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Neural Network Approaches

to Coordination Disambiguation∗

Hiroki Teranishi

Abstract

Coordination is a syntactic phenomenon in which two or more elements,

known as conjuncts, are linked together typically by a coordinating conjunction.

Coordinate structures frequently occur in natural language and a major source

of ambiguities that cannot be resolved easily even by humans. Coordination has

challenged linguists for decades because it imposes numerous exceptions on the-

ories of syntax, such as phrase structure grammars. Due to its intractability,

many natural language processing (NLP) applications, such as syntactic parsing,

named entity recognition, and machine translation, suffer from the presence of

coordination. Recent advances in deep artificial neural networks have greatly

improved the performance for many NLP tasks. However, coordination is a still

difficult aspect to take into account.

In this dissertation, I focus on identifying the conjuncts of coordinate struc-

tures, especially in English text. I mainly propose two methods for this task: (1)

a top-down approach and (2) a bottom-up approach, both of which utilize deep

neural networks.

The top-down approach first identifies a coordinate structure and then re-

trieves the individual conjuncts from it. In this approach, the similarity and

replaceability properties of conjuncts are exploited. For instance, “The company

provides [language instruction] and [translation services] in 25 countries” has

symmetry between the two conjuncts, and it is synonymous to say “The company

provides [translation services] and [language instruction] in 25 countries.” The

∗Doctoral Dissertation, Division of Information Science, Graduate School of Science and

Technology, Nara Institute of Science and Technology, September 16, 2020.
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proposed neural networks incorporate these characteristics of conjuncts as fea-

tures without external thesauri, language models, or syntactic parsers, which have

been used in most previous studies. Because the proposed model is lightweight,

the system can examine all possible coordination spans. Although this approach

outperforms existing methods, analyses reveal that the system is poor at finding

conjuncts in coordination.

In contrast, the bottom-up approach first finds individual conjuncts and then

constructs a coordinate structure from them. In this approach, coordinate struc-

tures for a given sentence are identified in the form of a syntactic tree, which is

produced by a context-free grammar designed for recognizing coordination. This

ensures that any two coordinate structures are disjoint or nested, and therefore

they never conflict with each other. The proposed neural network model con-

sists of submodels, each of which is specialized in capturing different parts of

coordinate structures. Using the submodels in the Cocke–Kasami–Younger algo-

rithm, the system efficiently produces coordinate structures as a tree with great

accuracy.

The main contribution of this dissertation is the demonstration of effective

frameworks that combine neural networks with algorithms for coordination disam-

biguation. Experimental results show that the proposed methods achieve state-

of-the-art performances with no dependence on external resources, ensuring that

the global structure of coordination is consistent.

Keywords:

coordinate structure analysis, conjuncts, neural networks, syntactic parsing, CKY

algorithm
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Chapter 1

Introduction

Natural language is the primary means of communication between humans.

Whether it is conveyed in text, speech, or even sign language, ambiguities of syn-

tax or semantics can cause misunderstanding. People are capable of interpreting

language by leveraging the knowledge, context, and background they share, even

if it is ambiguous. On the contrary, computers have difficulty understanding it

due to their lack of “common sense” possessed by humans. Recent advances in ar-

tificial intelligence have greatly enhanced the understanding of human languages

by computers. Feeding masses of text data to artificial neural networks enables

computational systems to superficially behave as if they understand the meaning

and structures of languages as we do. Arbitrary measures in natural language

processing (NLP) tasks reveal that computers can now achieve relatively good

performance on tasks that are trivially solved by humans. On the basis of this

fact, could we say that “AI systems can now outperform humans”?

There are some notorious linguistic phenomena that may cause confusion or

ambiguity in languages. One of these is coordination—a syntactic phenomenon

in which two or more elements, known as conjuncts, are linked by a coordinating

conjunction, such as and or or. Coordination is observed across all languages and

ages; for example, the bible says (originally in Hebrew):

And God said, “Let the earth bring forth the living creature after his

kind, cattle, and creeping thing, and beast of the earth after his kind.”

And it was so. And God made the beast of the earth after his kind

and cattle after their kind, and everything that creeps upon the earth

3



CHAPTER 1. INTRODUCTION 4

to its kind. And God saw that it was good. (Genesis 1:24-25)

In contemporary language, complex sentences involved in coordination frequently

appear in corpora in any domain, e.g., the Penn Treebank [67] in the news domain

contains the following:

Toshiba’s line of portables, for example, features the T-1000, which is

in the same weight class but is much slower and has less memory, and

the T-1600, which also uses a 286 microprocessor, but which weighs

almost twice as much and is three times the size. (The Wall Street

Journal)

Coordination usually cause difficulty in understanding even for native speakers

of the language, which sometimes causes different interpretations among individ-

uals. Nevertheless, we could take the time to understand the entire structure

of the example by resolving each coordination one by one because we already

know some characteristics of coordination. A coordinate structure, an instance

of coordination, typically consists of phrases of the same syntactic category. For

example,

The company rewarded [general managers] and [designers].

In this sentence, the two phrases general managers and designers are conjoined

by and. We have little difficulty identifying the conjuncts because we can find

that both of them are noun phrases that denote a position or occupation. Never-

theless, why can we not simply say that managers and designers are in parallel

and exclude general from the coordination? This is because the word general

is unlikely to modify designers even though general designers is grammatical.

Here, we exploit our knowledge of word distribution; the occurrence of general

designers is much less frequent than that of general managers, and thus general

associates only with managers. However, such knowledge is not always helpful to

disambiguate coordination, as the following example indicates:

The company rewarded product managers and designers.

We can say that managers and designers are coordinated because product can

modify both nouns and product designers is likely to occur, but a coordinate
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structure formed by product managers and designers is also acceptable. The cor-

rect coordinated phrases depend on the context or convention, and this results in

a major source of ambiguity for humans as well as NLP systems. In fact, most

state-of-the-art syntactic parsers perform poorly in coordination construction be-

cause, unlike us, they do not make use of syntactic and semantic relatedness

between conjuncts. AI systems seem to be far from outperforming humans in

understanding complex and context-dependent structures such as coordination.

Problems of treating coordination still remain in NLP research and development.

1.1 Objectives and themes

This dissertation focuses on disambiguating coordination. The research presented

here is not just aimed at integrating a coordination disambiguation technique

with NLP systems to improve performance. Coordination itself is interesting

in computational linguistics because it induces many exceptional behaviors in

natural language. Through research on coordination disambiguation, I attempt

to reveal how coordination affects the structure and meaning of language and to

find a way to treat irregular movements caused by coordination. The primary goal

of this dissertation is the development of automatic systems capable of identifying

elements conjoined by coordinating conjunctions with good accuracy. To purse

this goal, I particularly focus on the unique properties and structural constraints

of coordination.

Properties of coordination

Coordination has two properties with respect to conjuncts—similiarity and re-

placeability. Some prior methods rely only on the similarity between conjuncts

when focusing on noun phrase coordination. These methods perform well on

noun phrases but poorly on other types of coordination, such as verb phrases and

clauses. Other methods utilize the replaceability property to tackle this issue, but

their performances are very limited. The biggest drawback of these approaches

is that they strongly depend on external resources, such as thesauri, language

models, syntactic parsers, and co-occurrence information taken from large-scale

corpora. The first attempt in this dissertation is to remove the dependence on
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external resources as much as possible. I propose a mechanism to incorporate

the two properties as continuous feature representations computed by neural net-

works with minimal use of part-of-speech tags for words. I then demonstrate

which information and features are crucial for the task of coordination disam-

biguation.

Constraints of coordination

Coordination imposes structural constraints when two of more coordinate struc-

tures appear in a sentence at the same time: they must be nested or disjoint.

Many prior methods focus on resolving each instance of coordination individually,

and consequently two detected neighboring coordinate structures could overlap

with each other, leading to inconsistency. The production rules for coordination

developed by Hara et al. [39] make it possible to identify the optimal combina-

tion of coordinate structures that are consistent in their intersection. The second

attempt in this dissertation is to extend the rules of Hara et al. [39] to deal with a

wider variety of coordination constructions without degrading the performance of

coordination disambiguation. I propose a novel division of the task into subtasks

and integrate them into a parsing algorithm with the production rules. I finally

demonstrate the performance improvement achieved by the integration.

1.2 Contributions

The main contribution of this dissertation is the development of two automatic

systems capable of identifying coordinate structures; one of the systems is based

on a top-down algorithm and the other on a bottom-up algorithm. Specifically,

their contributions can be summarized as follows:

• Effective feature representations with minimal use of external re-

sources: Both proposed methods produce continuous vector representa-

tions that encode the similarity and replaceability properties between con-

juncts. These representations enable the models to identify both similar

pairs of conjuncts, such as noun phrases, and dissimilar pairs of conjuncts,

such as verb phrases and clauses. As a result, the proposed methods out-
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perform existing methods with or without the use of part-of-speech tags

and/or pretrained word embeddings; thus, the proposed methods require

no prerequisite external resources. On the contrary, many previous studies

have relied heavily on external resources, such as thesauri, language models,

and syntactic parsers.

• Training method for boundary identification: The proposed methods

enumerate all possible spans of coordination or conjuncts efficiently. With

no restriction on candidate spans during training, the models learn much

from negative examples and successfully predict conjuncts robustly.

• Consistent production with context-free grammar rules: A context-

free grammar can effectively be used to produce coordinate structures with-

out conflict; it is able to ensure that any two coordinate structures are

always either disjoint or nested. The use of a context-free grammar was

originally proposed by Hara et al. [39], but their context-free grammar

rules restrict the forms of coordinate structures. The proposed bottom-up

method extends their rules to produce more various forms of coordination

and makes it possible to produce 99.5% of coordination constructions sig-

naled by four typical coordination conjunctions in the Penn Treebank: and,

or, but, and nor.

• Framework of efficient parsing: The context-free grammar rules for

coordination are used in the Cocke–Kasami–Younger (CKY) algorithm to

produce consistent coordinate structures. Inspecting a variety of coordi-

nate structures incurs huge computational cost. The proposed bottom-up

method divides the model into submodels so that each of them learns dif-

ferent parts of coordinate structures. This division successfully keeps the

time complexity of the parsing at O(N3), where N is the number of words

in a given sentence, while the proposed top-down method, which does not

use production rules, has a time complexity of O(N2).

• Performance gain: Both proposed methods outperform previous methods

by a great margin, and the best proposed model achieved 76.64% F1 and

74.15% recall scores for the task of coordination disambiguation on the Penn

Treebank [28] and the GENIA Treebank [54] corpora, respectively. It is also

demonstrated that the use of contextualized word embeddings enhances
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their performance further. At the same time, both methods ensure that no

conflicts exist between coordinate structures.

1.3 Structure of the dissertation

The remainder of this dissertation is organized as follows. Chapter 2 introduces

coordination from many points of view: the structure of coordination construc-

tion, discussions of coordination in the linguistics literature, and its intractability

in syntactic parsing. This chapter also illustrates the task definition and the re-

sources used in the experiments. Chapter 3 describes prior research related to

coordination in the field of computational linguistics and NLP. Chapter 4 presents

the proposed top-down method for disambiguating coordination using artificial

neural networks. This chapter demonstrates effective feature representations en-

coded by the networks with no dependence on external resources. Chapter 5

presents the proposed bottom-up method for identifying coordinated elements

with simple generative rules. This chapter shows that the algorithm is capable

of producing coordinate structures without conflicts. In Chapter 6, quantitative

experiments comparing the two methods with prior systems are reported, and a

qualitative analysis is presented. Finally, Chapter 7 concludes the dissertation

by summarizing its achievements and discussing future research directions for the

field of NLP.



Chapter 2

Coordination

This chapter introduces the syntactic phenomenon of coordination from various

viewpoints, including the structure of coordination construction, discussions of

coordination in the linguistics literature, and its intractability in syntactic pars-

ing. The discussions here mainly focus on English, but many of the properties

of coordination in English are shared with other languages. This chapter also

defines the task that is considered in this dissertation and presents the resources

used in the experiments.

2.1 Coordination

Coordination is the juxtaposition of two or more elements, known as conjuncts,

typically linked by a coordinating conjunction (coordinator), e.g., and, or, and but

in English. Each conjunct may consist of a single word or a much longer phrase of

any syntactic category. An instance of coordination formed by a coordinator and

conjuncts is called a coordinate structure. While conjuncts characterize coordina-

tion, the presence of coordination is often signaled by a coordinator. This section

gives numerous examples to demonstrate the unique behavior of coordination.

2.1.1 Structure of coordination

The most frequent form of coordination is “A and B”, where two conjuncts are

conjoined by a single coordinator:

9
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(1) [John] and [Mary] went out for dinner.

(2) He bought [an old book] and [three pencils] yesterday.

In all examples in this dissertation, conjuncts of coordinate structures are marked

using square brackets. In (1), the conjuncts John and Mary are joined by the

coordinator and. In general, conjuncts are either individual words, as in (1),

or phrases, as in (2). Conjunctions are typically either and or or. Accompa-

nied by punctuation marks, additional conjuncts can be attached to a coordinate

structure:

(3) [Jane], [John] and [Mary] went out for dinner.

(4) He bought [two textbooks], [a new magazine], [an old book], and [three

pencils] yesterday.

An unlimited number of elements can be concatenated in parallel to form a single

instance of coordination.

More complicated coordination can occur when two or more coordinate struc-

tures appear in one sentence because they can potentially be nested:

(5) [Jane visited [John] and [Mary]], but [they had gone out for dinner].

(6) [He bought [an old book] and [three pencils]] and [his brother bought [two

textbooks] and [a new magazine]] yesterday.

These nested structures make it more difficult for humans to grasp which elements

are conjoined.

Conjuncts typically have a symmetric relationship with each other, as op-

posed to the asymmetric relationship of subordination. This symmetry could be

observed in a number of ways. First, each conjunct is equally able to expand

conjoined structures. Given (2), the two sentences in (7) can be retrieved.

(7) He bought [an old book] yesterday. He bought [three pencils] yesterday.

Secondly, each conjunct generally has the same case that the coordinate structure

would have. In (1), the coordinate structure is in the nominative case, and each

conjunct is nominative as well. Thus, they could be replaced with pronouns, as

in (8).
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(8) [He] and [she] went out for dinner. They went out for dinner.

Thirdly, conjuncts are often alike or identical in syntactic category, as in the

examples above. However, there are many instances where the conjuncts do not

match in category:

(9) Mike is [a fire fighter]NP and [proud of his job]ADJP.

(10) Bill is [in trouble]PP and [trying to come up with an excuse]VP.

(11) They are now [married]ADJP and [thinking of having children]VP.

We have thus far exemplified coordinate structures formed by one coordinator.

Such coordinate structures are called syndetic coordination. In syndetic coordi-

nation with more than two conjuncts, the conjunction is placed between the last

two conjuncts, as shown in (3) and (4). In contrast, all conjuncts can be linked

by coordinating conjunctions. This type of coordination is called polysyndetic.

A passage from The Book of Genesis is emphasized by the multiple uses of the

conjunction and :

And God said, “Let the earth bring forth the living creature after his

kind, cattle, and creeping thing, and beast of the earth after his kind.”

And it was so. And God made the beast of the earth after his kind

and cattle after their kind, and everything that creeps upon the earth

to its kind. And God saw that it was good. (1:24-25)

Polysyndetic coordination is used to slow down the rhythm and draw attention

to each phrase. Conversely, no coordinating conjunction could be placed between

conjuncts to form a coordinate structure, which is called asyndetic coordination.

Examples include “veni, vidi, vici,” a famous Latin phrase said to be spoken by

Julius Caesar, and its English translation “I came, I saw, I conquered.” Asyn-

detic coordination is used to speed up the rhythm and make a single idea more

memorable. The remainder of this dissertation focuses only on syndetic coordi-

nation because this is the most common form in broad domains of English text.

In addition, coordinating conjunctions in this work are limited to single words

including and and or, not multi-word expressions such as as well as.
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2.1.2 Coordination in linguistics

Coordination has been studied extensively in linguistics, but there remain chal-

lenges to explain many exceptions in coordination. This section briefly introduces

some concepts of coordination in the linguistics literature focusing on which ele-

ments can constitute a coordinate structure and why such a structure is accept-

able.

Coordinate Structure Constraint

In generative syntax, the Coordinate Structure Constraint (CSC) is a constraint

on movement that was proposed by Ross [95]; he states that “in a coordinate

structure, no conjunct may be moved, nor may any element contained in a con-

junct be moved out of that conjunct.” The CSC prevents extraction of a single

conjunct or an element from a single conjunct. This accounts for the ungram-

maticality of the following sentences:

(12) *What did he buy [an old book] and [ ] yesterday?

(13) *What is Mike [a fire fighter] and [proud of ]?

These movements at coordination fail because extraction cannot affect just one

conjunct of a coordinate structure.

Across-the-Board Extraction

It is trivial to find exceptions that violate the CSC, such as the following:

(14) What did [Mary cook ] and [John eat ]?

The CSC prohibits movement out of a conjunct, but extraction out of all con-

juncts in parallel, known as Across-the-Board (ATB) extraction [95], is allowed.

Other than ATB extraction, non-ATB extraction from a single conjunct is possi-

ble when the order of the conjuncts does matter, such as when there is an implicit

temporal or causal relation between them, as shown in the following example:

(15) Here’s the whiskey which [I went to the store] and [bought ].
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While ATB extraction shows a noticeable behavior, Williams [112] discovered

an important asymmetry in wh-movement out of conjuncts:

(16) a. Who do you think [John saw ] and [Mary hugged ]?

b. Who do you think [ saw John] and [ hugged Mary]?

c. *Who do you think [ saw John] and [Mary hugged ]?

d. *Who do you think [John saw ] and [ hugged Mary]?

When movement is out of structurally parallel positions, as in (16a) with object

gaps and (16b) with subject gaps, the result is acceptable, but when movement

is out of different positions, the resulting sentence is no longer grammatical, as

seen in (16c) and (16d).

Law of Coordination of Likes

As illustrated above, conjuncts typically belong to the same syntactic category.

This assumption is known as the Law of Coordination of Likes (LCL) [112]. Ac-

cording to the LCL, ill-formedness of coordination often comes from disagreement

among the syntactic categories of conjuncts, even though each conjunct would be

possible within the sentence on its own. An example of violation of the LCL is

as follows:

(17) *John made Mary [an omelet]NP and [happy]ADJP.

However, there are many apparent counterexamples, such as (9)–(11), where

conjoined elements are of syntactically different categories. Coordinated wh-

phrases can also be straightforwardly deviated from the LCL, as in (18):

(18) [What] and [when] did you sing?

Many linguists have attempted to incorporate coordination of unlike categories [97,

74, 4, 87]. They argue that coordination should be acceptable when the conjuncts

are alike in syntactic functions or semantic types, which allows coordination as

in (9)–(11).
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Non-Constituent Coordination

Coordination is one of the most commonly used tests to examine whether a string

is a constituent. This is known as a constituency test. The test using coordina-

tion assumes that only constituents can be coordinated. The following examples

demonstrate which coordinated elements are admitted to be constituents:

(19) The boy from Osaka bought apples.

a. [The boy from Osaka] and [the girl from Tokyo] bought apples.

b. The boy from Osaka [bought] and [ate] apples.

c. The boy from Osaka bought [apples] and [bananas].

d. The boy from Osaka [bought apples] and [ate bananas].

e. *The boys [from Osaka bought] and [from Tokyo ate] apples.

f. *The [boy from] and [girl in] Osaka bought apples.

The coordinate structures shown in (19a)–(19d) are possible, but those in (19e)

and (19f) are not. Thus, these tests suggest that the boy from Osaka, bought,

apples, and bought apples are constituents, but from Osaka bought and boy from

are not.

