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Agile Reconfigurable Robotic Assembly System*

Takuya Kiyokawa

Abstract

There is an ever-increasing demand for a high-mix, low-volume production system
that can quickly and flexibly respond to variations in both the type and quan-
tity of products required by markets worldwide. To achieve automatic assembly
that performs the high-mix, low-volume production for such market volatility, a
general-purpose assembly robot is required to operate a wide variety of mechan-
ical parts of various shapes.

Such a new-type production paradigm prefers, rather than a line production
which enables mass production of a relatively small number of different products,
a cell production which enables entire assembly process of customized products in
one cell. Required specifications of the assembly system are frequently changed,
and thus the use of an agile reconfigurable robot is expected. In the Assem-
bly Challenge of the World Robot Summit, a global competition on automated
robotic assembly, assuming changes in parts of a target product (a belt drive
unit) to be assembled, participating teams tackle how to deal with the product
changes with a robotic system.

The purpose of this dissertation is to clarify the system configuration methods
that enable rapid deployment in response to the introduction of new products.
First, I define problems of this dissertation considering the findings and remaining
issues in the wide range of the field related to robotic assembly. Specifically, to
address the problems, I propose three methods: (1) an automatic training dataset
generation method for a quickly trainable vision system, (2) an assembly sequence
generation method using only an assembled CAD model, and (3) an assembly
method using a general-purpose flexible jig inspired by a jamming gripper.

The methods proposed in this dissertation have novelty, originality, and use-
fulness that can be differentiated from previous studies in terms of the following
three aspects. (1) In order to utilize a vision system using deep learning that
are recently getting attention due to its significant performance, I focused on
the needs of rapid dataset generation to handle frequent product changes in the
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manufacturing industry. I developed an automatic dataset generation of training
image datasets, that enables agile reconfiguration of the vision system. (2) Ben-
efiting from the latest advance in three-dimensional modeling technologies due
to the recent increase in processing speed of computers, I achieved automatic as-
sembly sequence generation based on the difficulty of constraint state transition,
which is related to the difficulty of assembly tasks. Using the three-dimensional
model data, the proposed method can automatically extract interference relation,
insertion conditions and degree of constraints used for evaluating the assembly
sequence for a product including rigid and deformable parts. (3) I proposed
a state-of-the-art flexible parts-fixing device named soft jig utilizing the grasp-
ing ability of a flexible gripper which draw attention in the field of current soft
robotics. The soft jig can fix parts of various types and shapes during assembly
operations, and thus can achieve a general-purpose assembly system that does
not require the preparation of custom jigs according to the parts to be assembled.
Using a mechanical product including several rigid parts of various shapes
and a deformable part, experiments were conducted to evaluate in terms of the
versatility and accuracy of each method and the time required to reconfigure
the system. The results prove that the training dataset collection time can be
drastically reduced, feasible and easy-to-assemble sequences are generated, and
fixing and assembling various parts with the proposed flexible jig are possible.

Keywords:

Agile Manufacturing, Assembly Robot, Assembly Planning, Soft Robotics, Auto-
matic Annotation
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Chapter 1

Introduction

1.1. Need for Agile Reconfiguration

There is an ever-increasing demand for a production system that can quickly and
flexibly respond to variations in both the type and quantity of products required
by markets worldwide. Agile manufacturing - a recently popularised concept -
has been advocated as the 21st-century manufacturing paradigm [Gunasekaran,
1999; Kim et al., 2019]. As represented by Industry 4.0 [Rojko, 2017|, Industrial
Internet Consortium [I1C, 2017], and Made-in-China 2025 [Li, 2018], countries
around the world have proposed concepts and taken initiatives to achieve the
new-type manufacturing. In Industry 4.0, the fourth revolution is characterized
for promoting the mass-customized production system with the high degree of
flexibility:.

To achieve automatic assembly that performs the high-mix, low-volume pro-
duction [Godri et al., 2019; Karaulova and Shevtshenko, 2015; Onizawa et al.,
2016] for such market volatility, a general-purpose assembly robot is required to
operate a wide variety of mechanical parts of various shapes. Such a new-type
production paradigm prefers, rather than a line production [Saif et al., 2014]
which enables mass production of a relatively small number of different products,
a cell production [Hara and Azuma, 1988; Maeda et al., 2007; Onori et al., 1997]
which enables entire assembly process of customized products in one cell. Re-
quired specifications of the assembly system are frequently changed, and thus the
use of an agile reconfigurable robot is expected [Gaspar et al., 2017; Karagiannis
et al., 2019]. This dissertation aims to identify how to agilely reconfigure the
system to handle such frequent introduction of new products.



1.2 Problem Definition

(a) Layout example for kitting task (c) Parts in trays

Figure 1.1. Kitting task of the Assembly Challenge in the WRS2018 [Yokokohji et al.,
2019].

1.2. Problem Definition

This section defines problems in this dissertation considering the findings and
remaining issues in the wide range of the field related to robotic assembly.

1.2.1. New Challenge of Assembly in Worldwide Competition

To promote breakthrough both on the technologies and research in automation
and robotics, an assembly challenge in World Robot Summit (WRS) 2018 [WRS2018]
was held. The competition has organized an assembly task setup based on open
questions in the research field.

First of all, the competition assumed that the assembly task is positioned as
the operation beginning from picking of parts in trays distinguished after kitting
task of assembly parts from bins (Figure 1.1). After all operations including the
kitting and assembly task, we obtain a designed product. The assembly task is
distinguished from the task-board task consisted of assembly subtasks and dis-
assembly subtasks executed using the task board (Figure 1.2). This dissertation
focuses on this assembly task using the belt drive unit shown in Figure 1.3. Fig-
ure 1.4 depicts the relationships between the tasks.

Second, as an important challenge in the competition rules, how to deal with a
robotic system to handle the changes in parts of the target product (a belt drive
unit) was questioned. To simulate the new product introduced to the factory,
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(a) Initial configuration (placement mat (left)

and task board (right)) (b) Completed configuration

Figure 1.2. Task board used for the Assembly Challenge in the WRS2018 [Yokokohji
et al., 2019].

(a) Front appearance (b) Rear apperance

Figure 1.3. Belt drive unit used for the Assembly Challenge in the WRS2018 [Yokokohji
et al., 2019].

several surprise parts are prepared. The surprise parts are designed differently
from the parts used in the original belt drive unit, while keeping the nature of
the model product. The details of the surprise parts were announced at the
appropriate time just before the task starts on the competition days. In the
competition, many teams ended up without touching the surprise parts at all.

Several teams have tackled the issues in aforementioned rules of the assembly
challenge with novel robotic cell systems. Sloth et al. [Sloth et al., 2020], towards
easy setup of required assembly tasks, proposed to program assembly tasks by
demonstration merged with assembly primitives. Schelette et al. [Schlette et al.,
2020] proposed a cell prodution system with collaborative robots. They men-
tioned multiple copies of the cell can be arranged in a highly reconfigurable,
highly adaptable matrix structure in which several production flows can be han-
dled concurrently.
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Cell production system

Parts in bins + Kitting task |EB) Parts in trays B8»| Assembly task +Products
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Task-board Task

Figure 1.4. Relationship between tasks executed by cell production system.

In addition, robotic assembly systems for agile manufacturing were proposed
such as a robust bin picking system using a robot hand equipped with tactile
sensors [Tajima et al., 2020], a versatile robotic system which does not use jigs
or commercial tool changers and no specialized end effectors [von Drigalski et al.,
2020a], and a system comprising the use of only two hands specialized for assembly
tasks and without the requirement of tool changers [Tennomi et al., 2020]. In this
way, reconfigurable hardware structures were developed.

As another feature of the developed hardware structure, many teams imple-
mented the assembly tasks utilizing rigid jigs and support parts to fix the parts
to be manipulated by robot arms. The type and shape of surprise parts cannot
be anticipated so we need a versatile jig proposed in Chapter 4.

Currently, soft robots based on flexible bodies are paid more attention than
before, for its safety and versatility for environments. Applying technologies of
the field of soft robotics [Lee et al., 2017b; Walker et al., 2020] are up-to-date
approaches for the reconfigurability of robotic assembly. To manipulate assembly
parts of various shapes in a lean manner, the robotic assembly operations with
the flexible jig is more effective than automatically designing end effectors or jigs
every time [Pham and Yeo, 1991].

Some approaches related to the software implementation are summarized in [von
Drigalski et al., 2020b] as follows. The parts’ specifications were given to the com-
petitors one day before, and the actual parts were handed out two hours prior
to their trial. This made it possible for many teams to teach some movements
and perform at least some of the required assembly operations. Team Robotic
Materials had primitives to grasp unknown objects and expected those to transfer
directly to the surprise parts. Furthermore, they used simple assembly primitives
written in Python, which they could quickly adapt. Team O2AS updated the
models of the assembled parts, which updated their software with the new target
positions. They aimed for mostly using the same code as in the assembly, just
with updated target positions. Team SDU Robotics relied on a reusable, modular
framework to reprogram or adapt workcells. The gripper-finger exchange system
in combination with the 3D printers they brought to the competition allowed
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them to create custom fingers for the new parts. Using play-back methods for
quick programming of movements and agile pose estimation algorithms based on
CAD models helped to implement assembly operations with surprise parts.

These approaches are limited to the robot motion generation, alignment of part
poses, or localization of the objects [Gorjup et al., 2020], but some new parts re-
quire rethinking the assembly sequence as a high-level planning. CAD-based
assembly planning proposed in this dissertation is effective for assembly planning
assuming the agile reconfiguration. Automatic assembly planning including as-
sembly sequencing [Jiménez, 2013] is a topic researched in a long-term [Homem
de Mello and Sanderson, 1990; Makris et al., 2012; Rosell, 2004; Wang et al., 2009;
Wilson and Latombe, 1994; Zha et al., 1998]. To achieve the assembly tasks with
the robot, constrained manipulation motions [Jones and Wilson, 1996] are needed
for precision operations.

Historically, assembly operation planning are based on state transitions of con-
tact between the manipulated object and the environment around the object.
Based on the contact state transitions, kinematical analysis of the manipulated
object [Hirai, 1991; Hirukawa et al., 1991; Yokokohji et al., 1993; Yoshikawa et al.,
1991], difinition of task primitives [Ikeuchi and Suehiro, 1994; McCarragher, 1996]
and the task recognition has been tackled [Miura and Ikeuchi, 1998; Takamatsu,
2003]. Defining the contact state transitions is possible to enable the constrained
manipulation motion during assembly operations. In addition, assembly parts are
made by not only rigid metal materials but also soft materials such as a rubber
band and a copper wire, thus handling the versatility of the assembly parts of
various shapes and the materials are important in the assembly planning.

However, no research has tried sequence planning considering the contact state
transitions as proposed in Chapter 3 for such various kinds of products. In addi-
tion, the parts should be recognized in each assembly task defined as the contact
state transitions. However, to achieve the agile reconfiguration, automatic dataset
collection method as proposed in Chapter 2 is required to replace time-consuming
and man-powered dataset collection process.

1.2.2. Target Specifications of Robotic Assembly System

In this section, I discuss the relationship of the proposed method with the as-
pects of versatility and accuracy other than the agility of our major focus. In
the first place, the ultimate goal of this research is to increase the versatility and
agility while maintaining the precision of the conventional robotic assembly sys-
tem. Each pair of these has its own trade-offs, thus I aim to construct a system
that is a good compromise between the three axes, which is the location of the red
point among the solutions that exist within the blue phase shown in the upper
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Figure 1.5. Target specifications in tradeoff relationships between agility, precision,
and versatility of assemblies.

right corner of Figure 1.5. In fact, I placed each of the proposed methods for
recognition, planning, and execution on the graphs with each two axes, taking
into account the differences with other existing methods.

First, in terms of the proposed automatic generation of real-world dataset, 1
positioned it against other methods in terms of precision against the agility. The
method using only computer graphics (CG) data is faster because it does not
require moving objects or cameras in the real environment, but it is less accurate
when no images of the real environment are used.

Second, the proposed automatic assembly sequence generation with CAD was
also evaluated in terms of precision against the agility. In the case of the sequence
generation from assembly instructions without using CAD, since we could obtain
the assembly order from the instruction by applying natural language processing,
the computation cost is relatively low because it is possible to avoid running
optimization calculations based on the parts geometries. On the other hand,
since the information contained in the instructions is secondary and tertiary data
that possibly contains human errors, it may be possible to generate a more precise
sequence from a 3D CAD model that has a uniform format and relatively less
room for such errors.

Third, for the general-purpose hand and jig, I considered the versatility and
the agility. First of all, in the case of automatic design of them, the time required
for the manufacturing of the automatically designed hand and jig is problematic.
On the other hand, in the case of using a tool changer, it is faster than automatic
design as long as when multipurpose hands and jigs are readily available, but not
as versatile as automatic design or the proposed soft jig. In this way, I positioned
each proposed method devided in the recognition, planning, and execution.

Figure 1.6 shows the configuration of the robotic system for runtime execution
and system reconfiguration assumed in this dissertation. Finally, they are set as
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Figure 1.6. Overview of assumed robotic system configuration.

the problems that we make the basic configuration (Figure 1.6(a)) more general-
purpose than the previous systems, and make the configuration for reconstruction
(Figure 1.6(b)) more agile than the previous systems.

1.2.3. Scope of Dissertation

This dissertation tackles issues in the following three topics: (1) a part recogni-
tion system that can be quickly retrained, (2) a CAD-based assembly sequence
generation method for products consisting of many parts including deformable
objects, and (3) a general-purpose parts-fixing tool and a assembly strategy with
the tool.

To reduce the time-consuming manual teaching process and programming effort
in the automation of the assembly system, I give much attention to reusability of
the data given to a robot system such as a CAD model, and the versatility and
flexibility of the robot system such as a flexible jig and a faster trainable vision
System.

The following topics lie outside the scope of this dissertation: the reconfig-
urable robotic systems by robot-robot [Argall et al., 2009; Marvel et al., 2018;
Zhu and Hu, 2018] and human-robot [Raessa et al., 2020; Tsarouchi et al., 2017;
Weckenborg et al., 2020] collaborative systems, the concrete strategies for assem-
bly tasks such as high-precision grasping and assembly tasks with sensors [Li and
Qiao, 2019], peg-in-hole [Park et al., 2017; Shibata et al., 2020; Watson et al.,
2020], dual-arm manipulation motion planning [Harada et al., 2014].
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1.3. Dissertation Outline
1.3.1. Relation Between Proposals

Figure 1.6 shows the configuration of the robotic system aformentioned. The
hardware and software components related to chapters 2, 3, and 4 are shown as
red, green and blue boxes, respectively. This dissertation concentrates on the
versatility of the components and the agility of the system configuration that still
need for the automated assembly system that can handle the surprise parts.

1.3.2. Chapter Description

Chapter 2 presents two frameworks to train the vision system faster than manual
image dataset collection. To collect a human-annotated dataset for training deep
convolutional neural networks is a very time-consuming and laborious process.
To reduce the burden, I first proposed an automated annotation by placing one
visual marker above the detection target object in the training phase. Since the
target object poses can be calculated from detection results of the visual marker,
once we link the relative object pose and object size to the visual marker, anno-
tation data such as a label, a bounding box and the object pose can be obtained
automatically. In the first approach, occasionally the marker hides the object
surface. To avoid this issue, I propose placing a pedestal with multiple markers
at the bottom of the object. If we use multiple markers, the object in the image
can be annotated even when the object hides some of the markers. Besides that,
the simple modification of placing the markers on the bottom allows the use of
simple background masking to avoid the neural network learning the remaining
markers in the training image as a feature of the object. Background masking can
completely remove the markers during the training process. Experiments showed
the proposed vision system using our automatic object annotation outperformed
the vision system using manual annotation in terms of object detection, orienta-
tion estimation, and 2D position estimation while reducing the time required for
dataset collection from 16.1 hours to 7.30 hours.

In the other framework, I developed an automatic image dataset collection
with a robot arm to change poses of a camera and with a rotating stage to
change orientations of a target object. The target issue in this framework is to
remove differences in the appearance of target objects imaged in the two scenes,
which are the dataset collection scene and real work scene such as a factory. If the
differences remain, the performance of the trained detection system may decrease.
Our proposed method focuses on filling the gaps in terms of the two differences in
illumination and background. To do this, I propose to apply histogram matching
and background synthesis to the source target object images. In the experiments
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in a man-made workplace for a factory line, the detection results demonstrate
that the proposed method enables us to obtain the performance higher than the
other methods without considering the differences.

Chapter 3 explains the methods to plan the assembly tasks especially assem-
bly sequences of parts, so the chapter is highly related to the task planning. I
describe the formulation of how to search an optimal solution of feasible assem-
bly sequences that satisfies the insertion relations between parts and the low
difficulty of constraint state transitions. Aiming to generate easy-to-handle as-
sembly sequences for robotic assembly, I tackle the assembly sequence generation
by considering two tradeoff objectives: (1) insertion conditions and (2) degrees
of constraints among assembled parts. I propose a multiobjective genetic algo-
rithm to balance these two objectives for generating assembly sequences. Further-
more, the method of extracting part relation matrices including interference-free,
insertion, and degree of constraint matrices is extended for application to 3D
computer-aided design (CAD) models, including deformable parts. The interfer-
ence of deformable parts with other parts can be easily investigated by scaling
the deformable shapes. This automatic extraction of each part information can
be considered related to semantic understanding since the high-level information
about two-part relationships related to the interference, insertion, and constraint
are extracted from the geometries obtained from the CAD model which is low-
level data. I conducted a simulation experiment using the proposed method. The
results show the possibility of obtaining Pareto-optimal solutions of assembly se-
quences for a 3D CAD model with 33 parts including a deformable part. This
approach can potentially be extended to handle various types of deformable parts
and to explore graspable sequences during assembly operations so this method
can be used for grasp planning.

Chapter 4 deals with the versatility for object shapes during assembly opera-
tions on run-time. The robotic assembly system needs to manipulate an assem-
bly part onto another fixed object (e.g. another part or the environment) such
as peg-in-hole, screwing, and placement operations. To design a general-purpose
assembly robot system that can handle objects of various shapes, I propose a soft
jig capable of deforming according to the shape of the assembly parts. The soft
jig is based on a jamming gripper (e.g. [Brown et al., 2010]) previously used for
robot manipulation as a general-purpose robotic gripper developed in the field
of soft robotics. The soft jig has a flexible membrane made of silicone, which
has a high friction, elongation, and contraction rate for keeping parts fixed. The
inside of the membrane is filled with glass beads to achieve a jamming transition.
The usability of the soft jig was evaluated from the viewpoint of the versatility
and fixing performance for various shapes and postures of parts in assembly op-
erations. Since the soft jig allows for the placement and fixation of objects of
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various shapes and sizes in various poses, the choice of assembly operations is
widened. It is necessary to consider a specific manipulation planning for the use
of the soft jig. This dissertation examines a method for determining the pose of
object placement on the soft jig and its manipulation planning with the proposed
flexible jig.

As a closure to this dissertation, Chapter 6 concludes the contributions of this
dissertation and mentions the future direction of my research to achieve fully
automated robotic assembly cell production.

1.4. Contributions

The major contributions of this dissertation are:

e Fully automated annotation methods with visual markers that were dimin-
ished later is effective for generating annotated images rapidly. To obtain
the real-world image datasets effectively, unbiased dataset collection was
proposed and evaluated. An automatic image dataset collection method
with a small robotic arm and with a rotating stage enabled us to collect
multi-view object images more quickly. A domain adaptation method with
several image processing techniques were evaluated by training conventional
deep learning-based object detection methods.

e CAD-based assembly planning methods for searching feasible assembly se-
quence that interferences between parts does not occur, satisfying insertion
relationships, and with low difficulty of constraint state transitions. I de-
signed the fitness functions for a genetic algorithm. To achieve calculating
the fitness values based on the geometries extracted from the CAD model,
I proposed automatic extraction methods of part information for not only
rigid object but also the deformable objects. The proposed sequence gen-
eration method was evaluated using a product including many parts and a

deformable rubber band.

e A state-of-the-art flexible part-fixing device named soft jig was proposed.
The usability, flexibility, and fixing capability of the soft jig was evaluated
in experiments using physical robotic arms. The fixing capability based on
a jamming transition was clarified on the experiments of object placement
and fixation against the application of external force.

10
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1.5. Publication Note

Parts of the works done in this dissertation have appeared in previous publica-
tions. The proposal of faster trainable vision system was published in [Kiyokawa
et al., 2019b], since then the method has evolved so far [Kiyokawa et al., 2019a].
The part of the 3D CAD-based assembly planning in Chapter 3 was covered
by [Kiyokawa et al., 2020b]. The manipulation with flexibility in Chapter 4 was
presented in [Kiyokawa et al., 2020a).

11



Chapter 2

Faster Trainable Vision System

2.1. Introduction

The best performing vision system in automated factories exploits the deep
learning-based methods, such as Deep Convolutional Neural Networks (DCNNs)
to simultaneously detect various products. Deep learning-based object detectors
are able to infer the location and the label of objects in images even with such a
variety of appearances [Girshick, 2015; Liu et al., 2016b; Redmon and Farhadi,
2018; Redmon et al., 2016; Ren et al., 2015; Tan et al., 2020; Zhao et al., 2019a].
Recent studies have focused on detection and pose estimation of multiple objects
with the DCNN [Pathaka et al., 2018; Schwarz et al., 2018; Zeng et al., 2017;
Zhao et al., 2019b]. Training of such models typically requires large amounts of
annotated training data [Cai et al., 2017; Krasin et al., 2017; Real et al., 2017;
Rennie et al., 2016 because the DCNN has a large number of parameters to be
optimized in the training process. Manual annotation of the training dataset is
a time-consuming and laborious process, and costly to obtain. As an example
of the annotation effort, as shown in Figure 2.1, bounding boxes are drawn and
labels are assigned for each object in every image.

