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Novel Performance Metrics to Evaluate

Bin-picking Robots for Various Mixed Items*

FUJITA Masahiro

Abstract

Bin picking of various mixed items is an important research problem in robotics.
Recent robotics competitions are an excellent platform for technology comparisons
since some participants may use state-of-the-art technologies, while others may use
conventional ones. Nevertheless, even though points are awarded or subtracted based
on the performance in the frame of the competition rules, the final score does not
directly reflect the suitability of the technology used. Therefore, it is difficult to under-
stand from the scores which technologies and their combination are optimal for various
real-world problems. One key element for a bin-picking robot is the gripper, as it is
the main tool to manipulate objects. If the target items are diverse, multiple grippers
are normally used. A design of gripper combinations depends not only on the item
variations but also on the state of the bins, which changes with the progress of the task.

This dissertation first proposes a strategy to change the gripper combination during
a bin-picking task based on the sparseness of objects inside bins, and a bin-picking
robot system using it. The evaluation results using successful picking rate as a met-
ric are shown, and the effectiveness of this strategy is verified. However, this metric
represents only one aspect of the robot system as well as scores in the competitions.

Furthermore, this dissertation proposes a set of performance metrics selected in
terms of actual field use as a solution to clarify the important technologies in bin pick-
ing. Moreover, we use the selected metrics to compare four original robot systems,
which achieved the best performance in the Stow task of the Amazon Robotics Chal-
lenge 2017. Based on this comparison, we discuss which technologies are important
for practical use in bin-picking robots in the fields of warehouse automation.

*Doctoral Thesis, Graduate School of Science and Technology, Nara Institute of Science and Tech-
nology, October 29, 2020.
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Chapter 1

Introduction

Bin picking is still an important problem in robotics. Its difficulty is described in [1],
for example. Picking an item from a cluttered scene is applied to various fields: parts
supply in Factory Automation (FA), pick-and-place in Warehouse Automation (WA),
cleaning up using household robots and so on. But it is difficult to apply existing
methods, if the target items have various shapes, and materials.

These last few years, robotic competitions which aim to solve a domain challenges
are often held as a platform to accelerate technology development. In the FA field,
for example, the National Institute of Standards and Technology of USA is organizing
the Agile Robotics for Industrial Automation Competition [2] since 2017, which is a
simulation-based competition focused on agility. The Ministry of Economy, Trade and
Industry of Japan is carrying out an Assembly Challenge [3, 4] in their World Robot
Summit' since 2018. This is a real robot’s competition focused on factors during setup
changes and those of during operation. The former factors are agility and leanness.
The latter ones are operation rate improvements.

In the WA field, Amazon Robotics, Inc. held a competition in 2017 regarding
a warehouse task automation applying robotics. In large warehouses of e-commerce
corporations, a mixture of daily items are manually picked and placed. The automation
of the manual work is an important problem in robotic bin-picking. In particular, tech-
nical problems lie in picking items with various shapes and in identifying their texture,
shape, and material. Various methods have been proposed to solve the problems in
the competition in which the ability of the robot system was tested in a competition
setting.

In this dissertation, we show a system comparison of the four unique teams which
ranked first to fourth places in the Stow task of the Amazon Robotics Challenge 2017.
In the competition, the systems were ranked according to the organizer’s rules. How-
ever, it is difficult to analyze the system performance in terms of a more practical use.

The reason is that a single metric like the competition’s score represents only one as-

Thttps://worldrobotsummit.org/en/



pect of the robot system and loses some information about the original data that reflects
its performance. While the needs of each industry are different, competitions reflect-
ing the needs of each industry are taking place. In this dissertation, we first propose a
strategy to change the gripper combination during a bin-picking task and a robot sys-
tem using it. Then, we propose a set of metrics in order to reflect the detailed behavior
of a system to our system performance analysis as a solution to clarify the important
technologies in bin-picking. Finally, we describe an example analysis to show the is-
sues that arise when robots are applied to actual warehouses by using the comparison
results. Also, the elements in each system to be improved to get better performance
are clarified.

The main contributions of this dissertation are the following:

e A proposed strategy to change the gripper combination during a bin-picking task
and its application to a real robot system.

e Details of four unique robot systems and a comparison of the system configura-
tions of each team.

e A proposed system performance evaluation based on plural metrics introduced
from reliability engineering [5, 6]. By this analysis, each team strategy was
revealed.

e A discussion on pros and cons of the systems and technologies including the
details of the systems, and also a discussion on lessons learned and on future

system design.

This dissertation is organized as follows. Chapter 2 introduces the problem setting
of the Stow task. Chapter 3 presents the related works. Chapter 4 presents our proposed
multi-gripper switching strategy and our proposed robot system using it. Chapter 5
presents our proposed system performance evaluation metrics, describes four systems
developed for this task, and presents a performance evaluation using the proposed met-
rics. Chapter 6 analyzes our findings and presents lessons learned. Finally, Chapter 7
concludes this dissertation.



Chapter 2

Problem setting

Mitsubishi Electric Corporation, Chubu University and Chukyo University participated
in the Amazon Robotics Challenge 2017 as team MC? with a robot system which im-
plements the proposed gripper designs, gripper combination strategy, and recognition
methods. Our robot system picked 18 out of 20 items in the aforementioned Stow task
and came out third.

We show an outline of the Stow task rules in the Amazon Robotics Challenge 2017.

e Robots must pick various daily items automatically from a tote and place them

into a storage.

e [tems are mixed in a tote as shown in Fig. 1. Robots must identify the items and

record which items are placed into a bin in the storage.

e If a robot can pick and classify an item, then place the item into a bin in the
storage and record its location successfully, points are awarded.

e If items are dropped or damaged while picking and placing, points are sub-
tracted.

Figure 1: Example of items in a tote for the Stow task.



e 20 items are in a tote. Half of the items are distributed to teams in advance. The
other half of the items are distributed just before the starting the competition.

The recognition dataset must be updated in a few minutes.

e Robots must finish the task in 15 minutes. If robots finish the task before the

15-minute period, teams get additional points.

e Storage can be designed by each team with some limitations: size, number of

bins and so on.

We also describe the details of the scoring system in the rules. Points are awarded
as follows:

e 5 points for each item stowed into the storage system, plus 5 additional points if

the item is a new (unknown) item.

e 1 point for every 5 seconds or fraction thereof that remain on the clock when
the task is complete and all items have been successfully stowed in the storage
system, so long as at least 15 of the locations of the items are correctly registered

in the item location file.
Points are subtracted as follows:

e -15 points for each item that is not in the storage system, stow tote, or amnesty
tote at the end of the task, except for items grasped by the robot under normal

operation when time runs out.

e -5 points for each item in the storage system or stow tote with an incorrect final

location in the item location file.

e -5 points for any item that is dropped into the storage system from a height of

more than 15 cm.

e -5 points for each item that is protruding more than 2 cm out of the storage

system.

e -5 points for minor damage to an item, such as bends and dents.



e -20 points for major damage to an item, such as large rips, holes, or crushing.

More details, please check the official site?.

Zhttps://www.amazonrobotics.com/site/binaries/content/assets/amazonrobotics/arc/2017-amazon-

robotics-challenge-rules-v3.pdf



Chapter 3

Related works

The related works are presented in five groups. The first group includes systems de-
veloped for the bin-picking tasks. The second group summarizes different design ap-
proaches for grippers. The third group is on grasp planning. The fourth group is on
item recognition. Finally, the fifth group is about comparison analysis of competition

systems.

