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Abstract

Systems with natural language interfaces such as conversational interface are

useful for human users in human–system collaboration tasks. Interactive image

editing task is a task that uses natural language interfaces, which is a potential

application for non-skilled users. If users want to create an imagined image, they

can ask the system to create the image as we usually do with skilled sketch artists.

This thesis presents an interactive image editing system based on neural network

image generative models, which proactively communicates with users to create

the desired image.

This thesis addresses the following two challenging problems for the interactive

image editing task. The first problem is that the systems have to handle various

editing requests from the users in natural language, which include requests for a

slight change of images. This problem gives us an advantage over the previously

known image retrieval systems, which can only provide images existing in the

database. Chapter 4 addresses this problem in our editing system. We propose

an interactive image editing framework based on machine learning systems, neu-

ral network-based image generative models. This framework aims at training a

model to automatically learn relationships between the change of images and the

natural language editing requests. The model can directly estimate and generate

new images from given previous (source) images and the users’ natural language

instructions (editing requests) to generate a fixed image as the user demanded.

To evaluate the model in this framework, (i) we demonstrate how our editing
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model works in an artificial dataset, which is automatically created from a public

handwritten dataset. (ii) We also present a more practical task, avatar face illus-

tration editing, whose instructions are collected from human annotators. These

tasks require systems to handle various editing requests. With these datasets,

we present a difficulty in deciding the editing region of the source image that is

mentioned in the editing requests. We propose source image masking (SIM) to

mitigate this difficulty. The SIM explicitly identifies the region mentioned in the

editing request. We demonstrate that the system with the SIM architecture (w/

SIM) outperforms the system without the SIM architecture (w/o SIM) in most

of the editing requests in the dataset.

The second problem is that the systems have to handle the uncertainty of

the generated images due to the diversity of editing requests. Machine learning

models are trained with the limited dataset, and in general, the users have dif-

ferent knowledge, skills, and cultures. Therefore, miscommunication between the

systems and the users is inevitable. In other words, it is difficult for a single

editing model to perform correctly for all editing requests. This problem forces

the users to learn how the system behaves through many trial-and-errors, which

bothers the users. Conventional image generation or editing systems have the

same problem. A naive strategy for the system to solve the problem is showing

the generated images from different editing models to confirm the most relevant

image to the user’s request every time. However, this strategy has a problem

that the system makes the interactive process redundant. Chapter 5 addresses

this problem in our editing system. We propose a proactive confirmation method

that enables the system to confirms with the user when the system is tentative

about selecting a better image to match the user’s editing requests. We defined

an uncertainty score by using the entropy of the generated image to decide the

system action to confirm. We demonstrate our method achieves a lower number

of confirmation to the users with better image qualities through the dialogues.

Keywords:

image generation, image editing, natural language interface, dialogue system,

adversarial learning

ii



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Drawing assistance systems with a natural language interface 3

1.1.2 An alternate approach: image retrieval systems . . . . . . 4

1.2. Problems in existing works . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Approaches in this thesis . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Neural network-based models for semantic image editing

with natural language . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Interactive image editing with a system’s proactive confir-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Contribution of thesis . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5. Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related works 11

2.1. Concurrent works . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Connection between interactive image editing and other

vision-and-language tasks . . . . . . . . . . . . . . . . . . 11

2.1.2 Comparison our system and the other interactive image

editing systems . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. Background techniques . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Evaluation metric for image quality . . . . . . . . . . . . . 12

2.2.2 Basic neural networks modeling . . . . . . . . . . . . . . . 13

2.2.3 Convolutional neural network (CNN) . . . . . . . . . . . . 16

2.2.4 Long-short term memory network (LSTM) . . . . . . . . . 16

iii



2.2.5 Deep convolutional generative adversarial network (DCGAN) 18

2.2.6 Conditional generation with DCGAN for caption-to-image

generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Interactive image editing 23

3.1. Task setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2. Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 MNIST editing with artificial instruction (Artificial MNIST)

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Avatar image editing with human instruction (AIMI) dataset 29

4 Image editing with natural language instruction 35

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2. Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Our modification of conditional DCGAN for semantic im-

age editing with instruction . . . . . . . . . . . . . . . . . 38

4.2.2 source image masking (SIM) . . . . . . . . . . . . . . . . . 41

4.3. Experimental settings with Artificial MNIST dataset . . . . . . . 41

4.4. Results with Artificial MNIST dataset . . . . . . . . . . . . . . . 42

4.4.1 Generated examples . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Qualitative analysis of instruction vectors . . . . . . . . . 42

4.5. Experimental settings with Avatar Image Manipulation with In-

struction dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6. Results with Avatar Image Manipulation with Instruction dataset 48

4.6.1 Analysis on the instruction types . . . . . . . . . . . . . . 52

4.6.2 Comparison with the larger image size with the SIM model 54

4.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 An entropy-based confirmation for image editing dialogue 59

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2. Conditional image-to-image generation with a masking module . . 61

5.3. System’s confirmation of action decisions based on mask entropy . 62

5.4. Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iv



5.4.2 Training models . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.3 User evaluation of image editing dialogue . . . . . . . . . . 64

5.4.4 Necessity of confirmation (limitation of a single model) . . 65

5.4.5 Effectiveness of confirmation strategy . . . . . . . . . . . . 65

5.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.1 Necessity of confirmation (limitation of a single model) . . 66

5.5.2 Effectiveness of confirmation strategy . . . . . . . . . . . . 69

5.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusion of this thesis 75

6.1. Remaining problems and future directions . . . . . . . . . . . . . 76

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A. Snippet for generating Artifical MNIST . . . . . . . . . . . . . . . 91

B. Model architectures for the experiment . . . . . . . . . . . . . . . 92

v



vi



List of Figures

2.1 A simple 2-layer feed-forward neural network. . . . . . . . . . . . 14

2.2 A calculation example of convolutional naural network. Input is

3× 3 squared with 3 channels. Kernel window size is (3, 3), stride

is 2, and padding is 1. Padding values represent white color with

dot line in the input. . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Overview of interactive image editing. . . . . . . . . . . . . . . . 25

3.2 Generation procedure for Artificial MNIST dataset. . . . . . . . 27

3.3 Rendering examples. (w, h) denotes resizing factors for width and

height of the original MNIST images. . . . . . . . . . . . . . . . 28

3.4 MNIST sample transformation with manual transition correspond-

ing to the given instruction command (action, digit, direction). . 29

3.5 Avatar creation website for collecting avatar images. . . . . . . . 30

3.6 Crowd-sourcing instruction scripts shown to crowd workers. . . . 31

3.7 Annotated instruction examples via crowd-sourcing. . . . . . . . 32

4.1 Comparison of natural language conditioned image generation frame-

work between the existing cap2image (left) and the proposed image

manipulation with instruction (IMI) (right). . . . . . . . . . . . . 36

4.2 IMI model architectures for (a) Artificial MNIST editing, (b) avatar

editing, and (c) avatar editing with source image masking. . . . . 38

4.3 Generated examples of IMI model using handwritten digit manip-

ulation dataset (Artificial MNIST). . . . . . . . . . . . . . . . . . 43

vii



4.4 Cosine similarities between the instruction vectors from the in-

structions that contain {“expand”, “compress”, “move”} (left) and

{“put”, “remove”} (right) . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Enlarged cosine similarities of “move”-“move” block in Figure 4.4 45

4.6 Distribution of variance of similarities of each group of instruction

vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Generated results on each phase . . . . . . . . . . . . . . . . . . . 47

4.8 Model selection using feature matching loss . . . . . . . . . . . . . 48

4.9 Histogram of SSIM between the generated and target images using

w/o and w/ SIM models. . . . . . . . . . . . . . . . . . . . . . . . 49

4.10 Subjective evaluation of generated images between w/o and w/

SIM models. The attached numbers to the labels denote the actual

number of vote by the evaluators. The evaluators saw image pairs

(A, B). One is generated from w/o model, and the other is from

w/ SIM model. We asked the evaluators to select five-grade: (1:

A is much better than B, 2: A is better than B, 3: the results are

comparable, 4: B is better than A, 5: B is much better than the

A). We de-anonymized whether images are from w/o or w/ SIM

model, and visualized the number of the votes. . . . . . . . . . . . 50

4.11 Generated examples using w/o SIM model and w/ SIM model . . 51

4.12 SSIM comparison between w/ and w/o SIM models on the first

11 instruction types. The plots are ordered in ground truth masks

(gtmask), which indicate the number of different pixels between

source and target images. There are three SSIMs: original source–

target SSIM (base SSIM); generated–target SSIM subtracted by

the base SSIM (relative SSIM); relative SSIM but outside of edit

region covered with gtmask is ignored (relative SSIM (gtmask)). 52

4.13 SSIM distributions on the last 11 of 22 instruction types. The

settings are same as Figure 4.12 but the instruction types are the

last 11 types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii



4.14 SSIM comparison between image size of 64 and 128 on the first

11 instruction types. The plots are ordered in ground truth masks

(gtmask), which indicate the number of different pixels between

source and target images. There are three SSIMs: original source–

target SSIM (base SSIM); generated–target SSIM subtracted by

the base SSIM (relative SSIM); relative SSIM but outside of edit

region covered with gtmask is ignored (relative SSIM (gtmask)). 55

4.15 SSIM comparison between image size of 64 and 128 on the last 11

of 22 instruction types. The settings are same as Figure 4.14 but

the instruction types are the last 11 types. . . . . . . . . . . . . . 56

5.1 Overall interactive image editing flow described in Section 3.1 with

the proposed confirmation strategy (blue box in the right) and

DCGAN-based w/ and w/o mask (SIM) models described in Chap-

ter 4 (green box in the right). . . . . . . . . . . . . . . . . . . . . 61

5.2 Experimental results of image editing dialogue between 18 evalu-

ators (users) and the system: #user turn denotes total number

of user actions (making editing request and selecting an image);

(smaller is better). SSIMimprovement denotes the relative SSIM

based on the first SSIM (higher is better). Each plot on each fig-

ure represents the trail of SSIMimprovement in one dialogue task

between the system and an evaluator. α indicates threshold for sys-

tem to select confirmation: (a) α = 0.0, (b) α = 0.25, (c) α = 0.50,

(d) α = 0.75, (e) α = 1.0, and (f) random: system randomly se-

lects confirmation. If α becomes small, the system tends to se-

lect confirmation with lower uncertainty score. Note that every

SSIMimprovement is calculated after user’s action. Therefore,

when the system selects confirmation after the user makes an edit-

ing request, SSIMimprovement keeps identical value. Degrada-

tion as dialogues progress is caused by image editing models. . . 66

5.3 Visualization of average and standard deviation on each figure of

Figure 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 A case with low SSIM improvement. . . . . . . . . . . . . . . . . 68

ix



5.5 Histogram of SSIMimprovement/#user turn at end of dialogues

on each strategy: higher SSIMimprovement/#user turn dia-

logue created more similar images to goal and more efficient di-

alogues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Distribution of #user turn on each strategy: smaller #user turn

dialogue represents more efficient dialogue. . . . . . . . . . . . . 70

5.7 Dialogue example with α = 0.50 (confirmation threshold−α log 0.5 =

0.35). i indicates turn index defined in Chapter 3. #user turn de-

notes number of user actions, which represents total number of

making an editing request and selecting an image. We put the

source-goal SSIM next to each source image when the system de-

cides a generated image of each turn. . . . . . . . . . . . . . . . 72

5.8 Inefficient dialogue example with random confirmation: i indicates

turn index defined in Chapter 3. #user turn denotes number

of user actions, which represents total number of making editing

request and selecting an image. . . . . . . . . . . . . . . . . . . . 73

x



List of Tables

6.1 IMI model for Artificial MNIST dataset. . . . . . . . . . . . . . . 94

6.2 IMI model for AIMI dataset. . . . . . . . . . . . . . . . . . . . . . 95

6.3 IMI model with Source image masking for AIMI dataset. . . . . . 96

xi



Acknowledgements

First and foremost, I would like to express my gratitude to Professor Satoshi

Nakamura for welcoming me into AHC lab, and his hospitable supervision from

the start of my doctor course. I am very impressed by his considerate supervision.

He has not only directed me to advance my research but also presented what an

excellent researcher/educator is and how to be. He also has paid his great effort to

construct an excellent research laboratory. His supportive laboratory gave me a

comfortable laboratory life. I spent a great time discussing with the lab members

and met a lot of research ideas and topics. This expanded my view. His tireless

supervision dictated my career decision, and I would like to look up to him, an

excellent researcher and a good educator, in the future.

Thank you to Professor Yasuhiro Mukaigawa for agreeing to serve as members

of my doctoral committee, and for carefully reviewing this thesis and providing

insightful advice.

I would like to thank Professor David Traum and the members of USC In-

stitute for Creative Technologies for welcoming me as an intern member and the

careful and lively discussion on my internship research project. Professor David

Traum has provided me with the opportunity to study at USC, giving me a chance

to challenge the new research topic. The experience of studying abroad at USC

was precious. It has strengthened my confidence in the research.

I would also like to thank Associate Professor Sakriani Sakti for her kind and

critical advice and discussion to advance my research. Her insight and knowledge

backed by the rich experience gave me a lot of clues when I faced problems in my

research.

I would also like to thank Assistant Professor Koichiro Yoshino for incredible

supervision as the closest supervisor for me. I have learned a lot of things from

him, for example, how to advance my research, how to construct or write papers,

how to do public relations as a researcher, how to keep the motivation and mind

as a researcher, and how to face troublesome problems in various situations. He

also gave me many opportunities to attend conferences and study meetings. I

learned how important social activities are in research progress.

Of course, I would like to thank the member of AHC lab, student and staffs.

There are so many others that have helped me along my way that it would be

xii



impossible to name them all, but there are a few people that deserve special

mention. Thanks to Dr. Yu Suzuki and Dr. Hiroki Tanaka, and Dr. Takatomo

Kano for giving me critical questions and advice in the discussion. I would like

to thank Ms. Manami Matsuda and Ms. Miho Hayashi for the grateful support

for my research activities. Thanks to them, I felt comfortable in the laboratory

during my doctor course. Thanks to Dr. Takuya Hiraoka for giving me critical

advice at the beginning of my doctor course. I would also like to thank Dr.

Masahiro Mizukami and Mr. Kyoshiro Sugiyama for spending much time with me

talking a lot of things, for example, dialogue system research topics, troubles, and

ramen. Most of my great ramen experiences in Nara were carried out with them. I

would like to thank Dr. Hayato Maki and Mr. Yusuke Oda for discussing various

topics and sharing ideas of research and machine learning techniques. I was

impressed by them, and they encouraged me to learn modern machine learning

techniques faster. Thanks to Mr. Kazuya Ikuta and Ms. Sara Asai for accepting

me as their tutor on their research. They had great curiosity and sustainable

effort. They often came to me and asked questions and discussed many things

with me. They encouraged my understanding on various topics about research

to be deep. They sometimes supported me by showing a technique they found or

correcting my mistake. They provided me with a challenging but exciting essence

on education.

During my doctor course, I was also encouraged by the help of my friends.

I would also like to thank the people in twitter who discussed research topics

with me, shared some excellent papers, and gave me advice that supported my

research activities. Finally, thanks to Mom, Dad, and all of the rest of the family

for endlessly encouraging and understanding my studying in the doctor course.

xiii



Chapter 1

Introduction

1.1. Background

Images, pictures, and illustrations are useful for communicating what we are

imagining. For example, the sketches of a suspect’s face based on eyewitness ob-

servations support police departments that are spreading and sharing information

to find that suspect. However, creating images requires talent, lots of time, and

much training, especially for non-skilled users. Various systems or tools currently

assist the creation of images, such as Photoshop; however, manipulating these

tools also requires drawing skill with them. Is there a better way for users to eas-

ily create images without such specific drawing skills? Suppose our case. When

we do not have drawing skills, we can communicate in natural language with

others who can draw. We can ask them to draw the image we are holding in our

mind. For example, for sketching a suspect, an eyewitness describes the person’s

face to a professional police artist who reconstructs it based on the eyewitness’s

testimony. Another example is a business transaction where a client asks a de-

signer to create a car design. Since natural language communication is a basic

human skill, many people can use it regardless of their drawing skills. Therefore,

a conversational interface that enables a drawing system to communicate with

users in natural language has potential to effectively assist its users.