An efficient way to make a large amount of training data is desirable for a deep
learning-based vision system. Especially for high-mix low-volume production, the
effort of this manual annotation cannot be ignored for the following two reasons.
First, a large number of product types should be coped with. We need to prepare
a moderate number of images for each product for training. Second, in this type
of production, the lifecycle of the products is typically short. In each cycle, we
need to train the network again.

This chapter first describes the proposed automatic annotation methods for
real-world objects. In the methods, manual object arrangement and manual image

12
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— Bounding boxes :

Figure 2.1. An example of the annotated image. The box around each object shows the
bounding box annotated by humans. The label, the orientation, and the 2D position
should be annotated for automated factory applications.

capturing are needed. Second, I propose an automatic image dataset collection
with an automatic image capturing system and propose a domain adaptation
method. The method enables the use of the collected images to train a vision
system for a target domain.

2.1.1. Real-world Collection with Automatic Annotation

I first propose a fully automatic object annotation to real-world images. The
proposed method does not require any manual annotation. For the proposed
method, in only the training phase, we use visual markers for object annotations.
We associate the visual marker [Kato and Billinghurst, 1999] with each object
and capture both of them in the same image to track the objetcs. The proposed
algorithm then labels the object IDs using the marker IDs, calculates the 3D
poses of objects by estimating the pose of the marker, and generates a bound-
ing box around each object based on the object geometry and the pose of the
corresponding marker.
To achieve the proposed method, we need to solve the following three issues:

1. Depending on the arrangement of the visual markers, the marker may hide
the target object and reduce the visible area of the object (Figure 2.2 (a)).
It is necessary to consider the arrangement of visual markers.

2. Visual markers are usually included in the images cropped with the bound-
ing boxes (Figure 2.2 (a) and Figure 2.2 (b)). The neural-network erro-
neously learns that the markers are parts of the object appearance.

13
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Bounding box Bounding box

Included in bounding box
and hides the object Included in bounding box

(a) Single marker (b) Multiple markers

Figure 2.2. Two problems that the marker hides the object and that the marker are
included in the bounding box.

3. Considering the performance of the vision system, the diversity of the train-
ing dataset of real-world images should be kept while reducing the number
of images to reduce the effort of data collection.

The first issue occurs where the physical visual marker hides the object sur-
face. Since the proposed method uses visual markers for annotation, the markers
always appear in the images without hiding. To avoid hiding the visual markers
by the object, one idea is to put the marker near the camera, i.e., the above of
the object. Though we can place the marker above the object to make the marker
visible, occasionally the marker hides the object surface. Such a hinder reduces
the observed appearance feature of the object and thus may deteriorate the per-
formance of the vision system. To avoid this issue, I propose to place a pedestal
with multiple visual markers on the bottom of the object. The use of multiple
markers makes the proposed automatic annotation robust; the proposed method
works even when several markers are not detected or occluded. Our experimental
results demonstrated that, comparing to the pedestal with a single marker placed
at the top, the proposed pedestal design improves the performance of the vision
system in terms of the object orientation estimation.

The second issue is related to the learning when we use the images including
the visual markers. The visual markers in the bounding box tend to confuse
the learning of object features. Since the product does not have markers in
real use, this deteriorates the performance of the vision system. To reduce this
deterioration, I propose using a background image to mask the region of the visual
markers on the pedestal in the images. I experimentally prove that this simple

14
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masking approach avoids erroneous learning.

The third issue concerns that not only must the training dataset be collected
quickly, but also the usefulness of the collected data should be considered. To
reduce the amount of the training data without sacrificing the performance of
the detection, it is necessary to avoid capturing the object images with similar
poses, while it is necessary to collect the object images with various poses. As a
solution to the issue, I propose an unbiased dataset collection method by showing
the dataset collection progress to dataset collection workers.

During collecting training data, the worker arranged the objects manually on
an arbitrary place in the specific region on the conveyor belt where all the target
objects can be captured by the camera. If the system shows the worker the
histogram of the captured poses, the worker can choose the poses of which the
object is not captured.

I experimentally evaluated the effectiveness of the proposed method by com-
paring the times needed for manual annotation and for the automatic annotation.
I also measured the improvements in the performance of the robot vision system
using the proposed approaches. I assume a vision system used for the factory
robot capable of grasping various types of objects and picking them up according
to the object orientation. The experiments evaluate the accuracies in the fol-
lowing three terms: (1) detection of multiple objects on the conveyor belt, (2)
estimation of 2D object positions on the conveyor belt, and (3) estimation of
object azimuth angle.

Our contributions in the framework for real-world collection with automatic
annotation are threefold:

1. T propose to place a pedestal with visual markers at the bottom of the
detection target object to avoid the issue of obstructing learning the object
appearance.

2. I propose background masking of the marker area in the training image to
avoid learning the visual markers as the parts of the object appearance.

3. I propose to show the dataset collection worker the collection progress in
real-time by taking advantage of visual markers. Visual markers fixed to the
object enable us to obtain the object pose data immediately after detecting
the markers by the camera.

2.1.2. Fully Automated Collection with Domain Adaptation

As another framework, I develop an automatic system for image dataset col-
lection. To use the system, a target object is placed on an automatic rotating
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Figure 2.3. Robotic training dataset collection system that facilitates image capturing
and automatically annotates labels and bounding boxes.

stage and imaged from multiple viewpoints using a hand—eye robot arm shown, as
in Figure 2.3. The robot arm and rotating stage are automatically controlled while
capturing images. The aforementioned proposed automatic annotation method
utilizing the fiducial marker detection [Kato and Billinghurst, 1999] is applied
to the images captured. To train the DL-based object detector, we place the
collection-target object on the rotating table for image capture. However, we do
not have to manually annotate the images.

Although object images in the real-world can be easily provided, they often
appear differently from items found in the working environment. Thus, detec-
tion performance can decrease when collecting images without consideration for
adaptation methods.

The industrial workplace exists in an indoor environment for this study. Thus,
it can be fixed in terms of illumination and background. I propose methods to
reduce the differences easily and effectively for such conditions.

This research focuses on two domain differences in terms of the illumination
and the background between the image dataset collection environment and the
real work environment in industry. First, we adjust the object size in the image
to be as close as possible to the real one in the real work scene. Subsequently, we
apply histogram matching (HM) to images using a RGB color space to reduce illu-
mination differences. Based on our qualitative observations for RGB histograms
of the object images captured in the real work environment, we apply histogram
smoothing for the collected images to further make the RGB histogram resemble
the destination images. Furthermore, to reduce the differences of background
conditions, we use background-synthesized and histogram-matched images as the
training images.

Our contributions in the framework for fully automated collection with domain
adaptation are twofold:
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1. The proposed robotic training dataset collection system uses a hand-eye
robot arm, a rotating stage, and visual markers to facilitate object-image
capturing from multiple viewpoints and with multiple annotations. The
automatic annotation is calibration-free on the relative poses of the target
object placed on the stage, because detection results of visual markers are
used to annotate the object pose. The time required for the proposed
automatic collection is 12.3 s: 93.4% faster than prior methods.

2. I propose a simple but effective object-image dataset adaptation method
for collected images. As a benefit of applying object scaling, RGB-HM
with histogram equalization (EQ), and background synthesis (BS) for the
collected images, we achieve improved object detection accuracy. I further
propose the addition of a small real-world dataset captured in the real work
scene to the domain-adapted dataset. Training with this dataset achieves a
detection accuracy of 79%, which is 39% higher than using the original one
that lacks domain adaptation and real-world images.

2.2. Related Work

There is a vast literature in the area of object detection and pose estimation
including effective dataset collection. As a brief review, I cover related research
focusing on the following three aspects, which are previous approaches with the
same scope as ours and other research methods tackling the same issues as ours.

1. The first aspect is related to the methods to achieve a vision system for
a picking robot in automated factories. I explain the latest approach for
detecting objects and estimating the object pose in real-time, since a robot
in the factory line can grasp and pick up the target object in an arbitrary
pose.

2. The second aspect is related to effective methods to generate training dataset
for the vision system. The time-consuming dataset collection is an essen-
tial problem to solve to quickly deploy a vision system for a factory line
conducting high-mix low-volume production.

3. The third aspect is related to domain adaptation to utilize datasets col-
lected in a domain for another target domain. To achieve automatic image
dataset collection in a domain other than the target domain, I investigate
the domain adaptation methods.
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2.2.1. Vision System

One approach for object detection or pose estimation uses RGB-D sensors with
3D object models (CAD [He et al., 2017; Song et al., 2017; Wohlkinger et al., 2012]
or 3D reconstruction [Zhu et al., 2014]). In the automated factories, a 3D object
model is often available. These methods use disparity images obtained from an
RGB-D sensor and match the images with the models. Due to the huge search
space involved in image matching with the 3D object models, these methods are
computationally expensive.

Various types of pipelines for RGB-based object detection and pose estimation
have been proposed [Brachmann et al., 2016; Do et al., 2018; Kehl et al., 2017;
Li et al., 2018; Rad and Lepetit, 2017; Sundermeyer et al., 2018]. Although these
pipelines do not use the 3D object models unlike the RGB-D based template
matching, the pipelines have been effectively used images rendered the known
colored 3D object models in the training process and/or the online process. A
single-shot approach was proposed [Tekin et al., 2018] for simultaneously detect-
ing an object in an RGB image and predicting its 6D pose. As the performance,
it is much faster,e.g., 50 - 94 fps (depending on the image resolution) on Titan
X (Pascal) GPU and suitable for the real-time vision system. An out-of-the-
box CNN-based architecture using vision data only was proposed [Xiang et al.,
2018], which performs three different tasks that lead to the 6D pose estimation,
i.e., semantic labeling, 3D translation estimation, and 3D rotation regression.
By using a large scale video dataset for 6D object pose estimation, the convolu-
tional neural-network can accurately estimate the 6D pose and handle occlusions
and objects in cluttered scenes. They used the YCB dataset [Calli et al., 2015]
including 133,827 frames for 21 objects in 92 videos.

2.2.2. Quickly Generating Training Datasets

Since while deep learning-based vision systems become faster and able to detect
more categories of objects, the cost of humans manually annotating data remains
very high, there are two major efforts to easily collect the large datasets. One
approach is (1) data augmentation to enrich the image datasets for improving
generalization ability of deep learning models and the other is to deal with (2)
simplification of the labor-intensive annotation process with human-in-the-loop
automatic annotations. This research is related to both of them.

Data augmentation

In the research of (1), a strategy utilizes a pre-trained detector. The most common
approaches have trained a DCNN using a manually annotated small-scale dataset,
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and then labeled the remaining data using the pre-trained DCNN [Adhikari et al.,
2018; Sun et al., 2017]. Similar to the data augmentation approach, even using
such a pre-trained model, rendered images can be used for training the actual
objects [Mitash et al., 2017].

Another approach to augment the dataset includes changing the appearance
and the background of objects in the image [Cubuk et al., 2019; Montserrat
et al., 2017]. To increase datasets, random image cropping and patching have
been done to improve the accuracy of the classification of images [Takahashi
et al., 2018]. Random erasing has been tried to reduce the risk of over-fitting
and makes the model robust to occlusion [Zhong et al., 2020]. They randomly
assigned the pixels within the selected region of an arbitrary size with random
values. An automatic search method for data augmentation policies directly
from a dataset (AutoAugment) has been proposed in [Cubuk et al., 2019]. Each
policy expresses several choices and orders of possible augmentation operations,
where each operation is an image processing function (e.g., translation, rotation,
or color normalization). FastAutoAugment in [Lim et al., 2019] is the improved
policy extraction method and significantly faster than AutoAugment requiring
thousands of GPU hours even for a small dataset.

Other approaches use object images such as rendered images using a 3D CAD
model [Kehl et al., 2017; Peng et al., 2015] or cropped images from existing object
recognition datasets [Georgakis et al., 2017]. A framework called RenderGAN
was proposed as a novel extension to the GAN framework [Sixt et al., 2018]. The
framework using GAN [Goodfellow et al., 2014] was succeeded in generating more
realistic rendering samples from a basic 3D model. The reality of the generated
images deeply depends on the quality of the rendering. I believe the policy of
collecting a hand-crafted real-world images dataset such as ours can improve
the performance of the vision system, since the dataset faithfully represents real
situations.

Human-in-the-loop automatic annotation

In the research of (2), the strategy is annotations using an easy-to-use tool. The
research [Su et al., 2012] have used a strategy to crowd-source bounding box
annotations using a tool capable of drawing and verifying the bounding boxes
with human workers. In a similar way, LabelMe [Russell et al., 2008] has been
proposed a web-based tool to create boundaries around each object in an image
and share the annotations on the web. To make human annotation easier, effective
but easy-to-use annotation tools [Maninis et al., 2018; Papadopoulos et al., 2017]
are proposed. The tool proposed in [Papadopoulos et al., 2017] asks the annotator
to click on only four physical points on the object. The humans still spend their
time on the annotation with the tools.
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In a similar manner, bounding box and polygonal annotations for detection and
instance segmentation are effectively conducted by interactive clicks with human
annotators. The research [Russakovsky et al., 2015] has proposed a human-in-the-
loop system that questions a human and makes the human answer. Curve-GCN
is proposed to automatically predict the vertices of instances in the images [Ling
et al., 2019]. Clicking the regions with wrong annotations in the bounding box
generated for each instance can be done in [Benenson et al., 2019]. These human-
in-the-loop polygonal annotations take only a few seconds for each image, but they
also require corrective clicks for the vertices, owing to the need for annotation
quality assurance.

Another interesting approach is the use of an RGBD sensor [Suchi et al., 2019]
and visual markers [Akizuki and Hashimoto, 2019; De Gregorio et al., 2020] to
automatically segment objects from the background. These approaches are like
ours. However, in the previous approaches, the automatic collection of multi-
view object images and their domain adaptations were out-of-scope. Our robotic
training dataset collection system of multi-view images gives the dataset variety
and quantity and is useful when training the garbage detector to handle various
appearances. Image adaptation methods of reducing the differences of domains
are necessary to enable faster image collection.

As another approach, closed-loop workflows were proposed [Adhikari et al.,
2018; Papadopoulos et al., 2016], that include a human verification process to
re-train the DCNNs. In this approach, workers verify whether a bounding box is
correctly drawn and/or whether all object instances have bounding boxes. Since
the proposed methods still rely on the effort of human annotators, it is not a fully
automated annotation process such as ours. In the research method [Maiettini
et al., 2017], a humanoid robot can be used to annotate through interaction with
humans. In this approach, a human showed an object to the robot, and then the
robot tracked the object as it was moved by the human. Although this method
can automatically collect annotated images including objects in an enormous
variety of backgrounds, the method requires effective and efficient human work.
Unfortunately, compared to our approaches, these methods still require human
intervention for the annotation process.

2.2.3. Domain Adaptation

Despite the many ideas explored, the predominant datasets were built by hu-
mans using bounding boxes or polygonal masks [Cordts et al., 2016; Deng et al.,
2009; Everingham et al., 2015; Lin et al., 2014]. Our proposed method can au-
tomatically annotate object images without human intervention. Because there
are differences in object appearance between the dataset collection environment
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shown in Figure 2.3 and the real work environment, the collected dataset us-
ing the robotic collection system could not be directly used to train the object
detector.

Domain adaptation is a specific scenario in transfer learning that can be used
to effectively remove domain differences. For example, crawling from an image
search is a fast image dataset collection method. Domain adaptation has been
shown to be effective for the transfer learning of models in different computer
vision tasks, including image classification [Tzeng et al., 2017], object recogni-
tion [Gopalan et al., 2011], object detection for indoor kitchen scenes [Georgakis
et al., 2017], outdoor scenes [Hsu et al., 2019], water-colors [Inoue et al., 2018],
and semantic segmentation [Luo et al., 2019].

The research in [Georgakis et al., 2017] tackled an issue like ours. To automati-
cally generate image datasets that emulate real environments, they superimposed
two-dimensional images of textured object models into images of real indoor envi-
ronments reflecting a variety of locations and scales. They verified the efficacy of
a seamless cloning (SC) method to mitigate the effects of changes in illumination
and contrast. They also verified an object—scaling method that used the depth
of the selected position of a real household environment.

In this study, I tackle the issue of domain adaptation for a collected object image
dataset ourselves so that it can be adapted to a real waste-sorting problem. For
this reason, I create a object image dataset using images of 33 aluminum cans,
33 glass bottles, and 33 plastic bottles.

I also strongly support the efficacy of domain adaptation for the real work
environment. In particular, I evaluate more methods to mitigate the changes of
object-size appearance, image illumination, contrast and background.

2.3. Real-world Collection with Automatic Annotation
2.3.1. Efficient Dataset Collection

At first, I describe what we must do before collecting training images. Second, I
describe some ideas for improving the efficiency of image collection and describe
a method for automatically annotating the collected images. Finally, I describe
the object detection method used.

Preparation

Before all the processes, we obtain the camera calibration parameters K used to
estimate several pixel positions in some processes, and then capture a background
image to mask the markers. Also, we need to determine an approximate shape
of the object in order to generate a bounding box around the object boundary.
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Figure 2.4. Primitive shapes used for approximation of the object shapes.

I define the approximate shape as the concatenation of two primitive shapes of
the upper part and the lower part (I define the intermediate part as the third
primitive shape if necessary). As shown in Figure 2.4, the primitive shapes in-
clude rectangular parallelepipeds, pyramids, cylinders, and cones. Figure 2.11 (a)
shows the approximate shape of the plastic bottle. Such the plastic bottle can be
expressed as a combination of a cone and a truncated cone.

Effective Image Collection

As the first step of the training process, we prepare the pedestal equipped with
visual markers as shown in Figure 2.5. To eliminate hiding the object by the
markers, we place the pedestal at the bottom of each object. Further, by attaching
the multiple markers onto the pedestal so as to encircle the object, several markers
are visible in any poses of the object. The examples of the pedestal-attached-
objects are shown at the bottom of Figure 2.6. We prepare several different sized
pedestals to handle the variety of the object size. Fortunately, the object size
used in the experiments was just a little different.

After preparing the pedestal-attached-objects, we capture the objects in various
poses in real environments. To efficiently collect the real-world object images un-
biased by the object poses, the display shows the workers the collection progress.
The proposed method, by detecting markers, enable us to obtain the histograms
of object poses in real time. By showing the histograms of the collected object
poses, the workers understand the necessary images of the object with the target
poses.

The overview of the display is shown in Figure 2.7. Figure 2.7 shows the display
example of the radar chart. One axis of the chart indicates one pattern of the
object orientation. The axis of the right direction indicates 0° and the other axes
are drawn in increments of 45° counterclockwise. The axes show the 8 object
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Calculated points on pedestal boundary
o Corner points of visual markers

Figure 2.5. Pedestal to place a visual marker used in automatic annotation.

orientation patterns and each scale shows the number of collected object images
in each orientation pattern. The positions of the radar charts correspond to the
3 X 8 = 24 positions on the conveyor belt where we placed objects.

2.3.2. Annotation with Visual Markers

Noise-Masked Single Marker

As shown in Figure 2.9, to generate training data without manual annotation, we
place a visual marker on a 3D printed pedestal for each object. When attaching
the marker and the object to the pedestal, the relative pose between the object
and the marker is determined and the marker ID is mapped to the defined object
label. Therefore, based on the ID and the pose of the detected marker in the
image, we can obtain the corresponding object’s label, position, and orientation
as training data.

To hide the marker from the detector, I propose the method to overwrite all
of the pixels of the marker area with a random noise image with uniformly dis-
tributed RGB values. Since the randomness provides the detector no information,
we successfully lead the detector concentrating on learning the object appearance
only.

To generate the bounding box shown in Figure 2.9, the target object is ap-
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Control computer

Figure 2.6. Environment on collecting the training dataset.

proximated with a rectangular parallelepiped. The height of the rectangular
parallelepiped is defined as the distance from the bottom to the highest point of
the object. The long side of the bottom surface of the rectangular parallelepiped
is the distance between the furthest points in the outline of the bottom surface.
The length of the short side of the bottom surface is determined by the length of
the line segment connecting the furthest points such that the short side becomes
a vertical line segment of the long side.

Then we calculate the bounding box size based on the object height h,, the
width w,, and another side [,. The width w;, and the height h; of the bounding
box are defined by

Wy, = W, | cos O] + l,| sin 6] + my,
hy = w,| sin @] + 1,| cos 8] + h,| sin ¢| + my,

where my, denotes the margin of the bounding box needed to reliably surround the
objects, 6 denotes the object orientation around the vertical axis, and ¢ denotes
the angle of the camera with respect to the vertical axis.

We annotate the 2D positions of the objects on the conveyor belt in the image.
The 2D position is defined as the center of the bottom surface of the object and
is collected using the following procedure.

1. Measure the height of the pedestal and the position of the object on the
pedestal.
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Figure 2.7. Example of the radar chart. The axes show the object orientation patterns
and each scale shows the number of collected object images in each orientation pattern.
The positions of the radar charts correspond to the positions on the conveyor belt.

2. Calculate the 3D position from the center of the marker to the center of the
bottom surface of the object using these measured parameters.

3. Obtain the homogeneous transformation matrix between the camera coor-
dinate system and the marker coordinate system.

4. Calculate the homogeneous transformation matrix between the object co-
ordinate system and the camera coordinate system using the results of step
2 and 3.

5. Obtain the pixel position of the object by projective transformation using
the result of step 4.

The center position of the bounding box in the image is the position of half
the height from the bottom center of the object. The 2D position of the object
for the training dataset is the center of the object bottom on the conveyor belt.

