Doctoral Dissertation

Knowledge Sharing in Software Development:
Uncommunicated Update, Communication

Channels, and Human Aspects

Yusuf Sulistyo Nugroho

August 31, 2020

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Yusuf Sulistyo Nugroho

Thesis Committee:
Professor Kenichi Matsumoto
Professor Hajimu lida
Associate Professor Takashi Ishio
Assistant Professor Hideaki Hata

Assistant Professor Raula Gaikovina Kula

(Supervisor)

(Co-supervisor)
(Co-supervisor)
(Co-supervisor)
()

Co-supervisor

Knowledge Sharing in Software Development:
Uncommunicated Update, Communication

Channels, and Human Aspects®

Yusuf Sulistyo Nugroho

Abstract

Knowledge, a fundamental resource that allows people to function intelli-
gently, has become a critical success factor for organizations. To acquire knowl-
edge, knowledge sharing through communication is necessary. However, several
challenges may complicate knowledge sharing in software development, such as
managing coordination between distributed teams, encouraging people to share
embedded knowledge, and handling various social identities of individuals in the
teams. Although some solutions have been offered in prior studies, it is important
to know where and how knowledge is captured and shared to support the process
of knowledge sharing. To achieve the goal, this thesis attempts to (a) empirically
study one case of uncommunicated knowledge which is not shared explicitly, (b)
analyze multiple communication channels to share knowledge over open source
projects, and (c) investigate the human factors of users’ interaction in forums
while knowledge sharing. This thesis reveals how knowledge sharing in software
ecosystems unfolds and that when there are problems with the communication of
information, such as uncommunicated update, this determines the extent of its
implication on the relevant domains. The results finally highlight the need for
better understanding of knowledge sources and the nature of knowledge sharing

at the software ecosystem level, thus leading to a better knowledge sharing.

Keywords:

knowledge sharing, uncommunicated update, communication channels, human

aspects

*Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science
and Technology, August 31, 2020.

List of Publications

1. Nugroho, Y.S., Hata, H. & Matsumoto, K. How different are different diff
algorithms in Git? Use --histogram for Code Changes. Empirical Software
Engineering 25, 790-823, 2020.

2. Tantisuwankul, J., Nugroho, Y. S., Kula, R. G., Hata, H., Rungsawang, A.,
Leelaprute, P., & Matsumoto, K. A topological analysis of communication

channels for knowledge sharing in contemporary GitHub projects. Journal
of Systems and Software, 158, 2019.

ii

Acknowledgements

Firstly, I would like to thank Almighty Allah for giving me opportunity, de-
termination and strength during my study. His continuous grace and mercy was
with me throughout my life and ever more during my PhD life.

Secondly, I would like to express my sincere gratitude to my advisor Profes-
sor Kenichi Matsumoto for the continuous support of my doctorate and related
research, for his patience, motivation, and immense knowledge. His guidance
helped me in all the time of research and writing of this thesis. I could not have
imagined having a better advisor and mentor for my PhD study.

To my thesis review committee: Professor Hajimu Iida, Associate Professor
Takashi Ishio, Assistant Professor Hideaki Hata and Assistant Professor Raula
Gaikovina Kula, thank you for your insightful advices, comments and encourage-
ment, but also for the hard question which incented me to widen my research
from various perspectives. In particular, I am grateful to Assistant Professor
Hideaki Hata for enlightening me the first glance of research. Thank you for the
support, idea, and insights during my PhD life.

My sincere thanks also goes to Associate Professor Hoa Khanh Dam and
the University of Wollongong, Australia, who provided me an opportunity to join
their team as a visiting research student, and who gave an access to the laboratory
and research facilities. Also to Abdulaziz Alhefdhi, thank you for everything he
had done for me during my visiting period in Wollongong, Australia. Without
their precious support it would not be possible to conduct the research.

I thank to all lab members of Software Engineering for the stimulating dis-
cussions and for the time we were working together during research and writing
papers before deadlines. Also special thank my Indonesian friends in NAIST for
their warm and great friendship and for all the fun we have had in the last three
years.

Last but not the least, I would like to thank my family: my parents and
parents in law, my beloved wife Mulyta Erwien Lestari and lovely children
(Keisha, Kimi, Kenzo, and Mecca), and to all brothers and sisters for sup-

porting me spiritually throughout writing this dissertation and my life in general.

iii

Contents

1 Introduction
1.1 Backgroundo

1.2 Scope of Dissertation

O i

1.3 Contributions of Dissertation
1.3.1 Uncommunicated Update: The Differences of Different diff
Algorithms in Git, 5

1.3.2 A Topological Analysis of Communication Channels for

Knowledge Sharing in Contemporary GitHub Projects . . 6

1.3.3 Discussions in Eclipse Community Forums: Participation,
Content, and Sentiment 6
1.4 Organization of Dissertation 7

2 Uncommunicated Update: The Differences of Different diff Al-

gorithms in Git 8
2.1 Backgroundo 8
2.2 Source Code Differencing 11
2.3 Diff Algorithms in Git 12
2.3.1 Myers 13
2.3.2 Histogram 16
2.4 Systematic Mapping: How Previous Studies Used Git Dift? 21
241 Procedure 22
2.4.2 Results of the Mapping 25
243 Summary 28
2.5 Overview of Comparisons and Research Questions 28
2.6 Comparison: Metrics (RQq) 30
2.6.1 Analysis Design 30
2.6.2 Results 31
2.6.3 Summary 34
2.7 Comparison: SZZ Algorithm (RQ2) 34
2.7.1 SZZ Algorithm 34
2.7.2 Analysis Design oL 35

iv

2.7.3 Results 38

274 Summary 40
2.8 Comparison: Patches (RQs) 40
2.8.1 Analysis Design 40
2.82 Results 43
2.8.3 Summary 46
2.9 Discussions 46
2.9.1 Implication and Recommendation 46
2.9.2 Threats to Validity 49
2.10 Section Summary 50

A Topological Analysis of Communication Channels for Knowl-

edge Sharing in Contemporary GitHub Projects 51
3.1 Background oo 51
3.2 Preliminary Study: Communication Channels and
Knowledge Sharing in Software Projects 53
3.2.1 Motivationo 53
3.2.2 Approach 54
3.2.3 Data Collection 56
324 Analysis 58
325 Results o8
3.3 A Topological Analysis of Communication Channels Across GitHub
Ecosystemso 60
3.3.1 Topological Data Analysis 60
3.3.2 Motivationo 62
3.3.3 Approach 62
3.3.4 Data Collection 62
3.3.5 Anmalysis 63
34 Results. 64
3.5 Topology Evaluation 68
3.6 Implicationso 70
3.7 Threats to Validity oo 71
3.8 Related Worko 72
3.8.1 Communication Channels 72

3.8.2 Sharing Architectural Knowledge 74
3.8.3 Topological Data Analysis (TDA) 75
3.9 Section Summary 76

4 Human Aspects in Eclipse Community Forums:

Participation, Discussion, and Interaction 77
4.1 Background Lo 7
4.2 Preliminary Study 80
4.2.1 Motivation Lo 80
4.2.2 Data Collection 81
4.2.3 Online Appendix L. 86
424 Approach 86
4.2.5 Results of Preliminary Study 91

4.3 An Empirical Analysis of Eclipse Community Forums 98
4.3.1 Motivation 99
432 Results 99

4.4 Recommendation 110
4.5 Threats to Validity 0o 112
4.6 Related Worko 112
4.7 Section Summaryo 114
5 Conclusions 116

vi

List of Figures

O N O T == W N

10
11
12
13
14
15
16

17

18

19

Area of thesis 3
A set of changes from an older file into a newer file 14
How Myers identifies the diff 15
How Histogram identifies the diff 18
Diff outputs produced by Myers and Histogram 20
Design of the Survey Procedure 22
Number of collected papers from each source 24

Number of papers per journals and conferences between 2013 and
2017 . . e 26
Number of papers based on parameter searched using git command 26

Number of papers classified with the purpose of using the git

command L L 27
Distribution of the type of data sources used in prior studies . . . 28
Overview of the metrics collection procedure 30
SZ7: Locating bug-introducing changes 35
Overview of the validation process of bug-introducing commits . . 36

The percentage of valid bug-fixing commits that have the same
and different positions of valid bug-related lines 39
Example of diff outputs generated by Myers and Histogram in
extracting the code changes 44
Example of diff lists generated by Myers and Histogram in ex-
tracting the non-code changes 45
Taken from Lum et al. [68], A) 3D object (hand) represented as a
point cloud, B) A filter value is applied to the point cloud and the
object is then colored by the values of the filter function, C) The
dataset is binned by filter value, D) Each bin is clustered and a

network is built. Within each cluster, groups of nodes determine

theshape. 61
Generated topologies for projects created in (a) 2015, (b) 2016 and
(€) 2007 65

vii

20

21

22

23
24

25

26
27
28

Topology for three of the seven ecosystems (a) Bower, (b) PyPI,
and (c) RubyGemso
A replication of RQ; using PCA. PCA does show location of the
ecosystems of different platforms, but since the features are com-
bined, we cannot identify the dominant channels.
Connected data from Gerrit, Bugzilla, Forums, and Projects via
REST API in the Eclipse ecosystem.
Example of a forum thread
Frequency of messages per user status. The maximum number
of posts for each type of users is used to define the threshold of
post-based membership. The threshold for Juniors and Members
are 29 and 106, respectively. Although Seniors have posted more
than 28 thousands messages, we limit up to 600 in the figure.

The topology shows that Eclipse contributors with high activi-
ties is all systems (i.e., (a) Forums, (b) Bugzilla, (c) Gerrit, (d)
Projects) are active in forums. Note that the metrics are taken
from Table 21. The white area represents the contributors that
actively participate in the forums.
Distribution of messages per user
Four discussion types communicated in the forums
Nature of first responses in the interaction between forum mem-
bers. The color scale represents the frequency of the first re-
sponses. The darker the area in the heatmap, the more frequent

the first responses in the threads.

viii

90

List of Tables

N

10
11
12
13

14
15
16
17

18
19

20
21
22

List of Surveyed SE Journals and Conferences 23
Inclusive and Exclusive Criteria 25
Targeted 14 open-source Java projects following the previous study [89] 31
Total number of files that have the same and different values in
metrics (NLA and NLD) and the position of changes. 32
The number of commits that contain a different number and the
position of added and deleted lines of code in a file 33
Overview of the 10 studied Apache projects 37
Summary of valid bug-related lines, valid files, valid bug-introducing
commits, and valid bug-fix commits resulting from Myers and His-
togram L e e 38
Total number of files that have the same and different positions of

valid bug-related lines in all valid bug-fix commits 39

Targeted files that have different locations in identified lines with

two diff algorithms oo 41
Description of the diff assessment 42
Frequency of comparison result in the sample data 43
Distinctions between Tacit and Explicit Knowledge 54
Taken from Nonaka and Takeuchi [79], four dimensions of knowl-

edge transfero 55
Seven Library Package Platform Ecosystems 56
Summary of 13 channels classified with rationale. o7

Statistics of Generated Topologies including the Topology Build-time 63
Evolution of Externalization and Combination between 2015 and

2017 . .. 66
Dominant Extracted Features Topologies across the Ecosystems . 68

Connected data extraction from five data sources within the Eclipse

ecosystem L 83
Outputs of the pre-processing of the Forum Dataset 85
Contributor metrics L 87
Webmaster’s message patterns 94

X

23
24
25
26
27

28

29

Top 10 forum and topic categories in the Eclipse community forums 95

Frequency of link target types in our sample 96
Frequently referenced domains in the Eclipse community forums . 97
Frequency of posted threads based on the latest status of user . . 98

Frequency of developers responding bug-related and non-bug-related
threads 100
Frequency of knowledge type and the number of links in our sample

(gray color represents Q&A threads, white color represents non-

Q&A threads) Lo 104

Polarity of communication among developers 108

1 Introduction

1.1 Background
1.2 Scope of Dissertation
1.3 Contributions of Dissertation

1.4 Organization of Dissertation

1.1 Background

Knowledge can be presented as combination of values, information, and proficient
understanding obtained from experiential [6] or educational activity [109], and the
expertise on theory or practice for assessing and integrating new experiences and
facts [25]. For an organization, knowledge has become a resource and critical
success element that offers competitive values that can be maintained [25, 34, 38,
102]. According to Nonaka and Takeuchi [79], knowledge is categorized into two
types, tacit and explicit. Tacit knowledge embeds in the human mind which is
usually gained through experiences or jobs, but difficult to codify and document.
In contrast, explicit knowledge is easy to identify, articulate, document, and share
to other people.

Knowledge that is considered crucial is documented into other formats, such
as books, technology, practices or other forms of documents to facilitate the
knowledge sharing over time. Knowledge sharing is a process through which
knowledge, either tacit or explicit, is communicated to other individuals [8]. In
an organization, knowledge sharing between individuals or groups is a crucial part
since it is the fundamental means through which team members can contribute
to knowledge application, renewal, and the advantage of the team. Knowledge
sharing between people within and across teams enables organizations to capital-
ize the knowledge-based resources [17, 25] and discuss critical factors of projects
and work coordination between distributed sites [21].

However, maintaining knowledge sharing in organizations is challenging, espe-
cially in software development teams [19, 95]. For example, organizing different
elements of activity across distributed teams [21], motivating developers to share

their embedded knowledge [23], and managing cross-functionality and different

social identity of individuals in a team [20, 35]. The understanding of the sources
where knowledge can be extracted may also challenge the process of knowledge
sharing in software development teams. This is because such specific knowledge
is not always explicitly documented and communicated between people within or
across the teams [92, 94| even though the knowledge already exists. This may
influence the results of some related works.

Prior study attempts to observe missing documentation from software arti-
facts in an agile software development project [94], which might lead the knowl-
edge uncommunicated. However, not much is known about the impact of this un-
documented knowledge on the other relevant works. Other studies also offer some
solutions relates to knowledge sharing, such as, the design of component-based
tools development to reduce the need for communication [60], and the imple-
mentation of social cognitive theory to form the conceptual model on knowledge
sharing behaviour [5]. Despite the valuable findings of previous studies in facili-
tating knowledge sharing, questions about where and how knowledge is captured
and shared within software ecosystems are still emerging.

To better understanding of knowledge sources and the nature of knowledge
sharing, this thesis therefore aims to (i) identify the source of knowledge that may
be uncommunicated, (ii) analyze the implementation of communication channels
within software ecosystems at topological level, and (iii) characterize the social
interaction between individuals while knowledge sharing in online forums. To the
best of my knowledge, an understanding of the uncommunicated knowledge and
its implication on the relevant works, a topological analysis of communication
channels to share knowledge, and an investigation of human aspects in online

discussion forums while knowledge sharing have never been undertaken.

1.2 Scope of Dissertation

This section describes the scope of this dissertation in terms of knowledge sharing
as illustrated in Figure 1.

Knowledge-sharing platforms, such as GitHub,! have changed how developers
share knowledge and seek information on the web. As the world’s largest devel-

opers community to develop software, GitHub hosts millions of repositories, from

'https://github.com

Knowledge sharing

Git repository Communication channels
A A
Artifacts
Source code Social interactions
</> </> </> Knowledge
. Y, . Y,

Figure 1: Area of thesis

private team repositories to open source projects. In a repository, developers
collectively contribute various types of knowledge sources, such as source code.
Source code is one of many artifacts which is produced when doing continuous
builds and stored in a software repository. However, knowledge that might be
sourced from code could be missed to document [94], leading to the knowledge
uncommunicated.

For example, diff algorithm in Git has update. The definition and the pro-
cedure of each version of diff algorithm in producing the lists of the changed
lines of code might have been known by the software engineering community.
However, the knowledge regarding the differences between the diff outputs gen-
erated by the old algorithms and the latest version of diff algorithm and their
implications on the relevant domains have never been studied comprehensively,
documented, and communicated between individuals in the community. Practi-
cally, people tend to neglect the update of diff algorithm and this is possible to
have an impact on the result of relevant works.

In addition to GitHub, developers commonly share their knowledge on social
media, such as Twitter [39, 72], news aggregator sites [3], and project communica-
tion channels such as project fork [13], software license [113, 119], wiki pages [16]
for open source software projects, or other textual electronic media [14]. The

usage of communication channels critically impacts on how knowledge is formed,

shared, and captured [106]. In the environment of software development, dif-
ferent software projects might adopt different channels in communicating and
sharing knowledge. The use of various media and channels to share knowledge
might have different implications for software development [111]. However, how
knowledge is shared between communication channels of contemporary projects
at the ecosystem level is not yet well understood.

As one type of communication channels, Eclipse community forums support
mass communication and social interactions between developers in the Eclipse
community. Social interaction which information is directly communicated [54]
between software developers, is found to have the strongest impact on knowledge
sharing behavior [5]. The occurrence of social interactions in software projects is
typically associated with a component selection that begins with creating issues or
requesting features [81]. However, not much is known about how human aspects
play a role in an online discussion such as Eclipse forums and affect the nature
of knowledge sharing in the ecosystem.

Limited by the discussion topics based on Figure 1, this thesis investigates
comprehensively one case of uncommunicated knowledge and the impact on its
relevant study, analyzing the role of multiple communication channels with knowl-
edge sharing over software projects, and understanding the human factors while

knowledge sharing in the Eclipse community forums.

1.3 Contributions of Dissertation

This dissertation has three main contributions. First, it provides the analyses
of such uncommunicated knowledge and its implication on study results. Sec-
ond, it discusses the implementation of communication channels to support the
knowledge sharing over open source software projects at the topological level, and
third, it investigates the human aspects in the Eclipse forums while knowledge
sharing.

The main results of this dissertation are described as follows:

1.3.1 Uncommunicated Update: The Differences of Different diff Al-
gorithms in Git

To understanding how previous studies used git diff command, a systematic
mapping study was carried out. 52 papers were selected from eight top jour-
nals and three top international conferences published between 2013 and 2017.
The findings from the systematic mapping revealed the three most common pur-
poses for using the git diff command. This encourage this thesis to undertake
comparison analyses between Myers and Histogram algorithms in three appli-
cations: metrics collection, bug-introducing identification using SZZ algorithm,
and patches. The intention of this work is to investigate the level of differences
between the two diff algorithms used in these three applications and their pos-
sibility of affecting the result of studies.

The findings from the metrics comparison provide clear evidence that the use
of various of diff algorithms could differentiate the diff lists. This thesis shows
that different metric values were obtained from 0.8% to 6.2% in the file-level and
1.7% to 8.2% in the commit-level. These differences can have impacts on studies
using diff-related metrics.

The results from the application of SZZ algorithm confirm that different diff
algorithms possibly generate different results, from 6.0% to 13.3% in the total of
the identified bug-fix commits. The Myers and Histogram sometimes produced
a different number and location of the deleted lines (bug-related lines) in several
files. Therefore, the comparison result indicates that several prior studies that
had used the SZZ algorithm to locate bugs have the possibility of producing
inaccurate analyses.

The manual comparison between Myers and Histogram reveals that the dif-
ferences are the number of the changes, the order of the changed lines, and even
the identified added and deleted code. They certainly affect the readability of the
diff outputs. Importantly, the result of this thesis provides evidence that His-
togram frequently produced better diff results compared to Myers in extracting

the differences in source code.

1.3.2 A Topological Analysis of Communication Channels for Knowl-

edge Sharing in Contemporary GitHub Projects

This study discusses the use of topological data analysis to generate the topology
of multiple communication channels and their evolution in three years from 2015
to 2017.

Using the Nonaka and Takeuchi’s SECI model which describes the transforma-
tion of tacit and explicit knowledge into organizational knowledge [79], this thesis
is able to map how knowledge is shared through the communication channels.
From seven library package projects, thirteen channels are classified. Four chan-
nels (i.e. GitHub page, ReadMe file, security audit, and wiki page) are considered
as externalization (tacit to explicit), and nine channels (i.e. changelog, code of
conduct, licence, contributing guideline, fork, issue tracker, security threat model,
number of forks, and number of open issues) are categorized as combination (ex-
plicit to explicit). Then, in a large-scale topological analysis of seven library pack-
age projects, the results of this thesis show that contemporary GitHub Projects
tend to adopt multiple communication channels, especially younger projects that
adopt different channels compared to the older projects. The analysis also reveals
that communication channels change over time, and they are used to capture new
knowledge (i.e., externalization) and update the existing knowledge (i.e. combi-

nation).

