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Multi-Agent Routing Schemes Based on Travel

Risk Information in Ordinary or Emergency

Situations∗

Takanori Hara

Abstract

With the proliferation of navigation systems and smartphones, navigation ser-

vices have infiltrated various aspects of our daily life. They can provide users with

not only travel routes from their current locations to destinations but also travel

risk information (e.g., travel time, traffic congestion, and road conditions). In

this thesis, we focus on how the travel risk information affects user behavior in

ordinary or emergency situations. In ordinary situations, we consider the travel

congestion caused by individual selfish routing. On the other hand, as for emer-

gency situations, we consider the travel risk of encounters with roads blocked by

collapsed buildings under disaster situations (e.g., earthquakes). To tackle these

issues, we address multi-agent routing schemes leveraging the travel risk infor-

mation to achieve the optimal crowd guidance under ordinary and emergency

situations, respectively. We first propose selfish yet optimal routing for ordinary

situations, which is inspired by Nudge theory and achieves social optimum even

under the rational decision making of individuals by internalizing the marginal

cost into their perceiving information. Through numerical results, we show that

(1) the selfish yet optimal routing exhibits almost the same performance as the

optimal routing. (2) the selfish yet optimal routing decreases the individual travel

time of 82% (resp. 67%) users compared with the notification of the actual travel

information in case of the grid-like network (resp. local-level real road network in

Nagoya city, Japan). The selfish yet optimal routing assumes that the roads in a
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selected route are simultaneously and constantly used by the corresponding agent,

which is the same assumption of conventional congestion game. Since the roads

in the selected route tend to be sequentially used by the agent, we further pro-

pose multi-agent distributed route selection considering such time-varying road

usage among agents under the ordinary situations. Through simulation results,

we demonstrate that the proposed scheme can improve the actual travel time by

5.1% compared with the existing scheme while keeping the exponential conver-

gence property. Next, focusing on the evacuation under a large-scale disaster,

we further propose two kinds of schemes: 1) a geographical risk analysis based

path selection scheme for the existing automatic evacuation guidance and 2) a

capacitated refuge assignment scheme to achieve the speedy and reliable evacu-

ation. Through simulation experiments using the local-level real road network

in Nagoya city, Japan, we show that 1) the path selection scheme can improve

the evacuation safety while keeping the evacuation speediness compared with the

shortest path selection and 2) the refuge assignment scheme can improve the

average route reliability by 13.6% while suppressing the increase of the average

route length by 7.3% and satisfying the refuge capacity constraints, compared

with the distance-based refuge assignment scheme.

Keywords:

Multi-agent routing, travel risk information, selfish yet optimal routing, evacua-

tion guidance, capacitated refuge assignment, ordinary and emergency situation.
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Chapter 1

Introduction

1.1. Background

Thanks to the proliferation of information communication technology (ICT) and

communication infrastructures (e.g., 5G networks), intelligent transportation sys-

tems (ITSs) (e.g., navigation services), can collect past and current traffic infor-

mation from users’ devices (e.g., smartphones and vehicle navigation systems)

and provide them with useful travel information to achieve comfortable travel by

mitigating various types of travel risks (e.g., undesirable traffic congestion and

encounters with accidents) [4, 5].

The travel information provided to users can be categorized into the following

three types of information: experiential information (EI), descriptive information

(DI), and prescriptive information (PI) [6–9]. EI is the knowledge that users

acquired from his/her own experience during the past decision. DI presents the

information about the traffic condition provided by the system either before or

during the travel. PI is the information for direct suggestion and guidance (e.g., a

recommended route), which is also provided by the system. To manage the road

network appropriately, the system should provide users with appropriate traffic

information by considering how the provided traffic information will affect the

decision making of individuals.

The travel risk will also change depending on situations. In this thesis, we

focus on ordinary situations and emergency situations. In the ordinary situa-

tions, the travel risk includes traffic accidents and/or road congestion caused by
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individuals’ selfish routing [10]. On the other hand, in the emergency situations

(e.g., large scale disasters), the travel risk could be encounters with roads blocked

by collapsed buildings as well as the road congestion caused by individuals’ selfish

behavior [10–12]. Such travel risk can be mitigated by notifying users of travel risk

information, which can be categorized into two kinds of information, i.e., reactive

information and proactive information [13]. The reactive travel risk information

will be dynamically acquired from environments (e.g., traffic congestion and road

states) while the proactive travel risk information is statistical or empirical data

(e.g., probability that a road would be blocked under disaster situations), which

are computed/analyzed in advance under certain assumptions. Since it is hard

for the proactive information to consider all possible situations in advance, the

reactive information can compensate for the mismatch between the assumptions

and actual situations.

With the proliferation of navigation systems and smartphones, most peo-

ple can enjoy navigation services (e.g., vehicle navigation systems and Google

maps [14]), which are one of the fundamental services of ITSs [15–19]. Given the

user request, the navigation service should provide the user with the appropriate

route and/or the travel risk information according to the context. In this thesis,

we focus on how the travel risk information affects the individual route selection

from the viewpoint of travel time and route reliability in different contexts (i.e.,

ordinary situations and emergency ones).

1.2. Contribution

In this thesis, we propose multi-agent routing schemes leveraging both proactive

and reactive travel risk information to achieve the optimal crowd guidance un-

der the ordinary and emergency situations, respectively. Fig. 1.1 illustrates the

overview of proposed schemes in terms of the information type and the situations.

In case of the ordinary situations, we first propose selfish yet optimal routing in-

spired by Nudge theory [20, 21], which can achieve social optimum even under

the rational decision making of individuals by internalizing the marginal cost into

the travel risk information. This approach relies on the existing distributed route

selection algorithm based on congestion game [22], which implicitly assumes that

2
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Proactive information Reactive information
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Distributed Route Selection with Time-Dependent Flow

Figure 1.1. Overview of Proposed Schemes.

roads in a selected route is simultaneously and constantly used by the correspond-

ing agent. In actual situations, the roads in a selected route will be sequentially

used by the agent, and thus we further propose a distributed route selection

scheme under the consideration of such time-varying road usage among agents.

Next, focusing on the evacuation under a large-scale disaster, i.e., an earth-

quake, we further propose a geographical risk analysis based path selection scheme,

which leverages the road blockage probabilities [23] as a kind of proactive informa-

tion and updates them with the help of the automatic evacuation guidance [24] to

achieve speedy and safety evacuation. Furthermore, selecting the nearest refuge

may cause the overflow of the refuge and/or force evacuees to pass through high

risk regions, we also propose a capacitated refuge assignment scheme for the

speedy and reliable evacuation.

In this thesis, we separately propose schemes for the ordinary situations and

emergency ones but the proposed schemes for the ordinary situations are also

applicable for the emergency ones. For instance, the selfish yet optimal routing

will be more effective under the emergency situations because the selfish routing

tends to arise under evacuation situations where the evacuees try to move to the

3



safe areas as soon as possible.

The main contributions of the thesis are as follows:

1. Inspired by the concept of Nudge, we propose selfish yet optimal routing,

which achieves the social optimum even under the rational/selfish decision

making of individual users by internalizing the marginal cost into the traffic

information. In contrast to the standard pricing scheme where the link

level tolls are homogeneous for all users, the internalized traffic information

can be viewed as the personalized pricing that considers heterogeneity in

user behavior. Through numerical results, we demonstrate that (1) the

selfish yet optimal routing exhibits almost the same performance as the

optimal routing, (2) the selfish yet optimal routing decreases the individual

travel time of 82% (resp. 67%) users compared with the notification of the

actual travel time in case of the grid-like network (resp. local-level real road

network in Nagoya city, Japan).

2. To address the time-varying road congestion, we propose the multi-agent

route selection considering the time-dependency among agents’ road usage

in a distributed manner. Through the numerical and simulation results,

we show that the proposed scheme can achieve the low relative estimation

error of travel time, i.e., 0.0036. We also confirm that the proposed scheme

can improve the actual travel time by 5.1% compared with the existing

scheme [22] while keeping the exponential convergence property.

3. We propose the geographical risk analysis based path selection scheme for

the evacuation guidance, which is a proactive approach and can be com-

bined with the existing reactive approach of automatic evacuation guiding.

Through simulation results using the actual data of Arako district of Nagoya

city, in Japan, we reveal how the proactive information contributes to the

evacuation movements. Specifically, we confirm that the proposed scheme

can improve the evacuation safety by 28.2% while keeping the evacuation

time even under severe communication environments, compared with the

shortest path selection. In addition, we demonstrate how the informa-

tion collection and diffusion affects the evacuation movement under various

communication environments to reveal the contribution of the reactive in-

4



formation. The evacuation safety improves with increase of the coverage

area of communication infrastructure and the performance improvement is

almost saturated when the coverage ratio is only 30%.

4. We propose the capacitated refuge assignment scheme for the speedy and

safety evacuation, which is formulated as an integer linear program (ILP).

Through numerical results using the Nagoya city’s actual data, we demon-

strate that the proposed scheme can improve the average route reliability

by 13.6% while suppressing the increase of the average route length by 7.3%

and satisfying the refuge capacity constraints, compared with the distance-

based refuge assignment scheme. The proposed scheme also reveals the

potential risks of mismatch between the geographical population distribu-

tion and the locations and capacities of refuges in Arako district of Nagoya

city, in Japan.

1.3. Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we present the

selfish yet optimal routing for the ordinary situations. Chapter 3 provides the

distributed route selection considering the time-dependency among agents’ road

usage in ordinary situations. Chapter 4 gives the geographical risk analysis based

speedy and reliable path selection scheme for evacuation and Chapter 5 provides

the capacitated refuge assignment scheme for the speedy and reliable evacuation.

We summarize the thesis in Chapter 6.
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Chapter 2

Selfish yet Optimal Routing by

Adjusting Nudging Traffic

Information in Ordinary

Situation

2.1. Introduction

Traffic congestion in urban areas has been one of the serious problems all over the

world because it causes both economic and time loss. It has been reported that 12

trillion yen of economic loss per year and 30 hours of time loss per person occur

in Japan, due to traffic congestion [25]. In addition, it has been forecasted that

traffic congestion will also increase total costs of the four advanced economies i.e.,

UK, France, Germany, and the USA, by 46% from 2013 to 2030 [26].

Such a traffic congestion problem can be modeled as a congestion game in

game theory [27]. Route selection by a certain user corresponds to the usage of

roads included in the selected route. When all users select their own routes, the

degree of congestion of each road is determined, and thus we can estimate the

travel time of both roads and routes. It is rational for each user to select a route

that seems to have the minimum travel time. Such route selection is called selfish

routing and results in a Wardrop equilibrium where each user cannot reduce its
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travel time by changing the route [28,29]. In the Wardrop equilibrium, there is no

incentive for any user to change its own route, which means the system reaches

the steady state. However, in general, the average travel time among users in the

Wardrop equilibrium may be far from social optimum, where the average travel

time is minimized [10,30].

In [10], Roughgarden pointed out three kinds of ways to overcome selfish

routing: (1) increasing the road capacity, (2) routing (part of) users in a central

manner, i.e., Stackelberg routing, and (3) internalizing the externalities by intro-

ducing taxes, i.e., congestion pricing. Coorperative routing [22, 31] and Stack-

elberg routing [32–36] cannot achieve social optimum under the users’ rational

decision making because these approaches fully or partly rely on the users’ coop-

eration. Congestion pricing can alleviate traffic congestion by internalizing the

externalities [37–44], however, it also has political and economic issues for the

introduction [45,46].

Since the selfish routing comes from users’ rational decision making, it is dif-

ficult to prohibit the selfish routing itself. In this thesis, we aim at achieving the

social optimum routing even under such users’ rational (selfish) route selection by

appropriately adjusting their perceived traffic information. Our approach is in-

spired by the Nudge theory [20]. In behavioral science, the concept of “Nudge” has

been attracting many researchers to make decision making of individuals leading

to desirable situations by means of indirect suggestions [21]. The Nudge concept

is similar to the idea of internalizing the externalities in the congestion pricing

but our approach uses the traffic information perceived by each user as the nudg-

ing information. Furthermore, the nudging traffic information is personalized per

user, which is also different point compared with the standard congestion pricing.

Since most of the current vehicle navigation systems and navigation software of

smartphones (e.g., Google Maps [14]) have the function of notifying users about

the actual traffic information, our approach can be easily introduced by replacing

the advertised traffic information with the nudging traffic information. Compared

with the conventional congestion pricing, our approach can be deployed anytime

and anywhere.

Navigation services have become one of the most fundamental services of

intelligent transportation systems (ITSs) [15–19]. Users can acquire not only
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Figure 2.1. Relationship among user criteria, traffic information perceived by a

user, and road usage.

the routes from their current locations to destinations but also the current traffic

conditions from the navigation software. Since the navigation software is an agent

for the corresponding user, its route selection also tends to be selfish routing. In

what follows, the terms users and agents will be used interchangeably.

Even if all users rationally aim to minimize their own travel time, their be-

havior may change depending on their perceived traffic information. Fig. 2.1

illustrates the relationship among users’ routing criterion, traffic information per-

ceived by users, and road usage. The usage of each road will converge to user

equilibrium (UE), which is a Wardrop equilibrium under the selfish routing crite-

rion, when each user is selfish and receives the actual traffic information based on

selfish route selection by others. On the other hand, when each user is altruistic

and receives the optimal traffic information based on altruistic route selection by

others, it will converge to social optimum (SO), which is also a Wardrop equilib-

rium under the altruistic routing criterion.

The proposed scheme, which leads selfish routing to social optimum, can be

achieved by combining the following two functions. First one is the distributed

route selection scheme [22], which can achieve either Wardrop equilibrium based
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on users’ selfish criterion, i.e., user equilibrium, or that based on users’ altruistic

criterion, i.e., social optimum. Second one is the distribution of the nudging traf-

fic information from the server to each user, which affects the users’ perception

of traffic congestion and leads their selfish routing to social optimum as shown in

Fig. 2.1. We assume the current navigation software and/or traffic support sys-

tems (e.g., vehicle information and communication system (VICS) in Japan [15])

can provides users with the nudging traffic information instead of the actual traffic

information.

Someone might think that users doubt whether the perceived traffic informa-

tion is tweaked and defect the proposed system. Unfortunately, the proposed

scheme cannot prohibit such (selfish) behavior. This might come from the dissat-

isfaction with the actual (experienced) travel time compared to the pre-expected

travel time based on the nudging traffic information. There are several studies

on dealing with such phenomena [6–9]. In [9], the information affecting travelers’

route choices is categorized into the three types of information: experiential in-

formation (EI), descriptive information (DI), and prescriptive information (PI).

Without any external information, it is assumed that a traveler will choose the

route based on EI, which is the knowledge acquired from his/her own experience

during the past choices. DI presents the information about the travel condition

(e.g., expected travel time) notified by systems either before or during the travel.

PI is the information for direct suggestion and guidance (e.g., a recommended

route), which is provided by systems. In our case, the nudging traffic information

and the resulting expected travel time can be regarded as DI.

The impact of the three kinds of information (i.e., EI, DI, and PI) and their

combinations on the travelers’ route choices have been studied from the aspects of

both the short-term and long-term behavior [6–8, 47]. In this thesis, we assume

that all users follow the proposed scheme, in order to focus on the concept of

the nudging traffic information itself. The precise modeling of users’ satisfaction

with their own travel time and the behavior modification based on the degree of

satisfaction are possible future directions.

The main contributions of this thesis are given as follows:

1. Inspired by the Nudge theory, we propose “selfish yet optimal routing,”

which can achieve social optimum even under the rational (selfish) decision
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making of users by internalizing the marginal cost into the traffic infor-

mation, i.e., perceived travel time. In contrast to the existing approaches

(e.g., cooperative routing, centralized routing, and congestion pricing), the

proposed scheme does not rely on the users’ cooperative behavior and can

be introduced anytime and anywhere.

2. In contrast to the standard cost pricing where the link level tolls are identical

for all users, the provision of the link-level nudging traffic information in the

proposed scheme can be viewed as the personalized pricing that considers

heterogeneity in user behavior.

3. We demonstrate the fundamental characteristics of the proposed scheme

through numerical experiments under a grid-like road network. Some of

the main results are as follows: (1) the proposed scheme can achieve almost

the same performance compared with the optimal routing as we expected

and (2) the proposed scheme can decrease individual travel time of 82%

users compared with the notification of actual (user-equilibrium) traffic in-

formation.

4. Furthermore, we also evaluate the practicality and scalability of the pro-

posed scheme through numerical experiments under two kinds of real road

networks (i.e., local-level and city-level road networks of Nagoya city, Japan).

In particular, we find that the proposed scheme can improve the average

travel time by 19.1% (resp. 7.4%), compared with the notification of the

actual traffic information, in case of the local-level (resp. city-level) road

network with 1,197 (resp. 10,004) users.

The remaining of this chapter is given as follows. Section 2.2 gives related

work. In Section 2.3, we explain the existing distributed route selection scheme [22].

After describing the proposed scheme in Section 2.4, we demonstrate numerical

results in Section 2.5. Finally, Section 2.6 provides conclusions.

2.2. Related Work

Roughgarden first studied the traffic congestion problem from the viewpoint of

selfish routing [10]. He revealed each user’s selfish routing results in a Wardrop
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equilibrium and focused on the performance ratio of travel time based on selfish

routing to that of optimal routing, i.e., Price of Anarchy (PoA) [30], in game

theory. PoA can be equal to or greater than one and smaller PoA indicates that

selfish routing can achieve shorter travel time, which is competitive with that

of the optimal routing. For example, PoA becomes 4/3 if the travel time of a

road linearly increases with the flow over the road. Wang et al. revealed that

selfish rerouting against unpredictable trouble, e.g., traffic accidents, also had a

negative impact on traffic congestion [48]. In [10], Roughgarden pointed out three

ways to overcome the selfish routing: (1) increasing the road capacity, (2) routing

(part of) users in a centralized manner, i.e., cooperative routing and Stackelberg

routing, and (3) internalizing the externalities, i.e., congestion pricing.

From the viewpoint of system, it is desirable to achieve the social optimum

routing that relies on cooperative route selection among all users. In [22], Lim and

Rus proposed a distributed route selection scheme that can achieve either user

equilibrium or social optimum according to users’ routing criterion, i.e., selfish or

altruistic, which will be introduced in Section 2.3. In [31], Aslam et al. evaluated

the performance of the distributed route selection scheme by using a congestion

model learned from the actual traffic data of taxis. They found that the scheme

could reduce the travel time by 15% compared with greedy optimal planning.

However, it may be difficult to obtain cooperative support by all users, due to

the potential selfishness of individuals. In particular, the selfish routing of the

individual user tends to be prioritized in an emergency situation, i.e., evacuation,

because evacuees want to move to a refuge as fast as possible.

If the system can obtain cooperative support by part of users, Stackelberg

routing is one of the promising approaches to cope with the selfish routing prob-

lem [32–36]. Korilis et al. proposed Stackelberg strategies to improve the whole

system performance, i.e., average travel time among users [33]. In [33], coopera-

tive users first act as leaders by selecting routes that can lead the route selection

of selfish users to good Nash (Wardrop) equilibria. Then, the selfish users, called

followers, conduct selfish routing under the environment yielded by the leaders’

decision, which will result in the expected Nash equilibria. Roughgarden showed

that the derivation of the optimal Stackelberg strategy to minimize PoA was NP-

hard and proposed three heuristic Stackelberg strategies [34]. Yang et al. also
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proposed a Stackelberg routing game and formulated a mixed behavior equilib-

rium model as variational inequalities which described players’ routing behavior

aiming at user equilibrium, social optimum, and Cournot-Nash equilibrium, re-

spectively [35]. In [36], Groot et al. proposed a game-theoretic approach in order

to maximize traffic throughput on a freeway network by introducing a reverse

Stackelberg routing [49] with a monetary incentive [50]. Our selfish yet optimal

routing is similar to the idea of Stackelberg routing, where a server acts as a

leader by notifying the nudging traffic information to users, and then the users

act as followers by conducting selfish routing with the perceived information.

To mitigate a negative impact of selfish routing, there are also several studies

on indirect control by internalizing the externalities: congestion pricing [37–44]

and gate control [51]. Congestion pricing imposes taxes on the road usage accord-

ing to the congestion level. Cole et al. showed that the selfish routing could result

in the optimal routing by appropriately introducing congestion pricing [38]. In

actual, congestion pricing has been introduced to many cities and showed good

results to mitigate urban congestion [39–41]. On the other hand, it was also

pointed out that the congestion pricing had political and economic issues [45,46].

Bazzan and Junges studied the route selection to achieve the social optimum by

internalizing the route congestion into the congestion tolls. [44]. In this work, a

control center provides the users with the congestion tolls based on (imperfect)

traffic information about the number of users selecting the corresponding route.