The constituency test with coordination seems plausible, but coordination is

not always a reliable indicator:

(20) The boy from Osaka bought [apples on Monday] and [bananas on Friday].

(21) The boy from Osaka [bought these] and [ate those] apples.

(22) He gave [the book to Mary] and [the magazine to John].

(23) [John likes swimming] and [Mary singing].

Although the above examples of coordination are grammatical, the conjuncts in

(20)–(22) and the conjunct immediately following the coordinator in (23) are not

viewed as constituents in most theories of syntax. Coordinate structures can

be formed by coordinated strings that do not qualify as constituents, and this

indicates that a diagnostic test based on coordination might not be suitable for

identifying constituents.
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Right Node Raising

The term Right Node Raising (RNR) refers to a construction in which a shared

argument appears at the right periphery of parallel structures [90]. The parallel

structures of RNR are typically the conjuncts of a coordinate structure, although

the phenomenon is not limited to coordination. In fact, we have already seen RNR

in (21), where apples is the material shared by the conjuncts. A key observation

is that the right-peripheral constituent must be missing from all of the conjuncts;

that is, RNR obeys ATB extraction and results in the non-constituency of the

parallel structures.

Gapping

Gapping denotes a type of ellipsis that occurs in the non-initial conjuncts of

coordinate structures. Gapping usually elides a finite verb, as in (23), but allows

exclusion of further materials as well. The gapped material likes in (23) leaves the

two remnants, Mary and singing, which compose the non-constituent conjunct.

Further examples are shown below, where the elided material is indicated with a

smaller font.

(24) [Mary will donate the money to the school] and [John will donate the money to

the hospital].

(25) *[Mary will donate the books to the school] and [John will donate the money

to the hospital].

(26) [Mary expected John to help], but [John expect Mary to help].

(27) *[Mary said that they spoke Portuguese], but [John said that they spoke Span-

ish].

As shown in (24), the gapped material is not necessarily a constituent, but the

two remnants appear to be constituents. Example (25) is not acceptable because

the gap unsuitably breaks the constituent the money and the remnant money to

the hospital does not qualify as a constituent. The gapping in (25) leaves three

remnants, John, money, and to the hospital, but there appears to be a strong

preference for exactly two remnants, placed on each side of the gapped material.

Nevertheless, the gap can be discontinuous, as in (26). Gapping can span a verbal
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material and non-finite clause boundaries, as shown by the examples. However,

it cannot be applied across a finite clause boundary, as shown in (27), even

though the two remnants are constituents. Note that the requirements for gapping

mentioned thus far are not exhaustive. Further discussions are presented in the

literature [38, 47]. Gapping poses a challenge to phrase structure grammars

because it is not evident how one might give a satisfactory analysis of material

that can be gapped.

Although various solutions have been proposed, there is not yet a satisfactory

explanation for all of the problems discussed here. Coordination occurs both in

phrase structure and sentence structure, but the relationship between the two

remains unclear. The role of coordination in sentence construction is also largely

undetermined. Coordination therefore remains difficult to explain by any formal

linguistic theory.

2.1.3 Punctuation in English language

Punctuating around quotation marks

The placement of punctuation and quotation marks differs between American

English and British English. In American style, commas and periods are always

inside the quotation marks, even if they are not in the original material. In British

style, on the other hand, unquoted commas and periods are placed outside the

quotation marks. For all other punctuation, the American and British styles

are in agreement—unless the punctuation is part of the quoted material, it goes

outside the quotation marks.

(28) “I like all of his songs,” Mary said, “because his lyrics are touching.” (Amer-

ican style)

(29) ‘I like all of his songs’, Mary said, ‘because his lyrics are touching’. (British

style)

In this dissertation, the placement matters when it involves coordination:
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(30) It filled its daily schedule with newscasts called “Daybreak,” “Daywatch,”

“Newsday,” and “Newsnight,” but the shows varied little in content, per-

sonality or look. (The Wall Street Journal)

In (30), the commas between the conjuncts no longer work as delimiters and

therefore the punctuation and quotation marks must be treated properly to re-

trieve the conjuncts.

Serial comma

In English language, a serial comma, also known as Oxford comma, is a comma

placed immediately before the coordinating conjunction in a series of three or

more terms. The serial comma is usually used to avoid ambiguity:

(31) I went to the zoo with my parents, John and Mary.

(32) I went to the zoo with my parents, John, and Mary.

In (31), there is ambiguity about the parentage because “John and Mary” can

be read as being in apposition to my parents. In contrast, (32) indicates that

John and Mary are not the writer’s parents because my parents is in parallel

with John and Mary. However, the necessity and usage of the serial comma are

still controversial. Opinions on whether to use the serial comma differ among

style guides.

2.2 Limitations of syntactic parsing

2.2.1 Coordination in constituency parsing

In phrase structure grammars, there are a number of coordination instances that

are not clearly qualified as constituents. For example, in the clause “. . . they

spent [$325,000 in 1989] and [$340,000 in 1990] . . . ”, we can easily discover what

are coordinated. Nonetheless, the two conjuncts $325,000 in 1989 and $340,000
in 1990 do not qualify as constituents because the noun phrase in each conjunct

is the object of the finite verb spend, while the prepositional phrase modifies

the verb phrase. Phrase structure grammars are not capable of expressing such
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(a) Non-constituent coordination.

(b) Gapping in coordination.

Figure 2.1: Malformed constituents in the Penn Treebank.

relations in non-constituent coordination. Figure 2.1(a) shows the annotation of

a clause in the Penn Treebank [67]. In spite of the absence of a verb, the NP

and PP form a VP and two VPs form coordination, but the verb in the second

conjunct drops as an ellipsis. This can be problematic not only because it makes

parsing more difficult but also because coordinated materials cannot be retrieved

from the parse tree. Another issue in grammars is gapping. Figure 2.1(b) shows a

constituency tree example. In the example, the two clauses Honeywell’s contract

totaled $69.7 million and IBM’s $68.8 million are coordinated, but the latter does

not have the head word contract of the NP-SBJ or the finite verb total. These

malformed constituents make it difficult for parsers to produce trees correctly

and collapse the symmetry of conjuncts.

Besides problems with the annotation scheme, constituency parsers in general
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(a) Non-constituent coordination.

(b) Gapping in coordination.

Figure 2.2: Malformed dependencies in the Penn Treebank.

suffer from coordination [39, 29]. This is because parsers do not have the ability to

capture syntactic and semantic similarities between conjuncts. Several researches

have tried to incorporate features of coordination [91, 14, 26, 42].

2.2.2 Coordination in dependency parsing

Coordination deforms dependency trees as well as constituency trees. Figure 2.2

shows examples of this. In Figure 2.2(a), the prepositional phrase in the lat-

ter conjunct modifies $340,000 as if the NP and PP form a larger NP. In Fig-

ure 2.2(b), the subject IBM’s is attached to the object $68.8 million with the

dep relation, which can easily confuse a parser. Because the possessive modifier

contract is omitted in the conjunct, a parser may recognize $68.8 million as the

possessive modifier of IBM’s. In both cases, the head and modifier of conj rela-

tion do not share any structural similarity, and thus, it becomes more difficult for

a parser to capture the symmetry between conjuncts. Incorporating conjunction

features into dependency parsers has been explored [60, 77, 78, 51, 114, 30].

Dependency grammars are not sufficiently descriptive to disambiguate coordi-

nation, even if a parser succeeds in identifying all dependencies in a sentence. For

instance, the two sentences “We saw an old [man] and [woman].” and “We saw a



CHAPTER 2. COORDINATION 20

[beautiful woman] and [man].” have different scopes of coordination but identical

parse trees. Thus, we cannot retrieve conjuncts from dependency trees expressed

in Stanford/Universal Dependencies [21, 79]. This motivates researchers to de-

velop methods that focus on identifying coordination.1

2.3 Coordinate structure analysis

2.3.1 Task definition

Coordination disambiguation, also called coordination boundary identification or

coordinate structure analysis, refers to resolving ambiguity in the scope of coordi-

nation. The task of coordination disambiguation is to find conjuncts for a given

word that can potentially play the role of a coordinator. In this dissertation,

we call such words coordinator keys. More specifically, when a coordinator key

actually forms a coordinate structure, all of the conjuncts must be identified in

the form of [begin, end], which represents the span of the conjunct. In case a

coordinator key does not act as a coordinator, a system must return None, de-

noting the absence of a coordinate structure. Figure 2.3 shows the expected input

and output of the task. We assume that it is not always possible to distinguish

whether a coordinator key is an actual coordinator or not by its appearance, as in

the case where but is not a coordinating conjunction but a preposition. In addi-

tion to coordinating conjunctions, some punctuation marks secondarily function

to connect two conjuncts. We refer to such punctuation marks as sub-coordinator

keys and as sub-coordinators when they actually glue two conjuncts together.

Sub-coordinators cannot independently conjoin elements to form a coordinate

structure without a coordinator. Throughout this dissertation, we define and, or,

but, nor, and and/or as coordinator keys and comma (,), colon (:), and semicolon

(;) as sub-coordinator keys. Thus, multiword expressions, such as “as well as”,

are not regarded as coordinator keys.

1Some grammars, such as combinatory categorial grammar, can account for various coordi-

nation constructions, but integrating methods for coordination disambiguation into parsers for

those grammars is not explored in this dissertation and remains as future work.
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Input But1 it said Charles Johnston, ISI chairman

and9 president, agreed to sell his 60% stake in

ISI to Memotec upon completion of the tender

offer for a combination of cash, Memotec stock

and37 debentures.

Output but1: None

and9: [8, 8] chairman ; [10, 10] president

and37: [33, 33] cash ; [35, 36] Memotec stock ;

[38, 38] debentures

Figure 2.3: Expected input and output of the task.

2.3.2 Difficulties

The difficulties in this task arise when there are multiple coordinate structures in

a sentence or more than two conjuncts in a single coordinate structure. If there is

more than one coordinate structure in a sentence, each coordinate structure must

be isolated from or embedded in the other(s). In other words, coordinate struc-

tures cannot be partially overlapped. When there are more than two conjuncts

in a coordinate structure, we must ascertain whether the punctuation marks are

sub-coordinators that glue one more conjunct, and if so, which coordinate struc-

ture they belong to. Thus, we must identify how many conjuncts a coordinate

structure contains and the locations of those conjuncts in the coordinate struc-

ture, i.e., whether it is nested in or isolated from other coordinate structures.

2.3.3 Important properties

Coordination has many unique traits besides its structure. Here, we focus on

the two key properties between conjuncts that can be helpful to disambiguate a

coordination boundary [29, 106].

• Similarity: Conjuncts in coordination have similarities in their structures

and meanings.

• Replaceability: Each conjunct in coordination can be replaced with an-

other conjunct.
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(a) Similar structure and meaning between conjuncts.

(b) Coherent sentence where conjuncts are exchanged.

Figure 2.4: Properties of conjuncts.

These properties are exemplified by the sentence “The Tass news agency said the

1990 budget anticipates income of 429.9 billion rubles (US$ 693.4 billion) and

expenditures of 489.9 billion rubles (US$ 790.2 billion).” The two conjuncts in-

come of 429.9 billion rubles (US$ 693.4 billion) and expenditures of 489.9 billion

rubles (US$ 790.2 billion) conjoined by the coordinating conjunction and are both

noun phrases and have symmetry in their syntactic structures, as shown in Fig-

ure 2.4(a). Moreover, the two conjuncts can replace each other while maintaining

grammaticality and fluency in the newly-generated sentence, as in Figure 2.4(b).

2.4 Resources

2.4.1 Penn Treebank

The Penn Treebank [67] is the de facto standard English corpus for training and

evaluating syntax-based NLP systems. Despite being in widespread use, the Penn

Treebank has an annotation deficiency. Vadas and Curran [109] noted the lack of

internal structures in base noun phrases. Hogan [42] also showed inconsistencies in
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annotation of flat structures, coordinated noun phrases, and part-of-speech tags.

Dickinson and Meurers [23] proposed a method to detect and clean annotation

noises. Maier et al. [66] introduced a distinction between coordinating and non-

coordinating punctuation to add explicit boundaries between conjuncts.

The work of Ficler and Goldberg [28] aimed for annotation in which coordinate

structures are explicitly marked and the existing errors involving coordination

are fixed. They added six different function labels to non-terminal symbols of

nodes participating in coordinate structures while minimizing deviation from the

original trees. Figure 2.5 shows an example of annotation and its corresponding

tree representation. The corpus specifically uses the following function labels:

• CC: Coordinators.

• CCP: Phrases containing coordination.

• COORD: Conjuncts.

• SHARED: Modifiers or arguments shared by conjuncts (e.g., “Bob cleaned

and refueled the spaceship”).

• CONN: Connectives and parentheticals (e.g., “The vacation packages in-

clude hotel accommodations and, in some cases, tours”).

• MARK: Markers (e.g., “Both Alice and Bob are Aliens”).

Table 2.1 summarizes the statistics of the corpus. Sentences in sections 02–21,

22, and 23 of the Wall Street Journal were collected as the training, development,

and test sets, respectively. In the Penn Treebank extended by Ficler and Gold-

berg, there are 24,450 coordinate structures within 19,095 of a total 49,208 sen-

tences. Thus, coordination construction occurs in 38.8% of the sentences in the

corpus. It is also worth noting that coordinated elements marked by an annota-

tor agreed with 92.8% of 1,000 coordination phrases annotated by an additional

linguist, which indicates how difficult it is even for humans to identify coordinate

structures consistently.
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(a) Original annotation in the corpus.

(b) Corresponding constituency tree.

Figure 2.5: Coordination annotation in the Penn Treebank.
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#sent. #tokens/sent. #coord. #sent. w/ coord.

Penn Treebank 49,208 23.85 24,450 19,095

Training 39,832 23.85 19,890 15,481

Development 1,700 23.59 848 673

Test 2,416 23.46 1,099 873

GENIA Treebank 18,541 26.23 17,167 11,259

Table 2.1: Statistics of the Penn Treebank and the GENIA Treebank.

2.4.2 GENIA Treebank

The GENIA Treebank [54, 104] is a syntax-annotated corpus constructed from

a collection of abstracts of papers in the biomedical domain. The annotation

scheme of the GENIA Treebank essentially follows the Penn Treebank II scheme

but includes some modifications. One of the modifications is explicitly mark-

ing a coordinate structure with the attribute “COOD”, which is not the case in

the original Penn Treebank scheme. Figure 2.6 shows an example and its corre-

sponding tree representation. Note that a major source of difficulty in annotation

is coordination, especially that involving ellipses. When annotating the phrase

“CD2 and CD25 receptors”, for example, we want to know whether the term

“CD2 receptors” is valid or not. One way of knowing that is to examine the term

in the collected texts. In the case where the term does not appear in the texts,

it is more difficult to determine whether “receptors” is shared by “CD2” and

“CD25” or not without deep domain knowledge. The authors reported that the

annotation disagreements between annotators actually were in the cases involving

coordination.

The GENIA Treebank is challenging in some respects for the task of coordi-

nation disambiguation. First of all, the underlying domain itself is difficult to

understand without domain knowledge because a number of technical terms ap-

pear in the corpus. Second, sentences tend to be long and complicated because of

coordination and subordination. Third, coordinate structures in the biomedical-

domain corpus more frequently emerge than in general texts, and they often

involve ellipses. Table 2.1 summarizes the statistics of the corpus. In the GENIA

Treebank, there are 17,167 coordinate structures within 11,259 of a total 18,541
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sentences, which means coordination appears in 60.7% of the sentences in the

corpus; therefore, the frequency of coordination in the GENIA Treebank is much

larger than that in the Penn Treebank. However, Tateisi et al. [104] argued that

a major source of difficulty and disagreement for annotations was coordination,

especially when coordinated phrases had modifiers or involved ellipses. In such

cases, the annotator often left a comment saying “unsure.” The experiments re-

ported in Chapter 6 used the beta version of the GENIA Treebank for evaluating

the performance of the proposed approaches in practical domains.
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(a) Original annotation in the corpus.

(b) Corresponding constituency tree.

Figure 2.6: Coordination annotation in the GENIA Treebank.



Chapter 3

Related Work

Many efforts have been made to integrate grammars into parsers to deal with

coordination [113, 92, 20, 32, 62, 56, 49, 73, 19, 99]. Defining grammars for

coordination is difficult because they must account for complicated phenomena,

such as gapping, non-constituent conjuncts, and mismatched syntactic category.

Given the advancement of statistical methods for NLP, attention has turned from

dealing with coordination in grammars to how to disambiguate boundaries of

coordinate structures.

3.1 Coordination disambiguation

To identify boundaries of coordinate structures, many researches have exploited

the similarity property of coordination. Agarwal and Boggess [1] proposed a

simple deterministic method to find conjuncts. They regarded the phrase im-

mediately following a coordinator as the post-conjunct and then found the pre-

conjunct among similar phrases preceding the coordinator by using syntactic

and semantic labels. Kurohashi and Nagao [59, 60, 58] introduced a chart-based

method to examine similarities between two arbitrary series of words surrounding

a coordinator. They assigned scores between two bunsetsu, which is comprised

of a content word followed by function words in Japanese, using heuristic rules

and manually-designed weights. Okumura and Muraki [83] took advantage of

symmetric patterns between conjuncts. Their model calculates the best-balanced

pair of word sequences on the basis of feature representations of the patterns. All

28
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methods described above are heuristic, and their similarity scores were manually

designed.

In contrast with deterministic methods, several studies have exploited statis-

tics from corpora and other resources. Resnik [94, 93] resolved ambiguities for

the form of coordination “noun1 and noun2 noun3” using taxonomic relations

taken from WordNet [72] and the co-occurrence relations of words. Goldberg [34]

applied a statistical model to determine the attachment of ambiguous coordi-

nated phrases whose forms are “noun1 preposition noun2 and noun3”. Chantree

et al. [13] used the distributional similarity between head words of coordinated

phrases. Nakov and Hearst [75] disambiguated coordinated nouns using web-

based statistical features. Hogan [43] investigated which similarity measures are

helpful for identifying conjuncts. Most of these works outperformed rule-based

methods, but they mostly only deal with conjunction between nouns.

Advances in machine learning methods have led to the development of coor-

dination disambiguation. Shimbo and Hara [100] proposed a sequence alignment

model with dynamic programming to capture locally similar structures in two

conjuncts on the basis of a set of features, including word surfaces, part-of-speech

tags, and morphological characteristics. The similarity score is computed by a

weighted linear combination (perceptron) of manually designed features assigned

to edges and nodes in graphs, which is very similar to the chart-based method

of Kurohashi and Nagao [60], but it differs in that the weight parameters for the

handcrafted features are automatically tuned through training. Okuma et al. [82]

improved the method of Shimbo and Hara for coordination in Japanese. Buyko

et al. [11], Buyko and Hahn [10] attempted to resolve coordination ambigui-

ties involving noun compounds as a sequential labeling problem. They used a

linear-chain conditional random field (CRF), which also incorporates morpho-

syntactic features of conjuncts and their shared elements. While the methods

described above focus on non-nested coordination, Hara et al. [39] extended the

work of Shimbo and Hara to accommodate nested coordination using context-

free grammar rules. A consistent global structure of coordination is produced

using discriminative functions based on the similarity of conjuncts with dynamic

programming. Hanamoto et al. [37] used dual decomposition to combine a head-

driven phrase structure grammar (HPSG) parser with the discriminative model
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developed by Hara et al.