Background-masked Multiple Markers

According to the flow of Figure 2.8, the training dataset is extracted from each col-
lected RGB image. The algorithm mainly consists of five processes for automatic
object annotation. First, based on the detected marker IDs, the corresponding
object labels are extracted from a database. Then, the next process determines
the pixel positions of the four vertices of each bounding box enclosing all the pixel
positions of the object boundary. Figure 2.11 (b) shows the generated bounding
box. Simultaneously, the algorithm estimates the azimuth angle and the 2D posi-
tion of the object. Finally, the background image is applied to all marker regions
to generate the training image deleted with the pedestal region.
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Figure 2.8. Flow to generate the training dataset. This flow mainly includes five pro-
cesses to obtain object labels, bounding boxes, object orientations, 2D object positions,
and images for training.

We estimate 3D object poses (the orientation and the 2D position) as an-
notations used for training the vision system. I define the coordinate systems
and transformations in the formulation for calculating the pose of the object as
shown in Figure 2.12. The possible configuration of the pedestal-attached-object
is generally expressed as the homogeneous transformation matrix from the object
coordinate system X, to the conveyor belt coordinate system ¥,. The parameter
r represents the position vector. The parameter 6 represents the scalar value of
the azimuth angle. The possible configuration of each visual marker & is expressed
as My, (7% ,0), which represents the pose of the visual marker coordinate system
Yy, (k=1,2,..., N, where N is number of markers) with respect to the camera
coordinate system .. In the same way the pose of X, with regard to X, will be
denoted by M*. The matrix M* is defined when attaching the marker onto the

C

pedestal. The pose of X, with regard to ¥, denoted by M; is defined after set
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Bounding box

® Center of bounding box
O Center of bottom

Figure 2.9. Setup of objects to annotate the training data. When fixing the marker
and the object to the pedestal, the relative pose between the object and the marker are
determined and the marker ID maps to the object label. From the marker ID and pose,
we obtain the corresponding object’s label and estimate the position and orientation
of the object in the image.

up the conveyor belt and the camera. Based on the pose of ¥, with regard to 3,
denoted by M, the pose of the object on the conveyor belt Mg can be expressed
using the following equation:

M, = (M;)~'M;, Mg = M, (x5, 6)M;*. (2.3)

M, can be obtained by detecting the visual marker based on [Garrido-Jurado
et al., 2014], thus, we estimate the 3D pose of ¥,. The pose can be calculated
even when several markers are occluded because only one marker on the pedestal
is enough to perform pose estimation of M¢ at least. Further, since we can use
the higher amount of point correspondences (more marker corners as shown in
Figure 2.5) to solve the Perspective-n-Point problem [Fischler and Bolles, 1981;
Wang et al., 2018], the obtained pose M¢ is usually more accurate than using a
single marker (with only four corners).

After estimating the object pose in the image, the bounding box is generated
as the circumscribed rectangle surrounding the approximate shape of the object
projected onto the image.

To remove the markers, we overwrite all of the pixels of the extracted pedestal
region with a background image as shown in the procedure overview of Fig-
ure 2.13. The detailed procedure of the background-masking process is as follows.

1. Obtain the pixel position of the object of 3, in the image. Based on a pin-
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Figure 2.10. One image from collecting the training data. The ¢ shows the installation
angle of the camera used to calculate the bounding box size.

hole camera model using the camera parameters K, the 3D object position
in Y, is projected into the pixel position of X, in the image.

2. Calculate the pixel positions of the points on the pedestal boundary as
shown in Figure 2.5. We obtain the 3D boundary positions using the known
pedestal radius in 3J,. Then we project the 3D position to the pixel position
in the same process as step 1.

3. Estimate the more pixel positions of the pedestal boundary in the image
by elliptic approximation [Fitzgibbon and Fisher, 1995] of these points.

4. Calculate the pixel positions of the points on the object boundary in the
image, which is the shape boundary of the approximate shape prepared
beforehand.

5. Create the pedestal mask image as shown in the fourth picture from the
left of Figure 2.13, where is between the pedestal boundary (calculated in
step 2) and the object boundary (calculated in step 3).

6. Fill the pedestal region with the background image using the pedestal mask
image.
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Figure 2.11. Generated bounding box using the approximate shape of a plastic bottle.

2.3.3. Deploying a Vision System

Figure 2.14 shows the processing flow of our vision system including the object
detection, orientation estimation, and 2D position estimation. I used the Single
Shot MultiBoz Detector (SSD) [Liu et al., 2016b] for object detection. SSD is a
fast single-shot object detector for multiple categories. For our experiment, I used
SSD300 which uses 300 x 300 pixel images. SSD returns labels and bounding
boxes of all the objects in the image. For each detected bounding box, the system
applies the remaining two processes: orientation and 2D position estimation.

The proposed vision system estimates orientation and position separately. The
orientation estimator first clips the input image with the bounding box of the
detected object, shown in Figure 2.14 (b-1). Next, the clipped image is resized to
128 x 128 with the aspect ratio fixed. Then, given the resized image, the trained
classifier estimates the object’s orientation. The method estimates the azimuth
angles every 45 degrees from 0 to 360 degrees. Thus, I built an 8-class classifier
shown in Figure 2.14 (b-2). T used a convolutional neural-network inspired by the
VGG network structure [Simonyan and Zisserman, 2015] for the estimation, which
is shown in Figure 2.15. The network is constructed with the multiple convolution
layers with small (5 x 5 and 3 x 3) convolution filters and fully connected layers
are simply connected at the end.

Given the center position, width, and height of the bounding box as inputs, our
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Figure 2.12. Coordinate systems and transformations in formulation for calculating
object pose.

Image Pedestal detection Object extraction Pedestal extraction Background-masking

Figure 2.13. Background-masking process for deleting the pedestal from the captured
image.

system estimates the 2D object position on the conveyor belt where the object
is placed. I define the formula for the position estimation model by multivariate
regression as below:

4 4

i=1 i=1

where P, and P, represent the positions in mm of the running direction and the
width direction of the conveyor belt. a; and b; represent the regression coefficients
of each position. Terms X; and X, represent the center of gravity position in x
and y, while X3 and X, represent the height and width of the estimated bounding
box. All units of the inputs are in pixels.
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Figure 2.14. Processing flow of assumed robot vision system.
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2.3.4. Experiments

Setup

In this experiment, two persons collected 1600 images including six objects shown
in Figure 2.16. One person photographed the images while the other person
manually changed the poses of the target objects. In the proposed method, the
one person arranged objects in various poses on the conveyor belt while confirming
the collection progress display in Section 2.3.1, but the single marker method
does not perform the collection progress display. I used 500 images to train the
model for each method, and 100 images to test the performance of the vision
system. I used an RGB camera (Point Grey Research, Flea3 FL3-U3-8852C) to
capture the images. The camera was fixed above a conveyor belt (Okura Yusoki,
BELCON MINI III) to reproduce the environment of a factory line. In manual
annotation, one person created bounding boxes and assigned the object labels
using a graphical annotation tool*.

*Labellmg (Available: https://github.com/tzutalin/labelImg [Accessed: 25- Nov- 2020])
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Figure 2.15. Proposed network for orientation estimation.

Figure 2.16. Appearance of six objects tested in our experiments.

To evaluate the proposed method in terms of the collection time and the per-
formance of the vision system, I compare it with the method using manual anno-
tation and the single marker method. The single marker method is an automatic
annotation method that uses only one marker on the pedestal for one object based
on the method described in Section 2.3.2. I used one square marker with 40 mm
length on each side for the single marker and 12 square markers 31 mm length
on each side for the multiple markers. For the multiple markers method, I used a
3d-printed circular pedestal of the radius 13.5 mm and 1 mm thick (Figure 2.5).

Time to generate training datasets

Table 2.2 shows the times needed to generate the training dataset of 500 images.
The table shows the times for capturing, annotation, and the totals for the three
methods. The results, with 436 minutes for automatic annotation and 966 min-
utes for manual annotation, prove that the proposed automatic annotation system
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Table 2.1. Specifications of six objects tested in our experiments.

Name Label Feature

Plastic Bottle A PB-A Tall object
Plastic Bottle B PB-B  Tall object

Pouch A P-A Deformable object
Pouch B P-B Deformable object
Can A C-A  Small object
Can B C-B  Small object

Table 2.2. Time to generate a training dataset [min].

Single marker ~ Multiple markers Manual
Capturing?® 75.0 436 80.0
Annotation® 37.2 886
Total 112 (1.87 hours) 436 (7.30 hours) 966 (16.1 hours)

2The time for capturing 500 images.
PThe time for annotating the images.

reduced the time to less than 50% of the time needed for manual annotation. In
the case of the single marker method, the person does not confirm the collection
progress display while arranging the objects on the conveyor. Therefore, the time
by the single marker method is the shortest among the three methods.

Figure 2.17 shows the final state of the dataset collection progress. As one
qualitative evaluation, the figure shows that the dataset of object poses are col-
lected without bias. Although it is not the completely same histogram shape on
each object pose, the result shows that the dataset was collected extensively in
all the 24 positions and the 8 patterns of orientation. Figure 2.18, Figure 2.19,
and Figure 2.20 show the examples of the collected images with bounding boxes
by each method. The manual method does not edit the captured images, but
the single marker method does noise-masking to marker regions for generating
training image deleted with the markers as already described in Section 2.3.2.

Performance of Vision System

Figure 2.21 shows the results of object detection after training with each dataset.
The values displayed next to the object labels are the confidence scores for the
recognition. Table 2.3 shows the detection accuracy of each method. The detec-
tion accuracy with the proposed automatic annotation is as good or better than
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Figure 2.17. Final states of the collection progress.

(a) Automatically annotated image (b) Noise-masking image

Figure 2.18. Image automatically annotated using the single visual marker.

the detection accuracy with the others. Specifically, the average accuracy of F-
measure is 96% for the proposed automated annotation, while the accuracy using
manual annotation is 85%, the accuracy using a single marker is 87%, and the
accuracy using non-masking multiple markers is 92%. Figure 2.21 shows three
sample images in each method. Figure 2.22 shows the result of the orientation
estimation which are accuracy rates in the four methods. As described above,
the orientation is estimated as the eight classes of the angles. If the estimator
answers the collect angle label, I assume that estimation is successful. I calculate
the accuracy rates using 100 test images. The figure includes the accuracy rates
of each of the six objects. Although the result of the single marker method is less
than 30%, the proposed background-masked multiple markers method has an ac-
curacy rate exceeding 80% in all objects and its estimation accuracy is equivalent
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(a) Automatically annotated image (b) Background-masking image

Figure 2.19. Image automatically annotated using the multiple visual markers.

(a) Manually annotated image (b) Image used as training data

Figure 2.20. Image manually annotated.

to the manual method.

Figure 2.23 shows the result of the 2D position estimation which are estimation
errors in the three methods. With manual annotation, the error remains within
about 30 mm, while the error with the proposed automatic annotation method
remains within about 40 mm. The error ranges of the manual method and the
proposed method are almost the same although the single marker method has an
error of more than 50 mm. Since there is only a difference of about 10 mm at
the most compared with the manual method, the position estimation accuracy is
equal to the manual method.

2.3.5. Discussion

Detection accuracy

One reason why the detection accuracy of the proposed method is higher than
the manual method is because the bounding box size created by the proposed
method is tightly assigned with respect to the object pose even if the annotation
target object is occluded by another object. Manual annotation can be done to
create bounding boxes tracing the object outline but it is difficult to generate
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(d) Manual

Figure 2.21. Object detection results in the automatic annotation methods.
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Table 2.3. Object detection accuracy [%)].

Multiple markers
Label Single marker Non-masking® Proposed” Manual

F¢ P4 Re F. P. R. F. P. R F. P R

PB-A 100 100 100 99 97 100 98 99 97 99 98 100
PB-B 98 99 98 97 99 95 94 97 91 99 98 99
P-A 79 8 75 93 99 88 94 99 89 72 88 61
P-B 83 84 82 93 97 8 93 97 90 & 71 92
C-A 82 91 75 8 91 80 97 100 95 82 79 85
C-B 81 94 71 &7 98 79 98 99 98 77 93 66

Mean 87 92 84 92 97 86 96 98 93 8 88 &4

2The comparative method where the background-masking is disabled.
PThe method with background-masking multiple markers.

°The initial letter of F-measure.

dThe initial letter of Precision.

°The initial letter of Recall.

the bounding box surrounding the object if it is occluded. Such the possible
misannotation is one cause of the failure of the detection.

In the single marker method described in Section 2.3.2, they did not propose
a method to set the bounding box tightly around the object. As shown in Fig-
ure 2.18 (a), in the single marker method, another object may be included in the
bounding box. As a result, especially in situations where the objects are close
to each other and overlap, such as the rightmost image of Figure 2.21, the single
marker method does not successfully detect the objects. Thus to successfully
learn objects even in cluttered scenes, I believe that it is necessary to generate
bounding boxes tightly along object boundaries such as our method produces.

Accuracy of annotation

In terms of object pose estimation, the single marker showed lower accuracy than
the other two methods. At first, I thought that the error included in the dataset
due to the single marker was larger than with the proposed multiple markers
method. To test this, I evaluated the accuracy of the annotation in terms of
the orientation and the 2D position compared with measurement values from the
motion capture system shown in Figure 2.24 (a). The (b) and (c) of Figure 2.24
show the two objects used for each method. I measured 24 positions and 8
orientations of every 45 degrees from 0 to 360 degrees.

Table 2.4 shows the results of the detection rates, estimated orientation errors,
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Figure 2.22. Result of object orientation estimation.

Table 2.4. Detection accuracy using the pedestal.

Single marker Multiple markers
Position Orientation Position Orientation
Detection rate 80% - 100% -
Mean of error 32 mm 2.7° 55 mm 2.9°
Variance of error 32 mm 1.9° 56 mm 1.7°

and estimated distance errors for the two methods. Since the 2D position and
orientation estimations of the two methods have almost the same accuracies, this
indicates both datasets have very little difference in errors. The accuracy of the
estimation in the marker positions is similar to that in the proposed method.
Improving the position estimation is to use the markers that can estimate the
position more accurately, such as [Tanaka et al., 2012]. It is also necessary to
develop a robustly graspable robot hand by using force feedback and soft robotics
technologies, such as [Homberg et al., 2019].

If we use the single marker, the object features cannot be effectively extracted
in the training phase due to the object features hidden by the marker closer to
the camera than the object. Since it is difficult to detect a single marker when it
is placed on the object bottom, the bottom placement of multiple markers such
as ours is more effective.
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Figure 2.23. Result of 2D object position estimation.

Effect of Masking

Figure 2.25 shows the attention maps’ [Lu et al., 2012] that represent image
regions where the DCNN pays attention in order to detect the object. Regions
with high attention are drawn in red, regions with low attention are drawn in
blue. In the case of not deleting the visual markers from the image, the DCNN
pays attention to the visual marker as shown inside the red circle in the figures
drawing the attention maps of the PB-A, P-A, P-B, and C-A. The corresponding
attention maps of the proposed background-masking approach shows that the
DCNN focuses on other parts than markers. I believe that deleting the visual
marker by background-masking from the images is effective to avoid learning the
feature of the visual marker or the deleted regions.

See the image region inside the red square in the images of PB-B and C-B.
The figures show that the marker regions are still learned even if the region be-
comes small. The primitive shape-based object representation sometimes cannot
extracts the region of the target object precisely due to its shape approximation
errors. More precise region extraction is necessary to completely eliminate the
markers, which is our future work.

Unbiased training dataset collection

As shown in Table 2.2, the total time of the proposed method was longer than
the single marker method where objects are arranged randomly. However, the

"Displayed by keras-vis (Available: https://github.com/raghakot/keras-vis [Accessed: 25-
Nov- 2020])
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() Estimated object position

() Estimated object position

Marker plate for
motion capture system

Pedestal with
visual markers

(a) Experimental setup (b) Single marker (c) Multiple markers

Figure 2.24. Experimental equipments for evaluating automatic object annotation.

effectiveness of the unbiased dataset for object pose estimation in robot picking
is often pointed out. In fact, several famous datasets [Xiang et al., 2014, 2016]
are created considering dense annotations of various poses and viewpoints. Also,
Sahin et al. [Sahin and Kim, 2018] found that the unbiased dataset achieves
more accurate estimation on textured-objects even at varying viewpoints. By
the combination of all the other proposals, the proposed method gained accuracy
compared to the single marker method.

In the current system, the worker decides the arrangement from the collection
progress. One possibility to reduce the time is that the system suggests the
arrangement considering the progress. I think there is room to reduce the time.

2.4. Fully Automated Collection with Domain Adaptation

This section first describes the proposed robotic training dataset collection sys-
tem using a small hand-eye robot arm and an automatic rotating stage. Next,
I explain the methods for reducing the differences of the illumination and the
background. The object appearances differ between dataset-collection and real
work environments.

For domain adaptation, I consider how to match the original domain of the
generated training dataset to that of the target domain of the real work environ-
ment.
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Figure 2.25. Attention maps which show how much attention each region of the image
was paid to train the model.

2.4.1. Multi-viewpoint Object Image Acquisition

Figure 2.3 shows our robotic training dataset collection system that includes a
small hand-eye robot arm and a controllable rotating stage. Using the small
hand—eye robot arm equipped with an RGB camera, we collect images from
multiple viewpoints by moving the robot arm to capture a target object placed
on the automatic rotating stage.

An RGBD camera is used for both object-image dataset collection and the
robot vision system for the industrial work, because I minimize the effects of the
camera in the detection experiments. Depth information is not used to generate
the training dataset, but the same camera as the real work environment is. The
white balance and the exposure of the camera are fixed during image dataset col-
lection and robot experiments. Figure 2.26 shows the proposed dataset collection
procedure with its automatic annotation method. Figure 2.27 shows the process
for the object region extraction shown in Figure 2.26. To extract the region in
consideration of the outline blur caused by anti-aliasing, alpha matting is applied
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Figure 2.26. Flow of the image dataset collection by the proposed robotic training
dataset collection system.

to the captured image. I used large kernel matting, a fast method for high quality
matting [He et al., 2010]. T used a Python library PyMatting [Germer et al., 2020]
for alpha matting. Trimap is used for alpha matting and is automatically gen-
erated by applying dilation processing to the image, which provides the logical
product of the object’s approximate shape area after marker detection and that
of the foreground area after chroma-key processing.

The generated approximate object mask is according to the estimated object
pose related to the camera. If coordinate systems for the hand—eye camera, k-th
visual marker, and the object are X, ¥, , and X,, the transformation, M¢, from
Y. to X, shown in Figure 2.3 is calculated as

Mj = M, (x5, ,0; )Mk (2.5)

(e

where My , Mg, and Mgk are transformations from ¥, to 3, , from ¥, to 3,, and
from %, toY,, respectively. The translation vector, ry, , and the rotation vector,

05, are estimated from the detected visual markers.

2.4.2. Object Image Scaling for Consistency of Geometry

Object image scaling is applied to the collected images to reduce the differences in
appearance caused by the varying distances between the camera and the object.
To accomplish this, the size of the object placed on the automatic rotating stage
is adjusted to be fitted to the size of the object placed on the conveyor in the real
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Figure 2.27. Extracted object region (bottom center) by applying AND operation with
the image after chromakey (bottom left) and the image showing the approximated
object (top center) in the estimated pose based on marker detection, automatically
generated trimap (top right), and the generated alpha matte (bottom right) used for
alpha matting.

work scene.

As shown in Figure 2.28, the visual markers on the marker board in both
images are detected. For geometric consistency of the dataset images, the size of
the object region in the image is adjusted according to the scaling parameter, k,

estimated as
2\ (kO x Ay
()= 8)(5) =i 2

where d, and d; are the distances from the camera coordinate system, Y., to the
marker board coordinate systems, ¥, and 3, of the source and target images.

2.4.3. Color Matching and Background Synthesis for Consistency of
Illumination

For the color matching proposed in this study, histograms of pixel values in
the RGB color space are calculated from an object-area image captured in the
real work environment, and HM [Gonzalez and Woods, 2001] is performed. The
generated image has a distribution similar to the illumination in the real work
environment. Thus, the difference in the illumination is reduced.

The cumulative distribution, edfs(i) (i = 1,2,..,1), of the input image’s his-
togram, hg, is matched to the cumulative distribution, cdf;(i), of target image’s
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Marker board

Camera "y

Figure 2.28. Tllustration of calculating the scaling parameter, k, representing the
distances from the camera to the center of the rotating stage used for dataset collection
and one point of the conveyor in the real work scene.

histogram, h;. Each cumulative distribution function (CDF) is calculated as

cdfi(i) = 2 "0 capgiy = o M,

=1 j=1

(2.7)

where [ is the number of bins in the histogram, and N, and N, are the number
of pixels in each image.

To extract the boundary between the object and the background, using the
automatically generated trimap, we apply alpha blending [Szeliski, 2011] to the
image at the time of image collection to combine it with the background image
captured in the real work environment. Then, we apply HM to the image of only
the area within the bounding box of the object.

Images used for applying HM to the image of the plastic bottle are shown in
Figure 2.29. The leftmost image shows the source image, the image to the right
of the source image is a target image as the destination, the image to the right of
the target image shows a result of the HM, and the rightmost image shows the
image after EQ. We use CLAHE [Zuiderveld, 1994] to smooth jaggy histogram
distributions by the EQ. Finally, background-synthesized and histogram-matched
images are used to train the object detector.

2.4.4. Evaluating Object Detection Performance

Outline of experiments

First, to evaluate the quickness of the proposed robotic training dataset collection
system, I compare the collection time by the proposed dataset generation with
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Figure 2.29. HM applied to a plastic bottle image. “Source” and “Target” indicate
the input image and the image with the target histogram to match. “Matched” and
“Equalized” are the images after application of HM and after application of the EQ of
Matched, respectively.

Table 2.5. Average time to collect 100 image datasets for one object. Automatic or
manual is shown next to the time measured.