The users select the corresponding route with the probability based on the conge-

tion toll. Bu et al. showed that gate control could improve the crowd evacuation

under emergent situations [51]. These indirect control schemes are also similar

to the concept of “Nudge,” which aims to lead individuals to desirable decision

making through indirect suggestions [20, 21]. The main difference of the pro-

posed scheme from the congestion pricing is the internalization of the marginal

cost into traffic information, i.e., perceived travel time. In the proposed scheme,

users’ selfish routing unconsciously results in the optimal routing by leveraging

the nudging traffic information without the user cooperation [22, 32–36] and the

payment of congestion fees [37–43].

The difference of optimality between the individual users and the system,

i.e., user equilibrium and social optimum, stems from the different goals among
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them. There are several studies to fill this gap [52–54]. Angelelli et al. proposed

a proactive route guiding scheme to avoid traffic congestion, which considered

not only the system performance to suppress traffic congestion but also the user

performance to suppress the increase of individual travel time [54]. In [52, 53],

they balance the individual user and the system objectives by deriving system

optimal flows under the user constraints.

With the proliferation of vehicle navigation systems and smartphones, each

individual can easily acquire the traffic information, which would affect the route

selection [47,55–58]. Essen et al. insisted that considering both the user behavior

and the system performance was important to evaluate how the traffic informa-

tion notified to users would affect the traffic congestion [55]. To alleviate conges-

tion, Hassan et al. proposed a distributed traffic coordination scheme based on

the travel information exchanged through the driver’s social network [56]. In [58],

Ramos et al. proposed a route selection scheme based on regret minimization [59],

where each agent estimated the regret of route choice based on the local informa-

tion obtained by its own experience and global information provided by a mobile

navigation application, and then selected the route with the smallest estimated

regret. The proposed scheme is compatible with the conventional navigation

systems by replacing the advertising traffic information with the nudging one.

2.3. Distributed Route Selection Scheme

In this section, we describe the details of the existing distributed route selection

scheme [22], which will be used in part of the proposed scheme in Section 2.4.

2.3.1 Overview

Table 2.1 presents the symbols and the notations used throughout the paper.

G = (V , E) denotes a graph representing the internal structure of a road network,

where V is a set of vertices, i.e., intersections, and E is a set of edges, i.e., roads,

in the road network. There are N > 0 users, e.g., vehicles or persons, in the road

network and A = {1, 2, . . . , N} denotes a set of users.

In the distributed route selection scheme, each user i ∈ A first calculates

Ki > 0 route candidates πi = {πi1, πi2, . . . , πiKi
}, where πik is the k-th route
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Table 2.1. Notations.
Symbol Description

G Directed graph of the road network

V Set of vertices (road intersections)

E Set of edges (roads)

e Road

A Set of all users in the road network

N The number of all users, (N = |A|)
πi Set of route candidates for user i

pi Vector of route choice probabilities for user i

Ki Set of route indices for user i

Ki The number of route candidates, πi, (Ki = |Ki|)
πik User i’s k-th route

pik Probability that user i selects route πik

Ci Set of users j whose routes πj (partly) conflict with πi

pCi
Vector of pj for j ∈ Ci

fe(·) Flow of road e

I(·) Indicator function

te(·) Travel time of road e

ce(·) Cost of road e

c
(UE)
e (·) User-equilibrium based cost of road e

c
(SO)
e (·) Social-optimum based cost of road e

cik(·) Cost of route πik

di Index of the route with minimum cost among πi

Vi(·) Local cost of user i

V (·) Global cost

m Navigation server

Gi Directed graph of the road network consisting of πi

Vi Set of vertices (road intersections) consisting of πi

Ei Set of edges (roads) consisting of πi

p
(m)
i Vector of social-optimum based route choice probability for user i

p
(i)
i Vector of selfish route choice probability for user i

p
(m)
Ci

Vector of p
(m)
j for j ∈ Ci

f
(m)
i Nudging traffic information for user i

f
(m)
e Nudging traffic information of road e, f

(m)
e ∈ f

(m)
i

c
(UE)−1
e (·) Inverse function of c

(UE)
e (·)

ϵ Error tolerance

Ti(·) Travel time for user i
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candidate that is a set of edges in the corresponding route. LetKi = {1, 2, . . . , Ki}
be a set of route indices for user i. Next, each user autonomously calculates

route choice probabilities pi = (pi1, pi2, . . . , piKi
) by using a gradient descent

method [22]. Here, pik is the probability that user i selects k-th route, where

pik ranges [0, 1] and
∑

k∈Ki
pik = 1. Note that pi can be regarded as the mixed

strategy in game theory [59]. In the route selection, each peer i considers pi

and pj for all competitors j ∈ Ci, where Ci denotes the set of users j whose

route candidates πj (partly) conflict with user i’s route candidates πi. Please

note that small increase/decrease of pik may change the congestion level of the

roads in the route πik, which affects not only the travel time of user i but also

that of i’s competitors. The relationship between the route choice probabilities

and resulting travel time will be described later. In addition, the route choice

probabilities are controlled by each user in a distributed manner, with the help

of the gradient descent method. Please see the detail mechanism in [22, Section

3.3].

This scheme assumes that the number of users in the road network is large

enough such that each user’s route choice probability can be regarded as a frac-

tional flow [60–63]. As a result, the flow of a road can also be regarded as the

probabilistic occupation by users. In addition, this scheme also assumes that the

user’s probabilistic occupation of a road is static during the whole time horizon

of the user’s travel as in [62–65]. With these assumptions, flow fe(pi,pCi) of road

e ∈ E can be expressed as the sum of the probabilities that user i and competitors

Ci use road e, where pCi denotes the vector of pj for j ∈ Ci:

fe(pi,pCi) =
∑

j∈{i}∪Ci

∑
k∈Kj

I(e ∈ πjk) · pjk, (2.1)

where I(·) denotes an indicator function. The cost of route πik of user i is a

routing criterion and can be expressed as the sum of the cost of each road along

the route:

cik(pi,pCi) =
∑

∀e∈πik

ce(fe(pi,pCi)),

where ce(fe(·)) is the cost of road e under flow fe(·), which is a differentiable non-

decreasing function. One possible definition of ce(fe(·)) is travel time te(fe(·)) of
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road e under flow fe(·). The cost function represents the user’s sense of value and

will be described in Section 2.3.2.

Each user i defines local cost Vi(pi,pCi) as the difference between the expected

cost among all route candidates and the minimum route cost:

Vi(pi,pCi) =
∑
k∈Ki

pikcik(pi,pCi)− cdi(pi,pCi), (2.2)

where di is the index of the route with the minimum cost among route candidates,

i.e., di = arg min
k∈Ki

cik. Each user i controls route choice probabilities pi such that

Vi approaches 0. Since (2.2) can be rewritten as

Vi(pi,pCi) =
∑
k∈Ki

pik
(
cik(pi,pCi)− cdi(pi,pCi)

)
, (2.3)

Vi = 0 results in the two conditions of Wardrop equilibrium:cik(pi,pCi) = cdi(pi,pCi), if pik > 0,

cik(pi,pCi) ≥ cdi(pi,pCi), otherwise.

As a result, each user i will select the minimum cost when Vi = 0. In addition,

the global cost V ({pi}i∈A, {Ci}i∈A) is defined as the sum of local cost Vi(·) among

all users:

V ({pi}i∈A, {Ci}i∈A) =
∑
i∈A

Vi(pi,pCi).

When each user i control pi to achieve Vi = 0, global cost V can also converge to

0.

In [22], a distributed gradient controller is developed, in which each user i can

control pi to achieve Vi = 0 in a distributed manner. The distributed controller

governs the time derivative of the route choice probabilities using the competitors’

current route choice probabilities. Please refer to [22, Section 3.3] for the detail

of the mechanism.

We should note here that equilibrium p∗
i of pi will change depending on the

shape of local cost function ce(·), i.e., user equilibrium or social optimum, and the

resulting (p∗
1, . . . ,p

∗
N) is the global goal with the corresponding local cost function.

The detail of local cost function ce(·) will be given in the next subsection.
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In addition, equilibrium p∗
i can be regarded as the stochastic user equilib-

rium (SUE) [66], which is a special case of the generalized stochastic user equi-

librium (GSUE) [67]. In [67], the author also indicated that the achievement of

SUE is guaranteed under the large sample approximation theorem, which assumes

the absolute demand (i.e., the product of the demand rate and time period) is

sufficiently large. As for this point, we will discuss in the evaluation part (Sec-

tion 2.5.1).

The uniqueness of SUE with heterogeneous users is guaranteed under some

simplified settings [68,69]. However, in our case, the SUE may not be unique be-

cause there is heterogeneity in individuals’ route selection from their candidates,

which differ among users even for the same origin and destination pair. The

random nature of route updating order among users in the distributed gradient

controller would also result in multiple SUEs.

2.3.2 Routing Criteria

We assume that the routing criteria depend on the user’s selfishness and its

cooperativeness. From the viewpoint of user’s selfish decision making, cost of

each road e, c
(UE)
e (fe(·)), can be directly expressed as the travel time te(fe(·))

under flow fe(·):

c(UE)
e (fe(·)) = te(fe(·)). (2.4)

On the contrary, from the viewpoint of user’s social-optimum decision making,

cost of each road e, c
(SO)
e (fe), can be defined as follows:

c(SO)
e (fe) = te(fe(·)) + fe(·)

∂te(f)

∂f

∣∣∣∣
f=fe(·)

, (2.5)

which is the marginal cost of road e, i.e., the total cost increase of all the users us-

ing road e due to a small increase of the flow on road e. The existing scheme [22]

converges to Wardrop equilibrium, i.e., user equilibrium (UE), (resp. social opti-

mum (SO)) when all users select routes based on c
(UE)
e (·) (resp. c

(SO)
e (·)).
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2.4. Proposed Scheme

In this section, we propose selfish yet optimal routing by adjusting the perceived

traffic information. After introducing the system overview, we describe the detail

of the proposed scheme.

2.4.1 System Overview

In the road network G = (V , E), each user i ∈ A first requests a route from

navigation server m via its user agent. After receiving a designated route (i.e.,

social optimal route) from server m, altruistic user i will follow the designated

route. On the other hand, selfish user i may not follow the designated route and

then requests other route (i.e., selfish route) to its user agent. The user i’s agent

asks navigation server m for traffic information of each road in its Ki > 0 route

candidates πi. Server m first calculates a vector of social optimum route choice

probabilities, p
(m)
i = (p

(m)
i1 , p

(m)
i2 , . . . , p

(m)
iKi

), for each user i ∈ A, with the help of

the existing scheme in Section 2.3. Then, it derives nudging traffic information

f
(m)
i = {f (m)

e }e∈Ei , which is a vector of nudging traffic for each road included in

Ei and required to lead the user’s selfish routing to the optimal routing, where Ei
denotes a set of roads included in πi, i.e. Ei = {e ∈ ∪Ki

k=1πik}. We also define Vi
and Gi as a set of nodes consisting of Ei and graph (Vi, Ei), respectively. After

retrieving f
(m)
i from server m, each user agent i calculates selfish route choice

probability p
(i)
i under f

(m)
i with help of the existing scheme [22]. Finally, user

agent i selects route πik∗ from πi according to p
(i)
i . Hereafter, the user and the

corresponding agent will be used interchangeably.

2.4.2 Nudging Traffic Information Achieving Selfish yet

Optimal Routing

In this section, we explain how server m derives nudging traffic information for

each user i, which affects the user’s perception of traffic congestion and leads the

user’s selfish routing to the optimal routing. Recall that the routing criterion is

different between selfish routing and optimal routing, i.e., UE-based routing cri-

terion (2.4) and SO-based routing criterion (2.5). If all users follow the SO-based
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Figure 2.2. Relationship among user criteria, nudging traffic information, and

road usage.

routing criterion, the optimal routing can be achieved as a Wardrop equilibrium.

However, rational decisions of users tend to follow the UE-based routing criterion

where they only consider their own travel time. In what follows, we aim to lead

the selfish routing to the optimal routing by appropriately modifying the users’

perception of traffic congestion through the nudging traffic information.

As mentioned above, server m calculates nudging traffic information f
(m)
i for

each user i ∈ A. To achieve selfish yet optimal routing, f
(m)
i should satisfies the

following conditions:

1. The social optimum assignment for each user is equivalent to one of the

Wardrop equilibria under the UE-based routing criterion, which will be

satisfied by Algorithm 1.

2. Any Wardrop equilibrium for each user can be equivalent to the social

optimum assignment under the UE-based criterion, which will be satisfied

by Algorithm 2.

Fig. 2.2 shows the graphical implication of these conditions and the details will

be given in the following.
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We first focus on the first condition. Even if all competitors j ∈ Ci of user

i follow social optimum route choice probability p
(m)
Ci , the selfish route choice

probability for user i may not be equivalent to social optimum one p
(m)
i . This

situation will come from the user i’s underestimation of the traffic congestion,

which is caused by the UE-based routing criterion under social optimum route

assignment (p
(m)
i ,p

(m)
Ci ). Recall that the usage of each road for user i is only

affected by i’s competitors j ∈ Ci rather than all the others.

Fig. 2.3 depicts the relationship between flow fe(p
(m)
i ,p

(m)
Ci ) on road e, travel

time te(fe(p
(m)
i ,p

(m)
Ci )), UE-based routing criterion c

(UE)
e (fe(p

(m)
i ,p

(m)
Ci )), and SO-

based routing criterion c
(SO)
e (fe(p

(m)
i ,p

(m)
Ci )). Note that te(fe(p

(m)
i ,p

(m)
Ci )) = c

(UE)
e (

fe(p
(m)
i ,p

(m)
Ci )). We can confirm that the UE-based cost c

(UE)
e (·) underestimates

the cost of road e as te(fe(p
(m)
i ,p

(m)
Ci )), which is smaller than c

(SO)
e (fe(p

(m)
i ,p

(m)
Ci ))

by the corresponding marginal cost as in (2.5). This SO-based cost c
(SO)
e (fe(p

(m)
i ,

p
(m)
Ci )) can be transformed into the corresponding flow c

(UE)−1
e (c

(SO)
e (fe(p

(m)
i ,p

(m)
Ci )))

under the UE-based cost. Here, c
(UE)−1
e (·) is the inverse function of c

(UE)
e (·). Due
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Algorithm 1 Nudging traffic information f
(m)
i for user i, which leads the social

optimum assignment for user i to a Wardrop equilibrium under UE-based route

criterion.

Require: Gi = (Vi, Ei), p(m)
i , p

(m)
Ci

Ensure: f
(m)
i

1: for ∀e ∈ Ei do
2: fe(0,p

(m)
Ci )←

∑
j∈Ci

∑
k∈Kj

I(e ∈ πjk) · p(m)
jk ▷ Calculate social optimal

flow of road e among competitors Ci
3: fe(p

(m)
i ,p

(m)
Ci )←

∑
k∈Ki

I(e ∈ πik) · p(m)
ik + fe(0,p

(m)
Ci ) ▷ Calculate social

optimal flow of road e among user i and competitors Ci
4: c

(SO)
e (fe(p

(m)
i ,p

(m)
Ci )) ← te(fe(p

(m)
i ,p

(m)
Ci )) +

fe(p
(m)
i ,p

(m)
Ci ) ∂te(f)

∂f

∣∣∣
f=fe(p

(m)
i ,p

(m)
Ci

)
▷ Calculate SO-based cost of road e

5: f
(m)
e ← c

(UE)−1
e (c

(SO)
e (fe(p

(m)
i ,p

(m)
Ci )))− fe(p

(m)
i

,0) ▷ Derive nudging

traffic information f
(m)
i

6: return f
(m)
i

to the linearity in (2.1),

fe(p
(m)
i ,p

(m)
Ci ) = fe(p

(m)
i ,0) + fe(0,p

(m)
Ci ) (2.6)

is satisfied. To make p
(m)
i to be the optimal usage of each road even under the UE-

based routing criterion, user i should perceive traffic information f
(m)
e (e ∈ Ei),

which satisfies the following:

f (m)
e = c(UE)−1

e (c(SO)
e (fe(p

(m)
i ,p

(m)
Ci )))−fe(p(m)

i ,0). (2.7)

Algorithm 1 presents the calculation of nudging traffic information f
(m)
i for

user i, which satisfies the first condition. Given road network Gi = (Vi, Ei), social

optimum route choice probability of user i, p
(m)
i , and that of user i’s competitors,

p
(m)
Ci , system m first calculates social optimal flow of road e among competitors

Ci, i.e., fe(0,p
(m)
Ci ), and that among user i and competitors Ci, i.e., fe(p

(m)
i ,p

(m)
Ci ),

(lines 2–3). Next, it also calculates the SO-based cost of road e, i.e., sum of the

travel time and marginal cost, from (2.5) (line 4). Finally, it derives the nudging

traffic information of road e using (2.7) (line 5).
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Algorithm 2 Nudging traffic information f
(m)
i for user i, which leads any

Wardrop equilibrium for user i to the social optimum route assignment under

UE-based route criterion.

Require: Gi = (Vi, Ei), p(m)
i , p

(m)
Ci , f

(m)
i , ϵ

Ensure: f
(m)
i

1: do

2: p
(i)
i ← calc selfish route prob(f

(m)
i ) ▷ Obtain the selfish route choice

probability for user i

3: for ∀e ∈ Ei do
4: fe(p

(i)
i ,0)←

∑
k∈Ki

I(e ∈ πik) · p(i)ik

5: fe(p
(m)
i ,0)←

∑
k∈Ki

I(e ∈ πik) · p(m)
ik

6: f
(m)
e ← f

(m)
e + fe(p

(i)
i ,0)− fe(p

(m)
i ,0) ▷ Update the nudging traffic

information

7: RMSE ←
√

K−1
i

∑
i∈Ki

(p
(i)
ik − p

(m)
ik )2

8: while ϵ < RMSE

9: return f
(m)
i

If the first condition is satisfied by Algorithm 1, the social optimum can be one

of the Wardrop equilibria under the UE-based routing criterion. (Remind that

the Wardrop equilibrium (SUE) may not be unique, as mentioned in Section 2.3.)

However, it cannot guarantee that any Wardrop equilibrium under the UE-based

routing criterion is equivalent to the social optimum as shown in Fig. 2.2, and thus

the second condition will be required. To achieve the second condition, server m

iteratively searches for selfish route choice probability p
(i)
i of user i under nudging

traffic f
(m)
i given by (2.7), and updates f

(m)
i such that the selfish flow will reach

the social optimum flow. The details are given in Algorithm 2.

Given road network Gi = (Vi, Ei), social optimum route choice probabil-

ity of user i, p
(m)
i , that of user i’s competitors, p

(m)
Ci , nudging traffic informa-

tion obtained from Algorithm 1, f
(m)
i , and error tolerance ϵ ≥ 0, server m

first obtains user i’s selfish route choice probability p
(i)
i under the fictitio traf-

fic information f
(m)
i using calc selfish route prob(·) function (line 2). Here,

calc selfish route prob(·) function can be achieved by the existing scheme

with UE-based routing criterion in Section 2.3. Next, in lines 3–6, it calculates
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the flow of road e, which is caused by both selfish route choice probability p
(i)
i

and latest nudging traffic information f
(m)
i , and then updates nudging traffic

information of each road e ∈ Ei as follows:

f (m)
e ← f (m)

e + fe(p
(i)
i ,0)− fe(p

(m)
i ,0). (2.8)

The second and third terms of the right-hand side indicate the flow difference

between user i’s selfish flow and social optimum flow. If fe(p
(i)
i ,0)−fe(p

(m)
i ,0) >

0, the usage of road e under the selfish route choice probability is higher than that

under the social optimum route choice probability. Therefore, server m increases

nudging traffic f
(m)
e such that user i reduces the usage probability of road e.

Otherwise, it decreases f
(m)
e to increase the usage of road e by user i. Next, it

calculates root mean square error (RMSE) between p
(i)
i and p

(m)
i (line 7). These

processes (line 2–7) are repeated until the selfish yet social optimum routing is

almost achieved, i.e., RMSE ≤ ϵ. Since the update rule of f
(m)
e given by (2.8)

aims to satisfy fe(p
(i)
i ,0) = fe(p

(m)
i ,0), we can expect p

(i)
i eventually approaches

p
(m)
i .

After conducting Algorithm 2, server m sends p
(m)
i and f

(m)
i to user i. Then,

user i also calculates selfish route assignment p
(i)
i using these information and

the gradient descent method [22] (Please refer to [22, Section 3.3] for the detail

of the gradient descent method). Since calc selfish route prob(·) function is

deterministic [22], p
(i)
i will be the almost same as p

(m)
i , which is the selfish yet

optimal routing as shown in Fig. 2.2. Note that the proposed scheme can achieve

the selfish yet optimal routing under the situation where the altruistic users even

exist because the nudging traffic information for each user is adjusted based on

the social optimum assignment for each user.