1.3.3 Discussions in Eclipse Community Forums: Participation, Con-

tent, and Sentiment

In this study, an investigation of human aspects when sharing knowledge within
the Eclipse community forums with such connective information was conducted.
In a large-scale study, forums contribute to help knowledge sharing by referenc-
ing various development resources. The findings indicate that Eclipse community
forums are essential platform for linking various resources in Eclipse ecosystem.
This is shown by various types of links included in the forum threads. Further-
more, active contributors in the ecosystem are likely to be also active in forums,
making it a source of expert knowledge for other development systems. The
results of this study also show that forum membership-based participation and

social interactions plays a significant role in shaping the knowledge sharing within

the Eclipse community forums. Different statuses of users likely to share differ-
ent types of discussion and different kinds of interaction for both posting and

responding to the threads.

1.4 Organization of Dissertation

The rest of this dissertation is structured as follows. Section 2 presents how such
uncommunicated knowledge can impact the other studies. In this section, an
empirical study of different diff algorithms in Git is conducted. The first part of
this section discusses a systematic mapping study on 11 top journals and inter-
national conference proceedings published between 2013 and 2017 to investigate
the application of git diff command in prior works. In the second part, it
describes the comparison analyses between two popular diff algorithms (Myers
and Histogram) in three major applications based on the findings in the system-
atic mapping survey, that are, metrics collection, SZZ algorithm application to
identify bug-introducing changes, and manual comparison of patches.

Section 3 presents a topological analysis of communication channels to share
knowledge among projects within software ecosystems. Different knowledge forms
of channels from seven library ecosystems are identified. This section also explores
the evolution of different channels and distinguishes the differences between these
seven ecosystems.

Section 4 is divided into two studies. First, it presents the preliminary study
of statistical description. Second, it discusses the investigation of human aspects
in Eclipse forums relates to the participation, discussion and social interactions
between forum users.

Finally, Section 5 concludes this dissertation.

2 Uncommunicated Update: The Differences of
Different diff Algorithms in Git

2.1 Background

2.2 Source Code Differencing

2.3 Diff Algorithms in Git

2.4 Systematic Mapping: How Previous Studies Used Git Diff?
2.5 Overview of Comparisons and Research Questions

2.6 Comparison: Metrics (RQ;)

2.7 Comparison: SZZ Algorithm (RQ2)

2.8 Comparison: Patches (RQ3)

2.9 Discussions

2.10 Section Summary

2.1 Background

The diff utility calculates and displays the differences between two files, and is
typically used to investigate the changes between two versions of the same file.
Since understanding and measuring changes in software artifact is essential in
empirical software engineering research, diff is commonly used in various topics,
such as defect prediction where code churn [76, 99] and process metrics [42, 69, 52
are used, code authorship [88, 70], clone genealogy [59, 31], and empirical studies
of changes [7, 90].

Along with the growth of GitHub, recent studies analyze software changes
from Git repositories by using the git command. Git, a version control system,
offers diff utility for users to select the algorithms of diff. Git offers four
diff algorithms, namely, Myers, Minimal, Patience, and Histogram. Without an
identifying algorithm, Myers is used as the default algorithm.

In textual differencing, all diff algorithms are computationally correct in
generating the diff outputs. However, the diff outputs are sometimes differ-
ent due to different diff algorithms. Different diff algorithms might identify

different change hunks, that is, a list of program statements deleted or added

contiguously, separated by at least one line of unchanged context [90]. We ex-
pect that a set of changing operations done by developers can be represented
by change hunks. However, there can be inappropriate identifications of change
hunks. Although Histogram that was introduced in git 1.7.7% in 2011 might
give better performance to git diff, it is not popular among software engineer
communities. Thus, we focus on the Myers and Histogram algorithms to empir-
ically investigate the impact on software engineering research. The motivation
of this study is try to clarify the impact of adopting different diff algorithms
on empirical studies and investigate which diff algorithm can provide better
diff results that can be expected to recover the changing operations. Further-
more, our study provides a comprehensive procedure of Myers and Histogram in
generating the diffs and shows the differences between their outputs. To the
best of our knowledge, empirical comparisons of different diff algorithms in git
diff command have never been undertaken. In this chapter, we carry out two
sequential analyses: systematic mapping and empirical comparisons.

For the systematic mapping, we collect papers from three high ranking jour-
nals and eight top international conference proceedings published from 2013 to
2017. We then map 52 identified papers in the following four aspects: frequency
of diff algorithms, analyzed software artifact, purpose of mining Git repositories,
and data origins. The results of the systematic mapping revealed that the ad-
vanced diff algorithms had not been considered in the previous studies. In terms
of the focus of the git command, 51 out of 52 papers centralized on mining the
code changes. We also found that the purposes of using the git command were
to get patches (46.2%), followed by metrics collection (25%), and bug-introducing
change identification (SZZ algorithm) (23.1%). Regarding the dataset, most pa-
pers investigated OSS projects (98%), even though the remaining work analyzed
industrial data.

In our empirical analyses, we conduct three comparisons based on the most
popular usages of git diff found in our mapping study: collecting metrics, iden-
tifying bug introduction, and getting patches. We investigate the disagreement

between two diff algorithms: Myers and Histogram, and take a manual mea-

’https://github.com/git/git/blob/77bd3ea9f54f1584147b594abc04c26ca516d987/Do
cumentation/RelNotes/1.7.7.txt#L68-L70

surement of their quality in generating the diff lists. Based on previous related
studies, we investigate the code changes from the files in 14 OSS projects that
employ Continuous Integration for metrics collection and 10 Apache projects for
the bug introduction identification to quantify the differences of the diff out-
puts that resulted from both diff algorithms. We analyze the quality of patches
derived from Myers and Histogram by manually comparing their two diff from
377 changes, a statistically representative sample of the 21,590 changes identi-
fied in the above two comparisons. Our findings show that using various diff
algorithms in the git diff command produced unequal diff lists.

This influences the different number of files that have dissimilar added and
deleted lines of code in each Cl-Java project. The differences of these added and
deleted lines that are distinguished by their different number and position range
from 0.8% to 6.2% and from 1.4% to 7.6%, respectively. The divergent diff
outputs also affected the different number of identified files in bug introduction
identification. The percentage of files that have different deleted lines of code
range from 2.4% to 6.6%. Regarding the result of the patches analysis, we found
that, in-code changes, Histogram is better in 62.6% files, while Myers is better
in 16.9% files. However, both diff algorithms evenly have a good quality in
generating the list of non-code changes.

In sum, the contributions of this work are:
o A systematic survey of studies that use diff;

o An analysis of metrics collected from diff outputs produced by Myers and

Histogram;

o An analysis of Myers and Histogram outputs in identifying potential bug-

introducing changes;

o A manual comparison between Myers and Histogram to investigate their

output quality.

The remaining parts of this chapter are structured as follows. Section 2.2
presents the application of various category of diff algorithms in the literature.
Section 2.3 presents a brief explanation of diff algorithms used in the git com-

mand. We explain the differences between two diff algorithms in generating

10

the list of changes. Section 2.4 describes how we conduct a systematic mapping
study and present the result of the survey. The overview of the three compar-
isons and the research questions are presented in Section 2.5. Sections 2.6, 2.7 and
2.8 report our procedures and discuss their results in performing three compari-
son studies; namely, collecting metrics, identifying bug introduction, and getting
patches respectively. In Section 2.9, we discuss the implication of different diff
algorithms and provide the example, and discuss their threats to validity, and
finally we conclude in Section 2.10.

We have provided the data sets used in this chapter publicly on the Web.?

2.2 Source Code Differencing

Existing differencing techniques use similarities in names and structure to match
code elements at a particular granularity, such as text-based and abstract-syntax-
tree-based (AST).

Tree-based differencing techniques are widely used nowadays (e.g., diff in
Unix), since they are expected to have better understandability than the text-
based. Such AST differencing tools were used in several studies. For example,
Change Distilling (CD) that extracts the code changes by finding both a match
between the nodes of the compared two abstract syntax trees and a minimum
edit script that can transform one tree into the other given the computed match-
ing [33]. In this study, the text-based differencing is used to extract the changes
at the beginning of the process as the input before further processed using the
proposed AST algorithm. In comparison with textual diff, the Change Distiller
is able to assign the type of the changes such as declaration or body part of a
method, rather than just to a line number. Diff/TS [41] and MTDIFF [30] use
moving code to compute the changes. Diff/TS is used to analyze fine-grained
structural change between versions of programs but only capable of processing
Python, Java, C, and C++ projects, while MTDIFF improves the accuracy of
the previous tree-based approaches in detecting moved code. Falleri et al. [32]
introduced an algorithm to compute edit scripts at the abstract syntax tree granu-

larity including move actions. In this study, the authors conducted a performance

Shttps://github.com/yusufsn/DifferentDiffAlgorithms

11

study to measure the running time and memory consumption between their pro-
posed algorithm and the other tools, such as GumTree and RTED algorithm. The
classical text diff was used to present the reference values when comparing the
running time between the involved algorithms. Tree-based differencing approach
was also used by Higo et al. [47] to consider copy-and-paste as a type of editing
action forming tree-based edit script, and Huang et al. [48] to propose CLDIFF
for generating concise linked code differences whose granularity is in between the
existing code differencing and code change summarization methods.

Despite many advantages in tree-based differencing techniques, text-based
diff is widely used for several applications in software engineering research be-
cause of its simplicity and lightweight runtime. Therefore, in this chapter we only
focus on studying the impact of changing diff algorithms, instead of comparing

wider categories of differencing techniques.

2.3 Diff Algorithms in Git

Diff is an automatic comparison program used to find the disagreements between
the older and the newer version of the same file in a storage (including insertions,
deletions, document renaming, document movements etc.). The diff utility ex-
tracts code changes line by line in one file compared to the other file and reports
them in a list. The operation of the diff program has been fundamentally solved
by using the longest common subsequence (LCS) problem initiated by Hunt and
MacIlroy [49]. Since its first run on the Unix operating system in 1970, the diff
command has been widely used in many studies.

The git diff command has numerous options in the application of code
changes extraction,* including extracting changes related to the index and com-
mit, paths on a filesystem, the original contents of objects, or even quantifying
the number of changes for each object relatively from the sources. Researchers
and practitioners are able to use the variation of these available options depend-
ing on their needs in extracting the data, not to mention, the diff algorithms.
The essence of diff algorithms is in contrasting the two sequences and to receive
insight of the transformation from the first into the second by a series of opera-

tions using the ordered deletion and insertion. The subsequence can be flagged as

‘https://git-scm.com/docs/git-diff (accessed in October 2018)

12

a change if a delete and an insert concur on the same scope. The diff algorithm
can be selected with this option --diff-algorithm=<algorithm>.

In Git, there are four diff algorithms, namely Myers, Minimal, Patience,
and Histogram, which are utilized to obtain the differences of the two same files
located in two different commits. The Minimal and the Histogram algorithms
are the improved versions of the Myers and the Patience respectively. Each
algorithm has its own procedures for finding the items presented in the original
document, but absent in the second one and vice versa; as a consequence, different
outputs may be produced. Due to the similarity of the basic idea of Minimal and
Histogram algorithms with their precursors, in this chapter we only contrasted

the two diff algorithms: Myers and Histogram.

2.3.1 Myers

Myers algorithm was developed by Myers [75]. In the git diff command, this
algorithm is used as the default. The operation of this algorithm traces the two
primary identical sequences recursively with the least edited script. Since the
Muyers only notices the sequences which are actually equal in both, the comparison
between the other prior and posterior subsequences is executed repetitively for
the entire remaining sequences.

Figure 2 indicates several code changes from the first into the second version of
the same file (GuiCommonElements. java) taken from Openmicroscopy project.’
As can be seen in the figure, the code between line 673 and 689 in the first version
transformed to the newer version between line 673 and 693. Figure 3 shows how
Muyers algorithm generates the diff output from the code changes in Figure 2.
First, the Myers scans the lines of code sequentially from the first line in both
versions of the same file to find a line pair that match up each other. Once the
exact same lines between the two versions of the file are found by the algorithm,
the lines will be considered as the unmodified lines (e.g. pair of lines 673-675 in
both versions in Figure 3a). The algorithm then do the same scanning to extract
the other pairs of matched lines for the remaining lines of code repetitively, as

depicted in Figure 3b and Figure 3c. In Figure 3¢, we can see all unmodified lines

Shttps://github.com/openmicroscopy/openmicroscopy/commit/844e0fde447d2d069f
b17c480e95acf4d372afcd#diff-07322c93e£4fb3£0dd245932b74b10el

13

Version 1

other code here
673 | */
674 | public static ImageIcon getImageIcon (String path)
675 | {
676 java.net.URL imgURL = GuilImporter.class.getResource (path);
677
678 if (imgURL != null)
679 {
680 return new ImageIcon (imgURL) ;
681 }
682 else
683 {
684 log.error ("Couldn't find icon: " + imgURL);
685 }
686 return null;
687 | }
688
689 | /**
other code here
Version 2
other code here
673 | */
674 | public static ImageIcon getImageIcon (String path)
675 | {
676 if (path == null)
677 {
678 log.error ("Icon path is null");
679 return null;
680 }
681
682 java.net.URL imgURL = GuilImporter.class.getResource (path);
683
684 if (imgURL == null)
685 {
686 log.error ("Couldn't find icon: " + imgURL) ;
687 return null;
688 }
689 else
690 return new ImageIcon (imgURL) ;
691 | }
692
693 | /**
other code here

Figure 2: A set of changes from an older file into a newer file

14

Version 1 Version 2

. other code here other code here ...
673 */
674| public static ImageIcon getImageIcon(String path)

673 */
674| public static ImageIcon getImageIcon(String path)

L
java.net. g .
677 677 {
678 if (imgURL !'= null) 678 log.error("Icon path is null");
679 (679 return null;
680 return new ImageIcon (imgURL); 680 }
681 } 681
682 else 682 java.net.URL imgURL = Gui ter.class. (path) ;
683 { 683
684 log.error("Couldn't find icon: " + imgURL); 684 if (imgURL == null)
685 } 685 {
686 return null; 686 log.error("Couldn't find icon: " + imgURL);
687 } 687 return null;
688 688 }
689 /xx 689 else
. other code here ... 690 return new ImageIcon (imgURL);
691 }
692
693| /x*

. other code here ...

(a) Step 1: pair up the first three matching lines (line 673-675 in both versions)

Version 1 Version 2
other code here other code here ...
673 */ 673 */
public static ImageIcon getImageIcon(String path) 674| public static ImageIcon getImageIcon(String path)

L.

java.net.URL imgURL

)

680 return new ImageIcon (imgURL); 678 log.error("Icon path is null");
681 } 679 return null;
682 else 680 }
683 { 681
684 log.error("Couldn't find icon: " + imgURL); 682 java.net.URL imgURL = Gui ter.class. (path) ;
685 } 683
686 return null; 684 if (imgURL == null)
687 } 685 {
688 686 log.error("Couldn't find icon: " + imgURL);
689| /** 687 return null;
other code here ... 688 }
689 else
690 return new ImageIcon (imgURL);
691 }
692
693| /**

other code here ...

(b) Step 2: pair up the fourth matching lines (line 679 in version 1 and line 677 in version
2)

Version 1 Version 2

other code here other code here ...
673 */ el 673 %/
674| public static ImageIcon getImageIcon(String path) —-» 674 public static ImageIcon getImageIcon(String path)

+ java.net.URL imgURL = Guilmporter.class.getResource (path);

. other code here other code here ...

(c) Step n: final step after pairing up all matching lines

Figure 3: How Myers identifies the diff

15

found by the Myers algorithm: pair of line 673-675 in both versions, pair of line
679 in Version 1 and 677 in Version 2, 681 and 680, 683 and 685, 684 and 686,
686 and 687, and 687 and 688). The unpaired lines in Version 1 are subsequently
considered as the deleted lines, while the unpaired lines in Version 2 are counted
as the added lines. As a result, the Myers algorithm produces the paired and
unpaired lines from the first and second version of the same file in sequence, as
illustrated in Figure ba.

The Minimal algorithm is the extended version of Myers. The operation of
this algorithm in finding the changes resulted from a comparison of two objects
resembling the Myers, but an extra attempt was made to keep the patch size as
minimal as possible.® As a result, the diff lists created using this algorithm are
often identical with the Myers. If we apply the Minimal algorithm to the code
in Figure 2, the diff output is shown in Figure 5a as well.

A major limitation of the Myers algorithm is it frequently catches the blank
lines or parentheses and conforms the lines to match instead of catching the line
that is “unique” (i.e. lines that occur exactly once or the least occurrence in both
versions), such as code of function declaration, or a line of assignment. Conse-
quently, the Myers sometimes produces unclear diff lists that do not describe
the actual code changes. The position between changed code and code that re-
place them is often written distantly in inappropriate lines, or located separately
in a line that does not represent the modification. Additionally, there is occa-
sionally a conflict of identification of the changed code; for example, the code in
lines 4 and 15 in Figure 5a. In fact, these lines of code were derived from the
same unique line that was unmodified. Using the Myers algorithm, this unique
line is detected as a changed code even though it does not show the alteration.

This makes it possible to cause misidentification of a code change.

2.3.2 Histogram

The Histogram algorithm is the enhanced version of Patience, which was built
by Bram Cohen who is renowned as the BitTorrent developer.” It supports low-

occurrence common elements which are applied to improve efficiency. The His-

Shttp://fabiensanglard.net/git_code_review/diff.php (accessed in December 2018)
"https://alfedenzo.livejournal.com/170301.html (accessed in December 2018)

16

togram was initially built in jgit® and was introduced in git 1.7.7.

The Patience marks the important lines within the text by focusing on the
lines that have the smallest number of occurrences, but are essential. This diff
automated procedure is an LCS-based problem as well, but it uses a different
technique. The Patience only notices the longest common subsequence of the
marked lines attained from the lines which emerge uniquely in a specific range
and the lines that are also written precisely similar in both files. This implies that
the lines having a single bracket or a new line are usually disregarded; otherwise,
the Patience retains the distinctive line such as a function definition.

The Histogram strategy works similarly to the Patience by developing a his-
togram of the appearances for every line in the first version of a file. Every
element in the second version is subsequently shown to match with the first se-
quence in an orderly way to find the existences of the elements and to count the
occurrences. If the elements exist and their presences are less than in the first
sequence, they are expected to be a potential LCS. Once the screening is finished
for the second sequence, the lowest occurrence of LCS is marked as the separa-
tor. Two sections resulting from the partition (i.e. section 1 represents the area
before the LCS, while section 2 represents the region after the LCS), are then
executed repetitively using the same process as the beginning of the algorithm.
This means that the Histogram performs similarly to the Patience if a unique
common element exists in both files; otherwise, it selects the element that has
the least occurrences. In comparison with the other two diff algorithms, (i.e.
the Myers and the Patience), the Histogram nevertheless, has been declared much
quicker.?

To easily understanding the Histogram generates the diff output from Fig-
ure 2, we describe the procedure in Figure 4. First, the Histogram scans all
elements in the first version of the file to count the appearances of each line.
Every line in the second version is extracted to match with the element in the
first version sequentially to find the exact same line and count the occurrences. If
the algorithm found the lines in both versions are match and their presences are

unique (i.e. occurs exactly once or have the lowest occurrences in both), they are

8http://eclipse.org/jgit/
Yhttps://marc.info/?1=git&m=133103975225142&w=2 (accessed in December 2018)

17

Version 1 Version 2

. other code here other code here ... }upner
673 */ 673 */ section
6
675 e
676 java.net.URL imgURL = Gui .class. (path) ; 676 if (path == null)
677 677 t
678 if (imgURL !'= null) 678 log.error("Icon path is null");
679 { 679 return null;
680 return new ImageIcon(imgURL); 680 }
681 } 681
682 else 682 java.net.URL imgURL = Gui ter.class. (path) ;
683 { 683 lower
684 log.error("Couldn't find icon: " + imgURL); 684 if (imgURL == null) ("section
685 } 685 {
686 return null; 686 log.error("Couldn't find icon: " + imgURL);
687 } 687 return null;
688 688 }
689 /** 689 else
. other code here ... 690 return new ImageIcon (imgURL);
691 1}
692 J
693 /**

. other code here ...

(a) Step 1: pair up the first and second matching unique lines (line 674 in both versions

and line 673 at the upper section of the partition)

Version 1 Version 2

. other code here other code here ...