3.1 Bin-picking systems related to competitions

Bin-picking is a classical but still state-of-the-art challenge in robotics. Many propos-
als were made on the automation of pick-and-place tasks in warehouses in the Ama-
zon Picking Challenge (later known as Amazon Robotics Challenge), held from 2015
to 2017. In particular, there were many proposals and findings on gripper design to
solve problems when picking various items as described in later sections. In the first
competition held in 2015, actual shelves used in Amazon warehouses were also used
in the pick-and-place of daily items from a bin.

As mentioned in the summary article of the 2015 competition [7], it was proven that
a suction gripper is able to pick many kinds of items. Further in the 2016 competition,
the winner Delft [8] and many other teams succeeded in picking hard-to-pick items
such as a mesh cup, which a suction gripper was unable to handle, by combining
suction and two-finger grasping or similar pinching mechanisms.

In the 2015 competition, we proposed a robot system which can switch between
3 types of two-finger grippers with different widths [9]. In the 2016 competition, we

proposed a robot system with a suction gripper and a two-finger gripper [10].

3.2 Gripper design

For grasping, the combination of suction and two-finger or suction only became the
common configuration. In the 2017 competition, almost all the teams used either of

the two-gripper configurations mentioned above.
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The overall winner of 2017 [11] as well as team NAIST-Panasonic (Garcia et
al. [12]), who configured the system by analyzing the past competitions and came
fourth at their first attempt, adopted the gripper configuration of suction and two-finger
combination. Team MIT-Princeton [13], the winner of Stow task in 2017, where only
bin-picking ability was tested, made a system which enabled several motions such as
suction down, suction side, grasp down, flush grasp in one gripper system that com-
bined suction and two-finger grippers. Only the runner-up in Stow task, Team Nanyang
[14], used a configuration with two suction grippers and without a two-finger gripper.
They achieved a high score by focusing on bin rather than gripper design. To explain
in detail, they added a mechanism which expanded the bin space thereby modifying
the problem from a hard bin-picking to a simpler picking like a pick-and-place prob-
lem from a wide open flat space. The team was successful in picking various items,
and their strategy was necessary for items in a hard-to-pick pose or occluded. Team
MC? proposed a two-stage strategy to use three types of gripper properly [15], which
is described in Chapter 4. As aforementioned, many types of gripper designs were
proposed in the competitions.

In comparison, jamming gripper [16] is highly versatile in picking various kinds of
items. Nevertheless, there are some difficulties in applying jamming grippers to bin-
picking because when a jamming gripper tends to pick several small items in a tightly
packed bin simultaneously. Also, in principle, as it needs to come into contact with the
item before it starts grasping, it tends to fail in picking soft items which may change
shape easily. Thus, nobody used the jamming gripper in the competitions.

3.3 Grasp planning and grasp point detection

Grasp point detection takes place to determine the gripper pose to pick detected items.
A method [17] which convolutes a binary image model of the gripper to the depth
image and does not require pre-information of the object is already used in factory
automation. Many methods for grasp point detection using machine learning from
RGB images and depth images have been proposed. Jiang ef al. proposed a method
[18] which searches in an RGB image for a pose that is easy for a two-finger gripper
to grasp and they were the first to make it practical [19] with deep learning. Pinto et
al. proposed a grasp point detection method [20] from an RGB image based on 50,000

trials on actual robots. Moreover, Levine and others achieved a method [21] where



hand-eye coordination detects a grasp point from RGB data. The common among all
these methods is that they are able to determine the grasp point using only images.
Unfortunately, the physical correspondence between gripper and item in grasping [22]
cannot be understood just from appearances in an image.

Mahler and others have defined a matrix which determines grasp points for a num-
ber of objects in advance from the relationship between the 3D object model and the
3D gripper model and propose a method [23] which assumes a physical grasp point
of unknown objects by learning from a vast amount of data. They achieved this with
deep learning [24] and used it with vacuum and suction’ type of grippers [25]. In
this method, bin picking is available based on the learned results when the learning
becomes precise enough.

Furthermore, Matsumura and others succeeded in bin picking with real robots ex-
clusively by learning from simulation data [26]. Team MIT-Princeton [13] and others
fitted for both suction and two-finger grippers by detecting grasp points with Fully
Convolutional Network (FCN) on the base [13]. Whether to use a learning method
by providing data beforehand or to use a non-learning method which is more adaptive
to unknown objects and environmental changes depends on the preconditions of the
problem.

3.4 Sensors and algorithms for item recognition

In the competition, item detection based on images obtained from RGB-D sensors is
often used. The winning team in 2015 probabilistically classified multi-class items
with a method which describes the type of item in each pixel using image features ob-
tained from RGB and depth images [27]. Then, items are segmented by integrating the
result. In the 2015 competition, many teams used algorithms based on image features.

From 2016 onward, many adopted Convolutional Neural Networks (CNN) and
showed good performance. Faster network variants such as Faster R-CNN [28] which
performs bounding box detection and multi-class classification in order, and high speed
YOLO [29] and SSD [30], which perform the detection and classification in parallel,
were used for the recognition. There were teams [11] who used semantic segmentation

methods as a base and all performed well in detecting (classifying) items in the bins.

31n this dissertation, we refer to the blower-based suction as suction and vacuum-pump-based suction

as vacuum.



Object pose detection is used to determine grasp point on items after they are de-
tected. In general, data obtained from an RGB-D sensor and object model are matched
together using methods such as Iterative Closest Point [31], which minimizes the point
cloud position errors between data and model, and Directional Chamfer Matching [32],
which presumes object pose by featuring image edges and matching them for every
view direction. Such methods are used for bin-picking in factory automation as they
are robust against illumination changes, among other things.

The methods [33, 34], which estimate object pose by voting after extracting fea-
tures and matching pairs of vectors obtained from edges and planes of object, are good
in speed and accuracy balance. A method [35], which assumes the position and ap-
proximate pose of an object by adding multi-view data to a CNN, is also proposed.
Nevertheless, to use these methods, a 3D model of the object is required. If a 3D
model is not available, a method by the Team MIT-Princeton [36], which assumes the
object pose by fitting primitive shapes like spheres and cubes directly to the data, is

also proposed. The method to use depends on the precondition of the problems.

3.5 Comparative analysis of competition systems

In the Amazon Robotics Challenge, points are awarded or subtracted based on the per-
formance in the frame of the rules. But the final score does not seem to directly reflect
the technology suitability. Therefore, organizers and teams published papers about sys-
tem analysis [7]. Results of the analysis are not based on the scores in the competition,
but statistical data by a questionnaire survey about used technologies, team configura-
tions, and so on. From the results, we can understand which technologies were well
used in the competition. But we have difficulty in analysis of a system performance in
terms of more practical use.