2.5. Numerical Results

In this section, we first demonstrate fundamental characteristics of the proposed

scheme through numerical experiments using a grid-like network: (1) convergence

property and (2) degree of optimality in terms of average travel time. Next, we

also evaluate the practicality of the proposed scheme through numerical experi-

ments using the local/city level real road networks of Nagoya city in Japan.
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2.5.1 Evaluation Model

To evaluate the fundamental characteristics of the proposed scheme, we first use

a grid road network consisting of 50×50 nodes (intersections). There are 50 users

(A = {1, . . . , 50}). Each user i ∈ A travels from (i, 1)-st node to (i, 50)-th node.

We assume the travel time of each road e ∈ E follows Bureau of Public Roads

(BPR) function te(fe) = te(1+α(fe/ce)
β) [70]. te denotes the travel time without

road congestion, which is proportional to the ratio of length to speed limit of road

e. ce denotes the capacity of road e, which is proportional to the ratio of road

e’s size, i.e., road width, to the size of a user. α and β represent the degree of

road congestion. We set these four parameters by considering those used in [70]:

te = [1, 5], ce = [3, 5], α = 0.15, and β = 4.

As we will see later, the time period considered in the following evaluations

may not be large enough to satisfy the large sample approximation. Since the

BPR function with β = 4 is 4 times differentiable, the GSUE of order 4, i.e.,

GSUE(4), gives the most accurate mean flow at the expense of computing higher

order moments. In [67, Section 6], the author illustrates the relationship between

the time period τ and mean flow of GSUE(n) under a simple two-road network

where the demand rate is 20 [vehicles/hour], the cost function of one road e1 is

4 times differentiable function of (fe1/10)4, and that of another road e2 is 10.

This result shows that the approximation error of the mean flow between the

GSUE(4) and the GSUE(1) (i.e., SUE) actually exists in case of finite τ but

it quickly decreases with increase of τ . In particular, the error is about 14%

(τ = 0.1 [hour]) and 7% (τ = 0.2 [hour]). In this thesis, considering the tradeoff

between accuracy and complexity, we adopt SUE.

Each user i ∈ A obtains Ki (Ki ≥ 1) route candidates πi as exclusively as

possible so as to alleviate the route competition with others. Since it is hard

to obtain the comprehensive route candidates due to the computational com-

plexity [71], we obtain the route candidates according to the following heuristic

approach, which is used in [22]. Each user i ∈ A first calculates the shortest

route from the source, i.g., (i, 1)-st node to the destination, i.e., (i, 50)-th node,

when the flow of user i only exists, i.e., te(1) = te(1 + α(1/c)β). Next, it obtains

the next route candidate by calculating the shortest route from the source to des-

tination under the assumption that a predefined number of road segments, i.e.,
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Figure 2.4. An example of route candidates for a certain user i = 25, πi, (blue

lines) and those for all users, {πj}∀j∈A (black lines).

30, in the first shortest route are randomly chosen and set to be unavailable. By

repeating this procedure, each user i ∈ A obtains Ki route candidates, πi, which

are exclusive to each other as much as possible. Note that the route candidates of

all users for a given origin-destination pair are not necessarily identical because

the heuristic approach includes the randomness. We also evaluate the impact of

Ki on the system performance in Section 2.5.2. Fig. 2.4 illustrates an example of

route candidates for all users and those for user 25 are highlighted by blue color.

We evaluate the system performance in terms of the average travel time, Tavg,

which is the mean of expected travel time among all users under route assignment
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Table 2.2. Schemes for evaluation.
Scheme Notification of traffic information User i’s criterion

Notification of p
(i)
Ci user equilibrium p

(i)
Ci Selfish

Notification of p
(m)
Ci social optimum p

(m)
Ci Selfish

Proposed scheme nudging traffic information f
(m)
i Selfish

Optimal routing social optimum p
(m)
Ci Altruistic

(p
(i)
i ,p

(i)
A\{i}):

Tavg = N−1
∑
i∈A

Ti(p
(i)
i ,p

(i)
A\{i})

= N−1
∑
i∈A

Ti(p
(i)
i ,p

(i)
Ci ), (2.9)

where Ti(·) is given as follows:

Ti(p
(i)
i ,p

(i)
Ci ) =

∑
k∈Ki

p
(i)
ik

∑
e∈πik

te(fe(p
(i)
i ,p

(i)
Ci )), (2.10)

where fe(pi,f i) is given by

fe(p
(i)
i ,f i) =

∑
j∈{i}∪Ci

∑
k∈Kj

I(e ∈ πjk) · p(j)jk .

The proposed scheme is composed of the notification of the nudging traffic

information and the route selection based on the user’s selfish criterion. For

comparison purpose, we also use the following three schemes depending on the

combination of traffic notification and user’s criterion, as shown in Table 2.2.

• Notification of user equilibrium route choice probabilities p
(i)
Ci : Server m

notifies each user i ∈ A of traffic information under the assumption that

all user i’s competitors Ci follow user equilibrium route choice probabilities

p
(i)
Ci . Each user agent i ∈ A calculates selfish route choice probability p

(i)
i

under p
(i)
Ci . As a result, this scheme results in the user equilibrium but may

not be social optimum.

• Notification of social optimum route choice probabilities p
(m)
Ci : Server m first

notifies each user i ∈ A of traffic information under the assumption that
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Figure 2.5. Impact of the number of route candidates Ki on the average travel

time Tavg (grid-like network case).

all user i’s competitors Ci follow social optimum route choice probabilities

p
(m)
Ci . Next, each user agent i ∈ A calculates route choice probability p

(i)
i

under the selfish criterion with the social optimum traffic information p
(m)
Ci .

This scheme may increase traffic congestion because each user i ∈ A tends

to underestimate the congestion level under the assumption that others

behave cooperatively.

• Optimal routing : The optimal routing is achieved when all users select the

route with the probability p
(m)
i under the altruistic criterion with the social

optimum traffic information p
(m)
Ci obtained from the server.

We use the server with Intel Xeon E7-8895v3 (18 cores and 2.60 GHz) and 2 TB

memory to obtain the following results.
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Figure 2.6. Impact of ϵ on convergence time and achievement level of selfish yet

optimal routing (grid-like network case).

2.5.2 Evaluation under a Grid-like Network

2.5.2.1 Impact of Number of Route Candidates on Travel Time

We first investigate the impact of the number Ki of route candidates on the

average travel time. Fig. 2.5 depicts how the average travel time of two schemes

(i.e., notification of p
(i)
Ci and optimal routing) changes according to the number

of route candidates, Ki. We observe that Tavg of both schemes decreases with Ki

and almost converges in case of Ki ≥ 5, due to lack of exclusive route candidates.

In what follows, we use Ki = 5. There are also several studies on generating the

route candidates [72–74].

2.5.2.2 Convergence Property

We first focus on the convergence property of the proposed scheme consisting of

the distributed route selection scheme [22], Algorithms 1, and 2. The convergence

property of the distributed route selection scheme was already discussed in [22].

Since Algorithm 1 calculates nudging traffic f
(m)
e for each road e ∈ Ei at once,

it obviously converges. On the other hand, Algorithm 2 repeatedly updates f
(m)
e
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Table 2.3. Average travel time Tavg and maximum travel time Tmax (grid-like

network case).

Scheme Tavg [min] Tmax [min]

Notification of p
(i)
Ci (User equilibrium) 15.0 16.3

Notification of p
(m)
Ci 18.6 27.4

Proposed scheme 14.5 16.5

Optimal routing (Social optimum) 14.5 16.5

(e ∈ Ei) until the selfish yet optimal routing is almost achieved, i.e., RMSE ≤ ϵ. ϵ

controls the balance between convergence time and achievement level of selfish yet

optimal routing. Fig. 2.6 illustrates how ϵ affects the convergence time, i.e., CPU

time, and the achievement level, i.e., the relative gap between Tavg of the proposed

scheme and that of optimal routing. We first observe that the relative gap of

average travel time can be suppressed by appropriately adjusting ϵ. For example,

ϵ = 0.01 results in only 0.04% relative gap, which achieves almost the selfish yet

optimal routing. On the contrary, the CPU time of the proposed scheme increases

with a decrease of ϵ. To clarify which part of the proposed scheme contributes

to the CPU time, we also show the CPU time of the distributed route selection

scheme. Since the CPU time of Algorithm 1 is negligible, the difference between

the CPU time of the proposed scheme and that of the distributed route selection

scheme can be regarded as that of Algorithm 2. We can observe that the overhead

of Algorithm 2 is much smaller than that of the distributed route selection scheme

when ϵ ≥ 0.01. As a result, ϵ = 0.01 can achieve selfish yet optimal routing while

keeping the CPU time competitive with the distributed route selection scheme.

In what follows, we use ϵ = 0.01.

2.5.2.3 Average and Maximum Travel Time among Users

Table 2.3 presents average travel time Tavg and maximum travel time Tmax of the

four schemes. We first focus on the results of comparison schemes. We observe

that Tavg (resp. Tmax) of the notification of p
(m)
Ci increases by 3.6 [min] (24%) (resp.

11.1 [min] (68%)) compared with that of the notification of p
(i)
Ci . This is because

the notification of p
(m)
Ci results in underestimating traffic congestion, due to lack
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Figure 2.7. Cumulative distribution of users with travel time increase/decrease

(grid-like network case).

of considering other users’ selfish route selection. In addition, we also observe

that the notification of p
(i)
Ci increases Tavg, i.e., 0.5 [min] (3.4%), compared with

the optimal routing.

Next, we focus on the result of the proposed scheme. We confirm that the

proposed scheme achieves almost the same Tavg compared with the optimal rout-

ing. As a result, the proposed scheme can reduce Tavg by 3.6 [min] and 0.5 [min]

compared with the notification of p
(m)
Ci and the notification of p

(i)
Ci , respectively.

In addition, the PoA becomes 1.03, 1.28, and 1.00, in case of notification of p
(i)
Ci ,

notification of p
(m)
Ci , and proposed scheme, respectively. In Section 2.5.3, we will

show this improvement can become larger in the real road network.

2.5.2.4 Individual Travel Time Increase/Decrease

The proposed scheme can improve the average travel time compared with the

notification of p
(i)
Ci , however, it may also increase the travel time for some users.

Fig. 2.7 illustrates the cumulative distribution of users with travel time increase/

decrease, i.e., the difference between Ti(·) of the proposed scheme and that of the
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Figure 2.8. Impact of penetration ratio ρ on average travel time among all users,

Tavg, (grid-like network case).

notification of p
(i)
Ci . We observe that most of the users, i.e., 82% users, experiences

0.77 [min] (5.1%) travel time decrease in average, with help of the proposed

scheme. In addition, the remaining 18% users can also suppress the average

travel time increase by 0.48 [min] (3.2%).

2.5.2.5 Impact of Penetration Ratio of Proposed Scheme

In actual situations, the penetration of the proposed scheme may require a cer-

tain time and the resulting insufficient penetration may cause the performance

degradation, due to the selfish routing of the legacy users. We assume that a cer-

tain ratio ρ (0 ≤ ρ ≤ 1) of users adopts the proposed scheme and the remaining

users follow the selfish routing without traffic notification. As a result, ρ can be

regarded as the penetration ratio of the proposed scheme. Fig. 2.8 depicts the

impact of the penetration ratio ρ of the proposed scheme on the average travel

time among all users, Tavg. For comparison purpose, we also show the results

for the three schemes, i.e., notification of p
(i)
Ci , notification of p

(m)
Ci , and optimal

routing in a similar way. We show the average of 20 independent experiments,
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Figure 2.9. Impact of penetration ratio ρ on average travel time among the users

with/without the proposed scheme (grid-like network case).

each of which has different allocation of users to the corresponding schemes.

We first observe that Tavg of the four schemes degrades with decrease of ρ.

Note that we observe that the proposed scheme exhibits the same performance

as the optimal routing, regardless of ρ, because it can appropriately notify users

of nudging information in response to the background traffic generated by the

legacy users’ selfish routing. As a result, we confirm that the proposed scheme

improves Tavg up to 11.3% (resp. 24.8%), compared with the notification of p
(i)
Ci

(resp. the notification of p
(m)
Ci ).

Next, we focus on the breakdown of the average travel time Tavg of the pro-

posed scheme: Average travel time among ρN users with the proposed scheme,

T
(ρ)
avg, and that among the remaining (1−ρ)N users without the proposed scheme,

T
(1−ρ)
avg . Fig. 2.9 illustrates the impact of the penetration ratio ρ on T

(ρ)
avg and

T
(1−ρ)
avg . We find that T

(ρ)
avg can improve by up to 3.3 [min] (16.2%) compared with

T
(1−ρ)
avg in the range of 0.1 ≤ ρ ≤ 0.9. This performance improvement can be the

motivation for users to follow the proposed scheme, which will contributes to its

rapid penetration.
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Figure 2.10. 4.7 [km]× 4.5 [km] east area of Nagoya station in Japan [1].

2.5.3 Evaluation under a Local-Level Real Road Network

In this section, we present the performance of the proposed scheme under the

local-level real road network, i.e., the central part of Nagoya city, Japan.

2.5.3.1 Evaluation Model

Fig. 2.10 illustrates the target area of 4.7 [km] × 4.5 [km] east area of Nagoya

station in Japan. We use the digital road map provided by Japan Digital Road

Map Association [1], in which the internal graph structure is composed of 3,173

vertices and 5,013 edges. This map also has important attribute information of

each road, i.e., road length, the number of lanes, and speed limit, which can be

used for parameters (te and ce) of the BPR function te(fe) = te(1 + α(fe/ce)
β).
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Figure 2.11. The pairs of origin and destination for each user based on the people

flow data [2, 3].
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Table 2.4. Tavg and Tmax (real road network case).

Scheme Tavg [min] Tmax [min]

Notification of p
(i)
Ci (User equilibrium) 6.13 70.4

Notification of p
(m)
Ci 12.5 174

Proposed scheme 4.96 68.5

Optimal routing (Social optimum) 4.93 68.5

We set te by considering the road length and the speed limit, and ce based on

the number of lanes. As for α and β, we use the same settings, i.e., α = 0.15 and

β = 4.

To make the evaluation scenario more realistic, we also use the ordinary flow

of people in the target area. In case of Nagoya city, Japan, we can also obtain

such data called people flow data [2, 3], which describe the flow of people in a

certain area during one day. The people flow data presents the number of people

in the target road network and each person’s origin and destination with its

transportation method at a certain interval, e.g., an hour. In what follows, we

focus on the start of office hours, i.e., 8:00–8:59, where 1,197 vehicle users exist in

the road network. Fig. 2.11 illustrates the corresponding origin and destination

pairs as blue lines.

2.5.3.2 Average and Maximum Travel Time among Users

Table 2.4 presents average (resp. maximum) travel time among all users, Tavg

(resp. Tmax), among four schemes, i.e., the proposed scheme, Notification of p
(i)
Ci ,

Notification of p
(m)
Ci , and optimal routing. We first observe that the proposed

scheme can improve Tavg and Tmax by 1.17 [min] (19.1%) and 1.9 [min] (2.7%),

compared with the notification of p
(i)
Ci , respectively. We also observe that the

PoA of each scheme becomes 1.24, 2.54, and 1.01, in case of notification of p
(i)
Ci ,

notification of p
(m)
Ci , and proposed scheme, respectively. The real road network

case does not have a more complex graph structure but also have biased traffic

demand, i.e., the origin and destination of users, compared with the grid-like

network case. The proposed scheme can effectively distribute the traffic load as

in the optimal routing, and thus the improvement ratio is larger than that of the
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Figure 2.12. Cumulative distribution of users with travel time increase/decrease

(real road network case).

grid-like network.

2.5.3.3 Individual Travel Time Increase/Decrease

Next, we focus on the degree of optimality in terms of the travel time for each

user in case of the proposed scheme. Fig. 2.12 illustrates the cumulative distri-

bution of users with travel time increase/decrease, i.e., the difference between

Ti(·) of the proposed scheme and that of the notification of p
(i)
Ci . We observe that

the proposed scheme can reduce the travel time among 67% users with average

(resp. maximum) travel time decrease of 1.83 [min] (23.1%) (resp. 16.17 [min]),

compared with the notification of p
(i)
Ci . On the other hand, as for the remaining

33% users, we observe that the average (resp. maximum) travel time increase is

limited, 0.08 [min] (2.9%) (resp. 1.2 [min]). The above-mentioned results show

that the proposed scheme can improve the travel time for most users with a slight
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Figure 2.13. 33.9 [km]× 29.7 [km] area of Nagoya city in Japan [1].

increase of that for the remaining users.

2.5.4 Evaluation under a City-Level Real Road Network

In this section, we present the performance of the proposed scheme under the

city-level real road network, i.e., the whole area of Nagoya city, Japan.

2.5.4.1 Evaluation Model

Fig. 2.13 depicts the target area of 33.9 [km] × 29.7 [km] area of Nagoya city in

Japan, which is provided by Japan Digital Road Map Association [1]. The blue

rectangle in Fig. 2.13 corresponds to the east area of Nagoya station in Fig. 2.10.

The internal graph with 5,070 vertices and 6,332 edges consists of the major

arterial roads in Nagoya city. As with the evaluation scenario at the local level,

we also use the people flow data [2,3] in the target area. In what follows, we also

focus on the relatively crowded time period, i.e., start of office hours (8:00–8:59),

where 10,004 vehicle users exist in the road network.
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Table 2.5. Tavg and Tmax (real road network case).

Scheme Tavg [min] Tmax [min]

Notification of p
(i)
Ci (User equilibrium) 9.98 88.5

Notification of p
(m)
Ci 11.6 124.9

Proposed scheme 9.24 70.7

Optimal routing (Social optimum) 9.21 70.1

2.5.4.2 Average and Maximum Travel Time among Users

Table 2.5 presents average (resp. maximum) travel time among all users, Tavg

(resp. Tmax), among four schemes, i.e., the proposed scheme, Notification of p
(i)
Ci ,

Notification of p
(m)
Ci , and optimal routing. We observe that the proposed scheme

improves Tavg and Tmax by 0.74 [min] (7.4%) and 17.8 [min] (20.1%), compared

with the notification of p
(i)
Ci , respectively. We also observe that the proposed

scheme has almost the same performance as the optimal routing. We confirm

that the PoA of each scheme becomes 1.08, 1.26, and 1.00, in case of notification

of p
(i)
Ci , notification of p

(m)
Ci , and proposed scheme, respectively.

2.5.4.3 Individual Travel Time Increase/Decrease

Fig. 2.14 depicts the cumulative distribution of users with travel time increase/

decrease, i.e., the difference between Ti(·) of the proposed scheme and that of

the notification of p
(i)
Ci . We observe that the proposed scheme reduces the travel

time among 40% users with the average (resp. maximum) travel time decrease

of 2.01 [min] (14.7%) (resp. 40.8 [min]), compared with the notification of p
(m)
Ci .

On the other hand, the average (resp. maximum) travel time increase is limited,

0.1 [min] (1.3%) (resp. 2.1 [min]).

2.6. Summary

Traffic congestion in urban areas is mainly caused by selfish routing of users and

results in considerable economic and time loss. In this thesis, we have proposed

a scheme to achieve selfish yet optimal routing by adjusting the perceived traffic

information, which is inspired by the concept of “Nudge.” Selfish yet optimal
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Figure 2.14. Cumulative distribution of users with travel time increase/decrease

(real road network case).

routing internalizes the marginal cost into the perceived traffic information. In

the proposed scheme, the server first calculates the social optimum route choice

probability for each user. Then, it derives the nudging traffic information, which

leads the selfish routing to the social optimum routing, and notifies it to each

user. After retrieving the nudging traffic information, each user finds the selfish

route choice probability under the perceived traffic information.

Through the numerical experiments under the grid-like road network, we have

evaluated the following fundamental characteristics of the proposed scheme: (1)

the proposed scheme achieves almost the same performance as the optimal routing

and (2) it can improve the travel time of 82% users with the average travel time

decrease of 0.77 [min], compared with the notification of p
(i)
Ci .

Furthermore, we have also evaluated the practicality and scalability of the

proposed scheme under the local-level and city-level road networks of Nagoya
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city. We have observed that the proposed scheme can improve the average travel

time by 19.1% (resp. 7.4%), compared with the notification of p
(i)
Ci , in case of the

local-level (resp. city-level) road network with 1,197 (resp. 10,004) users. From

the viewpoint of individual travel time under the local-level (resp. city-level)

road network, the proposed scheme can reduce the travel time among 67% (resp.

40%) users with the average travel time decrease of 1.83 [min] (resp. 2.01 [min])

while suppressing the average travel time increase among the remaining users by

0.08 [min] (resp. 0.1 [min]).
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Chapter 3

Distributed Route Selection

under Consideration of Time

Dependency among Agents’ Road

Usage in Ordinary Situations

3.1. Introduction

It has been well-known that the traffic congestion problem can be modeled as a

congestion game in game theory by regarding roads as resources. Since the route

selection of one agent results in the use of roads composing the corresponding

route, the route selection of all agents determines the assignment of agents to

roads, which will finally determine the travel time of each agent. It is rational

for each agent to select a route that seems to have the minimum travel time from

its route candidates. Such route selection is called selfish routing and results in a

Wardrop equilibrium where each agent cannot reduce its travel time by changing

the route [10,28].