The machine learning methods described above rely heavily on the observa-

tion that conjuncts tend to have similar structures and meaning. However, that

observation is not always true because conjuncts sometimes belong to different

syntactic categories, e.g., PP and ADJP. Some researchers have attempted to

identify conjuncts using characteristics of conjuncts other than similarity. Kawa-

hara and Kurohashi [52, 53] focused on resolving the ambiguities of coordinate

structures without the use of any similarities. Their method relies on the depen-

dency relations surrounding the conjuncts, which implicitly provide selectional

preferences, and the generative probabilities of phrases. As the resources of se-

lectional preferences to support coordinate structures, they used automatically

constructed case frames and co-occurrences of noun–noun modification from a

large-scale web corpus. Ogren [80, 81] exploited a language model to test the sen-

tences expanded from coordinate structures. Ficler and Goldberg [29] proposed

a neural network that incorporates the similarity and replaceability between con-

juncts in the computation of scores for candidate pairs of conjuncts produced by

an external constituent parser.

3.2 Coordination in other tasks

Special treatments of coordination have been explored in syntactic parsing tasks.

Collins [18] and Bikel [7] altered the generative process for coordination in their

lexicalized probabilistic context-free grammar (PCFG) parsers. Charniak and

Johnson [14] directly incorporated features to capture syntactic parallelism in

coordination for their maximum entropy-based discriminative reranking parser.

Dubey et al. [25, 26] proposed a method for incorporating syntactic priming of

parallel structures into an unlexicalized PCFG parser. Nilsson et al. [77, 78]

attempted to transform dependency structures to facilitate parsing of coordi-

nate structures and verb groups for data-driven dependency parsers. Hogan [42]

proposed a method for improving the disambiguation of noun phrase coordina-

tion within the framework of a lexicalized history-based parsing model, in which

bi-lexical head–head co-occurrences are employed to identify nominal heads of

conjuncts. Kawahara and Kurohashi [51] integrated coordination disambiguation
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into a fully-lexicalized generative dependency parser. Their model measures sim-

ilarities between conjuncts in the same way as Kurohashi and Nagao [60] and

calculates generative probabilities of coordination using these similarities by tak-

ing advantage of large-scale case frames. Kübler et al. [57] used a PCFG rerank-

ing parser with automatically detected scopes of conjuncts to improve parsing

in German. Ficler and Goldberg [30] introduced features specifically designed

to capture the symmetry of conjunct heads to improve dependency parsing with

neural networks.

Coordination resolution is also a major problem in named entity recognition

(NER), in which named entities with conjunctions are often recognized as single

entity mentions or two distinct entity mentions. For example, the string Australia

and New Zealand Banking Group Limited is not the conjunction of two entities

Australia and New Zealand Banking Group Limited but a single entity as a whole.

In contrast, the string alpha- and beta- globin is actually composed of two enti-

ties, but the preceding conjunct alpha- is elliptical. Thus, two distinct entities,

alpha- globin and beta- globin should be recognized. Ellipsis resolution of NER

is the process of identifying the non-elliptical entity mentions. Finkel et al. [31]

discussed the difficulty of the task without additional treatment of ellipses in co-

ordination. Nenadic et al. [76] proposed patterns for automatic biomedical term

recognition, which are similar to the ones presented by Jacquemin et al. [45] but

differ in covering terminology variations, including coordinated terms. However,

they concluded that the morpho-syntactic patterns are not sufficient and reliable

and that semantic information and domain-specific knowledge are additionally re-

quired to handle structural variants. Mazur and Dale [68] distinguished four cat-

egories of conjunctions related to named entities and presented machine-learned

classifiers to disambiguate the different uses of a conjunction. However, their

work did not explicitly resolve ellipses in coordination. Buyko et al. [11] focused

on elliptical NP coordination in the biomedical domain. Their pipeline approach

consists of two stages: recognition of named entities, including elliptical entity

expressions, followed by resolution of elliptical coordination. Their CRF-based

method performed well in the task of conjunct identification but failed to resolve

complex expressions, such as nested coordinate structures and expressions where

forward and backward ellipses occur simultaneously. While most of the methods
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above can only deal with relatively simple elliptical patterns in coordinated NPs,

Chae et al. [12] proposed an NER method for identifying non-elliptical entity

mentions as well as simple or complex ellipses using linguistic rules and an entity

mention dictionary.

Huang [44] dealt with conjunctions in a rule-based machine translation sys-

tem. Popović and Castilho [89] conducted a quantitative analysis regarding the

ability of different machine translation systems to disambiguate conjunctions in

source languages. Cohen et al. [17] worked on event extraction from coordinate

structures using a constituent parser. For the task of open information extraction

(Open IE), Saha and Mausam [98] proposed a coordination analyzer that modifies

parse trees produced by dependency parsers. Their system splits a sentence by

conjuncts into coherent simple sentences using a language model and linguistic

constraints and then feeds those sentences to their Open IE system.



Chapter 4

Top-Down Approach

4.1 Introduction

This chapter proposes a top-down algorithm for coordination disambiguation.

Previous studies have been very limited in that they only dealt with two coor-

dinated phrases for a coordinator, though more than two conjuncts frequently

appear in practice. In contrast, the proposed approach first identifies the entire

span of coordination and then splits it into individual conjuncts, enabling more

than two conjuncts to be produced. A score for each candidate coordination

span is computed by neural networks that aim to capture the similarity and re-

placeability between a pair of conjuncts. This enables more robust detection of

non-similar conjuncts, such as VPs and coordinated clauses, while most previous

studies relied on the similarity and distributional information for NP conjunc-

tions. Although machine learning approaches [39, 37] can successfully identify

NP conjunctions by extending the method of Shimbo and Hara [100], which is

similar to the work of Kurohashi and Nagao [60], they require carefully hand-

crafted features to incorporate morpho-syntactic similarities of conjuncts. On

the other hand, neural network-based approaches do not require so-called fea-

ture engineering and can utilize richer continuous representations of words and

other syntactic features. A neural network approach for coordination identifi-

cation was first proposed by Ficler and Goldberg [29]. Although their method

achieved state-of-the-art performance by modeling the similarity and replaceabil-

ity of conjuncts, it still heavily relies on an external constituency parser that

33
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is trained on a treebank with special labels for coordination. The accuracy of

coordination identification solely depends on the performance of the underlying

syntactic parser, which is used to enumerate the candidates for conjuncts pairs

and to compute scores for those candidates as additional features. The proposed

end-to-end method does not require such parsing results and thus it enables more

robust inference and easier use for coordination disambiguation.

4.2 Preliminaries

4.2.1 Neural networks

An artificial neural network, also simply called a neural network, is a computing

system composed of interconnected artificial neurons that uses a mathematical

model inspired by the biological brain for information processing. This section

briefly introduces types of neural networks and training methods for them in the

NLP literature. For a comprehensive introduction to neural networks and deep

learning, I refer the reader to the textbook by Goodfellow et al. [35].

Feedforward Neural Networks

A feedforward neural network (FNN), also called a fully-connected neural network

or multilayer perceptron (MLP), is a simple neural network wherein nodes are fully

connected and the connections are acyclic. Each layer ℓ with d(ℓ) nodes projects

a given vector x onto another vector space:

f (ℓ)(x; θ) = g(W (ℓ)⊤x + b(ℓ)) (4.1)

where W (ℓ) is a matrix W (ℓ) ∈ Rd(ℓ−1)×d(ℓ) , b(ℓ) is a bias vector b(ℓ) ∈ Rdℓ , and

g is an activation function. Both W (ℓ) and b(ℓ) are learnable parameters for

the network and included in a set of parameters θ. FNNs can be composed by

stacking layers:

f(x) =
(
f (L) ◦ . . . ◦ f (1)

)
(x) (4.2)

where ◦ indicates function composition and L is the number of layers in the FNNs.
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Training Deep Neural Networks

Typically, the weights of a neural network are tuned by minimizing the observed

errors. The errors are measured by a loss function (objective function or cost

function), which is evaluated periodically during training. The output (cost) of

the function is minimized by moving weights in small steps proportional to the

negative derivative. This technique is called gradient descent. Backpropagation is

an algorithm to compute the gradient of the loss function efficiently with respect

to the weights of the network. This efficient algorithm makes it feasible to use

gradient methods for training neural networks. Computational graphs are espe-

cially helpful to express and understand the process of backpropagation, where

the gradient is typically computed recursively from the last to the first layer of the

network. A computational graph is a directed graph where the nodes correspond

to mathematical operations or input values. A computational graph grows as an

operation is applied in the network, and the derivatives for each operation can

be computed by tracing the graph backwards.

Practically, mini-batch stochastic gradient descent (SGD) is the most used

training method for neural networks. SGD is regarded as a stochastic approxi-

mation of gradient descent optimization because it uses an estimate of the gradi-

ent calculated from a randomly selected subset of the data instead of the actual

gradient calculated from the entire data. Mini-batch SGD takes a small batch of

examples from the data for estimating the gradient and updating weights, while

regular (online) SGD uses one example per update. Mini-batch SGD is suitable

for training neural networks for two reasons: (1) it can take advantage of parallel

computation, while online SGD cannot, and (2) it can avoid local minima by

moving stochastically, while batch gradient descent moves in one direction. For

SGD training, the increment of movement towards a minimum, which is called

the learning rate, is particularly important because if it is too low, it will either

take too long to converge or get stuck in a local minimum, and if it is too high,

the learning will jump over minima. Various algorithms to control the learning

rate have been developed for SGD optimization.
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Recurrent Neural Networks

A recurrent neural network [96, 27] (RNN) is a class of neural networks in which

connections between nodes form a directed graph along a temporal sequence.

RNNs apply a function repeatedly, consuming input vectors xt one by one:

ht = f(xt,ht−1) (4.3)

where ht is a vector that represents the internal state (memory) of an RNN and

t indicates a time step (i.e., position in a sequence). In the simplest case, the

function f is defined as the following non-linear transformation, which is derived

from FNNs:

f(xt,ht−1; θ) = g(W⊤xt + U⊤ht−1 + b) (4.4)

where W and U are weight matrices, b is a bias vector, and g is an arbitrary

non-linear function, such as the hyperbolic tangent (tanh) or rectified linear unit

(ReLU). The gradients for the parameters W , U , and b are computed by back-

propagation through time (BPTT), which simply runs backpropagation on un-

folded computational graphs. In practice, however, long short-term memory [41]

(LSTM) is commonly used as an instance of RNNs because simple RNNs are likely

to suffer from the exploding and vanishing gradient problems [5, 84] when trained

with gradient methods and backpropagation. Unlike simple RNNs, LSTM has

gated mechanisms, where hidden activations restrict input and output flows and

allow the model to forget some internal states. Gated mechanisms enable LSTM

to learn much more effectively than a simple RNN on long sequences. Other

extensions, such as bidirectional RNNs and gated recurrent unit [15] (GRU), are

also widely used.

Convolutional Neural Networks

A convolutional neural network [33, 61] (CNN) is a class of neural networks used

in various applications in computer vision, speech processing, and NLP. This

network applies a mathematical operation called convolution to all grids of a

given matrix (e.g., 1D grid for a sequence of vectors) or tensor (e.g., 2D grid for

images pixels with RGB channels). Especially in NLP, the operation is shifted
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with a fixed-sized filter on a sequence of vectors:

hi = g(
k∑

j=1

W⊤
j xi+j−1−⌊k/2⌋ + b) (4.5)

where each W j is a weight matrix W j ∈ Rd×d′ , b is a bias vector b ∈ Rd′ , g

is an activation function, and ⌊x⌋ represents the floor function, which returns

the greatest integer less than or equal to x. d is the dimension of an input

vector xi ∈ Rd, and d′ is the predefined dimension of the output vector hi ∈ Rd′ .

The odd number k is called window size, which controls how far previous and

following inputs are convolved together. For example, when k = 5, the preceding

two vectors and following two vectors are weighted and summed with the current

vector. Note that xi is a zero vector or trainable parameter vector when i ≤ 0

or n < i, where n is the length of a sequence. This operation can be applied to

variable length sequences of vectors, which is beneficial for NLP.

4.2.2 Word representations

In recent NLP research, nearly all neural network models have employed a con-

tinuous-valued vector w, called an embedding, associated with each w in a vocab-

ulary V .

fR : w ∈ V → w ∈ Rd (4.6)

Word embeddings are typically denoted by a matrix E ∈ Rd×|V|, where each

column is a word vector. The word vector for a word w is looked up through

one-hot representation w′ ∈ R|V|, where all values are 0 except the index of the

word, which is 1 (i.e., w = Ew′). One of the simplest ways to obtain embeddings

E is to use randomly initialized values and update them through backpropa-

gation while training networks against specific tasks. In many cases, however,

these embeddings are obtained by special algorithms to encode distributional in-

formation of words, such as continuous bag-of-words and skip-gram [70, 71]. The

advantage of using word embeddings compared to other representations, such as

one-hot ones, is that it is possible to encode rich semantic information into a

vector. Embeddings can be associated with other information on words, such as

part-of-speech (POS) tags.
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Another way to represent a word as a vector is encoding morpho-syntax in-

formation. In this method, each character composing a word is mapped to a

vector in the same manner as each word is mapped to an embedding. Then, a

sequence of character vectors is reinterpreted as a single vector using either RNNs

or CNNs.

Vector representations of words are crucial for coordination disambiguation.

To measure the similarity between words, it can be computed as a cosine similarity

using word vectors. Such similarity information is helpful to model symmetry

between conjuncts. Other than the similarity measure, continuous representations

can be exploited in various ways to capture the relationship between coordinated

elements.

4.3 Related work

This section introduces the work of Ficler and Goldberg [29], which is the most

relevant to the method presented in this chapter. Their method has three parts

arranged in a pipeline manner: a binary classifier for detecting coordinators, a

candidate conjuncts extractor, and a neural network-based scorer for candidates.

In the first stage, a sentence composed of words is transformed to a sequence

of word embeddings. To classify a coordinating word in the sentence, the corre-

sponding vector obtained from the output sequence of a bidirectional LSTM is

fed to a logistic classifier. In the second stage, they use the Berkeley parser [88]

trained on the Penn Treebank with the coordination annotation extension [28],

where coordinated phrases are explicitly marked with special function labels.

They collect spans that are labeled as COORD, are adjacent to the coordinator,

and have non-zero inside or outside probabilities. Candidates are constructed

from all possible pairs of the collected spans. They reported that their method

produced 6.25 candidates on average for each coordinating word and included

the correct candidates for 94% of coordination instances on the development set

of the corpus. In the last stage, they assign a score to each candidate pair of

conjuncts and choose the highest scoring pair as the system output using the

similarity feature, replaceability feature, and parser-based features. For the simi-

larity feature, constituency labels are encoded by LSTMs using the paths towards



CHAPTER 4. TOP-DOWN APPROACH 39

the root starting from the words in a span. The similarity is then computed as

the Euclidean distance between the pair of encoded representations. For the re-

placeability feature, two sentences simplified by replacing the whole coordinate

structure with each of the two conjuncts are passed to LSTMs and transformed

into feature representations. The parser-based features are assigned on the basis

of the ranking measured by the product of inside–outside probabilities of each

conjunct pair. These three types of features are finally fed into an MLP to pro-

duce scores for candidates.

The shortcoming of their method is clearly its dependence on the performance

of the Berkeley parser. In their method, the parser is used three times—for can-

didate extraction, path encoding for the similarity features, and ranking features

based of the parser results. In fact, they showed that much of the performance

gain came from the parser-based features. Besides, the parser must be trained

on a treebank with annotations specialized for coordination. Such requirements

and dependence are not realistic, especially when applying their method to other

domains, languages, or tasks. This motivated me to develop a method without

the use of a syntactic parser or treebank.

4.4 Proposed method

4.4.1 Overview

This section describes the proposed method in detail. The proposed method iden-

tifies the whole span of the coordinate structure instead of the conjunct spans

for a given coordinator key (introduced in Section 2.3.1). In other words, the

model in this method learns and predicts only the beginning and end of a coor-

dinate structure, assuming that the preceding conjunct ends immediately before

the coordinator and the following conjunct appears immediately after the coor-

dinator. These two conjuncts are hereafter referred to as the pre-conjunct and

post-conjunct, respectively. When more than one conjunct accompanied with a

comma(s) precedes a coordinator, the model regards those conjuncts as one large

span that ranges from the beginning of the first conjunct to the end of the con-

junct next to the coordinator (e.g., “[cash], [Memotec stock] and [debentures]”
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→ “[cash, Memotec stock] and [debentures]”). Note that we assume that con-

juncts are always adjacent to a coordinator to reduce the time complexity and to

enumerate all possible spans efficiently.

Specifically, given a sentence composed of N words w1:N = w1, . . . , wN and

a coordinator key wk, the pre-conjunct and post-conjunct can be represented as

s1 = wi, . . . , wk−1 (1 ≤ i ≤ k − 1) and s2 = wk+1, . . . , wj (k + 1 ≤ j ≤ N),

respectively. The proposed model predicts the most probable pair of s1 and s2

for the coordinator key wk. When the coordinator key wk does not connect any

elements, the model returns None, which denotes the absence of a coordinate

structure. The proposed method gives scores to all possible combinations of the

beginning i and end j of a coordinate structure, including the case of None,

and then retrieves the conjuncts s1 = wi:k−1 and s2 = wk+1:j using the highest

scoring pair of boundaries i and j. If the adjacent words wk−1 or wk+1 are

punctuation marks, the boundaries are shifted not to include those marks. In

addition, the pre-conjunct s1 is split into smaller conjuncts by punctuation marks

(sub-coordinators) to find more than two conjuncts for the coordinator. In the

case where the score for None is the best among others, no coordinate structure

is found for the coordinator key wk.

4.4.2 Neural network architecture

Figure 4.1 shows an overview of the proposed neural network architecture, con-

sisting of the following four components:

Input Layer: Maps a sequence of one-hot words and POS tags onto their rep-

resentations from embeddings.

RNN Layer: Produces a sequence of sentence-level representations based on

contexts using a bidirectional RNN.

Feature Extractor: Generates feature representations of possible pairs of coor-

dinated spans.

Output Layer: Calculates the scores for given candidate pairs on the basis of

their feature representations.

The following subsections describe these components in detail.
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Figure 4.1: Overview of the neural network architecture in the proposed top-down

approach.

Input layer

The first step of the neural network is to represent a sequence of words and POS

tags in embeddings. The model receives sequences of one-hot encoded words

xword
1:N = xword

1 , . . . ,xword
N and POS tags xpos

1:N = xpos
1 , . . . ,xpos

N and then looks them

up in the matrices Eword ∈ Rdword×|vword| and Epos ∈ Rdpos×|vpos|, resulting in

sequences of real-valued vectors rword
n ∈ Rdword

and rposn ∈ Rdpos , respectively.

These real-valued vectors are concatenated as the input of the next layer:

rword
t = Ewordxword

t

rpost = Eposxpos
t

rt = [rword
t ; rpost ]

r1:N = r1, . . . , rN

(4.7)

where [a;b] is a concatenation operation of vectors a and b.
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RNN layer

A sequence of distributed vectors is transformed into a sequence of hidden state

vectors using stacked bidirectional RNNs. A bidirectional RNN processes a time

series of inputs from the past to a future direction and from the future to a past

direction. In the NLP literature, this network enables us to exploit left-to-right

(forward) and right-to-left (backward) contexts of an input sequence, which is

typically a sentence. The output of the ℓ-th layer of the stacked bidirectional

RNNs at a time step t in the forward direction, which is denoted as hF
ℓ,t, is

computed as

hF
ℓ,t = f(hℓ−1,t,h

F
ℓ,t−1) (4.8)

where f is a non-linear function (defined as in Eq. 4.4), hℓ−1,t is the output

vector of the previous bidirectional layer at the same time step t, and hF
ℓ,t−1 is

the hidden state vector of the same layer at the previous time step t − 1 in the

forward direction. The hidden vector of the ℓ-th layer of the stacked bidirectional

RNNs at a time step t in the backward direction (hB
ℓ,t) is computed in the same

way. The stacked bidirectional RNNs in this method produce the vector hℓ,t

by concatenating the vectors hF
ℓ,t from the forward direction and hB

ℓ,t from the

backward direction at each time step t in every layer ℓ (i.e., hℓ,t =
[
hF
ℓ,t;h

B
ℓ,t

]
).