Successful picking rate as shown in [17, 15] is an important metric to evaluate
the system performance in practical use. Mean Picks Per Hour (MPPH) [23] is also
a well-used metric [25, 13] which is related to both picking rate and picking time.
But such a single metric represents only one aspect of the robot system and loses
some information of the original performance data. Therefore, in this dissertation, we
propose a set of metrics in order to analyze a system performance that reflects different

aspects of a system behavior.
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Chapter 4

Multi-gripper switching strategy
based on object sparseness

In large warehouses of e-commerce corporations, a mixture of daily items are manually
picked and placed. The automation of the manual work is the most significant prob-
lem in robotic bin picking. In particular, technical problems lie in picking items with
various shapes and in identifying their texture, shape, and material. Various methods
have been proposed to solve the problems proposed in competitions held by Amazon
Robotics, Inc. from 2015 to 2017, in which the ability of the robot system was tested in
a competition setting. Many teams use a gripper combination of two grippers, such as
two-finger and suction, but the combination of grippers may be changed depending on
the state of the bins. Therefore, the gripper combination should be adjusted according
to such state.

In this chapter, we propose a gripper combination strategy based on sparseness
of objects inside bins to change the gripper combination dynamically. In addition, we
also propose a robot system which has three different types of grippers and the strategy
with which specific items are efficiently picked from a bin containing a pile of various
daily items. Furthermore, we describe an item recognition method based on computer
vision and its capabilities.

The main contributions of this chapter are the following:

e A proposed metric to switch a gripper combination, determine the object sparse-

ness, and its application to a real robot system

e A robot system for bin-picking based on a combination strategy of three types
of grippers.

e A comparison of the successful picking rate between the proposed system and
the winner of the Stow task in the Amazon Robotics Challenge 2017.

11



4.1 Object sparseness

If robots have multiple grippers, the gripper combination should be changed according
to the state of the bin, as this state changes when the robot picks items from the bin.
At an early stage, many types of items appear on the surface. Therefore, any type of
gripper has the possibility of picking items. However, bins are usually crowded. In a
crowded bin, there are no gaps to insert fingers for picking. Therefore, grippers which
have a possibility of collisions, such as multi-finger grippers, may be hard to use at the
early stage. Vacuum or suction grippers are better to use than the finger-based grippers.
In a crowded bin, target items may be under other items. Therefore, vacuum or suction
grippers with a small-sized cup are more suitable to pick items at the early stage.

In general, the state inside the bins toward the end of the picking process changes

as follows:

e [tems become sparse and isolated from each other.
e Items hard to recognize and pick tend to remain.

e [tems tend to remain near the walls of the bin.

When items are isolated, grippers which have a possibility of collision, like two-
fingers, may reach a grasp pose more easily. Further, the more sparse the items get,
the risk of picking several items also decreases, and approaching items in hard-to-pick
poses becomes easier. Thus, large-sized suction (vacuum) grippers become easy to
use.

In the state transition of bins as described above, the robot should switch a gripper
combination when items are placed sparsely. We define the Object sparseness S as

below, for understanding the states of bins.

S=Sg—NnR*, (1)

where Sp denotes the area of the base of a bin, R denotes an average radius of circles
which circumscribe items, and N denotes the number of items. N is calculated by
subtracting the number of items taken out from the known total number of items in the

bin.

12



We switch the gripper combination according to whether S has a positive value or
not. If § is positive, gaps between items are visible inside the bin. If § is negative,

items are piled in the bin with hard-to-use gaps.

4.2 Combination of multiple grippers

We propose a robot system which can properly use two gripper combinations. The
proposed robot system is shown in Fig. 2. Two robot arms are mounted on linear
sliders, facing each other with the item bins in the center in between them. Each robot
arm is able to operate individually and has an RGB-D sensor and a force sensor. The
RGB-D sensor is used for item and picking position detection.

The recognition algorithm is described below. The force sensor is used for force
control when the robot picks and places items. The proposed robot system has three
different types of gripper: suction, vacuum, and two-finger. The suction gripper is
mounted on the left-side robot, as shown in Fig. 2. The vacuum and two-finger grippers
are mounted on the right-side robot, as shown in Fig. 2. The two-finger gripper is used
after removing the vacuum gripper by using a tool changer mechanism. These three
different types of gripper were judged to be necessary to surely pick all 40 items given
prior to the competition. In order to use three types of gripper for two robot arms, a
gripper combination strategy based on the object sparseness is used. The three types
of grippers on the proposed system are shown in Fig. 3.

Suction gripper. This gripper is based on a blower. It suctions large amounts of
air and lifts up an item so that it sticks onto the suction pad. This gripper is able to
stably grasp materials such as cloth through which air can pass. Although it cannot
pick items such as a mesh cup which completely lets air pass through, it can pick items
of almost any kind, shape, and material when compared to the other gripper types.
To increase the versatility for picking items, the tip of the proposed suction gripper is
covered with a large flexible pad, as shown in Fig. 3(a). As this pad wraps “along” the
surface of items and creates a caging state, it is able to stably pick various items. One
of its disadvantages is that the risk of picking several items simultaneously increases
as the pad is soft and easy to deform. Moreover, the gripper also tends to pick other
items nearby depending on the strength of the air flow. For this reason, recognizing
other nearby items which may interfere in the picking is important.

Vacuum gripper. This gripper is based on a vacuum pump. It is highly reliable

13
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Figure 2: Proposed bin-picking robot system for various mixed items. The system has

three different types of gripper: vacuum, suction and two-finger. SSD-based object
detection and 3D-pose estimation algorithms can detect the graspable items and the
grasping points. A multi-gripper switching strategy based on our proposed metric as
named object sparseness is applied to the system. Thus, the proposed system can

switch grippers according to the state of the bins.

and is widely used in factory automation. When the vacuum gripper comes into full
contact with the surface of an item, it suctions the air between the closed pad and the
item surface, which generates negative pressure. This negative pressure is higher than
that of a suction gripper, which enables stable picks of the items even when using a
small diameter pad. The vacuum gripper shown in Fig. 3(b) is designed with a pad
with smaller diameter than that of the suction gripper shown in Fig. 3(a). As a result,
it becomes easier to create a tight seal with the surface of small items and reduces the
risk of picking several items simultaneously. Even so, it is unable to pick items when
negative pressure cannot be generated on its surface. Examples are items for which the
vacuum pad cannot completely come into full contact with their surface or items such

14



(a) (b) (c)

Figure 3: Three types of grippers on the proposed system: (a) suction gripper for var-
ious items, (b) vacuum gripper for items under other items, and (c) two-finger gripper

for mesh items and hard-to-pick items.

as clothes which allow even a tiny amount of air to pass through. Therefore, this is a
method suitable to pick items with pinpoint accuracy though the types of item will be
limited.

Two-finger gripper. This gripper is able to pinch and pick items even if air passes
through their surface. The fingers must open wide to pick various items. Therefore, the
fingers of the proposed two-finger gripper, shown in Fig. 3(c) open wide by attaching
a link mechanism to the tip of commercially available parallel chuck. Although the
two-finger gripper is able to pick many kinds of items, there is a caveat. In contrast to
suction and vacuum grippers which stably pick the items once they find the surface of
the item, the position of the gripper must be determined while taking into consideration
the collision with nearby items. For this reason, higher accuracy is required for grasp
point determination methods based on RGB-D sensors.

Gripper combination. As we mentioned in Section 4.1, two-finger grippers have
the possibility of collision. Therefore, we use a suction and a vacuum gripper at the
early to middle stages. Then, we switch the gripper combination of a suction and a

two-finger gripper by using the Object sparseness S.
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4.3 Item recognition

We describe the item recognition method of the proposed robot system, which uses an
RGB-D sensor, as shown in Fig. 4. There are three large phases in the proposed item
recognition flowchart.