Since the classical congestion game assumes that each player can select one

or more resources at the same time, its straightforward extension to the traffic

congestion problems also assumes the static flow where each agent simultane-

ously uses the roads composing of its route during the whole time horizon of its
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travel [10, 75]. However, in case of the road networks, each agent moves along

with the route, which indicates that the agent will sequentially use the roads in

the route.

Ford and Fulkerson introduced the concept of flow over time to deal with the

congestion over time [76, 77]. They also proposed a time-expanded network that

contains one copy of the static network for each discrete time step. The time-

expanded network enables us to use the algorithms designed for the static flow

assumption at the expense of the enormous network size.

Lim and Rus proposed a distributed route selection scheme for each agent

under the assumption of the classical congestion game [22]. In [22], each agent

in the road network autonomously calculates the route choice probabilities for

its route candidates by using a gradient descent method such that its expected

travel time is minimized. This scheme regards the route choice probability of

each agent as the fractional flow under the assumption that the number of agents

on the road network is sufficiently large. As a result, the flow on a road can be

expressed by the probabilistic occupation for agents [62,64,65].

In this paper, we propose a multi-agent distributed route selection scheme con-

sidering the time dependency among agents’ road usage for vehicular networks.

The proposed scheme comprises of the following two procedures. First one is the

estimation of the time-dependent competitive relationship among agents consid-

ering a time dependency among agents’ road usage. Second one is the distributed

route selection based on a gradient descent method with the time-dependent flow

information, which is an expanded version of the existing scheme in [22].

The main contributions of the manuscript are as follows:

1. We propose the multi-agent route selection considering the time dependency

among agents’ road usage in a distributed manner.

2. Through the numerical and simulation results, we show that the proposed

scheme can improve the actual travel time by 5.1% compared with the exist-

ing scheme [22], with the help of the accurate estimation of the congestion

levels.

3. We confirm that the proposed scheme can exponentially converge to the

steady-state as in the existing scheme [22].
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The rest of the manuscript is organaized as follows. Section 3.2 gives related

work. We introduce the distributed route selection scheme considering the time

dependency among agents’ road usage in Section 3.3. Section 3.4 demonstrates

the performance of the proposed scheme through the numerical and simulation

results. Section 3.5 gives the conclusion and the future work.

3.2. Related Work

With the help of the classical congestion game, Lim and Rus proposed the

multi-agent distributed route selection scheme under the assumption of the static

flow [22]. This scheme interprets the route choice probability of each agent as

the fractional flow under the assumption that the number of agents is sufficiently

large. As a result, the flow on a road can be expressed by the agents’ probabilis-

tic occupation [62,64,65]. Each agent autonomously calculates the optimal route

choice probabilities for its route candidates such that its travel time will be min-

imized. Note that the authors proved that each agent’s rational route selection

results in the Wardrop equilibrium.

Ford and Fulkerson first introduced the concept of the flow over time and

the time-expanded network [76, 77]. In contrast to the static flow, the flow over

time assumes that the flow on a road dynamically changes. The time-expanded

network contains one copy of the static network for each discrete time step. The

flow over time in the static network can be interpreted as the static flow in the

time-expanded network. Such time-expanded network uses the fixed travel time

of the road under the assumption that the capacity of the edge limits the flow

into the edge at each time step [78]. Köhler et al. proposed a time-expanded

graph for the flow-dependent transit time [79].

Some existing studies proved the existence of Nash equilibria for flow over

time [80, 81]. Anshelevich and Ukkusuri showed the existence of Nash equilib-

ria in single-source single-sink network where the traffic obeys the first-in-first-

out (FIFO) policy [80]. Koch and Skutella introduced the congestion game with

flow over time by using a deterministic queuing model [81]. In the determinis-

tic queuing model, the traffic is regarded as the flow particles (infinitesimal flow

units). The travel time of each road consists of the fixed transit time plus the
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waiting time. The fixed transit time means the time that a flow particle needs

to travel from the tail to the head of the road. If the traffic demand exceeds the

road capacity, flow particles queue up at the end of the road in the FIFO manner.

In [82–84], the authors studied the complexity properties under the competitive

routing over time, Braess’s paradox over time, and Stackelberg strategy over time,

respectively. In this paper, we consider the time-dependent competitive relation-

ship among agents in a different way compared with the time-expanded network

and the deterministic queuing model.

There were several studies on predictive traffic congestion model [85,86]. Kong

et al. proposed an approach for urban traffic congestion prediction and estimation

by using the floating car trajectory data [85]. Fouladgar et al. proposed an urban

traffic congestion prediction scheme using a deep neural network for modeling

traffic flow [86]. Such predictive traffic congestion models would help the proposed

scheme to estimate the time-dependent flow more accurately.

The congestion-aware routing using traffic data was also studied [87, 88].

Afshar-Nadjafi and Afshar-Nadjafi formulated a mixed integer problem for time-

dependent vehicle routing to minimize the travel cost and proposed the heuris-

tic algorithm [87]. Rossi et al. addressed the congestion-aware routing for au-

tonomous vehicles and proposed an optimization method to minimize the con-

gestion by allocating empty vehicles to non-crowded routes in a capacitated road

network [88].

3.3. Distributed Route Selection under Consid-

eration of Time Dependency among Agents’

Road Usage

In this section, we propose a multi-agent distributed route selection scheme con-

sidering the time dependency of the agents’ road usage, which is an extended

version of the existing scheme [22].
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Figure 3.1. Probabilistic occupation of road e by corresponding agent’s routes.

Table 3.1. Notation.
Symbol Description

G A directed graph representing road network G = (V , E)

V A set of vertices

E A set of edges

N A set of agents

πi A vector of route candidates for agent i, (πi1, . . . , πiKi
)

pi A vector of route choice probabilities for agent i, (pi1, . . . , piKi
)

Ki A set of indices of routes for agent i, {1, . . . , Ki}
Ce A set of routes that include edge e

Cike A set of routes that include edge e where the probabilistic occupation

by agents following that route

fe Flow of edge e

3.3.1 Preliminaries

G = (V , E) denotes a graph representing the internal structure of the road net-

work, where V denotes a set of vertices (i.e., intersections) and E denotes a set

of edges (i.e., roads). There are N (N > 0) agents (e.g., vehicles) in the road

network and N = {1, . . . , N} denotes a set of agents. Each agent i ∈ N first

calculates Ki (Ki > 0) candidate routes πi = (πi1, . . . , πiKi
) where route πik is

the agent i’s kth route candidate, which is a vector of edges composing of the

corresponding route. Let Ki = {1, . . . , Ki} be a set of the corresponding route

indices.
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Next, each agent i ∈ N calculates route choice probabilities pi = (pi1, . . . , piKi
)T

where pik (0 ≤ pik ≤ 1) denotes the probability that agent i selects the kth route.

Note that
∑

k∈Ki
pik = 1 and pi can also be regarded as the mixed strategy in

game theory [59]. We assume that each agent i ∈ N collects the route choice

probabilities pj of competing agents j ∈ Ni through communication networks

(e.g., cellular networks and vehicular networks). (The definition of Ni will be

given in Section 3.3.2.) Then, each agent i calculate pi using a gradient descent

method and pj (j ∈ Ni). Finally, each agent i selects a certain route, πik∗ ,

according to the route choice probabilities pi. We assume that the route calcu-

lation is periodically conducted at a certain interval IM (IM > 0) to suppress the

estimation error and adapt to environmental changes, e.g., new agent arrivals.

If the number of agents is large, we can regard the route choice probability

pik (i ∈ N , k ∈ Ki) as the fractional flow as in [60–62]. Therefore, the flow on a

road can also be interpreted as the probabilistic occupation by the corresponding

agent’s route. In the classical congestion game, the probabilistic occupation of

a road is assumed to be static during the whole time horizon of the agent’s

travel [62,64,65]. Fig 3.1 illustrates an example of the probabilistic occupation of

road e by four agents’ routes (i.e., {π11, π21, π31, π41}). In case of the static flow

assumption, the flow on road e, fe, is defined as the sum of the corresponding

route choice probabilities:

fe =
∑

πjl∈Ce

pjl, (3.1)

where Ce denotes a set of each agent’s route that includes road e. Table 3.1

summerizes the notations used in this paper.

3.3.2 Time Dependency among Agents’ Road Usage

Since each agent travels along a route, its probabilistic occupation of each road in

the route will sequentially happen as shown in Fig. 3.1b. In this case, the static

flow assumption, where all the roads composing the route are simultaneously and

continuously used, should be reconsidered. When the agent 1 following the route

π11 just enters the road e at the time t11e , the agent 2 following the route π21 is

only the leading competitor on the road e. Then, the agent 1 will have the agent
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3 as its follower on the road e at its arrival on the road e at the time t31e . Note

that the agent 1’s movement on the road e will be affected only by its leading

agent, i.e., agent 2.

As a result, we can define a set of time-dependent competitive routes of the

road e for the agent i following the route πik:

Cike = {πjl ∈ Ce | tjle ≤ tike ≤ tjle + t̃e}. (3.2)

tike denotes the inflow time when the agent i following πik enters road e. t̃e denotes

the estimated travel time on the road e. (The estimation method will be discussed

in the next section.) tjle + t̃e denotes the outflow time when the agent j following

πjl exits the road e. The condition tjle ≤ tike ≤ tjle + t̃e guarantees that the agent j

following πjl leads the agent i following πik on the road e, and thus becomes the

competitor. Note that this model assumes that all agents obey the FIFO policy

and Cik
e does not change until the agent i following πik exits the road e. Using

Cike , we can express the time-dependent flow on the road e for the agent i’s route

πik.

f ik
e =

∑
πjl∈Cik

e

pjl. (3.3)

Furthermore, the competitors of the agent i ∈ N can be defined as the following

set:

Ni = {j ∈ N \ {i} | ∃l ∈ Kj, πjl ∈ ∪k∈Ki
Cike }.

Each agent i collects the route choice probabilities pj of competitors j ∈ Ni

through communication networks.

3.3.3 Distributed Route Selection under Consideration of

Time-Dependent Road Usage

In this section, we show how the distributed route selection scheme calculates the

optimal route choice probability under the consideration of the time dependency

among agents.
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The cost of route πik for agent i can be expressed by the sum of cost of each

road along route πik.

cik =
∑

∀e∈πik

ce(f
ik
e ), (3.4)

where ce(·) denotes the cost of the road e under the flow f ik
e , which is a non-

decreasing function. From Eqs. (3.2) and (3.3), we should note here that ce(·)
depends on t̃e. This is a kind of the chicken or egg situations, and thus it is hard

to obtain accurate t̃e for each road e ∈ E before calculating the path cost cik

(i ∈ N , k ∈ Ki). In this paper, we simply regard t̃e as the lower bound of travel

time on the road e, te, which is the travel time without any congestion on the

road e. In Section 3.4.2, we will show this simple assumption contributes to the

congestion alleviation but we also plan to apply more sophisticated estimation

methods [85,86].

We assume that each agent i ∈ N measures the goodness of the current route

choice probabilities pi based on the local cost Vi [22]:

Vi =
∑
k∈Ki

pikcik − cidi =
∑
k∈Ki

pik(cik − cidi), (3.5)

where di = arg min
k∈Ki

cik. Eq. (3.5) means the difference between the expected path

cost under pi and the minimum path cost. It is rational for each agent i to aim

at adjusting the route choice probabilities pi such that Vi approaches to 0. Vi = 0

leads to the following two conditions of Wardrop equilibrium [22]:cik = cidi , if pik > 0,

cik ≥ cidi , otherwise.

The first condition means that each agent i ∈ N selects the minimum-cost path

while the second one indicates that unselected paths have equal or larger cost

than the minimum cost.

The global cost V is defined as the sum of the local cost Vi of all agents

i ∈ N [22]:

V =
∑
i∈N

Vi. (3.6)
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When each agent i aims to adjust pi such that Vi approaches to 0, V also converges

to 0. As a result, Wardrop equilibrium is achieved among all agents.

In [22], a distributed gradient controller is proposed, in which each agent

i ∈ N can control pi such that Vi = 0 in a distributed manner. The distributed

gradient controller governs the time derivative of the route choice probabilities

using the competitors’ current route choice probabilities. We propose the dis-

tributed gradient controller considering the time dependency of the agents’ road

usage, which is the extended version of the existing scheme [22].

We can obtain the local cost increase of the route πik, wik, by a small change

in pik:

wik =
∑
j∈Ni

∂Vj

∂pik
. (3.7)

From Eq. (3.5), the local cost increase of agent j by the small change in pik,

∂Vj/∂pik, can be expressed by

∂Vj

∂pik
=

∂

∂pik

∑
∀l∈Kj\{dj}

pjl(cjl − cjdj)

=


∑

∀l∈Kj\{dj}

pjl

(
∂cjl
∂pik

−
∂cjdj
∂pik

)
if i ̸= j,

cik − cidi +
∑

∀l∈Ki\{di}

pil

(
∂cil
∂pik

− ∂cidi
∂pik

)
if i = j.

The cost increase of πjl by the small change in pik, ∂cjl/∂pik, is expressed by the

sum of each edge’s cost increase. Since the small change in pik only affects the

cost of edges shared by both πik and πjl, we can express ∂cjl/∂pik as follows:

∂cjl
∂pik

=
∑

e∈πik∩πjl

I(πik ∈ Cjle )
∂ce(f

jl
e )

∂f

−
∑

e∈πidi
∩πjl

I(πidi ∈ Cjle )
∂ce(f

jl
e )

∂f
,

where I(·) denotes an indicator function. The right-hand side of the equation

denotes the sum of the cost derivative in the edge level when the corresponding

route is included in the set of time-dependent competitive routes of the road e
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for the agent j following the route πjl. Note that pidi may also change depending

on the small change in pik.

As in [22], we can finally obtain the following distributed gradient controller

per unit time of τ (τ > 0):

dpi

dτ
= −γVi

yi − (1T
Ki
yi)edi

||yi||2
. (3.8)

γ (γ > 0) denotes a learning rate. 1Ki
denotes a column vector of size Ki with all

elements set to be 1. edi denotes a column vector of size Ki, where dith element

is set to be 1 and the remaining elements are set to be 0. yi = (yi1, . . . , yiKi
)T is

defined as follows for k ̸= di:

yik =

0 if pik = 0, wik > 0 or pik = 1, wik < 0,

wik otherwise.
(3.9)

When each agent i ∈ N adjusts pi according to Eq. (3.8), the global cost V

reaches to zero, and thus the Wardrop equilibrium is achieved.

3.4. Simulation Results

In this section, we demonstrate the fundamental characteristic of the proposed

scheme.

3.4.1 Evaluation Model

To evaluate the fundamental characteristic of the proposed scheme, we use a grid

road network consisting of 50 × 50 nodes (intersections). There are fifty agents

(N = 50) and each agent i ∈ N travels from node (i, 1) to node (i, 50). Note that

(1, 1) (resp. (50, 50)) is the left-top (resp. right-bottom) node of the grid network.

We assume that travel time of each road e ∈ E follows the BPR function [70], i.e.,

te(fe) = te(1+α(fe/ce)
β) where te denotes the travel time without any congestion

on the road e, and ce denotes the capacity of the road e. α and β represent the

degree of the traffic congestion. For each road e, we randomly set te (resp. ce) in

the range of [0, 1] (resp. [2, 4]). We also use α = 0.15 and β = 4.
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Figure 3.2. Route candidates π25 for agent 25 (blue lines) and route candidates

{πj}∀j∈N for all agents (black lines).

Each agent i ∈ N obtains Ki = 5 route candidates πi according to the

following procedure. Each agent i ∈ N first calculates the shortest route from

the origin, i.e., node (i, 1), to the destination, i.e., node (i, 50), when the flow

of the agent i only exists, i.e., te(1) = te(1 + α(1/ce)
β). Next, it obtains the

second route candidate by calculating the shortest route from the origin to the

destination under the assumption that the predefined number of road segments,

i.e., 30, in the shortest route are unavailable. By repeating this procedure, each

agent i ∈ N obtains Ki route candidates πi, which are exclusive to each other

as much as possible. Fig. 3.2 illustrates an example of route candidates for all

agents and those for agent 25 are highlighted by blue color.

As for evaluation criteria, we use the estimated travel time and the actual
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Figure 3.3. Congestion model.

one. The estimated travel time for agent i, T̃i, is defined as the weighted sum of

the travel time corresponding each route πik.

T̃i =
∑
k∈Ki

p∗ik
∑
e∈πik

te(f
ik
e ), (3.10)

where the weights are given by p∗
i , which is derived by the distributed gradient

controller in Section 3.3. On the other hand, the actual travel time for each agent

i, Ti, is the difference between arrival time to a destination and departure time

from a origin.

To obtain the actual travel time Ti, i.e., the elapsed time between the depar-

ture from the origin and the arrival at the destination, for each agent i ∈ N ,

we implemented a Java simulator. In what follows, we assume that the control

interval IM is sufficiently large and the route calculation is conducted once at the

beginning of the simulation. Each agent i ∈ N first calculates the route choice

probabilities p∗
i , and then selects one of the candidates, k∗

i , according to p∗
i . We

define the deterministic version of p∗
i as p̂i = (p̂i1, . . . , p̂iKi

)T. p̂i is a vector of

size Ki where k∗
i th element is set to be 1 and the remaining elements are set to

be 0.

Fig. 3.3 shows the congestion model used in the simulator. Suppose that

three agents i (i = 1, 2, 3) selecting the route πi1 travel a road e in the same

direction and in this order. We obtain f 11
e = p̂11 = 1, f 21

e = p̂11 + p̂21 = 2, and

f 31
e = p̂11 + p̂21 + p̂31 = 3 from Eq. (2.1) (Fig. 3.3a). As a result, the agent i
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Table 3.2. Estimated travel time and actual travel time (Proposed scheme and

conventional scheme).

Scheme T̃i [min] Ti [min]

avg. max. std. avg. max. std.

Proposed scheme 23.1 25.1 1.32 22.3 24.2 1.05

Conventional scheme [22] 28.0 29.8 0.87 23.5 25.9 1.17

moves as the speed of vi = de/te(f
i1
e ) where de is the length of the road e. When

the agent 1 exits the road e (Fig. 3.3b), the time-dependent flow for the agents

2 (resp. 3) is updated to f 21
e = p̂21 = 1 (resp. f 31

e = p̂21 + p̂31 = 2), and thus the

corresponding speed also changes.

For comparison purpose, we also use the conventional scheme, which is the

distributed route selection scheme based on the classical congestion game [22], i.e.,

Cike = Ce. In what follows, we show the average of 100 independent experiments.

3.4.2 Fundamental Results

Table 3.2 shows the estimated travel time T̃i and the actual one Ti for both

schemes in terms of the average and maximum values. We first focus on the

difference between the estimated travel time and actual one for each scheme. We

observe that the proposed scheme can more accurately estimate the travel time

than the conventional scheme. In particular, the relative estimation error, i.e.,

(T̃i − Ti)/Ti, of the proposed scheme is 0.036 (resp. 0.037) in case of the average

(resp. maximum) travel time, which is much smaller than that of the conventional

scheme (i.e., 0.19 (resp. 0.15) in case of the average (resp. maximum) travel time).

Next, we focus on the performance difference between the proposed scheme

and the conventional scheme. We observe that the proposed scheme can improve

the average (resp. maximum) actual travel time by 5.1% (resp. 6.6%) compared

with the conventional scheme. The static flow assumption used in the conven-

tional scheme considers the worst congestion case while the time-dependent flow

assumption in the proposed scheme seems to succeed in estimating more possible

congestion level of each road.
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Figure 3.4. Impact of N on the convergence property (K = 5).

3.4.3 Convergence Property

Finally, we evaluate the convergence property of the proposed scheme. Fig. 3.4

shows the transition of the global cost V when K = 5 and N is set to be

10, 20, 30, 40, and 50. In addition, Fig. 3.5 also depicts the transition of V when

N = 50 and K is set to be 2, 3, 4, and 5. In these figures, we first observe that

the global cost V exponentially decreases with the number of iteration. We also

observe that the convergence speed is in inverse proportion to both the number

of agents, N , and that of candidate routes, K.

3.5. Summary

In the classical routing game, all the roads composing the route are assumed to

be used simultaneously and continuously. However, this assumption should be

reconsidered since the congestion level would change over time. In this paper,

we have proposed a multi-agent distributed route selection scheme based on a

gradient descent method considering time dependency among agents’ road usage.
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Figure 3.5. Impact of K on the convergence property (N = 50).

In the proposed scheme, each agents calculates the route choice probabilities by

using the estimated time-dependent flow on each road in the distributed manner.

Through the numerical results and the simulation results, we have shown that

the proposed scheme can improve the actual travel time by 5.1%. We have also

confirmed that the proposed scheme exponentially converges to the steady-state.