673 673

if (path == null)
{

upper

log.error("Icon path is null"); section

return null;

[-> separator

if (imgURL !'= null) if (imgURL == null)
679 { 685 {
680 return new ImageIcon (imgURL); 686 log.error("Couldn't find icon: " + imgURL);
681 } 687 return null;
682 else 688 }
683 { 689 else lower
684 log.error("Couldn't find icon: " + imgURL); 690 return new ImageIcon (imgURL); section
685 } 691 }
686 return null; 692
687 } 693 /**
688 . other code here ...
689 /*x

. other code here ...

(b) Step 2: pair up the third matching unique line at the lower section of the partition
(line 676 in version 1 and line 682 in version 2)

Version 1 Version 2
. other code here other code here ...
673 */ [€-2--> 673 %/
674 public static ImageIcon getImageIcon(String path) 1 674 public static ImageIcon getImageIcon(String path)
£75[.... L 675.
"
¥
678 |+ log.error("Icon path is null");
679 |+ return null;
+
+

ass. (path) ; (path) ;

. other code here ...

. other code here ...

(c) Step n: final step after pairing up all matching unique lines

Figure 4: How Histogram identifies the diff

18

considered as the potential LCS which is then marked as the separator. As shown
in Figure 4a, line 674 in both versions are marked as the first separator. Two
sub-sections are created after this slicing, that is, the area before and after the
separator. Within those sub-sections, the algorithm find more unique pairings;
lines that are not unique when scanning the entire document can be unique when
the algorithm consider a sub-section. The same process is then applied to both
sub-sections. The Histogram compares line 673 in the upper section in both ver-
sions, and lines 675-689 in Version 1 with lines 675-693 in Version 2 in the lower
sections. Due to the least appearances of line 673 only in the upper section in
both versions, thus, this line is expected to be the second separator. In the lower
section, the scanning process is re-executed from the beginning. As illustrated
in Figure 4b, the process yields a new separator (i.e. line 676 in Version 1 and
line 682 in Version 2) and two new sub-sections (i.e. line 675 in Version 1 and
line 675-681 in Version 2 as the upper section, and line 677-689 in Version 1 and
line 683-693 in Version 2 as the lower section). The same process is subsequently
executed repetitively for the two new sub-sections resulting from the partition.
Figure 4c shows the final step after comparing all elements in both versions. All
potential LCS that are marked as the separator are expected to be the unmod-
ified lines, while the other lines are considered as the deleted lines in Version 1
and the added lines in Version 2. As a result, the diff output is generated as
described in Figure 5b.

In contrast with the Myers, the Histogram algorithm provides diff results
that are easier for software archives miners to understand, as the Histogram more
clearly separates the changed code lines. This algorithm splits the changed lines
of code by trying to match up unique lines between two versions of the same
file. Thus, it will reduce the occurrences of conflict (i.e. a line of an unchanged
code identified as a changed code, so that in the diff list, this code is written
in duplicate as both a deleted and inserted code). For example, if we extract
the differences between the two versions of the same file in Figure 2 using the
Histogram in the git diff command, we obtain the output as depicted in Figure
5b. A unique line of code in line 10 of Figure 5b is not detected as a changed code
due to its role as the benchmark to match the line, where this line is identified

as a changed code in case of Myers. This influences the sequences of the other

19

other code here

1 */
2 public static ImagelIcon getImagelcon(String path)
3 {
4 |- java.net.URL imgURL = GuiImporter.class.getResource (path) ;
5 -
6 |- if (imgURL != null)
7|+ if (path == null)
8 {
9 (- return new ImageIcon (imgURL) ;
10 [+ log.error ("Icon path is null");
11 [+ return null;
12 }
13 |- else
14 |+
15 |+ java.net.URL imgURL = Guilmporter.class.getResource (path);
16 |+
17 |+ if (imgURL == null)
18 {
19 log.error ("Couldn't find icon: " + imgURL);
20 |- }
21 return null;
22 }
23 |+ else
24 |+ return new ImageIcon (imgURL) ;
25 |+ }
26
27 /**

other code here

(a) Myers’ diff

other code here
1 */
2 public static ImagelIcon getImageIcon(String path)
3 {
4 |+ if (path == null)
5 [+ {
6 [+ log.error ("Icon path is null");
7|+ return null;
8 |+ }
9 |+
10 java.net.URL imgURL = Guilmporter.class.getResource (path);
11
12 |- if (imgURL != null)
13 |- {
14 |- return new ImageIcon (imgURL) ;
15 |- }
16 |- else
17 |+ if (imgURL == null)
18 {
19 log.error ("Couldn't find icon: " + imgURL) ;
20 |- }
21 return null;
22 }
23 |+ else
24 |+ return new ImageIcon (imgURL) ;
25 |+ }
26
27 Vi

other code here

(b) Histogram’s diff

Figure 5: Diff outputs produced by Myers and Histogram

20

changed code. An additional block of if condition is written between lines 4 and
9 where it should be placed. This block of code is clearly understood as the new
code inserted before the statement of the assignment code (code in line 10 which
is used as one of some unique lines to match). It is also obvious that the code
between lines 12 and 16 were replaced by one line of code in line 17, while the
closing curly brace in line 20 was omitted from the files, and three new lines of
code (line 23, 24 and 25) were added at the end of the code in Figure 5b.

2.4 Systematic Mapping: How Previous Studies Used Git
Diff?

To understand the ways in which the previous studies use diff, we conducted a
systematic mapping of papers that used the git diff command for their studies.
As described by Petersen et al. [83], a systematic mapping study can provide and
visualize a statistical insight of a study domain by classifying and quantifying
the number of publications related to the research interest within the same study
domain. The main activity of the method was searching the relevant literature
from a wide range of publications including journal articles, books, documented
archives and scripts.

We performed a systematic mapping as we intend to: (i) draw an overview
of the research area through quantification in a structured way [61], (ii) confirm
the knowledge in the currently published studies [84]. A systematic mapping is
reliable because the findings are repeatable and consistent across the time [118],
and they are beneficial for better reporting of some empirical findings of the
primary studies [15].

To understand how recent studies used git diff, we prepared the following

research questions for this systematic mapping.
o Which diff algorithm is used?
o What kind of software artifact is analyzed, code or other documents?
o What are purposes of using diff?

o Where does the data source come from, OSS or industry?

21

Advanced Stage

4. Full text
reading

Initial Stage

1. Digital 3. Search string
:] 2. Papers S
I|brar|_es collections deflnmon. and

selection execution

Digital
libraries

Is the paper relevant
to the study?

4-A. Papers
exclusion

Yes
4-B. Papers
classification

5. Statistic
studies

Figure 6: Design of the Survey Procedure

2.4.1 Procedure

Figure 6 illustrates an overview of our systematic mapping procedure, which is
divided into an initial stage and an advanced stage. The first stage has three steps
including a digital libraries selection, papers collection, search string definition
and initial search execution. The second stage begins with repetitive manual
exclusion by narrowing the search terms and the reading of full papers, followed
by paper classification, and statistical analyses.

Step 1: Digital Libraries Selection. The selection of appropriate litera-
ture is essential to guarantee high-quality papers and to grasp the state-of-the-
art issues in the software engineering field [55]. We specifically targeted papers
which were published in high ranking journals and conference proceedings of the
software engineering area. To maximize the probability of finding highly rele-
vant good quality articles, we used three specific digital resources: ACM Digital
Library,!® IEEE Xplore,!'' and SpringerLink.!? Table 1 shows the list of the

Ohttps://dl.acm.org/
Uhttps://ieeexplore.ieee.org/
2https://link.springer.com/

22

Table 1: List of Surveyed SE Journals and Conferences

Category Name of Journal or Conference IF or Rank
Journal IEEE Transactions on Software Engineering (TSE) IF = 3.331
Empirical Software Engineering (EMSE) IF = 2.933

ACM Transactions on Software Engineering and Methodology (TOSEM) IF = 1.946
Conference ACM Conference on Object Oriented Programming Systems Languages Rank = A*

and Applications (OOPSLA)

ACM-SIGPLAN Conference on Programming Language Design and Im- Rank = A*

plementation (PLDI)

International Conference on Software Engineering (ICSE) Rank = A*

Joint Meeting of the European Software Engineering Conference and the Rank = A*

ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE)

Automated Software Engineering (ASE) Rank = A
International Conference on Software Maintenance and Evolution (IC- Rank = A
SME)

International Conference on Mining Software Repositories (MSR) Rank = A
International Symposium on Software Testing and Analysis (ISSTA) Rank = A

publication sources used in our survey including their impact factors (IF)' and
rankings published in 2018 CORE Rankings.'* We gathered published papers
from these three digital sources between the years of 2013 and 2017.

Step 2: Papers Collection. To reduce bias in the context of the study,
we only collected technical papers. Papers which did not meet our criteria (i.e
shorter-than-10-page papers, editorials, panels, poster sessions, and opinions)
were excluded. As depicted in Figure 7, by applying our criteria, we sourced
3,057 papers in total from the three digital sources in a 5-year time span.

Step 3: Search String Definition and Execution. In this step, we
formulated search keywords to filter the targeted papers into more specific works
that use the git diff command. We defined three specific search terms related
to the command, namely git, log and diff. Papers that contained one of three
words with an exact match without affixes or suffixes (e.g. github, blog, logarithm,

logging, different, difficult etc.) were collected. Since we only focus on the study

Bhttps://www.scimagojr.com/
Yhttp://www.core.edu.au/conference-portal/2018-conference-rankings-1 (ac-

cessed in November 2018)

23

SpringerLink

(Digital Sources) ﬁb a m @
(s) : ;
ACM Digital
Lib
-
e L] Cem) Com
o
|IEEE Xplore

Figure 7: Number of collected papers from each source

that used diff command in git repositories, papers that do not exactly mention
at least one of the three keywords are excluded despite they use other terms such
as differencing which might indicates the implementation of the other diff tools.
The command git log was also targeted because this command can produce
diff with specific options. By using these three search terms, all papers extracted
from the databases were then manually scanned in full text. Consequently, only
published works containing these three search strings were included. As a result
of Step 3, we were able to identify 137 papers.

Step 4: Full Text Reading. To ensure the collected previous studies are
relevant to our objectives, we then performed a full text reading of the papers.
This process was undertaken by the first and the second authors to avoid obscurity
and to separate the primary studies more exhaustively based on their contents.
We applied the inclusive and exclusive criteria to the full paper which is described
in Table 2. Papers that fit the inclusive criteria were kept for further processing
while other papers that met the exclusive criteria were excluded from the study.
After this step, we had 52 papers.

24

Table 2: Inclusive and Exclusive Criteria

Group Criteria

Inclusive Paper mentions the git command.
Paper applies the git command to extract the data from Git repositories
for further analyses in support of their works.

Exclusive Paper does not use the git command as part of their studies. For

example, git diff is used only for motivating examples.

2.4.2 Results of the Mapping

Figure 8 indicates the distribution of the number of papers in each journal and
conference in the last 5 years. As can be seen in the heat map, all journals and
conference proceedings published the works related to the git diff command
application in at least one paper in 5 years except for the PLDI and TOSEM. Most
papers that applied the git diff command are published on EMSE especially

in 2017, accounting for 6 papers.

2.4.2.1 Which Diff Algorithm Is Used?

Out of the 52 primary studies,we identified the application of different diff algo-
rithms in the command in extracting the changes. Of particular note is that even
though most instructions applied different options in the use of the git command
to extract the required data, none of the previous selected works considered dif-
ferent diff algorithms. This shows that all of the collected studies used Myers
as the default algorithm.

2.4.2.2 What Kind of Software Artifact Is Analyzed?

To understand the components that were extracted using the git command in
the previous studies, two main focuses emerged as our parameters to classify the
documents; namely, code changes and license changes as depicted in Figure 9. As
can be seen in the figure, code changes were prominently the focus for researchers
in extracting software repositories using the git command over five years. Thus,

in our comparisons we analyze code changes extracted from the data source.

25

TSE A 0 0 1 0 1
TOSEM 4 0 0 0 0 0
PLDI A 0 0 0 0 0
OOPSLA - 0 0 0 0 1
MSR 4 1 0 2 2 2
ISSTA A 0 0 0 0 1
ICSME A 1 1 2 1 2
ICSE 4 2 2 2 2 1
FSE - 2 3 0 0 1

EMSE 4 1 1 1 3 -
ASE A 2 2 0 0 3

2013 2014 2015 2016 2017

Figure 8: Number of papers per journals and conferences between 2013 and 2017

60
51
240
<)
a9
3
o
=20
0 1
code changes license changes

Figure 9: Number of papers based on parameter searched using git command

26

25 24
a
8 20
<
o}
Gy
o 15
c 13 12
2
= 10
=
.
5)
2 1
|
get patches collect identify bug investigate identify
metrics introduction merges authorship
(S27)

Figure 10: Number of papers classified with the purpose of using the git com-

mand

2.4.2.3 What Are Purposes of Using Diff?

By reading the papers manually, we summarized the purposes from the extraction
of software development records and grouped them into five categories, as can be
seen in Figure 10.

From the figure, we see that the most common purposes is to get patches,
amounting to as many as 24 studies, followed by collecting metrics and iden-
tifying bug-introductions, which covered 13 and 12 studies, respectively. A few
studies addressed merges investigation and authorship identification. This finding
motivated us to carry out a further investigation of the impact of different diff
algorithms in the extraction of the added and deleted lines for metrics collection,

bug-introducing change identification, and getting the patches.

2.4.2.4 Where Does the Data Source Come From?

Our intention is to provide a comprehensive understanding of the different out-
comes generated by different diff algorithms; thus, we need to run a set of tests
of the algorithms’ implementations in the git diff command. From the result

of our dataset classification, open source software (OSS) is found to be dominated

27

0SS Industry

Figure 11: Distribution of the type of data sources used in prior studies

as the data source over the industrial type as illustrated in Figure 11. Therefore,

we mine the data from OSS projects to support our comparisons.

2.4.3 Summary

The survey results of the usage of the git diff command confirm that the pre-
vious studies conducted between 2013 and 2017 did not use various diff algo-
rithms to extract the differences between the first and the second versions of the
same file. In mining the diff lists, they applied the standard commands using
a default diff algorithm with some additional options, but without considering
various diff algorithms. We also found that the information most sought after
in prior studies was code changes in open source projects. The code changes were
mostly utilized to thoroughly investigate counting the number of line changes
and to record them in the form of metrics, locating the origin of a bug using a
specific method (i.e. SZZ algorithm), and analyzing the patches. The results of
these types of analyses obviously rely on the diff records produced by an applied
diff algorithm in the git diff commands. Thus, different diff algorithms in
extracting the line of code changes might differentiate the final result of a study

and the conclusion of the description as well.

2.5 Overview of Comparisons and Research Questions

The findings from our systematic mapping revealed the three most common pur-
poses for using the git diff command. This encouraged us to undertake compar-
ison analyses between the Myers and Histogram algorithms in three applications:

metrics, the SZZ algorithm, and patches. Our intention is to investigate the level

28

of differences between the two diff algorithms used in these three applications
and their possibility of affecting the result of studies. To achieve these goals, we

address the following research questions:

RQ:: Can the values of diff-related metrics become different because of different
diff algorithms?
For metrics (Section 2.6), equal and unequal changed lines in the files iden-
tified by the two diff algorithms were calculated based on two factors: the
quantity and the position of the line of code. We then compared the quan-
tity of the files that have the same and different added and deleted lines of
code to understand the significance of the differences of both algorithms in

providing the diff records.

RQs: Are the results of bug-introducing change identification different because of
different diff algorithms?
The result of locating bug-introducing changes using the SZZ algorithms
relies on the diff results. In Section 2.7, we applied the Myers and Histogram
algorithms in the git diff command to know whether the diff lists affect

the result of bug-introducing change identification.

RQgs: Which d<iff algorithm is better in generating a good diff?
Lastly, we compared the quality of the identified patches manually. In Sec-
tion 2.8, we investigate 377 changes, a statistically representative sample of

the 21,590 changes identified in the above two comparisons.

In our three comparisons, to extract the changes, we apply the git command:
git diff -w --ignore-blank-lines --diff-algorithm=<algorithm name>
<parent commit ID> <commit ID> -- <filename>. We use the same options
-w and --ignore-blank-lines to ignore whitespace and the changes whose lines
are all blank. The use of various options is common according to the purposes to
what extent the diff command generates the code changes. However, since our
focus is comparing Myers and Histogram as the diff algorithm that can be used
at the same circumstances, we do not consider to investigate the impact of other

options.

29

Output # files with
added lines different result

deleted lines

Compare

Output
added lines # files with
@ same result

deleted lines

comparing the number of
updated lines and their
location in each file

diff algorithm for each file
implementation in each commit

Figure 12: Overview of the metrics collection procedure

2.6 Comparison: Metrics (RQ;)

RQ:: Can the values of diff-related metrics become different because of different
diff algorithms?

2.6.1 Analysis Design

As illustrated in Figure 12, we investigate the following two basic diff-related

metrics with two diff algorithms: Myers and Histogram.
NLA The number of added lines in a file.

NLD The number of deleted lines in a file.

For our empirical analysis, we collected the Git repositories of 14 projects used
in the previous study [89], which are identified in our systematic mapping as a
study utilizing git for collecting metrics. The targeted 14 projects are OSS that
employ Continuous Integration (CI) and are written in Java. The descriptions
of the projects and the number of commits in the master branches are shown in
Table 3.

We investigated all modified files in all commits in the master branches. To ex-
tract the NLA and NLD from the file, we implement the git command: git diff
-w ——ignore-blank-lines --diff-algorithm=<algorithm> <parent commit
ID> <commit ID> -- <filename>. We considered the results the same if the val-
ues of both NLA and NLD were the same with the two algorithms; otherwise,

30

Table 3: Targeted 14 open-source Java projects following the previous study [89]

Project Name Description #Commits

Apache Storm Distributed realtime computation system 9,317

Butterknife View binding library for Android 836

Crate Distributed SQL database 8,646

Hystrix Interactions controller library between distributed sys- 2,106
tems

JabRef Reference manager application that uses BibTex 11,940

jcabi-github Object oriented wrapper of GitHub API 2,521

Openmicroscopy Application to store biological microscopy light data in a 46,543
standard format

Presto Distributed SQL query engine for big data 13,561

RxAndroid RxJava bindings for Android 461

SpongeAPI A minecraft plugin API 2,479

Spring Boot A framework to create Java applications 17,087

Square OkHttp An HTTP+HTTP/2 client for Android and Java appli- 3,171
cations

Square Retrofit An open source library to make HTTP communication 1,576
simpler

WordPress-Android WordPress for Android OS 30,295

the results were considered different. However, several software engineering tasks
that rely on such metrics do not consider the position of the added and deleted
lines, where different position of the changed lines can be occurred by chance
despite the same metrics value. We conjecture that different number and posi-
tion of changed lines can have different impact on empirical studies. Thus, we
investigated the disagreement of the identified change locations separately. If the
positions of each changed line of code were the same, we considered the results
the same; otherwise, the results were considered different. File-level and commit-
level results are discussed to see how the different results can appear in a different
granularity.

2.6.2 Results

Table 4 summarizes the result from the comparison between two diff algorithms
in 14 projects. From the total number of modified files identified by both al-

31

Table 4: Total number of files that have the same and different values in metrics
(NLA and NLD) and the position of changes.

)) Metrics (NLA and NLD) Locations of Changes

Project #Files

#Same % #Different % #Same % #Different %
Apache Storm 22,011 21,278 96.7% 733 33% 20979 95.3% 1,032 4.7%
Butterknife 1,873 1,804 96.3% 69 3.7% 1,774 94.7% 99 5.3%
Crate 44,463 43,522 97.9% 941 2.1% 42,723 96.1% 1,740 3.9%
Hystrix 3,310 3,192 96.4% 118 3.6% 3,097 93.6% 213 6.4%
JabRef 55,988 54,375 97.1% 1,613 2.9% 53,609 95.7% 2,379 4.3%
jeabi-github 6,218 6,170 99.2% 48 0.8% 6,131 98.6% 87 1.4%
Openmicroscopy 118,349 115,126 97.3% 3,223 2.7% 112,548 95.1% 5,801 4.9%
Presto 73572 72471 985% 1,101 1.5% 71455 97.1% 2117 2.9%
RxAndroid 627 613 97.8% 14 2.2% 603 96.2% 24 3.8%
SpongeAPI 10,757 10,584 98.4% 173 1.6% 10,395 96.6% 362 3.4%
Spring Boot 62,137 60805 97.9% 1332 21% 60214 96.9% 1923 3.1%
Square OkHttp 7345 7206 98.1% 139 19% 7,108 96.8% 237 3.2%
Square Retrofit 3,473 3,394 97.7% 79 2.3% 3,351 96.5% 122 3.5%

WordPress Android 58,188 54,555 93.8% 3,633 6.2% 53,789 92.4% 4,399 7.6%

gorithms, we counted the quantity of files in each commit that have same or
different number values of NLA and NLD metrics. Similarity, the number of
same and different results in changed locations are shown in the table.