In this method, the vector rt from the input layer is used as an input for the

first layer of the stacked bidirectional RNNs (i.e., h0,t = rt), and the vector hL,t

is simply referred to as ht, where L is the number of layers in the networks. In

addition, the proposed method uses an LSTM unit as an instance of RNNs for

each direction and every layer.

Feature extractor

This component produces two feature vectors based on the similarity and re-

placeability of pre- and post-conjuncts. The pre-conjunct representation vpre
i

and post-conjunct representation vpost
j are computed from a series of vectors h1:N

produced by the RNN layer using the function fpooling. This work defines element-
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wise averaging as the function fpooling:

fpooling(hl:m) =
1

m− l + 1

m∑
t=l

ht (4.9)

Thus, vpre
i and vpost

j are expressed as follows:

vpre
i = fpooling(hi:k−1) (1 ≤ i ≤ k − 1)

vpost
j = fpooling(hk+1:j) (k + 1 ≤ j ≤ N)

(4.10)

Then, vpre
i and vpost

j are fed into the following feature extraction function.

Similarity feature vector

To capture the similarity between the pre- and post-conjunct, the feature vector

is computed as follows:

fsim(vpre
i ,vpost

j ) =
[
|vpre

i − vpost
j |;vpre

i ⊙ vpost
j

]
(4.11)

where |vpre
i − vpost

j | is the absolute value of element-wise subtraction, and vpre
i ⊙

vpost
j is element-wise multiplication. These subtraction and multiplication opera-

tions are intended to model the semantic distance and relatedness [46, 103, 40].

Replaceability feature vector

The feature vector based on the replaceability of conjuncts is defined as follows:

frepl(h1:N , i, j, k) =[
|hi−1 ⊙ hi − hi−1 ⊙ hk+1|;
|hj ⊙ hj+1 − hk−1 ⊙ hj+1|

] (4.12)

where hi−1 is the context vector linked to the beginnings of conjuncts and hj+1 is

the context vector linked to the ends of conjuncts. The first subtraction |hi−1 ⊙
hi − hi−1 ⊙ hk+1| is the difference between two context–conjunct connections

at the beginning of coordination. The second subtraction |hj ⊙ hj+1 − hk−1 ⊙
hj+1| is the difference between two context–conjunct connections at the end of

coordination. These distance measures can be interpreted as the difficulty of
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replacing conjuncts. Intuitively, in the example “The closely watched rate on

[federal funds], or [overnight loans] between banks . . . ”, the relation between on

and federal should be close to that between on and overnight, and therefore the

difference between the two relations should be small. This can be said for the

relations funds–between and loans–between. Note that the first subtraction in the

function frepl is a zero vector when i = 1, and the second subtraction is a zero

vector when j = N .

Output layer

This layer consists of MLPs to compute the scores of pairs of conjuncts based on

the similarity and replaceability feature vectors. The score of a candidate pair of

a pre-conjunct wi:k−1 and post-conjunct wk+1:j is calculated as follows:

Scoreθ

(
(i, j), k

)
= MLP

([
fsim(vpre

i ,vpost
j ); frepl(h1:N , i, j, k)

])
(4.13)

To deal with the absence of coordination against a coordinator key wk, a

score is also assigned to a candidate of None. The score for None is simply

computed as the product of a weight vector and sentence-level representation of

the coordinator key produced by the RNN layer:

Scoreθ(None, k) = w · hk + b (4.14)

Using these scoring functions, the model assigns scores to all possible pre- and

post-conjunct pairs. When the length of a sentence is N and a coordinator key

appears as the k-th word, (k− 1)× (N − k) + 1 candidates are obtained, and the

best scoring candidate is chosen among them:

Sk =
{
None

}
∪
{

(i, j) | 1 ≤ i ≤ k − 1, k + 1 ≤ j ≤ N
}

(4.15)

ŷk = arg max
s∈Sk

Scoreθ(s, k) (4.16)

where θ is the set of parameters used in all layers.
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4.4.3 Learning

The loss function is defined as the negative log-likelihood of the true coordination

span for a coordinator key:

Pθ(yk = s|x, k) =
exp (Scoreθ(s, k))∑

s′∈Sk

exp (Scoreθ(s′, k))
(4.17)

ℓθ(x, k, yk) = − logPθ(yk|x, k) (4.18)

where x is a sentence consisting of words and corresponding POS tags, k is the

position of a coordinator key, and yk is either the coordination span or label

None.

The set of parameters θ in the model is trained by minimizing the following

loss function:

L(θ) =
∑

(x,k,yk)∈D

ℓθ(x, k, yk) (4.19)

where D is a set of triples of a sentence, coordinator key, and corresponding

coordination span (or None if it is absent) in a training dataset.

4.4.4 Decoding

When a sentence contains more than one coordinate structure, any pair of them

must be nested or disjoint, i.e., partial overlapping is prohibited. Individually

determining the best span of each coordinate structure may cause such conflicts.

Thus, the model is extended to find the best combination of coordinate structures,

greedily choosing the most probable boundaries without conflicts.

Note that the proposed model learns and predicts the coordinate structure

boundaries and not each conjunct; thus, the system simply divides the pre-

conjuncts into sub-conjuncts using the character “,” as a divider.
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4.5 Preliminary experiments

4.5.1 Settings

This section presents preliminary experiments on the Penn Treebank (PTB) with

the coordination annotation [28], comparing the performance of the proposed

method with that of Ficler and Goldberg [29]. The corpus was split as in the pre-

vious work [29]: sections 02–21, 22, and 23 of the Wall Street Journal (WSJ) as

the training, development, and test sets, respectively. Coordinating conjunctions

and, or, but, nor, and and/or were defined as coordinator keys. The proposed

model employed the pretrained 100-dimensional word embeddings of GloVe [85],

which were not fixed but fine-tuned during training. The POS tags were ob-

tained using the Stanford POS Tagger [107] with 10-way jackknifing, and the

100-dimensional POS tag embeddings were initialized with the normal distri-

bution N (0, 1). The RNN layer was instantiated with two-layer bidirectional

LSTMs. The dimensionality of the LSTM hidden vectors dhidden in each direc-

tion was selected from {300, 400, 512}. The MLP in the model consisted of one

hidden layer with ReLU activation and an output linear layer. The number of

hidden layer units in the MLP was selected from {dhidden × 2, dhidden × 4}. The

model parameters were optimized by mini-batch SGD with a batch size of 128.

The learning rate was automatically tuned by Adam [55] with an initial learning

rate 0.001 and without L2 regularization for the parameter weights. To prevent

gradients from exploding, gradient clipping [84] was adopted with a threshold 5.0.

In training, dropout [101] was applied to the embeddings, input vectors of each

LSTM in the bidirectional LSTMs (except the first layer), and the hidden layer of

the MLP. DropConnect [111, 69] was also applied to the hidden-to-hidden weight

matrices within the LSTMs. The rates of dropout and DropConnect were selected

from {0.00, 0.30, 0.50}. The model was trained for 50 epochs, and its snapshot

was preserved for the evaluation with the test set when achieving the best F1

score based on the prediction of correct coordination spans on the development

set. Table 4.1 presents the final hyperparameter selections.
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Hyperparameter Value

Dimension of LSTM hidden vector 300

MLP units in hidden layer 600

Dropout rate (all) 0.50

DropConnect rate 0.50

Table 4.1: Final hyperparameter settings for the preliminary experiments on the

PTB.

Evaluation metrics

The proposed model was evaluated on the basis of the ability to predict the pre-

and post-conjuncts for each coordinator using precision, recall, and F1 measures.

In another setup, the evaluation focused on NP coordination, in which phrases

of types NP and NX were considered as NP, as in the work of Ficler and Gold-

berg [29]. However, the proposed model does not predict the type of coordination.

Thus, the model in the experiments additionally predicted whether a coordina-

tion candidate is NP coordination or not by feeding the hidden vector hk to a

logistic classifier, where k is the index of the coordinator key.

4.5.2 Results

Table 4.2 presents a comparison with existing methods. For all coordination,

the proposed method outperformed existing systems with an F1 score of 73.90

on the test set, which is 1.20 better than the previously reported best result.

The proposed top-down approach performed better than the method of Ficler

and Goldberg. Note that their method makes use of syntactic trees produced

by the Berkeley parser for extracting and scoring candidates, whereas the pro-

posed method scans all possible coordination spans without such information.

In addition, evaluating models by pre- and post-conjuncts is disadvantageous

for the proposed model because others directly produce each conjunct span; the

proposed model, on the other hand, learns not conjunct spans but coordination

spans as a whole and splits them into conjuncts. The proposed method is likely

to divide pre-conjuncts mistakenly by the appearance of false positive commas as
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Development Test

Pre. Rec. F1 Pre. Rec. F1

All Coordination

Berkeley 70.14 70.72 70.42 68.52 69.33 68.92

Zpar 72.21 72.72 72.46 68.24 69.42 68.82

Ficler+16 72.34 72.25 72.29 72.81 72.61 72.7

top-down 75.08 76.76 75.91 72.85 74.97 73.90

NP Coordination

Berkeley 67.53 70.93 69.18 69.51 72.61 71.02

Zpar 69.14 72.31 70.68 69.81 72.92 71.33

Ficler+16 75.17 74.82 74.99 76.91 75.31 76.1

top-down 79.08 78.71 78.89 79.36 78.98 79.16

Table 4.2: Performance of predicting pre- and post-conjuncts on all coordination

and on NP coordination in the PTB. The results for the three other methods are

reported in the work of Ficler and Goldberg [29].

separators. Nevertheless, it performed the best even for NP coordination, which

frequently contains more than two conjuncts.

To investigate the effectiveness of the proposed features, an additional ex-

periment was performed with different uses of feature representations. As the

baseline, a simple model was employed, using two averaged vectors as features

(Eq. 4.9) and feeding them into the MLP instead of the similarity and replaceabil-

ity features (Eq. 4.13). Note that the performance in this setting was measured

on the basis of predicting coordination spans, not pairs of conjuncts adjacent to

coordinators, as shown in Table 4.2, to ignore the drop caused by splitting. Ta-

ble 4.3 summarizes the performances. The similarity and replaceability features

worked better than the baseline independently. The former worked especially

well for NP coordination, in which conjuncts are likely to be similar, whereas the

latter feature may not capture the similarity between conjuncts. The joint model

performed best by exploiting both features, which suggests the effectiveness of

using two features together. When POS tags were not given to the model, the

performance significantly dropped. I deduce that POS tags are crucial informa-
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All Coordination NP Coordination

Pre. Rec. F1 Pre. Rec. F1

baseline 75.17 76.76 75.96 80.45 80.09 80.27

fsim 77.36 79.00 78.17 80.68 80.32 80.50

frepl 76.95 78.77 77.85 79.08 78.71 78.89

both 77.97 79.71 78.83 80.68 80.32 80.50

-POS tags 73.38 75.11 74.24 77.70 77.34 77.52

-GloVe 74.19 75.94 75.05 77.47 77.11 77.29

-decoding 77.50 79.24 78.36 80.22 79.86 80.04

Table 4.3: Performances with different settings for the PTB development set eval-

uated by coordination span prediction. “fsim,” “frepl,” and “both” indicate the

use of similarity feature vectors, replaceability feature vectors, and both feature

vectors, respectively.

tion to compare two spans in computing the similarity and replaceability features.

The proposed model might benefit from the encoder being jointly trained for POS

tagging. The model also performed poorly when it used randomly initialized em-

beddings instead of pretrained ones. It is worth noting that predicting more than

one coordination span at once in the same sentence achieved a gain in perfor-

mance. Without the joint decoding, the model identifies each coordination span

individually, leading to possible conflicts.

Comparing the performances by different evaluation criteria, the proposed

model apparently achieved better results when measured by performance on co-

ordination span prediction. The drop in performance caused by splitting is shown

as the difference between the best F1 score of 78.83 in Table 4.3 and that of 75.91

in Table 4.2 for all coordination. I believe that the performance could be improved

further by more accurately retrieving individual conjuncts from coordination.

I further investigate the ability and performance of the proposed top-down

approach in Chapter 6.
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4.6 Summary

This chapter presented a novel top-down approach to coordination disambigua-

tion. Unlike previous work, the proposed method first identifies the entire span of

coordination instead of the conjuncts and then splits it into individual conjuncts.

To determine the most promising span, the neural network model employed in

this approach computes a score for a candidate span by exploiting two prop-

erties of conjuncts: (i) conjuncts tend to have a similar structure in syntax or

semantics and (ii) conjuncts can be replaced with each other, maintaining the

consistency of a sentence. On the basis of these observations, the model encodes

two feature vectors from a sequence of vectors produced by bidirectional RNNs.

These feature representations enable the model to identify both similar pairs of

conjuncts (such as noun phrases) and dissimilar ones (such as verb phrases and

clauses), which is experimentally validated, as reported in Chapter 6. As a re-

sult, the proposed method outperformed the existing best method and achieved

state-of-the-art performance. The biggest contribution of the proposed top-down

approach is resolving the dependence on information from syntactic parsers. Nev-

ertheless, the model has room for improvement with a more sophisticated way to

retrieve individual conjuncts from coordination.



Chapter 5

Bottom-Up Approach

5.1 Introduction

The previous chapter proposed a top-down approach for coordination disambigua-

tion. The method can identify the coordination span instead of the conjunct spans

for a given coordinating word by utilizing neural networks to incorporate the

similarity and replaceability properties between coordinated elements. This over-

comes one of the weaknesses of the neural network approach developed by Ficler

and Goldberg [29]—its dependence on an external syntactic parser. The proposed

top-down model outperformed existing methods despite its lack of the ability to

delineate the boundaries of each conjunct. However, both neural network-based

methods have difficulty producing complex coordinate structures, e.g., a coordi-

nate structure with more than two conjuncts, and nested coordinate structures.

In contrast, the method of Hara et al. [39] can handle such structures consistently

by making use of production rules specialized for coordination.

This chapter presents an alternative bottom-up approach, which builds a co-

ordinate structure by composing individual conjuncts proximate to a coordinator

while keeping the end-to-end neural network model independent of external re-

sources. Inspired by the work of Hara et al., the proposed method also defines

context-free grammar rules to produce coordinate structures without conflicts

and applies the rules with the CKY parsing algorithm. When scoring candidate

conjunct pairs during CKY parsing, the proposed method employs neural net-

work models similar to the ones used in the top-down approach in the previous

51
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chapter. This framework can successfully produce the optimal coordinate struc-

tures for a given sentence with good accuracy, where any two of them are not in

conflict with each other.

5.2 Preliminaries

5.2.1 Context-free grammar

In formal language theory, a context-free grammar (CFG) is a formal grammar

consisting of a set of production rules, each of which is expressed in the form

A→ β

where A is a single non-terminal symbol and β is a string of terminal and/or non-

terminal symbols. CFGs are considered “context free” because any production

rules in the grammar can be applied regardless of the context; no matter which

symbols surround it, the single non-terminal on the left-hand side of the rule can

be replaced by symbols on the right-hand side.

Formally, a CFG G is defined by the 4-tuple G = (N,Σ, R, S), where

• N is a finite set of non-terminal symbols,

• Σ is a finite set (disjoint from N) of terminal symbols,

• R is a set of production rules, each of which is represented in the form

A→ β, where A is a non-terminal symbol and β is a string of symbols from

the infinite set of strings (Σ ∪N)∗, and

• S (which is in N) is a start symbol.

For example, we define a CFG G0 = (N,Σ, R, S) as follows:

• N = {S,NP, V P, PP, PRP, V BD,DT,NN, IN}

• Σ = {I, saw, a, girl, with, telescope}

• R = {
S → NP V P
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NP → NP PP | PRP | DT NN

VP → V BD NP | V BD NP PP

PP → IN NP

PRP → I

VBD → saw

DT → a

NN → girl | telescope

IN → with

}

Note that we use the symbol | to indicate alternate possible expansions, which

means we can apply either A→ β1 or A→ β2 from the rule A→ β1 | β2. A non-

terminal symbol that immediately dominates a terminal, e.g., PRP, VBD, DT,

NN and IN (POS tags) in the example, is called a pre-terminal. From G0, we can

generate the sentence I saw a girl with a telescope (in which punctuation marks

are omitted for brevity) by applying production rules in the following derivation:

0. S

1. → NP V P

2. → PRP V P

3. → I V P

4. → I V BD NP PP

5. → I saw NP PP

6. → I saw DT NN PP

7. → I saw a NN PP

8. → I saw a girl PP

9. → I saw a girl IN NP

10. → I saw a girl with NP

11. → I saw a girl with DT NN

12. → I saw a girl with a NN

13. → I saw a girl with a telescope

The structure resulting from the derivation can be represented by the parse tree

shown in Figure 5.1(a). The set of strings derived from a CFG is called a context-

free language. Thus, the example sentence can be said to be a string in the

context-free language of the grammar G0.
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(a) I had the telescope. (b) The girl had the telescope.

Figure 5.1: Different parse trees for a given sentence.

The example sentence can be generated by a different derivation as follows:

0. S

1. → NP V P

2. → PRP V P

3. → I V P

4. → I V BD NP

5. → I saw NP

6. → I saw NP PP

7. → I saw DT NN PP

8. → I saw a NN PP

9. → I saw a girl PP

10. → I saw a girl IN NP

11. → I saw a girl with NP

12. → I saw a girl with DT NN

13. → I saw a girl with a NN

14. → I saw a girl with a telescope

The corresponding parse tree is shown in Figure 5.1(b). This derivation produces

a different parse tree. A grammar is said to be ambiguous if a string in the

language of the grammar has more than one parse tree. Thus, the grammar G0

is considered ambiguous.
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Input: string s, grammar G

Output: true if s ∈ L(G); otherwise, false

1: for i← 1 to Length(s) do

2: table[i, i]← {A | A→ s[i] ∈ G}
3: end for

4: for j ← 2 to Length(s) do

5: for i← j − 1 to 1 do

6: for k ← i to j − 1 do

7: table[i, j] ← table[i, j] ∪ {A | A → BC ∈ G,B ∈ table[i, k], C ∈
table[k + 1, j]}

8: end for

9: end for

10: end for

11: return S ∈ table[1,Length(s)]

Figure 5.2: CKY algorithm. L(G) denotes the context-free language of the gram-

mar G, and S is the start symbol in G.

A CFG can be thought of in two ways: as a device for generating sentences,

as explained above, and as a device for assigning a structure to a given sentence,

which is known as parsing. In other words, parsing is a process of uncovering

structures, such as parse trees, for languages. CFGs are powerful yet simple

enough that efficient parsing algorithms exist for determining whether and how

a given string can be generated from the grammar.

5.2.2 CKY algorithm

This section presents the Cocke-Kasami-Younger (CKY) algorithm [50, 115, 16],

which is the most widely used dynamic programming-based approach to parsing.

