of
simulation. Other improvements to the propose method can be in the metric used to
compare the target and predicted poses in the MFC. Currently, we are using the geodesic
unit sphere, but this metric calculates the angle between two quaternions. There are

41



some ambiguities while comparing two different poses. We consider that changing this
metric can also help in reducing the number of re-grasps that the item requires to reach

the target pose.
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Appendix
Chapter A

Difficulty of a state

We formulate the difficulty of a state based on the maximum distance that we could
move the items in the shelf, the number of actions to change the side of the item that
is facing down and the difference between the rotations of the initial and target pose of
the item. Equation (2) shows how we calculate the difficulty for one item.
wifi(p)  wafa(n)  wif3(q)
+ + ;
Pmax Nmax 2n

where p, n, q are the initial position of the item, side of the item that is facing down,

f(p,n,q) = (2)

quaternion representation of the rotation of the item respectively; f1, Pmax»> 2, Pmax
and f3 are the distance to move an item to a corner of the shelf, the maximum distance
that an item can move inside the shelf, the number of actions required to change the
side that is facing down to O and the difference between the quaternion representation
of two rotations respectively; wy, wy and w3 are the weights to balance the importance
of the metrics in the equation.

We define the difficulty of a state D as the sum of the difficulties of rearranging

each item as shown in (3).
m

DZZf(Pi;”iy‘li% (3)

1

where m is the set of items to rearrange and i is an item in the set. A difficulty of 0 is an
easy initial state that does not require many actions of the robot, whereas a difficulty of
1 is an difficult initial state, where the robot needs to perform multiple maneuvers and
re-grasping of the items. We divide the initial states into three groups based on their
difficulty: low (0.0 - 0.33), medium (0.34 - 0.66) and high (0.67 - 1.0).

Equations (4), (5) and (6) show how to calculate the distance, number of actions of

the robot and the difference between two quaternions respectively.

f1(p) = max(fa(p,pr), fa(P;P1)); (4)
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Figure 17: Sides of the item.

where p, and p; are the positions of the right and left corner of the front of the shelf
respectively, and f; is the euclidean distance between the two positions. We use the
distance to the right and left corners of the shelf because we consider the worst case
for moving the item. This would be moving the item from one side of the shelf to the
corner in the opposite side. Fig. 17 shows the assigned numbers for each side of the
item. Our target configuration of the item is when the side 0 is facing down in contact
with the shelf.

Based on preliminary experiments, we found that when the side facing down is 1
or 2, the robot needs three actions to move the item in the worst case. If the side that
is facing down is 3 or 4, the robot needs six actions to move the item in the worst case.
Based on this information, we define (5) to determine the number of actions required

by the robot to move the item so the side that is facing down is 0.

0, ifn=0,
fr(n)=13, ifn=1lorn=2, (5)
6, otherwise,

where 7 is the current side of the item.
To determine the difference between the quaternions of the initial pose and target

pose rotation, we use as metric the geodesic unit sphere [31]:

f3(q) = 2arccos(q- (Itarget)» (6)

where ¢ and arge are the quaternion representation of the rotation of the initial and
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(b) A difficult initial state with difficulty of 0.87 (high difficulty)

Figure 18: Initial states with different levels of difficulty.

target poses respectively, in this case Qarget 18 the rotation of the item when it is placed
in front of the shelf. qarge; 1s the same as an identity quaternion.

For the value pyax we consider the maximum distance that we can move the item
in the shelf, that is the diagonal of the bin of the shelf (0.98 m). In the case of the
maximum number of actions npax, based on preliminary experiments we know that in
the worst case that when the sides 3 or 4 are facing down. So the value of 7y 1S six.

Fig. 18 shows the difficulty of two initial cases. Fig. 18a is a low difficulty state,
where the items are in the correct configuration in front of the shelf, but the items of the
same type are not grouped together. Fig. 18b is a high difficulty state where the items
are scattered in the shelf. This state the robot needs to perform multiple re-graspings
to solve the rearranging task.
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