In future work, we plan to investigate how the proposed scheme can improve

the actual travel time by controlling the interval IM, which will contribute to

increase the estimation accuracy at the expense of the computational complexity.

In addition, we also consider to apply the existing predictive traffic congestion

models to estimate the time-dependent flow more accurately. Finally, we will

conduct the mathematical analysis of the convergence property.
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Chapter 4

Geographical Risk Analysis

Based Speedy and Reliable Path

Selection in Emergency

Situations

4.1. Introduction

In the 2011 Great East Japan Earthquake, both fixed and mobile communication

networks have been unavailable for long time and in wide areas, due to damage

of information communication infrastructures. As a result, it has been reported

that there were many cases where evacuees and rescuers could not collect and dis-

tribute important information, e.g., damage information, evacuation information,

and government information [89]. Evacuees quickly have to evacuate to refuges

along safe routes to keep their own safety when a large-scale disaster occurs.

While they can acquire static information, e.g., map and location of refuges, in

usual time, they cannot grasp dynamic information, e.g., blocked road segments,

until the disaster occurs.

To tackle this problem, Komatsu et al. have proposed an automatic evacuation

guiding scheme based on implicit interactions between evacuees and their mobile

devices [24], where communication among mobile devices is enabled by Delay
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Tolerant Networks (DTNs) [90]. In this scheme, an application for evacuation

guiding tries to navigate an evacuee by presenting his/her evacuation route as a

recommended route using information shared between mobile devices and/or be-

tween mobile devices and cloud systems. When a large-scale disaster occurs, the

application is activated automatically. Note that the application should be pre-

installed into his/her mobile device in usual time. The application calculates an

evacuation route from the current position to a refuge, based on the map and the

location detected by Global Positioning System (GPS), and navigates the evacuee

by presenting the route. In addition, the application can also grasp the actual

evacuation route of the evacuee, i.e., his/her trajectory, by measuring his/her po-

sition periodically. The evacuee tries to evacuate along the recommended route.

When the evacuee discovers a blocked road segment during his/her evacuation

along the recommended route, he/she will take an another route by his/her own

judgment. As a result of tracing his/her actual evacuation route as the trajectory,

the application can detect a blocked road, which makes the difference between

the recommended route and the actual evacuation route. The application can

automatically estimate and record this road as a blocked road segment. We can

expect that the evacuation route can be improved by sharing blocked road seg-

ments, which were discovered, when a mobile device can communicate with other

mobile devices and/or the remaining communication infrastructures.

The automatic evacuation guiding scheme is a reactive approach, which can

dynamically adapt to environmental changes under disaster situations. In [24],

the effectiveness of the automatic evacuation guiding scheme has been evaluated

in terms of the average/maximum evacuation time and the ratio of evacuees that

have finished evacuating to all evacuees. They, however, do not take into account

the safety of evacuation routes and the shortest path is used for the recommended

route. In case of earthquakes, an evacuee has to evacuate quickly and safely by

avoiding encounters with blocked road segments as much as possible. Recently,

we can obtain static information to predict occurrence of blocked road segments,

i.e., road blockage probability, from a certain municipality, e.g., Nagoya city in

Japan [23]. (See the details in Section 4.4.1.2). We can also obtain information

about geographical distribution of people in the usual time, e.g., location data

collected from mobile phones and people flow data [2].
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In this thesis, we propose a speedy and reliable path selection for the auto-

matic evacuation guiding by using the geographical information about map, road

blockage probabilities, and geographically population distribution in the usual

time. This is a kind of proactive approach, which can be conducted before disas-

ter occurs. We also propose a guideline of parameter determination approach for

the proposed scheme to achieve both speediness and safety. Through simulation

experiments, we show the validity of the proposed scheme in terms of the total

number of encounters with blocked road segments and the average/maximum

evacuation time. In particular, we expect that evacuation guiding with the re-

active approach and proactive approach can improve evacuation movement in

enormous damage environments, e.g., inferior communication environments.

The rest of this chapter is organized as follows. Section 4.2 gives related work.

In Section 4.3, we explain the existing automatic evacuation guiding scheme. In

Section 4.4, the proposed scheme is presented, and Section 4.5 gives simulation

results. Finally, Section 4.7 provides conclusions and future work.

4.2. Related Work

There are several existing studies on evacuation guiding supported by informa-

tion and communication technology (ICT) [24, 91–93]. Iizuka et al. propose an

evacuation guiding scheme which presents evacuees evacuation paths and evacu-

ation timing to avoid traffic jams, by using an ad-hoc network [91]. Fujihara and

Miwa propose an evacuation guiding scheme using DTN under the situations of

damage to communication infrastructures [92]. It is much difficult for an evacuee

to operate his/her mobile device properly even if the communication environ-

ments can be secured. In addition, evacuees may not use an evacuation guiding

application and a device for the first time without understanding the operation

method. Under such a background, Komatsu et al. propose an automatic evac-

uation guiding scheme based on implicit interactions among evacuees and their

mobile devices [24]. In the existing studies, the evacuation route is selected from

the viewpoint of speedy evacuation, e.g., route length. In the evacuation, safety is

important as well as speediness. In this thesis, we propose a speedy and reliable

path selection for the automatic evacuation guiding, which allows evacuees to
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evacuate quickly while avoiding encounters with blocked road segments as much

as possible.

There are several existing studies on the risk analysis after a disaster oc-

curs [23, 94, 95]. In Japan, a certain municipality, e.g., Nagoya city, has been

evaluating the regional risks, road blockage probabilities, after occurrence of a

large-scale disaster [23]. Church and Cova map evacuation risks on transporta-

tion networks using a spatial optimization model, called critical cluster model, in

which the whole area is dividied into multiple small areas, and the small areas

with high ratio of population to exit capacity are regarded as those with high

evacuation risk [94]. Since the model in [94] is only based on pre-disaster fac-

tors, i.e., population and exit capacity, Chen et al. extend this model by adding

post-disaster factors, e.g., spatial impact of disaster and potential traffic jams

caused by evacuation guiding [95]. In this thesis, we improve the safety of evac-

uation guiding by taking into account of pre-disaster factor, i.e., road blockage

probability.

The concept of path reliability, which will be explained in Section 4.4.2, is

inspired by road network reliability. [96–98]. There are two kinds of definitions of

road network reliability: connectivity reliability and travel time reliability [96].

Connectivity reliability is defined as a probability that there exists at least one

route between a source and a destination without heavy delay or road disruption.

Travel time reliability is defined as a probability that traffic on the path can reach

the destination within a specified time. Iida proposes a method to analyze and to

evaluate the connectivity reliability, the travel time reliability, and the reliability

of the links composing the road network [96]. Chen et al. analyze a road network

with traffic demands by considering the connectivity reliability, the travel time

reliability, and the capacity reliability [97]. Ahuja et al. propose a method to

calculate the path reliability from the reliability of each link of the path [98].

When a disaster occurs, the road network might not be able to function as

usual. Thus, evacuees have to select appropriate evacuation routes by taking

into account of various aspects: estimated evacuation time, traveling distance,

and traffic congestion. There are several studies on a multi-objective path se-

lection [99–101]. In [100], Yuan and Wang propose path selection models for

emergency logistics management, with the help of an ant colony optimization
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algorithm [102], in order to select a route that minimizes both total travel time

and route complexity. In [99], Lu et al. assume that the available capacities of

nodes and edges of the road network may change during evacuation. They model

the node capacities and edge capacities as time-series data and propose capacity

constrained routing algorithms. Saadatseresht et al. propose path selection for

evacuation planning with the help of the multi-objective evolutionary algorithm,

where multiple factors, i.e., the distance from refuges, the capacity of refuges,

and the population, are considered [101]. In this thesis, we also tackle a kind

of the multi-objective path selection, which considers the path length and path

reliability.

4.3. Automatic Evacuation Guiding

In this section, we introduce the overview of automatic evacuation guiding scheme

in [24]. Note that we slightly extend it by adding a function to collect information

about passable road segments, which will be used to calculate the reliability of

evacuation path.

4.3.1 Preliminaries

G = (V , E) denotes a graph representing the internal structure of target region,

where V is a set of vertices, i.e., intersections, and E is a set of edges, i.e., roads,

in the map. There are N (N > 0) evacuees in the region and each of them has a

mobile device. N = {1, 2, . . . , N} denotes a set of the evacuees (devices). Each

device n ∈ N measures and records its own locations by using GPS at intervals

of IM (IM > 0) just after a disaster occurs.

4.3.2 Overview

Fig. 4.1 illustrates the flow of guiding evacuee n ∈ N to a refuge. Evacuee n

has pre-installed an application for evacuation guiding into his/her mobile device

before a disaster occurs. The application can obtain static information, i.e., the

peripheral map of target region and the location of refuges, in advance. When a

disaster occurs, the application is initiated automatically. The application first
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Figure 4.1. Flow of evacuation guiding.

finds out the nearest refuge d ∈ V from location s ∈ V of evacuee n. Next

it calculates an evacuation route rn,s,d and presents him/her the route as the

recommended route (Step 1 in Fig. 4.1). Recommended route rn,s,d between

source s and destination d on map G is given by a vector of edges constructing

the route. Evacuee n tries to move along recommended route rn,s,d. When evacuee

n discovers a blocked road segment during his/her evacuation along recommended

route rn,s,d (Step 2 in Fig. 4.1), he/she will take an another route by his/her own

judgement (Step 3 in Fig. 4.1). The application can trace the actual evacuation

route as a trajectory by measuring his/her positions periodically, i.e., at the

intervals of IM. As a result, the application can detect road segment e ∈ E , which

makes the difference between the recommended route and the actual evacuation

route. Then, the application automatically records blocked road segment e into

a set of blocked road segments, ENG
n (Step 4 in Fig. 4.1). The application further

recalculates a new evacuation route rn,s′,d, which does not include blocked road

segments in ENG
n , and presents him/her the route, from the current location s′

to the nearest refuge d (Step 5 in Fig. 4.1). On the other hand, when evacuee

n has passed road segment e ∈ E during his/her evacuation, the application

automatically records e into a set of passable road segments, EOK
n .

When the mobile device can communicate with other mobile devices and/or

the remaining communication infrastructures, it tries to obtain new information

about blocked road segments and passable road segments. These information will
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be used to recalculate the recommended route. Evacuation guiding for evacuee

n finishes when he/she reaches the refuge or the application cannot find out any

evacuation route to the refuge.

4.3.3 Impact of Penetration Ratio on Evacuation Time

In actual situation, the ratio of the evacuees with the proposed application, i.e,

penetration ratio ρ (0 ≤ ρ ≤ 1), might be low. In [24, Section 4.3], the authors

investigated the impact of the penetration ratio of the application on the system

performance in terms of the evacuation time. In this experiment, the authors as-

sumed that the ρN evacuees with the proposed application play a role of leaders.

The remaining evacuees without the proposed application first move to random

destinations but follow the direction of the leaders just after encountering them.

The authors showed that the average evacuation time monotonically increases

with decrease of ρ but the proposed scheme is still effective even under low pen-

etration cases. In particular, the increase of the average evacuation time when

ρ = 0.2 can be suppressed by 14% compared with that when ρ = 1.0. We expect

the similar tendency will be kept because the proposed scheme is based on the

automatic evacuation guiding scheme [24].

4.4. Proposed Scheme

4.4.1 Geographical Information

Nowadays, we can easily use digital maps, e.g., OpenStreetMap [103] and Google

Maps [14], and some of them, e.g., OpenStreetMap, can also be used even under

offline environments. Moreover, we can also obtain other types of geographi-

cal information, e.g., the geographical population distribution in usual time and

geographical risk, in particular areas. Evacuees can prepare these geographical

information using the mobile application in advance.

4.4.1.1 Geographical Population Distribution in Usual Time

The geographical population distribution in usual time is important because it

affects the initial positions of evacuations. It can be generated by location data
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collected from mobile phones and/or people flow data [3]. In this thesis, we

use the people flow data, which can be easily obtained. The people flow data

is spatio-temporal information about movements of people, which is generated

based on the person trip survey [104]. The person trip survey has been con-

ducted for particular areas by Ministry of Land, Infrastructure and Transport

and municipalities in Japan. It is a questionnaire survey that records the series

of personal movements from origins to destinations, called trips. Since the per-

son trip survey is applied to a limited number of people in the target area, an

expansion factor is introduced to estimate the movement of the whole people in

that area. The expansion factor of a trip means the number of people that follow

that trip. Each trip is divided into one or more sub-trips such that each sub-trip

has the same transportation method, e.g., walk, car, or train. Each sub-trip has

some information, e.g., the origin, destination, travel time between them, and

travel time. The people flow data are calculated by transforming each of sub-trip

data into a series of the corresponding person’s locations at a given interval, i.e.,

a minute. We can obtain the geographical people distribution at a certain period,

e.g., one hour, by analyzing the people flow data.

4.4.1.2 Road Blockage Probability

In Japan, a municipality, e.g., Nagoya city, has been evaluating the regional risks,

e.g., road blockage probabilities, which would be caused by future large-scale

disasters such as Nankai Trough Earthquake [23]. Road blockage probability pe

(0 ≤ pe ≤ 1) is an estimated probability that road segment e ∈ E is blocked due

to collapse of building along the road under a certain disaster. Let Ĝ = (V , E , g)

denote a risk map where g : E → I is a real-valued function that assigns the

blockage probability pe in the closed unit interval I = [0, 1] to each edge e ∈ E . It

is calculated per road according to the three models (i.e., road model, roadside

building collapse model, and road blockage model).

The road model consists of the road attributions (i.e., road length and road

width) obtained from the city planning basic map. The roadside building collapse

model first calculates the probability of total collapse of each building along a road

according to the magnitude of an earthquake and building-related parameters

(i.e., height, building year, and building type (i.e., wooden or non-wooden)).
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This model assumes the worst-case scenario where all the buildings on the both

roadsides would collapse and the width of road blockage (debris) caused by the

building collapse would be the height of the building.

In the road blockage model, the road is considered to be blocked if the differ-

ence between the road width and height of collapsed building (i.e., the available

road width) is less than σ = 2 [m], which is the minimum space for walking evac-

uation. More correctly, this model first divides a road e between two intersections

into sections per 20 [m], which corresponds to the width of the building site, and

calculates the blockage probability for each section s ∈ e, p̂s, according to the

relationship between the road width Fe [m] and the height of the buildings on

the section s’s both roadsides (i.e., the height Hs,1 [m] (resp. Hs,2 [m]) of building

on one (resp. another) roadside 1 (resp. 2) of the section s). Without loss of

generality, p̂s is defined under the assumption of Hs,1 ≥ Hs,2:

p̂s =



Rs,1 if Fe −Hs,1 < σ and Fe −Hs,2 ≥ σ,

1− (1−Rs,1)(1−Rs,2) if Fe −Hs,1 < σ and Fe −Hs,2 < σ,

Rs,1Rs,2 if Fe −Hs,1 ≥ σ, Fe −Hs,2 ≥ σ, and

Fe − (Hs,1 + Hs,2) < σ,

0 if Fe −Hs,1 ≥ σ, Fe −Hs,2 ≥ σ, and

Fe − (Hs,1 + Hs,2) ≥ σ,

(4.1)

where Rs,1 and Rs,2 denote the probability of total collapse of building on one

roadside 1 and another roadside 2 of the section s, respectively. Note that Rs,1

and Rs,2 are calculated according to roadside building collapse model.

The road e is considered to be blocked when at least one section s ∈ e is

blocked according to (4.1). As a result, the road blockage probability pe can be

expressed by

pe = 1−
∏
s∈e

(1− p̂s).

Note that the longer the length of road e, de is, the higher the road blockage

probability pe tends to be.

64



4.4.2 Path Reliability

We define path reliability based on the road blockage probabilities. Since pe is

the road blockage probability, 1 − pe indicates road passable probability that

road segment e is passable. Path reliability can be defined as the probability

that all roads ∀e ∈ r on path r are passable. If road blockage probabilities are

independent, path reliability is given by the product of road passable probabilities

of all roads of the path,

fp(r) =
∏
e∈r

(1− pe). (4.2)

The path reliability takes a value in the range of [0, 1] and a large (resp. small)

value means high (resp. low) reliability.

We should note here that pe of each road e ∈ E can be updated with the help of

the automatic evacuation guiding [24]. In the automatic evacuation guiding, each

road segment is categorized into three states: unknown, passable, and blocked.

All road segments initially start from the unknown state. When a mobile device

detects that road segment e ∈ E is passable (resp. blocked), pe can be updated

to zero (resp. one). These updates will contribute to selecting more reliable path

selection.

4.4.3 Speedy and Reliable Path Selection

We propose a speedy and reliable path selection based on a two-step approach,

where we first enumerate candidates of short paths and then select the most

reliable path from the candidates. The length of path r, i.e., path length, is given

by the sum of the length of all roads composing path r:

fd(r) =
∑
e∈r

de,

where de denotes the length of road e ∈ E . We should note here that we can

also apply traveling time of road e as the road cost, instead of road length. Since

the traveling time of road e increases with the number of evacuees on that road,

congestion-aware path selection can be achieved [105].

Algorithm 3 presents the first step, i.e., mobile device n’s enumeration of

at most kmax-shortest paths with constraint on path length, δmax, which is the
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Algorithm 3 Mobile device n’s enumeration of at most kmax shortest paths with

constraint on path length, δmax.

Require: Ĝ = (V , E , g), s, d, kmax, δmax

Ensure: Rkmax,δmax

n,s,d

1: Rkmax,δmax

n,s,d = ∅ ▷ Initialize path candidates

2: k = 1

3: r = k-th shortest path(Ĝ, n, s, d, k) ▷ Obtain shortest path

4: dmin = fd(r)

5: while k ≤ kmax do ▷ Enumerate at most kmax shortest paths

6: if fp(r) == 1 then ▷ If successful route for evacuation is found

7: return {r}
8: Rkmax,δmax

n,s,d = Rkmax,δmax

n,s,d ∪ {r}
9: k = k + 1

10: r = k-th shortest path(Ĝ, n, s, d, k) ▷ Obtain next candidate

11: if r = null or fd(r)− dmin > δmax then ▷ If proper next candidate is not

found

12: return Rkmax,δmax

n,s,d

13: return Rkmax,δmax

n,s,d

maximum increment from the shortest path. Given risk map Ĝ = (V , E , g),

current location s ∈ V , destination d ∈ V , kmax, and δmax, mobile device n ∈
N initializes the set of path candidates, Rkmax,δmax

n,s,d , to an empty set (line 1).

Next, it calculates the shortest path r using k-th shortest path() function with

k = 1 and uses its path length as the lower bound of path length, dmin (lines 2–

4). Here, k-th shortest path() function can be achieved by existing algorithms,

e.g., Yen’s algorithm [106] and Pruned Landmark Labeling based approach [107].

Then, mobile device n sequentially enumerates at most kmax-shortest paths with

constraint on path length, δmax (lines 5–12). If it finds that r is a successful

route for evacuation, which consists of only passable road segments, it stops the

enumeration and returns the set of the most reliable route, i.e., {r} (lines 6–7).

Otherwise, it adds r to Rkmax,δmax

n,s,d and tries to obtain the next candidate route as

r (lines 8–10). If r is not found or the path length of r violates the constraint,
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it stops the enumeration and returns current candidates Rkmax,δmax

n,s,d (lines 11–12).

If there is no successful route for evacuation and no violation of path length

constraint, it returns kmax-shortest paths as Rkmax,δmax

n,s,d (line 13). After obtaining

path candidates Rkmax,δmax

n,s,d using Algorithm 3, mobile device n selects a path with

the largest path reliability as recommended route rkmax,δmax

n,s,d :

rkmax,δmax

n,s,d = arg max
r∈Rkmax,δmax

n,s,d

fp(r).

We can control the balance between speediness and safety of evacuation by appro-

priately selecting kmax and δmax. In case of kmax = 1, the proposed path selection

is equivalent to the shortest path selection. If kmax = δmax = ∞, the proposed

path selection adopts the most reliable path without taking into account of path

length. Basically, small (resp. large) kmax and/or δmax emphasize speedy (resp.

safe) evacuation but these two parameters have different roles. kmax guarantees

the quantity of candidate paths while δmax guarantees the quality of them in

terms of speediness of evacuation.

The appropriate values of these two parameters highly depend on the structure

of road network. In Section 4.4.4, we will tackle this problem.