This thesis aims to achieve a conversational drawing system on an image

editing task. An image editing is a specific task of image creation tasks. In a

typical image creation task, a source image may or may not be present. For

1



example, a real situation for a car design, the designer/artist may show image

templates to a client who must select one that matches their requirements and

draw from the selected template. The artist may also start from scratch. An

image editing task, our task scenario, assumes that a source image to be edited

exists in the task beginning. The reason we focus on the specific task is that

we can find a partially relevant image by existing image processing technologies

to reduce initial cost. For example, we can access a large number of image

resources by web search engines for general design tasks and access an image by

collage technologies. Such technologies allow a user to synthesize an image by

combining partial image templates in a specific task, such as drawing a face. On

the other hand, interactive process to receive the desired image are inevitable

and requires much cost even in a general image creation task. Finding an image

that exactly matches the user desire is exhausting if we have a large number of

images. Furthermore, these image search or template approaches can only provide

an available image in existing databases. Thus, we believe there is a much space

to consider the question “how can we receive further improvement based on a

partially relevant image toward the desired image with small effort?” We believe

that the development of image editing technology has a potential to bridge the

gap between the available images, using image search or synthesizing templates,

and the actual images that satisfy user requirements. We also believe that this

technology will benefit not only non-skilled people but also experienced sketch

artists who want to improve communication with their clients.

In this chapter, first, Sections 1.1.1 and 1.1.2 introduce the image editing

task tackled by our conversational drawing system and its advantages. Second,

in Section 1.2, we discuss the challenges for achieving our conversational draw-

ing system. Third, Section 1.3 describes our approaches to solve these problems.

Fourth, Section 1.4 summarizes the contributions of our thesis. Finally, Sec-

tion 1.5 introduces its outline.

2



1.1.1 Drawing assistance systems with a natural language

interface

Historically speaking, the idea of systems that support human drawing with a

natural language interface is not new. Many studies have been investigated for a

long time and feature two main streams.

The first stream includes systems that obey user requests and perform certain

manipulations for users. In the mid-1900s, this initial concept was introduced by

SHRDLU [66], which performed such object-movement manipulations as grabbing

and repositioning things based on natural language requests. After SHRDLU,

similar studies appeared in the creation of 3D graphics scenes [1, 12]. Such sys-

tems also performed object-movement manipulations based on user input: “Put

[object A] [position] [object B]” to render 3D graphics scenes.

The second stream is comprised of systems that support the direct manipula-

tion of graphical user interfaces with natural language. An early drawing system

was proposed in the 1990s that accepts such multi-modal inputs as a mouse,

keyboard, and voice input [23]. In this system, natural language was input as

voice input, which was mainly used to assist other modalities (mouse or key-

board). Since the early study was interested in the time synchronization of the

voice input and other modalities, the voice input was comprised of such simple

commands as “move this here.” VoiceDraw [21] accepted only voice input for

line drawing. It allowed users to input both specific voice commands and also a

flexible hands-free line drawing by changing the user’s voice duration. Combining

voice commands and gaze also worked well for flexible line drawing [62].

A commonality in the studies of the two streams is that systems require the

user to enter simple natural language commands that correspond to the simple

manipulations of drawing tools, such as “move this here.” In the first stream,

users can easily change the position of objects. The second stream’s systems

basically require that users possess drawing skills. Difficult manipulations for

non-skilled users include drawings that are comprised of such semantic changes

as “make his sunglasses round” or “make the hair a little longer and wavy” for

drawing a face. Therefore, to address this problem and assist non-skilled users,

we tackle semantic image manipulation (editing) task with natural language.

3



1.1.2 An alternate approach: image retrieval systems

Image retrieval systems find images in databases that are relevant to the given

user’s queries, such as images [38], tags [48], and natural language sentences [31].

These image retrieval systems are promising approach to find images that are

roughly relevant to what users are imagining. However, the performance of image

retrieval systems depends on the database’s size because they can only present

images that exist in image databases. Retrieval-based image editing for slight

change requests, including “make the hair a little longer and wavy” in face edit-

ing requires many examples of the same face with different kinds of sunglasses

or hairstyles and appropriate annotations. On the other hand, generation-based

image editing learns to generate a new image from a training set composed of

independent pairs of pre- and post-edited examples. Its advantage is that it does

not need to cover every combination of the changes, e.g., sunglasses or hairstyles,

on each face to work well. For this reason, our thesis focuses on generation-

based editing rather than retrieval-based editing. We note that the fundamental

advantage of generation-based image editing systems can be combined with ex-

isting image retrieval systems. Although we only focus on generation approach in

this study, we expect that a unified system that combines our system and image

retrieval systems will be improve the performance in the future.

1.2. Problems in existing works

Semantic image editing with natural language described above faces the following

two challenges. The first is how to generate a new image based on users’ editing

requests in natural language. Although primitive operations such as moving

objects are feasible with handcrafted rules, manually achieving such semantic

changes as “make his sunglasses round” or “make the hair a little longer and

wavy” are very challenging. Furthermore, image retrieval systems are ineffective

for editing requests that represent slightly changed images, such as “make the

hair a little longer and wavy.”

The second problem is that the systems have to handle various editing requests

from users in natural language. Suppose that a user wants to add sunglasses to

an image. The request might be “add sunglasses,” “make the glasses darker,”

4



or “put on black glasses.” User requests reflect a wide array from which to ex-

press specific operations. Editing systems must be able to absorb such diversity.

Moreover, suppose a communication task where a client asks a professional de-

signer to create a car advertisement. How would the designer react if the client

made the following request: “Is it possible to make this car more stylish” If the

designer has experience managing such a “make stylish” operation from their

client, they can imagine possible target operations. However, if this is the first

request she’s received from that client, they will probably be confused because

the “make stylish” operation is ambiguous. The request might refer to the color

or the shape of the car. In such cases in human-to-human communication, we

can easily clarify the client’s intention: “Are you referring to the car’s color or its

shape?” The next time the same client asks for the same “make stylish” service,

the designer can successfully do the desired operation. The meaning of natural

language often reflects context, including individual preference and the relation-

ships among people, time, place, and culture. Since eliminating this ambiguity

is impossible, grounding each other’s intentions through dialogue is essential in

semantic image editing with natural language. Creating an image editing system

that can accept and handle all editing requests is basically impossible. There-

fore, semantic image editing systems with natural language require functionality

for grounding the intentions between a system and its users. Based on natural

language interaction, we call such semantic image editing tasks interactive image

editing tasks in this thesis.

1.3. Approaches in this thesis

First, Chapter 3 introduces and defines interactive image editing tasks. Since we

found no existing dataset for such tasks when we began our research, Chapter 3

also introduces our data collection of two datasets. We first collected an artifi-

cially generated editing dataset from a public, handwritten dataset [35] (Artificial

MNIST) to investigate the operation of our editing model, which is described in

Section 1.3.1. We also collected a more practical editing dataset , which is an

avatar image editing with human instruction (AIMI) dataset, whose images are

automatically collected from an avatar creation website where editing requests
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are manually annotated by humans by crowd-sourcing.

Our proposed approach consists of two parts. First, we solved the first prob-

lem and part of the second one by constructing single-turn image editing models

(Section 1.3.1). Second, we solved the second problem by constructing an inter-

active image editing system using image editing models shown in (Section 1.3.2).

1.3.1 Neural network-based models for semantic image edit-

ing with natural language

As described from Sections 1.1.1 to 1.2, semantic image editing requires fea-

sibility for more complicated editing requests than simple operations such as

object movement. The following is a common research question in the vision-

and-language research field: “What is an effective way to unify image semantics

and natural language semantics?” In recent years, machine learning approaches

using neural networks have been successful in computer vision tasks, such as im-

age recognition [33, 53], object detection [18], semantic segmentation [39], action

recognition [56], and image generation [50], and in such natural language process-

ing as machine translation [4, 59], question answering [57], and chat-based dia-

logue systems [63]. Using techniques from both fields, many vision-and-language

tasks have also been successful, including image retrieval using natural language

query [31], visual question answering [3, 17], generating descriptions from im-

ages called image captioning [8, 64], and generating images from captions called

text-to-image or caption-to-image [42, 51]. The advantage of machine learning

approaches is that they can model the relationship between images and natu-

ral language without handcrafted rules. The performances of neural networks

are especially good because they can approximate complicated mapping between

images and natural language.

Moreover, studies on collaborative systems that can properly instruct users

have also been emerging in a field called vision-and-dialogue. Vision-and-dialogue

systems are extensions of the vision-and-language field. For example, dialogue-

based interactive image retrieval [14, 20] and visual dialogues [13, 15] can be

viewed as a dialogue extension of visual question answering and image-captioning.

Interactive image editing resembles a dialogue extension of text-to-image.
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Chapter 4 builds a neural network-based image editing model for our in-

teractive image editing task. We start by extending the existing text-to-image

generation model [51], which consists of long-short term memory neural networks

(LSTM) [24] for a text encoder and generative adversarial networks (GANs) [19]

for an image decoder. These text encoders and image decoders are trained to-

gether, and the entire model learns the mapping function between the input text

and the output image without handcrafted rules. Our image editing model gen-

erates a new image based on a source image, which is the image previously shared

by the system and the user, based on an editing request from the user. To create

this editing model, we combine an additional image encoder based on a convolu-

tional neural network (CNN) [34] for source image input with the text-to-image

model [51] and train it to learn a mapping function between an input pair source

image and editing request and output image.

In Chapter 4 we also propose source image masking (SIM), which identifies the

region that should be changed to preserve the other regions to improve the image

editing performance. We demonstrate that in most editing requests a system

with SIM architecture (w/ SIM) outperforms a system without it (w/o SIM).

1.3.2 Interactive image editing with a system’s proactive

confirmation

Functionality for grounding intentions between the system and users is achieved

by introducing a confirmation strategy to the system. Confirmation [11], which

is an effective strategy to deal with input uncertainty, has mainly been investi-

gated in the spoken dialogue system research field [32, 45]. Such spoken dialogue

systems must address the mistakes of speech recognition or natural language

understanding. In this situation, confirmation effectively manages the dialogue

process. A confirmation method, based on confidence measures [32], calculates

the confidence score of each content word among the speech recognition candi-

dates. The system provides confirmation to the user when the confidence in the

content word in the user utterance is uncertain. The confirmation method for

a document retrieval dialogue task is based on minimizing the Bayes risk [45],

which must be calculated by a classification model.
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Interactive image editing systems also have to handle the uncertainty of the

generated images due to the array of editing requests because users generally have

different knowledge, skills, and cultures. Moreover, machine learning models are

trained with limited datasets. Therefore, it is difficult for a single editing model

to perform correctly every editing request. When the system’s output is different

from the user’s intent, the user needs to try again. This situation levies an

additional cost on users who must learn how the system behaves through much

trial-and-error. Our interactive image editing system tackles this problem by

incorporating a confirmation strategy.

Chapter 5 introduces a method for system’s proactive confirmation strategy.

A naive strategy through which the system solves the uncertainty problem shows

generated images from different editing models to confirm the most relevant im-

age to the user’s request every time. However, this strategy makes the interactive

process redundant. Chapter 5 addresses this problem in our editing system. We

propose a proactive confirmation method that enables the system to confirm its

tentativeness with users about selecting a better image to match their editing

requests. We defined an uncertainty score using the generated image’s entropy

to decide which system action to confirm. We demonstrate that our method re-

duces the number of confirmations to users with better image qualities through

dialogues. Similar to an existing confirmation method that uses confidence mea-

sures [32], our proposed confirmation method provides a confidence score for

confirmation. However, the calculation of confidence scores is based on the en-

tropy of the image generation system. In contrast to the existing confirmation

method that requires a classification model to calculate the Bayes risk [45], our

entropy-based method requires no additional model or dialogue data for training

the model.

Note that controlling generated images is an essential problem in GAN-based

image generation because of the instability of the generated image’s quality. The

truncation trick, which restricts acceptable samples on latent space z, satisfac-

torily stabilizes the image quality in conditional image generation [6]. Unfortu-

nately, it fails to provide any information about uncertainty. Our entropy-based

method provides uncertainty scores for generated images. Uncertainty detection

for GAN-based models has been scrutinized in anomaly detection [55, 2]. How-
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ever, it measures the distances between the generated images and the samples

in a training dataset without indicating their suitability for the given condition.

Our entropy-based method is based on a mask made from the given condition

that provides a confidence score that represents the suitability of the generated

image for the given condition.

1.4. Contribution of thesis

The following are the contributions of this thesis:

• We collect two datasets for an interactive image editing task: an artifi-

cially generated editing dataset (Artificial MNIST) and an avatar image

manipulation with human instruction (AIMI) dataset (Chapter 3).

• We propose a neural network-based image editing model that accepts di-

verse editing requests for an interactive image editing system (Chapter 4).

• We propose source image masking (SIM) that identifies the region to be

changed and preserves the other regions to improve the performance of the

image editing (Chapter 4).

• We propose an entropy-based confirmation strategy that enables our inter-

active editing system to proactively confirm that the dialogue process has

become effective (Chapter 5).

1.5. Outline of the thesis

This thesis consists of the following chapters. Chapter 3 represents the task

setting of interactive image editing and introduces the data collection of an arti-

ficially generated editing dataset (Artificial MNIST) and an avatar image manip-

ulation with human instruction (AIMI) dataset. Chapter 4 first represents our

experiment for our proposed neural network-based image editing models on the

Artificial MNIST and AIMI datasets. We also analyze the problem of the gen-

erated result with the AIMI dataset. Second, we introduce an experiment with

source image masking (SIM) with the AIMI dataset to alleviate this problem.
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Chapter 5 represents an experiment on the proposed entropy-based confirmation

strategy. Chapter 6 summarizes our entire result and discusses existing limita-

tions and future works.
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Chapter 2

Related works

This chapter introduces a connection to other existing works related to our in-

teractive image editing system: concurrent works and background techniques for

our system.

2.1. Concurrent works

2.1.1 Connection between interactive image editing and

other vision-and-language tasks

The most conspicuous point of interactive image editing from text-to-image [42,

51] is that the former requires consistent, created images. Editing requests from

users represents what and how to change the current image shared by the user

and the system. The system needs to identify the region to be changed and

preserve the other regions. Second, interactive image editing systems proactively

engage with users. User initiative systems, such as text-to-image, force users to

learn how they work through trial-and-error; interactive image editing systems

can potentially reduce this trial-and-error.

Image retrieval systems are also promising for obtaining desirable images re-

quired by users. However, they can only provide existing images in the image

database. They proficiently search for images that moderately match the images

desired by users; they are less effective at getting images that are not in the

database, for example, slightly different images.

11



2.1.2 Comparison our system and the other interactive im-

age editing systems

Some previous works resemble our interactive image editing system. Conversa-

tional image editing systems [43, 37] understand user utterances and identify user

intentions in interactive image editing tasks by existing image editing software,

such as Adobe Photoshop and OpenCV [5]. These systems, supported by such

editing tools, are adept at editing requests, including “delete the background”

and “move the red chair.” However, these tools struggle to reflect editing re-

quests that represent such semantic changes as “open the eyes of this face” and

“make the face laugh.” Our interactive image editing system accepts these editing

requests using a neural network-based image generative model. We used genera-

tive adversarial networks (GANs) [19] for an image editing module. Our editing

model directly models the relationship between the changes of images and editing

requests and generates edited results from scratch.