Type of automatic dataset collection

Single marker Multiple markers Proposed
Process needed Time[s] A.2/M.> Time[s] A./M. Timel[s] A./M.
Object placgnsent 125 M. 797 M. 2.05 M.
Image acquisition M. M. 10.2 A.
Annotation 61.7 A. - A. - A.
Total 187 - 727 - 12.3 -

2The initial letter of Automatic.
bThe initial letter of Manual.

the collection time by the manual dataset generation. Furthermore, I show the
accuracy of the annotation results.

Second, I show the similarity of the images applied adaptation methods with
those captured from the real scene. To evaluate the performance of the object
detector trained with the image dataset that applied the proposed adaptation
method having the highest similarity, I show the detection results of the target
objects by the detector.

I used ArUco, an AR library [Garrido-Jurado et al., 2016; Romero-Ramirez
et al., 2018] to detect AR markers for registering the object pose of each object
image collected using the proposed robotic training dataset collection system.
This object poses were used to generate an approximate object mask. The target
objects contained 33 different aluminum cans, 33 glass bottles, and 33 plastic
bottles, as shown in Figure 2.30. The target objects were sampled from the waste
samples in a recycling factory for industrial waste items.
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Figure 2.30. The waste samples of (a) aluminum cans; (b) glass bottles; and (c) plastic
bottles used in the experiments.

Image dataset collection time

To demonstrate the effectivity of the automatic dataset collection in this frame-
work comparing to the framework described in Section 2.3, this section describes
the results of the comparison of times needed to collect image datasets.

Table 2.5 shows for each automatic dataset collection method the average time
needed to collect 100 images for one target object and the method (automatic or
manual) for three processes: object replacement, image acquisition, and annota-
tion. The proposed dataset collection was completed in 12.3 s on average for 100
images of a single object. The results indicate that the time required for collect-
ing the training set was incredibly shortened compared with the other methods.
The viewpoints taken by the proposed robotic training dataset collection system
are widely scattered as shown in Figure 2.31, suggesting that a dataset having
large variations can be collected in a short period.

The total time required to collect the training set comprising 59,400 (120 object-
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Figure 2.31. Variations of viewpoints taken by the proposed robotic training dataset
collection system. 3, shows the object coordinate system shown in Figure 2.3. View-
point IDs from 1 to 5 represent the five viewpoint patterns adjusted by changing the
joint pose of the small robot arm.

orientation patterns x five viewpoint patterns x 99 objects) images captured with
a green screen was about 111 min. Such a short collection time enables us to easily
increase the number of training sets when the target object increases or changes.

Quantitative evaluation of annotations

To evaluate the annotation results, the automatically object-extracted image is
compared with the manually annotated image, as shown in Figure 2.32. Using a
manual annotation tool* and by clicking several points on the object contour in
images, the images are annotated by humans for evaluation.

Based on true-positive (TP), false-positive (FP), and false-negative (FN) re-
sults, as shown in Figure 2.32, T calculated the intersection over union (IoU),
precision, recall, and F-score [Wang et al., 2020b] as

TP

oU=7p7 FP+FN’ (28)
s
Precision = T"TPPﬂLFP’ (2.10)
Recall = TP+ PN’ (2.11)

Table 2.6 shows the results of the object region extraction in the training set.
In all trials and categories, the mean values of precision rated around 70%.
The mean values of recall were rated higher than 95% and with smaller standard

labelme (Available: https://github.com/wkentaro/labelme [Accessed: 25- Nov- 2020])
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Table 2.6. Results of our object region extraction in our automatic dataset generation.
Each element shows mean+standard deviation of ToU [%], Precision [%], Recall [%],
and F-score [%]. The mean values are calculated from randomly selected 33 images of
each object category in the three categories.

Metric [%]
Object IoU Precision Recall  F-score

Aluminum can 71416 7117 98+1.7 81+11
Glass bottle 67117 69418 96+4.4 79413
Plastic bottle T7+14 78+15 97+2.2 86+9.8

deviations than those of precision. These results suggest that there were some
false predictions. However, there were few missed pixels in the ground truth. As
a result, the calculation provides a low IoU with a mean of F-score of 80%.

Effect of reducing differences from real work scene

In this section, I discuss the effect of the proposed method of reducing the dif-
ference from the real work environment. To evaluate the performance of the
proposed color adjustment, I compare it with two other methods.

The first unifies color reproducibility by applying color correction (CC) using
ColorChecker Passport Photo (X-Rite, Inc.), which has a panel of 24 industry-
standard color-reference chips. The CC in this study is based on a color-transfer
method that can adjust the colors in an image to match a target-image color
profile [Berry et al., 2018]. The goal is to create a transform so that, when it is
applied to the values of every pixel in a source image (the left of Figure 2.35), it
returns values mapped to a target image (the right of Figure 2.35) profile [Gong
et al., 2016].

The other is an easy-to-use image-rendering SC method [Pérez et al., 2003]
used in the fields of computer graphics [Kakuta et al., 2007] and computer vi-
sion [Mukaigawa et al., 2001; Okura et al., 2015; Sato et al., 2005]. SC was used
to create a photomontage by pasting an image region onto a new background
using Poisson image editing [Pérez et al., 2003]. Figure 2.33 shows the results
of CC, SC, and HM. The parameters needed in the methods described in this
section are organized in the Table 2.7.

Figure 2.34 shows histograms in the RGB color space of the images in Fig-
ure 2.29. The histogram distributions in the RGB color space of the target image
(Target) and the converted image (Matched) are visually similar after applying
HM.
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Figure 2.32. Visualization of manual annotations needed to generate ground truth
to evaluate the proposed automatic object region extraction. Left image shows the
window of the annotation tool (labelme) and several annotated image points. Right
image shows the parameterization of the evaluation results of the automatic object
region extraction.

Table 2.7. Necessary images for adaptation methods.

Method Necessary images
Image scaling One image pair including a calibration board
Background synthesis (BS) One background image
Color correction (CC) One image pair including a color checker
Seamless cloning (SC) One background image

Histogram matching (HM) One object image captured in a real scene

To conduct a quantitative evaluation, the distance between two histogram dis-
tributions were evaluated using earth-mover’s distance (EMD) [Rubner et al.,
2000] and Bhattacharyya distance (BD) [Bhattacharyya, 1943].

EMD is a distance measure based on the solution of the transport problem,
which is a linear-programming problem. The minimum cost (L2 norm), d;;, of
the transportation from one distribution, P, to the other distribution, @, and
the minimum cost of the amount of cargo (flow), F' = f;;, transported from P to
Q are calculated as
?11 ?:1 dijfij

EMD(P,Q.F) = —/—X .
i 2= Jij

If we consider two normalized histograms, H, and H,;, the BD between H|

(2.12)
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(a) Color correction (b) Seamless cloning (c) Histogram matching

Figure 2.33. Comparison of appearances of synthesized images: (a) synthesized images
with CC applied; (b) SC applied; and (c) HM applied.

and H, is given by

To evaluate the image similarity with the object image captured in the real
scene, I calculated the histogram distributions of the four types, which include
the original, BS, BS+CC, SC, and BS+HM.

The effects of the proposed method, BS+HM+EQ, were compared to those
of BS+HM, HM, and BS, which are derivatives of the proposed method. I also
compared the comparative methods BS+CC and SC as other color adjustment
methods.

The calculated values of the EMD and BD in the RGB color space are shown in
Table 2.8 and Table 2.9. To compare the images to the object images captured in
the real scene, I used those cropped by the bounding boxes as shown in Figure 2.33
in red boxes.

The result of the CC shows that the EMD and BD are larger compared with the
result of HM. In the case of the CC, the homography transformation matrix in the
RGB color space must be calculated using source and target images, including the
color checker shown in Figure 2.35. On the other hand, because the source shown
in Figure 2.29 is converted to become similar to the target shown in Figure 2.29,
for HM, a higher similarity was achieved.

The calculated values of the EMD and BD suggests that the similarity of the
image was largely improved by applying HM, including the area translucent to the
back of the object or the plastic bottle’s cap. This is because the appearance was
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Figure 2.34. RGB histograms and CDFs of the image applied with HM. The graphs
are histograms of the RGB color space of the four images on Figure 2.29. The title
names atop each correspond to the names displayed in each image shown in Figure 2.29.

improved to approximate the target image. It also suggests that the BS+HM-+EQ
provided the highest similarity.

Detection accuracy

Table 2.10 shows mean values of detection accuracy for the three target-object
categories. As an accuracy metric, I calculated the mean F-score when the IoU
threshold was set to 0.5. I also calculated the F-score using detection results
with a confidence value higher than 0.5. Using a training dataset automatically
generated by the proposed method, detection was performed using a object de-
tector with a trained model of the single shot multibox detector (SSD) [Liu et al.,
2016b]. SSD is a general object detector with a convolutional neural-network
architecture that learns different anchor boxes. Figure 2.36 shows the detection
results.

The original shows the result of using 59,400 (120 object-orientation patterns x
five viewpoint patterns x 99 objects) images captured with a green screen shown
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Figure 2.35. Images used for estimating the color homography transformation matrix
for CC.

(b) Visualization of detection results of our object detector

Figure 2.36. (a) image captured in the real scene and (b) the image drawn from the
detection results of the object detector.

in Figure 2.3. BS, BS+CC, SC, BS+HM, and BS+HM+EQ show image training
sets subjected to BS only, BS and CC, SC, BS and HM; and BS+HM with EQ),
respectively. Mixed show the training set that I randomly collected images from
the three sets of Original, BS, and BS+HM+EQ. All the training sets include
59,400 images.

The last set (Real with 7) is a mixed training set that includes the Mixed and 80
images recorded in the real scene, as shown in Figure 2.37. The conveyor moves at
a constant speed in one direction. Thus, if the image acquisition frequencies of the
camera are aligned, the object positions in the images can be shifted at a constant
interval. Therefore, if we apply manual annotation to only the images of the first
frames appearing in the video, we can obtain the image sequence annotated by
moving the bounding boxes. I collected the 80 images from two videos in the
real work scene in this manner. To improve the quickness of video annotation,
in a future work, we plan to use automatic video annotation methods [Kavasidis

52



2.4 Fully Automated Collection with Domain Adaptation

Iastu: bttl bo {.tl Plastl’c btﬂe

Figure 2.37. Real-world image sequences annotated by humans. *Manual indicates
manually annotated bounding boxes. I conducted manual annotation to the video frame
in which a new object first appeared. The other images were automatically annotated
based on the constant speed of the conveyor and the camera framerate.

et al., 2014; Vondrick and Ramanan, 2011].

The detection results shown in Table 2.10 suggest that Mixed provided the
highest accuracy of training without images recorded in the real work environment
in the training sets except Real with 7. Therefore, our experimental results
demonstrate that the accuracy of the object detector can be improved by applying
the aforementioned object scaling, HM with EQ and BS to reduce the differences
from the real work environment. Surprisingly, the detector with the BS-only
dataset showed the almost same accuracy as did Mixed. The comparison for
these detection accuracies should be done in the future using the backgrounds of
various real work environments.

By adding the small real-world image dataset including the 80 images, I achieved
the highest accuracies of detection, even when the number of items in the dataset
was small. The small real-world image dataset not only significantly outper-
formed the other in terms of accuracy, but the images were also quickly collected.
The time needed to capture a video was about 1 min, and the time needed to
annotate only six objects in the six images was about 2 min. This was about 3
min total.

2.4.5. Discussion

Ensuring high consistencies of illumination and geometry

The purpose of this study, apart from reducing the time required for dataset col-
lection, was to achieve a highly accurate detector. Within this context, for the
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Table 2.8. Calculated values of EMD between the reference image (captured in the
real scene) and processed images in the training sets. The histogram comparison was
conducted in the RGB color space. The values that indicate the highest similarity are
shown in_bold.

Object category

Training set Aluminum can Glass bottle Plastic bottle

Original 5.86e-1 8.45e-1 1.59¢e0
BS 7.55e-1 9.41e-1 1.88e0
BS+CC 8.65e-1 6.50e-1 1.77e0
SC 2.62e0 2.10e0 4.82¢0
BS+HM 7.36e-3 5.04e-3 5.25e-3
BS+HM+EQ'  6.27e-3 4.67e-3 3.96e-3

t Proposed method in this study.

consistency of illumination, I proposed a method that matches only the luminance
distribution information of the image without considering a camera-response func-
tion [Takamatsu et al., 2008] and the distribution of the light source [Hara et al.,
2005; Imari et al., 2003] in the different environments. In reality, these optical
models must be considered when obtaining more realistic images that are similar
to real-world ones. However, estimation methods requiring less labor are needed.
In terms of geometric consistency, in this study, only the distance from the
camera to the object was considered. However, a 3D model is needed to transform
the geometry more precisely. One idea for generating realistic images via a 3D
model requires free viewpoint image synthesis based on 3D shape reconstruction
methods, such as Space carving [Kutulakos and Seitz, 2000], and a geometric
registration and an alignment using an RGBD video [Choi et al., 2015].

Precise annotation

Figure 2.38 shows the four cases that had difficulty annotating collected images,
especially for cases of difficult object-region extraction. The problematic images
shown in Figure 2.38 include an object adhered to foreign substances, a semi-
transparent object, a shadow under the object, and a green object.

The foreign substances shown in Figure 2.38(a) needs to be removed from
the target object, because the object detector is not designed to recognize this
part. Consequently, the robot cannot grasp and push the part. Figure 2.38(b)
shows a misannotated semi-transparent object. For the automatic annotation, I
could in the future use another method that does not rely exclusively on optical
information. As shown in Figure 2.38(c), because it may be difficult to distinguish
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2.4 Fully Automated Collection with Domain Adaptation

Table 2.9. Calculated values of BD between the reference image (captured in the
real scene) and processed images in the training sets. The histogram comparison was
conducted in the RGB color space. The values that indicate the highest similarity are
shown in_bold.

Object category

Training set Aluminum can Glass bottle Plastic bottle

Original 0.381 0.425 0.400
BS 0.436 0.476 0.445
BS+CC 0.403 0.419 0.428
SC 0.454 0.493 0.493
BS+HM 0.430 0.445 0.467
BS+HM+EQ'  0.220 0.245 0.193

t Proposed method in this study.

a boundary from a shadow, object region extraction may fail. In a future work,
it will be necessary to improve the algorithm so that it is robust to shading by
referring to illumination estimation methods [Finlayson et al., 2006; Panagopoulos
et al., 2011] and DL [Nguyen et al., 2017; Qu et al., 2017]. To avoid difficulty of
region extraction caused by similar colors, as shown in Figure 2.38(d), background
coloring should be considered.

Application of this framework for robotic assembly

To achieve high-precision assembly operations, understanding 3D scenes is cru-
cial. In this section, I showed the results of annotation with visual markers and
the CAD models. We can use annotation methods for training datasets of vi-
sion systems conducting the semantic segmentation, object detection, and pose
estimation according to required assembly tasks.

To detect more semantic information about the assembly parts from CAD
models or images, we can use the part geometries extracted from CAD models
to identify the features defined a certain manner but there are several definitions
and extraction methods [Das and Swain, 2019; Hamidullah et al., 2006; Lupinetti
et al., 2017; Rucco et al., 2019], although the recognition of assembly features
has room to discuss, I believe the propsoed automatic annotation methods can
be extended for such the assembly domain smoothly.
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2.4 Fully Automated Collection with Domain Adaptation

Table 2.10. F-scores of the object detection using DL-based object detector trained
using each training set [%]. Mean indicates the mean values of F-score in the three
object categories.

Object category
Training set AC*® GB* PB* Mean

1. Original 43 76 2.0 40
2. BS 57 45 34 45
3. BS+CC 19 51 23 31
4. SC 14 51 10 25
5. BS+HM 17 59 13 30
6. BS+HM+EQ 22 64 28 38
7. Mixed (1,2,6) 54 53 31 46
8. Real with 71 72 89 75 79

*a AC is the abbreviation of aluminum can.
*b GB is the abbreviation of glass bottle.
*¢ PB is the abbreviation of plastic bottle.

T Proposed method in this study.
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2.4 Fully Automated Collection with Domain Adaptation

(d) Green object

Figure 2.38. Problematic images difficult to annotate. The coloring in each left image
is the same as that of Figure 2.32.

o7



Chapter 3

3D CAD-Based Assembly Planning

3.1. Introduction

systems that can respond quickly to changes in market demands are needed [Gu-
nasekaran et al., 2019]. For such agile manufacturing [Costa et al., 2017; Gu-
nasekaran, 1999], assembly sequences must be generated rapidly. Several studies
for assembly sequence generation (ASG) use 3D computer-aided design (CAD)
models [Bahubalendruni and Biswal, 2015; Deepak et al., 2019; Lee et al., 2016].

The combinatorial optimization problem for ASG [Jiménez, 2013] is known to
be NP-hard [Goldwasser and Motwani, 1999]. To obtain quasi-optimal solutions
in realistic time, heuristic search methods have been used. Some researchers used
genetic algorithms (GAs) [Chen and Liu, 2001; Smith and Smith, 2002; Smith
et al., 2001] for the ASG in two dimensions. Pan et al. [Pan et al., 2006] generated
multiple sequences from only a STEP file, a type of 3D CAD file; however, the
final sequence had to be determined manually.

I generated preferable sequences for robots, initialized chromosomes of GA
based on interferences between many parts (e.g., 32) as described in Section 3.5.
I used insertion relations (e.g., plug-receptacle, peg-hole, and pin-slot) and de-
fined preferable insertion sequence condition (hereinafter referred to as insertion
condition) as the order in which the inserted object are assembled before another
object to insert as described in Section 3.4.

However, as shown in Figure 3.1, an insertion sequence generated by the afor-
mentioned method are simultaneously contacted to several parts. Such insertions
are difficult to handle.

Assembly planning based on constraints defined by such the contact between
parts have been discussed [Hirukawa and Iwata, 1991; Hirukawa et al., 1991;
Yokokohji et al., 1993; Yoshikawa et al., 1991; Yu et al., 1996]. Robot task plan-
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Figure 3.1. Insertion sequence (white arrow) of a part that creates three contact
surfaces between parts for a model (#1).

ning based on contact state transitions defined by infinitesimal displacements of
target objects have been extensively discussed [Hirai, 1991; Ikeuchi and Suehiro,
1994; Takamatsu, 2003; Takamatsu et al., 2007]. They chose an assembly se-
quence from several possible transitions of the contract states where the degree
of constraint is increased slightly.

The insertion task (Figure 3.1) is difficult because of the difficulty in the contact
state transitions. In this study, to reduce such difficulties in the transitions named
constraint state transition difficulty (CSTD) proposed in [Yoshikawa et al., 1991],
I redesigned the fitness function for the GA.

We use two fitness functions: a function to evaluate the insertion condition and
a function to reduce the CSTD of the sequences. As the tradeoff between the two
objectives, we need to solve a multiobjective optimization (MO) problem.

To minimize production time and cost, Choi et al. [Choi et al., 2009] tried
multicriteria assembly sequencing using a given dataset of 19 parts. They did
not discuss the criteria to reduce the difficulty of assembly operations and how
to extract the necessary data from models. I performed the MO using a multiob-
jective GA (MOGA) [Coello et al., 2002] to investigate the possibility of finding
a Pareto-optimal sequence.

The ASG for deformable parts is another issue that must be solved. All afore-
mentioned methods can only handle rigid parts. I propose a 3D model-based
method for obtaining interference-free, insertion, and degree of constraint ma-
trices for deformable parts. Deformable objects with a large volume (e.g., seat,
cover, and cloth) are out-of-scope in this study, as each deformable object may
require a shape-specific ASG.

Wolter et al. [Wolter and Kroll, 1996] proposed an operation method of string-
like parts (e.g., wires, cables, hoses and ropes) based on a state representation for
part shapes. To recognize and plan a sequence of movement primitives for string-
like deformable objects, Takamatsu et al. [Takamatsu et al., 2006] proposed a
knot-state representation for knot-tying. Dual-armed assembly tasks based on an
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elastic energy and a collision cost [Ramirez-Alpizar et al., 2018] and step-by-step
assembly strategies demonstrated insertions of ring-shaped deformable objects
such as a rubber band [Kim and Sloth, 2020] and a roller chain [Tatemura and
Dobashi, 2020]. By deforming the part model, we determine interference-free
directions and assembly order of string-like and ring-shaped deformable parts
using our method [Tariki et al., 2020].

This study makes four contributions. (i) I designed a fitness function to gener-
ate sequences that the CSTD is minimized. (ii) I developed an MOGA that can
find Pareto-optimal sequences. (iii) I extended the method for extracting two-
part relations for deformable parts. (IV) To show robustness and reproducibility,
I extensively evaluated our ASG using eight models having rigid and deformable
parts.

3.2. Related Work

Over the past forty years, many studies [Bahubalendruni and Biswal, 2015] have
been done on teachless assembly robot systems. These systems derive assem-
bly sequences from CAD models, which are assumed to be available. Several
research methods use additional materials, such as instructions about assembly
planning [Agrawala et al., 2003], other 3D models with precedence constraints [Li
et al., 2020], and digital product descriptions designed between designers and
potential manufacturers [Sierla et al., 2018], but, ideally, it should be possible to
estimate the assembly sequence using only a CAD model.

I summarize the research on such CAD-based assembly sequence generation
considering three points: extracting feasible assembly sequences from CAD mod-
els, generating preferable assembly sequences using the relations between assem-
bly parts based on geometry, topology, and attributes, and extracting constraints
for planning easier assembly operations.