4.4.4 Determination of Appropriate Parameter Settings

It is desirable for evacuees to be able to determine appropriate values k∗
max and

δ∗max for the two parameters kmax and δmax before disasters occur. In this section,

we propose a parameter determination approach based only on the geographi-

cal information that can be retrieved in usual time, i.e., geographical population

distribution in usual time and risk map Ĝ = (V , E , g). Suppose that evacuees

start their evacuations from initial locations, Vinit, which is obtained by the geo-

graphical people distribution. If the target area does not have information about

the geographical people distribution, we assume that evacuee’s initial locations

are uniformly distributed in the area. Given Ĝ = (V , E , g), kmax, and δmax, we

can calculate an appropriate path rkmax,δmax

s,d from each s ∈ Vinit to the nearest

destination d ∈ V , according to Algorithm 3. Let δkmax,δmax

s,d denote the increment

of path length from the shortest path, i.e., fd(rkmax,δmax

s,d ) − fd(r1,0s,d). The average

δ
kmax,δmax

of δkmax,δmax

s,d among all s ∈ Vinit nearest to d ∈ V can be regarded as the
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goodness of (kmax, δmax) in terms of path length. On the other hand, the average

f
kmax,δmax

p of fp(rkmax,δmax

s,d ) among all s ∈ Vinit nearest to d ∈ V can be regarded as

the goodness of (kmax, δmax) in terms of path reliability.

Suppose that search space S is given by direct product K × ∆, where K

(resp. ∆) is the space of values that kmax (resp. δmax) can take on. Since there is

a trade-off between path length and path reliability, we introduce parameter δth

to control this trade-off. We first find space Sδth in which δ
kmax,δmax

is not more

than predetermined threshold δth for each d ∈ V as follows:

Sδth = {(kmax, δmax) ∈ S | δkmax,δmax ≤ δth}.

We assume that each evacuee can set δth to tell the system his/her sensitivity

to speediness of evacuation. Next, we obtain appropriate values k∗
max and δ∗max,

which maximize the path reliability:

(k∗
max, δ

∗
max) = arg max

(kmax,δmax)∈Sδth

f
kmax,δmax

p . (4.3)

Numerical examples of parameter determination will be given in Section 4.5.2.

4.5. Simulation Results

Through simulation experiments, we evaluate the effectiveness of the proposed

scheme in terms of safety and speediness of evacuation.

4.5.1 Simulation Model

We use The ONE Simulator [108]. We also use the risk map of 2, 600 [m] ×
1, 700 [m] Arako area of Nagoya city in Japan, which is provided by Nagoya

city (Fig. 4.2). This map’s internal graph structure is composed of 939 vertices

and 1, 878 directed edges. There are five refuges (d1: Uchide nursery school, d2:

Maruike park, d3: Arako primary school, d4: Arako park, and d5: Arako commu-

nity center), which are presented by blue squares in Fig. 4.2. We set the simula-

tion time to be 5, 000 [s]. When the simulation starts, a disaster occurs and the

evacuees start moving from given points on the map (blue points in Fig. 4.2) to

the nearest refuges at a speed of 1.11 [m/s]. Since all evacuees may require some

68



d1

d2

d3

d4d5

Figure 4.2. Risk map: 2, 600 [m]×1, 700 [m] Arako area of Nagoya city in Japan.

time to start evacuation, the start time of each evacuation is randomly delayed

from 0 to 200 seconds.

Because the initial positions of evacuees may affect the evacuation perfor-

mance, we prepare different kinds of scenarios: random, commuting, and return-

ing scenarios. In the random scenario, evacuees start evacuations from random

positions. This scenario is regarded as the default scenario where the geographical

population distribution in usual time cannot be obtained. To evaluate the impact

on taking account of the geographical population distribution in usual time, we

use the commuting and returning scenarios. In the commuting (resp. returning)

scenario, the initial locations of evacuees are determined by the geographical pop-

ulation distribution at 8:00 (resp. 17:00), which is obtained by the people flow

data of Nagoya city. People tend to move to a relatively small number of points,

e.g., companies and schools, in the commuting scenario while they tend to move

to various points, e.g., home and stations, in the returning scenario. The number

of evacuees are set to be 2,415 (resp. 705) in the commuting (resp. returning)

scenario, which is equal to the number of pedestrians in the corresponding people

flow data. For comparison purpose, we prepare two kinds of random scenarios:

random scenario with N = 705 and that with N = 2, 415.
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We set measurement interval IM to be 50 [s]. We assume communication

ranges for mobile-to-mobile direct communication, e.g., Wi-Fi Direct, to be 100 [m]

and communication ranges for communication with infrastructures, e.g., wireless

LAN, to be 100 [m]. To focus on the effectiveness of the proposed scheme itself,

we assume that mobile devices can finish retrieving information at each contact

with other mobile devices and/or communication infrastructures. One wireless

LAN access point (AP) is located at the refuge, and AP’s are placed in N × N

grid arrangement. We define coverage as the ratio of the area of roads included

in the transmission ranges of APs to the whole area of all roads. We can control

the coverage by changing N .

As for the disaster situations, we set the blocked road segments (red lines in

Fig. 4.2) according to the road blockage probability of each edge on the graph.

Nagoya city in Japan provides information of the road blockage probabilities for

several classes depending on the degree of damages. In what follows, we use the

data of maximum class that considers the possibility of all kinds of disasters.

Since the performance of the proposed scheme depends on communication en-

vironments, we change the coverage of infrastructures in the range of [0, 100]. We

compare the performance of the proposed scheme with the following evacuation

schemes.

• Ideal evacuation: All evacuees know the information about all blocked road

segments at the start of their evacuations. The ideal evacuation demon-

strates the lower bound of the evacuation time of the proposed scheme.

• Shortest path selection: All evacuees follow the automatic evacuation guid-

ing based on shortest path selection [24]. Note that this is equivalent to the

proposed scheme with kmax = 1 and δmax = 0.

We use two kinds of evaluation criteria. The first one is the total number of

encounters with blocked road segments of all evacuees, B, which is related to the

safety of evacuation. The second one is the average (resp. maximum) evacuation

time among evacuees, T (resp. Tmax), to evaluate the speediness of evacuation.

Here, we define the evacuation time as the time interval from evacuation start to

the evacuation completion. In what follows, simulation results are the average of

50 independent simulation experiments.
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Figure 4.3. Sδth and (k∗
max, δ

∗
max) for risk map in Fig. 4.2 (δth = 5, 10, and 15).

Table 4.1. T (k∗
max, δ

∗
max) and statistics of T (kmax, δmax), i.e., minimum, mean,

value of top 10%, and standard deviation.

δth T (k∗
max, δ

∗
max) T (kmax, δmax)

minimum mean top 10% standard deviation

5 1266 1234 1299 1265 17.6

10 1262 1227 1280 1254 21.1

15 1252 1193 1272 1246 22.8

4.5.2 Validity of parameter determination approach

In this section, we examine the validity of the parameter determination ap-

proach through numerical examples. We first show the numerical examples of

parameter determination approach when setting search space S = K × ∆ to

be K = (1, 2, . . . , 50) and ∆ = (0, 1, . . . , 100). Fig. 4.3 illustrates Sδth and

(k∗
max, δ

∗
max) for destination d4 when δth is set to be 5, 10, and 15 in the ran-

dom scenario (N = 705). Recall that there is a trade-off between path length

and path reliability. Basically, path length (resp. path reliability) tends to become

short (resp. high) in left bottom (resp. right top) area of S. Three curves indicate
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Table 4.2. B(k∗
max, δ

∗
max) and statistics of B(kmax, δmax), i.e., minimum, mean,

value of top 10%, and standard deviation.

δth B(k∗
max, δ

∗
max) B(kmax, δmax)

minimum mean top 10% standard deviation

5 1131 1075 1194 1135 46.7

10 1081 1022 1156 1085 58.8

15 1004 897 1120 1032 73.2

the boarder lines of Sδth in case of δth = 5, 10, and 15, respectively. Each curve

and its left area corresponds to Sδth . We observe that Sδth expands to the upper

right area with increase of δth. We also find out that each curve shows inversely

proportional relationship between kmax and δmax, so as to avoid increase of δth.

The parameter settings on each curve have the same performance of path length

but may have different path reliability. A star on each curve indicates (k∗
max, δ

∗
max)

given by (4.3). Since large kmax can provide evacuees with many candidates of

evacuation routes, (k∗
max, δ

∗
max) tends to have large kmax. In what follows, we use

the case of δth = 15 in the random scenario (N = 705).

Next, we examine the validity of obtained parameters (k∗
max, δ

∗
max) by analyz-

ing the simulation results obtained over the same search space S and δth, which

are used in the parameter determination approach. Note that the communication

environment is offline. Through simulation experiments with parameter settings

(kmax, δmax), we can obtain average evacuation time T (kmax, δmax) and total num-

ber of encounters with blocked road segments, B(kmax, δmax). Table 4.1 (resp. Ta-

ble 4.2) presents T (k∗
max, δ

∗
max) (resp. B(k∗

max, δ
∗
max)) and statistics of T (kmax, δmax)

(resp. B(kmax, δmax)), i.e., minimum, mean, top 10%, and standard deviation. We

observe that both T (k∗
max, δ

∗
max) and B(k∗

max, δ
∗
max) cannot achieve the minimum

for each δth. This is because the parameter determination approach only ana-

lyzes the risk map and cannot fully deal with the actual avoidance behavior that

occurs at the encounters with blocked road segments. This limitation also causes

the counterintuitive phenomenon where T (k∗
max, δ

∗
max) decreases with increase of

δth. In the parameter determination approach, we assume that the shortest path

is passable but this assumption may not be true in the actual situation. Select-

ing more reliable path with increase of δth will also contribute to reducing the
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wasteful evacuation behavior caused by encountering blocked road segments. In

spite of these difficulty in analyzing, the parameter determination approach can

achieve the performance that is better than the mean and is competitive with the

top 10% results.

4.6. Effectiveness of Proposed Scheme

In this section, we evaluate the effectiveness of the proposed scheme with appro-

priate parameter settings. In what follows, we use the case of δth = 15 in the

random scenario (N = 705). Since the performance of the proposed scheme de-

pends on communication environments, we change the coverage of infrastructures

in the range of [0, 100]. We compare the performance of the proposed scheme with

the following evacuation schemes.

• Ideal evacuation: All evacuees know the information about all blocked road

segments at the start of their evacuations. The ideal evacuation demon-

strates the lower bound of the evacuation time of the proposed scheme.

• Shortest path selection: All evacuees follow the automatic evacuation guid-

ing based on shortest path selection [24]. Note that this is equivalent to the

proposed scheme with kmax = 1 and δmax = 0.

4.6.1 Total Number of Encounters with Blocked Road Seg-

ments

Fig. 4.4 illustrates the transition of the number of encounters with blocked road

segments when changing coverage of communication infrastructures. We show the

results of proposed scheme and shortest path selection. There are two functions

that contribute to safety of evacuation by reducing the number of encounters

with blocked road segments. First one is sharing of information about blocked

road segments among mobile devices, which is a reactive function provided by

the automatic evacuation guiding. Second one is reliable path selection based on

geographical risk analysis, which is a proactive function provided by the proposed

scheme. Note that the proposed scheme has both functions while the automatic

73



0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

N
u
m
b
er

of
en
co
u
n
te
rs

w
it
h
b
lo
ck
ed

ro
ad

se
gm

en
ts

Coverage of infrastructures [%]

Shortest path selection
Proposed scheme

Figure 4.4. The number of encounters with blocked road segments.

evacuation guiding based on shortest path selection has only the first function of

information sharing.

We can confirm the effect of reliable path selection by comparing the results

of two schemes. The proposed scheme can reduce the number of encounters with

blocked road segments compared with the shortest path selection, e.g., 28.2%

(0% coverage) and 24.2% (100% coverage). We also evaluate both schemes in

an offline case where the information sharing is unavailable due to lack of both

mobile-to-mobile direct communication and communication infrastructures. In

the offline case, the number of encounters with blocked road segments of the

proposed scheme becomes 1235, which is much smaller than that of the shortest

path selection, i.e., 1911.

Next, we focus on the impact of coverage on the evacuation safety. We ob-

serve that the number of encounters with blocked road segments monotonically

decreases with coverage, regardless of schemes. In case of the proposed scheme,

the performance improvement is almost saturated when the coverage is only 30%.

From the above results, we can conclude that the proposed scheme is robust

against the damage of communication environments.
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Figure 4.5. Average evacuation time.

4.6.2 Evacuation Time

In Section 4.6.1, we showed that the proposed scheme with appropriate parame-

ters can reduce the number of encounters with blocked road segments, regardless

of communication coverage. However, reliable path selection may also make evac-

uation routes longer with increase of kmax and δmax. In this section, we evaluate

the effectiveness of the proposed scheme in terms of average evacuation time and

maximum evacuation time.

Fig. 4.5 (resp. Fig. 4.6) illustrates the transition of average (resp. maximum)

evacuation time when changing coverage of communication infrastructures. We

show the results of three evacuation schemes: proposed scheme, shortest path

selection, and ideal evacuation. We first observe that the results of proposed

scheme are competitive with those of shortest path selection, despite of selecting

more reliable path, which may make the evacuation path longer. We also find

that the coverage does not affect the average evacuation time but can improve the

75



0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 100

M
ax

im
u
m

ev
ac
u
at
io
n
ti
m
e
[s
]

Coverage of infrastructures [%]

Shortest path selection
Proposed scheme
Ideal evacuation

Figure 4.6. Maximum evacuation time.

maximum evacuation time. This indicates that the information sharing through

communication infrastructure is still important to reduce the evacuation time,

especially for evacuees that tend to be isolated from others.

In the offline case, all evacuees are isolated with each other. We find that the

average evacuation time of the proposed scheme becomes 779, which is shorter

than that of shortest path selection, i.e. 801. This is because the shortest path

selection may cause wasteful evacuation behavior by encountering blocked road

segments, which can be alleviated by the reliable path selection. These results

show that the proactive approach is more effective for the evacuation under infe-

rior communication environments.

4.6.3 Impact of Initial Locations of Evacuees

In general, the geographical population distribution temporally varies according

to the human life cycle. To reveal how the initial locations of evacuees and the
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Figure 4.7. The initial locations of evacuees in the random scenario (N = 705).

Table 4.3. B, T , and Tmax with the proposed scheme in four scenarios (offline

case).

Scenario B T Tmax

Random scenario (N = 2, 415) 2919 (1.21) 726 3736

Commuting scenario (N = 2, 415) 3078 (1.27) 628 2587

Random scenario (N = 705) 1235 (1.75) 779 3058

Returning scenario (N = 705) 338 (0.49) 782 2391

number of evacuees affect the evacuation performance, we compare the results

among four scenarios: random scenario with N = 705 (Fig. 4.7), random scenario

with N = 2, 415 (Fig. 4.8), commuting scenario with N = 2, 415 (Fig.4.9), and

returning scenario with N = 705 (Fig. 4.10). In what follows, we use the case of

δth = 15.

The locations of evacuees have complex effects on the evacuation. From the

viewpoint of the proactive approach, the difficulty of finding speedy and reliable

paths may change according to locations. In terms of the reactive approach, the

locations of evacuees and the number of evacuees affect not only the opportuni-

ties of information sharing through device-to-device communication but also the

degree of evacuation improvement yielded by the obtained information.

First, we focus on the impact of initial evacuees’ locations on the proactive

approach, which can be analyzed through the evaluation under the offline case.
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Figure 4.8. The initial locations of evacuees in the random scenario (N = 2, 415).
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Figure 4.9. The initial locations of evacuees in the commuting scenario.

Table 4.3 illustrates the results, i.e., B, T , and Tmax, in the four scenarios when

the communication environment is offline. Because the number of evacuees in the

commuting scenario, i.e., 2,415, is larger than that in the random and returning

scenario, i.e., 705, we also give normalized B, which is the number of encounters

with blocked road segments per evacuee. The results in the random scenario

can be regarded as the average evacuation behavior that an evacuee starting

from an arbitrary point will experience. We first observe that there is almost

no difference between B in the commuting scenario and that in the random

scenario (N = 2, 415). We also find that T and Tmax in the commuting scenario
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Figure 4.10. The initial locations of evacuees in the returning scenario.

Table 4.4. B, T , and Tmax with the proposed scheme in four scenarios (100%

coverage case).

Scenario B T Tmax

Random scenario (N = 2, 415) 260 (0.11) 632 1938

Commuting scenario (N = 2, 415) 614 (0.25) 568 1957

Random scenario (N = 705) 125 (0.18) 662 1891

Returning scenario (N = 705) 338 (0.49) 782 2391

are less than those in the random scenario (N = 2, 415), which indicates that

evacuees in the commuting scenario are initially located at better places in terms

of speediness. On the other hands, B in the returning scenario is greater than

that in the random scenario (N = 705), which indicates that evacuees in the

returning scenario are initially located at worse places in terms of safety.

Second, we focus on the impact of initial evacuees’ locations on the reactive

approach. We first investigate the relationship between the initial locations and

improvement degree of evacuation behavior yielded by information sharing. This

can be analyzed through the evaluation under the 100% coverage case where

evacuees can retrieve all the dynamic information, i.e., blocked road segments

and passable road segments, in a real-time manner. Table 4.4 illustrates the

results, i.e., B, T , and Tmax, in the four scenarios when the communication en-

vironment is 100% coverage. Comparing Table 4.4 with Table 4.3, we find that
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Table 4.5. B, T , and Tmax with the proposed scheme in four scenarios (0%

coverage case).

Scenario B T Tmax

Random scenario (N = 2, 415) 277 (0.11) 634 1939

Commuting scenario (N = 2, 415) 711 (0.29) 574 2245

Random scenario (N = 705) 153 (0.22) 670 2297

Returning scenario (N = 705) 419 (0.59) 798 2667

the improvement ratio of B in the 100% coverage case to that in the offline case

becomes 91.1%, 80.1%, 89.9%, and 76.7%, in the random (N = 2, 415), commut-

ing, random (N = 705), and returning scenarios, respectively. Since the initial

locations are well distributed over the area in the random scenarios (Figs. 4.7 and

4.8), each evacuee can easily obtain useful information from preceding evacuees.

In the commuting and returning scenarios, evacuees initially tend to form groups

as in Figs. 4.9 and 4.10. The improvement ratio in the commuting scenario be-

comes larger than that in the returning scenario because of the larger number of

evacuees and the denser distribution of groups.

Next, we focus on the results in the 0% coverage case, which can reveal how

the device-to-device communication improves the evacuation performance. Ta-

ble 4.5 illustrates the results, i.e., B, T , and Tmax, in the four scenarios when

the communication environment is 0% coverage and only the device-to-device is

available. Comparing the results of random scenario (N = 705) and those of

random scenario (N = 2, 415), we can confirm that larger N yield better results,

which come from the more opportunities for device-to-device communication. We

also find that the results of commuting scenario are better than those of returning

scenario. This is because of not only the larger number of evacuees but also the

denser distribution of evacuees. In other words, the coverage of communication

infrastructure is more important when the evacuees are sparsely distributed over

the area.
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Table 4.6. The result of the proposed scheme used in the risk map of each class.

Risk-map class Offline 100% coverage

B T Tmax B T Tmax

Maximum class 542 508 1330 110 496 1279

Historical class 550 509 1323 113 496 1270

4.6.4 Impact of Risk-Map Accuracy

Recall that the road blockage probabilities in risk map depend on the magnitude

of disaster. For example, Nagoya city provides the road blockage probabilities of

two classes: maximum class and historical class. The maximum class considers all

kinds of disaster risks while the historical class is based on the maximum disaster

in recorded history. However, it may be difficult to prepare the road blockage

probabilities corresponding to the actual magnitude of disaster and/or judge the

actual disaster magnitude precisely at the start of evacuation. One possible way

to cope with this problem is using the risk map with maximum class.

Suppose that the disaster causes the blocked road segments according to the

road blockage probability of the historical class. In what follows, we show how

the performance of proposed scheme changes depending on the class of risk map.

We use δth = 15 and the commuting scenario. Table 4.6 presents the result of

the proposed scheme with the two classes of risk maps. Since the results of risk

map with maximum class are similar to those of risk map with historical class,

the mismatch of risk-map class does not much affect the system performance.

To reveal this reason, we show the correlation between road blockage proba-

bilities of maximum class and those of historical class in Fig. 4.11. We observe

that there is a strong correlation between them and the correlation coefficient

becomes 0.949. In the proposed scheme, the application first calculates the top

k-shortest route candidates and then selects the most reliable route based on

path reliability (4.2). The top k-shortest route candidates is exactly the same,

regardless of the risk-map class, but the path reliability will change depending

on the risk-map class. The risk map with maximum class tends to suggest more

reliable path than that with historical class but these two paths also tend to be

similar due to the high correlation coefficient of blockage probabilities.
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Figure 4.11. Correlation between road blockage probabilities of maximum class

and those of historical class.

4.7. Summary

When a large-scale disaster occurs, evacuees have to evacuate to refuges speedily

and safely. Most of the existing evacuation guiding schemes have been focusing

on the speedy evacuation based on the shortest path selection. In this thesis, we

proposed a geographical risk analysis based path selection for speedy and reliable

evacuation guiding. The proposed scheme first enumerated multiple shortest

paths from the evacuee’s current location to the destination. Next, it selected

the route with the highest path reliability based on geographical risk analysis from

the candidates. Since the appropriate parameters of the proposed scheme depend

on the structure of road network, we also proposed a parameter determination

approach based on the risk map and geographical population distribution, which

can be retrieved in usual time.