2.2. Background techniques

2.2.1 Evaluation metric for image quality

Image generation tasks, including our image editing task, need to evaluate the

performance of models or systems. Structured Similarity (SSIM) [65] is a standard

metric to evaluate image similarity between given two images. If a task requires

to evaluate a generated image X compared with the ground truth image Y , SSIM

provides the score SSIM(X, Y ) as follows,

SSIMch(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (2.1)

SSIM(X, Y ) =
1

CN

C∑
ch=1

N∑
i=1

SSIMch(xi,ch, yi,ch). (2.2)

xi,ch and yi,ch are the i-th local patches of channel ch of X and Y . Whole patches

are derived by vertically and horizontally sliding a squared window with width

L one-by-one. µx, µy are their mean, and σ2
x, σ2

y, and σxy are their variance and
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co-variance. C1, C2 are constant values. For the whole experiment, we adopted

commonly used parameters: L = 7, C1 = (255 · 0.01)2, C2 = (255 · 0.03)2.

Note, Inception Score [54] and Fréchet Inception Distance [22] are also well-

known standard metrics to evaluate the image quality of generated images. They

compare the distribution of generated image features with that of real image

features, which are extracted from a well-trained image classification model, re-

spectively. They are superior to SSIM to evaluate image fidelity and diversity of

generated images; however, they do not care about a single pair of two images,

and they require a high performance pre-trained classification model. Our image

editing task requires to evaluate single pairs of source and target images, and the

collected avatar image editing dataset has no label information on each image.

Thus, we used SSIM.

2.2.2 Basic neural networks modeling

Neural networks are a statistical approach to model data generation process or

approximate target function from given collected dataset. They have been suc-

cessful in many field of computer vision such as image recognition [33, 53], object

detection [18], semantic segmentation [39], action recognition [56], and image gen-

eration [50]; and natural language processing such as machine translation [4, 59],

question answering [57], and chat-based dialogue system [63]. An important

point of neural network is modularity. It allow us to unify different modality

with specified encoders or decoders. The unified model can be optimized via

back-propagation [34] and makes it possible to optimize the complex relationship

between image and natural language directly.

We describe the optimization procedure for a neural network called training or

learning. Suppose that we have a dataset composed of (x, t) samples, both x and

t are 2-dimensional data, and try to approximate a function f , where t = f(x),

with a simple 2-layer fully-connected feed-forward network shown in Figure 2.1.

A neural network is defined as input variable x(1), hidden variable x(2), output

variable x(3), and weight parameters w
(k)
ij (i, j, k are the indexes of each weight)

between variables. Note that variables with value 1 are bias parameters but they

can be seen as weights in this form. The approximating function is realized by

optimizing these weight parameters. When input x is set to x(1), the neural net
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Figure 2.1. A simple 2-layer feed-forward neural network.

forwarding it to the next layer in turn as below,

u
(k+1)
j =

∑
i=1

w
(k)
ij x

(k)
i , (2.3)

x
(k+1)
j = σ

(
u
(k+1)
j

)
. (2.4)

σ(·) is activation function. There is various types of activation functions such

as sigmoid, sigmoid(u) = 1
1+exp(−u) ; hyperbolic tangent, tanh(u) = 1+exp(−2u)

1+exp(−2u)
rectified linear unit [28, 47], ReLU(u) = max(0, u); leakey rectified linear unit

[40], LeakeyReLU(u) = max(slope · u, u), where slope is a hyper parameter.

ReLU(u) and LeakeyReLU(u) are more useful to avoid gradient vanishing prob-

lem in deeper layers architecture. Therefore, we use them mainly except for

the final layer of each module because of calculating objective function error or

getting higher performance after investigating several settings.

After getting output variable x(3), the neural network compare the difference

between t and x(3) with objective function. For example, mean squared error is
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calculated as below,

Ew(x(3), t) =
1

2M

∑
i=1

(
x
(3)
i − ti

)2
, (2.5)

where M is mini-batch size. Neural networks allows parallel processing for its

training because its calculation is composed of operation between vectors and

matrices. Large mini-batch size makes the training faster and more stable in

general. If t is not real value but a 1-hot vector, which is a discrete representation;

only one dimension is one and the others are zero, cross entropy is suitable for the

objective function. The cross entropy for binary variable (Ew(y, t) = CE(y, t))

is defined as,

CE(y, t) = − 1

M

∑
{t log(y) + (1− t) log(1− y)}. (2.6)

The cross entropy for multiple variables called softmax cross entropy (Ew(y, t) =

SCE(y, t)) is defined as,

SCE(y, t) = − 1

M

∑
t log y. (2.7)

Using these objective functions, the neural networks can optimize its weight

by back-propagation [34]. To calculate w
(2)
11 , its value for optimization called

gradient is defined as,

− ∂Ew
∂w

(2)
11

= −∂Ew
∂x

(3)
1

· ∂x
(3)
1

∂u
(3)
1

· ∂u
(3)
1

∂w
(2)
11

. (2.8)

In the same way, the gradient for w
(2)
11 is,

− ∂Ew
∂w

(1)
11

= − ∂Ew
∂x

(2)
1

· ∂x
(2)
1

∂u
(2)
1

· ∂u
(2)
1

∂w
(1)
11

, (2.9)

where

∂Ew

∂x
(2)
1

=
∂Ew

∂x
(3)
1

· ∂x
(3)
1

∂u
(3)
1

· ∂u
(3)
1

∂x
(2)
1

+
∂Ew

∂x
(3)
2

· ∂x
(3)
2

∂u
(3)
2

· ∂u
(3)
2

∂x
(2)
1

=
∑
j=1

w
(2)
1j σ

′
(
u
(3)
j

) ∂Ew
∂x

(3)
j

. (2.10)

As we described in (2.8), (2.9), and (2.10), the neural networks can calculate

the gradient of each weight by propagating the gradient of each variables in the

previous layer from output layer to input layer.
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2.2.3 Convolutional neural network (CNN)

Convolutional neural network (CNN) [35] is a kind of feed-forward neural net-

works, but it is not fully-connected. It is a locally-connected neural network.

It has been successful in computer vision tasks. We use CNN to encode source

image. Suppose that input x is an image (2-dimensional data with channel CH),

forward pass is defined as,

ukij =
CH∑
ch=1

m−1∑
s=0

n−1∑
t=0

wk
s,txch,(i+s)(j+t) + bk. (2.11)

m and n is local receptive field size of input x connected to ukij. wk
s,t is called

kernel window because it is m× n rectangle. Each ukij is calculated on each local

receptive field, which is determined by kernel window size, stride, and padding

parameters. The stride represents the distance between two consecutive positions

of the kernel. The padding represents the number of zero values concatenated

at the edge of the input. The horizontal and vertical dimension of the output

(Ow, Oh) is determined by input size (Iw, Ih), kernel window size (Kw, Kh), stride

S, and padding P as follows:

Ow =
Iw −Kw + 2P

S
+ 1, (2.12)

Oh =
Ih −Kh + 2P

S
+ 1. (2.13)

Output channel is determined by the number of kernel windows N . For example,

Figure 2.2 visualizes the calculation when the input is a 3-channel (Ich = 3)

image with (Iw, Ih) = (3, 3), (Kw, Kh) = (3, 3), stride S = 2, and padding P = 1.

Padding values represent white colour with dot line in the input. In this case,

input dimension is (Ich, Iw, Ih) = (3, 3, 3), and output dimension is (N,Ow, Oh) =

(1, 2, 2)

We use CNN for image encoder Eim

2.2.4 Long-short term memory network (LSTM)

Long-short term memory network (LSTM) [24] is suitable for modeling temporary

data. It has been successful in language modeling [58], encoding text [9, 10].

16



𝑥00 𝑥01 𝑥02 𝑥03 𝑥04

𝑥10 𝑥11 𝑥12 𝑥13 𝑥14

𝑥20 𝑥21 𝑥22 𝑥23 𝑥24

𝑥30 𝑥31 𝑥32 𝑥33 𝑥34

𝑥40 𝑥41 𝑥42 𝑥43 𝑥44

𝑥00 𝑥01 𝑥02 𝑥03 𝑥04

𝑥10 𝑥11 𝑥12 𝑥13 𝑥14

𝑥20 𝑥21 𝑥22 𝑥23 𝑥24

𝑥30 𝑥31 𝑥32 𝑥33 𝑥34

𝑥40 𝑥41 𝑥42 𝑥43 𝑥44

𝑥00 𝑥01 𝑥02 𝑥03 𝑥04

𝑥10 𝑥11 𝑥12 𝑥13 𝑥14

𝑥20 𝑥21 𝑥22 𝑥23 𝑥24

𝑥30 𝑥31 𝑥32 𝑥33 𝑥34

𝑥40 𝑥41 𝑥42 𝑥43 𝑥44

𝑥00 𝑥01 𝑥02 𝑥03 𝑥04

𝑥10 𝑥11 𝑥12 𝑥13 𝑥14

𝑥20 𝑥21 𝑥22 𝑥23 𝑥24

𝑥30 𝑥31 𝑥32 𝑥33 𝑥34

𝑥40 𝑥41 𝑥42 𝑥43 𝑥44

𝑢00 𝑢01

𝑢10 𝑢11

𝑥00 𝑥01 𝑥02 𝑥03 𝑥04

𝑥10 𝑥11 𝑥12 𝑥13 𝑥14

𝑥20 𝑥21 𝑥22 𝑥23 𝑥24

𝑥30 𝑥31 𝑥32 𝑥33 𝑥34

𝑥40 𝑥41 𝑥42 𝑥43 𝑥44

𝑥00 𝑥01 𝑥02 𝑥03 𝑥04

𝑥10 𝑥11 𝑥12 𝑥13 𝑥14

𝑥20 𝑥21 𝑥22 𝑥23 𝑥24

𝑥30 𝑥31 𝑥32 𝑥33 𝑥34

𝑥40 𝑥41 𝑥42 𝑥43 𝑥44

𝑢00 𝑢01

𝑢10 𝑢11

𝑤00 𝑤01 𝑤02

𝑤10 𝑤11 𝑤12

𝑤20 𝑤21 𝑤22

3x3 
kernel window

Figure 2.2. A calculation example of convolutional naural network. Input is 3×3

squared with 3 channels. Kernel window size is (3, 3), stride is 2, and padding is

1. Padding values represent white color with dot line in the input.

We use LSTM for encoding instruction data. Suppose I is an input sentence

I = (x1, x2, · · · , xT ) (xi is i-th word). LSTMs have initial value of hidden and

cell variables (both are initialized by zero vectors) and update them one-by-one

as the given each word sequentially. Encoding i-th word xi is defined as,

zt = tanh (W xzxt +W hzht−1) , (2.14)

gi,t = σ (W xixt +W hiht−1) , (2.15)

gf,t = σ (W xfxt +W hfht−1) , (2.16)

go,t = σ (W xoxt +W hoht−1) , (2.17)
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Each W .. is fully-connected layer. zt is also a hidden vector. gi,t, gf,t, and go,t
are gating variables to approximate a complex function.

ẑt = zt � gi,t (2.18)

ĉt−1 = ct−1 � gf,t (2.19)

ct = ĉt−1 + tanh (ẑt) (2.20)

ht = tanh (ct)� go,t (2.21)

Note that � indicates the Hadamard product. After processing all words, we use

the final output hT as the extracted feature from the given I. To simplify this

whole extraction procedure, we use φi = Ei(I), where φi = hT .

2.2.5 Deep convolutional generative adversarial network

(DCGAN)

A Deep Convolutional Generative Adversarial Network (DCGAN) [50] is a com-

monly used generative model for image generation. DCGAN is composed of

CNN-based generator G and discriminator D for adversarial learning [19]. The

generator is defined as,

X̂ = G(z). (2.22)

It generates image X̂, which has same dimension as given training image X ∈
RC×H×W , from given noise z ∈ RZ (e.g., Gaussian: z ∼ N(0, I), where I is an

identity matrix). C, H, W are the dimension of channel, height, and width of an

image, respectively. Z denotes the dimension of noise vector z. The discriminator

is defined as,

ŷ = D(x). (x ∈ {X, X̂}) (2.23)

ŷ represents a scalar output of the discriminator D with range [0, 1]. In training,

the discriminator D receives two types of input X and X̂, image of training

sample and image generated by the generator G as shown in (2.22). It learns to

predict ŷ = 1 if x is a target image X (real), or predict ŷ = 0 if x is a generated

target image X̂ by the generator G (fake). The classified output ŷ will be used
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to train the generator. DCGAN is optimized by the following objective:

min
θG

max
θD

V (G,D) = EX∼pdata [logD(X)]

+ Ez∼pz [log(1−D(G(z)))]. (2.24)

θG and θD are the trainable parameters of the generator and the discrimina-

tor. pdata and pz denote the data and noise distributions. Adversarial learning

resembles a mini-max game between the generator and the discriminator. The

discriminator is optimized to correctly classify generated images from the gen-

erator (fake) and training examples (real). On the other hand, the generator

is optimized to trick the discriminator into predicting the generated images as

training examples. This competitive training improves the image modeling per-

formance [50]. To stabilize the training, we rewrite the objectives [19] and get

the following training objectives:

min
θD
LD = −EX∼pdata [logD(X)]− Ez∼pz [log(1−D(G(z)))], (2.25)

min
θG
LG = −Ez∼pz [logD(G(z))]. (2.26)

Batch normalization

Batch normalization [25] is an important technique to stabilize the training of

DCGAN. It normalizes an activation vector u shown in (2.3) and (2.4). u =

(u1, u2, · · · , un) with , and normalizes it over ûk is defined as,

ûk =
uk − E [uk]√

Var [uk]
. (2.27)

Note that E [uk] represents
∑n

k=1 uk, and Var [uk] represents variance of u. In

practice, this calculation applies to the input on each channel independently. In

the test time, we use the statistics of the test batch due to better performance

than the aggregated statistics of the training batch.

Transposed convolution

An ordinary convolution layer squeezes the width and height dimension of the

input; however, the CNN-based generator needs up-sampling the squeezed feature
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vector to generate an image. Transposed convolution layer, which is also known

as fractionally-strided convolution layer or deconvolution layer, is an inverted

function of the ordinary convolution layer; thus, they are used in the generator.

To calculate transposed convolution layer, let us suppose an example of or-

dinary convolution layer with input size (Iw, Ih) = (4, 4), kernel window size

(Kw, Kh) = (3, 3), stride S=1, and padding P = 0. This convolution layer oper-

ation can be expressed by a matrix operation [16]. The weight matrix C for the

convolution layer on each channel is defined as,


w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0 0

0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0

0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0

0 0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2

 .

(2.28)

Note that input and output vector is channel-wisely unrolled from left to right,

top to bottom in this situation. The output dimension is 4, which means output

size (Ow, Oh) = (2, 2) after reshaping. Transposed convolution layer is defined by

CT .

2.2.6 Conditional generation with DCGAN for caption-to-

image generation

The original DCGAN is an unconditional generation model. It was expanded to

conditional image generation with given condition such as semantic labels [49]

(e.g., dog, cat) and captions [51] (e.g., “This bird has a yellow beak and black

body.”). Our image editing task is a conditional generation with a source image

and natural language instruction. Our editing model is based on the caption-to-

image generation [51] because they are not semantic label expression.

This caption-to-image generation model [51] consists of three modules: a

LSTM-based caption encoder Ec to extract features of input captions, generator

G, and discriminator D. G and D are almost same modules as the unconditional
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DCGAN. The modifications from (2.22) and (2.23) are as follows,

X̂ = G(z,φ), (2.29)

ŷ = D(x,φ). (x ∈ {X, X̂}). (2.30)

φ is a conditional feature extracted from the input caption through the LSTM-

based caption encoder Ec as described in Section 2.2.4.

For training of the conditional DCGAN, the discriminator must learn to dis-

tinguish not only whether its input image is real or generated but also whether

its input image is matched to the given condition. Matching aware method [51]

realizes this function by modifying the conditional DCGAN objectives described

in Equation (2.25) and (2.26) as follows,

LDXr
= −EX∼pdata [logD(X,φr)], (2.31)

LDXw
= −EX∼pdata [log(1−D(X,φw))], (2.32)

LDX̂r
= −EX∼pdataEz∼pz [log(1−D(G(z,φr),φr))], (2.33)

LGX̂r
= −EX∼pdataEz∼pz [logD(G(z,φr),φr)]. (2.34)

The right condition φr is matched to the real imageX or the generated image X̂.