Item detection. Bounding boxes and multi-class recognition takes place simul-
taneously for several times on a Single Shot MultiBox Detector (SSD) based network
[30]. As shown in Fig. 5, apart from the general index in SSD, box offset estimator and
item classifier, “objectness” is adopted and evaluated at the same time. Objectness is
an our proposed classifier which determines whether an item in a bounding box is an
object or just background or a shadow. Bounding boxes classified as non-object with
high confidence by this classifier are rejected and item classifications are given to the
remaining boxes. By doing this, items are detected with high accuracy in a bin with
mixed items. Also in SSD, items classified with low accuracy or unknown to the SSD
network are further identified by color histogram obtained from the visible portion of
the item. From the above, bounding boxes containing the items detected from RGB
images are classified.

Item shape and pose estimation. Unknown items with no prior information are
also the subject of bin picking. That is why pose estimation using 3D CAD models of
items is not used. Instead, we assume the shape and pose of items, i.e., segments, with

a method [35] in which point cloud data and primitive shape models are matched.
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Figure 5: SSD-based item detection method. Objectness is our proposed classifier
and is applied to the original SSD model to reduce the detection error caused by the
background.

Grasp point detection. The point where the pad of suction and vacuum grippers
is closer to the center of gravity of a fitted primitive shape is taken as the grasp point.
We use Fast Graspability Estimation (FGE) [17] to determine the collision with nearby
items for the two-finger gripper. This method enables to pick unknown items without
shape model or even when the item is recognized as unknown as long as the gripper
models are provided.

Items both already learned and not sufficiently learned (those given in the last
minute) are recognized and grasp positions and poses for suction, vacuum, and two-

finger grippers are calculated without any item model. In the end, classified segments
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Figure 6: Actual recognition result examples which were captured using two RGB-D
sensors on each robot arm. Top-left: initial state of a part of the bin. Bottom-right:
final state of a part of the bin. The bounding boxes are the detected items. The small
circles are candidates of graspable points. A grasp point or two-finger gripper position
is determined after the recognition process.

and gripper poses on each segment are calculated. Fig. 6 shows examples of recogni-
tion results with classified bounding boxes, and where suction and vacuum grasp points
are detected. The grasp point for the two-finger gripper is calculated by applying this
result to FGE.

For each item, the gripper to use when picking is prioritized in advance considering
the characteristics of the item and each gripper. After recognizing an item, the system
basically selects the gripper according to the priority in the current gripper combination
and tries to pick the item.

4.4 Performance evaluation using successful picking rate

As we mentioned in Chapter 2, we participated as team MC? in the Amazon Robotics
Challenge 2017 with a robot system which is described in Section 4.2. Our robot
system picked 18 out of 20 items in the aforementioned Stow task and came out third.
The second place was team Nanyang [14] which used two robot arms with suction
grippers. They picked 16 out of 20. The first place, team MIT-Princeton [13] picked
all 20 out of 20 with a gripper system in which multiple picking motions are gathered
into one. The organizer of the competition selected the items for each team to pick.
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Although the selection of items varied among teams, the proportion of hard-to-pick
items was considered to be similar.

We evaluated the performance of the proposed system as a bin-picking robot sys-
tem. For comparison, we chose team MIT-Princeton’s system [13] which is simi-
lar to ours (i.e., they solved the problem as the hard bin-piking problem by using a
multi-gripper strategy). We evaluated the successful picking rate from the competition
videos. We analyzed the grasp rate of each gripper.

Successful picking rate. The successful picking rate shown in Fig. 7 is defined
as follows: the success rate for all pickings when it is a success if an item is picked
from the bin and placed without dropping; and it is a failure if an item is missed or
several items are picked simultaneously. The transition of Team MIT-Princeton [13]
compared to the proposed system is shown below. As shown in Fig. 7, the proposed
system, which switches gripper combination based on the object sparseness, maintains
a high successful picking rate from the beginning. Although the rate falls in the second
half, it is consistently higher than the compared system.

The details of the number of picked items and the successful picking rate of each
gripper are shown in Table 1. The final successful picking rate is 64.3% for the pro-
posed system and 59.4% for the compared system. The vacuum gripper in the proposed
system obtained 100% of successful picking rate. The two-finger gripper in the com-
pared system also recorded a high successful picking rate of 75%. In both systems,
the suction gripper succeeded to pick most items. Here, the number of picked items
for the compared system is 19 because a point was given to an item dropped while
it was transported as it coincidentally ended up in the right bin. In accordance with
the definition of successful picking rate mentioned above, this is counted as a failure.
Picking the item in Fig. 8(a) was tried for many times (from trial 16 to 25). In the end,
the two-finger gripper succeeded to pick the hard-to-pick items, as shown in Fig. 8(a)
and (¢).
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Figure 7: Transition of the successful picking rate. The orange line corresponds to the
proposed system. The proposed system uses a suction gripper and a vacuum gripper
from the beginning to the middle. After 12 picks, it switches to a suction gripper and a

two-finger gripper based on the object sparseness.

Table 1: Number of picked items and the successful picking rate of each gripper of the
two systems.

Proposed system

Suction | Vacuum | Two-finger || Total
Number of picked items 9 6 3 18
Successful picking rate [%] | 64.3 100 37.5 64.3

Compared system

Suction | Vacuum | Two-finger || Total
Number of picked item 13 - 6 19
Successful picking rate [%] | 54.2 - 75 59.4
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Figure 8: Items which are hard to recognize and pick: (a) shiny metal parts, (b) translu-
cent cup, and (c) black mesh cup. The proposed system could ultimately pick these

items but several picking errors occurred.

21



Chapter 5

Performance metrics to evaluate
bin-picking robot Systems

5.1 Proposed set of performance metrics

In Section 4.4, we have compared two systems (team MIT-Princeton and team MC? at
the Amazon Robotics Challenge 2017) using successful picking rate as a performance
metric. Mean Picks Per Hour (MPPH) [23] is currently widely-used as a bin-picking
system performance metric [23, 37]. Since a high correlation to the score of the compe-
tition is seen with MPPH, it is suitable as a performance comparison metric of several
systems developed for the Amazon Robotics Challenge 2017.

However, comparing system performance using such a single number means that
only one aspect of the robot systems is considered and it is not clear which technologies
and combinations are important. A solution to this problem is to evaluate the system
performance in a comprehensive way by calculating several metrics for each system.

We propose to use Number of trials per hour, Mean Time Between Failure
(MTBF), Mean Time to Repair (MTTR), and Availability, in addition to Aver-
age probability of success which is the same number as the successful picking rate
and MPPH to evaluate the system performance. These introduced metrics, MTBF,
MTTR, and Availability are originally used in a field of reliability engineering [5, 6].

By evaluating each system individually and comprehensively, we analyze their sys-
tem design policy and system performance in a multifaceted manner. In each system,
their subsystems work differently as they are designed differently, then multiple met-
rics will reflect the difference between systems.

MPPH is calculated by multiplying the Number of trials per hour and the Aver-
age probability of success. These two metrics try to analyze MPPH in more detail by
breaking it down into two factors.

Average time per trial is measured from the competition video of each team. Then,

Number of trials per hour can be calculated from the Average time per trial. These
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two metrics can be used for comparison of a bare picking action speed.

The Average probability of success is also measured from the competition video
of each team.

MTBEF stands for Mean Time Between Failures and is calculated by dividing the
normal operating time by the failure count of the system.