Through simulation experiments, we first showed the validity of parameter

determination approach. Next, we found that the proposed scheme can improve

the safety of evacuation in terms of the number of encounters with blocked road

segments, compared with the shortest path selection, regardless of the commu-
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nication environments. In addition, the proposed scheme can also improve both

average and maximum evacuation times, compared with the shortest path se-

lection under the severe communication environments. We further showed that

the initial locations of evacuees affect the difficulty of finding speedy and reliable

routes in terms of the proactive approach. From the viewpoint of the reactive

approach, the initial locations and the number of evacuees also affect the oppor-

tunities of information sharing as well as the degree of evacuation improvement.

Finally, we also found that the evacuation performance can be kept even if the

evacuees cannot precisely grasp the disaster magnitude and are forced to use the

risk map with the maximum class.
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Chapter 5

Capaciated Refuge Assignment

for Speedy and Reliable

Evacuation in Emergency

Situations

5.1. Introduction

When a large-scale disaster, e.g., an earthquake, occurs, each evacuee should move

to an appropriate refuge in a speedy and safe manner. Such speedy and reliable

evacuation can be achieved by both pre-disaster and post-disaster approaches.

The pre-disaster approaches include establishment of refuges [109–114], refuge

assignment [101, 115, 116], evacuation planning [99, 117, 118], and geographical

risk analysis [3, 23, 119–121]. From the viewpoint of the refuge assignment, most

of the existing studies basically consider the evacuation time and refuge capacity

while the safety evacuation is also important.

The pre-disaster approaches can provide us with a global picture of evacua-

tion under predefined assumptions (e.g., refuge locations, geographical population

distribution, and road network risk). Since it is difficult to consider all possible

disaster situations, the post-disaster approaches are also important to compensate

for the mismatch between the assumptions and actual situations.

84



The post-disaster approaches include evacuation guiding [24, 92, 93, 122] and

signage systems [123–125]. In comparison with the pre-disaster approaches, the

post-disaster ones can flexibly deal with dynamic environmental changes due to

the disaster for supporting the evacuees’ decision making under their high-stressed

situation. However, most of the post-disaster approaches implicitly assume that

each evacuee selects the nearest refuge for evacuation, which might guide the

evacuee to a less reliable route and/or to a filled refuge. In recent years, we

can obtain the safety-related information (e.g., geographical risk information) in

addition to the capacity-related information (e.g., population distribution and

refuge locations and capacities) from governments and some municipalities [3,23,

119].

In this thesis, we consider the earthquake case study and propose a refuge

assignment scheme to achieve speedy and safety evacuations under the refuge

capacity constraint. This is a kind of the multi-objective optimization problems,

i.e., minimization of route length and maximization of route reliability. We first

formulate the refuge assignment problem as a two-step integer linear program

(ILP) under the input of route candidates between evacuees and their possible

refuges, which can be solved by the existing solver, CPLEX [126]. As for the

route candidates, we also propose a speedy and reliable path selection scheme,

which is an extended version of the existing path selection scheme [122] to improve

the route reliability. The proposed scheme can be viewed as either pre-disaster

approach or post-disaster one, depending on the knowledge about the locations of

evacuees. If the proposed scheme uses the geographical distribution of residents

as their initial locations, it can be viewed as pre-disaster refuge assignment for

evacuation planning. On the other hand, if it can obtain the actual locations of

evacuees under the disaster situations through information and communication

technologies (e.g., mobile devices, global positioning systems, and communication

networks), it can also achieve post-disaster refuge assignment, which is responsive

to the environmental changes.

In this thesis, we mainly focus on the pre-disaster refuge assignment under

the earthquake case study using actual geographical data (i.e., road blockage

probabilities, map of Nagoya city, locations and capacities of refuges, and the

distribution of residents), which are provided by the Japanese government and
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municipality [23, 127–129]. Through numerical results using the actual data of

Arako district of Nagoya city, in Japan, we will show the effectiveness of the

proposed refuge assignment scheme in terms of speediness and safety of evacuation

under the refuge capacity constraints.

The rest of this chapter is organized as follows. Section 5.2 gives related work.

In Section 5.3, we introduce the proposed scheme. After showing numerical results

in Section 5.4, we finally give conclusions and future work in Section 5.5.

5.2. Related Work

5.2.1 Geographical Risk Analysis and Path Selection

In case of evacuation guiding, the simple shortest path may not be enough for

the speedy and safety evacuation. Several studies focused on various metrics for

the speedy and reliable path selection: traffic congestion [130, 131], obstructions

related to the presence of debris [132, 133], and road vulnerability [23, 119, 121,

134, 135]. From the viewpoint of the evacuation speediness, the selfish behavior

of evacuees (i.e., trying to move to their refuges as speedy as possible) may cause

heavy congestion. To grasp such congestion caused by the selfish behavior, several

studies provide pedestrian flow models [130, 131]. In [136], Bernardini analyzed

the video recording the real earthquake evacuations and proposed a database for

earthquake pedestrian evacuation models, which includes the step-by-step evacu-

ation behavior as well as motion quantities (i.e., speed, acceleration, and distance

from obstacles). In [137], Liu et al. proposed a path selection method based on

the artificial bee colony algorithm to avoid the congestion during the evacua-

tion in building. Kasai et al. proposed a congestion-aware route selection using

collected evacuees’ locations through the device to device communication [105].

For simplicity, we focus on the path length as the metric of speediness but the

proposed approach can also be applied to other speediness metrics if applicable.

From the viewpoint of the evacuation safety, Coutinho-Rodrigues et al. pro-

posed a multi-objective location-routing problem using two kinds of paths (i.e.,

a main path and a backup one), which aims to minimize the distance and risk

during evacuations [110]. In this case study, they conducted a case study analysis
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under the fire-risk assumption where Fire Risk Index Method [119] is used as a

tool for assessing the fire safety in buildings. The fire risk index is a weighted

sum of multiple risk parameters and ranges from 0.0 to 5.0. The high (resp. low)

risk index represents the high (resp. low) level of the fire safety. There are several

studies on earthquake emergencies in Italy and Japan [122,134,138]. Bernardini

et al. considered multiple safety factors for evacuees (e.g., street vulnerability,

street blockages probability, and crowding conditions along paths) and proposed

a dynamic guidance tool based on Dijkstra’s algorithm with the integrated safety

index [138]. Santrelli et al. developed vulnerability indices for a road network

under an earthquake [134]. These two studies assumed the possibility of road

blockage caused by debris of collapsed buildings, which is evaluated by the road

width, the height of buildings along the road, and the vulnerability of build-

ings [121].

In Japan, a certain municipality (e.g., Nagoya city) also provides the road

blockage probability in a similar manner, which represents the probability that

the corresponding road segment will be blocked after an occurrence of a certain

magnitude of an earthquake. The detailed definition has been given in Sec-

tion 4.4.1.2. In [122], Hara et al. proposed a geographical risk analysis based

path selection scheme that provides a speedy and safe route for each evacuee

with the help of the road blockage probability.

In this thesis, we extend this path selection scheme to improve the path safety

and use it to obtain route candidates between evacuees and their possible refuge

candidates.

5.2.2 Evacuation Guiding and Human Interactions

There have been several studies on the indirect/direct evacuation guiding sys-

tems: indirect guiding based on signage systems [123–125] and direct evacuation

guiding systems [24, 92, 93, 122]. The signage system is one of the building attri-

butions in emergencies as well as ordinary conditions, and provides evacuees with

indirect suggestion about evacuation [123, 125]. However, Galea et al. demon-

strated that the effectiveness of signage systems for evacuation is limited and

only 38% of evacuees use the information about evacuation from the signage sys-

tem [123]. To tackle this problem, the impact of interactions between people and
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signages on the relationship among the perception, interpretation, and use has

been investigated [124,125].

From viewpoint of the direct evacuation guiding, Fujihara and Miwa proposed

an evacuation guiding scheme that can work even when the existing communica-

tion infrastructures were highly damaged [92]. In this scheme, evacuees manually

register the state information of each road (e.g., passable and blocked) to their

mobile devices and share it with others through a delay tolerant network [90],

which is composed of the mobile devices. Since such manual operations may be

difficult under the emergent situations, Komatsu et al. proposed a mobile-edge

collaborative automatic evacuation guiding scheme where the evacuees’ mobile

devices automatically estimate the road state information through information

sharing with their evacuees [24].

In the field of psychology, it has been pointed out that a small number of

leaders can lead many evacuees (e.g., follow-direction method and follow-me

method) [139, 140]. In [24], the implicit interactions among evacuees through

information sharing can be regarded as a kind of such leader-follower communi-

cation. Since such post-disaster approaches implicitly build the cooperative re-

lationship caused by human interactions, it can not only improve the evacuation

speediness but also contribute to avoiding roads with high risks in an adaptive

manner. However, most of studies on the evacuation guiding are the post-disaster

approaches and basically adopted the shortest path selection.

To improve the evacuation safety, Hara et al. proposed a geographical risk

analysis based path selection for automatic evacuation guiding scheme, which pro-

vided each evacuee with a speedy and safe route by combining the pre-obtained

risk information and the collected information during the evacuation [122]. This

approach, however, implicitly assumes that each evacuee selects the nearest refuge,

which may cause the overflow of the refuge and/or the selection of routes/refuges

in high risk regions. In this thesis, we propose a refuge assignment scheme that

can consider the capacity limitation as well as the speediness and safety of evac-

uations.
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5.2.3 Refuge Assignment

There have been several studies on the refuge assignment for speedy evacuation

under large-scale disasters [101,115,116]. Ng et al. proposed a refuge assignment

scheme that considers the balance between the global refuge assignment for mini-

mizing the total evacuation time and the individual selfish refuge selection under

emergent situations [115]. Saadatseresht et al. proposed a refuge assignment

scheme considering the evacuation route length, population, and refuge capacity,

with the help of the multi-objective evolutionary algorithms and the geographi-

cal information system [101]. Bayram proposed a refuge assignment scheme such

that the route length of each evacuee does not exceed the length of the shortest

route plus a certain threshold [116]. These existing studies focus on the speedy

evacuation and the refuge capacity while the safety of the evacuation is not taken

account. In terms of the evacuation safety, Coutinho-rodrigues et al. proposed

a multi-objective mixed integer linear programming model to minimize the dis-

tance and fire risk during evacuations [110, 111]. In this thesis, we consider the

earthquake case study and address the refuge assignment for speedy and safety

evacuation under the refuge capacity constraints.

5.2.4 Multi-Objective Mathematical Programming

As mentioned above, the appropriate refuge assignment has to consider the var-

ious aspects (i.e., speediness, safety, and refuge capacity), which indicates it is

a kind of the multi-objective optimization problem. There have also been sev-

eral studies on multi-objective optimization, e.g., weighting method [141,142], ε-

constraint method [141–143], and AUGMECON [144,145]. Their common goal is

to derive the representative subset of the Pareto set, which is the set of Pareto op-

timal solutions (i.e., solutions that cannot improve one objective function without

deteriorating the remaining objective functions). The weighting method trans-

forms the original objective functions into a single objective function, i.e., the

weighted sum of them [141, 142]. It requires the careful design of the weight-

ing parameters that can consider the relative importance of each objective. ε-

constraint method optimizes the first objective functions under the constraints

where each remaining k-th objective function is bounded by a certain threshold
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εk [143]. The vector of εk should be chosen carefully by considering the trade-

off among the objectives. The augmented ε-constraint method (AUGMECON)

provides us with the way to determine the range of εk [144].

In this thesis, inspired by ε-constraint method and AUGMECON, we formu-

late the refuge assignment as a two-step ILP, where the first step ILP is used to

determine the range of parameter and the second step ILP is formulated based

on ε-constraint method.

5.3. Proposed Scheme

5.3.1 Overview of Proposed Refuge Assignment Scheme

Refuge assignment for evacuees is a kind of combinational optimization prob-

lems where we require to consider multiple important features of evacuation (i.e.,

speediness, safety, and capacity constraint of refuges). We first provide nota-

tions and criteria for evacuation route, i.e., speediness and reliability, in Sec-

tion 5.3.2 and explain the overview of the proposed refuge assignment scheme in

Section 5.3.3. Next, we formulate such refuge assignment as a two-step ILP in

Section 5.3.4. We further propose an algorithm to calculate speedy and reliable

route candidates between evacuees and their possible refuges in Section 5.3.5.

5.3.2 Preliminaries

Since the refuge assignment is part of the evacuation planning, we focus on the tar-

get area for the evacuation planning. In Japan, the unit of the target area is typ-

ically a school district and the mayor of municipality must determine designated

emergency evacuation site for each disaster type (e.g., earthquake and flood) [146].

G = (V , E , g) denotes the graph representing the internal structure of the target

area, where V is a set of vertices i.e., intersections or refuges, and E is a set of

edges i.e., roads. There are D refuges denoted by D = {1, 2, . . . , D} such that

D ⊂ V . Suppose that there are N > 0 evacuees, denoted by N = {1, 2, . . . , N},
and each evacuee i is initially located at vertex li in the target area.

To calculate the refuge assignment, we require the initial locations of the evac-

uees. The refuge assignment can be regarded as either pre-disaster approach or
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Table 5.1. Notation.
Notation Definition

G Directed graph of the road network

V The set of vertices

E The set of edges

pe Road blockage probability of road e

N The set of evacuees {1, 2, . . . , N} [persons]

 L The set of initial locations of each evacuee i, {l1, l2, . . . , lN}
D The set of refuges {1, 2, . . . , D}
C The set of refuge capacity {C1, C2, . . . , CD} [persons]

xi,j Decision variable

ri,j Evacuee i’s route to refuge j

de The length of road e [m]

fp(r) The reliability of route r

fd(r) The length of route r [m]

f ∗
p The optimal route reliability

ε The constraint on the decrease of the route reliability
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post-disaster one, according to the knowledge about the initial locations of the

evacuees. From the viewpoint of the pre-disaster refuge assignment, the geo-

graphical distribution of residents [129] can be used as possible initial locations

of evacuees (residents). We can also adopt the time-varying geographical popu-

lation distribution (e.g., People Flow Data [3]) to consider the initial locations

of evacuees under human life cycle (e.g., commuting period in the morning and

returning period in the evening). On the other hand, from the viewpoint of the

post-disaster refuge assignment, we can collect the actual locations of the evac-

uees through their mobile devices at the beginning of a disaster if the terrestrial

communication infrastructure (e.g., cellular networks and Wi-Fi) is working.

If the terrestrial communication infrastructures are (partly) damaged and un-

available, we can also use device to device (D2D) communication through evac-

uees’ mobile devices [90,147] and devices with satellite connectivity [148].

Note that such post-disaster information collection would be affected not only

by communication environments but also by the penetration ratio of the proposed

scheme as well as evacuees’ privacy settings for their location information. If the

post-disaster refuge assignment cannot obtain the actual locations of evacuees, it

can also adopt the above-mentioned statistical information as in the pre-disaster

one. In what follows, we mainly focus on the pre-disaster refuge assignment

where the geographical distribution of residents is used as the initial locations of

the evacuees.

The map matching algorithm [149] can find the nearest vertex of the internal

graph from a coordinate-based location. g : E → I is a real-valued function that

assigns road blockage probability pe in closed unit interval I = [0, 1] to each edge

e ∈ E in the risk map. Road blockage probability pe is an estimated probability

that road segment e ∈ E is blocked due to the collapse of building along a road

under a certain earthquake [23]. The detailed definition of the road blockage

probability is explained in Section 4.4.1.2 of Chapter 4.

An evacuation route r can be represented by a vector of roads. We define the

length of route r as the sum of the length of each road e in r:

fd(r) =
∑
∀e∈r

de, (5.1)

where de is the length of road e. In addition, we can also define the route reliability
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as follows [122]:

fp(r) =
∏
∀e∈r

(1− pe), (5.2)

which is the probability that all the roads e along the route r are passable under

the assumption that the road blockage probabilities along the routes are inde-

pendent. The route reliability takes a value in the range of [0, 1] and a large

(resp. small) value means high (resp. low) reliability. We can obtain the geo-

graphical information (e.g., the location of the refuge, the refuge capacity, and

the distribution of residents) from the government and the municipalities before

the disaster occurs [3, 128,129]. Each refuge j ∈ D has a capacity of Cj persons.

C = {C1, C2, . . . , CD} denotes a set of refuge capacity.

Table 5.1 summarizes notations used in this paper.

5.3.3 Overview of proposed refuge assignment scheme

In this subsection, we introduce the overview of the proposed refuge assignment

scheme. Fig. 5.1 illustrates the flow chart of conducting the refuge assignment

and route candidate. We first calculate the initial locations of evacuees from the

geographical distribution of residents [129]. Since the geographical distribution

of residents gives us the number of persons in each sub-region q, Nq, we uniformly

allocate Nq evacuees to the vertices in the sub-region q. Let Q denote the set

of sub-regions, and thus
∑

q∈Q Nq = N . Considering the fact that some of the

residents may stay their home or workplace even under the emergency, we further

assume that β (0 ≤ β ≤ 1) ratio of all the residents act as evacuees, denoted by

Nβ. In such cases, we can regard N as Nβ.

Next, given risk map G = (V , E , g), set of refuges D, set of refuge capacity C,
set of evacuees N , and initial locations of evacuees  L, we obtain the route can-

didates ri,j between all evacuees i ∈ N and all refuges j ∈ D using Algorithm 5,

which will be described in Section 5.3.5. Finally, the refuge assignment is obtained

by solving ILPs, OPp and/or OPd, which will be desribed in Section 5.3.4.
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Figure 5.1. Flow chart of calculating the refuge assignment and the route candi-

date.

5.3.4 Two-step ILP formulation for refuge assignment

As mentioned above, the refuge assignment must be carefully designed by consid-

ering the speediness and safety of evacuation under the refuge capacity constraint.

This is a kind of multi-objective optimization problems, and thus we tackle this

problem in the following two-step ILP.

5.3.4.1 First step: maximization of average route reliability among

evacuees under refuge capacity constraint

Given route candidates between evacuees and their possible refuges as the in-

put data, which will be explained in Section 5.3.5, we first aim at maximizing

the evacuation safety, i.e., the average route reliability among evacuees. This

optimization problem can be represented by the following ILP OPp.
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max
1

N

∑
i∈N

∑
j∈D

fp(ri,j)xi,j, (5.3)

s.t. xi,j ∈ {0, 1}, ∀i ∈ N , ∀j ∈ D, (5.4)∑
j∈D

xi,j = 1, ∀i ∈ N , (5.5)∑
i∈N

xi,j ≤ Cj, ∀j ∈ D. (5.6)

The objective function (5.3) is the maximization of the average road relia-

bility among evacuees, where ri,j is the route candidate between evacuee i and

refuge j. The calculation of ri,j will be described in Section 5.3.5. xi,j is binary

decision variable given by (5.4). If evacuee i is assigned to refuge j, xi,j = 1.

Otherwise, xi,j = 0. The constraint of (5.5) guarantees that each evacuee i must

be allocated to one refuge. Since the overflow evacuees will be required to move

to other refuges [150], such overflow conditions are prohibited by (5.6), which

indicates that the number of evacuees assigned to each refuge does not exceed

the corresponding capacity.

Since the objective function and all the constraints are linear with the binary

decision variables, OPp is ILP, which can be solved by the existing solver, e.g.,

CPLEX.

5.3.4.2 Second step: minimization of average route length among evac-

uees under refuge capacity constraint and average route relia-

bility

By solving the problem OPp, we can obtain the optimal value of the average route

reliability f ∗
p . The corresponding refuge assignment, however, may have some

room to improve in terms of speedy evacuation. To tackle this tradeoff between

the speediness and reliability, we further propose a second-step optimization as

an ILP OPd, which can be formulated by modifying OPp as follows.

First, the objective function (5.3) is replaced with

min
1

N

∑
i∈N

∑
j∈D

fd(ri,j)xi,j, (5.7)
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which is the minimization of the average route length among evacuees. In addition

to the constraints of OPp, i.e., (5.4)–(5.6), OPd adds the following constraint:

1

N

∑
i∈N

∑
j∈D

fp(ri,j)xi,j ≥ f ∗
p − ε. (5.8)

The constraint of (5.8) guarantees a certain level of the average route availability

by controlling a parameter ε (0 ≤ ε ≤ f ∗
p), which describes the allowable decrease

of average route reliability from the optimal value f ∗
p . If ε is small (resp. large), the

refuge assignment is designed for reliable (speedy) evacuation. The appropriate

setting for ε will be discussed in Section 5.4.2. Since the objective function and

all the constraints are linear with the binary variables, OPp is also ILP.

5.3.5 Calculation of speedy and reliable route candidates

between evacuees and their possible refuges

The solution, i.e., refuge assignment, of the two-step ILP depends on its input

parameters, which are the route candidates between evacuees and their possible

refuges, i.e., ri,j. We propose a speedy and reliable route selection scheme, which

is an extended version of the existing route selection scheme [122].