In other words, φr is extracted from the caption aligned with X or is identical to

the input condition to generate X̂ through X̂ = G(z,φr). On the other hand,

the wrong condition φw represents mismatched condition to the real image X or

the generated image X̂. In practice, φw is created by randomly permutating φr

in a mini-batch. Objective (2.31) encourages the discriminator to classify a real

image and a matched image–condition pair as real. Objective (2.32) encourages

the discriminator to classify a real image but a mismatched pair as fake. Objec-

tive (2.33) encourages the discriminator to classify a generated image where the

pair is matched as fake. Objective (2.34) encourages the generator to trick the

discriminator into classifying the generated image with the matched pair as real.
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Chapter 3

Interactive image editing

This chapter introduces a setting for interactive image editing task.

3.1. Task setting

First, we describe the interactive image editing dialogue task. It has a human

user and a system. The dialogue’s purpose is to generate goal image Xg, which is

the user’s designed image, through a dialogue. The user makes natural language

instruction I, which represents an editing request to change the current image

closer to the goal. The system generates a new image based on the previous

image when the user requests to change.

Step 1 First source image Xs
0 and goal image Xg are given to the user.

Step 2 At the i-th turn interaction, the user makes a natural language instruction

Ii to edit previous image Xs
i−1.

Step 3 The system generates a new image Xi based on the instruction Ii and the

previous image Xs
i−1.

Step 4 The system resets Xi as new source image Xs
i , and the user chooses whether

to continue the dialogue. If the user decides to continue, If the user decides

to continue, go to Step 2 with i += 1. If the user decides to stop the

dialogue, the dialogue is finished, and the image Xs
i is compared with goal

image Xg to evaluate their similarity.
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Note that since the goal image is invisible to the system, it cannot be optimized

directly to generate the goal image. At the end of the task, the user and the

system receive a similarity score between the final source image Xs
i goal image

Xg. It represents the performance of the task. In this thesis, we used Structured

Similarity (SSIM) [65] for the similarity score as described in Section 2.2.1.

If we have several image generators on Step 3), the system must choose one

image as a new image of Xi. When the system cannot choose between images,

one solution is to seek confirmation from the user about which image is better.

We assume that the system has multiple image candidates Xi,1, Xi,2, . . . , Xi,n in

Step 3) and two choices: {confirm, not confirm}. If it selects confirm, the

following sub-steps of the confirmation procedure are inserted before Step 4):

3-c1) The system shows image candidates to the user to confirm which image is

relevant to the request.

3-c2) The user selects the most relevant image. The system sets the selected

image as its generated image of Xi.

Figure 3.1 summarizes a single i-th turn that is defined as a sequential process to

decide next source imageXs
i from current source imageXs

i−1. Since the confirming

steps make the interaction redundant, the system has to reduce the number of

confirming actions. Criteria exist upon which the system selects confirm or

not confirm (see Section 5.3).
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Figure 3.1. Overview of interactive image editing.
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3.2. Data collection

We created two datasets for our interactive image generation task. First, MNIST

editing with artificial instruction (Artificial MNIST) dataset is an automatically

generated dataset made from original handwritten MNIST dataset [35]. The

instructions of this dataset, natural language instructions, are also annotated

automatically. We expect this dataset enables us to analyze our proposed model

easily. Second, Avatar image editing with human instruction (AIMI) dataset is

automatically collected dataset from an avatar creation website. The instructions

of this dataset are manually collected from a human via crowd-sourcing. This

dataset is more practical than Artificial MNIST because it has a larger variety of

both images and instructions.

3.2.1 MNIST editing with artificial instruction (Artificial

MNIST) dataset

We describe the procedure to build MNIST editing with artificial instruction (Ar-

tificial MNIST) dataset, which is automatically created from MNIST dataset [35].

Artificial MNIST consists of triplets of (source image, target image, instruction).

Figure 3.2 represents the procedure to generate the triplets from original MNIST

samples automatically. First, we randomly selected 1,000 samples on each digit

zero to nine from the original MNIST training set of 60,000 samples and obtained

10,000 samples in total. Of course, we can use a more substantial size of samples;

however, 10,000 samples is enough for our experiment in minimum training time

cost. On each sample, we generate a triplet as below,

step1 We render source image to a canvas from given source parameter set (digit, x, y, w, h).

step2 We calculate target parameter set from the source parameter set and given

instruction composed of a triplet of (action, digit, direction).

step3 We verify that the target parameter set is possible to render. If it is impos-

sible, we cease creating this triplet.

step4 If the target parameter set is possible to render, we render the target image

to a canvas from the target parameter set.
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Figure 3.2. Generation procedure for Artificial MNIST dataset.

Note that the canvas has a size of 84x84 pixel that is three times larger than that

of the original MNIST samples (size of 28x28 pixel). In source and target param-

eter set, digit is identical to the digit class of the original MNIST sample. We

considered the canvases that has no digit, whose rendering parameter is defined

by (x, y, w, h) = (0, 0, 0, 0), as additional digit class; therefore, we have 11-class of

digit. (x, y) represents horizontal and vertical position, and has {3,3}-class, and

(w, h) represents width and height of image, and has {4,4}-class. Appendix A

describes the examples of variables to render source and target image pairs with

instruction. We tried all possible source parameter sets and got 31 unique images

on each digit sample.

Figure 3.3 represents the rendering procedure detail for the source images at

step1. Suppose that we have a sample of digit zero to render in the canvas. The

valid rendering parameter set (0, x, y, w, h) must satisfy 1 ≤ w ≤ 3 and 1 ≤ h ≤ 3.

In rendering, we horizontally expand the digit zero to be w times as large as the

original one and vertically expand it to be h times as well. If w = 1 or h = 1, there

are three choices to render as [“left”, none, “right”] or [“top”, none, “bottom”]. If
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Figure 3.3. Rendering examples. (w, h) denotes resizing factors for width and

height of the original MNIST images.

w = 2 or h = 2, we have two choices on each [“left”, “right”] or [“top”, “bottom”].

If w = 3 or h = 3, we have no choice to the direction. On each (w, h), We tried

all combination of vertical and horizontal choices.

Figure 3.4 represents the rendering procedure detail to render the target image

from step2 to step4. We have action set {“put”, “remove”, “expand”, “compress”,

“move”}, direction set {“top”, “left”, “right”, “bottom”, “top left”, “top right”,

“bottom left”, “bottom right”}. Each (x, y, w, h) denotes the source parame-

ter set. Command “expand” calculates the target parameter set from given the

source parameter set. It enlarges the source image to the direction corresponding

28



(expand, 0, direction)

bottom left bottom

top right

right

(compress, 0, direction)

bottom left

right

(move, 0, direction)

bottom left bottom

left

(x,y,w,h)=(1,1,1,1) (x,y,w,h)=(0,1,2,2)

(x,y,w,h)=(0,2,1,2)

x

x x

y

y y

Figure 3.4. MNIST sample transformation with manual transition corresponding

to the given instruction command (action, digit, direction).

to the “direction.” In the same way, command “compress” makes the source

image smaller. Command “move” keeps the size of the source image and shift it

to the “direction.”

Finally, we got 369 patterns of triplets on each sample and got 3,690,000

triplets in total.

3.2.2 Avatar image editing with human instruction (AIMI)

dataset

We constructed a dataset for IMI task, which consists of triplets: (source image,

target image, instruction). We collected avatar image pairs in AvatarMaker.com1.

1http://avatarmaker.com/
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Figure 3.5. Avatar creation website for collecting avatar images.

Figure 3.5 shows a screenshot of avatar creation graphical user interface in the

website. An avatar has various attributes, i.e., gender, eyes, mouth, background,

and so on. The construction procedure of the dataset is as follows:

• An source image is generated with random attributes.

• One attribute of the source image is changed to generate a target image.

• Both of the source image and the target image are shown to crowd workers

on crowd-sourcing, and they add an instruction that describes the difference

between the source and target image.

Moreover, we automatically normalized the first character into lowercase and

removed period. In practice, Figure 3.6 denotes the actual instruction scripts

shown to crowd-sourcing workers. Some target images are very similar to the

source images; thus, it is hard for the workers to discriminate them in seconds. To
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Figure 3.6. Crowd-sourcing instruction scripts shown to crowd workers.
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Figure 3.7. Annotated instruction examples via crowd-sourcing.

alleviate this problem, we added a function on the target images with the mouse

pointer. The workers can alternatively see the target and the source image with

putting and removing mouse pointer on the second column images, respectively.

To control annotation quality, we also showed several annotation rules to the

workers as follows.

1. The instruction should be one sentence.

2. The instruction should be an imperative form.

3. The instruction should be written by natural language manner. Please

avoid to fill out the instruction by a symbolic sequence, for example, “Eye,

colour, brown.”
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4. The instruction should include the descriptive details of the difference. For

example, Bad: “put a glasses.” Good: “put a glasses with clear lenses

whose frame colour is green.” The minimum character length of instruction

is fifteen.

5. Do not use any proper names, for example, “Make her hair colour like

Emma Watson.”

After the data collection, we got 12,000 examples in total. We found terrible

annotated examples, e.g., written by other languages such as Spanish or Russian,

annotated instruction represents the inverted change from target to source. We

removed or corrected them manually, and finally, we got 4,756 valid examples

of (source image, target image, instruction) triplets as shown in Figure 3.7. We

divided the data into train, validation, and test set in proportions of 90%, 5% and

5%, namely 4,296, 230, and 230 examples. We also collected randomly generated

images without any instructions – total size: 161,065.
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Chapter 4

Image editing with natural

language instruction

This chapter describes our proposed method for the interactive image editing

system with natural language instruction (editing request), which can generate a

target image from a source image and an instruction sentence that describes the

difference between the source and the target image. The system makes it possible

to modify a generated image interactively and make natural language conditioned

image generation more controllable. We construct a neural network that handles

image vectors in latent space to transform the source vector to the target vector

by using the vector of instruction. Additionally, we propose source image masking

(SIM), a method for masking source image to clarify the changing points of the

generated image from the instruction. The experimental results indicate that the

proposed framework successfully generates the target image using a source image

and instruction on editing in artificial MNIST and avatar dataset. Moreover, we

show that SIM makes the training more stable and faster.

4.1. Introduction

Specialized skills are required to create a commercially available image. One way

to obtain a required image at low cost is by finding existing images through an im-

age search. However, it is difficult to obtain what was exactly imagined since the

desired image may not exist on the Web. An automatic image-generation system
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Figure 4.1. Comparison of natural language conditioned image generation frame-

work between the existing cap2image (left) and the proposed image manipulation

with instruction (IMI) (right).

using natural language has a potential to generate what was actually imagined

without requiring any special skill or cost. The solution to this challenging task

should address not only practical benefits but also contributions of bridging nat-

ural language understanding with image processing. Image generation task from

natural language have been investigated as “cap2image” and several deep neural

networks (DNN)-based generative models are successful [42, 51]. Although it is

difficult to define the relationships between languages and images clearly, DNN-

based models make it possible to align these relationships in the latent space.

The network is composed of language-encoder and image-decoder. Long short-

term memory (LSTM) [24] is generally used as a language-encoder, and several

network structures; Variational auto-encoder [30], generative adversarial network

(GAN) [19], and pixelCNN [61] are used as an image-decoder.

To the best of our knowledge, Reed et al. [51] firstly succeeded to construct

a discriminable image generator conditioned by a caption based on a deep con-

volutional generative adversarial network (DCGAN) [50]. We start at this work

from a different viewpoint; we focus on a practical problem in this task. It is

possible that they generate a slightly different image from what the user actu-

ally wanted. Our motivation is to tackle this point by introducing an interactive

editing framework and make a generated image modifiable with natural language.

Figure 4.1 shows the difference between the cap2image framework and the

proposed framework. Compared with the cap2image framework models, the pro-

posed framework model generates a new image from the source image and the

instruction that represents the difference between the source and the target im-
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age. We believe the advantage of the proposed framework is to allow users to

modify the source image that has been generated. Furthermore, users only have

to focus on the difference and represent it as a natural language. It is not only

more comfortable for the user to use but also easier for language-encoder to learn

because the instruction with a few different information will be much shorter

than caption with all information of the desired image. We define a latent space

composed of image feature vectors and set a problem of editing as a transforma-

tion of a vector in latent space. The manipulated image is generated from the

latent vector that is transformed from the latent vector of the original image by

the embedded natural language instruction.

Kiros et al. [31] reported that it is possible to learn a model whose shared latent

space between languages (captions) and images in a DNN has the characteristic of

additivity. Reed et al. [52] reported that it is possible to generate the target image

using image analogy. According to these properties, we realize the image editing

system by bridging the analogy in the latent space of the image and natural

language instruction, as {source image} + “instruction′′ = {target image}. We

confirm that there are many related works to edit image flexibly using user hand-

drawing [7, 67]. However, manipulating images with the natural language will be

useful to get a moderate image easily if we can bridge the natural language and

modification, which contains many drawing operations.

Each source image on the bottom-left side has a different digit object (zero and

one) and different position and size; however, the difference to their target images

are the same, ”expand [digit] to the left bottom.” After the training, a similar

analogy will have similar vector subtractions that are embedded instruction.

4.2. Model architecture

Figure 4.2 represents network architectures of the proposed IMI framework to

generate an image from a source image and a language instruction. From left

to right, each model is used for (a) Artificial MNIST editing, (b) avatar editing,

and (c) avatar editing with source image masking. The framework is composed

of an encoder and a decoder (image generator). In this section, we describe our

proposed methods to construct our editing models based on the existing works
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Figure 4.2. IMI model architectures for (a) Artificial MNIST editing, (b) avatar

editing, and (c) avatar editing with source image masking.

described in 2.2.2 to 2.2.6.

4.2.1 Our modification of conditional DCGAN for seman-

tic image editing with instruction

We propose a conditional DCGAN for semantic image editing with natural lan-

guage instruction based on the conditional DCGAN for caption-to-image gener-

ation [51]. Our image editing task needs to control a generated image not only

based on textual information (instruction) but also given source image. For this

reason, we modify the encoder part. It learns a function φ = f(Xs, I) that infers
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target image feature φ from the unified representation of source image Xs and

instruction I. The encoder part consists of source image encoder Eim, instruction

(editing request) encoder Ei, and a 1-layer fully-connected layer FC. Function

φ = f(Xs, I) is defined:

φim = Eim(Xs), (4.1)

φi = Ei(I), (4.2)

φ = f(Xs, I)

= FC(φim,φi)

= sigmoid(W imφ
im +W iφ

i). (4.3)

We used 4-layer convolutional neural networks [35] for Eim and 1-layer long short-

term memory neural networks [24] for Ei.

For the training, we also modify the procedure of creating the wrong con-

dition φw on the matching aware method. An image editing model needs two

abilities: it can edit a source image according to a given instruction, and it

can preserve the source image if the instruction is meaningless. For this rea-

son, we use multiple types of triplet (φr,φw,X) to calculate Equation (2.31)

to (2.34). Suppose that training examples are composed of a triplet of source

image Xs, target image X t, and instruction I. The patterns of the triplet

(φr,φw,X) have three types: (f(Xs, I), f(Xs, ∅),X t), (f(Xs, ∅), f(X t, ∅),Xs),

and (f(X t, ∅), f(Xs, ∅),X t). I = ∅ denotes φi = 0 in practice and it represents

a meaningless instruction. The first type (φr,φw,X) = (f(Xs, I), f(Xs, ∅),X t)

encourages the model to learn to edit the source image according to the instruc-

tion. It forces the edited image to be far from the source image. The second

type (φr,φw,X) = (f(Xs, ∅), f(X t, ∅)Xs) and the third type (φr,φw,X) =

(f(X t, ∅), f(Xs, ∅),X t) encourage the model to learn to preserve the source im-

age with a meaningless instruction.