3.2.1. Exploring Feasible Assembly Sequences with CAD

The 3D geometrical information of assembly products is usually expressed in a 3D
model, often using 3D CAD software. Many studies used Computer-Aided Three-
dimensional Interactive Applications, which is a high-end software for CAD,
CAM, CAE, etc. It has been used for creating Liaison graphs [Bahubalendruni
and Biswal, 2016], obtaining primary parts joined by connectors [Bahubalen-
druni et al., 2017], detecting collisions between the assembled components [Pint-
zos et al., 2016], and detecting part-to-part interference [Agarwal et al., 2018].
These studies did not address selecting a preferable sequence from a set of many
sequences. For another example, a previous system [Lupinetti et al., 2016] used
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a commercial CAD software API to detect partial contacts between the entities
(faces and edges) of the B-rep models of the parts. An API to determine feasible
assembly sequences were used in [Michniewicz et al., 2016], although assembly was
limited to one direction. Similarly, the approach presented in [Bahubalendruni
et al., 2014] accesses the mating relation of a CAD model through commercial
software. I used an open-source CAD library so that the barriers to introducing
the proposed system are reduced, except for licensing.

To generate a feasible assembly sequence, most CAD-based approaches use a
GA [Srinivas and Patnaik, 1994]. A GA was proposed in [Smith et al., 2001] to ex-
plore the feasible movements of the parts using a pre-computed part-interference
relation named the interference-free matrix. Enhancements to the GA-based ap-
proach [Smith et al., 2001] are proposed in [Chen and Liu, 2001; Smith and Smith,
2002] to improve the performance. In these studies, the CAD-based geometric
information is extracted properly, but the generated sequences were evaluated in
a 2D, rather than 3D, space.

As an example of applying an exploring algorithm to assemblies in 3D space,
the discrete artificial bee colony algorithm were used [Ozkan Ozmen et al., 2018].
The shape of the target products was limited to polyhedral shapes. Extracting the
direction of disassembly using polygon meshes of the products were conducted
in [Kardos and Véncza, 2018]. The method was only evaluated using a few
assembly parts.

3.2.2. Preferable Sequence Based on Part Insertions

Feasible assembly sequences were found using matrices relating to the connections
between parts in [Ozkan Ozmen et al., 2018; Smith and Smith, 2002; Smith et al.,
2001]. Many previous studies derive the insertion relations between parts to
identify part features [Perzylo et al., 2015], to detect exchanges in parts described
in a CAD model [Eltaief et al., 2017], or to define additional geometric constraints
on the CAD model as part of a robotic task description [Babic et al., 2008].
However, these papers did not consider how assembly sequences for products
with many parts can be planned using such two-part relations. Like ours, there
are many studies using artificial intelligence techniques [Deepak et al., 2019]. In
these studies, although insertions were done during the assembly process, they
did not describe the insertion relation-based assembly sequence generation. In
addition, the necessary extraction of insertion relations from a CAD model has
not yet been achieved. We can assemble a screw to be inserted by using a tool
such as a screw-driver after we fixed a nut, instead of manually assembling the
nut after the screw.

Thus, by considering the insertion relations, I consider how to determine the
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preferable sequence from among several feasible sequences. To find the feasible
and preferable sequences, the initial chromosome for GA is determined based on
part interference collisions and a fitness function that considers insertion relations
is designed.

3.2.3. Assembly Planning with Constraints

Constraints in automated assembly planning are broadly to include requirements,
preferences, and suggestions to the planner [Jones and Wilson, 1996; Jones et al.,
1998]. Such widespread constraints have been used in automated assembly plan-
ning to analyze and improve the stability of assembled parts [Mosemann et al.,
1998], and also used for robotic assembly [Morris and Haynes, 1987]. Several
studies are extracting assembly features including topological and geometrical
constraints from information included in CAD models of products to be assem-
bled [Neb, 2019]. Hasan et al. [Hasan and Wikander, 2017] described an extrac-
tion method of geometric constraints. Ou et al. [Ou and Xu, 2013] have proposed
an automatic collection method of constraint data from CAD models for assem-
bly planning and an algorithm for generating assembly sequences based on the
assembly constraints such as Distance, Angle Offset, and Parallel, or mechanical
constraints such as Rigid, Revolute, and Slider.

Generated assembly sequences are found based on interference between parts
and the output of the system is a set of assembly sequences which are ranked
based on the results of the stability analysis. However, whether the constraint
functions are properly set or not is relaying on the model designer. Furthermore,
most of the previous research articles are limited to the stability analysis using
the constraints, which is related to the difficulty of assembly operations but not
assumes the constraint transitions during assembly process like ours.

3.3. Overview of CAD-Based ASG

3.3.1. Assumptions

This study assumes the following two things. (1) I use a dual-arm robot, me-
chanical grippers, and assembly jigs for assembly operations as the current man-
ufacturing industry. (2) The proposed algorithm outputs assembly sequences
represented as orders of part IDs (e.g., Part 3, Part 17,...) and the corresponding
assembly directions (e.g., —z, —z,...) in 3-axis.
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Figure 3.2. Overview of generating an assembly sequence from a 3D CAD model. The
input is a 3D CAD model assembled and the output is a linear sequence of part IDs
and the assembly direction in world coordinate system shown in the image at bottom
left.

3.3.2. Generation Procedure

Figure 3.2 shows the proposed ASG. First, we extract the parts geometries from
the CAD model assembled, then we calculate the interference-free, insertion, and
proposed degree of constraint matrices. Second, the order and assembly direction
of the parts are generated using the proposed MOGA.

3.4. Representing Assembly Parts Relations

In the proposed ASG, we need three matrices shown in Figure 3.2. In terms of
the interference-free and insertion matrices of rigid parts, we extract geometric
information from 3D models using a CAD software and calculate them by the
method.

3.4.1. Interference-free Matrix

This section first describes what the interference-free matrix represents, then an
example of the interference relation in the assembled parts, and finally how the
interference-free matrix is generated.

The interference-free matrix represents whether part ¢ can be assembled after
assembling part j. To calculate the (7, j)-element of the matrix, first, part j is
set to the assembled position. Next, part 7 is moved from the outside to the
assembled position along the + x, y, or z-direction. If part ¢ collides with part j,
the element is set to zero (meaning interference), otherwise, it is set to one.

Figure 3.3 shows an interference-free matrix in the six directions for a simple
model. From the (3, 2)-element of the matrix in the +x direction, we find that
if Part 2 is already assembled, Part 2 interferes with assembling Part 3 along
the +x direction. From the (2, 3)-element of the matrix in the +x direction, we
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Figure 3.3. Interference-free matrix.

find that even when Part 3 is already assembled, Part 3 does not interfere with
assembling Part 2 along the +x direction.

Figure 3.4 shows the process to calculate the interference-free matrix. The cal-
culation requires the estimation of collisions between the two parts, corresponding
to calculating the intersection of the two parts. Because PythonOCC includes
standard CAD operations, such as common between two parts, the intersection
is easily calculated, such as whether the volume of the intersection is zero or
not. However, in assembly, one part often contacts another part without collid-
ing. Thus, rounding errors in numerical calculation can erroneously indicate a
collision.

To make the calculation robust against such errors, I choose the threshold
adaptively. First, we calculate the volume wv;, of the intersection after assem-
bling the two parts. Then, we move one part outward in small steps and calcu-
late the volume of the intersection at each step. If the volume is greater than
Vin, We conclude that the two parts collide. We calculate the intersection using
the PythonOCC function BRepAlgoAPI _Common, which gives the intersection
shape between the two parts, and calculate the intersection volume using the
function BRepGProp_ VolumeProperties, which displays the volume of the input
shape.

3.4.2. Insertion Matrix

The insertion matrix represents whether part ¢ is inserted into part j in the (i, 7)-
element of the matrix. Figure 3.5 shows an example of the insertion matrix for a
simple model. From the (2,1)-element, we find that Part 2 is inserted into Part
1; Parts 1 and 2 are female and male, respectively. I define the female parts as
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Figure 3.5. Insertion matrix.

the parts to be inserted into by other parts. The male parts are the parts to be
inserted into the female parts.

PythonOCC functions can be used to calculate the insertion matrix. First,
PythonOCC assigns a shape label (e.g., plane, cylinder, or cone) to each surface.
The function BRepAdaptor Surface allows us to obtain the surface types of the
parts. The parts with hole-type surfaces are regarded as female parts. Second, we
generate a small box at the center of the hole of the female part. The volume of the
box is 1 mm?. If there is a part that intersects with the box, the part is the male
(inserting) part and a one is recorded as the corresponding element of the insertion
matrix. The intersection between the box and the part is examined using the
function BRepAlgoAPI _Common. Third, BRepGProp_ VolumeProperties shows
whether the volume of the intersection is greater than zero.

Figure 3.6 shows the process. The red part is the detected female part and
the green box is the small box at the center coordinates of the hole of the female
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Figure 3.7. Degrees of constraint in two cases. Red-colored shapes are contact sur-
faces. Red-colored arrows show that P1’s interfered directions on coordinate systems
determined. The numbers at lower right of the arrows show the degree of constraint
per degree of freedom.

part. The yellow part is assumed to be the male part.

3.4.3. Degree of Constraint Between Rigid Parts

We calculate degree of constraint C'(F;, Py) that indicates contact states between
parts P; and P,. If there is no contact between the parts, this value is set to 0.
According to Yoshikawa et al. [Yoshikawa et al., 1991], the degree of constraint
is defined as:

12
C(P.Py) =123 Fy(P,F) €{0,1,..11}, (3.1)

Jj=1

where Fj(P;, P) (j = 1,2, ...,12) indicates constraint-free information for 12 di-
rections of translational and rotational displacements £x, £y, £z and £6, £0,,+06,
shown in Figure 3.7. This value is set as 1 if the parts do not interfere with each
other after an infinitesimal displacement. Otherwise the value is 0.

To reduce the time to calculate the function F', the interference-free informa-
tion on the negative directions of all axes are calculated as the transpose of the
matrix on the positive direction of each corresponding axis. In other words, for
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example, moving P1 in the +x direction and moving P2 in the —x direction are
the same in the relationship between P1 and P2, thus, Fy(P;, Py) = Fy3(Py, P;).
Other directions have the same relationship. Finally, the matrix of degree of
constraint C' is then computed using Equation (3.1) as an element. Because C' is
symmetric, we calculate only the upper triangular component and calculate the
other elements based on the relation C(P;, Py) = C(FPy, P;).

Given the assembly order Py, , Po,, .., Po,, the maximum CSTD H is calculated
as:

k-1
H:= max Y C(Po,, FPo,), (3.2)

k€{273a“777} i=1

where Y%7 C(Po,, Po,) shows the CSTD in the assembly of the k-th part Po,
and the other assembled parts Po,, Po,, .., Po,_,-

To calculate the CSTD, the constraint-free information of an arbitrary part
is determined by investigating whether a part interferes with other parts, as il-
lustrated in Figure 3.7. In the figure, the investigated target part is displaced
in six positive and negative directions along the X, Y, and Z axes and rotated
around the X, Y, and Z axes. The origin of the coordinate system is automat-
ically determined as the center of gravity of the shape composed of a contact
surface (constraint surface) between the two parts. The Z-axial positive direction
of the coordinate system is determined as the direction vertically upward in a
stable pose of the product with the widest bottom surface to place on a plane.
If multiple contact surfaces are found, one of them is randomly selected. The
positive directions of the X and Y axes are determined in the directions of the
world coordinate system of the CAD model, and only the rotation center is set by
the center of gravity. Figure 3.7 shows the determined axes on assembled parts
in a model.

3.4.4. Extraction of Two-Part Relations for Deformable Parts

Figure 3.8 shows string-like deformable parts that will be used in the assembly
challenge of WRS2020 [WRS2020] and the ring-shaped deformable parts used
in the assembly challenge of WRS2018 [WRS2018|. This study concentrates on
string-like deformable parts, such as the wire with a rigid pin shown in Fig-
ure 3.8(a) and ring-shaped deformable parts such as the rubber band, rubber
belt, and metal chain shown in Figure 3.8(b).
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Figure 3.8. Two types of deformable parts.

String-like parts

String-like deformable parts, such as a cable with a plug and a wire with pins,
are often with a rigid body attached to the tip as shown in Figure 3.8(a). String-
like deformable parts, such as connectors, cables and wires, appear frequently
in assembly products. Both the plug and pin are attached for inserting into
or connecting to others such as a socket and a hole. Thus, if the string-like
deformable object has a rigid part connected to others, the two-part relations
between the rigid part and others must be investigated.

For example, the vertices of string-like parts and the corresponding inserted
part are recognized, then the system calculates the interference-free, insertion,
degree of constraint matrices between them in the same way as the rigid parts.
This implies that the deformable region in a string-like deformable object can be
disregarded. The entanglement with other parts needs to be considered [Sanchez
et al., 2020]; however, this is beyond our scope.

Ring-shaped parts

I describe an extraction method of the constraint-free information for a rubber
band as an example of ring-shaped deformable parts. I assumed that the part
deformability could be determined from the part name.

For example, the rubber band shown in Figure 3.9 transmits the rotation of the
motor shaft to another pulley. The rubber band must be stretched and retracted
in the radial direction when attached to a pulley groove in the assembly as humans
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Figure 3.9. Interference determination for a deformable object. The model is deformed
in radial direction (b) like a human do (a).

do.

By expanding or contracting the model in the radial direction, the constraint-
free information of its deformed shape is extracted, as shown in Figure 3.9 (b).
We change deformation scaling parameters. If one of the extracted constraint-free
information with 12 directions becomes 1, the scaling parameters are adopted.
The three matrices in the proposed ASG are obtained as with the rigid parts.
The elements of insertion matrix for the ring-shaped parts are set as zero.

3.5. Generating Assembly Sequences

This section describes the method for generating the assembly sequence using
the two relations described. Like the method in [Pan et al., 2006] I explore the
feasible and preferable sequences through GA operator updates.

3.5.1. Initialization of Genetic Algorithm

Like other nonlinear optimizations, the initial chromosomes given to the GA
affect the results of the optimization. Therefore, I propose a simple method to
generate better initial chromosomes than random generation. The gene indicates
an assembled part and the chromosome indicates an assembly sequence of parts.
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Figure 3.10. Genearation process of an initial chromosome.

To generate our initial chromosomes, first, we generate an assembly sequence
randomly. Next, we check the feasibility of this sequence from the beginning. If we
find that the i-th part collides with the j-th part (j < ¢), we change the sequence
to assemble the i-th part just before the j-th part. The obtained chromosome is
assigned as a part of the initial chromosome. This process is repeated a predefined
number of times to generate the initial chromosomes.

Figure 3.10 shows an example of the proposed process for generating the initial
chromosome from randomly generated chromosomes. In this example, because
Part 11 collides with Part 9, we move Part 11 before Part 9.

3.5.2. Genetic Operation

We use the gene operation proposed in [Smith and Smith, 2002]. When the
chromosomes of the i-th generation are given, n; chromosomes with a high fitness
value are selected for the next generation. The cross, mutation, cut-and-paste,
and break-and-join operations are performed on the chromosome to generate
the 7 + 1-th generation chromosomes. Optimization is performed until the n;-th
generation chromosome.

Figure 3.11 shows the GA operations. Figure 3.11 (a) shows an example of the
crossover operation. The crossover operator reorders the two parent assembly
sequences following a randomly chosen crossover point. The sequence behind the
crossover point is changed to the order in which it appears in the other sequence
(the order of parts circled in red in Figure 3.11 (a)). The crossover operator
produces two new offspring assembly sequences. Figure 3.11 (b) shows how the
mutation operator swaps two randomly chosen parts within a single assembly
sequence. Figure 3.11 (c) shows how the cut-and-paste is applied within a single
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Figure 3.11. Genetic operators in the GA.

assembly sequence. The cut-and-paste operator moves a group of related parts
from a randomly chosen cut position to a randomly chosen paste position. After
selecting the cut position and the paste position, if a cut part and several adjacent
parts use the same assembly direction, then the cut-and-paste operator moves
the entire group of related parts to the chosen paste position. Figure 3.11 (d)
shows how the break-and-join operator breaks a single assembly sequence into
the two at a randomly chosen break point and then swaps the two parts. The
probabilities of the cross, mutation, cut-and-paste, and break-and-join operations
in our experiments were 20%, 10%, 35%, and 35%, respectively.

3.5.3. Designing Fitness Function

This section describes the designs of two fitness functions (A) and (B) used in
the proposed method and the comparison method, respectively. The proposed
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3.5 Generating Assembly Sequences

method defines a suitable sequence as one where a male part is assembled after
the corresponding female part. The design of the fitness function follows the idea
of manipulating a peg into a hole in a fixed part. The value goes up if the female
part is assembled just before the male part and goes down if the female part is not
assembled before the male part. Thus, our fitness function (hereinafter referred
to as function (A)) is defined as:

2n+ a(s) — B(s) —r(s)  feasible
fi(s) = { 7772 infeasible ’ (3.3)

where 7 is the number of parts; s is the assembly sequence, and r(s) is the
number of changes in the direction of assembly. «(s) is the number of times that
the female parts are assembled just before the male parts. The case where the
parts collide with each other when assembling the parts is defined as infeasible,
otherwise it is defined as feasible. [3(s) is the number of times that female parts
are not assembled before male parts. The values of «a(s) and [(s) are easily
calculated using the insertion matrix.

I used the fitness function defined in [Smith and Smith, 2002] for comparison
in our experiment described in Section 3.6. This method considers a suitable
sequence to be one with only a small number of changes in the assembly direction.
Thus, they defined the fitness function (hereinafter referred to as function (B))
as in the following formula. They do not consider the insertion relations.

| 2n—r(s)  feasible
Tils) = { n/2 infeasible ’ (3-4)

Finally, I describe the fitness function to decrease the CSTD. The fitness func-
tion is designed such that if the assembly is infeasible, the evaluation is the lowest;
otherwise, it is designed such that the sequence with the lowest CSTD receives the
highest evaluation. Minimizing the CSTD must be solved for each part assembly
based on the fitness function (hereinafter referred to as fitness 2) calculated as:

f :_{ (1)2(77— 1) — H feasible (3.5)

infeasible -

This value is 0 for infeasible assembly. The feasibility is determined using the
method of Smith et al. [Smith et al., 2001]. In Equation (3.5), n is the number of
parts and H is the maximum CSTD. According to the definition, the maximum
constraint of two parts is 12; therefore, H in Equation (3.5) is less than 12(n—1).
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Figure 3.12. Assembly sequence optimization. The blue and red blocks are based on
the previous method [Tariki et al., 2021] and NSGA-II [Deb et al., 2002], respectively.

3.5.4. Multiobjective Optimization

To solve the MO problem, I built an algorithm based on NSGA-II [Deb et al.,
2002], an MOGA that provides high search performance for 2-3 objective MOPs.
Figure 3.12 shows the proposed algorithm. We design the fitness function to evalu-
ate the insertion condition and CSTD between parts. The blue part of Figure 3.12
is detailed in [Tariki et al., 2021] and includes chromosome coding, chromosome
initialization, and genetic operation.

The chromosome initialization and the GA operations are based on our pro-
posed method and the others processes are based on the NSGA-II. In our method
evaluated in Section 3.7, the fitness 1 is set as the function (A) related to the
insertion conditions between parts and the fitness 2 is set as the function (C)
related to the degree of constraint between parts.

3.6. Evaluating Single-Objective Sequence Optimization
3.6.1. Setup

To evaluate the effect of randomness in the initialization, I performed 30 trials of
the GA and terminated the optimization after 300 generations for each trial. The
number of chromosomes used in each trial of GA was set as 1, the number of parts.
The proposed method is structured in two parts, from the proposed chromosome
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3.6 Evaluating Single-Objective Sequence Optimization

Table 3.1. GA parameters used in our experiments.

Parameter Value
Number of chromosomes n
Crossover rate 0.2
Mutation rate 0.1
Cut-and-paste rate 0.35
Break-and-join rate 0.35
Number of generations 100
Number of iterations 10

initialization (referred to as rearrange) and function (A) used to evaluate the
insertion relations (rearrange + function (A)). To evaluate the effectiveness of
each part, they are compared with the random initialization method and function
(B). The four possible combinations of the four methods, random + function (A),
random + function (B), rearrange + function (A), and rearrange + function (B),
are compared in the experiments.

Two case studies with two CAD models were prepared for the experiments.
In Case Study 1, I used the 3D model from [Tao and Hu, 2017] to evaluate
the effectiveness of the insertion matrix. In Case Study 2, I used the complex
CAD model of the belt drive unit (Figure 3.15) consisting of 32 parts except the
rubber band. In this case study, I verified whether the proposed method could
automatically determine the assembly sequence for a product composed of many
parts.

I verify the effectiveness of the proposed fitness function through evaluation of
the insertion relations as represented by a and . The first priority is to keep the
insertion relations on male-female parts, and I determine whether it is difficult to
satisfy the insertion relation without using function (B). Furthermore, comparing
the proposed initialization with random initialization, I show if the proposed
initialization is effective in finding feasible sequences for a model composed of
many parts.

3.6.2. Case Study 1

Figure 3.1 shows the model used in this case study. The model has five parts.
Part 1 is the bolt, which has a hole where Part 4 will be inserted. Parts 2 and 3
also have holes which line up, where Part 1 is inserted. Part 4 is a pin which is
inserted in the hole in Part 1. Part 5 has two holes, one where Part 1 is inserted
and the other where Part 4 is inserted through both Part 5 and Part 1.
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Female parts
1 2 3 4 5
1100 1 1 0 1
210 0 0 0 O
Maleparts {3 ([0 0 0O O O
411 0 0 0 1
510 0 0 0 O

Figure 3.13. Insertion matrix generated in Case Study 1.
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Figure 3.14. Statistics regarding sequence generation in Case Study 1.

Figure 3.13 shows the insertion matrix generated in Case Study 1. There are
no extraction errors in the insertion relation matrix (0 or 1), this indicates 100.0%
(25/25) accuracy achieved. Table 3.2 shows assembly sequences obtained by the
proposed method (rearrange + function (A)) and the comparison methods. The
sequence generated by the proposed method fulfills all the insertion conditions.
On the other hand, if the other comparison methods are used, surprisingly the
insertion condition of the sequence is achieved.