We see that the percentages of different metric values are between 0.8% and
6.2%. Considering the different results in locations of changes, ranging from 1.4%
to 7.6%, we found that quite a few portions of the metric values are same even
though the identified locations are different.

To further explore of the disagreements between Myers and Histogram, we
calculated the number of commits influenced by the different number of code
changes and the locations in the diff output of files. In each project, we counted
the sum of files that have the same and different quantity and the position of lines
inserted and removed from each commit across the project. A single commit may
contain more than one modified file. If a commit recorded at least one file having
unequal changed lines of code either in their number or their location, we classified

this commit as ‘different’. On the other hand, if all files in a commit had identical

32

Table 5: The number of commits that contain a different number and the position
of added and deleted lines of code in a file

Metrics (NLA and NLD) Locations of Changes

Project #Commits

#Different % #Different %
Apache Storm 9,317 395 4.2% 587 6.3%
Butterknife 836 34 4.1% 48 5.7%
Crate 8,646 707 8.2% 1,202 13.9%
Hystrix 2,106 87 4.1% 160 7.6%
JabRef 11,940 831 7.4% 1317 11.0%
jcabi-github 2,521 42 1.7% 0 2.8%
Openmicroscopy 46,543 2,340 5.0% 3,674 7.9%
Presto 13,561 816 6.0% 1,423 10.5%
RxAndroid 461 11 2.4% 18 3.9%
SpongeAPI 2,479 128 5.2% 235 9.5%
Spring Boot 17,087 954 5.6% 1,447 8.5%
Square OkHttp 3,171 106 3.3% 181 5.7%
Square Retrofit 1,576 61 3.9% 90 5.7%
WordPress Android 30,295 2,108 7.0% 3,050 10.1%

changed lines, we categorized the commit in the ‘same’ class. In this process,
we only notify the files that have an unequal number and location of the lines of
code.

Our results show that several changed files impacted by the changed lines
have similar commits. We grouped the same commits from these several files
that contain different changed lines of code into a single commit. We then sum-
marized the percentage of commits that have a different number and position of
the changed lines of code resulting from the usage of the Myers and Histogram
algorithms in the git diff command as described in Table 5.

In general, our comparisons revealed that the data extraction using two diff
algorithms in the command produced identical diff lists for most files in all com-
mits. However, even though the output has been dominated by the same results
for each file in a commit, the diff output from the Myers and Histogram recorded

several files that have different added and deleted lines. These disagreements im-

33

pacted the dissimilar number of commits that have files containing changed lines
of code. The level of differences in the number of commits influenced by the
amount of lines of code are adequately high, ranging from 1.7% to 8.2%, while
the unequal location of lines affects the level of differences in the quantity of
commits from 2.8% to 13.9%.

2.6.3 Summary

The finding from the metrics comparison provides clear evidence that the use
of multiforms of diff algorithms might differentiate the diff lists. Since the
metrics are insensitive to differences in change locations, the same values can be
obtained even if identified change locations are different. However, we see that
different metric values were obtained from 0.8% to 6.2% in the file-level and 1.7%
to 8.2% in the commit-level. These differences can have impacts on studies using

diff-related metrics.

2.7 Comparison: SZZ Algorithm (RQ,)

RQs: Are the results of bug-introducing change identification different because of
different diff algorithms?

2.7.1 SZZ Algorithm

The SZZ algorithm proposed by Sliwerski et al. [101] is an approach to identify
bug-introducing changes. The SZZ uses a bug-tracking system (e.g. Bugzilla) as
the reference to link archived versions of a software (e.g. CVS). Figure 13 depicts
the basic idea of the SZZ algorithm.

The SZZ algorithm first identifies bug-fixing commits by searching bug report
identity numbers (bug ID) in log messages, which have been written by developers
when they fix bugs. The commit ID of this bug-fixing commit is subsequently used
to track the previous commit (parent commit). The code changes are extracted
by applying diff to find the differences between the older version of a file in the
parent-commit and the newer version of the same file in the bug-fix commit. The
identified deleted lines are considered to be candidates of bug-related lines. To

identify bug-introducing commits, cvs annotate command is used to investigate

34

diff

Annotate /
>

\ N
) -))
] \ commit (n-1) commit n
' Bug #4644 ' '.
was reported . Commit message:
Bug #4644 Parent commit fixed bug #4644

Figure 13: SZZ: Locating bug-introducing changes

when lines are added. Among the candidates of bug-related lines, lines that have
been created before the bug reporting time are considered to be walidated bug-
related lines. The commits that introduced those validated bug-related lines are

identified as bug-introducing commits.

2.7.2 Analysis Design

Figure 14 describes the validation process of our analysis. For our empirical anal-
ysis, we studied 10 open source Apache projects used in the previous study [24],
which is identified in our systematic mapping as a study utilizing Git for iden-
tifying bug introduction using the SZZ algorithm. The descriptions of projects
and the number of commits in the master branches are shown in Table 6. We
analyzed the impact of using different diff algorithms on the original SZZ al-
gorithm. We studied the disagreement between the Myers and Histogram in the
results of the SZZ algorithm based on diff.

First, bug report IDs in the commit messages are searched with specific key-
words (i.e. “bug”, “fix”, “defect”, and “patch” [101]), then the identified commits
are marked as candidates of bug-fixing commits. In each candidate bug-fixing
commit, we focus on the modified files. The two diff algorithms are used to
identify deleted lines using the command: git diff -w --ignore-blank-lines
--diff-algorithm=<algorithm> <parent commit ID> <bug-fix candidate
commit ID> -- <filename>. By fetching files in the parent commit ID, we sub-

sequently applied the git blame command (similar to cvs annotate) to locate

35

!
1
N Bug-fix
1
1

1
1
- commit id .
1
w 151 List of bug id {11 2 :
: s [Diffing !
! 1
! 1
! 1
, Parent | | 4y :
! commit id Filename 1
: and bug- :
1 related lines 1
1
: Annotate 1
! 1
o 5y o

. I | Match up bug

1 L " _

Affegted ' Original code : related lines
version ! -
(JIRA ITS) '\ 8ZZ Algorithm)

LU U U

Date comparison
X = original code date of added
Y = affected version date of release

Incorrect bug-
related lines

Valid bug-related 9
lines

Validate files,
bug-intro commit,
bug-fix commit

Y

Figure 14: Overview of the validation process of bug-introducing commits

the origin of the deleted lines. Those deleted lines are considered to be candidates
of bug-related lines.

Similar to the procedure of da Costa et al. [24], the next step is to find the
affected software versions of a bug. We extract bug reports and their affected
versions from the JIRA issue tracking system.'® If a single bug ID affects more
than one version, the earliest version is chosen since the SZZ algorithm targets the
initial appearance of a bug. From the collection of affected-versions, we compare
the dates of the introduction of the candidates of bug-related lines with the release

dates of the versions. If the release dates of the affected versions are later than

https://www.atlassian.com/software/jira (accessed in April 2018)

36

Table 6: Overview of the 10 studied Apache projects

Project Name Description # Commits

ActiveMQ Message broker and Java Message Service client 9,962

Camel A framework to create routing and mediation rules 32,124
in various domain specific languages

Derby Relational database implemented in Java 8,184

Geronimo Open source application server compatible with 13,137
Java EE

Hadoop Common Collection of common utilities and libraries that 10,509
support other Hadoop modules

HBase A distributed big data store for the Hadoop 15,091
database

Mahout A library to generate the implementation of dis- 3,959
tributed or scalable machine learning algorithms

OpenJPA The implementation of the Java Persistence API 4,864

Pig High-level mechanism for the parallel program- 3,154
ming of MapReduce on Hadoop

Tuscany An open source to develop applications based on 16,253

SCA standard

the dates of the introduction of the candidates of bug-related lines, we classified

them as wvalid bug-related lines; otherwise, we classified them as invalid.

With these sets of valid bug-related lines, we validate bug-introducing com-

mits, bug-related files and bug-fixing commits.

performed in the opposite direction with the above procedure.

The validation processes are
A valid bug-

introducing commit is a commit that initially adds valid bug-related lines. Files

containing bug-related lines are considered to be valid bug-related files. From

the candidates of bug-fixing commits, if there is at least one valid associated bug-

introducing commit, we consider the candidate bug-fixing commit to be valid,

otherwise invalid.

37

Table 7: Summary of valid bug-related lines, valid files, valid bug-introducing

commits, and valid bug-fix commits resulting from Myers and Histogram

. #valid bug- ##valid files #valid bug- #valid bug-
Project

related lines intro commits fix commits
M H M H M H M H
ActiveMQ 10,671 10,846 1,566 1,565 1,015 1,016 614 613
Camel 12,525 12,626 2,377 2,374 1,514 1,516 716 712
Derby 130,861 131,031 4,372 4,373 1,178 1,180 1,038 1,039
Geronimo 29,543 29,743 2,448 2,448 1,282 1,277 462 462
Hadoop Common 15,053 15,285 805 805 546 550 318 318
HBase 37,558 37,291 2,083 2,079 1,480 1,481 669 668
Mahout 1,542 1,548 182 182 145 144 44 44
OpenJPA 5,160 5,204 794 794 370 370 365 366
Pig 1,789 1,787 205 206 187 187 80 80
Tuscany 750 781 46 46 34 36 16 16

M = Myers

H = Histogram

2.7.3 Results

Table 7 presents the outputs of the Myers and Histogram algorithms in the num-
ber of valid bug-related lines, files, bug-introducing commits, and bug-fix com-
mits. Two algorithms produced a different number of valid bug-related lines in
all 10 projects, which then led to the different number of files, bug-introducing
commits, and bug-fix commits.

Similar to the analysis of metrics in Section 2.6, differences in the quantities
of changes are relatively small or the same for some projects, because of the
insensitivity of change locations.

Since investigating the locations of bug introduction is also important, we
perform a comparison of files that have the same and different locations of bug-
related lines. Table 8 shows this result. It can be seen that the total number of
files that have a different location of the changed code is high in each project,
ranging from 2.4% to 6.6%. This means that some files can contain suspicious
bug-related lines, only because of different algorithms.

Bringing these data into further analysis, we then summarized the number

of valid bug-fixing commits. As shown in Figure 15, all studied projects have a

38

Table 8: Total number of files that have the same and different positions of valid

bug-related lines in all valid bug-fix commits

Project #Same #Different % Total
ActiveMQ 1,464 103 6.6% 1,567
Camel 2,315 63 2.7% 2,378
Derby 4,198 175 4.0% 4,373
Geronimo 2,318 130 5.3% 2,448
Hadoop Common e 28 3.5% 805
HBase 1,973 110 5.3% 2,083
Mahout 171 11 6.0% 182
OpenJPA 764 31 3.9% 795
Pig 201 5 24% 206
Tuscany 43 3 6.5% 46

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 %
80 %
60 %
873 | | g37 | 897 |81] |gqq| |86T| 86| | g37| | 35| |75
40 %
20%
o 127 | e 103 | | 119 — 183 | | 114 | 53 e 12.5
s Q> Q’ﬂ O & o4 N 3> & S
N & o) (g) Q N N
& & & S & F ¢ S
¥ GRS) <
h
@‘b‘

O Different location O Same location

Figure 15: The percentage of valid bug-fixing commits that have the same and

different positions of valid bug-related lines

39

different number of valid bug-fixing commits caused by the different positions of
valid bug-related lines resulting from the Myers and Histogram. The percentage
of the different results are between 6.0% and 13.3%, or 9.7% on average. This
analysis found evidence that nearly 10% of bug-fixing commits do not guarantee
success in locating bug-introducing changes since some deleted lines that were
suspected as the candidate bug-introducing changes are different if we applied
different diff algorithms in the git diff command. This is because a valid
bug-related line in a file has the possibility of being identified by a particular diff

algorithm, but it remains undetected while using the other diff algorithms.

2.7.4 Summary

The results from the SZZ algorithm confirm that different diff algorithms pos-
sibly generate different results, from 6.0% and 13.3% in the total of the identi-
fied bug-fix commits. The Myers and Histogram sometimes produced a different
number and location of the deleted lines (bug-related lines) in several files. These
differences certainly affect the number of disagreement files that have the bug-
related lines, the amount of bug-introducing commits, and the bug-fixing commits
that actually have the bug-contained files. Therefore, the comparison result in-
dicates that several prior studies that had used the SZZ algorithm to locate bugs

have the possibility of producing inaccurate analyses.

2.8 Comparison: Patches (RQ;)

RQs: Which diff algorithm is better in generating a good diff?

2.8.1 Analysis Design

From the previous two comparisons, we showed that different diff algorithms
can have different results of metrics collection and bug-introduction identification
(SZZ algorithm). Computationally, both diff algorithms are correct in textual
differencing. However, the diff outputs are sometimes different due to different
diff algorithms. The diff results might show different change region with a
contiguous list of deleted and added lines that is called as a change hunk (Ray
et al, 2015). We expect that a set of changing operations done by developers

40

Table 9: Targeted files that have different locations in identified lines with two
diff algorithms

Project Group Type of identified line #Files
CI-Java Projects (Section 2.6) Added and deleted lines 20,535
Apache Projects (Section 2.7) Deleted lines 1,055
Total 21,590

can be represented by change hunks. However, the identification of the change
hunks can be inappropriate. In our investigation, this issue could not be identified
automatedly. Thus, we analyze the quality of diff manually.

To judge the quality of the diff algorithms, we define “better” if the algo-
rithms meet our two criteria: (i) it detects the unmodified lines appropriately
that should not be identified as changed lines, and (ii) it shows the changed lines
more systematically [58]. The sequences of the added and deleted lines of code
are expected to be closer to what developers did to the code. If the code elements
change together, they are shown explicitly as group systematic changes or report
their common structural characteristics.

For this analysis, we used the same dataset that had been used in Section 2.6
and Section 2.7, shown in Table 9. From the CI-Java projects, we considered
all modified files in all commit IDs to be targeted, while of the Apache projects,
files changed in all bug-fix commit candidates are targeted. We applied the same
command as the other two comparisons: git diff -w --ignore-blank-lines
--diff-algorithm=<algorithm name> <parent commit ID> <commit ID> --
<filename> to generate the diff output from Myers and Histogram. In each
project of the first group, we analyzed the files that have different locations of
the inserted and removed lines from the execution of the two diff strategies.
While in the second group, only the files that have a different location of the
deleted lines were analyzed.

We divided the comparison into two categories: (i) in-code diff and (ii) in-
non-code diff. The first category of diff means the different diff lists generated
by both algorithms are lines of code or a block of code in a source code file.

Otherwise, the second diff implies the disagreement between these two algorithms

41

Table 10: Description of the diff assessment

Result Condition

Histogram The output of Histogram is better.
Myers The output of Myers is better.
Same Both outputs are same level. One algorithm is not better than the other.

are other than a line of code, for example a change of comments, or a change in
a non-code file, such as a modification in a text file.

Qualitative analysis between the two diff algorithms was performed manually
by the first two authors in multiple steps. Initially, the first author made a list of
all files from the two project groups. From this list, the sample size of files was
counted using the tool provided in a survey system'® to statistically represent
sample from files in each project, so that the conclusions about the quality of the
diff algorithm would generalize to all files in all projects with a confidence level
of 95% and a confidence interval of 5. As can be seen in Table 9, the total number
of files summarized from all project groups is 21,590. From this population, we
selected random samples of 377 files.

In the second step, we conducted a manual comparison between two diff
outputs produced by Myers and Histogram algorithms from all files in the sample.
The first two authors of this chapter were involved to independently annotate the
diff outputs that makes the result is expected to be more reliable. To specify the
comparison result between two diff algorithms, we generated three categories
as described in Table 10. We assign Histogram to the comparison results if
the diff outputs produced by Histogram algorithm show the unmodified lines
more appropriately and provide better group systematic changes to show the
lines were changed together compared with the Myers. If the results produced by
Muyers provide more appropriate unchanged contexts and show the group changes
more systematically compared with the Histogram’s diff, we labeled them as
Myers. While if the diff outputs produced by one algorithm are not better than

the other, then we mark them the Same. The comparison results between two

Yhttps://www.surveysystem.com/sscalc.htm

42

Table 11: Frequency of comparison result in the sample data

Result ‘ in-Code diff ‘ in-Non-Code diff
Histogram | 152 (62.6%) | 18 (13.4%)
Myers 41 (16.9%) | 20 (14.9%)
Same 50 (20.6%) | 96 (71.6%)
Sum | 243 (100%) | 134 (100%)

authors from 377 files were subsequently computed to find the kappa agreement.!”
We obtained 70.82%, which is categorized into ‘substantial agreement’ [114]. This

means, the statistic result of our manual study is acceptable.

2.8.2 Results

Table 11 shows how well both diff algorithms work in presenting the changes
of code. It can be seen that Histogram outnumbered the other results in the in-
Code diff category, which emphasizes that this algorithm is substantially better
to differentiate the changes of code specifically.

Figure 16 shows how the Histogram algorithm provides better output of
code changes compared with the Myers. We extracted the diff from the file
AmgpMessage . java'® in commit f56ead5e5 from the project of ActiveMQ. It is
true that none of the algorithms are incorrect in describing changes. However,
the Histogram algorithm provides a reasonable diff output better describing hu-
man change intention, as the if-statement is moved to a new method and a new
method call is added. While from the result of Myers, it is not clear how devel-
oper changed the code. Lines that have not modified were identified as removed
from the original positions (line 18 and 19) and added to the new positions (line
6 and 7).

This manual investigation also highlighted that the Myers and Histogram algo-

rithms have almost the same ability to extract the diffs from non-code changes.