The overall objectives to update are the following two parts:

min
θD,θEnc

LD = λXrLDXr
+ λXwLDXw

+ λX̂rLDX̂r
, (4.4)

min
θG,θEnc

LG = λgX̂rLGX̂r
+ λfLfmatch. (4.5)

The parameters θD, θG, and θEnc are the trainable parameters of D, G, and

the encoder part, respectively. In each iteration, we use an altenate update rule
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[54]. The model uses Equation (4.4) if LD > LG, and otherwise it uses Equation

(4.5). The additional objective Lfmatch represents the objective of the feature

matching [54] to stabilize the training of G and D. It is achieved by the sum of

the mean squared error between the latent features extracted from real image X

and generated image X̂, which corresponds to X, on each layer of D. λXr, λXw,

λX̂r, λgX̂fr, and λf are the coefficients of each objective. We use 1.0 for each

coefficient.

Auxiliary classifiers for Artificial MNIST editing

It has been reported that additional classification task by adding classifiers to the

discriminator stabilizes GAN learning if the dataset contains additional labels to

apply classification [49, 54]. Artificial MNIST has labels of digit, digit position

(x, y), digit size (w, h); therefore, we add classifiers for them. With the target la-

bel t = [tdigit, tx, ty, tw, th], the additional objective Llabel(φ
d, t) for the classifiers

are defined as below,

Llabel(φ
d, t) = Ldigit(φ

d, tdigit)

+ Lx(φd, tx) + Ly(φ
d, ty)

+ Lw(φd, tw) + Lh(φd, th), (4.6)

Ldigit(φ
d, tdigit) = SCE(W digitφ

d, tdigit), (4.7)

Lx(φd, tx) = SCE(W xφ
d, tx), (4.8)

Ly(φ
d, ty) = SCE(W yφ

d, ty), (4.9)

Lw(φd, tw) = SCE(W wφ
d, tw), (4.10)

Lh(φd, th) = SCE(W hφ
d, th). (4.11)

SCE(y, t) denotes softmax cross entropy described in Equation (2.7). φd is the

output of the previous layer of the last layer of the discriminator. Rewriting

Equation (4.4) and (4.5), the final objectives in Artificial MNIST editing are

defined as,

min
θD,θEnc

LD = λXrLDXr
+ λXwLDXw

+ λX̂rLDX̂r
+ Llabel, (4.12)

min
θG,θEnc

LG = λgX̂rLGX̂r
+ λfLfmatch + Llabel. (4.13)
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4.2.2 source image masking (SIM)

The image editing model based on DCGAN, as shown in Figure 4.2 (b) sometimes

offers drastic changes to the source image, which are inappropriate to a cooper-

ative process with users. To prevent this problem, we propose an additional

module called source image masking (SIM), which functions as a constraint on

DCGAN for image editing. The modified model with SIM is shown in Figure 4.2

(c). The SIM idea is to explicitly indicate the editing points on the source image

with masking. SIM consists of two parts, mask generator Gm and image encoder

with mask Eimm. We next define the procedure for generating and forwarding a

mask:

mmono = Gm(φim,φi), (4.14)

φimm = Eimm(Xs �mcolor). (4.15)

mcolor is a channel-wise copied mask from mono-channel maskmmono. � indicates

the Hadamard product. φimm is fed into G as additional input. Rewriting (2.29),

we get,

X̂ = G(z,φ,φimm). (4.16)

For the training, the generator part objective described in Equation (4.5) includes

optimization of the parameters of Gm and Eimm as follows,

min
θG,θEnc,θSIM

LG = λgX̂rLGX̂r
+ λfLfmatch. (4.17)

The parameter set θSIM consists of whole parameters of Gm and Eimm. Note

that we also tried adding θSIM into the discriminator part objective described in

Equation (4.4), but the model suffered from training instability.

4.3. Experimental settings with Artificial MNIST

dataset

We prepared 3,690,000 triplets in accordance with the data preparation as we

described in Section 3.2. We divided them into training: 90% and validation:
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10%. For the test, we used another 100 samples on each 0 ∼ 9 class from the

original MNIST, we obtained 1,000 samples for testing. We used Chainer1[60]

for the implementation. We used the following conditions: images are resize to

64x64, latent-space dimension = 128, optimization = Adam [29] (initialized by

α = 2.0× 10−4, β = 0.5), and training-time epochs = 20.

4.4. Results with Artificial MNIST dataset

4.4.1 Generated examples

Figure 4.3 shows examples generated with the IMI model. Source images and

instructions (first and second columns from left) were given to the model. The

generated images, the target (gold) images, and the SSIMs are shown in the third

to fifth columns from left. From these examples, the IMI model generated similar

images to the target images, especially regarding positions and sizes. However,

digit shapes were distorted as SSIM is low.

4.4.2 Qualitative analysis of instruction vectors

Figure 4.4 visualizes the cosine similarities of instruction vectors with the IMI

model’s instruction encoder Ei. Since the norm of each vector is normalized to

1, the difference between the vectors is determined only by the angle between

the vectors, so we used the cosine similarity as a measure of similarity between

vectors. To produce the left figure, first we prepared 240 instructions that were

automatically generated from the template “[action] [digit] to the [direction].”

with all combination of [action] from {“expand”, “compress”, “move”}, [digit]

from {“zero”, “one”,“two”,“three”,“four”,“five”,“six”,“seven”,

“eight”, “nine”}, and [direction] from {“top”, “left”,“right”,“bottom”,“top left”,

“top right”,“bottom left”, “bottom right”}. After that, we sorted them in action-

direction-digit order as (“move”, “top”, “zero”), (“move”, “top”, “one”), ...,

(“move”, “bottom right”, “nine”), (“expand”, “top”, “zero”), ..., (“compress”,“top”,

“zero”), ..., (“compress”, “bottom right”, “nine”)). Then, we extract instruc-

tion vectors from them through the IMI model’s instruction encoder Ei. Simi-

1http://chainer.org/
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source instruction generated target SSIM

remove zero 0.980

put one on the right . 0.948

put four on the bottom left . 0.908

move seven to the bottom . 0.908

move six to the bottom . 0.883

move seven to the bottom right . 0.854

compress seven to the left . 0.826

expand five to the bottom . 0.797

expand six to the bottom . 0.747

move five to the top . 0.747

move seven to the top . 0.680

expand one to the top right . 0.679

expand six to the top . 0.613

expand zero to the bottom . 0.245

Figure 4.3. Generated examples of IMI model using handwritten digit manipula-

tion dataset (Artificial MNIST).

larly, to produce the right figure, we prepared 90 instructions from the template

“put [digit] on the [position],” and 10 instructions from the template “remove

[digit]” to compare the instructions about “put” and “remove.” with all com-

bination of [digit] from {“zero”, “one”,“two”,“three”,“four”,“five”,“six”,“seven”,

“eight”, “nine”}, and [position] from {“top”, “left”,“right”,“bottom”,“top left”,
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Figure 4.4. Cosine similarities between the instruction vectors from the instruc-

tions that contain {“expand”, “compress”, “move”} (left) and {“put”, “remove”}
(right)

“top right”,“bottom left”, “bottom right”, “middle”}. After that, we sorted them

in put-position-digit as (“put”, “top”, “zero”), (“put”, “top”, “one”), ..., (“put”,

“middle”, “nine”) and (“remove”, “zero”), ..., (“remove”, “nine”), respectively.

Then we extract instruction vectors from them through the IMI model’s instruc-

tion encoder Ei. Note that all instructions were the same as the instruction used

in training.

Figure 4.4 shows that the map is clearly separated into a specific size of blocks.

The large block “expand”-“compress” in the left figure indicates that the model

interpreted “expand” and “compress” as an inverted concept because this area

had a negative correlation. Furthermore, in the block of “move”-“move” (the

right figure), the enlarged part of the red square of the left figure, is also clearly

separated by small blocks and the cosine similarities follow the direction similarity

as well. These results indicate that instruction vectors learned the concept of

verb and direction. However, the concept of number is not significant in the

instruction vectors. We guess that it is because we used just one digit operation

in the experiment. We also tried the visualization of “put” and “remove,” but

the clear blocks did not appear as shown in Figure 4.4 (right). We guess that
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Figure 4.5. Enlarged cosine similarities of “move”-“move” block in Figure 4.4

this is because the concept of position or number is learned independently.

Figure 4.5 indicates the enlarged cosine similarities of “move”-“move” block in

Figure 4.4. It seems that it is composed of 8× 8 blocks of the similarities. Each

block consists of vectors extracted from the same [direction] instructions such

as ‘move zero to the top.” Each block’s cosine similarities have similar values;

therefore, [digit] information does not affect the generation results compared with

[action] and [direction].

Moreover, as shown in Figure 4.6, we also visualized the intra-block variances

by explicitly grouping the same [action], [direction], or [digit] instruction vectors

as a block, respectively. In other words, the horizontal axis represents the one

remaining element when two of the elements (action, direction, digit) are fixed,

and the vertical axis represents the variance values of the similarity maps obtained

from different instruction vectors with only this one remaining element. For

example, if we fix action and direction and create a similarity map with the only

digit as different instruction vectors, we can obtain a total of 24 variance values

of 10 × 10 similarity maps for each pair of (action, direction), since there are 3,
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Figure 4.6. Distribution of variance of similarities of each group of instruction

vectors

8, and 10 types of action, direction, and digit, respectively. The smaller variance

element indicates that it less contribute to the instruction vector change. Since

the variance values obtained for the [digit] in Figure 4.6 are small and distributed,

the contribution of [digit] is smaller in the instruction vector change.

We conducted a subjective evaluation of three subjects. Each subject eval-

uated similarities of generated images and target (gold) images with 5 degrees

(5=very similar, 1=very different). The subjective evaluation is composed of 100

example following Figure 4.3 format without SSIM. The rate of the score was

{1: 9.00%, 2: 10.7%, 3: 18.3%, 4: 16.7%, 5: 45.3%}.

4.5. Experimental settings with Avatar Image Ma-

nipulation with Instruction dataset

Avatar Image Manipulation with Instruction (AIMI) dataset has a size of 4,296

samples for training; however, it does not have enough samples to train image

generator. To stabilize the generator training, we used 161,065 images without
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w/o SIM

(baseline)

w/ SIM

(proposed)

source target

phase 1 500 700 1,000 2,000 4,350 5,000 4,000 

“put a black beard that ends before the ears”

instruction

Figure 4.7. Generated results on each phase

instruction. During training, we repeated the training without instructions (w/o

instruction) and with instructions (w/ instruction) phase of 2,200 examples al-

ternatively. We defined one phase as every 2,200 examples processed.

In w/o instruction training phase, we utilize an image as a source and a target

image. We train a model as an auto-encoder to generate the same image to a

given source image. The instruction vector was set by zero vector. The aim of the

w/o instruction training is supporting the image-generator learning to generate

clear target images. Note that the masking layer is not trained in this phase

because there are no differences between the source and target images.

In w/ instruction training phase, we used the full triplets of (source image,

target image, instruction). We found that our editing model with SIM struggled

to learn to generate mask, but the performance was not good enough. It would

be because of the lack of data size of the full triplets. To encourage the model

to learn to generate mask, we used ground truth masks in training. A ground

truth mask is automatically created by comparing a pair of source and the target

image. In each position of pixels, the mask’s pixel value is set by zero if the target

pixel value is different from the source pixel, otherwise set by one. We added an

objective for the mask generation with mean squared error in the training. This

objective is added to Equation (4.17).

We trained the models using Adam [29] (α = 2.0× 10−4, β = 0.5) until 5000

phases. Images are resized to 64 × 64. Hidden size is 128 for φi and φfc; 1024

for φim; 512× 4× 4 for φimm. Batch size is 64. Vocabulary size is 1892.
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Figure 4.8. Model selection using feature matching loss

4.6. Results with Avatar Image Manipulation with

Instruction dataset

Figure 4.7 indicates generated examples on each phase for an example in valida-

tion set. While w/o SIM took over 4,000 phases to generate a similar image to

the target image, w/ SIM generated a more similar image under 1,000 phases.

This indicates that introducing SIM makes the training more stable and faster.

To select models for the evaluation, we looked at the loss curve line of feature

matching in training shown in Figure 4.8. Although the training GANs is not

stable, we found that feature-matching loss is relatively useful to select the better

model. Judging from the generation results on each phase and the whole valida-

tion loss, we selected the model of phase 4,350 for the baseline and phase 700 for

the proposed model, respectively.

We used the test set (230 examples) for the quantitative evaluations. As the

objective evaluation, we compared MSE scores between generated images and

target images by using the baseline and the proposed model. The results were

4.92×10−2 for the w/o SIM (baseline) and 3.31×10−2 for the w/ SIM (proposed).

It indicates that the generated examples by using the proposed model are better
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Figure 4.9. Histogram of SSIM between the generated and target images using

w/o and w/ SIM models.

than that of baseline. We also compared SSIM scores between generated images

and target images by using the w/o SIM model and the w/ SIM model. Figure 4.9

represents the histogram of SSIM between the generated and target images using

w/o and w/ SIM models. Higher SSIM distribution is better. Figure 4.9 shows

w/ SIM model performed over 0.8 on the most of examples and outperform the

SSIM score of w/o SIM model.

As the subjective evaluation, we showed a source image, an instruction, and

generated images by using the baseline and the proposed model to human evalu-

ators. We used crowd sourcing2 for the evaluation. Each crowd worker provided

a preference for randomly-ordered each pair of generated images (A, B) in five-

grade (1: A is much better than B, 2: A is better than B, 3: the results are

comparable, 4: B is better than A, 5: B is much better than the A). We consid-

ered reversed order cases, and prepare 460 examples to be evaluated by human

evaluators in total. Three workers evaluated on each example and each worker

evaluated up to 10 examples. Finally, we obtained 1,380 evaluated results. Fig-

ure 4.10 visualizes the proportion of each grade after restoring reversed-ordered

2Crowdflower: https://www.crowdflower.com/
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Figure 4.10. Subjective evaluation of generated images between w/o and w/ SIM

models. The attached numbers to the labels denote the actual number of vote by

the evaluators. The evaluators saw image pairs (A, B). One is generated from w/o

model, and the other is from w/ SIM model. We asked the evaluators to select

five-grade: (1: A is much better than B, 2: A is better than B, 3: the results

are comparable, 4: B is better than A, 5: B is much better than the A). We

de-anonymized whether images are from w/o or w/ SIM model, and visualized

the number of the votes.

examples. The workers who preferred the w/o SIM model selected “w/o SIM is

much better than w/ SIM” (blue) or “w/o SIM is better than w/ SIM” (orange).

The workers who preferred the w/ SIM model selected or “w/ SIM is better than

w/o SIM” (red) or “w/ SIM is much better than w/o SIM” (violet). The total

proportion of subjects who preferred the generated images of the proposed w/

SIM model (red and violet) is over 60%. It indicates that the w/ SIM model

generated better images than the w/o SIM model.

We compared the generated examples in the test set for qualitative evaluation.

Figure 4.11 shows the generated examples using the baseline and the proposed

model. The texts above each image line show the given instructions. From the left

of each images line, the source image, the target image, generation results of the

baseline method, generation results of the proposed method and the instruction

are listed. The generation results of the baseline method have two images: the

generated image and the visualization of changing points by the pixel-wise squared

error between the source and the generated image. The generation results of the
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source w/o SIMtarget w/ SIM

“put a more pronunciated nose, remove the nose holes”

“put transparent lenses on the face”

“put on a long mustache”

“put a beard on him”

“delete the lips making the mouth totally plane”

Figure 4.11. Generated examples using w/o SIM model and w/ SIM model

proposed method have three images: the generated image, the visualization of

the mask and the visualization of changing points as well.