The left graph of Figure 3.14 shows the average fitness values (marked as circle)
with minimum and maximum values (indicated by error bar) of fitness functions
(A) and (B) of generated sequences over 30 trials of the optimization (absence of
the error bars indicates that the calculated values were the same each trial). The
right graph of Figure 3.14 shows a stacked bar graph showing the percentage of
feasible sequences in the generated sequences. In such a case when the number
of parts is small, there is not much difference in the fitness values of the two
fitness functions of each method, and every final solution is a feasible sequence
without any interference between parts. However, optimization under function
(B) resulted in the output of solutions with a slightly bad evaluation of function
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3.6 Evaluating Single-Objective Sequence Optimization

Table 3.2. Results of assembly sequence generation in Case Study 1.

Method?® Sequence Direction Fitness®

Random + function (A) (2,3,5,1,4)  (+x,+x,+x,+y,+z) 10.0/8.0
Random + function (B) (3,2,5,1,4)  (-x,x,-x,+y,+z)  10.0/8.0
Rearrange + function (A) (5,3,2,1,4) (42z,+2z,+2z,+y,+z) 10.0/8.0
Rearrange + function (B) (2,5,3,1,4) (-X,-X,-X,~y,+2) 10.0/8.0

2Each method is distinguished by the chromosome initialization method and the fitness
function used for GA optimization.
PFitness values calculated by the fitness functions (A) and (B) shown as (A)/(B).

(A).

3.6.3. Case Study 2

Figure 3.15 shows the product used in this case study. There are 33 parts to
this product. Because the proposed method cannot handle deformable parts, the
rubber band was excluded, leaving 32 parts.

The ground truth of the insertion matrix, which is shown in Figure 3.16, was
obtained manually. Figure 3.17 shows the insertion matrix generated in Case
Study 2. Comparing Figure 3.17 and Figure 3.16, there are only three differences,
which results in 99.71% (1021/1024) accuracy. Figure 3.18 shows the three pairs
of the parts for which insertion relation extraction failed.

The (6,3)-element of Figure 3.18 (a) should be the insertion relation, but the
system failed to extract the correct relation. Part 6 is inserted against Part 3, but
Part 6 also has a hole in the center. Because the center of the hole in Part 3 is the
hole in Part 6, it is not determined to be an insertion due to having no interference
between the small box for Part 3 and Part 6 (described in Section 3.4.2).

The (9,6)-element (Figure 3.18 (b)) and (16,3)-element (Figure 3.18 (c)) should
not be the insertion relation, but the system again failed to extract the correct
relation. This seems to be because, if the female candidate (Part 6 or 3) has a
shallow hole, and the small box generated at the center of the hole shifts even
a little due to part placement errors, interference with the male candidate (Part
9 or 16) may be detected. Then as a result, the relation is determined to be an
insertion. In other words, it is necessary to devise the placement and shape of
small boxes.

In the first step of the GA, chromosome initialization, each method gener-
ated different chromosomes. For Case Study 2, three examples of the randomly
generated initial chromosomes are:

76



3.6 Evaluating Single-Objective Sequence Optimization

Table 3.3. Results of assembly sequence generation in Case Study 2.

Method® Sequence Direction Fitness®
(3,23,18,15,8,
14,17,21,7,19,

Random + function (A) 32;1’225’259’1136’31%’ - 16.0/16.0
10,28,20,32,12,
97,4,22,9,11,26)

(6,16,11,22,31, (-2,-2,-2,-2.,-7,
12,9,1,3,2,18, ~Z,-7.,-7,+7,+7,
. 17,26,13,20,24, VY27,

Random + function (B) 93.21.15.8.14, tzm A7, 41.0/55.0
25,29,30,27,32, +7,47,-7,-7,-72,-7,
7,10,28,19,5,4) 2,77, ,-Y,+7)
(15,1,3,6,23,11, (-2,-2,-2,-2.,-7,

9,2,4,8,14,16, 277y +7,+ 2,
Rearrange + function (A) 18’12’?;’33’;3’ —_l-ZZ,_-Zy,_-Zy,_-Zy,_-ZZ, 61.0/58.0
7,26,27,31,5, ~2,-7,-7,~7\~ 7,7,
32,18,20,25,28)  -2,-¥,-V,-Y,+%,-2)
(4,2,28,11,1, (-2,-2,-2,-2.,-7,
12,13,29,30,6, ~2,-7,-7\-7\- 7,7,
. 22,21,23,24.9, 2Ty~ 7=,
Rearrange + function (B) 10.31.26.5.27. R, 53.0/61.0

16,3,15,14,8,25,

32,20,17,18,19,7)

+Z,+Z,+Z,+Z,-y,

YT a'Y"Ya'Z)

a2Fach method is distinguished by the chromosome initialization method and the fitness
function used for GA optimization.
PFitness values calculated by the fitness functions (A) and (B) shown as (A)/(B).
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Drive side
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(Deformable part) X
Figure 3.15. Rubber band-drive unit (#2) used in Case Study 2.

(19,8,9,6,2,27,31,13,1,7,5,25,12,24,23,20,4,
17,29,3,11,14,10,22,26,30,28,32,15,18,16,21),
(28,20,32,25,5,24,17,13,26,16,19,6,14,27,15,
9,21,29,7,30,23,11,3,22,31,10,8,18,12,1,2,4),
(24,14,31,20,17,8,21,18,2,12,4,1,23,28,9,10,30,
29,16,13,25,32,6,26,7,15,22,11,19,5,27,3).

All the fitness values of these randomly generated chromosomes are 16.0. This
value indicates that at the initial point, there are still infeasible sequences or
feasible but low evaluations. The proposed method initialized the chromosome
as follows:

(24,28,12,13,23,3,7,27,9,10,25,21,15,5,17,29,
26,16,18,20,6,14,8,31,30,22,32,1,11,2,4,19),
(24,28,12,13,23,21,3,7,27,9,10,25,15,5,17,29,
26,16,18,20,6,14,8,31,30,22,32,1,11,2,4,19),
(24,28,11,12,16,13,23,21,6,22,3,7,27,9,8,10,
25,15,31,30,5,17,29,26,18,2,20,14,32,1,4,19).

The fitness values of the sequences are 16.0, 16.0, and 48.0, respectively. The

value 48.0 indicates that this sequence is initially feasible.

The left graph of Figure 3.19 shows the average fitness values (marked as cir-
cle) with minimum and maximum values (indicated by error bar) of the fitness
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Figure 3.16. Ideal insertion matrix in Case Study 2.

functions (A) and (B) of generated sequences over 30 trials of the optimization
(absence of error bars indicates that the calculated values were the same each
trial). The right graph of Figure 3.19 shows a stacked bar graph showing the
percentage of feasible sequences in the generated sequences.

First, with random initialization, function (A) did not necessarily give higher
fitness values than the fitness values of the sequences generated by function (B).
Secondly, when comparing the two initialization methods, when we use a method
with rearrange initialization showed that the fitness values were higher whichever
the two functions are used. This is influenced by the number of times that the
exploring assembly sequence converged to an infeasible solution, as shown in
the right graph of Figure 3.19. Furthermore, comparing the two methods with
rearrange initialization, the fitness value of function (A) of the assembly sequences
generated with function (A) was higher than with function (B), and the fitness
value of the assembly sequences generated with function (B) was almost the same
in each method. This makes the effectiveness of function (A) obvious. Therefore,
I believe that both of the two proposed methods, rearrange initialization and
function (A), are effective in generating an assembly sequence that is feasible and
satisfies the insertion condition.

Figure 3.20 shows animated frames of the assembly sequences generated by
both the rearrange + function (A) and rearrange + function (B) in Case Study
2. In Figure 3.20 (b), many male parts such as a motor and pulleys are assembled
earlier. On the other hand, in Figure 3.20 (a), many male parts are assembled
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Figure 3.17. Insertion matrix generated in Case Study 2.

after assembling the female parts. For example, as shown from Step 1 to Step 2
and from Step 2 to Step 3 of Figure 3.20 (a), after Part 3 (Plate) is assembled,
Part 6 (Pulley) is inserted into the hole in Part 3, after Part 2 (Plate) is assembled,
Part 4 (Motor) is inserted into the hole in Part 2. These are the expected results
of the proposed method.

Table 3.3 shows the assembly sequences generated using the proposed method
(rearrange + function (A)) and the comparison methods. Comparing the final
fitness values of functions (A) and (B) for the four methods shown in Table 3.3,
the sequence generated by the proposed method had the highest fitness value with
function (A). The fitness value of function (B) is also as high as that of rearrange
+ function (B). This means that the combination of rearrange initialization and
the use of fitness function (A) allows us to generate the sequence expected in
terms of both the direction changes and the insertion conditions. An assembly
sequence with high fitness values was obtained even with random initialization
in Case Study 1, but the insertion relation is hard to be satisfied for a model
with numerous parts, as in Case Study 2. Optimization that limits the changes
in assembly direction [Smith and Smith, 2002] does not produce an assembly
sequence that takes the insertion relations into account, which would require the
sacrifice of changing the orientation to some extent.
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Figure 3.18. Pairs of parts for which insertion relation extraction failed.

3.6.4. Discussion

The experimental results in Case Study 2 show the importance of considering
the insertion relations. It is possible to consider the insertion relations using
other methods, such as by understanding the functionalities of parts (screws,
pins, nuts, etc.). This may require an additional effort of collecting the data for
machine-learning-based recognition.

However, as in Case Study 1, this does not necessarily work well for gen-
erating the assembly sequence. It might be reasonable to insert Part 5 after
assembling Parts 1, 2, and 3. Part 5 is a female part for Part 1. If Part 1 is as-
sembled after Parts 2, 3, and 5, three parts are fixed by Part 1 at the same time.
Yoshikawa et al. [Yoshikawa et al., 1991] suggests choosing a sequence where the
number of constraints increases mildly. Though the insertion relations should be
considered, as the result of Case Study 2 shows, the proposed fitness function has
room for improvement.

I evaluated methods to support generating the assembly sequence of parts using
only a CAD model. First, I evaluated a method for quickly generating better
initial chromosomes for Genetic Algorithm (GA) to use to generate the assembly
sequence of products with many parts (in our case, 32). Second, to generate
an assembly sequence that satisfies the insertion conditions of assembled parts, I
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Figure 3.19. Statistics regarding sequence generation in Case Study 2.
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Figure 3.20. Animation frames showing the results of Case Study 2.

proposed and evaluated a way to calculate insertion relations (e.g., male-female
pairs) from a CAD model with PythonOCC. The fitness functions of GA used
in this experiment was defined 1) to encourage assembling a male part just after
the corresponding female part and 2) to avoid assembling a male part before the
corresponding female part.

In the experiments of assembly sequence generation with and without the pro-
posed methods, the proposed method was able to generate an assembly sequence
for a product composed of 32 parts. The simulation results demonstrated the
usefulness of the proposed chromosome initialization method and of insertion
matrices; the generated assembly sequence had no interference between the parts
and satisfied the insertion conditions.
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3.7. Evaluating Multiobjective Sequence Optimization
3.7.1. Outline

I conducted three case studies of MOGA with parameters shown in Table 3.1.
Case Study 1 used a model shown in Figure 3.1 to confirm whether the aformen-
tioned problem can be solved.

Case Study 2 used a model of the rubber band-drive unit (Figure 3.15) compris-
ing 33 parts used for an assembly challenge [Yokokohji et al., 2019]. T investigated
the possibility of the ASG for many parts, including a deformable part.

Case Study 3 was conducted to verify whether the proposed method can gen-
erate sequences for several models where the types of some parts used are slightly
different. I used eight models: two models used in Case Study 1 (#1) and 2
(#2), a model that includes copper wires with pins inserted to a terminal block
extended from the rubber band-drive unit used in Case Study 2 (#3), two rubber
band-drive units which are different from the model in Case Study 2 (#4 and
#5), two rubber belt-drive units (#6 and #7), and a chain-drive unit (#8) used
in the assembly challenge. Furthermore, using three models #1, #2, and #3,
I evaluated the reproducibility of the ASG. Figure 3.21 shows models for Case
Study 3. See the rulebooks [WRS2018; WRS2020] of assembly challenges for
more details.

Furthermore, using relatively three different models #1, #2, and #3 out of the
eight models, I evaluated the reproducibility of the ASG. The models for Case
Study 3 are shown in Figure 3.21. See the rulebooks [WRS2018; WRS2020] of
the assembly challenges for more specification details.

3.7.2. Case Study 1

Figure 3.22 shows the final assembly sequence with the highest sum of the fitness
values of Equation (3.5) and Equation (3.3) among the assembly sequences of
10 trials. The sequence shown in the left-hand side in Figure 3.1, depicting the
simultaneous occurrence of contacts was removed and the assembly sequence with
a low CSTD was generated.

Figure 3.1 (left) shows that when P1 is inserted, constraints occur simultane-
ously on P2, P3, and P5, and the CSTD is 24 (= 8 + 8 + 8). In contrast, as
shown in Figure 3.22, when P1 is inserted, constraints occur with both P3 and
P5, and the CSTD is 16 (= 8 + 8). In the insertion of P5, the constraints with
only P1 and P3 are 13 (= 8 + 5). In both these cases, the CSTD is less than
24. The assembly of the other parts also shows a CSTD of less than 16; thus, the
maximum value of the CSTD could be reduced from 24 to 16.
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3.7.3. Case Study 2

Figure 3.23(a) shows the convergence curve of the MOGA. The two curves shows
the average fitness values of all chromosomes of each generation. They are cal-
culated using fitness 1 (red curve) and fitness 2 (green curve). The number of
interference-free sequences remained at 33, indicating that 100% of the generated
sequences are feasible. This indicates that the values may have converged to
quasi-optimal values during the first generation update. An unsteady variation
is observed in the evaluated values until near the 20th generation update after
which the fitness values of the generated sequences are stable and produce high
fitness values.

In this study, the number of generation updates was 100; however, as shown
in Table 3.4, even when the number was the small such as 1 or 5, the generated
sequence was still feasible. There is room to adjust the number of generation
updates to reduce the time required for MO.

Figure 3.24 shows the generated sequence with the highest sum of the fitness
values depicted as the blue dot in Figure 3.23(b). Considering only the insertion
condition, it would be reasonable to assemble P5 and P2 before P4. However,
the CSTD of insertion sequence of P4 into P5 and P2 is high. In the generated
sequence, P5 is assembled last, thus the CSTD in the assembly of P2, P4, and
P5 was reduced.

Figure 3.23(b) shows the two fitness values of 33 generated sequences (= 7).
Fitness 1 is over 16.5 = n/2 and fitness 2 is over 0 (these values means when
infeasible) in all generated sequences, and an interference-free sequence was gen-
erated even in the assembly for deformable parts. The solution near the blue dot
in Figure 3.23(b), where the sum of both fitness values is maximum, is possible
to be a Pareto-optimal sequence.

To verify the Pareto optimality of the solution with the best fitness value, I
investigated whether the other fitness value increases or when the order of one part
is changed. In other words, because finding the optimal solution is NP-complete
problem, in this experiment, I show that the solutions in the neighborhood is
worse than our final solutions (the sequence with the highest sum of the fitness
values).

Figure 3.23(c) shows fitness values of the sequences generated by reordering one
part, thus the number of sequences simulated is 1024 (= (np—1)?). The number of
feasible sequences is 40.3% (= 413/1024). I confirmed that no sequence obtained
by reordering increased both fitness values over the best solution shown as the
blue dot in Figure 3.23(b). Therefore, the generated sequence may satisfy Pareto
optimality.
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Table 3.4. Computation times of the optimization on two CPUs in Case Study 2. Each
item shows Ave.+Std. of the times in 10 trials. The rate of feasible sequences of the 10
sequences is 100% in all optimizations.

Runtime of optimization [h]
Generation update Core i7-3520M? Core 19-9900KSP

1 0.901 4 0.0500 0.336 4= 0.0180
5 1.53 £0.0617 0.572 £ 0.0246
10 2.31 +£0.101 0.848 £0.0208
20 3.77£0.0973 1.39 £ 0.0363

2Intel Core i7-3520M CPU@2.90GHz.
bIntel Core i9-9900KS CPU@4.00GHz.

Table 3.5. Reproducibility of the ASG evaluated in Case Study 3. Each element shows
Ave.£Std. of the calculated fitness values. The percentage of feasible sequences for the
evaluated models are 100%.

Model fitness 1 fitness 2 Sum of 1 and 2

#1 9.50 £ 0.50 28.0 +4.00 37.5 £ 3.50
#2 51.7+£3.66 356 + 2.69 408 £ 2.76
#3 98.7+£3.03 415+1.20 473 £ 3.47

3.7.4. Case Study 3

The objective of this case study is to confirm the robustness and reproducibility of
the proposed ASG. First, we calculate interference-free, insertion, and degree of
constraint matrices for the eight models. In Figure 3.21, different assembly parts
are written in letters inside each model image (#4~#8). Because the models
#4~#8 have parts structure similar to the model #2, the two-part relations
were extracted successfully. In the case of #4~+#8, using the extracted relations,
the proposed ASG for all models was succeeded as with #2.

Subsequently, we apply the proposed ASG to three models #1, #2, and #3
that have largely different parts structures. Table 3.5 shows the average and
variance of the maximum fitness values of the generated sequences for the three
models. The percentages of feasible sequences for all models are 100%. Even
multiple part changes exist in the product, the proposed method can achieve the
ASG with a high reproducibility.
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3.7.5. Discussion

Extensibility on Handling Deformable Parts

In the case of string-like deformable parts with snap-fit plugs, the assembly di-
rection of the plug can be erroneously determined as interference. Recognizing
the snap-fit connector as the assemblable object from the geometry in CAD are
necessary [Shellshear et al., 2020].

In the case of a ring-shaped deformable parts, we require an assembled CAD
model. The extent to which this deformation represented in the model depends
on the product designer.

Ghandi et al. [Ghandi and Masehian, 2015] proposed an assembly sequence
planning of deformable parts based on Finite Element Method (FEM) simula-
tion. However, in the FEM analysis, a user must input parts geometries, the
material, density, Young’s modulus, coefficient of friction, and types of elements
used for modeling its deformation behavior. The computational cost, manual in-
put, laborious measurement, and accuracies of parameters for all parts influence
the results of ASG. To replace such the method, I will develop an time-efficient
ASG method based on the geometries and semantic information of parts.

3.7.6. Graspable Sequences Toward Grasp Planning

Once the assembly sequence is determined, the feasible grasping based on interfer-
ences between the robot end effector and parts must be determined. Figure 3.25
illustrates an easy approach for determining them. Figure 3.25 (a) and (b) show
the process for determinating the grasping points and interferences in a sequence
generated in Case Study 1. I used a parallel-jaw gripper (ROBOTIQ, Hand-E)
developed for precise assembly operations. The following procedure was used.

1. Randomly sampling hand-crafted graspable points on the object surface

2. Generating concatenated models of the parts and the gripper by fixing a
certain pose of the gripper

3. Determining the interference by moving the concatenated models in the
simulation using CAD models

To achieve robotic grasping, such as by using the CAD-based method, we can
determine the occurrence of interference.
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3.7.7. Application Toward Robotic Assembly

Once the graspable sequence is determined, robot manipulation motions should
be considered. To confirm the feasibility and limitations of the assembly sequence
generated in Case Study 2, I simulated the assembly motions shown in Figure 3.26.

I manually generated the robot hand trajectory and the grasping configuration.
As a limitation of the generated sequence, after the insertion of rubber band, the
robot needs to keep supporting the non-fixed parts. Based on the center of gravity
of the parts (e.g., [Gulivindala et al., 2020; Murali et al., 2019]), we must fix parts
in stable poses on somewhere in each assembly order. Assembly jigs to fix various
parts are useful. Since preparing custom-made jigs is time-consuming and labor-
intensive, to achive high-mix low-volume production, I used Soft jig to fix all the
parts. I could achieve an assembly operation using the general-purpose jigs.

Compared to a linear assembly sequence discussed in this study, a parallel
assembly sequence divided into sub-assemblies (e.g., [Bahubalendruni et al., 2019;
Yang et al., 2020]) are time-efficient. By generating divided sub-sequences, we
can replace a linear sequence by a parallel sequence. For example, if multiple
arms exist, the driven side (blue frame) and drive side (red frame) of the linear
sequence shown in Figure 3.24 can be parallelized.
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Figure 3.21. Models used in Case Study 3. The six models are revised from #2 shown
in Figure 3.15. The replaced parts are shown in each figure.

Figure 3.22. Generated sequence in Case Study 1.
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Figure 3.23. Results of Case Study 2. (a) A progress of the fitness values and number
of feasible sequences found during one optimization. (b) Fitness values in the 100-th
generation. (c) Fitness values after reordering the generated sequence shown in (b) as
a blue dot.

Driven side

Figure 3.24. Generated sequence in Case Study 2. The order (assembly direction) is
as follows 3 (-z), 17 (-z), 12 (-2), 13 (-z), 14 (-2), 7 (-z), 23 (-z), 25 (-z), 24 (-z), 22 (-z),
10 (-z), 11 (-2), 4 (-z), 2 (-2), 27 (-2), 29 (-z), 30 (-z), 31 (-z), 32 (-z), 28 (-z), 5 (-z), 33
(-y)(, 6) (-z), 8 (-2), 9 (42), 26 (+2), 16 (+2z), 15 (+2), 1 (+2), 19 (-y), 21 (-y), 20 (-y),
18 (-y).
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(b) Sequence that occurs interferences

Figure 3.25. Succeeded (a) and failed (b) simulation examples with a robotic gripper’s
model for graspable sequences.
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Gl

= e v
General-purpose jig

(b) Pick-and-place of a rubber band (P6 shown in Figure 3.15)

Figure 3.26. A succeeded simulation example of robot motions with the graspable
sequence.
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Chapter

Manipulation with Soft Jig

4.1. Introduction

Generally, jigs are used to efficiently assemble different types of products [Rajan
et al., 1999; Zhang et al., 2019] for mass production. However, in the high-mix
low-volume production, it is impractical to develop custom-made jigs every time
when a product is replaced.