The CKY algorithm operates on CFGs given in Chomsky normal form (CNF), in

which all production rules are of the form A→ BC or A→ s, meaning that the

right-hand side of each rule must expand either to two non-terminals or a single

terminal. Every CFG can be transformed into an equivalent one in CNF. The

algorithm is described in pseudocode in Figure 5.2. Because each non-terminal
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Figure 5.3: CKY chart. Rows and columns indicate start and end positions of

constituents, respectively.

entry in the table has two child nodes in the parse, there must be a position in

the input where a constituent [i, j] can be split into two parts [i, k] and [k + 1, j]

(i ≤ k < j). Such a position k lies somewhere along the row i and column j in

the table. A concrete example of the CKY table is shown in Figure 5.3. This

illustrates that the entry [2, 7]VP is derived from either [2, 4]VP/NP and [5, 7]PP

or [2, 2]VBD and [3, 7]NP. The importance of the CKY algorithm stems from its

efficiency; the worst-case time complexity is O(n3 · |G|), where n is the length of

the parsed string and |G| is the size of the CNF grammar G.

The algorithm presented in Figure 5.2 can be used for recognizing a string as

being in the context-free language of a grammar. To extract a parse tree for a

given sentence, the algorithm must be extended so that it preserves a backpointer

for each non-terminal symbol to track the instantiated rules in the table. However,

if a string can be derived from more than one parse tree, how can we choose one

from others? We can associate a score with each application of a rule, and the
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best parse tree is obtained by choosing the best scoring derivation, where each

score is calculated as the sum of scores assigned to the rules used in the derivation:

T̂ = arg max
T∈TG(s)

score(T )

score(T ) =
∑

A→β∈T

s(A→ β)
(5.1)

where s is the score for each rule. The time complexity of parsing is still cubic

against the length of a string. The most famous application of Eq. 5.1 is assigning

a (logarithm of) probability to each rule. A CFG that contains probabilistic

rules is called a probabilistic context-free grammar [8, 9] (PCFG). In many cases,

probabilities of rules in PCFGs are usually computed by maximum likelihood

estimation on annotated corpora. I refer the reader to the textbook by Jurafsky

and Martin [48] for further details.

5.3 Related work

This section introduces the work of Hara et al. [39], which is the most relevant to

the method presented in this chapter. They proposed a framework that produces

consistent coordinate structures derived from CFG rules specialized for coordina-

tion and made use of the rules in the CKY algorithm with a chart-based scoring

system similar to the one by Kurohashi and Nagao [60]. Their CFG rules en-

sure that coordinate structures in a sentence are either disjoint or nested. The

CFG is ambiguous and thus it can produce more than one parse tree, each of

which contains different coordinated elements. To determine one parse tree, their

system assigns a score to each candidate tree on the basis of similarities between

conjuncts and returns the best scoring tree as the predicted coordinate structures.

The score in their work is computed as a weighted linear combination of man-

ually designed features assigned to edges and nodes in an edit graph for the

sequence alignment, which originates from the work of Shimbo and Hara [100].

Sequence alignment is a way of arranging sequences, such as DNA in bioinfor-

matics, to identify similar (homological) regions, where the cost of transforming

a sequence to another is calculated as a minimum-weight series of insertion, dele-

tion, and substitution edit operations [36]. The cost, known as the edit distance
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or Levenshtein distance [63], is usually computed using a dynamic programming

algorithm for the shortest path problem on a grid (edit graph). In the work of

Shimbo and Hara, each edge on the edit graph has its own features, which consist

of attributes, including the surface word, POS, and other morphological informa-

tion. The weights of features are learned by a discriminative model (perceptron)

so that one of the paths producing the correct conjuncts achieves the best score

among all possible paths because word-to-word correspondences are not obvious.

The score between conjuncts in the method of Hara et al. is computed in almost

the same way as above, except that the averaged path score of all paths is taken in

the associated edit graph instead of the best scoring path to reduce computation

in the CKY algorithm, in which different subsequences are compared repeatedly.

Their contributions include consistency in coordinate structures, a machine-

learnable method to capture the similarity between conjuncts, and not being

limited to NP coordination. The drawbacks of their method are laborious feature

engineering and lack of ability to identify dissimilar pairs of conjuncts, such as

VPs and clauses. The idea for the bottom-up approach proposed in this chapter

is based on their framework but aims to alleviate its drawbacks. Neural networks

are employed to capture dissimilar conjuncts and to relieve feature engineering.

The proposed method involves the integration of neural network-based scoring

models with CKY parsing and the expansion of CFG rules to cover a broader

variety of coordinate structures.

5.4 Proposed method

5.4.1 Background

Coordinate structures as a tree

Hierarchical relations of coordination and an unlimited number of coordinated

elements in a sentence can be represented as a tree, which is referred to as a

coordinate tree hereafter. Figure 5.4 shows an example of a coordinate tree. Tree

structures are particularly suitable because the ranges of coordinate structures

are always consistent (partial overlapping is not permitted), and conjuncts are

shown as nodes with unlimited possible occurrences. In other words, for a given
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Figure 5.4: Example of a coordinate tree. coord is a coordinate structure, conj

is a conjunct, cc is a coordinator, and cc-sub is a sub-coordinator.

sentence, coordinate structures retrieved from a coordinate tree are always well-

formed. Thus, the proposed method aims to produce a coordinate tree.

Combinatorial explosion of candidate coordination

One problem is that considering all possible combinations of conjuncts composing

a coordinate structure for a given coordinator causes rapid growth of the problem

complexity. Suppose the k-th word acts as a coordinator in a sentence consisting

of N words. Assuming the coordinate structure has only two conjuncts adjacent

to the coordinator, the number of possible pairs of conjuncts is (k−1)× (N −k).

When the coordinator appears near the middle point in the sentence, the number

is at most (N/2)2. In fact, conjuncts are often far apart from a coordinator, and a

non-coordinated element can be injected between the coordinator and one or both

of the conjuncts, such as in “[A] and, on the other hand, [B]”. If we take such cases

into account, the number of candidates is k(k−1)/2 × (N−k)(N−k+1)/2, and

it is approximated to (N/2)4/4 at most for a coordinator at the center position

of the sentence.

For more complex sentences, such as those containing multiple coordinators

and/or coordinate structures formed by more than two conjuncts, the number

of possible candidates increases exponentially and becomes intractable. Thus,
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inspecting all possible candidates at once is not realistic. The proposed method

focuses on recursively applying local evaluation and comparison to arbitrary con-

junct pairs to suppress combinatorial explosion and make the inspection tractable.

5.4.2 Parsing with a context-free grammar for coordina-

tion

This section describes how to produce coordinate structures as a parse tree. The

parse tree, which is in one-to-one correspondence with the coordinate tree, is

derived from special CFG rules described in Table 5.1. Using CFG rules has

two advantages: (1) exploration of only valid coordination, where any two of

coordinate structures are always nested or disjoint and (2) efficient production

of a coordinate tree with the CKY algorithm. The CFG rules in Table 5.1,

which are extended from the ones by Hara et al. [39], can produce a coordinate

structure whose conjuncts are apart from the coordinator, whereas the rules of

Hara et al. can produce a coordinate structure whose conjuncts always adjoin the

coordinator. As a result, the proposed CFG rules can produce coordinate trees

for 99.5% of the sentences in the coordination annotated PTB [28].1

The CFG in Table 5.1 is ambiguous and thus it can produce different parse

trees for a given sentence. Hence, the proposed system assigns a score to each

tree and returns the best scoring tree:

T̂ = arg max
T∈TG(s)

score(T ) (5.2)

where TG(s) is the set of parse trees that the CFG G can derive from the sentence

s.

Scoring for the CKY algorithm

For a given parse tree, the system gives scores only to coordination nodes, denoted

as COORD, and pre-terminals in the tree. Scores for COORD nodes are assigned

by the function scorecoord. Scores for pre-terminals are assigned by the function

1Most of the non-derivable coordinate structures are in a form such as “A and B and C”,

where a coordinating word is regarded as a sub-coordinator. Even so, this expression can be

parsed as a nested coordinate structure by the rules.



CHAPTER 5. BOTTOM-UP APPROACH 61

Non-terminals

COORD Coordination

CONJ Conjunct

CC Coordinating conjunction

CC-SUB Sub-coordinator

W Word

N Non-coordination

S Sentence

Rules for coordination

(1) COORD → CONJ N? CC N? CONJ

(2) COORD → CONJ CC-SUB COORD

(3) CONJ → COORD

(4) CONJ → N

Rule for non-coordination

(5) S → COORD

(6) S → N

(7) N → COORD N

(8) N → W COORD

(9) N → W N

(10) N → W

Rules for pre-terminals

(11) CC → (and|or|but|nor|and/or)

(12) CC-SUB → (,|;|:)
(13) W → *

Table 5.1: Production rules for coordinate trees. (. . . |. . . ) represents one of the

elements, and “*” represents any word. “?” indicates zero or one occurrence of

the preceding element.
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scoreckey when a terminal belongs to the set of coordinator keys Scc or the set

of sub-coordinator keys Ssub-cc; when a terminal does not belong to either Scc

or Ssub-cc, the system assigns 0 to the pre-terminal because it is a node W and

is not relevant to coordination. To summarize, the scoring function score(T ) is

formulated as follows:

score(T ) =
∑

⟨[i,j],v⟩∈T

scorenode([i, j], v) (5.3)

scorenode([i, j], v) =


scorecoord(i, j) (v = COORD)

scoreckey(i, v) (v ∈ {CC,CC-SUB,W},

i = j, wi ∈ Scc ∪ Ssub-cc)

0 (otherwise)

(5.4)

where ⟨[i, j], v⟩ is a node labeled as v in a parse tree T and spans from the i-th to

the j-th word in a sentence, and wi indicates the i-th word in the input sentence.

The two scoring functions scorecoord for coordination nodes and scoreckey for pre-

terminals of coordinator keys and sub-coordinator keys are defined later.

The proposed method uses the CKY algorithm to produce parse trees for co-

ordination from the CFG. To apply the algorithm, the CFG rules are transformed

into the CNF.2 The best scoring parse tree T̂ resulting from Eq. 5.2 can be found

efficiently using dynamic programming, as described in Section 5.2.2.

5.4.3 Pre- and post-processing

Commas and periods are moved inside the quotation marks in American En-

glish. This causes irregular coordinated phrases, such as ⟨. . . “associations,” “so-

cieties” and “councils” . . . ⟩, which cannot be produced by rule (2) in Table 5.1

correctly. When applying rule (2) to such sentences, the conjuncts following sub-

coordinators begin with closing quotations. This section proposes two pre- and

post-processing methods to treat the irregular movement of punctuation marks.

2When a rule has more than two non-terminals, symbols on the right-hand side are trans-

formed into binary rules from right to left.
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Removing and recovering quotation

One way of pre- and post-processing quotation marks is to remove them before

feeding a sentence to the system. At the same time, we keep a record of their po-

sitions and then insert them at their original positions after the system identifies

coordinate structures. For example, when the system predicts the conjuncts as

⟨. . . [A], [B] and [C], . . . ⟩ for the given sentence ⟨. . . “A,” “B” and “C,” . . . ⟩, it

recovers them as ⟨. . . “[A],” “[B]” and “[C],” . . . ⟩.

Swapping quotation and punctuation

Alternatively, it is possible to swap the positions of commas and the immedi-

ately following closing quotation marks before feeding a sentence to the system.

We retain their original positions so that we can recover them when the system

completes identification. For example, when the system returns the conjuncts as

⟨. . . “[A]”, “[B]” and “[C]”, . . . ⟩ for the given sentence ⟨. . . “A,” “B” and “C,”

. . . ⟩, it recovers them as ⟨. . . “[A],” “[B]” and “[C],” . . . ⟩.

The proposed bottom-up approach adopts the swapping method for pre- and

post-processing of quotation marks. This is because this method preserves quo-

tation marks, and the system can make use of them as promising clues to identify

conjuncts. In addition, this pre- and post-processing method does not affect

British English text, which does not have irregular movement around quotations,

whereas the removing method eliminates quotation marks even if no irregular

movement occurs.

5.4.4 Parser models

This section defines the scoring functions of scorecoord and scoreckey for the pars-

ing algorithm described in the previous section; it also presents methods to train

parameters associated with the scoring functions. The scoring functions con-

sist of three submodels: coordinator classification model, inner-boundary scoring

model, and outer-boundary scoring model. Figure 5.5 illustrates an overview of

the proposed approach.
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Figure 5.5: Overview of the framework of the proposed bottom-up approach.

The scores of rectangular nodes for pre-terminals are assigned by the coordinator

classification model, and the scores of COORD nodes are assigned by the inner-

and outer-boundary scoring models.
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For the task of coordination disambiguation, a system must return a set of co-

ordinate structures for a given sentence consisting of N words w1:N = w1, . . . , wN :

X = w1:N

Y =
{
⟨t, {[b(k)t , e

(k)
t ] | 1 ≤ k ≤ Kt}⟩ |wt is a coordinator

}
(b

(k)
t ≤ e

(k)
t , Kt ≥ 2)

(5.5)

where t indicates the position of a coordinator, Kt is the number of conjuncts in

the coordinate structure formed by the coordinator wt, and [b
(k)
t , e

(k)
t ] is the k-th

conjunct in the coordinate structure, which spans from the b
(k)
t -th to the e

(k)
t -th

word in the sentence. Kt is greater than or equal to 2 because we cannot know

in advance how many conjuncts belong to the coordinate structure formed by a

coordinator wk.

Alternatively, we could find pairs of conjuncts in a sentence by using coordi-

nator and sub-coordinator keys:

X ′ = {w1:N , C}
C = {t |wt ∈ Scc ∪ Ssub-cc}
Y ′ = {⟨yckeyt , ypairt ⟩ | t ∈ C}

(5.6)

where yckeyt is a binary label indicating whether wt is the actual (sub-)coordinator

(yckeyt = 1) or not (yckeyt = 0), and ypairt is a pair of conjunct spans. ypairt = ∅ when

yckeyt = 0 because there is no pair of conjuncts for wt. When t = 1 or t = N ,

yckeyt = 0 because it does not form a coordinate structure within the sentence.

The set of coordinator keys Scc and the set of sub-coordinator keys Ssub-cc are

{“and”, “or”, “but”, “nor”, “and/or”} and {“,”, “;”, “:”}, respectively, as defined

in Section 2.3.1.

To identify the four boundaries of ypairt —the beginnings and ends of the left

and right conjuncts—the proposed approach uses two different models for the

inner boundary (end of the left conjunct and beginning of the right conjunct)

and the outer boundary (beginning of the left conjunct and end of the right

conjunct). Dividing the four boundaries into two groups enables feasible enu-

meration because enumerating all possible inner and outer boundaries of ypairt

has time complexity O(N2) +O(N2) = O(N2), whereas enumerating all possible

ypairt has time complexity O(N4).
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It should be noted that for division of the four boundaries, “two beginnings

and two ends” or “left span and right span” can be chosen instead. However,

in preliminary experiments, models for the division “left span and right span”

performed poorly because they could not make use of the interaction of two spans

and thus they could not capture the similarity and replaceability between two

conjuncts. On the other hand, models for the division “two beginnings and two

ends” performed relatively well because they could compare the beginnings/ends

of conjuncts to measure the similarity and replaceability. In most cases, however,

the end of the left conjunct and beginning of the right conjunct are next to the

coordinator. Thus, the models tended to learn only the beginning of the left

conjunct and end of the right conjunct independently, which might be one reason

why they performed worse than those trained on inner and outer boundaries.

Coordinator classification model

The coordinator classification model is a binary classifier that predicts the label

of a (sub-)coordinator key:

Pθ(y
ckey
t = 1 | t) =

1

1 + exp (−Scoreckey
θ (t))

Pθ(y
ckey
t = 0 | t) = 1− Pθ(y

ckey
t = 1 | t)

(5.7)

where Scoreckey
θ is a scoring function for (sub-)coordinator keys, and θ is a set

of model parameters. The training loss of the binary classification is computed

by the following equation:

ℓckeyθ (X ′, Y ′) = −
∑

⟨yckeyt ,ypairt ⟩∈Y ′

logPθ(y
ckey
t |t) (5.8)

Inner-boundary scoring model

The inner-boundary scoring model assigns a score to a pair of conjunct spans

on the basis of inner boundaries. bl, el, br, and er denote the beginning of a

left conjunct, end of a left conjunct, beginning of a right conjunct, and end of

a right conjunct, respectively. The score of the inner-boundary pair (el, br) for

a coordinator key wt is assigned by a scoring function Scoreinner
θ (el, br, t). The
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probabilities of the inner boundaries are normalized distributions over all possible

inner-boundary pairs:

It =
{

(1, t + 1), (1, t + 2), . . . , (1, N), (2, t + 1), . . . , (t− 1, N)
}

(5.9)

Pθ(y
pair
t = ⟨[∗, el], [br, ∗]⟩ | t) =

exp (Scoreinner
θ (el, br, t))∑

(e′l,b′r)∈It
exp (Scoreinner

θ (e′l, b′r, t))
(5.10)

ℓinnerθ (X ′, Y ′) = −
∑

⟨yckeyt ,ypairt ⟩∈Y ′

yckeyt logPθ(y
pair
t |t) (5.11)

The term yckeyt logPθ(y
pair
t |t) means that the cross-entropy loss is activated only

for positive coordinator keys (yckeyt = 1) and is deactivated otherwise (yckeyt = 0).

Outer-boundary scoring model

Similarly to the inner-boundary scoring model, for the outer-boundary pair (bl, er),

the probability Pθ(y
pair
t = ⟨[bl, ∗], [∗, er]⟩ | t) is computed from the set of all

outer-boundary pairs Ot; the loss is defined as ℓouterθ using the scoring function

Scoreouter
θ (bl, er, t) in the same way as ℓinnerθ . Note that It and Ot are identical be-

cause their possible pairs are the same. Using the inner pair probability Pθ(y
pair
t =

⟨[∗, el], [br, ∗]⟩ | t) and outer pair probability Pθ(y
pair
t = ⟨[bl, ∗], [∗, er]⟩ | t), the most

probable pair is produced by

ypairt = arg max
(êl,b̂r)∈It

Pθ(⟨[∗, êl], [b̂r, ∗]⟩ | t)

∪ arg max
(b̂l,êr)∈Ot

Pθ(⟨[b̂l, ∗], [∗, êr]⟩ | t)
(5.12)

In practice, conjunct pairs are determined through the CKY algorithm because

choosing the best pairs for an individual coordinator may cause a conflict with

other coordinate structures.

5.4.5 Scoring

This section concretely defines the scoring functions scorecoord and scoreckey pre-

sented in Section 5.4.2. When scoring pre-terminals for (sub-)coordinator keys
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wt ∈ Scc ∪ Ssub-cc, the log probability of each binary label yckeyt is assigned:

scoreckey(t, v) =

logPθ(y
ckey
t = 1 | t) (v ∈ {CC,CC-SUB})

logPθ(y
ckey
t = 0 | t) (v = W)

(5.13)

The score of COORD is computed using the left and right conjuncts, which

are linked by the CC. Assuming that a coordinator appears at the t-th position

and the left and right spans are [i, l] and [m, j], respectively, the score of the

coordinate structure [i, j] formed by the two conjuncts linked by wt is the sum of

the log probabilities of the inner boundary (l,m) and outer boundary (i, j):

scorecoord(i, j) = logP (ypairt = ⟨[i, l], [m, j]⟩ | t)
= logPθ(⟨[∗, l], [m, ∗]⟩ | t) + logPθ(⟨[i, ∗], [∗, j]⟩ | t)

(5.14)

Rule (1) is represented as follows when we correspond the calculation of Eq. 5.14

with it:

COORDi,j → CONJi,l Nl+1,t−1? CCt,t Nt+1,m−1? CONJm,j

When two conjuncts are linked by a sub-coordinator wt, the score of COORD

is calculated in the same way as Eq. 5.14 using the left and right spans [i, l]

and [m, j], respectively. By applying Eq. 5.14 to rule (2), its right-hand side is

expanded as follows:

COORDi,j → CONJi,l CC-SUBt,t CONJm,j . . . N? CC N? CONJ

(l = t− 1,m = t + 1)

5.4.6 Model instantiations with neural networks

This section instantiates the three scoring functions Scoreckey
θ , Scoreinner

θ , and

Scoreouter
θ with neural networks.