_ Ty
MTBF = , (2)
Ndown

where Ty, is the duration of the system running well, and Nyown is the number of times

the system fails. These are obtained from the competition videos.

According to this definition, MTBF represents the average length of time that the
system continues to work as expected. In other words, we can compare the length of
time that the control algorithm is able to keep up with the variations of phenomena.

MTTR stands for Mean Time to Repair and is obtained as follows:

MTTR — —down : 3)

down

where Tyown 1S the duration from the beginning of the failures to the end of the recovery

actions and is obtained from the competition videos.

This metric is expected to reflect the skills of each system to recover when a failure
occurs. That is, we can compare the design strategies of the system as well as the
MTBF.

Availability is obtained as follows:

MTBF @
MTBF+MTTR"
Availability is a dimensionless quantity, which represents the ratio between the

Availability =

time that the system is running well and the total time the system is operating. We
can expect a comparison of the duration of normal operation and recovery operation
for each system. It is still a metric that is expected to reveal the design strategy of the
system.

The purpose of introducing the set of performance metrics described above is pri-
marily a comparison of the detailed functionality and performance of each system. The

true goals are an uncovering of system design strategies, a discovery of measures to

23



obtain better functionality and performance, and a discovery of legitimate technologies

for the target purpose.

5.2 Compared systems

5.2.1 Team MIT-Princeton (1st place)

The MIT-Princeton system [13] consists of a 6DOF ABB IRB 1600id robot arm next
to four picking work-cells (see Fig. 9a). The robot arm uses a multi-functional gripper
with two fingers (built on top of a Weiss WSG 50 gripper) for parallel-jaw grasps
and a custom retractable suction cup. The gripper is designed to function in cluttered
environments: finger and suction cup length are specifically chosen such that the bulk
of the gripper body does not need to enter the cluttered space. One gripper fingertip
is equipped with a GelSight tactile sensor, while the other fingertip uses an actuated
fingernail for scooping along the sides of storage bins. Each work-cell consists of a
storage bin, as well as four fixed-mounted RealSense SR300 RGB-D cameras: two
cameras overlooking the storage bins (positioned on opposite sides) are used to infer
grasp points, while the other two pointing towards the robot gripper (also positioned
on opposite sides) are used to recognize objects in the gripper. Each work-cell also
includes a force sensor underneath for 1) checking the weight of picked objects, and
2) detecting collisions.

The system is built around a grasp-first-then-recognize pipeline. For each pick-and-
place operation, it uses fully convolutional networks (FCNs) to take as input RGB-D
images of the work-cell, and output pixel-wise confidence scores (i.e., affordances) of
four different motion primitives for picking (see Fig. 9b): top-down suction, side suc-
tion, top-down grasp, side-flush grasp. Each pixel of the output represents a suction or
parallel-jaw grasp centered at the 3D location of that pixel " s corresponding surface in
view (Fig. 9c). The FCNs are trained using a dataset of 1,837 RGB-D images of clut-
tered work-cells, with good/bad grasp locations manually annotated by human experts.
During inference, the system selects and executes the motion primitive with the highest
predicted confidence score, picks up one object, isolates it from the clutter, holds it up
in front of cameras, recognizes its category, and places it into the appropriate bin. The
recognition algorithm uses a two-stream network to learn a common feature embed-

ding space between 1) observed images of held objects, and 2) product images — where
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Figure 9: The MIT-Princeton system setup (a) consists of a 6DoF robot arm next to
four picking work-cells. The system uses (c) FCNs to predict pixel-wise grasping
confidences scores (i.e., affordances) of (b) four motion primitives using suction and
parallel-jaw grasping. After executing the motion primitive at the 3D location of the
pixel with the highest confidence score, the system picks up an object and uses (d) a
two-stream network to match images of the held object to the most similar product
image for recognition.

images of the same object match to more similar output features. Since this network
architecture does not rely on knowing the number of object categories beforehand, it
is capable of recognizing images of novel objects unseen during training by matching
them to corresponding product images that are provided at test time (Fig. 9d). Prior to
the competition, the network is trained over observed-image-to-product-image pairs of
known objects.

This system design has several advantages. First, the FCN-based grasping algo-
rithm is model-free and agnostic to object identities. It detects grasps by using local
geometric and texture features on objects, allowing it to learn biases that can general-
ize to novel objects without retraining (e.g. flat surfaces are good for suction, porous
surfaces are bad for suction, etc.). Second, the object recognition algorithm works
without task-specific data collection or retraining for novel objects, which makes it
scalable for applications in warehouse automation and service robots where the range
of observed object categories is large and dynamic. Third, the grasping framework
supports multiple grasping modes with a multi-functional gripper (suction and grasp-
ing) and thus handles a wide variety of objects. Finally, the entire processing pipeline
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Figure 10: Team Nanyang’s system (a) and its system architecture (b).

including grasp detection and recognition requires only a few forward passes through
deep networks and thus executes quickly (a few hundred milliseconds in total per pick-
and-place).

5.2.2 Team Nanyang (2nd place)

The team formed by members of the Nanyang Technological University (Singapore)
developed a dual-arm robot system equipped with suction-based grippers and a top-
open drawer-like storage system [14]. The robot system features two identical ma-
nipulators (Universal Robots URS), three stereo cameras (Stereolabs ZED) and two
custom-built grippers. The built system is shown in Fig. 10(a) together with its system
architecture shown in Fig. 10(b).

The workspace is divided into two individual and one shared work cell to optimize
the manipulation performance and decrease the risk of collision between the manipu-
lators. The shelf has two bins which temporarily extend sideways in order to disperse
the cluttered pile of items. This allows the system to have easier access to the items
and to facilitate the object detection by decreasing occlusion.

For object detection, they use the results of either one of two classifiers, one based

on engineered features and the other based on learned features, whichever has the
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Figure 11: Robot system by team MC2. (a) the system overview. (b) The system has
three different types of gripper: suction, vacuum and two-finger. (c) SSD-based object
detection and 3D pose estimation algorithms can detect the graspable items and the
grasping points from cluttered scenes.

highest confidence. This is because they expect higher confidence for unknown items
from the former, and higher confidence for known items from the latter. As engi-
neered features, they use Grid-based Motion Statistics (GMS) [38], which is a feature
detection algorithm similar in principle to SIFT but superior in performance. The
learned-features are extracted using CNNSs.

The grippers are suction-based since over 98% of the training items were success-
fully grasped using our modified suction cups. The grasping strategy consists mainly
on approaching the objects straight down from the top, which is effective for almost
98% of the items.

5.2.3 Team MC? (3rd place)

The team MC? is explained again here for easy comparison with other teams, though
it is described in section 4.2. The system is shown in Fig. 11(a). Two robot arms are
mounted on linear sliders, facing each other with the item bins in the center in between
them. Each robot arm is able to operate individually and has an RGB-D sensor and a

force sensor. The RGB-D sensor is used for item and picking position detection. The

27



recognition algorithms are based on SSD, graspability, and primitive shape matching
for item detection and classification, gripper pose detection, and item pose estimation
separately as shown in Fig. 11(c). The force sensor is used for force control when the
robot picks and places items. The proposed robot system has three different types of
gripper: suction, vacuum and two-finger as shown in Fig. 11(b). The suction gripper
is mounted on the left-side robot, as shown in Fig. 11(a). The vacuum and two-finger
grippers are mounted on the right-side robot, as shown in Fig. 11(a). The two-finger
gripper is used after removing the vacuum gripper by using a tool changer mechanism.