"http://justusrandolph.net/kappa/
Bactivemqg-amqp/src/test /java/org/apache/activemq/transport /amqp/client / AmgpMessage. java

— https://github.com/apache/activemq/commit/f56ea45e58al7fal3aad46cbe8fc605ef4f
fdbc81#diff-5296b90814217d75e272e14834a09dca

43

1 |@e@ -169,11 +284,36 Q@ public class AmgpMessage {
2 * @throws IllegalStateException if the message is read only.
3 */
4 public void setText (String value) throws IllegalStateException {
5 |+ checkReadOnly () ;
6 [+ AmgpValue body = new AmgpValue (value) ;
7 |+ getWrappedMessage () . setBody (body) ;
8 |+ }
9 |+
10 |+ [=== Internal implementation ———=————-—————————————————— //
11 |+
12 |+ private void checkReadOnly () throws IllegalStateException {
13 if (delivery != null) {
14 throw new IllegalStateException ("Message is read only.");
15 }
16 |+ }
17
18 |- AmgpValue body = new AmgpValue (value);
19 |- getWrappedMessage () . setBody (body) ;
(a) diff output using Myers
1 |@e -169,11 +284,36 @@ public class AmgpMessage {
2 * @throws IllegalStateException if the message is read only.
3 */
4 public void setText (String value) throws IllegalStateException {
5 |- if (delivery != null) {
6 |- throw new IllegalStateException ("Message is read only.");
A }
8 u
9 [+ checkReadOnly () ;
10 AmgpValue body = new AmgpValue (value);
11 getWrappedMessage () . setBody (body) ;
12 }
13 |+
14 |+ ff===== Internal implementation ———-———————————————————————————— //
15 |+
16 |+ private void checkReadOnly() throws IllegalStateException ({
17 |+ if (delivery != null) {
18 |+ throw new IllegalStateException ("Message is read only.");
19 [+ }
20 |+ }

(b) diff output using Histogram

Figure 16: Example of diff outputs generated by Myers and Histogram in ex-

tracting the code changes

44

1 |ee -2,27 +2,21 @@
2 * org.openmicroscopy.shoola.agents.hiviewer.ChannelMetadatalLoader
3 *
4 g
5 |+ * Copyright (C) 2006 University of Dundee. All rights reserved.
6 *
7 |- * Copyright (C) 2004 Open Microscopy Environment
8 |- * Massachusetts Institute of Technology,
9 |- * National Institutes of Health,
10|= * University of Dundee
11 *
12 |- *
13- *
14 |- * This library is free software; you can redistribute it and/or
15|- * modify it under the terms of the GNU Lesser General Public
16 |- * License as published by the Free Software Foundation; either
17|= * version 2.1 of the License, or (at your option) any later version.
18 |- *
19 |- * This library is distributed in the hope that it will be useful,
20 |+ * This program is free software; you can redistribute it and/or modify
21|+ * it under the terms of the GNU General Public License as published by
22|+ * the Free Software Foundation; either version 2 of the License, or
23|+ * (at your option) any later version.
24 |+ * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 |- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 |- * Lesser General Public License for more details.
28 |+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29|+ * GNU General Public License for more details.
30 *
(a) diff output of comment using Myers
1 |ee -2,27 +2,21 @@
2 * org.openmicroscopy.shoola.agents.hiviewer.ChannelMetadataLoader
3
4 g
5 - %
6 |- * Copyright (C) 2004 Open Microscopy Environment
7= % Massachusetts Institute of Technology,
8 |- * National Institutes of Health,
9 |E. University of Dundee
10|+ * Copyright (C) 2006 University of Dundee. All rights reserved.
11 *
12 *
13- *
14 |- * This library is free software; you can redistribute it and/or
15|- * modify it under the terms of the GNU Lesser General Public
16 |- * License as published by the Free Software Foundation; either
171= * version 2.1 of the License, or (at your option) any later version.
18 |- *
19 |- * This library is distributed in the hope that it will be useful,
20 |+ * This program is free software; you can redistribute it and/or modify
21|+ * it under the terms of the GNU General Public License as published by
22|+ * the Free Software Foundation; either version 2 of the License, or
23|+ * (at your option) any later version.
24|+ * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 |- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 |- * Lesser General Public License for more details.
28 |+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29|+ * GNU General Public License for more details.
30 *

(b) diff output of comment using Histogram

Figure 17: Example of diff lists generated by Myers and Histogram in extracting
the non-code changes
45

As shown in Table 11, their percentages are nearly equals in the in-Non-Code
diff (13.4% files are better using the Histogram and 14.9% files are preferable
using the Myers). This is even strengthened by the high percentage of both diff
algorithms’ application that resulted in the same quality for the same files (see
the example in Figure 17), which reached 71.6%. This quantification reveals that
we can use any of these algorithms to produce the diff from non-code changes.
As shown in Figure 17, both diff algorithms worked well to reveal the com-
ment changes from file ChannelMetadataLoader. java'® in commit €5924527fa
of Openmicroscopy project since both lists are readable and understandable. The
only differences between the two lists are the position of the initial added line
and the matched line after the first inserted one. However, these disagreements

did not change our interpretation about the modifications that occurred.

2.8.3 Summary

Due to the different procedures between Myers and Histogram in identifying the
changed lines of code, they possibly generated different diff results. Our manual
comparison found that their differences were the number of the changes, the order
of the changed lines, or even the detected added and deleted code. They certainly
affect the readability of the diff outputs, in other words, the quality of the diff
results produced by the two diff algorithms were different. Importantly, our
results provide evidence that Histogram frequently produced better diff results

compared to Myers in extracting the differences in source code.

2.9 Discussions

2.9.1 Implication and Recommendation

In this section, we present a description of the impact of different diffs on the
results of a study. In the example shown in Figure 16, we can see both algorithms
identify the changed lines of code from line #169. Nevertheless, there are several

differences in the identified changed lines shown in both diff outputs.

YSRC/org/openmicroscopy /shoola/agents/hiviewer /ChannelMetadataLoader.java -
https://github.com/openmicroscopy/openmicroscopy/commit/e5924527fa467e1173
37b53a769503b6cc48e43f#diff-94a26d7e256533ade03740d86acalafe

46

The first difference is the number of the changed lines. From Figure 16, we
can see that the quantity of the detected changed lines are unequal. There are
11 changed lines discovered by the Myers, while the Histogram found 13 lines. In
a study that aims to collect metrics from the code changes, considering different
diff algorithms is important since it has an impact on the number of changes.

In software quality analysis, one key factor of process metrics used to measure
the changes is the number of modified lines (NLA and NLD). For example, a
work undertaken by Gousios et al. [37] which proposed an approach to measure
a software developer’s contribution using diff records to compute the number
of changed lines in a file. This quantity of the changed lines was then used to
calculate the commit size of all affected files. Based on our metrics comparison,
we found that 1.7% to 8.2% commits have different NLA and NLD due to different
diff algorithms application. While our manual investigation shows that more
than 60% diff outputs are better to extract using Histogram. Thus, if this
study attempts to apply Histogram, it might affect around 1% to 4% different
commit size. As a result, this will impact the measurement of software developer’s
contribution as well. Another study related to metrics analysis was conducted by
Rausch et al. [89]. The authors investigated the complexity of changes that can
impact software quality. The findings support that higher median values of NLA
and NLD lead to an increase in build failures. The study also found that the
high mean values of the number of modified files correlates to the failed builds.
Based on the result from our metrics analysis, we found 0.8% to 6.2% files have
different NLA and NLD. Therefore, if Histogram is applied in this study, this will
influence around 0.5% to 3.5% of the modified files that correlates to the failed
builds.

The second difference is the position of the changed lines. Figure 16 shows
that the two diff algorithms detect the deleted lines differently. The Myers
identifies one line of ‘Assignment’ and one line of a ‘Method’ call, whereas the
Histogram specifies a block of ‘if condition’ Related to SZZ application, both
diff algorithms produce different deleted lines that are considered as the candi-
date of bug-introducing changes. Thus, the identified bug-related lines might be
invalid due to different diff algorithms application that can lead to the failure

of bug-introducing changes identification.

47

A study undertaken by da Costa et al. [24] investigates the output of five
SZ7 procedures in discovering the bug-introducing changes. The study on 10
Apache projects analyzed the validity of bug-introducing changes. The valida-
tion process of bug-related lines used by the authors is similar to our study. It
compares the release dates of the earliest affected software versions of a bug with
the dates of the introduction of the candidates of bug-related lines. However, in
our study, we enhanced the process to validate the other three parameters, that is,
the bug-introducing commits that initially adds the valid bug-related lines, files
containing valid bug-related lines, and bug-fixing commits that relates to valid
bug-introducing commits. Our SZZ analysis shows that different diff algorithms
application can have impact on the results of SZZ algorithm. We found 2.4% to
6.6% valid files have different location of valid bug-related lines. Since the His-
togram is better in more than 60% diff outputs based on our manual analysis,
therefore, if the study by da Costa et al. [24] applies Histogram in the diff com-
mand, around 1.5% to 4% files might have different valid bug-related lines in their
study results. The SZZ algorithm has also been studied by Rodriguez-Perez et
al. [91]. The authors conducted a literature review of published articles that focus
on the SZZ algorithm’s functionality and its ability to be imitated. The similarity
of this study to ours is investigating the changing impact due to the modification
of SZ7Z algorithm. However, the study focus on the usability of the changing SZZ
in the academic paper over time while our study analyze the impact of different
diff algorithms application in the SZZ to study results. Without considering
the version of SZZ used in 187 previous studies collected by Rodriguez-Perez et
al. [91], we understand that SZZ is a widespread and well-known algorithm over
a 10-year period. This bug identification algorithm was commonly used to inves-
tigate commit size (26% of the papers), line of code (15% of the papers), number
of changes (12% of the papers), number of affected files (8% of the papers), etc.
As described in our SZZ analysis, diff algorithms also have an impact on SZZ.
Thus, if the Histogram is applied in those 187 prior studies, it might affect the
results of studies.

Our investigations on metrics and SZZ application provide evidences that
different diff algorithms application in git command can have an impact on a

study result. It is also acknowledged that the Histogram algorithm is substantially

48

better than the Myers to produce the changed lines of code. Thus, we recommend
to use the Histogram in git diff command to extract the changes from source

code.

2.9.2 Threats to Validity

Threats to the construct validity appear in the mapping study and the SZZ ap-
plication. In our mapping study, we selected only the papers that specifically
mention the git commands. As a result, papers that had used git commands
but do not mention it in the full text had been ignored, which can cause selec-
tion bias. Since different diff algorithms produce different results, we consider
that papers should mention algorithm names of diff if the authors intentionally
chose them. In the SZZ application, we used a small number of keywords to
detect commit messages that describe fixing bugs. This limited our ability to
extract all potential candidate bug-fixing commits. Even so, the commits that
should not be identified as bug-fixing commits were also possible to be collected
as long as they included the keywords in their log messages. However, since our
focus is to investigate the level of differences of the diff lists produced by Myers
and Histogram, the impact of the incorrect commits to the study result is small.
Another threat to the construct validity is the definition of better for the diff
algorithm. We consider good quality of the algorithm based on our two crite-
ria, while many could have been considered. Different software engineering tasks
may have different requirements for diff analysis. However, since our focus is
expecting to recover the changing operations from the diff outputs, the impact
of this issue is not significant. In addition to the construct validity, this chapter
did not perform a statistical test of its implication to previous studies. Thus, the
significance of Histogram diff algorithm implementation is still unknown. How-
ever, due to different identification results in SZZ algorithm application, using
better algorithm is important for location of the identified changes.

Threats to the external validity emerge regarding the repository used in our
experiments. Although we analyzed 24 OSS Java projects mined from Git repos-
itories, we cannot generalize our study results to other open source projects nor
industry.

To reduce the threats to reliability, we make our dataset publicly available.

49

We provided lists of our collected files identified by the Myers and Histogram

algorithms which were used in the three empirical analyses (see on GitHub?).

2.10 Section Summary

In software development environment, some specific knowledge might be undoc-
umented and uncommunicated between individuals although the knowledge al-
ready exists. In this chapter, for example, we explore the differences between the
diff outputs of two diff algorithms, Myers and Histogram. Since the differ-
ences of these two diff algorithms have never been documented and shared in
software engineering communities, people do not know that a simple git option
in git command may affect the results of relevant works.

Our metrics analysis has shown that the application of different diff algo-
rithms in metrics collection could impact around 4% files and 7% commits have
different results. The study on the application of SZZ algorithm indicates that dif-
ferent diff algorithms can affect around 5% files and 9% commits have different
location of potential bug-introducing changes. Since diff is the fundamental tool
for various software engineering tasks, considering limitations and advantages of
algorithms are important. Thus, documenting and communicating various types
of knowledge, either tacit or explicit, are necessary since this might determine

the implication of relevant studies.

2Onttps://github.com/yusufsn/DifferentDiffAlgorithms

50

3 A Topological Analysis of Communication Chan-
nels for Knowledge Sharing in Contemporary
GitHub Projects

3.1 Background

3.2 Preliminary Study: Communication Channels and Knowledge Sharing in Soft-

ware Projects
3.3 A Topological Analysis of Communication Channels Across GitHub Ecosystems
3.4 Results
3.5 Topology Evaluation
3.6 Implications
3.7 Threats to Validity
3.8 Related Work

3.9 Section Summary

3.1 Background

A key ingredient to the emergence and success of software projects on collabo-
rative platforms such as GitHub?! has been its distributed information sharing
nature, which is the ability to interact and share information between software
developers. With over 28 million developers and 67 million repositories reported
in 2018, GitHub hosts a multitude of diverse developer ecosystem (also referred
to as communities).?? As well as hosting traditional software projects, GitHub is
also the home to sometimes trivial library projects [1] and have been the focus
of recent studies [71, 62, 74, 36, 46, 57, 27]. For instance, package managers like
npm?? host around 700 thousand packages on GitHub. Interestingly, we find that
a single npm developer could be the maintainer for hundreds of these packages.

Investing in knowledge creates value during software development, especially

in the context of human capital [80]. This knowledge can then be represented

2lhttps://github.com/
22The survey result is available at https://octoverse.github.com/ (accessed in May 2018)
Bhttps://www.npmjs.com/

o1

and shared in contemporary software through social and technical ‘communica-
tion channels’, mostly used to improve and maintain a project’s presence in an
ecosystem. Examples of such channels include forking, pull requests, the readme
file documentation and so on. According to the business management perspec-
tive, communication channels can be distinguished into either tacit and explicit
knowledge, with its transfer being described as externalization and combination
(using the SECT model [79]). In fact, open source projects heavily rely on so-
cial markers and its popularity (i.e., star counts and forks) for measuring their
abilities to attract and maintain their contributors. Although much work has cov-
ered the different communication channels, a mapping of all these communication
channels and the knowledge shared has not yet been studied.

The research gap that this chapter fills is understanding at the topological
level of how knowledge is shared between communication channels of contem-
porary projects. There has been work that has studied the social collaborations
between projects, but not an analysis of multi-channels over large-scale ecosystem
of libraries. A study by Storey et al. [106] showed that communities of FLOSS
(Free Libre Open Source Software) projects are shaped through social and com-
munication channels (also referred to as social coding). Recently, Aniche et al. [3]
confirmed that news channels also play an important role in shaping and sharing
knowledge among developers.

In this chapter, we investigate communication channels to understand how
projects share knowledge at the software ecosystem level. Inspired by the knowledge-
based theory of the firm [38], our study is to validate the underlying theory behind
the transferable of knowledge within these library ecosystems, and to investigate
how ecosystems influence social practices within and outside their ecosystems.
To achieve our goal that is to analyze how communication channels share knowl-
edge over projects, we first identify different knowledge forms of channels in over
210 thousand library projects from seven different library ecosystems. We then
explore the evolution of these channels and distinguish differences between these
seven ecosystems. Similar to a study by Lertwittayatrai et al. [64], we use topolog-
ical data analysis to generate topologies that cover three years (i.e., 2015 to 2017).
Using topology data analysis, the results of the study show that (i) contemporary

GitHub Projects tend to adopt multiple communication channels, (ii) communi-

52

cation channels change over time, and (iii) communication channels are used to
capture new knowledge (i.e., externalization) and updating existing knowledge.
The contributions of the study are two-fold. First, we present a manual cate-
gorization of channels forms in software projects. The second contribution is a
large-scale analysis of channels for software projects over seven ecosystems using
the topological analysis of software library projects for seven different software
ecosystems.

The rest of the chapter is organized as follows. Section 3.2 describes our initial
work to classify the communication channels into tacit or explicit. Section 3.3
details our experiments using the topological data analysis of the seven GitHub
library ecosystems. Section 3.5 is the evaluation of our topological data analysis
technique. Section 3.6 discuss the implication of the experimental results, with
Section 3.7 defining the threats of validity. We present the related works in Section
3.8, and finally conclude the chapter and summarize potential avenues for future
work in Section 3.9. The replication package that contains all the dataset and
experiment details are accessible from https://github.com/NAIST-SE/TDA_Co

mmunication_Channels.

3.2 Preliminary Study: Communication Channels and

Knowledge Sharing in Software Projects

Before we proceed with the study, we first carried out a preliminary study to first
understand what knowledge exists and is transferred through the communication

channels.

3.2.1 Motivation

The study of knowledge sharing has had an impact in fields like Sharing Architec-
tural Knowledge [123], where architectural decision-making and has been shown
to increase project consistency, coordination, and communication coherence over
time. To understand knowledge sharing, we apply and distinguish different knowl-
edge forms to communication channels. We use existing models of knowledge and
how they are transferred. We carry out an empirical study to analyze and answer

the formulated research question:

33

Table 12: Distinctions between Tacit and Explicit Knowledge?*

Tacit Knowledge ‘ Explicit Knowledge

T1: Subjective, cognitive, experiential learning | E1: Objective, rational, technical
T2: Personal E2: Structured

T3: Context sensitive/specific E3: Fixed content

T4: Dynamically created E4: Context independent

T5: Internalized E5: Externalized

T6: Difficult to capture and codify E6: Easily documented

T7: Difficult to share E7: Easy to codify

T8: Has high value E8: Easy to share

T9: Hard to document E9: Easily to transferred/taught/learned
T10: Hard to transfer/teach/learn E10: Exists in high volumes
T11: Involves a lot of human interpretation

PS,: Are we able to distinguish knowledge within the communication

channels of GitHub projects?

3.2.2 Approach

Our approach to answer the preliminary study question is through analysis of
historical information. We first carried-out an investigation of possible com-
munication channels, which we then methodologically classify into the different
knowledge forms. We then use the SECI model to understand the knowledge
transfer within these channels.

As shown in Table 12, there are two knowledge forms [86, 87, 79]. The first
is tacit knowledge (know-how) where the knowledge is embedded in the human
mind through experience and jobs. Personal wisdom and experience, context-
specific are more difficult to extract and codify. In addition, tacit knowledge
includes insights and intuitions. The second is explicit knowledge (know-that)
which is codified and digitized in books, documents, reports, memos, etc. This
type of knowledge is easily identified, articulated, shared and employed that can
facilitate action. To classify the transfer (through sharing) of knowledge within

each communication channel, we used the SECI knowledge model. Nonaka and

nttps://www.tlu.ee/~sirvir/Information\%20and\%20Knowledge\%20Management /Ke
y_Concepts_of_IKM/tacit_and_explicit_knowledge.html (accessed in July 2019)

54

Table 13: Taken from Nonaka and Takeuchi [79], four dimensions of knowledge

transfer

Dimension Knowledge Transfer Description

Socialization Tacit to Tacit Social interaction as tacit to tacit knowledge
transfer

Externalization Tacit to Explicit Articulating tacit knowledge through dia-
logue and reflection. When tacit knowledge
is made explicit, knowledge is crystallized,
thus allowing it to be shared by others, and
it becomes the basis of new knowledge

Combination Explicit to Explicit Systemizing and applying explicit knowledge
and information

Internalization Explicit to Tacit Learning and acquiring new tacit knowledge

in practice

Takeuchi’s SECI model is a model of knowledge dimensions that describes the
transformation of tacit and explicit knowledge into organizational knowledge [79].
Since it was first introduced by Nonaka [78], SECI model has been used in many
area of studies. Dévidekové et al. [26] used SECI model to analyze various in-
formation and communication technology (ICT) tools in bridging virtual collab-
oration between team members without their physical presence. In comparison
with traditional teams that requires the presence of individuals, virtual collabo-
ration demands the motivation of team members, support from team leader, and
appropriate technology. Therefore, the preference of such suitable ICT tools for
each activity in organizations is necessary. As shown in Table 13, SECI model
contains four dimensions of knowledge which together form the acronym “SECI”.
In this chapter, we focus specifically on the externalization and combination in
our classifications.

The identification of knowledge within communication channels was performed
by a group consensus among three of the authors, with rationale clearly aligned

with the formal definitions.

95

Table 14: Seven Library Package Platform Ecosystems

Library Package Programming Typical Usage # Stars

Manager Language Domain Min Max Median Mean

Go GoLang Developed by Google 592 92227 6,866.24 2,559
Applications

npm nodeJS JavaScript Web Services 569 122,630 8,479.49 3,372

Packagist PHP Server-side web devel- 8 122,630 194.13 23
opment

RubyGems Ruby Web Applications 11 90,383 433.96 48

PyPI Python General scripting 10 122,630 439.77 39

Bower JavaScript Web Services 5 122,630 866.11 43

Maven Java-based languages Languages that wuse 107 122,630 1,755.45 454

Java Virtual Machine

3.2.3 Data Collection

25 collection of

For the preliminary study, the authors used the libraries.io
GitHub software projects. This dataset includes various communication channels
and covers the largest range of ecosystems. According to its website, libraries.io
indexes data from over 3 million library packages from 36 package managers.
Package managers represent different ecosystems of libraries. For example, li-
braries belonging to the nodeJS package manager (npm) are part of the bigger
JavaScript ecosystem of projects. Furthermore, libraries.io also monitors and
stores package releases, analyzes each project’s code, ecosystem, distribution and
documentation, and map the relationships between packages. Our dataset has
also been used in recent empirical studies [57, 27].

As shown in Table 14, our collected raw dataset is a subset of the seven largest
library ecosystems from the libraries.io dataset. Furthermore, we used the
star count to as to get the more popular repositories within each ecosystem [13].
The higher star ensures that the package has value to the ecosystem. Thus, the
top 10,000 ranked projects from each ecosystem was collected. Two authors then
identified and mapped 13 communication channels from the raw dataset features.
Details of the mapping are discussed in the replication package and presented in

Table 15.