Encoder

Assume that the POS tags p1:N = p1, . . . , pN for words w1:N are available. Sentence-

level representations for a sequence of words and POS tags are obtained through

bidirectional LSTMs (BiLSTMs):

h1:N = BiLSTMs(finput(w1:N , p1:N)) (5.15)
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The dimensionality of each resulting vector ht is 2dhidden when the dimensionality

of a hidden vector from each LSTM is dhidden because a vector ht is computed

as a concatenation of the two vectors encoded from the forward and backward

directions by the LSTMs. For the BiLSTMs inputs, the function finput maps

words and POS tags onto their representations. We can use different word repre-

sentations, including a pretrained word model, contextualized word embeddings

(e.g., ELMo [86] or BERT [22]), and character-level LSTMs/CNNs. The use of

different word representations is considered in Section 5.5. The entire network

consisting of finput and BiLSTMs is referred to as the encoder; it is shared by the

three neural networks in the higher layer.

Coordinator classification model

The scoring function Scoreckey
θ consists of a linear transformation of the sentence-

level representation of a coordinator key:

Scoreckey
θ (t) = wckeyht + bckey (5.16)

where wckey ∈ R2dhidden and bckey ∈ R are the model parameters of the classifier.

Inner-boundary scoring model

From the sentence-level representations produced by the encoder, the inner-

boundary scoring model concatenates two representations of inner boundaries

and then feeds the produced vector to an MLP:

Scoreinner
θ (el, br, t) = win

2 ReLU(Win
1 [hel ;hbr ] + bin

1 ) + bin
2 (5.17)

where Win
1 ∈ Rdin×4dhidden , bin

1 ∈ Rdin , win
2 ∈ Rdin , and bin

2 ∈ R are the parameters

of the inner-boundary scoring model.

Outer-boundary scoring model

Using sentence-level representations, the outer-boundary scoring model takes two

vectors calculated by subtracting the vectors adjacent to the coordinator from

the boundary vectors. These subtraction operations are intended to capture

the semantic distance and relatedness between two spans, as inspired by the
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operations for the similarity and replaceability features proposed in the top-down

approach (Section 4.4). The model then passes the concatenated vector to an

MLP:

Scoreouter
θ (bl, er, t)

= wout
2 ReLU(Wout

1 [hbl − ht+1;her − ht−1] + bout
1 ) + bout

2

(5.18)

where Wout
1 ∈ Rdout×4dhidden , bout

1 ∈ Rdout , wout
2 ∈ Rdout , and bout

2 ∈ R are the

parameters of the outer-boundary scoring model.

5.4.7 Learning

Training of the set of parameters θ in the neural networks is performed by mini-

mizing the following loss function:

L(θ) =
∑

(X′,Y ′)∈D

(
ℓckeyθ (X ′, Y ′) + ℓinnerθ (X ′, Y ′) + ℓouterθ (X ′, Y ′)

)
(5.19)

where D is a set of pairs of a sentence and the conjunct pairs within it in a

training dataset. Thus, the three submodels are trained jointly.

Why local training?

Instead of learning the scoring functions on the basis of local decisions, we

could directly train the models using a structured max-margin objective between

the scores of the best predicted and gold trees, similarly to the work of Stern

et al. [102]. In preliminary experiments, however, such global training requires

careful hyperparameter tuning and is difficult to optimize stably, resulting in

worse performance than those of models trained locally and the proposed top-

down approach.

The success of local training for inner and outer boundaries is seemingly owed

to the use of cross-entropy loss. Global training with a max-margin objective

adjusts parameters against conjunct boundaries in the best predicted and gold

trees. On the other hand, local training with cross-entropy loss performs well with

not only the best and gold conjunct boundaries but all possible boundaries, and

it lowers the scores for incorrect boundaries. To combine both training methods,
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suppose that we model a conditional probability P (T |s) of a parse tree T ∈ TG(s)

for a given sentence s as follows:

Pθ(T |s) =
exp (scoreθ(T ))

Zθ(s)
, Zθ(s) =

∑
T ′∈TG(s)

exp (scoreθ(T
′)) (5.20)

Updating the set of parameters θ by maximum likelihood estimation of the condi-

tional probability P (T |s) might achieve better results than that by local training;

such training, however, is not feasible because the partition function Z requires

scores to be computed for all possible parse trees that can be derived from the

CFG G for the sentence s. Alternatively, partial global training can be done by

approximating the partition function Z, as proposed in Andor et al. [2]．
Recently, locally trained models for structured inference problems, such as

constituency parsing [105] and dependency parsing [24], have achieved compet-

itive performances without globally optimized training but with globally opti-

mized inference. The proposed bottom-up model is similarly optimized by local

training but employed with the CKY algorithm to produce the best parse tree.

Thus, the proposed approach adopts the local training method partly because

the performance difference between local and global training would be small if

the proposed models learn the subtasks introduced in this chapter with relatively

good accuracy.

5.5 Preliminary experiments

5.5.1 Settings

This section presents preliminary experiments on the coordination-annotated

PTB [28]. Almost all settings were the same as those for the proposed top-

down approach in Section 4.5. The MLPs in the inner- and outer-boundary

scoring models have one hidden layer each with 600 units. The proposed method

adopted the “swap” pre- and post-processing described in Section 5.4.3. The

models were evaluated with precision, recall, and F1 measures for predicting the

pre- and post- conjuncts for each coordinator. In addition, coordinate structures

labeled as NP or NX were specifically evaluated, as in Section 4.5, because they

are the most frequent types of coordination and likely to be similar in conjuncts.
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Development Test

Pre. Rec. F1 Pre. Rec. F1

All Coordination

Ficler+16 72.34 72.25 72.29 72.81 72.61 72.7

top-down 75.08 76.76 75.91 72.85 74.97 73.90

bottom-up 79.29 79.48 79.38 78.17 78.52 78.34

NP Coordination

Ficler+16 75.17 74.82 74.99 76.91 75.31 76.1

top-down 79.08 78.71 78.89 79.36 78.98 79.16

bottom-up 81.42 81.23 81.32 80.86 80.73 80.79

Table 5.2: Performance of predicting pre- and post-conjuncts on all coordination

and on NP coordination in the PTB.

5.5.2 Results

Table 5.2 presents the results. For all and just NP coordination, the proposed

bottom-up method achieved better results than the method of Ficler and Gold-

berg [29] and the proposed top-down method. The bottom-up method was more

accurate, especially for pre- and post-conjuncts, because it learns both the inner

and outer boundaries of conjunct pairs, while the top-down method learns only

the coordination boundaries and thus it is likely to retrieve wrong conjuncts due

to the presence of false positive commas as dividers, as discussed in Section 4.5.

For fair comparison, I further investigate the differences between the two methods

in Chapter 6 from various perspectives.

An ablation study was conducted for the proposed model. As the baseline

for the feature representation employed in the outer-boundary scoring model, the

same representation as in the inner-boundary scoring model was used. Table 5.3

shows the results of the study. Without POS tags, the performance significantly

dropped, as indicated for the top-down method in Section 4.5. The results also

demonstrate that the model benefits from the pretrained word embedding for

the task. I deduce that POS tags and morphological information are crucial for

shorter and similar coordinated elements, such as in NP coordination, as also

discussed in Section 4.5. To investigate the influence of accuracy of POS tagging,
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All Coordination NP Coordination

Pre. Rec. F1 Pre. Rec. F1

baseline 77.85 77.94 77.90 80.45 80.09 80.27

default 79.29 79.48 79.38 81.42 81.23 81.32

-POS tags 76.17 76.17 76.17 77.06 76.88 76.97

-GloVe 77.23 77.59 77.41 79.12 78.94 79.03

Table 5.3: Performances with different settings for the PTB development set

evaluated by pre- and post-conjuncts prediction.

the proposed model was newly trained with gold POS tags and then evaluated on

the PTB development set. The model achieved 79.32 F1 score for all coordination,

and the use of gold POS tags did not make a much difference. This might

be because the Stanford POS Tagger used in these experiments achieved 96.7%

accuracy (higher within NPs) on the PTB development set, and this performance

is sufficient for coordination disambiguation. The default feature representation

described in Eq. 5.18 performed better than the baseline feature because it is

specifically designed to capture the similarity and replaceability of two spans,

while the baseline representation has only the contextual information of the outer

boundaries of a pair.

5.6 Summary

This chapter presented a simple and accurate bottom-up approach to coordination

disambiguation. The proposed method decomposes the task into three subtasks

and employs three different neural networks to tackle them. For inference, the

CKY algorithm is applied with the CFG rules to produce globally consistent

coordinate structures in a given sentence. Experimental results demonstrated

that the locally trained models interoperate to obtain the optimal combination of

coordinate structures and outperformed existing systems and the proposed top-

down approach. The ability of the proposed bottom-up approach is explored in

more detail in Chapter 6 through quantitative and qualitative analyses.



Chapter 6

Experiments and Analysis

This chapter reports experiments to evaluate the proposed top-down and bottom-

up approaches for coordination disambiguation in a unified manner.

6.1 Experiments on the Penn Treebank

6.1.1 Settings

Dataset

Experiments reported in this section were conducted on the Penn Treebank (PTB)

with the coordination annotation extension [28]. For the proposed bottom-up

model, the “swap” method was applied for pre- and post-processing, as in Sec-

tion 4.5. The dataset was split following the prior work of Ficler and Gold-

berg [29]: sections 02–21, 22, and 23 for the training, development, and test sets,

respectively.

Model

Both of the proposed top-down and bottom-up models were closely examined to

present the differences in their behaviors and characteristics. The base encoders

for the two models were almost identical to those used in Sections 4.5 and 5.5,

except that the character-level convolutional neural networks [64] (CharCNNs)

were additionally used, and their produced vectors were concatenated to the word

74
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and POS tag embeddings. The settings of the CharCNNs were as follows: the

dimensionality of character embeddings was 100, window size of the CNN was 3,

and the size of produced representations from the CNN was 100. Dropout was

not applied to the character embeddings. As pretrained word embeddings, the

encoder employed GloVe [85]. POS tags were obtained using the Stanford POS

Tagger [107] with 10-way jackknifing. Other hyperparameters were identical to

those in the preliminary experiments.

As a baseline method, the constituency parser proposed by Stern et al. [102]

was also evaluated on the same dataset. However, in the experimental settings de-

scribed here, no constituency annotation was available; only coordination bound-

aries could be used for training. Thus, the baseline parser was trained on parse

trees converted from the coordination annotation using the CFG rules described

in Section 5.4.2.

Evaluation metrics

The models were evaluated on the basis of their ability to identify conjuncts for

each coordinator with precision, recall, and F1 measures. The predicted conjuncts

were judged to be correct by the following agreement criteria:1

• whole: Matches at the beginning of the first conjunct and end of the last

conjunct.

• outer: Matches in the first and last conjuncts.

• inner: Matches in the two conjuncts adjacent to the coordinator.

• exact: Matches in all the conjuncts.

In addition, special attention was paid to the evaluation of NP coordination,

particularly for the phrases of types NX and NP, which are considered as NP

coordination following the prior work [29].

6.1.2 Results

Table 6.1 shows the experimental results. The proposed bottom-up approach

outperformed the proposed top-down approach, baseline, and existing methods

1Inner and outer have the same criteria when a coordinate structure consists of two conjuncts.
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Development Test

Pre. Rec. F1 Pre. Rec. F1

All Coordination

bottom-up

whole 78.73 79.00 78.86 77.93 78.43 78.18

outer 77.79 78.06 77.92 76.40 76.88 76.64

inner 79.43 79.71 79.57 78.66 79.16 78.91

exact 77.67 77.94 77.81 76.40 76.88 76.64

top-down

whole 77.97 79.71 78.83 76.77 78.79 77.77

outer 73.81 75.47 74.63 70.83 72.70 71.75

inner 75.66 77.35 76.50 72.60 74.52 73.55

exact 73.47 75.11 74.28 70.65 72.52 71.57

Ficler+16 inner 72.34 72.25 72.29 72.81 72.61 72.7

Stern+17

whole 77.61 71.51 74.44 74.54 66.97 70.55

outer 75.67 69.72 72.58 72.91 65.50 69.01

inner 77.61 71.51 74.44 73.82 66.33 69.87

exact 75.29 69.36 72.20 71.79 64.50 67.95

NP Coordination

bottom-up

whole 80.68 80.32 80.50 79.10 78.98 79.04

outer 80.00 79.63 79.81 77.67 77.54 77.60

inner 81.14 80.77 80.96 79.90 79.77 79.84

exact 79.77 79.40 79.58 77.67 77.54 77.60

top-down

whole 80.27 80.09 80.18 81.49 81.36 81.43

outer 77.75 77.57 77.66 76.71 76.59 76.65

inner 79.58 79.40 79.49 77.67 77.54 77.60

exact 77.29 77.11 77.20 76.55 76.43 76.49

Ficler+16 inner 75.17 74.82 74.99 76.91 75.31 76.1

Stern+17

whole 79.80 74.65 77.14 76.97 71.68 74.23

outer 78.32 73.27 75.71 76.11 70.88 73.40

inner 80.54 75.34 77.85 76.46 71.20 73.73

exact 77.58 72.58 75.00 74.39 69.28 71.74

Table 6.1: Results on the PTB. The numbers in the row “Ficler+16” are taken

from their paper [29].
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for all criteria. The bottom-up approach was more accurate than the top-down

approach because the former learns both the inner and outer boundaries of con-

junct pairs, including those for sub-coordinators, while the latter learns only the

coordination boundaries. The constituency parser developed by Stern et al. [102],

which was trained not on constituency trees but on parse trees converted from

the proposed CFG, performed poorly for all metrics compared to the proposed

methods. Nevertheless, when evaluating the parsing performance on parse trees,

it achieved 97.88 F1 score on the development set and 97.63 on the test set for

agreement on labeled spans. These performances came from many plain trees

that consist of binaries of a pre-terminal W (any word) and non-terminal N (non-

coordination) in most parts, which are irrelevant to coordination and can be easily

predicted. On the contrary, COORD nodes cannot be easily identified because

they do not appear so frequently, and the parser fails to capture two conjuncts

in a COORD node.

6.1.3 Discussion

Sentence-level evaluation

The proposed approaches were investigated for the ability of their systems to pre-

dict all coordinate structures in a sentence precisely. Sentences were categorized

on the basis of following five groups:

All: All sentences that have at least a single coordinate structure.

• Simple: Sentences that have only one coordinate structure consisting of

two conjuncts.

• Complex: Sentences that are categorized as Consecutive or Multiple.

– Consecutive: Sentences that have at least one coordinate structure

consisting of more than two conjuncts.

– Multiple: Sentences that have multiple coordinate structures.

Sentences categorized as “All” are the union of the mutually exclusive sets of

Simple and Complex, while the sets of Consecutive and Multiple are not disjoint

and thus have the nonempty intersection.
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Category Development Test

bottom-up

All 496 / 673 = 73.69 629 / 873 = 72.05

· Simple 378 / 481 = 78.58 476 / 609 = 78.16

· Complex 118 / 192 = 61.45 153 / 264 = 57.95

· Consecutive 44 / 66 = 66.66 60 / 96 = 62.50

· Multiple 86 / 146 = 58.90 104 / 197 = 52.79

top-down

All 469 / 673 = 69.68 584 / 873 = 66.89

· Simple 361 / 481 = 75.05 438 / 609 = 71.92

· Complex 108 / 192 = 56.25 146 / 264 = 55.30

· Consecutive 41 / 66 = 62.12 56 / 96 = 58.33

· Multiple 78 / 146 = 53.42 101 / 197 = 51.26

Table 6.2: Complete match rates of coordinate structures per sentence on the

PTB.

Table 6.2 shows the complete match rates. On both the development and test

sets, the proposed bottom-up approach achieved gains compared to the proposed

top-down approach on Simple coordination sentences. This might reflect the

difference in which boundaries the two approaches learn. The inner- and outer-

boundary scoring models learn to predict four boundaries of two spans, whereas

the top-down model predicts only two outer boundaries on Simple coordination

sentences. Because an appositive or adverbial phrase can appear between a co-

ordinator and its conjunct, it can easily cause an error when two conjuncts are

assumed to be next to a coordinator. The bottom-up approach also outperformed

the top-down approach on Consecutive and Multiple coordination sentences. The

top-down approach predicts a coordination span and then splits it into conjunct

spans. Therefore, it can mistakenly segment coordination spans when false sub-

coordinators appear in a sentence. In contrast, the bottom-up approach ascertains

whether sub-coordinating words are true sub-coordinators or not, which can lead

to more robust production of Consecutive sentences.
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6.2 Experiments on the GENIA Treebank

6.2.1 Settings

Dataset

To evaluate the effectiveness of the proposed approaches in another domain, the

GENIA Treebank beta [54] (GENIA) was used for experiments. The pre- and

post-processing for punctuation and quotation were not applied because no ir-

regular movement is found in the corpus. The models were evaluated through

five-fold cross-validation, as in the work of Hara et al. [39].

Model

Experiments on the GENIA were conducted for both the proposed top-down

and bottom-up approaches, and the settings were essentially the same as those

used in the PTB experiments. In addition to the two default models, a vari-

ant of the bottom-up model, referred to as bottom-up:sim+repl, was also evalu-

ated; it employs the similarity and replaceability features to its outer-boundary

scoring model, which were originally proposed for the top-down model. These

feature representations are relatively richer than those used in the original outer-

boundary scoring model but require higher computational costs. As pretrained

word embeddings, the proposed models used BioASQ [108], which is composed of

200-dimensional word vectors. Following Hara et al., POS tags were obtained as

annotated in the corpus. When computing the loss for a given mini-batch, an L2

regularization term was added to it with strength 0.0001. Other hyperparameters

were identical to those in the experiments on the PTB.

Evaluation metrics

The performance was measured by recall values for predicting coordinate struc-

tures using the aforementioned four criteria (whole, outer, inner, and exact);

previous studies, on the other hand, evaluated their systems only on the basis

of the whole criterion. Also, the models were evaluated according to syntactic

categories.
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NP VP ADJP S PP UCP SBAR ADVP Others All

# 2317 465 321 188 167 60 56 21 3 3598

bottom-up

:sim+repl

whole 74.88 70.32 89.40 60.10 70.65 56.66 78.57 90.47 33.33 74.43

outer 74.62 70.10 89.40 59.04 70.65 56.66 76.78 90.47 33.33 74.15

inner 77.90 72.47 90.34 60.10 71.25 58.33 78.57 90.47 33.33 76.79

exact 74.62 70.10 89.40 59.04 70.65 56.66 76.78 90.47 33.33 74.15

bottom-up

whole 72.20 70.96 86.29 56.91 59.28 61.66 76.78 85.71 33.33 71.84

outer 71.98 70.10 86.29 56.91 59.28 61.66 75.00 85.71 33.33 71.56

inner 75.18 71.82 86.91 57.97 59.88 61.66 76.78 85.71 33.33 74.01

exact 71.98 70.10 86.29 56.91 59.28 61.66 75.00 85.71 33.33 71.56

top-down

whole 74.88 73.54 87.53 56.91 72.45 58.33 82.14 90.47 33.33 74.68

outer 73.71 69.67 87.22 50.00 66.46 58.33 60.71 90.47 33.33 72.42

inner 76.26 71.39 87.85 51.59 67.06 61.66 64.28 90.47 33.33 74.56

exact 73.62 69.67 87.22 50.00 66.46 58.33 60.71 90.47 33.33 72.37

Ficler+16 whole 65.08 71.82 74.76 17.02 56.28 51.66 91.07 80.95 33.33 64.14

Hara+09 whole 64.2 54.2 80.4 22.9 59.9 36.7 51.8 85.7 66.7 61.5

Table 6.3: Results on the GENIA. The numbers in the rows “Ficler+16” and

“Hara+09” are taken from their papers [29, 39].