We devised a strategy in which the gripper combination changes accordingly. As
bins are crowded and items are on top of each other, vacuum gripper, which picks items
in smaller a surface area for picking, is preferred. As items are both large and small, the
suction gripper, which is able to pick large items once it recognizes the surface, is also
suitable. In contrast, collision due to item crowding inside the bin must be considered
for the two-finger gripper and it is hard to obtain a pose for grasp positioning in a
crowded bin. Therefore, the combination of vacuum and suction gripper is chosen for
the beginning and middle stages of the picking task.

When items are isolated, two-finger gripper can reach a grasp pose more easily.
Besides, the value of two-finger gripper rises because the remaining items are hard to
pick with vacuum and suction grippers used at the early and middle stages. What is
more, the more sparse the items get, the risk of picking several items also decreases,
and approaching items in hard-to-pick poses becomes easier. Thus, the suction gripper
is also adopted. To achieve the strategy explained so far, we configured a robot system
in which one robot arm has a suction gripper and the other has vacuum and two-finger

grippers, as described in [15]. The grippers are switched with a tool changer.

5.2.4 Team NAIST-Panasonic (4th place)

Team NAIST-Panasonic is formed by the Nara Institute of Science and Technology
(NAIST) and Panasonic Corporation and include members with experience in robotics
competitions [39].

The proposed solution consists of a 7-DOF robot arm (KUKA LBR iiwa 14 R820)
with a custom-made end effector, a controlled space (recognition space) with four
RGB-D cameras, and a shelf (storage system) with weight sensors underneath [40].
The setup of the proposed bin-picking solution is shown in Fig. 12a.
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Figure 12: Bin-picking system proposed by team NAIST-Panasonic. (a) shows the
system overview, (b) shows the suction and two-finger grippers, and (c) presents the

learned and engineered features used for item recognition.

The end effector has a suction gripper and a two-finger gripper, shown in Fig. 12b,
mounted on two separate linear actuators, and an RGB-D camera to recognize items
and estimate the grasping points. The suction gripper consists of a compliant vac-
uum cleaner hose which is partially constrained to reduce swinging when transporting
items. The two-finger gripper has high-friction rubber on its parallel fingers and is used
as a secondary grasping tool. Both grippers include force-sensitive resistors to detect
collisions with items and force control to avoid damaging items. The smart design of
the end effector provided a reliable and consistent performance. The high flow and
compliance of the suction gripper reduced the negative effects of vision and motion
planning errors, making the system able to pick and transport the items safely.

The recognition space consists of four RGB-D cameras (Intel Realsense SR300)
pointing at a space over the storage system, where eight LEDs control the illumina-
tion and the background of the cameras’ views is controlled using non-reflective black
plates. They combine learned and engineered features, shown in Fig. 12c¢, to achieve
a robust object recognition for both known and unknown items. This was particu-
larly useful in the case of the combination of bounding box volume and weight for

clamshell-type and deformable items.
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The strategy to recognize an item is: 1) point the end effector’s camera to the target
container, perform object detection using YOLO v2 [29] and grasping point estimation
using RGB images, and pick the item with the highest recognition confidence; and 2)
move this item into the recognition space to confirm or reject the initial belief using
SVMs for single or combined engineered features (color histogram, bounding box
volume, and weight) trained with data collected at approximately 90 seconds per item.
A weight is assigned to each learned or engineered feature to adapt object recognition
to the task requirements, physical characteristics of target items, and so on, resulting
in a voting system that determines the final item class.

They designed the system to overcome failures by quickly detecting the most com-
mon errors and by preparing recovery behaviors in advance. This allowed them to
retry failed grasping attempts in a short time. Moreover, they followed a time-saving
strategy by 1) trying to pick the next viable item, if the previous attempt failed, with-
out having to observe the scene again (i.e., save time by reusing previous information
from the end effector’s camera), and 2) trying to pick an attempted but failed item by
aiming to locations neighboring the original target grasping point. This strategy de-
rives from the assumption that the scene has not changed significantly since the last
attempt, and helps to compensate for vision sensing errors. Finally, the recognize-
while-holding concept of the recognition space increased the robustness of the system
to accidentally-dropped and unrecoverable items which could critically compromise

the object recognition capabilities.

5.2.5 Comparison of system configurations

We show the system configurations of each system in Table 2. The main similarities

which can be understood from this table are:

e All systems are based on industrial robots because accuracy and speed are im-
portant factors to complete the task. Industrial robot’s high accuracy may be
excessive but some collaborative robots are difficult to use for the Stow task

because of low accuracy.

e Almost all teams based their grippers on suction (or vacuum) and two fingers.
Suction-based grippers can pick many items including deformable objects but

they are difficult to apply to mesh items (i.e., air-permeable items). On the other
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Table 2: System configuration of each team.

MIT-Princeton Nanyang MC? NAIST-Panasonic
Robots One 6-DoF robot | Two 6-DoF robot | Two 6-DoF robot | One 7-DoF robot
arm arms arms on [-DoF | arm
linear sliders
Sensors Sixteen fixed | Three fixed RGB- | Two RGB-D sen- | Five RGB-D
RGB-D sensors, | D sensors sors and two force | sensors (four fixed
four force sensors sensors on robot | and one on robot
(below bins), arms, and two | arm), two weight
one tactile sensor weight sensors sensors, two FSR-
(GelSight on based contact
gripper), and one sensors, and one
air pressure sensor air pressure sensor
Grippers Multi-functional Two suction-based | One large suction | One suction grip-
gripper with | grippers gripper, one small | per and one two-
two fingers for vacuum  gripper, | finger gripper
parallel-jaw and one two-finger
grasps and a re- gripper
tractable  suction
cup
Recognition Two FCNs to infer | Mixed-mode clas- | SSD-based item | Multi-modal
algorithm grasping  points | sifier using feature | detector and clas- | weighted vot-
for both suction | extraction (GMS) | sifier from a RGB | ing classifier
and parallel-jaw | and CNN image, gripper | using learned
grasping, and a pose detector from | and  engineered
two-stream  net- a single depth | features (YOLO
work to match real map, and 3D pose | from RGB, vol-
images of objects estimator from a | ume from depth,
to product images point cloud data weight, and color
for classification histogram)
Unique Learning  visual | Top-open extend- | Using three types | High-flow suction
features affordances  for | able shelf design | of grippers and its | gripper and fast
multi-functional combination strat- | failure recovery
gripping (grasping egy
and suction)
# of robot arms 1 2 2 1
# of sensors 22 3 6 10
# of grippers 2 2 3 2
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hand, two-finger grippers can pick mesh items. Therefore, the combination per-
forms well.

e The item recognition of the systems is mainly based on RGB-D sensors and
CNN-based algorithms. Open source computer vision implementations are easy

to use for researchers of the robotics field and perform well enough.
The main differences are:

e The number of robots and their degrees of freedom are different. All teams
basically pick items from above the storage system with 4 DoF. Therefore, 6
DoF should be enough. Robot systems can have many robots but systems with
too many robots are hard to implement and are more prone to collision problems.