Zhttps://libraries.io/data (accessed in May 2018)

56

Table 15: Summary of 13 channels classified with rationale.

Dimensions

Channels

Coding (Table 12)
Rationale
Source

Externalization

GitHub Pages

T2, T3

Personal webpage of a project, the content is specific, and it has no standard tem-
plate to create.
https://help.github.com/en/articles/what-is-github-pages

Readme

T3, T4
The content is specific and is created dynamically without a template.
https://help.github.com/en/articles/about-readmes

Security Audit

T2, E3
Although the audit is personal, the contents are fixed.
https://help.github.com/en/articles/reviewing-the-audit-log-

for-your-organization

Wiki

T2, T3

Similar to GitHub Pages, the contents of wiki are personal and specific. It has no
specific template to create.
https://help.github.com/en/articles/about-wikis

Combination

Changelog

E2, E3

The changes are documented in a structured manner, the contents are fix and cannot
be customized.
https://github.blog/2018-05-03-introducing-the-github-changelog/

Code of Conduct

E2, E3
There is a standard template to make the contents of code of conduct.
https://help.github.com/en/articles/adding-a-code-of-conduct-

to-your-project

Contributing E2, E3, E4

Guidelines The contents are structured, fixed and independent. It is created by following a
template.
https://help.github.com/en/articles/setting-guidelines-for-
repository-contributors

Fork E2, E3, E4

Fork has structured and fixed content. The context is independent.
https://help.github.com/en/articles/about-forks

Issue Tracker

E2, E4
The contents are independent and adopted from a system in a structured way.
https://en.wikipedia.org/wiki/Issue_tracking_system

License

E2, E3
The contents of license are structured and fixed.
https://help.github.com/en/articles/licensing-a-repository

Security Threat
Model

E2, E3, E4
The security regulations that are structured, fixed and independent.
http://www.agilemodeling.com/artifacts/securityThreatModel.htm

of Forks

E2, E4
The content is structured and independent.
https://help.github.com/en/articles/fork-a-repo

of Open Issues

E2, E4
Structured and independent content.
https://help.github.com/en/articles/opening-an-issue-from-code

o7

Each library ecosystem is described below. Go?% is a package manager in
GoLang programming language which is developed by Google. The npm?” and
Bower?® which are renowned for the JavaScript are mostly used in the website
development. Similar to the npm and Bower, Packagist?” is very common for the
website development but in server-side. The language used for this package is
PHP. Meanwhile, RubyGems®® is a framework of library management contains
functions that can be called by a Ruby program. Finally, the python-based

131

library manager, PyPI°* works for writing script in general, while the Java-based

language that use Java Virtual Machine (JVM) is Maven.3?

3.2.4 Analysis

Answering PS;: Using the collected dataset, we labeled each of communication

channel to a knowledge form (i.e., tacit or explicit). The manual labeling was
performed by one author and later validated by other co-authors. Based on
Table 12, we found that labeling T2, T3, T4, E2, E3 and E4 were the most
identifiable distinctions. To reduce bias, the first author and second author did
independent labeling. Then, in a round table, other authors were consulted for

any conflicts. In Table 15, we provide a full rationale for each feature.

3.2.5 Results

We now present the results of classifying knowledge of each channel.

3.2.5.1 PS;: Are we able to distinguish knowledge within the commu-
nication channels of GitHub projects?

Yes, we are able to distinguish knowledge forms channels in software

projects.

26https://golang.org/
2Thttps://www.npmjs . com/
28https://bower.io/
29nttps://packagist.org/
30nttps://rubygems.org/
3lhttps://pypi.org/
32https://maven.apache.org/

98

Table 15 shows that channels with tacit forms of knowledge being externalized

(i.e., externalized dimension of SECI). Since the classification of tacit and explicit

knowledge is not trivial, we applied the most distinguishable features taken from
Table 12 (i.e. T2, T3, T4, E2, E3, and E4). In general we used the following

rationale as guidance:

T2 - Personal: The knowledge possessed by any individual. Usually accu-
mulated through observation or experiences. For the study, we characterize

individual additions with no structure.

T3 - Context sensitive/specific: The content is specific to its original con-
text. It depends on particular time and space. Similar to T2, here the
project customizes the channel specific to the project requirements or na-

ture (i.e., library or framework, programming language)

T4 - Dynamically created: The content is capable to change or customize.
Since GitHub has templates, we regard these features are not in the tem-

plates.

E2 - Structured: The information is organized in a predictable way and
usually classified with metadata. For instance, a workflow tool usually has

structure to is, when compared to a wiki.

E3 - Fized content: The content that is not, under normal circumstances,
subject to change. This feature is more common with workflow and tools

that serve as channels.

Ej - Context independent: The content is unaffected by contextual rele-
vance. For instance, the channel can serve different purpose for different

projects.

Interestingly, we find that the security audit is a mix of tacit and explicit

forms. Although the audit tends to personal, the contents that describe the

strategy, policy and the process related to the management are fixed. Thus, we

conclude that the developers can provide the guidelines with regards to reducing

the risk of misrepresentation of knowledge when developing software [67].

99

3.3 A Topological Analysis of Communication Channels

Across GitHub Ecosystems

Taking the results from the preliminary study, we are now able to study the
knowledge topology of these channels. This topology mapping analysis presents
a visual representation of channels within and across projects in the GitHub

ecosystems.

3.3.1 Topological Data Analysis

Due to the vast amount of data and the different communication channels, we
apply the Topological Data Analysis (TDA) technique. TDA is an approach to
extract meaningful information from such data that is insensitive to the chosen
metric, high-dimensional, noisy and incomplete without initiating a query or hy-
pothesis [68]. TDA has been employed in many research fields for data exploration
and mapping. In comparison with other analysis methods such as the principal
component analysis (PCA), multidimensional scaling (MDS), and cluster anal-
ysis, TDA is sensitive to both small and large scale patterns that often other
techniques fail to detect. Lum et al. [68] showed the significance of understand-
ing the “shape” of data by implemented topology to analyze three different types
of data: data of breast tumors to show gene expression, data of voting behavior
from members of the United States House of Representatives and performance
data of the NBA players. In software engineering, TDA was also applied in a
study of software testing by Costa et al. [85]. Similar to Lertwittayatrai et al.
[64], a topology of the dataset is generated to provide a visual interpretation of
multi-dimensions data analysis.

Figure 18 provides an example of how a TDA is constructed. TDA assumes
a choice of a filter or its combination that can be viewed as a map to a space of
metric to provides insights based on clustering the various subsets of the dataset
related the choices of filter values. As shown, each node is represented as a
set of data points, and the connection between nodes occurs if and only if their
corresponding collections of data points have a point in common. The topology is
constructed by clusters of nodes (i.e., nodes connected together). Then within the

cluster, we can find groups of nodes that form a shape of the dataset. The density

60

A. Original Point Cloud B. Coloring by filter value

3D

C. Binning by filter value D. Clustering and network construction

. =

Figure 18: Taken from Lum et al. [68], A) 3D object (hand) represented as a point
cloud, B) A filter value is applied to the point cloud and the object is then colored
by the values of the filter function, C) The dataset is binned by filter value, D)
Each bin is clustered and a network is built. Within each cluster, groups of nodes

determine the shape.

of the nodes and their shape gives an indication of the dominant of the features.
Tailored to our study, each point is a project that are clustered according to the
different features extracted in the preliminary study. The use of color highlights
the dominance of a feature, which indicates high occurrence of that channel.
For TDA, the clustering is performed using the t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [112]. In detail, the algorithm starts by calculating
the probability of similarity of points in high-dimensional space, computing in
proportion to their probability density under a Gaussian (normal distribution)
algorithm. Multi-dimensional data are then mapped by the t-SNE to a lower di-
mensional space and attempts to find patterns in the data by identifying observed

clusters based on similarity of data points with multiple features.

61

3.3.2 Motivation

Our motivation for the topological mapping study is to present a representation
and overview of channels that exists within large-scale ecosystems. As such we

formulated two research questions as follows:

e RQ,: Do communication channels change over time?
In this research question, our motivation is to investigate how channels

evolve and change over time.

e RQ,: Do communication channels differ within ecosystems?
For this, we take a closer look at the ecosystem. By studying the seven
ecosystems, we are able to understand whether there are differences in

knowledge.

3.3.3 Approach

Our approach to answer the two research questions is through the TDA mapping
technique. The TDA mapper algorithm [100] uses combinatorial representations
of geometric information about high-dimensional point cloud data, which is im-
plemented with the Knotter tool [100]. The tool provides a common framework
which includes the notions of density clustering trees, disconnectivity graphs,
and Reeb graphs, but which substantially generalizes all three. We use the t-
Distributed Stochastic Neighbor Embedding (t-SNE) [112], a technique for di-
mensionality reduction and clustering, and our defined features as the filters for
the visualization construction. For RQ;, we analyze the map by identifying the
most dense clusters (i.e., majority of projects) and then find the dominant fea-
tures for those clusters. For RQy, to find dominant features, we identify groups

of nodes within the cluster and label.

3.3.4 Data Collection

As with the preliminary study, the same dataset from libraries.io was used
in our experiments. The results of the preliminary study in Table 15 were used
as feature inputs in the topological mapper construction. For RQ;, we selected

only projects between 2015 and 2017 because (i) they contained the youngest

62

Table 16: Statistics of Generated Topologies including the Topology Build-time

Library Ecosystem Pop. Size | RQp #proj. | RQq #proj. | RQy #proj. | RQy #proj.
created 2015 | created 2016 | created 2017

Go 743,841 10,000 10,000 509 20,000
npm 447,306 10,000 10,000 10,000 20,000
Packagist 176,608 10,000 10,000 10,000 20,000
RubyGems 93,377 10,000 10,000 8,611 20,000
PyPI 69,895 10,000 10,000 10,000 20,000
Bower 64,271 10,000 10,000 6,472 20,000
Maven 62,654 10,000 7,526 428 20,000
build-time per 35.03 29.60 20.22 70
topology (mins.)

Totals | 1,657,952 | 70,000 | 67,526 | 46,020 |

projects and (ii) all seven ecosystems had sufficient sample projects within this
time period. Part of the data preparation involved normalizing each of the 13
features into a value that ranges from 0 to 1. Based on the type column in
Table 15, we normalize the int, string and boolean values. For integers, we
calculate the ratio of the X, ;, and X jmey which X, ;. is the value of feature i
in project k which is in platform j and Xj ;. is the maximum value of feature
i in platform j. For boolean and string types, we represent 1 to them if the value
is TRUE that indicates the channel exists. On the other hand, represent as 0 if
the project does not use that channel. The tool limited the maximum number
of projects selected to 10,000, which resulted in selecting the top 10,000 most

popular projects (based on the star count).

3.3.5 Analysis

Table 16 shows that on average we used up to 30,000 projects for each of the

33 Note that for RQ;, we prepared an

seven ecosystems from the libraries.io.
evolutionary set of topologies, dividing the dataset into three time periods (i.e.,
2015, 2016 and 2017). Generation is approximated at up to 20-70 minutes for
each of the 28 topologies.

Answering RQ: To answer RQ;, we split the projects to separate the older

33dataset available at https://libraries.io/ (accessed in April 2018)

63

projects from the younger ones using the date that they were created (2015, 2016
or 2017). Shown in Table 16, we generate a topology that highlight the influencing
features to explore differences between the older and younger projects. First, we
identify main clusters of points. Then we compare these clusters over the three
years. Note that the color filter helps to identify dominant features.

Answering RQy: To answer RQ,, we construct seven library specific topolo-

gies to find whether projects that are popular (i.e., has the most stars in that
ecosystem) share similar channels across ecosystems. First, we identify and ana-
lyze the dominant features of nodes. The nodes of the network represent sets of
projects and are coloured according to the value of the features existence. If two
nodes have one or more data points in common, they will be connected with an
edge. Then, using the median score of stars per project within those nodes, we
identify the group that contains more popular projects (i.e., labeled as Popular

Group) when compared to the other groups (i.e., labeled as Non-Popular Group).

3.4 Results

We now introduce our answer to the research questions and then describe the

results.

RQ;: Do communication channels change over time?
“Younger projects adopt different channels compared to older projects’

We observed two main findings. First, from Table 17, the topology reveals
that younger projects are adopting different channels mechanisms when compared
to the older projects. To make the topology easier to read, we assigned the color
(blue indicates existence while red indicates no existence) to the Contributing
Guidelines feature. Note that Cluster 1 always indicates the highest number of
points (refer to Table 17). Therefore, we can see that the blue nodes first are
dominant in Cluster 1 in (i.e., Figure 19(a)), but tend to become less dominant
in 2016 and 2017 (i.e., Figure 19(c)).

Second, as shown in the Table 17, we see that although some communication
channels have changed over time (i.e. GitHub Pages, Security Audit, Changelog,
Contributing Guidelines, and Fork), we also find that others (i.e. Wiki, Issue

Tracker, and License) are still consistently used by most projects (Cluster 1).

64

Contributing Guidelines

0.0 . I o

Cluster 1

Cluster 3

Cluster 2

(a) Projects created in 2015

Contributing Guidelines
ool

Contributing Guidelines

ool S . o

(b) Projects created in 2016 (c) Projects created in 2017

Figure 19: Generated topologies for projects created in (a) 2015, (b) 2016 and
(c) 2017

65

Table 17: Evolution of Externalization and Combination between 2015 and 2017

‘ ‘ Externalization ‘ Combination

Period Cluster | #Nodes #Points | GitHub Security ~Wiki | Changelog Contributing Fork Issue License
Pages Audit Guidelines Tracker

2015 1 376 16,906 v v v v v v v
2 1943 15,638 v : v v
3 3,257 5,138 v v v
2016 1 6,289 46,800 v v v v v v v v
2 1,377 7,650 v - v -
3 4,038 3,088 v v v v
2017 1 973 14,098 v v v
2 1505 8704 | - v - v -
354 5,046 v v v v v v v

RQ,: Do communication channels differ within ecosystems?

‘Library ecosystems employ channels that capture new knowledge (i.e.,
externalization). Channels updating existing knowledge (i.e., Combi-

nation knowledge) varies from one ecosystem to another’

In terms of the topology shape, Figure 20 depicts ecosystems (i.e. Bower,
PyPI and RubyGems) having triangular shape topology with three main group
points. This is consistent for the rest of the studied ecosystems. Under further
investigation, we see that one of the group represents the popular projects (i.e.,
popular), while the other two group points were the non-popular data points (i.e.,
non-popular 1 and 2).

Table 18 shows two results. For both popular and non-popular projects, we
find that the issue tracker has been a consistent communication channel for ap-
plying explicit knowledge (i.e., combination). Combining with the results of RQ)1,
one explanation could be that these are older projects. Second, each ecosystem
depicts a different set of explicit dominant features. For example, the Bower
ecosystem includes combination knowledge transfer forms (i.e., Code of Conduct,
License, Contributing Guidelines, Wiki, Issue Tracker), while PyPI projects are
less likely to include a license or contributing guidelines. One reason could be
that the license information is embedded in other locations, such as a webpage.

For example, the python library scikit-learn has its license information on the

66

Popular Group :
Code of Conduct*
License
Contributing Guidelines*
Wiki
Issue Tracker

wiki
Issue Tracker

Non-popular Group 1:
CodeofConduct
License

bt idali
Wiki
Issue Tracker

(a) Topology for Bower libraries

Popular Group :
Code of Conduct*
wiki
Issue Tracker
Popular Group :
Code of Conduct*

License
Contributing guidelines*

Non-popular Group 2:
Issue Tracker Code-of Conduct™

License

Wiki
Issue Tracker

Non-popular Group 1:
Code-of Conduct*

Non-popular Group 1:
Code-of Conduet™

.

Wiki

Issue Tracker License Issue Tracker
Wiki

Issue Tracker

(b) Topology for PyPI libraries (c) Topology for RubyGems libraries

Figure 20: Topology for three of the seven ecosystems (a) Bower, (b) PyPI, and
(¢) RubyGems

67

Table 18: Dominant Extracted Features Topologies across the Ecosystems

Topology Cluster | Features Dimensions Bower | PyPI | Go | npm | RubyGems | Packagist | Maven

Popular Code of Conduct Combination v v - - v -
Contributing Guidelines | Combination v - v v v v -
Issue Tracker Combination v v v v v v v
License Combination v - v v v v v
Wiki Externalization v v - - - - v

Non-popular Code of Conduct Combination - - vV
Contributing Guidelines | Combination - - - - - - -
Issue Tracker Combination vV vV v vV vV v v
License Combination v v v v - v v
Wiki Externalization vV vV v - v vV

python ecosystem website.34

Our study results also confirm that issue tracker as an important communica-
tion channel is common for both popular and non popular projects, as described
in Figure 20 and Table 18. Issue trackers serve not only as part of the workflow
and process (code maintenance and evolution) for software development, but also
plays a significant role of communication in a software development process that
store a large amount of data, such as discussion during triage meetings, reproduc-
tion step clarifications between the person who created an issue and its owner,
etc [9]. Other work such as Dingsgyr and Rgyrvik [28] confirms that issue tracker
builds up a substantial amount of information concerning the issue reports from
customers, partially complete feature ideas, and the communication surrounding
the software development. This large amount of information is often beneficial
for both the organization and the software project team on a number of different

levels.

3.5 Topology Evaluation

As mentioned in Section 3.3.1, TDA has been proven to deal with both small and
large scale patterns that often fail to be detected by other methods. Other more
traditional methods of analysis are the principal component analysis (PCA), mul-
tidimensional scaling (MDS), and cluster analysis. Unlike traditional statistical
methods, TDA does not provide any statistical test that is performed to support

the observation. To evaluate and validate our use of TDA, we compared our

34license at https://pypi.org/project/scikit-learn/ (accessed in September 2018)

68

2 component PCA (top5000)

@ Maven
b G
® @ FPypi
100 8 @ Gower
® Packagist
® Rubygems
75 NPM
™~
=
a 0 L] s
= b)
= . o
a 4 4
£ I I
8 5 S e o S
= L] “r -
[1+] 'fgg 4 Jf L
=3 ‘,' P : Vi i
Y g r 2 -
=]) & -~ » v
=] : - L]
| e .
| ® ®
25 ﬁl . t ™
v . -
& ~
-
-5.0 .'.P...
L]
s) ; i ; 5

Principal Component 1

Figure 21: A replication of RQ; using PCA. PCA does show location of the
ecosystems of different platforms, but since the features are combined, we cannot
identify the dominant channels.

method to the PCA method. The main different with PCA is that it simplifies
the complexity in high-dimensional data by transforming the data into fewer di-
mensions (i.e., usually into a x and y axis, depicted by a scatterplot), which act
as summaries of features.

In our approach, we apply the PCA method using the sklearn.decomposition
python library®® to visually examine the results. For the evaluation, we will re-
generate the results for RQy and determine if we can visually identify dominant
features within each ecosystem.

Figure 21 shows the results of evaluating the TDA technique against the sta-
tistical Principle Component Analysis (i.e., PCA) method. The PCA method

35documentation at https://scikit-learn.org/stable/modules/generated/sklearn.de
composition.PCA.html (accessed in July 2018)

69

shows the location of the ecosystems of different platforms and is able to summa-
rize the features into two principle components. However, the analysis is unable
to show details of each feature, outlining (i) which features are dominant and (ii)

how the features are different to each other.

3.6 Implications

Based on our results, we discuss three implications of the results in relation to

the nature of communication channels for both researchers and practitioners.

1. Contemporary GitHub Projects will continue to adopt multiple Communi-
cation Channels. Results indicate that GitHub projects are adopting 13
communication channels. Thus the topological mapping is able to clus-
ter together projects with similar channels. As shown in the topological
evaluation, other techniques is able to map these relationships. The impli-
cation for researchers and practitioners is that knowledge is not stored in
one channel, thus multiple channels must be considered to fully understand

the knowledge shared in software projects.

2. Communication Channels will change and evolve over time. Results indi-
cate that communications are constantly changing. For instance in RQjq,
channels like contributing guidelines have changed over time compared with
the consistent ones like issue tracker. Furthermore, in RQ,, we find that
there are differences between popular and non-popular projects in different
ecosystems. Results indicate that some channels are ecosystem specific.
For example, contributing guidelines are commonly used by seven targeted
ecosystems, except PyPI and Maven. While PyPI and Maven use wiki
pages alongside Bower where this channel is not prevalence for the other
ecosystems. This means the higher starred projects tend to move from
externalization to combination. The implication for researchers and prac-
titioners is that understanding the popular channels will help understand
where knowledge is shared. For instance, we envision researchers should
keep up with the newer channels to understand knowledge sharing within

younger projects.