6.2.2 Results

Table 6.3 shows the results. The proposed bottom-up model with the similarity

and replaceability features achieved the best overall performance on the exact

criterion. Both the bottom-up models performed better on the inner criterion,

whereas the proposed top-down model was better on the whole criterion. This

performance reflects the differences between the algorithms of the two systems.

The bottom-up approach builds a coordinate tree in a bottom-up manner and

predicts inner conjuncts accurately, whereas the top-down approach predicts the

entire span of a coordinate structure and splits it into conjuncts in a top-down

manner. This is why the top-down model cannot predict coordinated clauses la-

beled as “S,” which are likely to be longer and contain non-coordinating commas.

The shortcoming of the bottom-up approach is that the bottom-up parsing may

cause errors due to wrong decisions in the early stages of the parsing; this was

observed as poor performance on the whole criterion. Compared with the existing

methods, both the top-down and bottom-up approaches performed well for both

NP and VP coordination. The proposed similarity feature representations can
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Category All

bottom-up

:sim+repl

All 1674 / 2508 = 66.74

· Simple 1147 / 1507 = 76.11

· Complex 527 / 1001 = 52.64

· Consecutive 190 / 358 = 53.07

· Multiple 417 / 822 = 50.72

bottom-up

All 1602 / 2508 = 63.87

· Simple 1109 / 1507 = 73.58

· Complex 493 / 1001 = 49.25

· Consecutive 179 / 358 = 50.00

· Multiple 381 / 822 = 46.35

top-down

All 1628 / 2508 = 64.91

· Simple 1119 / 1507 = 74.25

· Complex 509 / 1001 = 50.84

· Consecutive 192 / 358 = 53.63

· Multiple 385 / 822 = 46.83

Table 6.4: Complete match rates of coordinate structures per sentence on the

GENIA.

capture similar conjuncts, such as in NP coordination, while the replaceability

feature representations appear to help the models identify non-similar conjuncts,

such as in VP and S coordination.

6.2.3 Discussion

Sentence-level evaluation

The models were also evaluated for their ability to identify all conjuncts in a sen-

tence completely. Table 6.4 shows the results. The proposed bottom-up approach

performed well, especially when using the similarity and replaceability features.

This might be because NP coordination is much more frequent than other types

of coordination in the GENIA corpus, and the similarity feature works particu-

larly well on NP coordination, as Table 4.3 shows in Chapter 4. The results also
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1. Input Last week , the banking company said it purchased both Freedom

Savings & Loan Association , Tampa , Fla. , and University Federal

Savings Association of San Antonio , Texas , for $ 169.4 million .

Output [Freedom Savings & Loan Association] , [Tampa] , [Fla.] , and

[University Federal Savings Association of San Antonio , Texas ,]

Gold [Freedom Savings & Loan Association , Tampa , Fla. ,] and

[University Federal Savings Association of San Antonio , Texas ,]

2. Input Traders can vary their strategies and execute their orders in any one

of them .

Output [vary their strategies] and [execute their orders]

Gold [vary their strategies] and [execute their orders in any one of them]

Table 6.5: Incorrect predictions by the proposed top-down approach.

support the consistent production of complex coordination by the bottom-up ap-

proach. At the same time, conjuncts in NP coordination are easily identified by

splitting a coordination span, which results in the relatively good recall value for

the proposed top-down approach on Consecutive sentences.

6.3 Analysis

6.3.1 Qualitative evaluation

Top-down approach

Table 6.5 shows errors produced by the proposed top-down approach. In Ex-

ample 1, the system successfully identified the correct coordination span but

mistakenly divided it into wrong conjuncts. This type of mistake is observed

everywhere, but often in NPs, such as those involved in apposition (“[Cara Op-

erations, a food services concern], and [. . . ]), relative clauses (“[Texas Air Corp.,

which owns Continental], and [. . . ]”), dates (“[. . . Jan. 18, 1990], and [. . . ]), loca-

tions (“[Columbus, Ohio], and [. . . ]), and other types of named entities (“[Gold-

man, Sachs & Co.], and [. . . ]”). In Example 2, the model failed to include the PP

in the post-conjunct because it supposed that the PP modified both VPs. This

type of error, known as a PP attachment, is one of the most difficult issues in
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3. Input In addition to a general slowing of the computer industry , NCR ,

which sells automated teller machines and computerized cash regis-

ters , is also affected by the retail and financial sectors , “ areas of

the economy that have generally not been robust , ” notes Sanjiv G.

Hingorani , an analyst for Salomon Brothers Inc .

Output [teller machines] and [computerized cash registers] ; [retail] and

[financial]

4. Input While profitable , it “ was n’t growing and was n’t providing a satis-

factory return on invested capital , ” he says .

Output [was n’t growing] and [was n’t providing a satisfactory return on

invested capital]

5. Input The Dow Jones Industrial Average jumped sharply yesterday to close

at 2657.38 , panic did n’t sweep the world ’s markets , and investors

large and small seemed to accept Friday ’s dizzying 190-point plunge

as a sharp correction , not a calamity .

Output [The Dow Jones Industrial Average jumped sharply yesterday to close

at 2657.38] , [panic did n’t sweep the world ’s markets] , and [investors

[large] and [small] seemed to accept Friday ’s dizzying 190-point

plunge as a sharp correction , not a calamity] .

Table 6.6: Correct predictions by the proposed bottom-up approach.

syntactic parsing.

Bottom-up approach

Tables 6.6 and 6.7 present example outputs of coordinate structures identified by

the proposed bottom-up approach. Example 3 shows that the system identified

the two independent coordinate structures. For the latter coordinate structure,

the system correctly predicted ADJP coordination of “retail” and “financial” but

not NP coordination of “the retail” and “financial sectors”. In Example 4, the

system successfully captured imbalanced VP coordination of constituents gov-

erned by intransitive and transitive verbs. In Example 5, the system identified

coordinated simple clauses, one of which embeds another coordinate structure.

In Example 6, however, the system expected that the PP “at prevailing market



CHAPTER 6. EXPERIMENTS AND ANALYSIS 84

6. Input The company said it will buy additional shares “ from time to time

in the open market or in private transactions at prevailing market

prices . ”

Output [in the open market] or [in private transactions at prevailing market

prices]

Gold [in the open market] or [in private transactions]

7. Input Dealers said morning activity was hectic as prices dropped in response

to gains in the stock market and losses in Treasury securities , but

trading slowed to moderate levels in the afternoon .

Output [Dealers said morning activity was hectic as prices dropped in re-

sponse to [gains in the stock market] and [losses in Treasury securi-

ties]] , but [trading slowed to moderate levels in the afternoon] .

Gold Dealers said [morning activity was hectic as prices dropped in re-

sponse to [gains in the stock market] and [losses in Treasury securi-

ties]] , but [trading slowed to moderate levels in the afternoon] .

Table 6.7: Incorrect predictions by the proposed bottom-up approach.

prices” was included by the right conjunct. The system could not identify the

correct head “buy” of the PP, while the predicted conjunct was not easily refused

because it seemed to be a valid constituent. In Example 7, the system predicted

the nested NP coordinate structure correctly but failed to identify the correct

clausal coordination. This might be caused by the omission of the clause marker

“that”.

As seen in the above examples, the system is not good at determining whether

phrases around coordination are included or not by the coordinate structure, while

predicted conjuncts by the system tend to be valid as phrases. The bottom-

up method must be improved to consider whether the conjuncts have the same

relation (or dependency) to peripheral phrases.

Prediction on linguistic phenomenon involved in coordination

Table 6.8 demonstrates the system outputs of the proposed bottom-up approach

for sentences in the PTB where linguistically unique phenomena occur. In Exam-

ples 8 and 9, every pair of conjuncts has a different type of syntactic category, all
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8. Gold
(unlike cat.)

NCR said revenue declined both [in the U.S.] and [overseas] , reflecting

a world-wide softening of the computer markets .

Output 3 [in the U.S.] and [overseas]

9. Gold
(unlike cat.)

America West , though , is [a smaller airline] and therefore [more af-

fected by the delayed delivery of a single plane than many of its com-

petitors would be] .

Output 3 [a smaller airline] and therefore [more affected by . . . would be] .

10. Gold
(non-constit.)

The magazine will reward with “ page bonuses ” advertisers who in 1990

[meet] or [exceed] their 1989 spending , as long as they [spent $ 325,000

in 1989] and [$ 340,000 in 1990] .

Output 7 [meet] or [exceed] ; [$ 325,000 in 1989] and [$ 340,000 in 1990]

11. Gold
(RNR)

The indicator [reached a peak in January 1929] and [then fell steadily

[up to] and [through] the crash] .

Output 7 The indicator [reached a peak in January 1929] and [then fell steadily

up [to] and [through] the crash] .

12. Gold
(RNR)

“ I just do n’t feel that the company [can really stand] or [would want]

a prolonged walkout , ” Tom Baker , president of Machinists ’ District

751 , said in an interview yesterday .

Output 7 [can really stand] and [would want a prolonged walkout]

13. Gold
(gapping)

Among other [Asian] and [Pacific] markets , [Malaysia] and [Singapore]

had the biggest losses , with [the Kuala Lumpur composite index in

Malaysia falling 11.5 %] and [Singapore ’s Straits Times Industrial Index

down 10 %] .

Output 3 [Asian] and [Pacific] ; [Malaysia] and [Singapore] ; [the Kuala Lumpur

composite index in Malaysia falling 11.5 %] and [Singapore ’s Straits

Times Industrial Index down 10 %]

14. Gold
(gapping)

PacifiCare Health Systems Inc. , proposed offering of 1.5 million com-

mon shares , of which [700,000 shares will be offered by PacifiCare] and

[800,000 shares by UniHealth America Inc .] -LRB- PacifiCare ’s 71 %

-RRB- , via [Dillon , Read & Co. Inc.] , [Goldman , Sachs & Co.] and

[Dean Witter Reynolds Inc] .

Output 7 [700,000 shares will be offered by PacifiCare] and [800,000 shares] ;

[Dillon , Read & Co. Inc.] , [Goldman , Sachs & Co.] and [Dean

Witter Reynolds Inc]

15. Gold
(gapping)

[Honeywell ’s contract totaled $ 69.7 million] , and [IBM ’s $ 68.8 mil-

lion] .

Output 3 [Honeywell ’s contract totaled $ 69.7 million] , and [IBM ’s $ 68.8 mil-

lion] .

Table 6.8: Predictions for linguistically unique examples.
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of which were correctly identified by the system. The coordinate structure in Ex-

ample 8 consists of a PP and ADVP, whereas that in Example 9 consists of an NP

and ADJP. Example 10 has a coordinate structure, one of whose conjuncts does

not qualify as a constituent. In the annotated corpus, two VPs spent $ 325,000

in 1989 and $ 340,000 in 1990 are considered to be in parallel, while the system

returned $ 325,000 in 1989 and $ 340,000 in 1990 as coordinated elements. The

verb spent is included in the annotated conjunct because the annotation was con-

ducted on the treebank and thus conjuncts are forced to agree with the originally

annotated phrase structures. It might be more natural to consider the system

output as correct. In Examples 11 and 12, right node raising is observed; the NP

the crash is an element shared by up to and through in Example 11, where the

system recognized that the crash is shared but failed to include up as part of the

conjunct, and the NP a prolonged walkout in Example 12 is an argument shared

by can really stand and would want, but the system did not recognize the shared

argument. The remaining of examples involve gapping. The system successfully

identified conjuncts even though the head elements falling and contract totaled

are elided in the second conjuncts in Examples 13 and 15, respectively. In Exam-

ple 14, on the other hand, the system mistakenly excluded by UniHealth America

Inc. due to the ellipsis.

6.3.2 Use of contextualized word embeddings

This section investigates the effectiveness of contextualized word embeddings.

Contextualized word embeddings are beneficial to many NLP tasks because they

encode contextual information into word representations, which can model the

polysemy or context-sensitive meaning of words. The encoder accompanied with

CharCNNs in the proposed top-down and bottom-up models additionally em-

ployed the most successful and widely used contextualized embeddings: BERT [22]

and ELMo [86].2 The top-down and bottom-up models with the extended encoder

2The following models were used:
• BERT (PTB): https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_

A-16.zip

• ELMo (PTB): https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_
2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5

• BERT (GENIA): https://s3-us-west-2.amazonaws.com/ai2-s2-research/scibert/tensorflow_
models/scibert_scivocab_uncased.tar.gz

• ELMo (GENIA): https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/contributed/
pubmed/elmo_2x4096_512_2048cnn_2xhighway_weights_PubMed_only.hdf5
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were trained on the PTB and GENIA with the identical settings to those in Sec-

tions 6.1 and 6.2.

Tables 6.9 and 6.10 show the results on the PTB test set and the GENIA,

respectively. For both approaches, BERT and ELMo gave significant perfor-

mance gains, while BERT contributed much more than ELMo. One of differ-

ences between BERT and ELMo lies in their architectures; ELMo embeddings

were trained with a BiLSTM encoder, whereas BERT embeddings were trained

with a Transformer [110]. Because the top-down and bottom-up models employ

BiLSTMs already, the models might benefit more from the Transformer, whose

attention mechanism can serve as an alignment, as used in the methods of Kuro-

hashi and Nagao [60] and Shimbo and Hara [100].

Tables 6.11 and 6.12 show the complete match rates on the PTB and GENIA,

respectively. Both BERT and ELMo improved the performance of the proposed

bottom-up model, especially on Complex sentences. This is partly because the

contextualized embeddings help the model learn individual pairs of conjuncts and

the bottom-up algorithm repeatedly inspects each pair. On the other hand, the

proposed top-down model could predict coordination spans with great accuracy

when using the contextualized embeddings, but they did not improve partition-

ing by the top-down approach; thus, identifying individual conjuncts remains

problematic for that approach.

The top-down model with contextualized embeddings performed better than

the bottom-up model without contextualized embeddings. This might give the

impression that the top-down model with contextualized embeddings is sufficient

and the structural constraints used in the bottom-up approach are unnecessary.

However, the experimental results contradict this hypothesis; contextualized em-

beddings did achieve performance gains on the bottom-up approach as well. This

indicates that the structural constraints in the bottom-up approach and contex-

tualized embeddings can help the models solve different problems in different

ways. Table 6.13 shows examples that the plain bottom-up model successfully

solved but the top-down model with BERT still failed to solve, and vice versa.

The bottom-up model performed better, especially on sentences containing struc-

turally complex coordinate structures, whereas the contextualized embeddings

play an important role to disambiguate conjunct boundaries that are particularly
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All Coordination NP Coordination

Pre. Rec. F1 diff. Pre. Rec. F1 diff.

bottom-up

+BERT

whole 85.27 85.89 85.58 +7.40 87.87 87.73 87.80 +8.76

outer 83.55 84.16 83.86 +7.22 86.28 86.14 86.21 +8.61

inner 85.00 85.62 85.31 +6.40 87.55 87.42 87.49 +7.65

exact 83.55 84.16 83.86 +7.22 86.28 86.14 86.21 +8.61

bottom-up

+ELMo

whole 82.70 83.53 83.11 +4.93 85.03 85.03 85.03 +5.99

outer 81.08 81.89 81.48 +4.84 83.59 83.59 83.59 +5.99

inner 82.88 83.71 83.29 +4.38 85.03 85.03 85.03 +5.19

exact 81.08 81.89 81.48 +4.84 83.59 83.59 83.59 +5.99

top-down

+BERT

whole 84.73 86.89 85.80 +8.03 89.95 89.80 89.88 +8.45

outer 77.19 79.16 78.16 +6.41 84.52 84.39 84.46 +7.81

inner 78.26 80.25 79.24 +5.69 85.32 85.19 85.25 +7.65

exact 76.92 78.88 77.89 +6.32 84.37 84.23 84.30 +7.81

top-down

+ELMo

whole 82.97 85.16 84.05 +6.29 88.19 88.05 88.12 +6.69

outer 76.24 78.25 77.23 +5.48 83.09 82.96 83.02 +6.37

inner 77.57 79.61 78.58 +5.03 83.89 83.75 83.82 +6.22

exact 76.06 78.07 77.05 +5.48 82.93 82.80 82.86 +6.37

Table 6.9: Results with contextualized embeddings on the PTB.

NP VP ADJP S PP UCP SBAR ADVP Others All diff.

# 2317 465 321 188 167 60 56 21 3 3598 -

bottom-up

:sim+repl

+BERT

whole 83.72 78.49 93.76 80.31 78.44 68.33 89.28 95.23 0.00 83.35 +8.92

outer 83.64 78.27 93.76 80.31 78.44 68.33 89.28 95.23 0.00 83.26 +9.12

inner 85.02 78.92 94.08 81.38 79.64 68.33 91.07 95.23 0.00 84.40 +7.62

exact 83.64 78.27 93.76 80.31 78.44 68.33 89.28 95.23 0.00 83.26 +9.12

bottom-up

:sim+repl

+ELMo

whole 81.39 75.91 92.83 69.14 76.64 60.00 89.28 90.47 33.33 80.62 +6.20

outer 81.35 75.91 92.83 69.14 76.64 60.00 87.50 90.47 33.33 80.57 +6.42

inner 83.77 78.06 93.45 71.27 77.24 60.00 87.50 90.47 33.33 82.60 +5.81

exact 81.35 75.91 92.83 69.14 76.64 60.00 87.50 90.47 33.33 80.57 +6.42

top-down

+BERT

whole 83.94 78.70 94.70 79.78 80.23 65.00 87.50 95.23 0.00 83.57 +8.89

outer 82.30 74.19 94.39 69.68 73.65 65.00 67.85 95.23 0.00 80.76 +8.34

inner 83.08 74.83 94.39 72.34 73.65 65.00 71.42 95.23 0.00 81.54 +6.98

exact 82.21 74.19 94.39 69.68 73.65 65.00 67.85 95.23 0.00 80.71 +8.34

top-down

+ELMo

whole 82.77 77.41 93.45 72.34 79.64 61.66 94.64 90.47 33.33 82.18 +7.50

outer 81.35 73.33 93.14 62.76 72.45 61.66 73.21 90.47 33.33 79.54 +7.12

inner 82.90 74.19 93.45 63.82 72.45 63.33 75.00 90.47 33.33 80.79 +6.23

exact 81.26 73.33 93.14 62.76 72.45 61.66 73.21 90.47 33.33 79.48 +7.12

Table 6.10: Results with contextualized embeddings on the GENIA.
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Category +BERT diff. +ELMo diff.

bottom-up

All 705 / 873 = 80.75 +8.71 683 / 873 = 78.23 +6.19

· Simple 521 / 609 = 85.55 +7.39 496 / 609 = 81.44 +3.28

· Complex 184 / 264 = 69.69 +11.74 187 / 264 = 70.83 +12.88

· Consecutive 73 / 96 = 76.04 +13.54 71 / 96 = 73.95 +11.46

· Multiple 128 / 197 = 64.97 +12.18 133 / 197 = 67.51 +14.72

top-down

All 644 / 873 = 73.76 +6.87 639 / 873 = 73.19 +6.30

· Simple 485 / 609 = 79.63 +7.72 477 / 609 = 78.32 +6.40

· Complex 159 / 264 = 60.22 +4.92 162 / 264 = 61.36 +6.06

· Consecutive 61 / 96 = 63.54 +5.21 60 / 96 = 62.50 +4.17

· Multiple 111 / 197 = 56.34 +5.08 114 / 197 = 57.86 +6.60

Table 6.11: Complete match rates of coordinate structures per sentence on the

PTB with the use of contextualized embeddings.