Therefore, some teams use systems with fewer robots.

e Some teams used force sensors, weight sensors, visual-tactile sensors (GelSight),
and so on. These sensors seem to be useful for the Stow task but the implemen-
tation may be difficult, mainly because there are very few useful open source

projects to help with the implementation.

5.3 Comparison results using the set of performance metrics

We calculated the proposed set of performance metrics and relative values, as shown
in Table 3. Here, Number of trials, Number of successes, Number of failures, Sum
of up time, Sum of down time and total time were obtained from the videos recorded
during the Amazon Robotics Challenge 2017. With regard to Sum of down time, the
timing of returning to the normal flow after failing to grasp the object is confirmed.
The timing of normal flow depends on the team. For example, in the case of the team
MC?2, the timing is when the robot arm stopped for object recognition, and in the case
of the team NAIST-Panasonic, the timing is when the approach was started to pick the
next object.

Then, we normalized the most significant metrics based on the winning team (team
MIT-Princeton), as shown in Table 4. We also show these normalized results in Fig. 13.

From Fig. 13, we observe that the score based on ARC rules, MPPH, and Avail-
ability are highly correlated, which makes it suitable as a comprehensive performance
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Table 3: Results of metrics calculation of each team.

MIT-Princeton | Nanyang | MC? | NAIST-Panasonic
Score based on ARC* rules 160 125 120 110
Number of trials 32 37 28 50
Number of successes™* 19 16 18 17
Number of failures 13 21 10 33
Successful picking rate 0.594 0.432 | 0.643 0.340
Average time per trial [sec] 23.1 24.3 32.1 18.0
Number of trials per hour 156 148 112 200
Average probability of success 0.594 0.432 | 0.643 0.340
MPPH 92.6 64.0 72.0 68.0
Sum of up time [sec] 535 504 488 437
Sum of down time [sec] 204 396 412 463
Total time [sec] 739 900 900 900
MTBEF [sec] 41.2 24.0 48.8 13.2
MTTR [sec] 15.7 18.9 41.2 14.0
Availability 0.724 0.560 | 0.542 0.486

* Amazon Robotics Challenge 2017.

** Successful sequences of pick, move, and place.
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Table 4: Normalized results of selected metrics based on highest score team (team
MIT-Princeton).

MIT-Princeton | Nanyang | MC? | NAIST-Panasonic
Score based on ARC* rules 1.00 0.78 0.75 0.69
Average time per pick 1.00 1.05 1.39 0.78
Number of trials per hour 1.00 0.95 0.72 1.28
Average probability of success 1.00 0.73 1.08 0.57
MPPH 1.00 0.69 0.78 0.73
MTBF 1.00 0.58 1.19 0.32
MTTR 1.00 1.20 2.63 0.89
Auvailability 1.00 0.77 0.75 0.67

* Amazon Robotics Challenge 2017.
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Figure 13: System performance comparison based on the selected metrics.
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metric in that sense. We consider that the slight deviation is caused by a difference
in scoring when including a bonus point. However, the other metrics are considerably
fluctuating.

Fig. 14 shows the correlation of the selected metrics. The size of the circle, as
well as the color difference, indicates the strength of the correlation. Availability and
the score based on ARC rules have a particularly strong positive correlation. Average
probability of success and MTBF also have a strong positive correlation. On the other
hand, Number of trials per hour have a fairly strong negative correlation with Average
probability of success, MTBF, and MTTR. The correlation is not strong except for the
above.

Table 5 shows the details of the number of picked items and the successful picking
rate of each gripper. Some parts of the table are described in section 4.4. Both Nanyang
and NAIST-Panasonic have low successful picking rates.
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Figure 14: Correlation among the selected metrics.
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Table 5: Number of picked items and the successful picking rate of each gripper. We
refer to the blower-based suction as suction and vacuum-pump-based suction as vac-
uum. In this dissertation, dropped items during pick-and-place do not count as suc-

cessful picking.

MIT-Princeton

Suction | Vacuum | Two-finger || Total
Number of picked items 13 - 6 19
Successful picking rate [%] 54.2 - 75 59.4

Nanyang

Suction | Vacuum | Two-finger || Total
Number of picked items 16 - - 16
Successful picking rate [%] | 43.2 - - 43.2

MC?

Suction | Vacuum | Two-finger || Total
Number of picked items 9 6 3 18
Successful picking rate [%] 64.3 100 37.5 64.3

NAIST-Panasonic

Suction | Vacuum | Two-finger || Total
Number of picked items 17 - 0 17
Successful picking rate [%] 34 - 0 34.0
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Chapter 6

Discussion

6.1 Multi-gripper switching strategy

As shown in Fig. 7, the proposed system maintained a higher successful picking rate
than the compared system, especially from the beginning to the middle of the pick-
ing task. As shown in Table 1, the vacuum gripper in the proposed system recorded
100% successful picking rate. The analysis showed that the vacuum gripper accurately
reached small available surfaces and managed to pick items on top of others or items
underneath other items deep in the bottom of the bin. With the suction gripper used
alongside, the system correctly decided to use the suction gripper for large items and
the vacuum gripper for small items or items with a small visible area, which, in con-
sequence, led to a high success rate. From these results, we observed that using two
sizes, a small vacuum cup and a suction cup worked reasonably well.

On the other hand, the successful picking rate for the two-finger gripper was as low
as 37.5%. This is because the two-finger gripper was used toward the end of the task,
when the only remaining items were hard to pick. A shiny metal object shown in Fig.
8(a) is the item which was hard to pick. There were errors in item recognition and
grasp point detection because the depth map measurement for this item was not stable.
The measurement quality of depth map is crucial for grasp point detection. Due to
this measurement quality, picking the item in Fig. 8(a) was tried for many times (from
trial 16 to 25). In the end, the two-finger gripper succeeded to pick the hard-to-pick
items shown in Fig. 8. We can conclude that the strategy to pick the hard-to-pick items
toward the end of the task worked.

From this point of view, our proposed switching strategy of a gripper combination
worked reasonably well. In other words, the timing of switching the gripper combina-
tion was appropriately controlled based on the sign of the Object sparseness S. This
time, we proposed the strategy to switch the gripper combination based on the sign of
S. That is, the threshold value is set to zero, but if the threshold value is set to a value

other than zero, the performance may change, and verification of this is an issue for the
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future. We consider that the value of using two-finger and multi-finger grippers will
increase in the future when the ability of item recognition improves and there are more
varieties in grasp motion control.

It is worth mentioning that the successful picking rate of the two-finger gripper is
high in the compared MIT-Princeton system [13], namely 75%. With a gripper which
has a fingertip using an actuated fingernail for scooping along the sides of the bins as
described in subsection 5.2.1, an item extremely hard to pick such as a book leaning
on the wall of the bin was successfully picked. It obtained good results by specially
devising the structure of the gripper.

6.2 Analysis of the performance comparison

In this section, we analyze the results shown in Fig. 13. We consider changes of each
metric in comparison to the actual system implementation, and explore the system
design concept.

MPPH is a good metric that represents system performance, as evident in the fact
that MPPH and the score based on the rules of the Amazon Robotics Challenge are
similar. Hereafter, we examine the factors constituting the MPPH, namely, the Num-
ber of trials per hour and Average probability of success.