70

3. Knowledge in Communication Channels is both external and combination.
Communication channels are used to capture new knowledge (i.e., exter-
nalization knowledge). For example, the externalization of the Wiki is very
popular. As shown in the preliminary study, the Wiki has some tacit fea-

tures of being personalized to match the individual project.

In contrast, updating existing knowledge in communication channels is com-
mon. As mentioned by GitHub, contributing guidelines help them (devel-
opers) verify that they’re submitting well-formed pull requests and opening
useful issues.®® GitHub projects are also encouraged to use the platform
workflow, with the Issue Tracker becoming a popular tool and communi-
cation channel for developers. The final example is the License channel.
Putting a license has become increasingly important, especially for projects
intended for library reuse. This practice may also be community driven.
For example, according to Lertwittayatrai et al. [64], npm projects tend to
use the MIT license in their projects. The implication for researchers and
practitioners is that understanding where new knowledge is shared. This
information could be very useful, for instance, especially for newbies to a

project.

3.7 Threats to Validity

We discuss three key threats to the validity of the study. The first relates to
the categorization of knowledge. Nonaka and Takeuchi’s categorization has been
contested in CSCW [97], especially in terms of the tacit knowledge. By adopting
the SECI model, we identify channels that have a possibility to capture tacit
knowledge. Furthermore, we focus on channels and how they are important for
project attractiveness and sustainability.

The second threat is related to the experiment setup and methodology. In
this work, we extract common collaborative channels as shown in prior works
(13, 4, 45, 113, 16|, providing confidence in our channel selection. To reduce

feature bias, we used a normalized score in formulating features for the TDA.

36https://help.github.com/en/articles/setting-guidelines-for-repository-cont

ributors

71

One key threat is the quality of the channel. For example, the existence of
readme files in a project doesn’t mean it is used or contains valuable information.
This is outside the current scope of work, however, future investigations will focus
on quality of these channels and how much knowledge they contain. Finally, we
use the star count rating in our project selection, yet this metric has been related
to skewedness and not being normalized. Since we assume that social coding is
related to the social sharing nature of communication channels, we believe our
use of star count is a useful proxy of projects that are more likely to actively use
communication channels.

The third threats to validity are the accuracy and the limitation of the tools,
especially whether results will change according different sample sizes. As such,
we use the largest sample of 10,000 points to ensure confidence in our result. As
shown by Lertwittayatrai et al. [64], the result tends to stabilize as more points
are added.

3.8 Related Work

In this section, we present related works that complement this study organized
into these (i) Communication Channels, (ii) Sharing Architectural Knowledge

and (iii) the use of Topological Data Analysis.

3.8.1 Communication Channels

Several studies in other fields analyzed channels as the exchange of information.
In organization management, communication methods, whether verbal or non-
verbal messages to produce meanings in heterogeneous contexts, cultures and
media [56]. Channels are practical in a complex network of relationships where
messages are created, delivered and received by individuals, as well as other
communication practices that allow larger democracy [56]. A study by Wang et
al. [116] investigated the usability, purposes and challenges of channels in industry
during safety analysis. Related to software development, communication between
developers is possible to augment through collaborative programming [117], or di-
rect communication between team members [98]. Therefore, the channels design

or the necessary of social skills in organization management receive more atten-

72

tion from researchers. Lindsjgrn et al. [66] analyzed communication technique to
measure the teamwork quality in influencing the performance of software teams
and the successful of their team members. The finding indicates that the quality
of teamwork in agile teams does not tend to be higher than traditional teams in
other similar survey. Team performance is the only effect of teamwork quality
which is greater for agile teams than traditional teams. Our study complements
these studies, showing how communication channels are indicators of knowledge
in a software organization.

In the field of Software Engineering, research into channels is based on so-
cial practices. Social practice characterizes the existence of activities which are
related to each other [29]. These collaborative works are conducted through (i)
distributed teleo-affective structures for software design and development, (ii)
shared common or specific knowledge of the software development requirements,
and (iii) clear procedures and regulations governing people to accomplish specific
activities.?” Social practices are not confined to only industry-related practices,
but more broadly, they can be implemented in open source software projects. In
addition to requiring a shared understanding of the requirements to become a
project member, a development of open source products performed by complying
with common rules as well, and by using a shared teleo-affective. Therefore, the
activities of each individual can be connected from the initial of the development
to the end of the project. The example of the requirements in the open source
projects is also described by Scacchi [96]. This study analyzes channels from a
knowledge perspective instead of social collaborations. Our topology confirms
that the collaborative and participatory nature of software development contin-
ues to evolve, shape, and be shaped by communication channels that are used
by development-related communities of practice [63]. A study undertaken by
Treude and Storey [111] shows that different media artifacts and channels used
for knowledge sharing have different implications for software development. We
believe that the methods such as ecosystem topology can provide us a more em-
pirical means to assess inconspicuous patterns within an ecosystem. For example,
the topology can reveal the type of channels that were used by most projects.

There is related work that specifically studied GitHub projects, especially

3Thttps://en.wikipedia.org/wiki/Practice_theory (accessed in July 2019)

73

library ecosystems and their social collaborations. The social features used in
a social coding platform, such as GitHub, has attracted many researchers to
analyze. The collaborative features used in their studies, including open bug
repositories [4], project fork [13, 45|, the usage of a software license [113, 119],
and the use of wiki [16]. Open bug repositories, such as the Bugzilla,*® are mostly
managed by open source projects to allow users to be more contributing. Anvik
et al. [4] stated that even though these repositories are often used as a reference
by open source developers, however the data availability on how they interact
with the issues tracking systems is limited. A work carried out by Borges et
al. [13] studied that the popularity of a project on GitHub relies on some factors
such as the language that developers used to program and the domain of the
application. These main elements were presumed to impact on the number of
stars of a project. A prior study also analyzed the evolution of software licenses
empirically [113]. To complement prior work, this work looks at all channels to

provide a holistic viewpoint of all the different channels.

3.8.2 Sharing Architectural Knowledge

The impact of communication channels in Sharing Architectural Knowledge has
been highlighted in several studies outside of Software Engineering. For instance,
Borrego et al. [14] conducted an empirical study to investigate agile methodologies
articulation in unstructured and textual electronic media (such as emails, forums,
chats etc.) in global software development. The findings show the involvement
of aspects in architectural knowledge in the unstructured and textual electronic
media in the teams. Architectural knowledge in the unstructured media is also
perceived as important, regardless the interaction frequency.

In a software engineering context, other work studied how knowledge in com-
munication channels impact project and their ecosystem success. Failing FLOSS
projects provide insights into some of the outside forces that detract developers
from making contributions. A study by Coelho et al. [22] found the following
reasons for failing projects: usurped by competitor, obsolete project, lack of time
and interest, outdated technologies, low maintainability, conflicts among devel-

opers, legal problems, and acquisition. To mitigate these reasons, projects need to

3¥https://www.bugzilla.org/ (July 2018)

74

attract as well as retain its existing base of contributors. In fact, Hata et al. [43]
suggests that improving the code writing mechanisms (i.e., wikis, official web-
page, contributing and coding guidelines and using multi-language formats) leads
to more sustainable projects. A study by Storey et al. [106] showed that ecosys-
tems of FLOSS projects are shaped through social and communication channels
(sometimes referred to as social coding). Recently, Aniche et al. [3] confirmed
that news channels also play an important role in shaping and sharing knowledge
among developers. Hence, owners of projects could boost their social presence
through participation on recent topics from news aggregators such as reddit,*”
Hacker News? and slashdot.*' In addition, a study conducted by Tamburri et
al. [107] described that the characteristics of ecosystem measurement can also be
utilized to explain the structure of open-source ecosystem pattern. Our results
complement these work and have the similar goal of understanding how projects

can attract developer contributions.

3.8.3 Topological Data Analysis (TDA)

The TDA technique has been applied in different research fields outside of soft-
ware engineering. For instance, a study by Lum et al. [68] used TDA to investigate
three different cases, namely, patient identification in breast cancer, implicit net-
works of the US House of Representatives, and NBA team stratification. The
study shows that TDA can handle various types and high-dimensional datasets
using three real world examples. From the analysis, the TDA shows the shapes
of the breast cancer gene expression networks that allow to identify subtle but
potentially biologically relevant subgroups, the shapes of the networks formed
across the years about the voting patterns of the members of The US House of
Representatives, and the playing styles of the NBA players.

In the software engineering context, the TDA topology has also been applied
in such studies. Lertwittayatrai et al. [64] use topological methods to visual-
ize the high-dimensional datasets from a software ecosystem. In the study, the

TDA allows the analysis of relationships between six related dataset features

39nttps://www.reddit.com
4Onttps://news.ycombinator.com
“https://slashdot.org

75

of a package, that is, author, author domain, license, tagged keywords, version
released, and number of dependencies. In our work, we combine all communica-
tion channels to understand at a higher level how projects in the ecosystem use

communication channels to capture and share knowledge.

3.9 Section Summary

To understand what knowledge sharing occurs in communication channels, we
conducted an analysis of channels in 70 thousand GitHub projects. First we
conducted a preliminary study to identify and map what knowledge exists and
is transferred through the 14 channels. We then used the topological mapper to
provide a high-dimensional visual shape of the communications over time and for
different library ecosystems. Our work shows that GitHub projects tend to adopt
multiple channels. Furthermore, these channels changing over time and can be
classified as either capturing new knowledge or updating the existing knowledge.

Based on this work, which established the role of multiple communication
channels with knowledge sharing, there are many open avenues for future work:
understanding the role and the different combination usage of channels, further
studies into cross-channel knowledge, and tool support for channel recommenda-

tions, to name a few.

76

4 Human Aspects in Eclipse Community Forums:

Participation, Discussion, and Interaction

4.1 Background

4.2 Preliminary Study

4.3 An Empirical Analysis of Eclipse Community Forums
4.4 Recommendation

4.5 Threats to Validity

4.6 Related Work

4.7 Section Summary

4.1 Background

Connectivity and clear communication channels play an essential role in collabo-
rative software development environments by enabling developers to engage with,
learn from, and co-create with other contributors. Web-based discussion forums
serve as a reliable implementation of such communication channels for software
development. As one of discussion groups channels, forums support mass com-
munication and coordination among distributed software development contribu-
tors [106]. Forums are considered to be an improvement over mailing lists in that
it provides browse and search functions, which are especially helpful for repetitive
questions and answers [103].

Recent studies have been conducted that compare forums to communication
channels that seem to have similarities to a forum. For instance, there have
been studies on mailing lists [40, 122], question and answer sites (Stack Over-
flow) [120, 115, 126, 18], Microblogs [39, 72|, and News aggregators [3]. Kahani
et al. analyzed discussion topics using a topic modeling technique [51]. Squire
studied the transition from self-supported forums to Stack Overflow [103]. It
has been reported that generic question and answer platforms such as Stack
Overflow have taken over the roles of forums. For instance, many software de-
velopment projects had closed their self-supported forums and moved to Stack

Overflow [103]. Furthermore, gamification strategies such as awarding of badges

77

or a voting system of Stack Overflow are considered to be incentives designed to
participate and improve answer quality [103].

As a long-living free and libre and open-source software (FLOSS) project,
the Eclipse project still maintains an established and active forum. The dataset
itself was selected as (part of) targeted data source for three MSR Mining Chal-
lenges. #2344 Recently Eclipse has integrated multiple software development sys-
tems and has been providing functionalities for analytical and visual informa-
tion. In December 2016, Eclipse launched the Eclipse User Profile, which shows
an overview of all contributor activities within the Eclipse ecosystem, such as
contributed projects, reviews in Gerrit, and topics in forums.*> For this service,
contributor accounts in different development systems are integrated to unique
profiles, and we can easily see summaries of contributors’ various activities in
the Eclipse development ecosystem. From the discussion in 2014, donation con-
tributors have been recognized with badges on Bugzilla and Eclipse Community

Forums.*6

With such connective functionalities, users can be easily aware of
Eclipse community members’ status and activities. Nakasai et al. reported that
badges for donation contributors in Eclipse’s Bugzilla have practical impact on
decreasing response time of bug reports, and badges can be considered to be an
effective signalling system [77].

In this paper, we would like to investigate how the Eclipse project has success-
fully maintained its forum, thus creating a healthy ecosystem. We first perform a
preliminary study to analyze the participation of users in the Eclipse ecosystem,
the characteristics of threads, and the classification of memberships. Then, we
set out to empirically analyze over 1 million forum threads and 2,170 connected
contributions to other four systems (i.e., around 416 thousand profiles, 120 thou-
sand code review submissions, 532 thousand bug reports with 2,883 commits from
multiple projects) within the Eclipse ecosystem. We use the following research

questions as a guide:

42MSRMiningChallenge2007: http://2007 .msrconf .org/challenge/.

43MSRMiningChallenge2008: http://2008.msrconf .org/challenge/.

44MSRMiningChallenge2011: http://2011.msrconf .org/msr-challenge.html.

45 Antoine Thomas, The Eclipse User Profile, http://blog.ttoine.net/en/2016/12/01/th
e-eclipse-user-profile/, December 1, 2016.

46Bug 434249 - Add decorator for Friends of Eclipse: https://bugs.eclipse.org/bugs/sh
ow_bug.cgi?id=434249

78

RQ1: What is the participation based on the membership?
RQ2: What kind of discussion are communicated based on the membership?

RQ3: What is the sentiment of interactions based on the membership?

Our results show that forum members actively participate in posting and

responding to the threads equally. We found that the Eclipse forums are dom-

inated by question and answer threads, especially discrepancies, which most of

them were posted by junior members. We also found that the status of users

is likely relate to the topics discussed in the forums. Finally, sentiment among

developers are consistent, with interaction among developers that are neutral or

positive having more chances to receive a response compare to other types of

interactions. The results of our study provides three sets of recommendations:

Users. Joining a forum discussion is beneficial as forums play a role as the
center of knowledge sharing platform. Since forum has various discussion
topics and as a bridge to communicate between people, users should identify
the appropriate topics and share knowledge in positive manner to maximize

the probability of getting responses.

Software development projects. Considering to prepare project-specific dis-
cussion forums is recommended for software development projects since fo-
rums are not only limited to question-and-answer based discussion, but also
enable developers to share such project-specific information or announce-

ment.

Researchers. The study shows that there are many open issues for future
work: understanding and supporting forum discussions and further studies

of activities in multiple software development systems.

Furthermore, contributions are as follows:

a comprehensive study of threads in Eclipse community forum, that covers
over 1 million threads that have linkage to profiles, code review, bugs and
project systems. In detail, we also analyze the category of link targets that
were referenced by forum users in the threads as the external sources of

knowledge;

79

 an identification of membership in the Eclipse forums and users contribution

in the ecosystem using topological analysis;

« manual labelling of the discussion types communicated between forum mem-

bers;

« manual analysis on social interactions between individuals within an ecosys-

tem to share knowledge in the forum.

The rest of this chapter is structured as follows. Section 4.2 describes our
preliminary study, including the motivation, data collection, an online appendix,
approach and the results of preliminary study. Section 4.3 presents our empiri-
cal analysis of Eclipse community forums. In details, we explain the motivation
that includes three main research questions, and describe the study results. Sec-
tion 4.4, 4.5 and 4.6 describe our recommendation, threats to validity and provide

related works. Finally, we conclude this chapter in Section 4.7.

4.2 Preliminary Study

Before we proceed with the study, we first carried out a preliminary study to
describe the users’ participation, thread characteristics, and users’ classification

in the Eclipse forums.

4.2.1 Motivation

The motivation of this preliminary study is to describe statistically the Eclipse
community forums from the perspective of threads and users. Unlike the other
online question and answer platforms such as Stack Overflow, Eclipse forums
serve a communication channel that is not only for a question and answer inter-
action, but also for general discussion, sharing information, or even announcing
such events. Furthermore, Eclipse forums also manage their users by assigning a
membership status per user. Therefore, in detail, we would like to quantitatively
investigate the contributors’ participation in the Eclipse ecosystem, what is being
discussed by users (i.e., hot categories of threads) in the Eclipse forums, how the
organization communicate with members (i.e., webmaster’s message), to what

extent are links used as the expert knowledge sources in forums, and classify the

80

membership types of forum users. To understand the contributors’ participation,
forum characteristics and users’ categories, we carry out an analysis to answer

the following preliminary questions:
o« PS,: What is the participation of users in the Eclipse ecosystem?

This study is conducted to answer the extent to which users in the ecosystem

are (1) using forums and (2) using various systems.

o« PS,: What are the characteristics of threads in the forums?

This analysis is to understand the patterns of messages posted by both
organization and users, the most frequent discussion topics in the forums,

and how users reference the information sources to support their answers.

o PS;: Are we able to classify the membership of forum users?

The classification of forum users is important to understand the impact
of membership on the participation, discussion and interaction between

Eclipse forum users.

4.2.2 Data Collection

In this section, we describe the data sources and the data extraction used in the
preliminary study. As shown in Figure 22, we collected the dataset from multiple
sources in the Eclipse ecosystem. To answer the participation of Eclipse contrib-
utors in different systems (PS;) in the preliminary study, we used a topological
data analysis (TDA) technique to analyze the dataset from multiple sources (see
Section 4.2.2.2). The characteristics of forum threads (PSy) and membership clas-
sification (PS3) are analyzed using the data of forum threads (see Section 4.2.2.3).

The details of the data sources and the data extraction are presented as follows.

4.2.2.1 Data Sources

Figure 22 illustrates the schema that connects the five software development
datasets within the Eclipse ecosystem. This connected data enables the inte-
gration of contributors’ various activities. Since the Eclipse REST API requests
are limited to 1,000 an hour, we collect data not only from API but also from

individual systems.

81

accounts.eclipse.org/user/{uid}

Gerr't api.eclipse.org/account/profile/{name} €€ t Proflle

Gerrit User P name: TEXT
name: TEXT uid: INT FOI’umS
username: TEXT ‘ forums_url: TEXT (API link with query of {name}) _) api.eclipse.org/account/profile/{name}/forum

uid: INT

name: TEXT [=
emal: TEXT bugzilla_url: TEXT (AP! link with query of {email)) @ | posts_url: TEXT

Gerrit Submission Bugzilla Submission api.eclipse.org/forums/post?user_id={} projects.eclipse.org/user/{uid}
owner: Gerrit User bug_id: INT result: LIST<Forum Message> userlnk: TEXT *—
created: DATETIME creation_ts: DATETIME
messages: LIST <Gerrit Message> reporter_name: TEXT . - -
projects.eclipse.org/content/{user}-{type}-{project_name} €q

reporter_mail: TEXT [o

User: MAP <user_name: TEXT, user_link: projects.eclipse.org/user/{uid)>
- comments: LIST <Bugzilla Comment> Forum M
Gerrit Message QIUMILie55ag0 Type: MAP <type: TEXT, type_link: projects.eclipse.org/content/{type}>

'—® author: Gerrit User Bugzilla Comment created_date: DATETIME Active: date: DATETIME
date: DATETIME name: TEXT subject: TEXT
. mail: TEXT o body: TEXT projects.eclipse.org/projects/{project_name}/who
Bugzilla | g wmen: oarerme opic idt INT who's involved: LIST <projects.ecipse. HiypeHproject_name}> |—]

Figure 22: Connected data from Gerrit, Bugzilla, Forums, and Projects via REST
API in the Eclipse ecosystem.

» Profile Dataset. Each contributor in the Eclipse ecosystem is required to
register for a profile.*” The profile contains basic contributor information

and can be used to track contributor activities.

« Bugzilla Dataset. The Bugzilla dataset contain the tracking of bug re-

ports and their fixes within the Eclipse ecosystem.*®

« Projects Dataset. To track social roles (committer, review, mentor, etc.)

of contributors, we include the project dataset.*?

e Gerrit Dataset. Gerrit is a review tool that facilitates collaboration be-

tween committers and contributors of within Eclipse.

e Forum Threads. Eclipse community forums, a user-to-user interaction
site for Eclipse users, have a hierarchical structure. It contains a number
of sub-forum categories which may have several topics. Within a forum’s
problem-related topic, each new initial thread posted by a user can be

responded by other users in the community.