Category +BERT diff. +ELMo diff.

bottom-up

:sim+repl

All 1949 / 2508 = 77.71 +10.96 1861 / 2508 = 74.20 +7.46

· Simple 1256 / 1507 = 83.34 +7.23 1233 / 1507 = 81.81 +5.71

· Complex 693 / 1001 = 69.23 +16.58 628 / 1001 = 62.73 +10.09

· Consecutive 263 / 358 = 73.46 +20.39 226 / 358 = 63.12 +10.06

· Multiple 546 / 822 = 66.42 +15.69 503 / 822 = 61.19 +10.46

top-down

All 1869 / 2508 = 74.52 +9.61 1824 / 2508 = 72.72 +7.81

· Simple 1229 / 1507 = 81.55 +7.30 1199 / 1507 = 79.56 +5.31

· Complex 640 / 1001 = 63.93 +13.09 625 / 1001 = 62.43 +11.59

· Consecutive 246 / 358 = 68.71 +15.08 236 / 358 = 65.92 +12.29

· Multiple 489 / 822 = 59.48 +12.65 477 / 822 = 58.02 +11.19

Table 6.12: Complete match rates of coordinate structures per sentence on the

GENIA with the use of contextualized embeddings.
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16. top-down

+BERT 7

[Baseball] , [that game of the long haul] , [is the quintessential

sport of the mean] , and [the mean ol’ law caught up with the

San Francisco Giants in the World Series last weekend] .

bottom-up 3 [Baseball , that game of the long haul , is the quintessential

sport of the mean] , and [the mean ol’ law caught up with the

San Francisco Giants in the World Series last weekend] .

17. top-down

+BERT 7

“ [They ’ve been laggard] , [” he says] , [“] but [they ’ll have

to become more aggressive] . ”

bottom-up 3 “ [They ’ve been laggard] , ” he says , “ but [they ’ll have to

become more aggressive] . ”

(a) Errors from the proposed top-down approach with BERT fixed by the plain proposed

bottom-up approach.

18. bottom-up 7 The rationale is that an interruption of trading will allow in-

vestors to reconsider their [strategies] , [calm sellers] and [lead

buyers] to enter the market at indicated new price levels .

top-down

+BERT 3

The rationale is that an interruption of trading will allow in-

vestors to [reconsider their strategies] , [calm sellers] and [lead

buyers to enter the market at indicated new price levels] .

19. bottom-up 7 They combined for [25 hits] , [six home runs] and [24 runs

batted in in the five games against the Cubs] .

top-down

+BERT 3

They combined for [25 hits] , [six home runs] and [24 runs

batted in] in the five games against the Cubs .

(b) Errors from the plain proposed bottom-up approach fixed by the proposed top-down

approach with BERT.

Table 6.13: Different outputs between the proposed top-down approach with

BERT and plain bottom-up approach.
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(a) The top-down approach (whole).
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(b) The bottom-up approach (inner).

Figure 6.1: F1 scores by different training data sizes.

sensitive to contexts, such as those involved in prepositional phrases (e.g., “NP

and NP PP”) and adverbial phrases (e.g., “VP and VP ADVP”).

6.3.3 Impact of training dataset size

In the proposed top-down and bottom-up approaches, parameters of the neu-

ral networks are optimized through supervised learning. Training neural net-

works generally requires many training examples. This section investigates how

the number of training examples affects the performances of the proposed ap-

proaches. Figure 6.1 shows the F1 scores of the proposed models for different

training data sizes. In this experiment, training examples were randomly se-

lected from the PTB training set, which has 17,282 sentences containing at least

one coordinator key. Both models could generalize learned examples and predict

coordination/conjunct spans for unseen data, even if they were trained on a small

number of examples. This was also observed in the experimental results on the

PTB (17,282 sentences) and the GENIA (80% of 2,508 sentences through five-fold

cross-validation). Conversely, it might be difficult to improve the generalization

performance just by increasing the number of training examples. This is partly

because annotating coordinate structures is difficult for humans, and maintaining

good quality consistently is an issue, as discussed in Section 2.4. The performance

gains by contextualized word embeddings shown in Tables 6.9 and 6.10 indicate
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that exploiting implicit knowledge acquired through a huge amount of unlabeled

data is an easier way to improve performance for coordination disambiguation.



Chapter 7

Conclusion

7.1 Summary

This dissertation proposed computational systems for coordination disambigua-

tion in natural language.

Chapter 2 discussed the fundamentals of coordination, including its structural

characteristics, unique behavior discussed in the linguistics literature, and orthog-

raphy in English. This chapter also exemplified problems in syntactic parsing and

introduce the task that this dissertation focused on.

Chapter 3 described prior research related to coordination. In the field of

computational linguistics, many efforts have been made to deal with coordina-

tion in rule-based syntactic analysis systems. Due to advancements in statistical

and machine learning methods for NLP, automatic methods for coordination dis-

ambiguation have been developed, many of which focus on the similarity between

coordinated elements. This chapter also discussed the issues of other NLP tasks,

including syntactic parsing, named entity recognition, and machine translation.

Chapter 4 proposed a top-down approach to coordination disambiguation.

This approach attempts to detect the region of a coordinate structure as a whole

and then retrieve individual conjuncts from it. The experimental results pre-

sented in this chapter demonstrated that the top-down method outperformed the

existing best method with minimal use of external resources by using neural net-

works that were invented to exploit the similarity and replaceability properties

between conjuncts.
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Chapter 5 proposed a bottom-up parsing algorithm-based approach with pro-

duction rules for coordination. Unlike the top-down approach, the bottom-up

approach identifies the conjunct pair for each coordinating word and gradually

constitutes coordinate structures so that they do not conflict with each other.

This chapter suggested that the bottom-up approach performs better than the

top-down approach.

Chapter 6 reported experiments on the two proposed approaches. Quanti-

tative results indicated that both models successfully learned boundaries in co-

ordinate structures, but the bottom-up model performed better by considering

the structural constraints on coordination. Qualitative analysis revealed that the

bottom-up model suggests coordinated elements whose boundaries seem to agree

with phrasal boundaries and thus they can naturally connect to forward and

backward contexts. This chapter concluded that there still remain ambiguities of

context-dependent boundaries, such as which contextualized embeddings are not

helpful enough to disambiguate and those even a human cannot easily solve.

7.2 Future work

The work described in this dissertation highlights the need for further work in

the following areas.

Better conjunct segmentation

It is apparent that the drawback of the proposed top-down approach is straight-

forward division by the appearance of commas. As seen in Chapter 6, the top-

down approach mistakenly divides whole coordination spans, although the model

is able to predict those spans with good accuracy. With a better method for

conjunct segmentation, accuracy on the outer, inner, and exact criteria would

be greatly improved. One possible solution is to use a classification model for

sub-coordinator keys, as used in the proposed bottom-up approach.
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Reranking parse trees

The proposed top-down and bottom-up approaches significantly improve per-

formances on the task of coordination disambiguation. However, they are still

far from “perfect”, even with contextualized embeddings, and there is room for

further improvements. One possible method is reranking the n-best parse trees

produced by the CKY algorithm using richer neural network models. As shown in

Section 6.3, the bottom-up method returns fairly promising candidates. In fact,

when retrieving the correct parse tree from an n-best list on the PTB development

set, 84.08% (n = 2), 86.79% (n = 4), and 87.73% (n = 8) of correct coordinate

structures were found (without using contextualized word embeddings); these

numbers indicate the upper bound of the recall value on the exact criterion by

reranking candidate trees. This indicates that re-evaluating n-best candidates

with additional scoring would lead to better results.

Data augmentation and generation

One way to enhance the generalization capability of a neural network is to feed

it more training data. However, annotating labels to text for supervised meth-

ods is generally laborious and costly. To remedy this issue, the similarity and

replaceability properties of conjuncts could be used. Sentences with coordinate

structures can be generated from sentences with no coordination by conjoining

two or more similar phrases. Also, one conjunct can be replaced with a similar

element taken outside of a sentence when conjunct boundaries are annotated.

Similarly, conjuncts can exchange their positions in a sentence, which is a kind of

data augmentation techniques, such as rotating or flipping images in computer vi-

sion tasks. For success in data generation and/or augmentation, keeping artificial

data as high quality as possible is fairly important and requires development.

More substantial evaluation

Disambiguating coordination is a very difficult task even for humans, and the co-

ordination annotations in the PTB and GENIA do not reflect such difficulties be-

cause there exist no confidence measures for labeling. Some coordinate structures

are obvious, but others are relatively ambiguous, especially when a PP or ADVP
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appears around coordinated NPs and VPs. Given the ambiguities and potential

lower agreements in the annotated conjunct spans, the performance evaluated on

the gold labels does not always reflect the true coordination structures intended

by the original authors or speakers. Thus, it seems to be more meaningful to

evaluate how largely a predicted span overlaps with the corresponding gold span,

for example, by using the Jaccard similarity coefficient.

Working on other languages

The proposed top-down and bottom-up approaches focus on English text. Al-

though the two methods are not limited to a specific language or domain, small

changes are needed when applying them to other languages. Specifically, the

proposed top-down and bottom-up approaches require the following:

• Input texts are split into sentences that have already been segmented into

words.

• Words that can be (sub-)coordinators are defined.

For the use of the bottom-up approach, the following condition is also necessary:

• The forms of coordinate structures are defined as CFG rules.

The two approaches can be applied to any language or domain given that these

requirements are satisfied. Training the proposed neural networks requires many

sentences with explicitly annotated conjunct boundaries. The GENIA corpus

used in Chapter 6, for instance, contains 3,598 coordinate structures within 2,508

sentences, which indicates that at least more than a few thousand sentences

with coordination should be prepared for training. In addition, POS tags or

pretrained word embeddings would be beneficial in terms of accuracy, even though

the models in the two proposed approaches do not necessarily require them.

For example, consider that applying the proposed bottom-up approach to

Japanese language under the conditions above. “Balanced Corpus of Contem-

porary Written Japanese” [65] (BCCWJ;『現代日本語書き言葉均衡コーパス』)

is a corpus comprised of Japanese texts collected from a variety of genres, such

as general books and magazines, newspapers, business reports, blogs, internet

forums, textbooks, and legal documents. This corpus contains 14,368 coordinate
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structures within 57,109 sentences in some parts of the data [3], where coordina-

tion boundaries based on (short unit) words are explicitly marked. From these

annotations and morphological information including POS, we can define words

that could be coordinators and sub-coordinators. Unlike the English language,

a coordinate structure with more than two conjuncts often appears in the form

“[A]と [B]と [C]” which is equivalent to “[A] and [B] and [C]” in English. This

requires an additional CFG rule similar to rule (2) in Table 5.1, such as “COORD

→ CONJ CC COORD”. Therefore, the three requirements are satisfied and the

proposed bottom-up approach as well as the proposed top-down approach could

be applied to Japanese texts.

Specializing in specific domains

The experiments in this dissertation were only conducted on corpora collected

from news articles and biomedical abstracts. The proposed top-down and bottom-

up approaches can essentially be applied to texts in any domain, but additional

changes are required to cover broader forms of coordination in some domains.

In scientific papers, for example, coordinated elements are conjoined by special

punctuation marks, such as – and /, and these should be treated in the conjunct

segmentation for the top-down approach and the CFG rules and coordinator

classification for the bottom-up approach. Because such markers usually connect

noun phrases, we could devise special treatments for coordinate structures formed

by them for easier and more accurate identification. It also would be interesting

to use an explicit hierarchy of coordinate structures in some language or domain.

In Japanese legal text, for example, disjunctive coordinators “又は” and “若しく
は” are equivalent to “or” in English, but coordinate structures formed by “若し
くは” are always embedded in other larger coordinate structures. In other words,

a sequence of “A又はB若しくはC” must be interpreted as “(A又は (B若しくは
C))”. The same hierarchy is observed in conjunction; “並びに” is always superior

to “及び”, both of which are conjunctive coordinators equivalent to “and” in

English. Such domain-specific conventions can be considered in the decoding by

the top-down approach and as CFG rules in the bottom-up approach.
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Application to other NLP tasks

The work in this dissertation focused only on coordination disambiguation. The

performance on the tasks was significantly improved by the proposed approaches,

but how can we leverage this achievement to solve “real” problems? Possible ap-

plications of coordination disambiguation include integration of the task and other

NLP tasks, such as syntactic parsing, named entity recognition, and machine

translation, as discussed in Chapter 3. Giving boundaries of coordinate struc-

tures to syntactic parsers might be helpful because they often make mistakes

around coordination. However, coordination boundaries can even be harmful

when used as constraints on syntactic parsing because the accuracies of coordina-

tion disambiguation and syntactic parsing have a large gap. Conversely, feeding

syntactic information to a system for coordination disambiguation would improve

its performance, as proposed by Ficler and Goldberg [29]. As another practical

integration, the success on the GENIA in this work accommodates the challenge

of recognizing named entities from elliptical coordination in scientific literature.

By focusing on coordinated noun phrases, the proposed systems in this work can

provide good practical performance in order to achieve promising results in the

expansion of elliptical named entities.



Bibliography

[1] Rajeev Agarwal and Lois Boggess. A simple but useful approach to conjunct

identification. In Proceedings of the 30th Annual Meeting of the Association

for Computational Linguistics, pages 15–21. Association for Computational

Linguistics, June 1992.

[2] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro

Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally nor-

malized transition-based neural networks. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 2442–2452. Association for Computational Linguistics, Au-

gust 2016.

[3] Masayuki Asahara and Yuji Matsumoto. BCCWJ-DepPara: A syntac-

tic annotation treebank on the ‘balanced corpus of contemporary written

Japanese’. In Proceedings of the 12th Workshop on Asian Language Re-

sources (ALR12), pages 49–58. The COLING 2016 Organizing Committee,

December 2016.

[4] Samuel Bayer. The coordination of unlike categories. Language, 72(3):

579–616, 1996.

[5] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term de-

pendencies with gradient descent is difficult. IEEE Transactions on Neural

Networks, 5(2):157–166, 1994.

[6] Ann Bies, Mark Ferguson, Karen Katz, and Robert MacIntyre. Bracketing

guidelines for treebank II style Penn treebank project, 1995.

99



BIBLIOGRAPHY 100

[7] Daniel M. Bikel. On the Parameter Space of Generative Lexicalized Statis-

tical Parsing Models. PhD thesis, University of Pennsylvania, 2004.

[8] Taylor L. Booth. Probabilistic representation of formal languages. In Pro-

ceedings of the 10th Annual Symposium on Switching and Automata Theory,

pages 74–81, 1969.

[9] Taylor L. Booth and Richard A. Thompson. Applying probability measures

to abstract languages. IEEE Transactions on Computers, C-22(5):442–450,

1973.

[10] Ekaterina Buyko and Udo Hahn. Are morpho-syntactic features more pre-

dictive for the resolution of noun phrase coordination ambiguity than lexico-

semantic similarity scores? In Proceedings of the 22nd International Con-

ference on Computational Linguistics, pages 89–96. Coling 2008 Organizing

Committee, August 2008.

[11] Ekaterina Buyko, Katrin Tomanek, and Udo Hahn. Resolution of coordi-

nation ellipses in biological named entities using conditional random fields.

In Proceedings of the 10th Conference of the Pacific Association for Com-

putational Linguistics, pages 163–171, 2007.

[12] Jeongmin Chae, Younghee Jung, Taemin Lee, Soonyoung Jung, Chan Huh,

Gilhan Kim, Hyeoncheol Kim, and Heungbum Oh. Identifying non-elliptical

entity mentions in a coordinated NP with ellipses. Journal of Biomedical

Informatics, 47(C):139–152, February 2014.

[13] Francis Chantree, Adam Kilgarriff, Anne. de Roeck, and Alistair Willis.

Disambiguating coordinations using word distribution information. In Pro-

ceedings of Recent Advances in Natural Language Processing, pages 287–

294, 2005.

[14] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and

MaxEnt discriminative reranking. In Proceedings of the 43rd Annual Meet-

ing of the Association for Computational Linguistics, pages 173–180. Asso-

ciation for Computational Linguistics, June 2005.



BIBLIOGRAPHY 101
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Appendix

A.1 List of syntactic labels

This information is from “Bracketing Guidelines for Treebank II Style Penn Tree-

bank Project” [6].

Clause level

S Simple declarative clause, i.e., one that is not introduced by a

(possible empty) subordinating conjunction or a wh-word and that

does not exhibit subject–verb inversion.

SBAR Clause introduced by a (possibly empty) subordinating conjunc-

tion.

SBARQ Direct question introduced by a wh-word or wh-phrase. Indirect

questions and relative clauses should be bracketed as SBAR, not

SBARQ.

SINV Inverted declarative sentence, i.e., one in which the subject follows

the tensed verb or modal.

SQ Inverted yes/no question, or main clause of a wh-question, follow-

ing the wh-phrase in SBARQ.

Phrase level

ADJP Adjective Phrase.

ADVP Adverb Phrase.
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CONJP Conjunction Phrase.

FRAG Fragment.

INTJ Interjection. Corresponds approximately to the part-of-speech tag

UH.

LST List marker. Includes surrounding punctuation.

NAC Not a Constituent; used to show the scope of certain prenominal

modifiers within an NP.

NP Noun Phrase.

NX Used within certain complex NPs to mark the head of the NP.

Corresponds very roughly to N-bar level but used quite differently.

PP Prepositional Phrase.

PRN Parenthetical.

PRT Particle. Category for words that should be tagged RP.

QP Quantifier Phrase (i.e., complex measure/amount phrase); used

within NP.

RRC Reduced Relative Clause.

UCP Unlike Coordinated Phrase.

VP Verb Phrase.

WHADJP Wh-adjective Phrase. Adjectival phrase containing a wh-adverb,

e.g., how hot.

WHAVP Wh-adverb Phrase. Introduces a clause with an NP gap. May

be null (containing the 0 complementizer) or lexical, containing a

wh-adverb, such as how or why.

WHNP Wh-noun Phrase. Introduces a clause with an NP gap. May be

null (containing the 0 complementizer) or lexical, containing some

wh-word, e.g., who, which book, whose daughter, none of which,

or how many leopards.

WHPP Wh-prepositional Phrase. Prepositional phrase containing a wh-

noun phrase (such as of which or by whose authority) that either

introduces a PP gap or is contained by a WHNP.
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X Unknown, uncertain, or unbracketable. X is often used for brack-

eting typos and in bracketing the...the-constructions.

Word level

CC Coordinating conjunction.

CD Cardinal number.

DT Determiner.

EX Existential there.

FW Foreign word.

IN Preposition or subordinating conjunction.

JJ Adjective.

JJR Adjective, comparative.

JJS Adjective, superlative.

LS List item marker.

MD Modal.

NN Noun, singular or mass.

NNS Noun, plural.

NNP Proper noun, singular.

NNPS Proper noun, plural.

PDT Predeterminer.

POS Possessive ending.

PRP Personal pronoun.

PRP$ Possessive pronoun (prolog version PRP-S).

RB Adverb.

RBR Adverb, comparative.

RBS Adverb, superlative.

RP Particle.

SYM Symbol.
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TO To.

UH Interjection.

VB Verb, base form.

VBD Verb, past tense.

VBG Verb, gerund or present participle.

VBN Verb, past participle.

VBP Verb, non-3rd person singular present.

VBZ Verb, 3rd person singular present.

WDT Wh-determiner.

WP Wh-pronoun.

WP$ Possessive wh-pronoun (prolog version WP-S).

WRB Wh-adverb.