Algorithm 4 presents a function candidate paths(G, i, j, kmax, δmax, γth) that

enumerates at most kmax (kmax ≥ 1) shortest route candidates between evac-

uee i and refuge j under the constraint on route length, δmax (δmax ≥ 0), and

route reliability, γth (0 ≤ γth ≤ 1). Given road network G = (V , E , g), evacuee

i, refuge j, parameters (kmax, δmax), and γth, it first initializes the set of route

candidates, Rkmax,δmax,γth
i,j , to be empty and the shortest route length dmin to be

infinity (line 1). Next, it obtains at most kmax shortest route candidates between

evacuee i and refuge j, Rkmax
i,j , by using k-th shortest paths(·) function based on

Yen’s algorithm [106] (line 2). It also calculates the length of the shortest path in

Rkmax
i,j , dmin (line 3). In the next loop of lines 4–8, it extracts speedy and reliable

route candidates from Rkmax
i,j . Note that route candidates in Rkmax

i,j are sorted in

ascending order of route length. If the length of route r is longer than that of

the shortest path, i.e., dmin, at a certain level, δmax, it stops the loop (lines 5–6).

If the reliability of route r is equal or greater than a threshold γth, it adds r to

Rkmax,δmax,γth
i,j (line 8). Note that the existing scheme in [122] does not have this
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Algorithm 4 candidate paths(G, i, j, kmax, δmax, γth): Enumeration of at most

kmax shortest route candidates between evacuee i and refuge j under constraint

on route length, δmax, and route reliability, γth.

Require: G, i, j, kmax, δmax, γth

Ensure: Rkmax,δmax,γth
i,j

1: Rkmax,δmax,γth
i,j ← ∅, dmin ←∞ ▷ Initialization

2: Rkmax
i,j ← k-shortest paths(G, i, j, kmax) ▷ Calculation of the kmax-shortest

routes

3: dmin ← minr∈Rkmax
i,j

fd(r) ▷ Calculation of the length of the shortest route

4: for r ∈ Rkmax
i,j do

5: if fd(r)− dmin > δmax then ▷ Check on the route length condition

6: break

7: if fp(r) ≥ γth then ▷ Check on the route reliability condition

8: Rkmax,δmax,γth
i,j ←Rkmax,δmax,γth

i,j ∪ {r}

9: return Rkmax,δmax,γth
i,j

operation, and thus the road reliability is considered in the best effort manner.

After the loop, it returnsRkmax,δmax,γth
i,j as the speedy and reliable route candidates.

The route candidates in Rkmax,δmax,γth
i,j change depending on the parameters

kmax, δmax, and γth. kmax and δmax controls the diversity and speediness of route

candidates [122]. kmax can be as large as possible under the constraint on the

computation overhead. δmax can also be a moderate value by considering both

the speedy evacuation and reliable route discovery. On the contrary, the setting

of γth tends to be difficult because the feasible route reliability between evacuee

i and refuge j can change depending on the pair of i and j.

Considering these features, we propose a function speedy reliable path(G, i, j,

η, kmax, δmax) that calculates the speedy and reliable route candidate ri,j between

evacuee i and refuge j (Algorithm 5). Given road network G = (V , E , g), evacuee

i, refuge j, and parameters (kmax,δmax), it first initializes γth to be the maximum

value, i.e., one, and Rkmax,δmax,γth
i,j to be an empty set (line 1). In the next loop of

lines 2–6, it searches for the most reliable route candidate ri,j between evacuee i

and refuge j under the constraint on kmax and δmax, by decreasing γth at a certain

interval, η, e.g., η = 0.1. If it succeeds in finding route candidates Rkmax,δmax,γth
i,j
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Algorithm 5 speedy reliable path(G, i, j, η, kmax, δmax): Calculation of speedy and

reliable route candidate ri,j between evacuee i and refuge j.

Require: G, i, j, η, kmax, δmax

Ensure: ri,j

1: γth ← 1, Rkmax,δmax,γth
i,j ← ∅ ▷ Initialization

2: while γth ≥ 0 do

3: Rkmax,δmax,γth
i,j ←candidate paths(G, i, j, kmax, δmax, γth) ▷ Calculation of the

route candidates

4: if Rkmax,δmax,γth
i,j ̸= ∅ then

5: return ri,j according to (5.9) ▷ Calculation of the speedy and

reliable route candidate

6: γth ← γth − η ▷ Update of γth

using candidate paths(·) (line 3), it selects the most reliable one as follows (line 5):

ri,j = arg max
r∈Rkmax,δmax,γth

i,j

fp(r). (5.9)

Otherwise, if Rkmax,δmax,γth
i,j is empty, it continues searching for the route can-

didates by setting γth = γth − η (line 6). As a result, Algorithm 5 provides us

with speedy and reliable route candidate ri,j between evacuee i and refuge j.

5.4. Numerical results

In this section, we evaluate the refuge assignment obtained by solving the two-step

ILP, OPp and OPd, using the actual information.

5.4.1 Evaluation model

For the evaluation, we select Nagoya city in Japan because it provides us with

the risk map where each road is annotated by the road blockage probability [23].

There are 263 school districts, each of which is the unit of evacuation plan-

ning [127]. We select Arako district from them by considering the high average

road blockage probability. The green area in Fig. 5.2 shows the risk map of
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Figure 5.2. The map of Arako district covered by the green polygon (2.7 [km]×
1.9 [km]), the road blockage probability, and refugesD = {S1, S2, S3}. The orange

area contains the roads with high road blockage probabilities.

2.7 [km] × 1.9 [km] Arako district. This map’s internal graph structure is com-

posed of 801 vertices and 1,220 edges.

As for the disaster scenario, Nagoya city provides us with the information

of the road blockage probabilities for several classes depending on the degree

of damages. In this thesis, we use the data of maximum class that consider

Nankai megathrust earthquake. Each road in Fig. 5.2 is colored according to the

road blockage probability: red (resp. black) means high (resp. low) road blockage

probability. The average road blockage probability among all roads is 0.151. The

orange area in Fig. 5.2 contains the roads with high road blockage probability,

i.e., the average road blockage probability in this area is 0.278. We also show

the three actual refuges D = {S1, S2, S3} as blue points in Fig. 5.2, according

to [128]. The capacity of each refuge is given as CS1 =11,500, CS2 =1,964, and

CS3 =8,000.

There are 23,156 residents in Arako district [129] and the geographical distri-

bution of residents is shown in Fig. 5.3. We confirm that the three refuges cannot

accommodate all the residents, i.e.,
∑

j∈D Cj =21,464 < 23,156. In what follows,

we set β to be 0.7 as an example scenario where some of the residents stay their

home or workplace even under the emergency.

For comparison purpose, we use the three schemes depending on the combi-
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Figure 5.3. Geographical distribution of residents [persons] in Arako district

covered by the green polygon (2.7 [km]× 1.9 [km]).

Table 5.2. Schemes for evaluation.
Scheme Refuge Assignment Route Selection

Distance-based scheme OPd without (5.8) Shortest path selection

Proposed scheme OPp and OPd speedy reliable path()

Proposed scheme without capacity constraint OPp and OPd without (5.6) speedy reliable path()

nation of the refuge assignment and the route selection, as shown in Table 5.2.

The distance-based scheme only considers the minimization of the average route

length among evacuees, which can be obtained by solving a modified version of

ILP OPd where constraint (5.8) is removed.

We use two kinds of criteria. The first one is the average route length, fd,

to evaluate the speediness of the evacuation, which corresponds to the objective

function (5.7). The second one is the average route reliability, fp, which is related

to the objective function (5.3).

fd = N−1
∑
i∈N

∑
j∈D

fd(ri,j)xi,j, fp = N−1
∑
i∈N

∑
j∈D

fp(ri,j)xi,j.

In what follows, we show the average of ten independent numerical results, each

of which has different initial locations of evacuees. Through preliminary exper-

iments, we set the parameters for the route selection as follows: kmax = 5,000,

δmax =300, and η =0.1.
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Figure 5.4. Impact of ε on fd and fp (β = 0.7).

5.4.2 Analysis of trade-off between speediness and safety

under capacity constraint

In this subsection, we show the performance of the proposed scheme compared

with the distance-based scheme under the capacity constraint. Fig. 5.4 illustrates

how the allowable deterioration of average route reliability ε affects the average

route length fd and average route reliability fp in case of relatively large evacu-

ation demand, i.e., β = 0.7. We first focus on the performance of the proposed

scheme. Since small (resp. large) ε places emphasis on the average route relia-

bility (resp. average route length), we observe that fp and fd of the proposed

scheme decrease with increase in ε. We observe that ε = 0.05 is one of the ap-

propriate parameter settings in terms of both speedy and reliable evacuation. In

particular, the proposed scheme can improve fp by 13.6% with 7.3% increase of

fd, compared with the distance-based scheme. In what follows, we set ε to be

0.05. In actual cases, the value of ε may also be affected by other factors, e.g.,

political judgment.

Next, we focus on the obtained refuge assignment. Figs. 5.5 and 5.6 illustrate

the refuge assignment of the distance-based scheme and that of the proposed

scheme, respectively. Recall that the orange area in Fig. 5.2 contains the roads

101



0.035 0.040 0.045 0.050 0.055 0.060 0.065
longitude +1.368⇥102

35.126

35.128

35.130

35.132

35.134

35.136

35.138

35.140

35.142
la

ti
tu

d
e

S1

S2

S3

Figure 5.5. Refuge assignment of distance-based scheme (β = 0.7).

with high road blockage probability, i.e., the average road blockage probability in

this area is 0.278. In the orange area of Fig. 5.5, some evacuees assigned to S3 are

forced to pass through the area with high road blockage probability. Comparing

the orange areas in Figs. 5.5 and 5.6, we confirm that the proposed scheme can

reduce such unsafe evacuation by assigning them to S1.

To deeply analyze the characteristics of the proposed scheme, we further show

the detailed results per refuge. Figs. 5.7 to 5.9 illustrate how ε affects the number

of allocated evacuees, fd, and fp, per refuge, respectively. We first focus on refuge

S2. We observe that fd decreases with ε while keeping the number of allocated

evacuees, due to the capacity limit (5.6). Specifically, we confirm that fd of S2

can improve by 35.9%, i.e., 392.0 [m], by comparing the result of ε = 0 with that

of ε = 0.05. This result means that evacuees near refuge S2 are assigned to S2

by the relaxation of the constraint (5.8). On the contrary, we observe that fp of

S2 increases with ε, which indicates that part of evacuees cannot be assigned to

their appropriate refuges, due to the capacity limit (5.6) in case of ε = 0. We will

describe the details of this result in Section 5.4.3.

Finally, we focus on refuges S1 and S3. We confirm that fd of S1 and the

number of allocated evacuees of S1 decrease with ε. This phenomenon can be

explained as follows. At first, evacuees distant from S1 are assigned to S1 in

102



0.035 0.040 0.045 0.050 0.055 0.060 0.065
longitude +1.368⇥102

35.126

35.128

35.130

35.132

35.134

35.136

35.138

35.140

35.142
la

ti
tu

d
e

S1

S2

S3

Figure 5.6. Refuge assignment of proposed scheme (β = 0.7).

case of ε = 0, to improve the average route reliability. By increasing ε, these

evacuees can be assigned to nearer refuges, S2 and S3, but most of them can only

be assigned to the refuge S3, due to the limited capacity of S2. As a result, the

number of evacuees allocated to S3 increases with ε. This forces some of them

to pass through the area with high road blockage probability, and thus fp of S3

decreases with ε.

5.4.3 Impact of capacity limit on speedy and reliable evac-

uation

In this subsection, we examine the appropriate design for the refuge capacity by

comparing the proposed scheme and that without the capacity constraint, which

can be regarded as an ideal case.

Fig. 5.10 presents the refuge assignment of the proposed scheme without the

capacity constraint when β = 0.7. Comparing Fig. 5.6 with Fig. 5.10, we first

confirm that the proposed scheme without the capacity constraint assigns more

evacuees to refuge S2. This result indicates that the demand for the refuge S2

significantly exceeds the current refuge capacity CS2 .

Fig. 5.11 illustrates how the impact of β on fd and fp changes between the
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Figure 5.7. Relationship between ε and the number of allocated evacuees per

refuge (β = 0.7).

proposed scheme and that without the capacity constraint. Fig. 5.12 shows the

corresponding result per refuge. We observe that the proposed scheme increases

fd by 6.5% compared with the proposed scheme without (5.6) when β = 0.7. This

is because the capacity of refuge S2 lacks 4,118 of the actual demand as shown

in Fig. 5.12. In the proposed scheme, the overflow evacuees tend to be assigned

to S1, which has sufficient capacity and is located at relatively safe region. In

Fig. 5.11, we also confirm that the proposed scheme keeps fp regardless of β,

compared with the proposed scheme without the capacity constraint.

These results indicate that the current setting for refuge capacity should be

reconsidered especially for refuge S2. In other words, the proposed scheme can

be used to a tool to calculate the required capacity of each refuge for speedy and

reliable evacuation.

5.4.4 Discussion

At the last of this section, we briefly discuss the limit of the proposed scheme

from the viewpoint of implementation in real-world context. The refuge assign-
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Figure 5.8. Relationship between ε and fd per refuge (β = 0.7).

ment based on the proposed scheme should be announced/advertised to evacuees

before their evacuations. We expect that the cooperation with the mobile-cloud

collaborative automatic evacuation guiding system [24] is one possible way. In

this system, the mobile application of an evacuee can automatically estimate the

actual road state (i.e., passable or blocked) during the evacuation, with the help

of the implicit interactions with its owner. The estimated information will be

shared with other mobile devices (evacuees) and cloud through the terrestrial

communication networks (e.g., cellular networks and Wi-Fi) and/or D2D com-

munication. These dynamically obtained information can be used to update the

refuge assignment.

5.5. Summary

When a large-scale disaster occurs, each evacuee should move to an appropriate

refuge in a speedy and safe manner. This can be achieved by the combination

of both pre-disaster and post-disaster approaches. In this thesis, we have con-

sidered an earthquake case study and proposed a refuge assignment scheme that

can support speedy and reliable evacuation under the refuge capacity constraint.
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Figure 5.9. Relationship between ε and fp per refuge (β = 0.7).

Given route candidates between evacuees and their possible refuges, we have first

formulated the refuge assignment problem as the two-step ILP, which minimizes

the average route length while guaranteeing a certain level of the average route

reliability under the constraint on the refuge capacity. As for the route candi-

dates, we have further proposed a speedy and reliable route selection scheme that

generates the input of the two-step ILP, i.e., route candidates between evacuees

and their possible refuges.

Through numerical results using the actual data of Arako district of Nagoya

city in Japan, representative results have shown that (1) the proposed scheme can

control the balance between the evacuation speediness and reliability under the

refuge capacity constraint by adjusting a control parameter and (2) the proposed

scheme with the appropriate parameter setting can improve the average route

reliability by 13.6% while suppressing the increase of the average route length

by 7.3%, compared with the distance-based scheme. In addition, we have also

revealed that the proposed scheme can be used as a tool to reconsider the current

settings for the refuge capacity. In particular, we have demonstrated that the

capacity of a certain refuge lacks 4,118 of the actual demands, which increases the

average route length by 6.5%. In future work, we plan to conduct a comprehensive
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Figure 5.10. Refuge assignment of proposed scheme without capacity constraint.

survey of the potential risks in other districts of Nagoya city.
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Figure 5.11. Impact of β on fd and fp (proposed scheme vs. proposed scheme

without capacity limit).
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Chapter 6

Conclusion

6.1. Summary

In this thesis, focusing on the impact of the travel risk information on the user

behavior, we have addressed the multi-agent routing leveraging the travel risk in-

formation to achieve the optimal crowd guidance under the ordinary or emergency

situations, respectively.

Chapter 2 and Chapter 3 have focusd on the ordinary situations. In Chapter 2,

we have focused on the travel congestion caused by the individual selfish routing in

the ordinary situations. We have proposed the selfish yet optimal routing, which

leads users to conduct the optimal routing under the rational decision making by

internalizing the marginal cost into their perceiving information. Fundamental

results through the numerical experiments under the grid-like road network have

shown that (1) the proposed scheme exhibits almost the same performance as

the optimal routing and (2) it improves the average travel time of 82% users by

0.77 [min] compared with the notification of the actual traffic information. In

addition, we also have evaluated the practicality and scalability of the proposed

scheme under the local-level and city-level road network. We have demonstrated

that the proposed scheme improves the average travel time by 19.1% (resp. 7.4%),

compared with the notification of the actual traffic information, in case of the

local-level (resp. city-level) road network with 1,197 (resp. 10,004) users.

In Chapter 3, we have provided the multi-agent distributed route selection

under the consideration of time-dependency among agents’ road usage. Through
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the numerical and simulation results, we have shown that the proposed scheme

can estimate the travel time more accurately. Compared with the existing scheme,

the proposed scheme can improve the actual travel time by 5.1% with help of the

more accurate estimation under the consideration of time-dependency among

agents while keeping the exponential convergence property.

Chapter 4 and Chapter 5 have focused on the evacuation under a large-scale

disaster situation. In Chapter 4, we have proposed the geographical risk analysis

based path selection scheme for the existing automatic evacuation guidance to

achieve the speedy and reliable evacuation. Through simulation experiments,

we have shown that the proposed scheme can improve the evacuation safety by

28.2% while keeping the evacuation time even under the severe communication

environment. In addition, we have demonstrated how the proactive and reactive

information affects the evacuation movement under the various communication

environments. Specifically, the improvement of the evacuation safety is almost

saturated when the coverage ratio of the communication infrastructure is only

30%.

Chapter 5 has presented the capacitated refuge assignment to achieve the

speedy and reliable evacuation. We have considered the earthquake case study

and formulated the refuge assignment problem as the two-step ILP, which mini-

mizes the average route length while guaranteeing a certain level of the average

route reliability under the constraint on the refuge capacity. As for the route can-

didates, we have further proposed a speedy and reliable route selection scheme

that generates the input of the two-step ILP. Through numerical results using

the actual data of Arako district of Nagoya city in Japan, we have shown that

the proposed scheme can improve the average route reliability by 13.6% while

suppressing the increase of the average route length by 7.3%, compared with the

distance-based scheme. Furthermore, we have revealed the potential risks of mis-

match between the geographical population distribution and the locations and

capacities of refuges. Specifically, we have shown that the capacity of a certain

refuge lacks 4,118 of the actual demands, which increases the average route length

by 6.5%.
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6.2. Future Perspective

6.2.1 Consideration of Uncertainty of Users’ Decision Mak-

ing

In Chapter 2, we have proposed the selfish yet optimal routing, which achieves

the social optimum under the selfish/rational decision making of individual users.

This scheme assumes that each user believes the traffic information notified by

the server but some users might doubt whether the perceived traffic information

is tweaked and defect the proposed system. This phenomenon tends to stem from

the users’ experiential information (EI).

In future work, we plan to extend the selfish yet optimal routing, which can

cope with such uncertainty of users’ decision making.

6.2.2 Robustness against Unexpected Evacuees’ Behavior

In Chapter 4, we have shown the contribution of the reactive and proactive in-

formation to the evacuation movement. Recall that the reactive information, i.e.,

road state (passable/blocked), is automatically estimated by the evacuee’s tra-

jectory and its difference from the recommended route. This approach implicitly

assumes that evacuees always follow the system guidance. Some evacuees, how-

ever, might (temporarily) defect from the guidance for their own purpose, e.g.,

visiting home/office. Such unexpected evacuees’ behavior will result in misesti-

mation of road state and dissemination of the wrong information might disturb

evacuation guidance.

In future work, we first plan to investigate the impact of the existence of outlier

evacuees on the system performance under the various communication environ-

ments. Furthermore, we will propose a scheme to detect outliers by analyzing the

features of trajectories.

6.2.3 Personalized Guiding Considering Users’ Attributes

In this thesis, we have basically assumed that all users are homogeneous. In

actual situations, users can be distinguished according to their heterogeneous
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attributes and route (and refuge) selection should be carefully considered accord-

ing to their attributes. For example, healthy persons can select a route including

stairs and/or slopes while elder and/or handicapped persons may have to search

for a route as flat as possible. From the viewpoint of travel distance, such elder

and/or handicapped persons may also have to find a refuge as near as possible

in the evacuation situations. The attributes may also be related to the relation-

ship with others. For instance, persons tend to move together with their family,

friends, or colleagues. Since giving different route selection to the same group

may cause confusion, group-based guidance will be required. These attributes

can be registered to the proposed application in advance under the consideration

of their privacy. In future work, we will extend the proposed schemes to support

the personalized guiding.
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[79] E. Köhler, K. Langkau, and M. Skutella, “Time-Expanded Graphs for Flow-

Dependent Transit Times,” in Proc. of Algorithms — ESA 2002, ser. Lec-

ture Notes in Computer Science, R. Möhring and R. Raman, Eds. Springer
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