First, Number of trials per hour is very low for MC?, while it is significantly
high for team NAIST-Panasonic. The other two teams are in the middle. When we
look closely at the system design of each team, MC?2, for example, has a hand-eye
system with a vision sensor attached to a wrist of their robot, and it is configured to
perform the vision sensing operation and the other operation sequentially. In other
words, the recognition operation is performed after the completion of the stow oper-
ation, which is one cycle before, then, the picking operation starts. Therefore, one
cycle takes an amount of time while teams MIT-Princeton and Nanyang can perform
the previous stow operation and the recognition operation concurrently and shorten
their cycle times. Team NAIST-Panasonic also has a hand-eye system to recognize
items and estimate the grasp points. Team NAIST-Panasonic has a strategy to shorten
cycle times and increase the number of trials by detecting failures quickly and taking
recovery actions immediately. The system reuses previous information instead of rec-
ognizing objects again in the event of a failure. From the beginning to the middle, this

strategy worked well, but in the final stage it sometimes did not. These differences in
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system design for each team are reflected in the number of trials per hour.

In terms of the Average probability of success, team MC? and team MIT-Princeton
are comparable, while NAIST-Panasonic and Nanyang have lower values. As a system
design concept, the difference lies in whether it is thought that every single operation
is important or not. Team MC? has a strategy to switch the gripper combination of
three different types of gripper appropriately to surely pick items and achieved the
highest average probability of success. Team MIT-Princeton has a specially devised
multi-functional gripper and four types of gripping motion primitive to increase the
probability of success. On the other hand, team NAIST-Panasonic attempts to score
by retrying quickly if it fails, assuming it will fail. There is a clear difference in the
system design concept.

With regard to the MTBF, team MC? has the largest value, followed by team MIT-
Princeton. Team NAIST-Panasonic has a particularly small value. This metric shows
how long the robot system can continue to operate normally on average before failing.
Since MTBF has a strong correlation with the average probability of success, as shown
in Fig. 14, MTBF also shows the system design concept of each team. Team MC? and
team MIT-Princeton try to keep normal operation as long as possible, while the other
two teams allow failures.

Considering MTTR, team MC? has a particularly large value compared to the other
three teams. Note that the smaller the value, the better. This metric shows how quickly
the robot system can return to normal operation if failures occur. As team MC? has
a hand-eye system, performs the vision sensing operation and the other operations
sequentially, and has no quick recovery strategy, it takes quite a long time to return
to normal operation once a failure occurs. It can be said that the system design of
team MC? is very disadvantageous from the viewpoint of not only short operation time
but also quick recovery from failure. NAIST-Panasonic has the smallest value. Their
design policy of detecting failures quickly and retrying in a short time is reflected in
this value.

In terms of Availability, team MIT-Princeton has the highest value, and the other
teams have similar ones. While the other teams are better in the metrics mentioned
above, team MIT-Princeton seems to be balanced on the speed of operation, the proba-
bility of success, and the time of recovery from failure. Although team MC? has a high

average probability of success, it took a long time to retry a failed attempt, that is, it had
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a large MTTR and performed only gentle and naive actions, which resulted in repeated
unsuccessful picking motions and low availability. Team Nanyang and team NAIST-
Panasonic have lower MTTR than team MC?, but more failures and lower average
probability of success resulted in lower availability similar to team MC?. Availability
has a strong correlation with the score based on ARC rules. So, it can be said that the
ARC rules evaluate availability of the system. Since Availability indicates the ratio of
the time during normal operation to the total operating time, it is reasonable to evaluate
it in the competition from a practical point of view. MPPH is also correlated with the
score based on the ARC rules. In this sense, Availability and MPPH are suitable as
comprehensive performance metrics for bin-picking robots in the fields of warehouse

automation.

6.3 Lessons learned and important technologies for practical use

In the previous section, we estimated the design policy differences and their perfor-
mance with newly introduced metrics, which could not be understood from the analysis
based on a single metric.

We found that it is important to realize 1) short operation time, 2) high probability
of success, and 3) short recovery time from failures. Achieving these three points at a
high level will result in high availability and high MPPH, and the resulting robot sys-
tem will be close to practical use. Now we discuss the technologies that are important
for achieving these goals.

In terms of short operation time, the facts indicate that a hand-eye system is disad-
vantageous for shortening operation time because measurement and real work must be
carried out in series, and parallelization is not possible. In other words, vision sensors
should be placed separately to make measurement and actual work proceed simulta-
neously. When a hand-eye configuration is adopted, the vision sensors can be moved
within the reach of the robot, and it is advantageous that the visual field can be moved
and widened. On the other hand, in the separation type, the vision sensors have fixed
arrangements, and the visual field can not be freely changed. If the robot system con-
tinues to work in the same environment, it will not be a problem. However, it could be
disadvantageous if a hardware reconfiguration is needed.

The operation time of the system can be also shortened by using multiple robot

arms in an appropriate configuration. If multiple robot arms can work simultaneously
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in the same operation area while avoiding collisions, the operation time will be even
shorter. In addition, shortening the robot trajectories by using robot arms with re-
dundant degrees of freedom or making the robot motion itself faster will also lead to
shorter operation time. At this time, we must be careful about item damage. In the
competition, damage to an item results in a large deduction in score. Because there is
no record of damage to items, it is not discussed in this dissertation. It is presumed that
all teams are afraid of penalty points so that they added a wide-enough margin to their
system operation. In a practical system, both elimination of item damage and short
operation time must be achieved.

As for high probability success, it is of course important to improve recognition
performance of vision systems, but it is also necessary to advance grasping technolo-
gies. In order to grasp various items, a gripper suitable for each item should be used.
Since items can take various postures, the gripper also needs various approach mo-
tions. From the viewpoint of a practical use, it is very important to grasp an item
without damaging it. In some cases, two robot arms may need to work together. For
example, one robot may slightly move an item and the other robot may retrieve an item
below it.

With regard to short recovery time from failures, how quickly to detect a failure and
take the next action is important. In addition, from the perspective of increasing avail-
ability, recovery strategies for grasping failures are important in order not to repeat the
same failure. Retrying which does not rely on probabilistic phenomena is required, for
example, by changing parameters of the recognition algorithm and grasping method,
and possibly changing postures of the object by such as flipping them, shaking the
bins, and so on.

As is common to all of the above, cost and reliability are most important from a
practical point of view. As the system becomes more complex, it becomes more costly,
less reliable, and less practical. This must always be kept in mind in order to realize

practical bin-picking robots for warehouse automation.
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Chapter 7

Conclusions

In this dissertation, important technologies to realize practical bin-picking robots for
warehouse automation are discussed.

First, a strategy to change the gripper combination during a bin-picking task based
on the sparseness of objects inside bins, and a bin-picking robot system using it are
proposed. The evaluation results using successful picking rate as a metric are shown,
and the effectiveness of this strategy is verified.

Then, a novel set of performance metrics to evaluate bin-picking robots for various
mixed items from multiple aspects is proposed. We quantitatively analyzed four robot
systems developed for the Amazon Robotics Challenge 2017 using the proposed set
and clarified hidden features and system design concepts behind the competition scor-
ing. We showed the difference between these systems and clarified the importance of
short operation time, high probability of success, and short recovery time from failures.
The results may be qualitatively obvious, but for the first time they are quantitatively
confirmed for bin-picking robots for various mixed items by the proposed set of per-
formance metrics.

Finally, important technologies to realize practical bin-picking robots are discussed.
Further technology developments are needed. We expect this analysis to be a good ref-

erence for advanced future technologies along with novel needs of the industry.
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