Both models successfully generated changed images according to the instruc-

tions; however, the baseline model suffers from the co-occurrence of undesired

changes, i.e., the texture or colour of the background, shape of hair, eyes or

mouth. On the other hand, the proposed model successfully kept the details of

the source images, which is not mentioned in instructions. We found that the

proposed model can preserve details of source images; therefore, the model works

better for small changing, i.e., changing nose, mouth, ears, which are difficult for

the baseline model.
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hair_woman (12)
(gtmask ave.: 1.69 × 103)

onhead_man (9)
(gtmask ave.: 7.57 × 102)

clothes_man (8)
(gtmask ave.: 4.26 × 102)

glasses_woman (12) 
(gtmask ave.: 3.64 × 102)

clothes_woman (14)
(gtmask ave.: 3.56 × 102)

glasses_man (11)
(gtmask ave.: 3.55 × 102)

shape_man (6)
(gtmask ave.: 2.59 × 102)

eyeshape_man (4) 
(gtmask ave.: 2.03 × 102)

eyeshape_woman (10)
(gtmask ave.: 1.85 × 102)

shape_woman (16)
(gtmask ave.: 1.80 × 102)

ears_man (9) 
(gtmask ave.: 1.43 × 102)

Figure 4.12. SSIM comparison between w/ and w/o SIM models on the first

11 instruction types. The plots are ordered in ground truth masks (gtmask),

which indicate the number of different pixels between source and target images.

There are three SSIMs: original source–target SSIM (base SSIM); generated–

target SSIM subtracted by the base SSIM (relative SSIM); relative SSIM but

outside of edit region covered with gtmask is ignored (relative SSIM (gtmask)).

4.6.1 Analysis on the instruction types

We conducted a detailed analysis of the generated images with w/o and w/ SIM

models on 22 instruction types, e.g., editing woman hair, man beard. These in-

struction types were automatically annotated when we collected the image pairs.

In the data collection described in Section 3.2.2, the selected attributes corre-

spond to the instruction types. We visualized two SSIM distributions with w/o

and w/ SIM models on each instruction type.

Figure 4.12 and Figure 4.13 visualize SSIM distributions on the first 11 and

the last 11 instruction types in the test set, respectively. The left column names
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ears_woman (8)
(gtmask ave.: 1.39 × 102)

beard_man (13)
(gtmask ave.: 1.18 × 102)

mustache_man (17)
(gtmask ave.: 1.15 × 102)

eyebrows_man (4) 
(gtmask ave.: 86.3)

iris_woman (16) 
(gtmask ave.: 84.6)

eyebrows_woman (6) 
(gtmask ave.: 84.0)

iris_man (8)
(gtmask ave.: 56.0)

mouth_woman (15) 
(gtmask ave.: 47.9)

nose_man (12)
(gtmask ave.: 43.3)

mouth_man (9)
(gtmask ave.: 42.6)

nose_woman (11)
(gtmask ave.: 38.1)

Figure 4.13. SSIM distributions on the last 11 of 22 instruction types. The

settings are same as Figure 4.12 but the instruction types are the last 11 types.

such as “hair woman” represent the instruction types. Each white and grey row

block represents the same type of instruction. The blocks are ordered in large

average of ground truth masks (gtmask), which indicate the number of different

pixels between source and target image pairs. The numbers that are attached

to the tail of the instruction type names indicate the number of samples in the

test set. On each block, there are three figures with two SSIM distributions by

w/ SIM model and w/o SIM model. From left to right, base SSIM represents

the SSIMs between the original pairs of source and target image; relative SSIM

represents the SSIMs between the pairs of generated image and target image that

is subtracted by the base SSIM; relative SSIM (gtmask) represents the relative

SSIM that replaced outside the region of gtmask with the source image. Note, the

two SSIM distributions on each block in base SSIM are same for easy comparison.

Furthermore, gtmask is not available in a real scenario. It is just for analyzing

the performance of image editing.
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Higher relative SSIM (gtmask) represents the improvement of the region to

edit. It ignores the other region although relative SSIM considered the whole

region. Judging from Figure 4.12 and Figure 4.13, each instruction type has

similar relative SSIM (gtmask) between the result with w/ SIM model and w/o

SIM models but the relative SSIMs of w/o SIM model become much worse than

that of w/ SIM model. It supports the result that SIM contributes to mitigating

the unintentional change of the outside of the edit region. Instruction types with

a large region to edit (large gtmask average) such as “hair woman” tends to be

difficult for w/ SIM model, but w/o SIM has a higher possibility to improve the

source images than w/ SIM model.

Judging from the SSIM in the relative SSIM (gtmask), our editing models

successfully improved the SSIM with a space to improve the base SSIM such as

“hair woman” and “glasses woman” but tend to fail to edit the instruction type

with extremely high base SSIM such as “shape man” and “eyeshape man.”

4.6.2 Comparison with the larger image size with the SIM

model

We conducted an additional analysis on w/ SIM model to investigate the effect of

image size to its performance. We compared image size of 128×128 with 64×64.

Note that above experiments were conducted with 64 × 64. For the experiment

with image size 128× 128, we conducted the experiment under the same settings

described in Section 4.5 and selected the model with 1700 phase Figure 4.14 and

Figure 4.15 visualize SSIM distributions image size of 64 (64× 64; blue) and 128

(128×128; orange) on the first 11 and the last 11 instruction types in the test set,

respectively. The settings are almost same as Figure 4.12 and Figure 4.13 but the

comparison is conducted between different image size of 64 × 64 and 128 × 128.

Judging from relative SSIM (gtmask) of them, the twice resolution size did not

affect the performance improvement with edit region. On the other hand, the

model with larger image size worsened relative SSIM.
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hair_woman (12)
(gtmask ave.: 1.69 × 103)

onhead_man (9)
(gtmask ave.: 7.57 × 102)

clothes_man (8)
(gtmask ave.: 4.26 × 102)

glasses_woman (12) 
(gtmask ave.: 3.64 × 102)

clothes_woman (14)
(gtmask ave.: 3.56 × 102)

glasses_man (11)
(gtmask ave.: 3.55 × 102)

shape_man (6)
(gtmask ave.: 2.59 × 102)

eyeshape_man (4) 
(gtmask ave.: 2.03 × 102)

eyeshape_woman (10)
(gtmask ave.: 1.85 × 102)

shape_woman (16)
(gtmask ave.: 1.80 × 102)

ears_man (9) 
(gtmask ave.: 1.43 × 102)

Figure 4.14. SSIM comparison between image size of 64 and 128 on the first

11 instruction types. The plots are ordered in ground truth masks (gtmask),

which indicate the number of different pixels between source and target images.

There are three SSIMs: original source–target SSIM (base SSIM); generated–

target SSIM subtracted by the base SSIM (relative SSIM); relative SSIM but

outside of edit region covered with gtmask is ignored (relative SSIM (gtmask)).

4.7. Discussion

This chapter introduced an image editing framework using natural language in-

struction. We conducted the two image editing tasks: a handwritten digit editing

task with Artificial MNIST dataset and an avatar image editing task with AIMI

dataset.

The results of the handwritten digit editing task indicate that our editing

model can edit a source image according to the instructions for digit deletion,

adding, and movement. The edited images tend to be accurately changed in

discretized spatial size and position. However, a problem exists. The generated
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ears_woman (8)
(gtmask ave.: 1.39 × 102)

beard_man (13)
(gtmask ave.: 1.18 × 102)

mustache_man (17)
(gtmask ave.: 1.15 × 102)

eyebrows_man (4) 
(gtmask ave.: 86.3)

iris_woman (16) 
(gtmask ave.: 84.6)

eyebrows_woman (6) 
(gtmask ave.: 84.0)

iris_man (8)
(gtmask ave.: 56.0)

mouth_woman (15) 
(gtmask ave.: 47.9)

nose_man (12)
(gtmask ave.: 43.3)

mouth_man (9)
(gtmask ave.: 42.6)

nose_woman (11)
(gtmask ave.: 38.1)

Figure 4.15. SSIM comparison between image size of 64 and 128 on the last 11

of 22 instruction types. The settings are same as Figure 4.14 but the instruction

types are the last 11 types.

digit detail tends to be collapsed as a source digit image size is large. Furthermore,

the training requires an auxiliary classifier with a digit, size, and position labels.

It implies supportive spatial information would be essential for the editing, which

requires spatial movement.

On the other hand, the avatar image editing task with AIMI dataset has no

positional movement of parts of images but requires our editing model to han-

dle various instructions collected from human annotators. Although our editing

model without source image masking (w/o SIM) suffered from undesired changes

in its generated image, our editing model with source image masking (w/ SIM)

successfully suppressed this undesired changes. However, editing large part of

images such as hair editing is difficult for w/ SIM model. The SIM works as a

constraint to preserve a source image. Using w/o SIM model has a possibility to

be preferable in this case.
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Our editing models on avatar image editing tend to fail to edit tiny parts

such as eyebrows and mouth. Enlarged image size of 128× 128 does not improve

the performance well. It seems because our editing model generator considers a

whole image region when it generates a new image, and the edit region is still

not prominent compared to the whole region even in the larger image size. A

possible solution is editing a region after cropping [36]; however, it requires pre-

defined and fixed masks to crop an edit region. It does not cost to create edit

region for AIMI dataset because it consists of the parts with a fixed position.

However, more complicated image editing tasks that it is challenging to define

an editing region are future challenging tasks, for example, human hand-drawing

illustrations or art editing.

Furthermore, we would like to discuss other limitations of our w/ and w/o SIM

model toward other editing tasks. The first limitation exists in data collection.

Our editing models require slightly different pairs of the source and target image,

which can be expressed as a simple instruction. Slightly different pair collection

is difficult on some editing tasks. For example, a realistic human face collection

for our image editing task is difficult because any two different people have many

differences on their faces. In this situation, our editing model with source image

masking cannot handle this problem because any instructions will create a mask

that indicates the whole face as an editing region. A promising task for our

editing model is a creating illustration. If we record artists work continuously,

each moment can be a feasible dataset for our editing model.

The second is the limitation of feasible instructions. In real situations, the

desired edit depends on users. For example, in face editing, a request to change

the colour may or may not imply the other hair colour such as eyebrows and

moustache should also be changed. The correct intention is variable on task

settings, for example, use case of editing, user’s cultural background, and social

trend. As the number of users becomes large, it will be hard to handle a minor

intention because a general machine learning model learns major relationships in

the given dataset. Toward a useful tool, our editing models need to consider this

proper use for individual users through user modelling. Automatic adjustment

to an individual user via dialogue is a useful function but a challenging topic for

our future direction.
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Chapter 5

An entropy-based confirmation

for image editing dialogue

This chapter introduces an interactive image editing system with an entropy-

based confirmation strategy. The system works on the interactive image editing

task defined in Section 3.1. This system has two image editing models, DCGAN-

based w/o SIM model and w/ SIM model introduced in Chapter 4, that accepts

natural language instruction (editing request). Asking the user to select a rel-

evant image from the candidates generated from the multiple models enables

the system to handle various editing requests; however, every time confirmation

causes redundant dialogues. To achieve more efficient dialogues, we demonstrate

that our proposed confirmation strategy enables the system to reduce redundant

confirmations in the interactive editing task between user evaluators and the sys-

tem.

5.1. Introduction

Image editing systems that accept natural language requests often face ambigui-

ties caused by natural language. Unlike general image-to-image translation tasks

[26], such editing systems must fill in the gap between ambiguous natural lan-

guage requests and possible generation with additional conditions. For example,

the following natural language request, “make this avatar’s hair short,” lacks a

specific objective image or criterion for creating the image desired by the user.
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It could be “make this avatar’s hair short by her ears” in a less ambiguous case.

However, such lack often occurs in real situations. This is one challenging obsta-

cle that must be solved to generate images with a given text. Asking the user

about the ambiguity is one way to solve the problem. This solution is one of our

motivations to introduce an interactive process in image editing. A trade-off also

exists between the generated image quality and the constraints on the image gen-

eration system. For example, a masking mechanism is an efficient way to improve

the quality of generated images in image-to-image translation tasks [36, 44, 46].

Even in image editing with natural language, such generation systems based on

masking constraints generate more accurate images than a system without them

because it can distinguish those parts mentioned in the user’s requests. However,

such a strong constraint limits significant changes to the image. For example, in

interactive image editing, it is difficult for systems with a strong constraint to

work on such a request as “make the current portrait’s hair longer” because the

requested will significantly change the image. In such cases, using a generation

system without any constraints can create more relevant images to the user’s

intention.

Considering a problematic case where the system cannot decide which gener-

ated image is better as an editing result for users, one possible solution is direct

confirmation with them. However, asking users to choose a single image for every

request is completely unreasonable. Thus, the system is expected to ask them

when it is unsure, which is the best image to present.

Figure 5.1 shows the overview of our system in the interactive image editing

task defined in Section 3.1. We assume that our interactive image editing system

has two different types of image editing models introduced in Chapter 4: a model

with a strong constraint based on the source image masking, ”w/ mask”; and

a model without a constraint, “w/o mask”. We tackle this problem to find a

better dialogue strategy using these two models and introduce an uncertainty

score based on the entropy of the generated masks to decide the best model to a

given instruction. The system confirms with the user when it is tentative about

selecting a better image to match the user’s editing intent using uncertainty

scores. Section 5.2 introduces a general conditional image-to-image generation

with mask generation and Section 5.3 introduces the method of this strategy
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Figure 5.1. Overall interactive image editing flow described in Section 3.1 with

the proposed confirmation strategy (blue box in the right) and DCGAN-based

w/ and w/o mask (SIM) models described in Chapter 4 (green box in the right).

based on the generated mask.

5.2. Conditional image-to-image generation with

a masking module

We assume that system’s image editing model has a mask generator, which works

as a constraint to improve image-to-image generation [36, 44, 46], including our

image editing task. General conditional image-to-image generation model with a

61



masking module generates a mask M and it affects the final output X̂ with the

input pair of a source image Xs and a condition c as follows,

M = fm(Xs, c), (5.1)

X̂ = fg(X
s, c,M ). (5.2)

The input (Xs, c) changes into the mask M through an mask generation function

fm. The final output is generated with the input (Xs, c) and additional mask

condition M . Revisiting Equations from (4.1) to (4.3) and from (4.14) to (4.16),

our image editing model with source image masking generates a mask with Gm

with input with a source image Xs and an instruction I as a condition c.

Each pixel value of the generated mask has a range [0, 1]. The mask can be

seen as element-wise attention; in other words, the mask represents the region to

be changed or preserved. If the editing model cannot decide that a pixel should be

changed or preserved, the mask value will be 0.5. Therefore, we use the entropy

of the mask for the system’s confirmation.

5.3. System’s confirmation of action decisions based

on mask entropy

The blue box in the right figure of Figure 5.1 represents the system’s confirmation

action selection module. Confirmation that shows multiple editing results to users

from multiple models is a safe action; however, the user must pay an additional

cost for responding to the confirmation. When a confirming action must be

selected, basing it on some uncertainty scores of image generation will smooth the

dialogue. We used the entropy scores of the generated image as the uncertainty

scores and calculated the entropy:

entropy = − 1

WH
ΣW

i ΣH
j {mij log(mij) + (1−mij) log(1−mij)} ≤ − log 0.5.

(5.3)

We define mij as the value of the predicted mask at the (i,j)-th position with width

W and height H. The system has a confirmation threshold −α log 0.5 (0 ≤ α ≤ 1).

It selects confirm if entropy ≥ −α log 0.5, otherwise it selects not confirm. In
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the experiment, we tried several α using mmono described in Equation (4.14) for

the entropy calculation, which decides the system’s dialogue strategy in Section

4.2.2.

5.4. Experimental settings

We conducted experimental dialogues to investigate the effectiveness of our pro-

posed dialogue strategy. In this section, we describe the dataset for the image

editing dialogues, the training details of each model, and the user evaluation

settings.

5.4.1 Dataset

For training w/ and w/o mask models and evaluation, we utilized the Avatar

Image Manipulation with an Instruction dataset. The task is portrait image

editing based on instructions, which indicate natural language editing requests.

The data consist of 22 types of editing, e.g., changing a beard, eyebrows, and

or hair. Each sample is composed of a triplet of {source image, target image,

instruction}. We split the dataset into train : validation : test = 4, 296 : 230 :

230 according to existing work. We also used 161,065 examples of independent

images to improve the generator’s image modelling.