I propose a deformable fixing device named soft jig, as illustrated in (a) and
(b) of Figure 4.1. A part placement and positioning method on the soft jig
is proposed. [ evaluate the performance of the soft jig by executing assembly
operations with a physical robot.

A soft jig is highly versatile as a fixture for different parts with various shapes
as the jig surface deforms according to the shapes. The fixing ability of the soft
jig based on a jamming transition can be used to hold assembly parts by creating
datum planes (Figure 4.1(c)) on a membrane of the soft jig (Figure 4.1(d)).

The primary contribution of this study is to provide a new parts-fixing device
for robotic assembly: in particular, the proposed soft jig provides a new concept
of the general-purpose assembly jig that can be used for a flexible assembly robot
system. I propose a design of the soft jig capable of functioning the jamming
transition as the fixing ability.

In parts-assembly with the soft jig, we determine fixed parts and their postures
based on the three requirements: (1) to contact between parts in one assembly
operation (e.g., placement and insertion), ignoring the parts without any contacts
(2) to determine reachable directions of a fixed part to parts assembled on the
fixed part, selecting the fixed parts and the postures by extracting interference-
free parts-displacement directions using CAD, and (3) to make a part posture
a low center of gravity (CoG) to achieve mechanically stable, selecting the fixed
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Retaining ring \{‘—L ] J.n
T -
Membrane ——@ \_

Glass beads —®

Base piste T

(b) Exploded view

(c) Datum planes [Trappey and Liu, 1990] (d) Creation of datum planes

Figure 4.1. Design of soft jig. The appearance (a) and exploded view (b) of soft jig are
illustrated. Datum planes (c) (this figure is made with reference to Fig. 2 in [Trappey
and Liu, 1990]) is needed to fix objects in a certain pose and it is created on the
malleable membrane (d).

posture based on CAD-based calculations of CoGs for all candidates of the fixed-
parts.

Our experiments demonstrated the fixing performance and versatility of the
soft jig for different fixing configurations. Moreover, I examined the feasibility of
assembly operations by an actual robot. I further discussed parts pose estimation.

4.2. Related Work

Several jig-less operation methods [Kim et al., 2013; Naing et al., 2000] and
designing methods of general-purpose jigs [Bi and Zhang, 2001] have been pro-
posed to reduce the human effort for designing custom-made jigs. Several re-
searchers [Fathianathan et al., 2007; Grippo et al., 1987; Whybrew and Ngoi,
1992] developed systems for automatically designing rigid modular fixtures from
a combination of elements such as locators, blocks and clamps. The designs are
determined based on the work piece geometry to be fixed. Shi et al. [Shi et al.,
2020] developed a fixing device with many metal pins that adapt to the shape of
fixed parts.
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Table 4.1. Comparison of general-purpose assembly jigs.

Method Easiness of fixing Versatility Parts-positioning
Jig with supports X Vb /e
Soft jig (proposed) v Ve x4

*& Supports need to be placed in postures

*b Surrounding supports fit the object shape

*¢ Rigid supports fix the object in a certain pose

*d On-off control of air pressure

*¢ Deformable body fits the object shape

*f Stiffness of the malleable membrane is lower that the metal jig surface

Alignment
direction

Pick-and-place of motor and plate Plate insertion —Plate alignment for bolts ————Bolt tightening

Figure 4.2. Manual assembly sequence with the soft jig. In the pick-and-place of the
motor, we consider if the plate can be approached onto the soft jig. Furthermore, we
can achieve fixing a motor even if the bottom surface of the motor has pins because of
the malleable membrane.

Although high-precision positioning is possible with rigid jigs, they needs to be
replaced according to the fixed parts with different shapes. Furthermore, previous
approach to substitute the rigid jigs needs control of the actuators [Kim et al.,
2013; Naing et al., 2000; Shi et al., 2020] or calculation for the shape optimiza-
tion [Bi and Zhang, 2001; Grippo et al., 1987; Whybrew and Ngoi, 1992]. Hence,
the easiness of fixing and versatility are relatively low. Table 4.1 summarizes the
comparison between the previous and proposed general-purpose assembly jigs.
The proposed fixture requires a pose estimation whereas increasing the easiness
of fixing and the versatility.

Several studies have used flexible robotic end-effectors that fit the object shapes
to be manipulated [Lee et al., 2017a; Watanabe et al., 2017]. Brown et al. [Brown
et al., 2010] proposed a jamming gripper that can grasp rigid objects of various
shapes. The gripper surface is covered with a silicon membrane filled with powder
particles. The extensibility of the jamming gripper has been discussed in terms of
recognition of part shapes [Alspach et al., 2019; Sakuma et al., 2018] and sensing
during robotic manipulation [Lu et al., 2020; Sakuma et al., 2019].

The applicability of jamming gripper has been researched for different purposes,
such as feet of robots to walk on natural terrain [Chopra et al., 2020; Lathrop
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et al., 2020], and to climb walls [Fujita et al., 2018]. Such soft robotics technologies
are expected to be applied to the field of robotic assembly [Hamaya et al., 2020a,b]
for the high-mix low-volume production.

4.3. Assumptions and Problem Setting

The fixing planning and shape of the custom-made jigs for mass production are
designed according to an assembly sequence. Contrary, the fixing planning of the
soft jig for high-mix low-volume production needs to be considered independently
from the assembly sequence of the short life-cycle products. Thus, a certain
assembly sequence is given.

As an example, let us consider the assembly task shown in Figure 4.2, three
types of parts shown in Figure 4.3(a) are handled. The assembly task includes
fundamental operations frequently conducted by humans: picking, placing, in-
serting, and screwing [Fukuda et al., 2019; Yamazaki et al., 2018]. We first grasp
the motor, then the motor shaft is inserted into the plate’s hole. Subsequently,
we aligns the bolts with the motor’s holes, and finally the bolts are tightened.

One assembly step consists of assembling two (partially assembled) parts, thus
the parts that should be in contact with other parts are target parts for the
assembly with the soft jig. One way to achieve the one step is that one part is
fixed and the other part is manipulated. Since the manipulated part needs to
be reachable from outside onto the fixed part, the fixed pose must be planned as
interference-free. At least one manipulator should manipulate a part on the part
stably fixed. Thus, we make the CoG of the fixed part low.

4.4. Design of Soft Jig

The designed structure of the soft jig is depicted in (a) and (b) of Figure 4.1.
Figure 4.4 shows the specifications of the proposed soft jig. Silicone rubber with
a Shore A hardness of 2 (Smooth-On, Dragon Skin FX-Pro) was used for the
elastomer membrane (1 mm in thickness and 160 mm in diameter) to form the
malleable surface of a bag.

The bag with 296 cm?® capacity was filled with glass beads of 450 g with a
diameter of approximately 1 mm (Fuji Manufacturing Co., Ltd., Fuji Glass Beads
FGB-20). I selected the glass beads because they do not corrode. The curvature
radius of the bag was about 60 mm.

By vacumming out air inside the jig from an air port under the jig base, the
rigidity of the soft jig can be altered, and a target part can be fixed. We use
an off-board vacuum pump and the confining pressure inside the bag was about
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(c) Interference-free matrix

Figure 4.3. Assembly parts, contact matrix, and interference-free matrix used in our
experiments. The two matrices are calculated based on a CAD model assembled and
are used to configure the parts-fixing.

90 kPa. The parts-fixing performance benefits from the high friction, elongation,
and contraction ratio of the elastomer material.

The parts-fixing process is as follows: before placing the target part, the jig
surface is initialized by pumping air into the jig because the fixing performance
depends on the initial shape of the membrane [Amend et al., 2012]. Subsequently,
the target part is grasped, transported, and placed on the jig. In a state of pushing
the part onto the jig, the part are fixed by taking advantage of the jamming
transition by evacuating air from inside the jig.

4.5. Configuring Parts-Fixing

The proposed parts-fixing algorithm (Algorithm 1) is based on the three require-
ments (Section 4.1) and assumptions (Section 4.3). Given an assembly sequence,
we decide which assembly part to place in which pose. Specifically, the proposed
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Amount of beads ~ 450 g Capacity ~ 296 cm® Curvature radius » 60 mm

Figure 4.4. Specifications of soft jig.

algorithm selects a fixed part and a fixing posture that allows other objects to
reach the fixed part. In addition, the CoG position of the fixed part will be low.

Given an assembly order {Py, P, .., P,}, we can obtain a list P~ of the fixed
parts and a list A* of the fixed postures. The process starts from initializing a
target part P; as P; and a fixing parts list A, P and A* as empty lists.

In the main routine, we first calculate a reachable direction list A(FP;, Py). To
achieve interference-free operations, we calculate the reachable direction matrix
W, (j € {+z,—z,+y, —y, +2, —z}) with contact matrix C' [Bedeoui et al., 2019]
and interference-free matrix M, shown in Figure 4.3(b) and (c). The reachable
direction matrix, in which the element in the reachable from j direction is 1, is
written as:

W; = (C+C") o M, (4.1)

where ® is Hadamard product of matrices.

Here, the parts are expressed as Py, P, .., P, (where 7 is the number of parts).
The reachable direction list A(P;, Py), with regard to the translational displace-
ment is calculated as:

(W+x(PZaPk)7W—x(R7Pk)a7W—z(PZaPk)) (42)

If A(P;, P;,) was a list filled with 0, the process is ended. Otherwise, our method
generates a model P, combined of P, and P;. Following process conducts updating
P, by P, and substituting the determined postures A(FP;, P;) for Ag.

If Ay includes two or more 1, then we calculate CoG pg = [rq, yg, 2¢]T of the
model P, using CAD. We determine a posture A based on the CoG is calculated
as:

n
EizomipG,i

n )

pPc = (4.3)

where m; and p¢g; are the mass and CoG of i-th part.
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Algorithm 1 Parts-Fixing Configuration Algorithm

Input: An assembly order {P, P, .., P,}
Output: Parts P* to be fixed in certain postures A*

1: procedure CONFIGURE-FIXING-PARTS

2 H — P1

3 Set Ager, P*, and A* to empty lists

4 fori=2,...,ndo

5: Calculate A(P;, P;) using Equation (4.2)

6 if Elements of A(P;, P;) are all 0 then

7 break

8 Generate a model P, combined of P, and P;
9: P, < the combined part P,

10: At < the determined postures A(P;, P;)
11: if A, includes two or more 1 then

12: Calculate CoG of the model P; using CAD
13: Determine a posture A based on the CoG
14: else

15: A « the first element of A

16: Set P to the bottom part in the posture A
17: Add P and A to P* and A*, respectively

If Adet does not mclude two or more 1, we substitute the first element of Adet
for A. Then, we set P to the bottom part in the posture A and add P and A to
P* and A*. This one routine is repeated 1 — 1 times where 7 is number of parts.

4.6. Experiments
4.6.1. Outline

I used parts shown in Figure 4.3(a), where a motor and a plate are fixed with
bolts. The parts were prepared for a belt drive unit used in an assembly chal-
lenge [Yokokohji et al., 2019]. Using the parts, I performed the following three
experiments.

The first experiment was to experiment the determination of the proposed
parts-fixing configuration algorithm. Two cases of assembly sequences were tested
in Section 4.6.2.

The second experiment evaluated two fixing abilities: an ability of maintaining
the fixed pose and a holding ability against external forces. I conducted parts-
placement experiments with (Section 4.6.3) and without (Section 4.6.4) external
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Single-arm [
\ manipulator

(a) Motor (b) Plate

Figure 4.5. Two different postures of the motor and four different postures of the plate
evaluated in the expriments of Section 4.6.3.

Table 4.2. Fixing configurations determined from the calculated values of Equa-
tion (4.2). The iterations 1 and 2 correspond to the iterations of the loop of the Algo-
rithm_1.

Iteration 1 (i = 2) Iteration 2 (i = 3)
Case Equation (4.2) AP Equation (4.2) A/ P
1 A(motor,plate) 4z / motor  A(P,.,bolts)*™ +z / motor
2 A(plate,bolts) +z / plate  A(P.y, motor)*® -z / motor

*a P.1 represents the combined part of motor and plate

*b P, represents the combined part of plate and bolts

force application using a manipulator equipped with a parallel-jaw gripper. I
evaluated the fixing ability based on holding forces, moving distances, and success
rates.

The third experiment (Section 4.6.5) involved verifying feasibility of assembly
operations (Figure 4.2) with a robot arm equipped with a parallel-jaw gripper.

4.6.2. Determining Fixed Parts and Their Pose

Table 4.2 shows the results of the parts-fixing configuration for two cases of as-
sembly sequences. Case 1 is {motor, plate, bolts}. Case 2 is {plate, bolts, motor}.
The assembly of small bolts was not selected in the algorithm because if the bolts
are positioned under the plate, the CoG position of the model combined the plate
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(b) Plate

Figure 4.6. Different placement postures (P1 and P2) and pushing directions (a, b,
and c) for the motor and plate evaluated in the expriments of Section 4.6.4.

and bolts are higher than the upside-down posture.

In Case 1, the parts-fixing configuration determined by Algorithm 1 is the
motor placed in the posture as shown in Step 1 of Figure 4.2. This posture is
difficult to achieve in the base plate of a metal jig because pins are attached at
the bottom of the motor as shown on the top right picture in Step 1 of Figure 4.2.
With the soft jig, this posture was achievable. The plate is inserted onto the fixed
motor, then the blots are screwed onto the plate fixed with the motor.

In Case 2, firstly, the bolts are placed onto the fixed plate in the posture P4
shown in Figure 4.5(b). Secondaly, the plate with bolts are inserted onto the
fixed motor.

4.6.3. Evaluating Versatility to Fixing-Posture

To evaluate the versatility of the soft jig for the shape and posture of the parts, I
investigated whether the placement postures were maintained after released from
the gripper.

In addition to the determined posture in the previous section, postures for
comparison were shown in Figure 4.5. In the case of motor, the shape is ax-
isymmetric, so there are two ways to place it in an axis-aligned manner. The
two postures are with the side (P1) or bottom surface (P2) of the cylinder shape
being in contact with the jig.
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Figure 4.7. Experiments to evaluate parts-fixing performance. I used a force plate to
measure normal and shearing forces. I calculated the displacement of the jig using the
manually clicked points on both images of before and after application of the external
forces.

Four different postures of the plate were prepared. These include the postures
of the back or front side of the insertion hole facing straight up (Figure 4.5(b)
P1 or P4). I further prepared the postures that the bottom (P2) or side surface
(P3) is contacted to the jig surface.

The gripper’s trajectory and grasping configurations were manually generated.
The trial was regarded as successful if the parts were upright, even if the gripper
released the part, i.e., if the resting state was possible. I tried ten trials and
checked whether each trial was success or failure by eyes. The success rates were
100% (= 10/10) for all postures of the two parts, thus the versatility of soft jig
against the placed shapes is high.

4.6.4. Evaluating Parts-Fixing Against External Force

The fixing performance is evaluated based on holding forces, moving distances,
and success rates. The first is an evaluation of the fixing performance based on
the holding force when an external force is applied; the higher the performance,
the higher the holding force should be.

The second is an evaluation based on moving distances when an external force
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Figure 4.8. Normal and shearing forces applied under the soft jig during placing and
pushing operations performed around the two peaks.
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Figure 4.9. Performance of fixing the motor and plate. Each figure shows the success
rate (number of successes in five trials), the average of the maximum value of shear-
ing force, and the average distance of the soft jig before and after the external force
application in five trials.

is applied. I defined the fixing success based on the distance of the jig base itself,
which is not fixed anywhere. The jig was moved in response to the pushing motion
of 70 mm straight-line trajectory to apply the external force. If the part posture
is not changed againt the pushing motion, all the force should be converted into
the jig movement, so the amount of movement is larger. If the posture is changed,
that amount of the jig movement must be low. Therefore, if the part is firmly
fixed on the jig, it should move as much as the distance pushed by a robot. But
considering the elasticity of the silicon membrane, I defined successful fixtuation
as the distance more than 63 mm (90% of the 70 mm pushing trajectory).

Holding force

Figure 4.7(a) shows the experimental setup including the robot arm with a gripper
to apply the external force. I set a force plate and an RGBD camera to measure
the holding force and the jig movement. I measured the forces applied to the lower
part of the jig when the fixed parts were pushed by the straight-line trajectory
of the gripper. I also measured how much the soft jig moved before and after
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Bolt-i-igh—kaning

F"Iate alignment

Pick-and-place of motor and plate = Plate insertion

Figure 4.10. Assembly sequence with the soft jig and a robot. The assembly order
was the same as the manual assembly shown in Figure 4.2.

the external force application. Figure 4.6 shows the postures of the parts in the
experiments to evaluate fixing performance.

Here, the resulting force on the contact surface was calculated as the magnitude
of normal force F;,, and shearing force F§ by the following equations:

where f,, f,, and f, are the measured forces in the coordinate system of the
force plate shown in Figure 4.7(a). Figure 4.8 shows the calculated values of the
normal and shearing forces during the operations including placing and pushing
of the parts on the jig. The graph IDs on the top left on each graph correspond to
the IDs in Figure 4.6. The two peaks on all graphs except P2-a of the plate show
the force values at the timing of placement and pushing, respectively. In P2-a of
the plate, the plate fell on the jig at the timing when the gripper made contact
with the plate in the pushing operation. Thus, only one peak exists because the
forces by pushing could not be measured.

Moving distance

The displacements of the jig after the application of external force were also
measured. The hand-eye camera (Intel Corporation, RealSense D435) recorded
RGBD images before and after applying the external force to the part fixed on
the jig in contact with the force plate.

I used two images shown in Figure 4.7(b) before and after applying the external
force. I calculated the distance d(F;, F.) between configuration frames of the soft
jig before F; and after F. applying the external force as:

d(Fi, Fo) = \Jd(5,2.)2 + d(§i, 5e)? (4.5)
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Equation (4.5) is a metric used to calculate the distance between two configuration
frames proposed in [Ahuactzin and Gupta, 1999]. I calculated the poses (Z;, g;) of
F; and the poses (2., §.) of F. in [pixel] using four points py(k = 1,2,3,4) € R?,
as shown in Figure 4.7(b). I clicked on the four screws of the jigs in the images
as p. Each screw has a central angle of 90° and fixes the membrane onto the jig
base. I converted the unit of the distance from pixels to mm based on the known
width 160 mm of the jig. & and ¢ are calculated as:

(:%’ g) = (pQ — D¢, P1 — pc); (46)
p1+p21p3—|—p4. (@7)

Dc

Z is set to 0 because the images shown in Figure 4.7(b) was captured from
directly above, then the fixed surface of the jig remained horizontal even after
the external force application.

Factors underlying successful fixing

Figure 4.9 shows average maximum values of shearing force in five trials. Fig-
ure 4.9 shows the success rates in the five trials. The success rate was 0% for
P2-a of Motor, P1-b of Plate, P2-a and P2-b. In these cases, the first peak of
the normal force shown in Figure 4.6 indicates that the pushing force is applied
to the same extent as in other cases. However, since the maximum force at the
second peak of the shearing force is lower than other cases, suggesting the fixing
has failed.

Figure 4.9 shows the calculated values of d(F;, F.). The failure cases resulted
in a low amount of displacement compared to the successful ones. The difference
between the mean displacements of the failure and success cases is 24.0mm (=
78.2 — 54.2), and the value of the success cases is significantly larger than that of
the failure cases. 78.2 mm was larger than the original pushing distance 70.0 mm
because of over-displacement due to an acceleration of the pushing motion. The
soft jig is hardened by the jamming transition, thus the deformation itself does
not cause of the small resultant displacement.

In the case of low-height postures such as P1-a and P1-b of the motor and P1-a
and P1-c of the plate, as far as I confirmed with our eyes, the displacement did
not occur despite the direct external force. Thus, the success rates of the four
cases were 100%. The posture P2-c of the plate was firmly fixed, although it was
a high-height posture. This is because the pushing action of the external force
pushes the fixed object into the inside of the jig as it tries to rotate on the axis
perpendicular to the pushed direction.

Against the external forces, to fix high-height postures P2-a of both parts, high
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datum planes surrounding the side surfaces of the parts are required as shown
in Fig. 1 (d). Since such the large datum plane was not generated, the trials
were unsuccessful. The results suggest that selecting the placement posture and
forming the datum plane are important.

4.6.5. Feasibility of Assembly Operations for Fixed Parts

In this section, I confirm the force generated during the actual assembly opera-
tions expanding the experiments in the previous section. The assembly operation
by the dual-arm robot was executed on the procedure of Figure 4.2. Dual arms
equipped two types of grippers: a parallel-jaw gripper used for grasping assembly
parts and a general-purpose gripper used for grasping a tool such as the electric
driver. As shown in Figure 4.10, the operation was divided into four steps. I
used two arms to avoid regrasping a tool. All operations were performed with
hand-crafted trajectories of one hand.

Thorough the experiments, given the assembly sequence and the gripper’s tra-
jectories, the robot could execute pick-and-place, insertion, and tightening of
parts using the soft jig. The gripper did not apply external force directly to fixed
parts; instead the external force was applied via the grasped plate during inser-
tion of the plate into the jig-fixed motor or by the grasped electric driver during
screwing of the bolts. Even under such the external forces, the displacement of
the motor on the jig was not significant, suggesting that it may be useful for
fixing a part during assembly operations.

4.7. Discussion

To show a durability of the soft jig toward an industrial application, I discuss
the parts pose estimation. To design the concrete method is out-of-scope, but I
discuss the possibility and future issues. Since the precise parts-positioning with
the soft jig is difficult than using a metal jig, we need to remove the uncertainty
of the part pose by a pose estimation method.