5.4.2 Training models

During the training, we alternatively repeated the training of the image generator

and the image editing. In the image generator training phase, we trained the

model as an auto-encoder to generate the same image to the given source image

for stabilizing the generator. We also set the instruction vector to zero in this

training phase. This process enhances the generator’s ability to generate clear

images. In the image editing training phase, we utilized full triplets of {source

image, target image, instruction}. The dataset consists of the editing requests

that represent only one attribute change such as hair change; thus, we can prepare

ground truth of the mask by comparing a pair of source and target images to

improve the SIM’s mask generator Gm training. We used the ground truth mask
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in training, whose pixels were set to zero where the pixels in the same position of

the source and target images are different, or otherwise, they are set to one. We

also provided a mask loss function as a mean squared error between the generated

mask and the ground truth one to improve the SIM model. We trained the models

using Adam [29] (α = 2.0 × 10−4, β = 0.5) until 5000 phases. The images were

resized to 64× 64. The following are the hidden sizes: 128 for φi and φ, 1024 for

φim, and 512 × 4 × 4 for φimm. The batch size is 64, and the vocabulary size is

1892.

5.4.3 User evaluation of image editing dialogue

In a pilot study, we found that the w/ mask model tends to successfully edit in

a single turn a small region, such as changing eye colour or adding a moustache

or glasses. However, the w/ mask model often fails to edit a large region of the

source image, such as changing hairstyle. Therefore, we focused on hair editing

to evaluate the image editing dialogue. We evaluated our proposed confirmation

strategy in two aspects. First, we evaluated the necessity of confirmation by

comparing between the strategy without confirmation using the w/ mask model

and strategy with confirmation using both the w/o and w/ mask models. Second,

we evaluated the effectiveness of the confirmation strategy by comparing the

strategy without confirmation or a random strategy with the others. We used

21 patterns (9 for male portraits and 12 for female portraits) as pairs of source

and goal images and conducted image editing dialogue experiments with human

evaluators. The evaluators were 18 people whose TOEIC scores exceeded 730 and

could use English for daily use. At the task’s beginning, the evaluators looked at

the source and goal images and talked with our interactive image editing system,

which has different dialogue strategies. Each pattern was evaluated by three

evaluators over the following six strategies: the system selected confirm with

thresholds α = 0.0, 0.25, 0.50, 0.75, and1.0, (Section 5.3) and randomly selected

confirm. We compared these different strategies to identify the effectiveness of

our proposed method on the problem of interactive image editing. Note that

α represents proactiveness for confirmation: when α = 0.0, the system selects

confirm every time; and α = 1.0, it selects not confirm every time. In other

words, α = 1.0 corresponds to the case where the system uses the w/ mask model
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every time. Therefore, we can evaluate the necessity of confirmation by comparing

α = 1.0 with the others to evaluate the effectiveness of the confirmation strategy

by comparing α = 1.0 or a random strategy with the others, as described below.

5.4.4 Necessity of confirmation (limitation of a single model)

Confirmation is useful when the system needs to deal with multiple editing results

from multiple models. It is difficult for a single editing model to accept every

editing request because a trade-off exists between editing flexibility and model

constraints. We first investigated how the single w/ mask model works on an

interactive image editing task. We compared models with different confirmation

strategy settings for the improvement of image quality through dialogues (higher

is better).

5.4.5 Effectiveness of confirmation strategy

Second, we investigated the effectiveness of our proposed confirmation strategy.

If our confirmation method works with appropriate timing, it will improve per-

formance (higher image quality with shorter dialogue length).

5.5. Results

Next we describe and discuss our experimental results in the two aspects de-

scribed in Sections 5.4.4 and 5.4.5. To address the question in Sections 5.4.4,

we visualize whole plot of user–system dialogue samples, and we show that the

system strategy with confirmation can improve the SSIM between source and tar-

get image through dialogue although the strategy without confirmation cannot

improve the SSIM. To address the question in Section 5.4.5, We conducted addi-

tional analysis on two metrics SSIMimprovement/#user turn and #user turn

to discuss the difference of strategies because it is hard to discuss the difference

between the confirmation strategies with the average and standard deviation of

the SSIMimprovement of the plots of dialogues.

65



Figure 5.2. Experimental results of image editing dialogue between 18 evaluators

(users) and the system: #user turn denotes total number of user actions (making

editing request and selecting an image); (smaller is better). SSIMimprovement

denotes the relative SSIM based on the first SSIM (higher is better). Each plot

on each figure represents the trail of SSIMimprovement in one dialogue task

between the system and an evaluator. α indicates threshold for system to select

confirmation: (a) α = 0.0, (b) α = 0.25, (c) α = 0.50, (d) α = 0.75, (e) α = 1.0,

and (f) random: system randomly selects confirmation. If α becomes small, the

system tends to select confirmation with lower uncertainty score. Note that every

SSIMimprovement is calculated after user’s action. Therefore, when the system

selects confirmation after the user makes an editing request, SSIMimprovement

keeps identical value. Degradation as dialogues progress is caused by image edit-

ing models.

5.5.1 Necessity of confirmation (limitation of a single model)

Figure 5.2 indicates the relative changes of SSIM from the current image to

the goal image and plots the all dialogues on each setting as the dialogue pro-

gressed. Figure 5.3 visualizes average and standard deviation of the plots in

66



Figure 5.3. Visualization of average and standard deviation on each figure of

Figure 5.2.

Figure 5.2. These figures aim to show the necessity of confirmation. #user turn

denotes the total number of the user actions of give query and select image

(smaller is better). SSIMimprovement denotes relative SSIM, which is sub-

tracted from the first source–goal SSIM. A i-th turn SSIMimprovement is de-

fined as SSIMimprovement = SSIM(Xs
i , X

g)− SSIM(Xs
0 , X

g) (higher is bet-

ter).

SSIMimprovement with higher α (α = 0.75, 1.0) only worsened as the dia-

logue progressed. It is because the system with higher α did not confirm with

the evaluators and only provided the generated image from w/ SIM model.

On the other hand, SSIMimprovement with lower α (α = 0.0, 0.25, 0.50)

indicates that some dialogue examples achieved SSIMimprovement > 0 that

indicates a better SSIM than before the dialogue. This result indicates that the

w/o mask model is necessary to get better SSIM scores to change a broader

region, such as a woman’s hair. Thus, the confirmation is necessary to improve

SSIM through dialogues.

Note that the degradation on each turn was caused by the image editing mod-
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sourcegoal

generated candidates 
User editing request: 
“remove the hair”

User selected the left

SSIM: 0.753

(SSIM: 0.453; SSIM improvement: -0.30)

Figure 5.4. A case with low SSIM improvement.

els, which were trained with single turn editing triplets of {source image, target

image, editing request}. In other words, the models were inadequately generalized

to the degraded source images. The degradation was gradually strengthened as

the dialogue progressed. Sudden degradation of SSIM with α = 0.0 and α = 0.50

was caused by the user preference. Figure 5.4 shows the actual case of = 0.0 with

SSIM improvement of −0.3 at #userturn = 2. The user added an editing re-

quest “remove the hair”, and the system showed two generated candidates from

w/o SIM and w/ SIM model. The user selected w/o SIM model’s left image,

which was partially successful in removing the hair but the other region was also

unintentionally changed. It caused the lower SSIM. Other settings with lower α

or random can also cause this case. On the other hand, higher α does not cause

this case because it does not confirm and only provide the generated image from

w/ SIM model.
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Figure 5.5. Histogram of SSIMimprovement/#user turn at end of dialogues

on each strategy: higher SSIMimprovement/#user turn dialogue created more

similar images to goal and more efficient dialogues.

5.5.2 Effectiveness of confirmation strategy

Even in Figure 5.3, it is hard to discuss the difference between the confirmation

strategies with the average and standard deviation of the SSIMimprovement.

We conducted additional analysis on two metrics SSIMimprovement/#user turn
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Figure 5.6. Distribution of #user turn on each strategy: smaller #user turn

dialogue represents more efficient dialogue.

and #user turn only.

Analysis with SSIMimprovement/#user turn

An effective dialogue strategy satisfies not only the improvement of the image

quality but also the efficiency of image editing dialogue; a shorter dialogue is

better. To evaluate the whole dialogue performance in these two aspects, we

visualized the histogram of SSIMimprovement/#user turn collected from the

end of the dialogues (Figure 5.5). We applied Mann–Whitney U test [41] to

compare (a) α = 0.0, (b) α = 0.25, (c) α = 0.50, and (d) α = 0.75 with

(e) α = 1.0 and (f) random, and found significance of p-value < 0.001 on the

following: (a) α = 0.0 and (e) α = 1.0, (b) α = 0.25 and (e) α = 1.0, (c) α = 0.50

and (e) α = 1.0, and (a) α = 0.0 and (f) random. This result indicates that the

strategies with (a) α = 0.0 and (b) α = 0.25 realized a better SSIM with fewer
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dialogue turns than the strategies with rarely confirming strategies ((d) α = 0.75

and (e) α = 1.0) or random confirmation strategy.

However, (a) α = 0.0 and (b) α = 0.25 were confirmed in most cases. When we

compared all combinations of the two strategies in {(a) α = 0.0 and (b) α = 0.25,

and (b) α = 0.50} , they were comparable.

Analysis with #user turn

We showed the distribution of #user turn for each strategy in Figure 5.6 to

compare their effectiveness. We found a significance of p-value < 0.001 between

(c) α = 0.50 and (a) α = 0.0, indicating that (c) α = 0.50 was a more efficient

dialogue.

Although (c) α = 0.50 was not significant compared with (f) random, we

found some interesting cases where the system used confirm and not confirm

more properly than random. Figure 5.7 shows a dialogue example where the user

discovered a good strategy. First, they tried to change the hair to a ponytail.

The system successfully generated a ponytail image, but unintentionally changed

the eyes to green. The user asked the system to change the eyes back to blue,

and it successfully obeyed without any redundant confirmation on this turn. On

the other hand, with the random confirmation strategy, the system occasionally

confirmed with inappropriate timing. Figure 5.8 indicates an inefficient case. The

system should have used confirm for editing request on i = 2, which indicate

requests for changing to a smaller part. The user cannot fundamentally avoid

such cases with the random confirmation strategy.

5.6. Discussion

This chapter introduced an entropy-based confirmation method using a masking

mechanism for interactive image editing. The mask mechanism is useful to deal

with such complicated conditions as natural language, but such a strong con-

straint limits the acceptable language requests. In an avatar image editing task

with natural language editing requests, changing such vast regions as the hair is

restricted in the w/ mask constraint model. The system’s capability to confirm

an action provides a chance to select a relevant image generated from both the
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Figure 5.7. Dialogue example with α = 0.50 (confirmation threshold −α log 0.5 =

0.35). i indicates turn index defined in Chapter 3. #user turn denotes number

of user actions, which represents total number of making an editing request and

selecting an image. We put the source-goal SSIM next to each source image when

the system decides a generated image of each turn.

w/o and w/ mask models. We demonstrated that our proposed strategy led to

more similar images with fewer dialogue turns during human evaluations. We also
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Figure 5.8. Inefficient dialogue example with random confirmation: i indicates

turn index defined in Chapter 3. #user turn denotes number of user actions,

which represents total number of making editing request and selecting an image.

showed a compelling case where our confirmation method achieved an efficient

dialogue strategy. It first changed a large part and then fine-tuned a small part.

A limitation of our confirmation strategy is that the confirmation threshold is

a fixed parameter. The required sensitivity for the confirmation must be different
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on user context, which includes such as the user purpose and user’s cultural

background. Optimizing the confirmation threshold through dialogue feedback is

useful for image editing. It is a challenging problem in our future work.

Another limitation is that the system is only aware of how good an edited

image by w/ mask model is. The system cannot care about the result of the

edited image by w/o model. If w/ mask model fails to edit the source image

and w/o mask model successfully generates a right image, the user can select

it. On the other hand, if both w/ and w/o mask models fail to edit the source

image, the system forces the user to choose a failure image. The strategy without

confirmation forces users to choose the failure image every time. It causes the

users to give up in shorter dialogue.

Note that this task setting focused on a controlled setting to compare differ-

ent confirmation strategy easily. In real scenarios, the system can select several

choices when both edited images from the two models are not right. For exam-

ple, the system can generate another image and confirm with the users again; the

system also can ask the users to provide supportive information or redoing the

edit with another editing request to generate more accurate images. They are

a promising approach to make our editing model useful in the interactive image

editing in future work. However, accepting many functions to the system makes

it difficult to find the optimal behaviour for the system. One possible way is using

reinforcement learning, although it requires a lot of dialogue data samples. We

believe that our work could be the first step to simulate interactive image editing

toward collecting dialogue dataset.

74



Chapter 6

Conclusion of this thesis

This thesis proposed an interactive image editing system that interacts with users

using natural language. It focused on the editing requests for small and semantic

changes of images that are difficult with image existing retrieval systems. We

tackled two challenging problems due to the various editing requests to realize

the system.

The first problem is that the system has to generate a new image according to

users’ editing request in natural language, including the requests for slight changes

of images. Chapter 4 addressed this problem in our editing system. We proposed

an interactive image editing framework based on a machine learning approach

with neural network-based image generative models. It enabled the system to

generate a new image from scratch according to the given source image and the

user’s editing request. We evaluated our editing model with an artificial dataset,

which is automatically created from a public handwritten dataset, and more

practical avatar face illustration editing, whose instructions are collected from

human annotators. The first experiment with the artificial dataset, we verified our

editing model worked for the limited type of instructions. However, the second

experiment with avatar dataset, we found our editing model (without Source

image masking model; w/o SIM) occurred unintentional changes, which are not

mentioned in editing request. Our additionally proposed Source image masking

model (w/ SIM) outperform the w/o SIM model in both objective evaluation and

subjective evaluation.

The second problem is that the systems have to handle the uncertainty of the
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generated images because a single editing model cannot accept all of the various

editing requests. We proposed a confirmation strategy based on the uncertainty

of generated image calculation with the mask. It enabled the system to confirm

with the user only if the system was not confident to show the generated image

from w/ SIM model. The w/ SIM model accepted most of the editing request

for slight changes but was not good at that for significant change such as hair

change in avatar editing dataset. The system’s capability to confirm action pro-

vided a chance to select a relevant image generated from both the w/o and w/

mask models. We demonstrated that our proposed strategy led to more similar

images with lower the number of dialogue turns during human evaluations. We

also showed an interesting case of whether our confirmation method achieved an

efficient dialogue strategy. It first changed a large part and then fine-tuned a

small part.

6.1. Remaining problems and future directions

In this section, we discuss the limitation of our proposed approaches.

First, our editing model with Artificial MNIST dataset has a problem that

the detail of a source image collapses in a generated image on object movement,

expansion, and compression. One promising solution in these editing requests

is incorporating cropping spatial region and transform it using spatial trans-

former [27], which enables the affine transformation of images. Our image edit-

ing models require a large amount of pair of images and instruction. Replacing

a part of edit operation with an existing operation such as affine transformation

and existing image retrieval system will be helpful to expand feasible domain for

editing.

Second, our editing models tend to fail to edit a small part, such as eyebrows

and mouth. To encourage the model to pay attention to the small part, a cropping

approach that edits regions after cropping is a possible way. It might be suitable

for the editing task that can define the masks to crop; however, complicated tasks

to define masks such as human hand-drawing or sketches editing would be still

challenging topics for our editing models.

Third, our editing models require slightly different pairs of the source image
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and target image, which can be expressed as a simple instruction. Slightly dif-

ferent pair collection is difficult on some editing tasks. For example, a realistic

human face collection for our image editing task is difficult because any two dif-

ferent people have many differences on their faces. In this situation, our editing

model with source image masking cannot handle this problem because any in-

structions will create a mask that indicates the whole face as an editing region.

A promising task for our editing model is a creating illustration. If we record

artists work continuously, each moment can be a feasible dataset for our editing

model.

Fourth, the desired edit can be changed by user contexts. For example, in

face editing, a request to change the colour may or may not imply the other

hair colour such as eyebrows and moustache should also be changed. The correct

intention is variable on task settings, for example, use case of editing, user’s

cultural background, and social trend. As the number of users becomes large,

it will be hard to handle a minor intention because a general machine learning

model learns major relationships in the given dataset. Toward a useful tool, our

editing models need to consider this proper use for individual users through user

modelling. Automatic adjustment to the individual user via dialogue is a useful

function but a challenging topic for our future direction.

Fifth, the generated images are gradually degraded as the dialogue progresses

in Chapter 5. It is because the models are trained with single turn editing dataset.

If the dataset contains multiple turn dialogue data, it will be less problematic.

However, collecting enough dialogue data for training image generator costs high.

We need to investigate to improve the model, for example, data augmentation or

regularization for the editing models.

Sixth, our proposed system’s confirmation action in Chapter 5 is feasible for

the model with a masking mechanism. The system is only aware of the uncer-

tainty of the generated images of w/ mask model; therefore, if the system selects

confirm, the other candidates can also be bad generated images. To solve this

problem, we need to collect dialogue data to enable our system to learn more

adaptive strategies using reinforcement learning.

Seventh, our confirmation strategy is based on fixed confirmation threshold.

The required sensitivity for the confirmation must be different on user context,
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which includes such as the user purpose and user’s cultural background. Opti-

mizing the confirmation threshold through dialogue feedback is useful for image

editing. It is a challenging problem in our future work.

Finally, this thesis only introduced system’s confirmation action by providing

candidate images. However, there is a limitation of candidate images the users

can see at once. To handle extremely ambiguous editing requests such as “make

it stylish,” system needs to clarify users’ intention in natural language. It will

be helpful to provide more relevant candidates quickly, and it will lead to more

effective dialogue. For example, if the system can prepare a large number of

candidate images for the ambiguous request, it takes much time for the user to

find a relevant image. On the other hand, if the system can ask “Does stylish

mean colour shape?,” the system can reduce the candidates according to the users’

answer. It will be useful for users. Considering another system actions such as

asking additional supportive information to users or redoing the edit with another

editing request are also beneficial for a real scenario of interactive image editing

with natural language. However, accepting many functions to the system makes

it difficult to find the optimal behaviour for the system. One possible way is using

reinforcement learning, although it requires a lot of dialogue data sample. We

believe that our work could be the first step to simulate interactive image editing

toward collecting dialogue dataset.
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[35] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[36] Xiaodan Liang, Hao Zhang, Liang Lin, and Eric Xing. Generative semantic

manipulation with mask-contrasting gan. In The European Conference on

Computer Vision, pages 558–573, 2018.

[37] T.-H. Lin, T. Bui, D. S. Kim, and J. Oh. A multimodal dialogue system

for conversational image editing. In Proceedings of The Second Workshop on

Conversational AI at the Thirty-second Conference on Neural Information

Processing Systems (NeurIPS 2018), November 2018.

[38] Ying Liu, Dengsheng Zhang, Guojun Lu, and Wei-Ying Ma. A survey of

content-based image retrieval with high-level semantics. Pattern Recognit.,

40(1):262–282, 2007.

[39] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,

2015, pages 3431–3440. IEEE Computer Society, 2015.

[40] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models. In Proc. icml, volume 30, page 3,

2013.

[41] Henry B Mann and Donald R Whitney. On a test of whether one of two

random variables is stochastically larger than the other. The annals of math-

ematical statistics, pages 50–60, 1947.

[42] Elman Mansimov, Emilio Parisotto, Jimmy Ba, and Ruslan Salakhutdinov.

Generating images from captions with attention. In The International Con-

ference on Learning Representations, 2016.

84



[43] Ramesh Manuvinakurike, Trung Bui, Walter Chang, and Kallirroi Georgila.

Conversational image editing: Incremental intent identification in a new dia-

logue task. In Proceedings of the 19th Annual SIGdial Meeting on Discourse

and Dialogue, pages 284–295, Melbourne, Australia, July 2018. Association

for Computational Linguistics.

[44] Youssef Alami Mejjati, Christian Richardt, James Tompkin, Darren Cosker,

and Kwang In Kim. Unsupervised attention-guided image-to-image trans-

lation. In Advances in Neural Information Processing Systems, pages 3693–

3703, 2018.

[45] Teruhisa Misu and Tatsuya Kawahara. Bayes risk-based dialogue manage-

ment for document retrieval system with speech interface. Speech Commu-

nication, 52(1):61–71, 2010.

[46] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Instagan: Instance-aware image-

to-image translation. In The International Conference on Learning Repre-

sentations (ICLR), 2019.

[47] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted

boltzmann machines. In Johannes Fürnkranz and Thorsten Joachims, ed-

itors, Proceedings of the 27th International Conference on Machine Learn-

ing (ICML-10), June 21-24, 2010, Haifa, Israel, pages 807–814. Omnipress,

2010.

[48] Shawn D. Newsam, Baris Sumengen, and B. S. Manjunath. Category-based

image retrieval. In Proceedings of the 2001 International Conference on Im-

age Processing, ICIP 2001, Thessaloniki, Greece, October 7-10, 2001, pages

596–599. IEEE, 2001.

[49] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional im-

age synthesis with auxiliary classifier gans. In NIPS 2016 Workshop on

Adversarial Training, 2016.

[50] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-

tion learning with deep convolutional generative adversarial networks. 2016.

85



[51] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt

Schiele, and Honglak Lee. Generative adversarial text-to-image synthesis.

In The International Conference on Machine Learning, 2016.

[52] Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual

analogy-making. In Advances in Neural Information Processing Systems

(NIPS), pages 1252–1260, 2015.

[53] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, et al. Imagenet large scale visual recognition challenge. International

journal of computer vision, 115(3):211–252, 2015.

[54] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-

ford, and Xi Chen. Improved techniques for training gans. In Advances in

Neural Information Processing Systems, pages 2226–2234, 2016.
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Appendix

A. Snippet for generating Artifical MNIST

The following snippet (stored in json) shows a part of example of information sets

to generate triplets on a digit class five. Each key, e.g. ”[1, 0, 2, 2]− > [0, 0, 3, 3]”,

represents the source and target image parameter set (x, y, w, h) for rendering.

Instruction (as shown in ”instruction”) is automatically generated by combination

of pre-defined templates and corresponding ”command” set, which consists of

action and direction information of the instructions.

1 {

2 "[1, 0, 2, 2]->[0, 0, 3, 3]": {

3 "ID": 90,

4 "instruction": "expand five to the bottom left .",

5 "command": [

6 "expand",

7 [

8 "bottom",

9 "left"

10 ]

11 ]

12 },

13 "[0, 0, 2, 1]->[1, 0, 1, 1]": {

14 "ID": 207,

15 "instruction": "compress five to the right .",

16 "command": [

17 "compress",

18 [

19 "right"

20 ]

21 ]

22 },

23 "[0, 0, 2, 3]->[1, 0, 2, 3]": {

24 "ID": 282,

25 "instruction": "move five to the right .",

26 "command": [

27 "move",

28 [
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29 "right"

30 ]

31 ]

32 },

33 "[0, 0, 0, 0]->[0, 2, 1, 1]": {

34 "ID": 6,

35 "instruction": "put five on the bottom left .",

36 "command": [

37 "put",

38 [

39 "bottom",

40 "left"

41 ]

42 ]

43 },

44 "[1, 2, 1, 1]->[0, 0, 0, 0]": {

45 "command": [

46 "remove"

47 ],

48 "instruction": "remove five",

49 "ID": 335

50 },

B. Model architectures for the experiment

Table 6.1, Table 6.2, and Table 6.3 show the detailed network architectures for

IMI models. Table 6.1 represents IMI model for Artificial MNIST dataset. Ta-

ble 6.2 shows IMI model for AIMI dataset, and Table 6.3 represents IMI model

with source image masking for AIMI dataset in the experiment. In “Input →
OutputShape,” the vectors with three dimension indicates (channel, height, width).

wt and et denote t-th word one-hot vector and its embed vector of Instruction

Encoder (Ei). φi represent φT
i where the input instruction sequence length is T . z

denotes a noise vector sampled from Normal distribution. In Layer Information,

Linear denotes a fully-connected layer, “CONV” represents a convolution layer

with the number of kernels (N), kernel size (K), stride size (S), padding size (P),

i.e., “CONV-(N64, K4x4, S2, P1)” is composed of the convolution layer with 64

kernels, kernel window of (height, width) = (4, 4), stride size of 2, padding size
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of 1. “TCONV” represents a transposed convolution layer, which is available

as “chainer.links.Deconvolution2D” in Chainer. “BN” denotes a batch normal-

ization layer. We used the following activation functions: sigmoid (Sigmoid),

hyperbolic tangent (Tanh), rectified linear unit (ReLU), leaky rectified linear

unit (Leaky ReLU) of the slope of 0.2.
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Table 6.1. IMI model for Artificial MNIST dataset.

module Input → Output Shape Layer Information

Image Encoder (Eim) (3, 64, 64)→ (64, 32, 32) CONV-(N64, K4x4, S2, P1), LeakyReLU

(64, 16, 16)→ (128, 16, 16) CONV-(N128, K4x4, S2, P1), LeakyReLU, BN

(128, 16, 16)→ (256, 8, 8) CONV-(N256, K4x4, S2, P1), LeakyReLU, BN

(256, 8, 8)→ (512, 4, 4) CONV-(N512, K4x4, S2, P1), LeakyReLU, BN

(512, 4, 4)→ (512 · 4 · 4) Reshape

(512 · 4 · 4)→ φim(1024) Linear

Instruction Encoder (Ei) wt(1892)→ et(128) Linear

et(128), φt−1
i (128)→ φt

i(128) Linear, Tanh

Fully-connected (FC) φim(1024), φi(128)→ φfc(128) Linear

Generator (G) z(128), φfc(128)→ (512 · 4 · 4) Linear, BN, ReLU

(512 · 4 · 4)→ (512, 4, 4) Reshape

(512, 4, 4)→ (256, 8, 8) TCONV-(N256, K4x4, S2, P1), BN, ReLU

(256, 8, 8)→ (128, 16, 16) TCONV-(N128, K4x4, S2, P1), BN, ReLU

(128, 16, 16)→ (64, 32, 32) TCONV-(N64, K4x4, S2, P1), BN, ReLU

(64, 32, 32)→ (3, 64, 64) TCONV-(N3, K4x4, S2, P1), Tanh

Discriminator (D) (3, 64, 64)→ (64, 32, 32) CONV-(N64, K4x4, S2, P1), LeakyReLU

(64, 16, 16)→ (128, 16, 16) CONV-(N128, K4x4, S2, P1), LeakyReLU, BN

(128, 16, 16)→ (256, 8, 8) CONV-(N256, K4x4, S2, P1), LeakyReLU, BN

(256, 8, 8)→ (512, 4, 4) CONV-(N512, K4x4, S2, P1), LeakyReLU, BN

(512, 4, 4)→ (512 · 4 · 4) Reshape

(512 · 4 · 4)→ h(128) Linear, LeakyReLU

h(128), φfc(128)→ (128) Linear, LeakyReLU

h(128)→ (11) Linear

h(128)→ (3) Linear

h(128)→ (3) Linear

h(128)→ (4) Linear

h(128)→ (4) Linear

(128)→ (1) Linear, Sigmoid
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Table 6.2. IMI model for AIMI dataset.

module Input → Output Shape Layer Information

Image Encoder (Eim) (3, 64, 64)→ (64, 32, 32) CONV-(N64, K4x4, S2, P1), LeakyReLU

(64, 16, 16)→ (128, 16, 16) CONV-(N128, K4x4, S2, P1), LeakyReLU, BN

(128, 16, 16)→ (256, 8, 8) CONV-(N256, K4x4, S2, P1), LeakyReLU, BN

(256, 8, 8)→ (512, 4, 4) CONV-(N512, K4x4, S2, P1), LeakyReLU, BN

(512, 4, 4)→ (512 · 4 · 4) Reshape

(512 · 4 · 4)→ φim(1024) Linear

Instruction Encoder (Ei) wt(1892)→ et(128) Linear

et(128), φt−1
i (128)→ φt

i(128) Linear, Tanh

Fully-connected (FC) φim(1024), φi(128)→ φfc(128) Linear, Sigmoid

Generator (G) z(128), φfc(128)→ (512 · 4 · 4) Linear, BN, ReLU

(512 · 4 · 4)→ (512, 4, 4) Reshape

(512, 4, 4)→ (256, 8, 8) TCONV-(N256, K4x4, S2, P1), BN, ReLU

(256, 8, 8)→ (128, 16, 16) TCONV-(N128, K4x4, S2, P1), BN, ReLU

(128, 16, 16)→ (64, 32, 32) TCONV-(N64, K4x4, S2, P1), BN, ReLU

(64, 32, 32)→ (3, 64, 64) TCONV-(N3, K4x4, S2, P1), Tanh

Discriminator (D) (3, 64, 64)→ (64, 32, 32) CONV-(N64, K4x4, S2, P1), LeakyReLU

(64, 16, 16)→ (128, 16, 16) CONV-(N128, K4x4, S2, P1), LeakyReLU, BN

(128, 16, 16)→ (256, 8, 8) CONV-(N256, K4x4, S2, P1), LeakyReLU, BN

(256, 8, 8)→ (512, 4, 4) CONV-(N512, K4x4, S2, P1), LeakyReLU, BN

(512, 4, 4)→ (512 · 4 · 4) Reshape

(512 · 4 · 4)→ h(128) Linear, LeakyReLU

h(128), φfc(128)→ (128) Linear, LeakyReLU

(128)→ (1) Linear, Sigmoid
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Table 6.3. IMI model with Source image masking for AIMI dataset.

module Input → Output Shape Layer Information

Generator (G) z(128), φfc(128)→ (512 · 4 · 4) Linear, BN, ReLU

(512 · 4 · 4)→ h(512, 4, 4) Reshape

h(512, 4, 4), φimm(512, 4, 4)

→ (1024, 4, 4) Concatenate channel

(1024, 4, 4)→ (256, 8, 8) TCONV-(N256, K4x4, S2, P1), BN, ReLU

(256, 8, 8)→ (128, 16, 16) TCONV-(N128, K4x4, S2, P1), BN, ReLU

(128, 16, 16)→ (64, 32, 32) TCONV-(N64, K4x4, S2, P1), BN, ReLU

(64, 32, 32)→ (3, 64, 64) TCONV-(N3, K4x4, S2, P1), Tanh

Discriminator (D) (3, 64, 64)→ (64, 32, 32) CONV-(N64, K4x4, S2, P1), LeakyReLU

(64, 16, 16)→ (128, 16, 16) CONV-(N128, K4x4, S2, P1), LeakyReLU, BN

(128, 16, 16)→ (256, 8, 8) CONV-(N256, K4x4, S2, P1), LeakyReLU, BN

(256, 8, 8)→ (512, 4, 4) CONV-(N512, K4x4, S2, P1), LeakyReLU, BN

(512, 4, 4)→ (512 · 4 · 4) Reshape

(512 · 4 · 4)→ h(128) Linear, LeakyReLU

h(128), φfc(128)→ h(1) Linear, Sigmoid

Mask Generator (Gm) φim(1024), φi(128)→ (512 · 4 · 4) Linear, BN, ReLU

(512 · 4 · 4)→ (512, 4, 4) Reshape

(512, 4, 4)→ (256, 8, 8) TCONV-(N256, K4x4, S2, P1), BN, ReLU

(256, 8, 8)→ (128, 16, 16) TCONV-(N128, K4x4, S2, P1), BN, ReLU

(128, 16, 16)→ (64, 32, 32) TCONV-(N64, K4x4, S2, P1), BN, ReLU

(64, 32, 32)→ (1, 64, 64) TCONV-(N1, K4x4, S2, P1), Sigmoid

Image Encoder (3, 64, 64)→ (64, 32, 32) CONV-(N64, K4x4, S2, P1), LeakyReLU

with mask (Eimm) (64, 16, 16)→ (128, 16, 16) CONV-(N128, K4x4, S2, P1), LeakyReLU, BN

(128, 16, 16)→ (256, 8, 8) CONV-(N256, K4x4, S2, P1), LeakyReLU, BN

(256, 8, 8)→ (512, 4, 4) CONV-(N512, K4x4, S2, P1), LeakyReLU, BN
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