To confirm the 6D pose estimation task for fixed parts, I apply PVNet [Peng
et al., 2019], one of deep learning-based algorithms [Tekin et al., 2018; Tremblay
et al., 2018]. To train the network, I leverage a quick dataset collection method
using visual markers proposed in [Hinterstoisser et al., 2012; Kiyokawa et al.,
2019a,b], as shown in Figure 4.11(a). These methods reduce human effort for
training and enable to use PVNet for the high-mix low-volume production. Both
in training and testing, I use a head-mounted camera of the robot.

Figure 4.11 (b) shows the results of the pose estimation applied to test images
showing different poses of the motor and the plate. The test images are not
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Figure 4.11. Dataset collection system and results of 6D pose estimation of the fixed
parts.

used for training. The yellow 3D bounding boxes in the images show the box
calculated based on the visual markers, which is the grund truth. The red boxes
with similar shapes to the yellow boxes show the 6D poses estimated by the
trained model. The results suggest that the pose in a wide viewing angle can be
accurately tracked and the appearance of the soft jig does not deteriorate the pose
estimation. To insert a part to the motor shaft, the system needs to determine
the insertion motions based on the shaft pose.
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Chapter 5

Discussion

5.1. Integration Potential

This section discusses several methods that combines each of the methods pro-
posed for the basic functions of the robotic assembly system in terms of recogni-
tion, planning, and execution.

For example, the assembly using a soft jig cannot be performed accurately
unless the parts on the jig are correctly recognized. In this case, the proposed
method using the visual markers and the rotating table can perform automatic
data collection to train the vision system that can recognize the parts on the soft
jig.

Regarding the combination of recognition and planning, it is necessary to cor-
rectly recognize success or failure of the operatons in the planned assembly se-
quence. Therefore, we may build a visual system that recognizes whether the
constraint relationships to be satisfied between parts are met as per the planned
assembly order. This vision system can be reconstructed quickly by automati-
cally generating the assembly sequence using CAD and automatically generating
the image dataset using our system.

5.2. Agility in Reconfiguration

This section discusses the comparative evaluation of the agility. The agility of
reconfiguration of robotic assembly system was evaluated previously in simula-
tion [Downs et al., 2016] but there are no metrics defined for a real robotic system.
Therefore, I evaluated the real robotic system in terms of the versatility of the
manipulation system and the time to train the vision system. The ultimate goal of
this research is to focus on improving precision, versatility, and agility. Therefore,
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Table 5.1. Comparison of the methods in terms of agility, versatility, and precision.

Method Agility Versatility Precision Time [h]
Recoenition Real-world + + 7.3
8 CG Tt - 0.45
Plannin CAD + + 6.3
& Instruction ++ — < 6.3
. Soft jig ++ + — < 1.0
Execution Tool changer  ++4 — + 1.0

the comparisons of agility, versatility, and precision are summarized in Table 5.1,
and those with known actual time are shown together.

First, I compare the automatic real-world dataset generation with the CG-
based dataset generation. CG-based method is faster, but in the object recog-
nition results evaluated in this thesis, the accuracy is a little lower when no
real-world data is used. On the other hand, the proposed automatic generation
method significantly improves the collection time compared to the conventional
manual annotation. This is the result of 500 images collection and annotation
data generation.

Second, I compare the CAD-based sequence generation with the manual se-
quence generation. Description-based sequence generation is faster when not
running optimization calculations based on the parts geometries. CAD-based se-
quence generation is less prone to human errors and variations in the format of
the design document.

Finally, I compare the soft jig with the tool changer. In the case of the tool
changer, it takes time and preparation to determine multiple hands and jigs used
for each operation, and it also takes time to reposition them before execution.
On the other hand, in the case of the soft jig, in addition to changing the jig
to another jig with a different scale according to the size of the target part, it
may only be necessary to reposition the jig considering the range of motion of
the robot’s fingers, and this can be done in less than an hour.

5.3. Remaining Issues

The achievements and remaining issues are summarized in Table 5.2 and Ta-
ble 5.3. HC in the table stands for hard-coded, which is the part programmed by
human. These are the parts that should be constructed in future works or based
on other studies.
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Table 5.2. Functions implemented for the real-time execution. The table indicates
whether each function is a general-purpose type or a specialized type.

Basic configuration General-purpose Specialized
Object perception v
Task perception v (HC)

Task planning
Manipulation planning

NSNS

Grasp planning v (HC)
Trajectory control
Grasp control v (HC)

Table 5.3. Functions implemented for the system reconfiguration. The table indicates
whether each function is automatic or manual.

Configuration for reconfiguration Automatic Manual
Dataset generation v
Model training v
Replanning sequence v
Learning strategies v (HC)
Reconfiguring hardwares v (HC)
Learning skills v (HC)
Parameter adjustment v (HC)
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Chapter 6

Conclusion

This dissertation aims to identify how to agilely reconfigure the system to handle
the frequent introduction of new products.

6.1. Contributions

Here, I summarize the major contributions of this dissertation

e Fully automated annotation methods with visual markers that were dimin-
ished later is effective for generating annotated images rapidly. To obtain
the real-world image datasets, unbiased dataset collection was proposed and
evaluated. Automatic image dataset collection method with a small robotic
arm and a rotating stage enabled us to collect multi-view object images more
quickly. A domain adaptation method with several image processing tech-
niques were evaluated by training conventional deep learning-based object
detection methods.

e CAD-based assembly planning methods for searching feasible assembly se-
quence without interferences of parts, satisfying insertion relationships, and
with low difficulty of constraint state transition. I designed the fitness func-
tions for genetic algorithms for the heuristic search. To achieve calculating
the fitness based on the geometries extracted from the CAD model, auto-
matic extraction methods of part information for not only rigid object but
also the deformable objects are proposed and evaluated using a product
including many parts and a deformable rubber band.

e A state-of-the-art flexible part fixing device named soft jig was proposed.
The usability and flexibility of the soft jig was evaluated, in terms of the
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capablility of fixing assembly parts with robotic arms and assembly parts.
The fixing capability based on jamming transition was clarifiend on the
experiments of object placement and the application of external force.

6.2. Future Directions

This dissertation mainly discuss agile reconfiguration methods related to task
planning, manipulation planning and grasp planning. The more challenging fu-
ture issues are related to following two aspects.

How could the assembly system be adapted to more drastic change
of products? In order to quickly respond to the changes of the target prod-
uct not only parts, we need to discuss several remaining issues. Unlike in the
case of the part changes, semantics related to assembly operations and assem-
bly parts [Savarimuthu et al., 2018; Shiraki et al., 2014] can be obtained from
the assembly operator or videos with Learning from Demonstration (LfD) or a
similar approach. Although there are many studies on human imitation learning
for assembly tasks [Zhu and Hu, 2018], there are no successful examples using
actual mechanical parts. As our future work, I will develop a system to clarify
the possibility of agile reconfiguration for product changes.

Over the past four decades, there are numerous research articles on autonomous
robotic assembly systems [Kyrarini et al., 2019] based on robot-robot collabora-
tion [Argall et al., 2009; Maeda et al., 2007; Marvel et al., 2018; Zhu and Hu,
2018] and human-robot collaboration [Kriiger et al., 2009; Raessa et al., 2020;
Tsarouchi et al., 2017; Weckenborg et al., 2020]. To achieve the agile reconfigu-
ration, several modular reconfigurable systems [Heilala and Voho, 2001; Tsukune
et al., 1993] were proposed. Furthermore, planning methods for the reconfigura-
tion of each system have been proposed, such as cell layout planning [Laemmle
and Gust, 2019; Zhang and Fang, 2017], scheduling of the multi-robot assembly
cell [Glibert et al., 1990] and relocating multiple robots [Arai et al., 2000; Maeda
et al., 2003; Makris et al., 2012].

In the research [Kriiger et al., 2009], they mention the flexibility and change-
ability of assembly processes require a close cooperation between the worker and
the assembly robot. They also conclude that the interaction between humans and
robots improves the efficiency of individual complex assembly processes, particu-
larly when a robot serves as an intelligent assistant.

There are many studies on the framework in which robots learn from humans
through two-way or one-way communication. Many research conducted Learning
from Observation/Demonstration [Atkeson and Schaal, 1997; Tkeuchi et al., 2018;
Nakaoka et al., 2007; Pastor et al., 2009; Savarimuthu et al., 2018; Schaal, 1996]
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(Programming by Demonstration [Billard et al., 2008] and Learning by Watch-
ing [Kuniyoshi et al., 1994]). The learning from demonstration methods have
been applied to assembly tasks to obtain the skillful motions for the robots from
humans [Hamaya et al., 2014; Wang et al., 2020a]. Generating robotic assembly
tasks from human demonstrations [Ding et al., 2020] and generating collaborative
assembly tasks [Malik and Bilberg, 2019] have been much attentioned.

In our future work, to achieve high-level planning quickly if product has changed,
I will explore a combined system such as the human-robot collaboration system
that can learn assembly tasks from natural demonstrations by a human not only
the instructions and object data.

What technologies are needed to achieve a more robust assembly sys-
tem in uncertain environments? The key issues to keep the robustness even
for such frequent product changes are realtime assembly error recorvery based on
semantic understanding of the changes, and improving the reconfigurability in
the hardware structure for robotic assembly systems.

To recover from errors of the robot system during assembly operations, we
need a system that re-executes the operations based on the results of the opera-
tions. An approach is to construct a robot system that can deal with failures by
extracting the constraint direction between parts and executing a predefined re-
covery action for the constraint direction that cannot be satisfied. Error recovery
methods in assembly operations are an important unsolved problem [Fujita et al.,
2018] in achieving a general-purpose assembly robotic system, where it was found
that no methods have been established in the assembly challenge of WRS’18.

Aforementioned error recovery methods online are required but what we need
more is a framework for an error-less assembly system. Creating a way to deal
with each error is a naive approach, so it unnecessarily increases the complexity
of the system. Rather, the direction of improving the performance of each module
that can be easily controlled and reconfigured, such as the soft jig proposed in
this dissertation, reduces the complexity of the system and makes it difficult for
human errors and artificial bugs to occur. A general parts feeder [Domae et al.,
2020] and a mechanical tool to extend the general grippers [Hu et al., 2019] are
also interesting approach in this direction.

In terms of the hardware reconfiguration, a challenging but siginificantly ef-
fective approach is to achieve not modular but self-reconfigurable (self-assembly
or self-repair) robots [Murooka et al., 2019] for autonomous assembly system.
Many conventional self-reconfigurable robots are easily reconstructed by making
the hardware itself modular [Liu et al., 2016a; Yim et al., 2007; Yoshida et al.,
2002]. The modular systems are tend to be complex structures. However, ex-
ploring the reconfigurability of general-purpose robot hands and gripper-mounted
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robot arms are expected in industry because it may not require major changes to
the currently deployed system.
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Appendix

A. Automatic Dataset Collection in Other Use Cases
A.1. Pose Adjustments of Camera and Target Object

Figure 6.1 shows a large-scale dataset collection system compared to the auto-
matic training dataset collection system using the small robot arm described
in Chapter 2. This system can automatically collect a large amount of object
images on the conveyor. Thus this system can be used to collect the dataset
for training a detection system used for a line production rather than the cell
production.

The system generates a training dataset unbiased in terms of the data quantity
of the position and orientation of target objects. The collection time is in a shorter
time than manual method. In the experiments, I verified the effectiveness of the
automatic system by comparing with the manual method in both the time to
collect training data and the accuracy of the trained vision system.

l RGB camera
D »)) Object

¢« ) Visual
P ‘
Control PC NG markers

©Z — Rotating stage
Conveyor belt Linear actuator

Figure 6.1. Overview of automatic dataset collection system with a conveyor belt.
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Conveyor belt

(a) Experiment environment (b) Pose adjustment system

Figure 6.2. Automatic dataset collection system with a pose adjustment system.

System overview

Figure 6.2 shows the system consisting of a conveyor belt (Okura Yusoki, BEL-
CON MINT III), a linear actuator (IAI, CP4-SA5C-1-42P-12-400-P3-M), a rotat-
ing stage (OptoSigma, OSMS-60YAW) to move and rotate the object (hereinafter,
pose adjustment device), and a monocular RGB camera (FLIR Systems, Flea3
FL30U3-8852C). The RGB camera fixed on a tripod captures a video of the object
during the movements of the conveyor, linear actuator and rotating stage.

Figure 6.3 shows the processing flow of collecting the training image dataset.
First, we attach visual markers to the turntable on the rotating stage, where the
target object is placed. Second, multiple images of the target object are captured,
while changing their position and orientation on the conveyor belt. The pose
adjustment system are controled to avoid overlap in position and orientation of
the object captured on the conveyor to collect an unbiased image dataset.

Third, using the detection results of the visual markers and object size informa-
tion, we assign the bounding box and category label as the object annotations to
the images. Forth, we masked the images with a background image to delete un-
necessaly object areas. Finally, we train a deep-learning-based detection system
using the generated training dataset.

Evaluation

Experimental setup In the experiment, the detection system is trained using
the training datasets collected by the manual method and the automatic method.
I compare the time required to generate the training datasets and the accuracies
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M Automatic image capturing Adjustment of object pose
Automatic annotation
Image capturing

| Marker detection
I

L 2

Contour generation
of object approximate shape
I

Object labeling |

v v
Generating bounding Background masking
. rectangle of contour for device image area
Bounding rectangle Background-masked

Figure 6.3. Process flow of generating images for training dataset.

Figure 6.4. Detection results of the vision system trained with the datasets collected
using the pose adjsutment system.

of the detection systems trained using the two datasets. Figure 6.2 (a) shows the
experimental environment. I selected three types of objects with different shapes
shown in Figure 6.2 (a) as detection-target object. I collected 500 images for one
object.

In the manual collection, two people took pictures and annotated the images
manually. When collecting the image dataset, one person randomly arranged the
position and orientation of the object, and the other person took the image. The
orientations were arranged in 45-degree increments. In the manual collection, 500
images are taken so that three types of objects can be captured in an image. We
use labellmg* for the manual annotations.

In the automatic collection, the conveyor transport the object at low speed
of the belt movements. The linear actuator changes the object position from 0
to 250 mm in 50-mm increments. The rotating stage changes the orientation in

*Labellmg (Available: https://github.com/tzutalin/labelImg [Accessed: 25- Nov- 2020])
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Table 6.1. Time to collect training data [min].

Manual Automatic

Capturing time 80 139
Annotating time 217
Total time 297 (5.0 h) 139 (2.3 h)

Table 6.2. Detection performance [%)].

Manual Automatic
Object F. Prec. Rec. F. Prec. Rec.

Bottle 99 98 100 73 98 o8
Pouch 72 88 61 91 99 84
Can 82 79 8 94 92 97

Mean 84 88 82 &4 96 77

45-degree increments.

By controlling the object position moved by the drive of the conveyor with a
time command of 1 second, it was possible to take pictures at 9 points in the
drive direction of the conveyor.

Collection time Table 6.1 shows the time to generate the training dataset for
each method. The automatic method reduced 53.2% of the generation time of the
manual method. The main reason for the reduction in time is that the automatic
system allows the dataset collection process including the image capturing and
the annotation to be performed in parallel. The current system takes longer to
capture images compared to manual system, but the annotation time is included
in the time to take the image, resulting in 0 minutes.

Accuracy of detection system I used 100 images to evaluate the trained
detection system. I compared the results of object detection using the two de-
tection systems with the true values (manually annotated data). Among the
detected objects, those with reliability of 60 percent or more are determined to
be correctly detected. Figure 6.4 shows the detection results of the automatic
collection method.

Table 6.2 shows the detection accuracies. The results in the table refer to the
F-measure, Precision, and Recall, respectively. The results of the manual method
show that the accuracy of the bottle detection is very high. For the detection of
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©e00CC OO
99620500

e
(a) Bottle (b) Pouch

Figure 6.6. Visualization of the collected dataset in terms of the position and orienta-
tion of the object.

pouches and cans, the results of the automatic method are much more accurate
than the results by manual method. In the precision of the automatic method,
the all values are very high, but, the recall of the bottles is significantly worse.

Discussion There are two possible reasons of the extremely low recall of the
bottle in the automatic method. One of the drawbacks in the use of visual markers
is that the marker-detection error in the Z axial direction is large, and when the
error is large, an error of 10 degrees or more may occur. Consequently, since
the bottle height is high, unexpected masking to the area of the target object
occurs. The other reason is that, as shown in Figure 6.5, the marker apperance
is reflected on the bottle surface. The reflection of the visual marker was not be
appered on the surfaces of the pouch and can, so it is highly possible that the
reflection was the reason.

As shown on the visualization of Figure 6.6, the object position and orientation
of the pouches and cans included in the training images have variations. Also,
for the pouch and can, the results by automatic method shows high accuracies in
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Figure 6.7. Overview of Web application for automatic dataset collection.

terms of F-measure, precision, and recall values. In the case of a deep-learning-
based detection system, in order to achieve highly accurate detection, there is a
possibility that a training dataset unbiased in terms of the position and orienta-
tion of the target object is better.

A.2. Human-in-the-Loop Collection using Web Application

I propose an image dataset collection system using a Web application. With
the proposed Web application displaying the collection rate, users can efficiently
collect a multi-view image dataset by moving the smartphone’s or tablet’s camera.
Figure 6.7 shows the overview of the application configuration and interface to
collect and annotate images.
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Collection of multi-viewpoint image datasets

The purpose of this system is to efficiently collect image datasets of objects from
multiple viewpoints even in any places. The Web application allows users to
easily record multi-viewpoint images from free viewpoints. By implementing the
function of automatic annotation by visual markers that I have proposed as a
Web application, the user’s operation is only to start the application and move
the device itself. In order to collect an unbiased multi-viewpoint image dataset,
the system saves images and annotations as a dataset so that the viewpoint
information (position and orientation of the object seen from the camera) does
not overlap with the existing data. Furthermore, the function of displaying the
data collection rate implemented in the Web application allows the user to quickly
collect data by relying on the collection rate.

I developed the Web application using NUXTT. I used a JavaScript library to
satisfy various functions of the application. Heroku! allows us to easily deploy,
manage, and scale Web applications, temporarily publish the Web application to
the Internet and then publish it on the Internet. We just run the application on
the smartphone device.

I developed a Web application that does not depend on the smartphone device
instead of a native application (Android application, iOS application, etc.). The
implemented application can be operated on smartphones, tablets, PCs, etc.

Collection rate display function

The collection rate is displayed in real time on the screen of the Web application
for the purpose of collecting multi-viewpoint images unbiased in terms of the
object pose. The collection rate is displayed in the upper left of the screen. The
collection rate is calculated based on the data of the 3D position and orientation
of the visual marker in the camera coordinate system. If there is a difference of 25
mm or more in any of the axial directions of x, y, and z in the 3D position data
acquired so far, the collection rate will increase and the image and annotation
data will be saved. Furthermore, even if the position data does not differ, if
there is a difference of 30 deg or more in the rotation angle around any axis of
x, y, and z in the 3D posture data, the image and annotation are saved. This
can reduce duplication of data related to the viewpoint. The thresholds of 25
mm and 30 deg were empirically set so that they could be collected over a wide
range.

The display of the collection rate leads to the gamification of the image dataset
collection. Users can enjoy collecting while thinking about ways to increase the

T Available: https://nuxtjs.org/ [Accessed: 25- Nov- 2020]
tAvailable: https://jp.heroku.com/ [Accessed: 25- Nov- 2020]
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Figure 6.8. Time to collect the image dataset [sec].

collection rate efficiently. If such a game can be provided, rapid image dataset
collection can be achieved in the end.

Evaluation

Experimental setup The collection procedure of the dataset in the experiment
is as follows:

1. Attach a visual marker at a position where the object can be easily detected.

2. Start the Web application on your device.

3. Move the camera while checking the collection rate on the Web application
interface to take a multi-viewpoint image (image capturing and data saving
are automatically executed on the back end of the Web application).

A visual marker is fixed onto a 3D-printed jig, and an object is attached to the
jig to fix the relative position and orientation between the marker and the object.
I conducted five trials to collect 50 images using an Android smartphone, and if
50 images are collected, the collection rate is set to 100 percent (100%).

Collection time The time to collect the 50 images in five trials is shown in Fig-
ure 6.8. The collection times in the five trials by manual method are 184, 190,
179, 160 and 165 seconds. The average time of the five trials is 176 seconds which
is shown in Figure 6.8 as the red dotted line. The collection times in five trials by
manual method are 183, 183, 147, 119 and 125 seconds. The average time of the
five trials is 151 seconds which is shown in Figure 6.8 as the blue dotted line. In
the manual method, the annotator took images one by one using the native cam-
era application of the smartphone without using the proposed Web application.
When using the proposed Web application, it took less than 3 minutes for the
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collection in all the five trials. With the current prototype system, it is possible
to collect 1000 image data sets in one hour.

Compared with the method without using the Web application, the average
collection time by the proposed method is shortened by 25 seconds. In the case
of manual method, the camera is kept stationary so that the visual markers are
not blurred. In the proposed method, the resting time can be shortened by
changing the viewpoint when the collection rate improves.

In the proposed method, the collection time of the five trials tends to decrease.
I believe that one of the reasons for the large decrease in the five trials is due
to the function of displaying the collection rate. The display of the collection
rate shows the progress of the collection status, thus the user can learn how to
improve the collection rate efficiently by seeing it as a kind of reward. Displaying
the collection rate may accelerate the user’s familiarity with the application, and
is useful as a method for efficiently collecting the image dataset.

Variability of collected data The plot of the 3D position and orientation
data in the 50 images collected in the first trial is shown in Figure 6.7. The
plotted points are widely spread, indicating that a high degree of variability in
3D position and orientation has been collected. Therefore, the proposed system
enables us to collect unbiased multi-viewpoint image datasets efficiently.
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