4Thttps://accounts.eclipse.org/user/register
“nttps://bugs.eclipse.org/bugs/
49A detailed list of Eclipse projects is available from https://projects.eclipse.org/.

82

Table 19: Connected data extraction from five data sources within the Eclipse

ecosystem

step dataset quantity

step 1: Profile 416,126 profiles
Bugzilla 531,752 bug reports
Projects 2,883 committers
Gerrit 120,165 submissions
Forums 1,097,174 threads

step 2: Connected Gerrit contributors 2,170 contributors
Connected forum messages 467 messages

4.2.2.2 Contributors from all Eclipse Community Systems

The participation of contributors within the Eclipse ecosystem can be analyzed
using TDA from the connected data of five datasets, as described in Section 4.2.2.1.
As presented in Table 19, the data used in this analysis are extracted through
several steps.

Step 1: In this step, we extracted the dataset from five different sources,
that are, Profile, Bugzilla, Projects, Gerrit, and Forums. For Profile dataset
extraction, 416,150 uids and names were collected on September 14, 2018 from
the profile system.”® Using the Profile API, 416,126 Profile data were obtained
(24 users were not found) from November 5 to 13, 2018. To connect the ac-
tivities in Bugzilla with the Profile dataset, we used the email addresses. We
extracted 531,752 bug reports from October 10, 2001 to January 13, 2019. From
the Projects data source, we then collected a total of 7,082 commits from the
obtained 438 projects (on January 16, 2019). There were 2,942 distinct com-
mitters in the records. Among them, the information of 59 committers could
not be accessed because of the deletion of accounts. Hence, the remaining 2,883
committers can be connected with Profile dataset through the uid. We collected
120,165 submissions from October 1, 2009 to October 31, 2018. We link users

with the Profile dataset, using the name or email to match. To download the fo-

"Onttps://accounts.eclipse.org/user/

83

rum threads, we extract the data from its API. We downloaded 1,097,174 threads
(topics) available in the Eclipse community forums until January 9, 2019.5!

Step 2: The connected forum data are collected in this step. On November
23, 2018, we extracted forum message data from Gerrit contributors, via the
Eclipse REST API. As part of the data collection process, we applied a pre-
processing to detect and remove duplicated accounts. We report 39 pairs of
Gerrit and Eclipse forum accounts that have same names but different usernames.
Through manual examination, we verified identities within those pairs; 27 pairs
were found to be identical and merged. After the duplicate removal and linking
to Profile data, we obtained 2,170 Gerrit contributors and extracted 467 forum
message data that connect to these Gerrit contributors.

The collected 2,170 contributors from this extraction are then used to investi-
gate the participation of contributors within the Eclipse ecosystem using a TDA
technique. To build the topology, we construct the metrics of each contributor
from four data sources, namely, Bugzilla, Gerrit, Forums, and Projects (see the
details in Section 4.2.4.1). The metrics describe the connected activities of the

contributors within the Eclipse ecosystem.

4.2.2.3 Threads from the Eclipse Community Forum

Eclipse community forum, a user-to-user interaction site for Eclipse users, has a
hierarchical structure. It contains a number of sub-forum categories which may
have several topics. Within a forum’s problem-related topic, each new initial
thread posted by a user can be responded by other users in the community.
Figure 23 depicts different elements of a thread, including (i) the topic category
and subcategory, (ii) the member status and (iii) the link that was posted in the
thread.

To improve the quality of our dataset for both threads, as shown in Table 20,

the forum threads underwent three stages of filtering.

1. Step 1. Raw extraction. In this step, we use all 1,097,174 collected threads
yielded from Step I in Section 4.2.2.2.

Slhttps://www.eclipse.org/forums/index.php/t/

84

Forum and topic category

» Eclipse Projects » EclipseLink »

Wed, 25 November 2009 17:41

Date of creation

User status

Link sample

http://docs.jboss.org/hibernate/stable/annotations/reference /en/html/entity.html#d0e2273

Figure 23: Example of a forum thread

Table 20: Outputs of the pre-processing of the Forum Dataset

step # threads
step 1: raw extraction 1,097,174
step 2: remove duplication 832,058
step 3: separation:
(i) threads by webmaster 542,997
(ii) threads by non-webmaster users 289,061

2. Step 2. Remove duplication. In the Eclipse community forums, we found
that some threads had been duplicated by the system several times. To
avoid redundancies, we removed such threads based on message identity

numbers. We were able to reduce the number of threads to 832,058.

3. Step 3. Separation. To investigate how the organization communicate with
the members and analyze the characteristics of forum usages, discussion
topics, etc., we separate those threads posted by the webmasters and the
non-webmaster users that include the threads from users that contribute
in the other systems. From the total number of threads resulted in Step 2,

85

we were able to separate (i) 542,997 threads posted by the webmasters and
(ii) 289,061 threads posted by non-webmaster users.

4.2.3 Online Appendix

Our online appendix contains three data files used in this study: (i) 289,061
threads associated with the information of thread URL, message identity num-
ber, forum name and topic, thread title, name of initial-post user, user identity
number, and member status; (ii) 216,864 links with the description of thread url,
thread title, user’s name, extracted link, the link with first directory, domain
name, and top level domain; (iii) 2,170 contributors with the metric values de-
scribed in Table 21; (iv) 1,149 samples of the annotated threads to answer the
types of discussion; and (v) 1,149 pairs of main post and first response that are la-
beled based on the polarity and interaction sentiment. The appendix is available

at https://github.com/yusufsn/EclipseForumData.

4.2.4 Approach

In this section, we describe our statistical approach to answer the preliminary
study questions. We use empirical evidence from the collected threads to discover
the thread characteristics, while the sequence number of messages posted by each

user is used to classify the type of users.

4.2.4.1 Users’ participation (PS;)

This section is to analyze how contributors participate to each system (i.e., gerrit,
bugzilla, projects and forums). We would like to understand how many of the
contributors are using multiple systems, and whether or not they are forum users.

To show how contributors use the multiple systems we adopt a topological
data analysis technique (i.e., TDA), applies (algebraic) topology and compu-
tational geometry to create a shape of a high-dimensional dataset [68]. TDA
has been applied in various fields [50, 65], most recently in software engineering
by Lertwittayatrai et al. [64] to distinguish characteristics of JavaScript npm li-
braries (such as licence usage, dependency usage and so on) and Tantisuwankul

et al. [108] to analyze the implementation of such communication channels over

86

Table 21: Contributor metrics

metric description system
bug subm # of submitted bug reports Bugzilla
bug comm # of bug reports to which only put comments Bugzilla
review _subm # of submitted patches for review Gerrit
review__comm # of review to which only put comments Gerrit
thread # of threads participated in Forums
committer # of committer roles Projects

open source software projects. We use TDA to provide a visual representation
that shows (i) the activity levels for each feature and (ii) show the contributor
activity accross systems, especially in respect to forums.

As shown in Table 21, we first prepare a contributor metrics data that will be
used as features for the TDA mapper. This data contains 6 metrics that pertain to
the different activities for each system from 2,170 Gerrit contributors described in
Section 4.2.2.2. We use the Knotter tool,’? which is an implementation of mapper
algorithm and the t-Distributed Stochastic Neighbor Embedding (t-SNE) [11], a
technique for dimensional reduction and clustering, and our defined features as
the filters for the visualization construction.

For evaluation, we present the typologies of the four systems, highlighting the
most active contributors. To show this relationship in terms to their contributions

to the forum, we will annotate the most active contributors of forums.

4.2.4.2 Characteristics of threads (PS;)

This analysis includes the investigation of message patterns posted by the or-
ganization, the hottest topic of threads discussed in the forums, and the forum
linkage to the external sources.

Threads by organization. In the Eclipse community forums, a large num-
ber of messages were posted by the organization that deals with the servers and

software that runs the eclipse.org site.”® When the organization posts a message

52https://github.com/rosinality/knotter
53https://wiki.eclipse.org/WebMaster

87

in the forums, they employ the same identity, that is “Eclipse Webmaster”. To
understand how the Eclipse Webmaster manages its community forums, we used
542,997 messages collected in Section 4.2.2.3. After removing duplicated message
contents, we classified webmaster’s 934 distinct messages using keywords and
manual inspection.

Forums and topic categories. To identify the forums and topics that are
mostly discussed by the users, we quantitatively analyzed the messages based
on their forum names and topic categories that are embedded in the collected
threads. We investigated 289,061 threads that were posted by the non-webmaster
users, as resulted in Table 20.

Forums linkage. To understand how forum links to the external sources in
the Eclipse ecosystem, we manually analyzed the representative sample of links.
The link targets are extracted from 289,061 threads posted by the users (see
Table 20). We first prepared a statistically representative sample from 216,864
collected links by computing a random sampled data with a confidence level of
95% and the interval of 5.°4 The calculation of the sample size yields 383 links.

To extract the usage of the link targets, similar to Hata et al. [44], we per-
formed a manual labeling to all link targets from our sample. At this stage, the
authors of this chapter specified the code for categorizing the usage of the links.
The initial codes used to categorize the links were imported from the study by
Hata et al. [44]. However, we dropped several labels because they are unrelated
to our research. We also combined and adjusted some codes to make them appro-
priate to our study. After this step, four authors of this chapter coded the first
30 links from the representative sample independently using the designed codes.
The kappa agreement from the four raters is 0.81 or ‘almost perfect’ [114]. Based
on this encouraged agreement, the remaining link targets were then coded by the
first author.

The codes used to characterize the link targets including the description are

as follows:

o 404: the link target cannot be accessed or missed

o bug report or Bugzilla: a specific bug report or a Bugzilla top page

Snttps://www.surveysystem.com/sscalc.htm

88

o other documentation: documentation of a product or project in general

except for API documentation

o personal or organization homepage: a web page of an individual or organi-

zation
o product or project homepage: a web page of a product or project
o API documentation: specific documentation of an API component
o tutorial or article: a tutorial or technical article without comments
e thread: thread in the forums

e blog post: informational website that displays postings by one or more in-

dividuals and usually has commenting section

» release: a web page informing the release of new files, new versions of a

software, new packages, etc.
e code: a web page of a source code file

o book or research paper: a web page of a book or entire book or academic
paper

o licence: licence of a software project

e other: anything that does not fit the other labels, or a web page requiring

sign-in

4.2.4.3 Membership classification (PS3)

This section describes our techniques to classify the membership for each message
posted by the users.

Unlike the other Q&A online forums such as Stack Overflow, in the Eclipse
community forum, all registered users are assigned into three statuses of mem-
bership, that are, (1) Junior, (2) Member, and (3) Senior. These user statuses
are included in our collected data resulted from Step 4 in Section 4.2.2.3 which

can be seen in every post of a user, as shown in Figure 23. The status of each

89

X X X X

Senior

Member <H]—{ =106

Junior H x 29

0 50 100 150 200 250 300 350 400 450 500 550 600
threads

Figure 24: Frequency of messages per user status. The maximum number of posts
for each type of users is used to define the threshold of post-based membership.
The threshold for Juniors and Members are 29 and 106, respectively. Although
Seniors have posted more than 28 thousands messages, we limit up to 600 in the

figure.

user may changed from the lowest level (i.e. Junior) into the highest one (i.e.
Senior) depends on the contributions of the user in the community. However,
in the forum, we could not differentiate which posts that were posted by users
when they were a junior, member or senior. This is because once the status of
a user has changed, it will replace the old status in all posts of a user with the
latest status, including their first posts. Furthermore, we also did not find any
information about the time when the status of a user changed.

To define the member status of each registered user, we attempted to calcu-
late the total number of posts of every user. From this amount of threads, we
summarized the quantity of posts per author based on the user identity number.
The total number of posts per author varies, from less than ten to more than one
thousand posts. In this step, we found the maximum number of posts of each
user if we consider the latest status of users as collected in the dataset, as shown
in Figure 24. The maximum numbers of messages posted by Juniors and Mem-
bers are accounting for 29 and 106 respectively, while the Seniors have posted
the threads up to more than 28 thousands messages. Based on this finding, we

used these maximum numbers as the thresholds to determine the user status for

90

each message based on the sequence number of a post. The sequence number of
a post is specified depends on its creation date in order. The earliest post will
be assigned as the first post, then followed by the other posts ordered by date of

creation.

4.2.5 Results of Preliminary Study

We now present the results of thread characteristics and membership classifica-

tion.

4.2.5.1 PS,: What is the participation of users in the Eclipse ecosys-
tem?

Figure 25 shows the topology of active Eclipse contributors in all other systems.
Each node in the visualization represents similar sets of contributors. In general,

the map is read as follows:

1. Topology cluster - a cluster of nodes represent contributors that shared sim-
ilar features (i.e., share similar contributions per systems). Hence, closely

clustered nodes indicate these contributors share the same attributes.

2. Topology color activity - the color represent the density of each feature.
Starting from red to blue, the red color (i.e., red=low activity) indicates
a low activities of the feature, while green to blue color represented high
activities (i.e., blue=high activity). For example, with the review comments
feature, contributors that contributed many reviews to the Gerrit system
were clustered in the green nodes, while those contributors with almost no

activity are assigned red color.

Shape of contributors’ participation. Figure 25 shows that the Eclipse
contributors with high activities in all other systems are more likely to be active
in the forums. As shown in Figure 25b and Figure 25c¢, Eclipse contributors
tend to work on Gerrit and Bugzilla systems to report bug and submit reviewed.
This is because the permission may be required for submission and committing

of patches, hence it is not easily accessible. Another interesting observation is

91

Forums

(a) Color activity by threads (Forums) (b) Color activity by bug_subm
(Bugrzilla)

(c) Color activity by review_subm (Ger- (d) Color activity by committer
rit) (Projects)

Figure 25: The topology shows that Eclipse contributors with high activities is
all systems (i.e., (a) Forums, (b) Bugzilla, (¢) Gerrit, (d) Projects) are active in
forums. Note that the metrics are taken from Table 21. The white area represents

the contributors that actively participate in the forums.

92

that forums are used by the more socially active contributors. Thus, this provides

evidence that the forum is a source where expert knowledge can be shared.

Summary: We find that active contributors are likely to be also active in

forums, making it a source of expert knowledge for all systems.

4.2.5.2 PS,: What are the characteristics of threads in the forums?

The Eclipse webmaster. Table 22 shows the message pattern posted by the
Eclipse webmaster. We see that the frequency of the reply and welcome threads
have extremely surpassed other classes. The Re: messages are the most posted
message patterns by the webmaster to indicate the responses of previous mes-
sages. The Eclipse webmaster was also frequently sending a welcome message
to the newly registered members in a particular community discussions group.
This type of message is used to provide a brief statement of the purpose of the
newsgroups.

Despite the occurrences of the closure threads are not as frequent as the top
2 patterns, but they were posted by the organization occasionally to inform the
contributors that the related forums had been closed. The other pattern of mes-
sages that have an adjacent number of threads posted in the forum are test and
archive, as many as 14 and 13 message contents, followed by guideline, announce
and move, with 6, 5 and 4 messages, respectively. Finally, the prevalence of the
pattern “other” in the findings is an indicator of the various message patterns in
the threads posted by the Eclipse Webmaster.

Forum and topic categories. Table 23 shows that the Eclipse platform
is the most common topic discussed by Eclipse users. This may imply that the
threads are more generic, rather than being very specific. The next topic is fol-
lowed by BIRT, i.e., an open source software project to create data visualizations
and reports. Both topics are in the forum of Eclipse projects. In our statistical
records, Newcomers has become the third most topic in the discussion list of
Eclipse forum. This conversation subject is used dominantly by those who are
new in the Eclipse community. The other prevalent topics are EMF of Modeling,
C/C++ IDE (CDT) and Java Development Tools (JDT) of Language IDEs, to

93

Table 22: Webmaster’s message patterns

pattern description (keywords) #
re: a reply for a previous message (“Re:”) 538
welcome a greeting to a newcomers (“ Welcome to”) 270
closure notification of closing threads (“closure”, “forum closed”) 25
test a test message (“test”, empty message) 14
archive notification of archiving threads (“been archived”) 13
guideline rules, intention, or suggestions for users (“posting guide- 6

”

lines”, “please read before posting”)

announce notification of specific events or internal conditions (“out- 5
age”, “we’re hiring!”, “available”, “ shutting down”)

move notification of moving threads (“this group has moved to”, 4
“forum move”)

other a message that does not fit the above 59

sum 934

complete the top six topics discussed in the Eclipse community forums.

Taxonomy of link targets. Table 24 shows the result of our qualitative
analysis. From the table, we see that a bug-related link target from online issue
trackers, such as Bugzilla, is the most links inserted in the messages as a sup-
plement to the answer, accounting for 15%. It indicates that facing problems
or finding a software defect was frequently reported by the users in the forum.
Other documentations are also prevalent, nearly the same as personal or organi-
zational homepages, accounting for 11% and 10% respectively. The common use
of the label ‘other’ in the link target types represents the heterogeneous of links
present in the Eclipse discussion forum. Lastly, we also see that there were more
than 28% of link targets referenced by the Eclipse forum members are currently
inaccessible (i.e. 404).

Frequently linked resources. Table 25 shows that the top 10 most preva-
lent referenced domains from the collected 216,864 links. We see that the Eclipse

organizational homepage is the most popular link to refer to, which is separated

94

Table 23: Top 10 forum and topic categories in the Eclipse community forums

forum topic # threads
Eclipse Projects Eclipse Platform 31,795
BIRT 29,019
Newcomers Newcomers 23,054
Modeling EMF 16,171
Language IDEs C / C++ IDE (CDT) 13,449
Java Development Tools (JDT) 13,193
Eclipse Projects Standard Widget Toolkit (SWT) 11,307
Rich Client Platform (RCP) 10,842
Modeling TMF (Xtext) 9,909
GMF (Graphical Modeling Framework) 8,484

into four most common directories: Forums, and some Eclipse projects (Model-
ing, EMF, and BIRT). Bugzilla, a web-based general-purpose bug tracker, is the
second most prevalent domain to be referenced, followed by the wiki pages and
the download pages of Eclipse. Reporting newly discovered issues, or referenc-
ing the existing bugs in the Bugzilla is very common amongst the Eclipse forum
discussions. The domain of dev.eclipse.org, which is currently not available,
was also frequently referenced, especially for CVS repositories and news bul-
letins. The most communal external links posted in the discussions are from
xtext.itemis.com, i.e. the originator of the Xtext framework, www.w3.org, i.e.
the world wide web standard organization, github.com, i.e. distributed version-
control platform, and twitter.com, i.e. online news and social network. In
addition, the Eclipse Git repositories website (git.eclipse.org) remains hot in

the forum discussion to complement the top 10 referenced domains.

Summary: Specific projects of Eclipse Platfrom and BIRT, and the fo-
rums for Newcomers are most active categories. We found that referencing
to other resources, like bug reports, documentation, etc., is common in
forum discussions, which indicates that forums are essential platform for

linking various resources in Eclipse ecosystem.

95

Table 24: Frequency of link target types in our sample

availability target # links (%)
available (72%)
bug report/Bugzilla 58 (15%)
other documentation 41 (11%)
personal /organizational homepage 38 (10%)
product/project homepage 28 (7%)
API documentation 20 (5%)
tutorial or article 16 (4%)
thread 15 (4%)
blog post 10 (3%)
release 8 (2%)
code (1%)
book or research paper (0%)
licence 1 (0%)
other 34 (9%)
not available (28%)
404 109 (28%)
sum 383 (100%)

4.2.5.3 PS3;: Are we able to classify the membership of forum users?

Users’ classification. As shown in Table 26, we were able to assign the status
of the users in all threads based on the sequence number of the posts and able
to distinguish the messages that were posted by the users when they were junior,
member and senior. Questions or answers that are assigned from 1 to 29 are
considered as posts that were posted by Juniors, while posts from number 30 to
106 were posted by Members, and Seniors posted questions or answers from 107
up to the remaining posts.

In the Eclipse forums, we also found that there are a lot of threads posted
by authors with the username “Eclipse User”, accounting for 30% of the forum
users, as described in Table 26. In the threads, this username is automatically

assigned by the system and could be from anyone. It does not show the status

96

Table 25: Frequently referenced domains in the Eclipse community forums

domain description # links
www.eclipse.org 39,917
Jforums/ Eclipse Community Forums (5,723)
/modeling/ Eclipse Modeling Project (4,076)
Jemf/ Eclipse Modeling Framework (EMF) (3,119)
(moved to under the above /modeling/)
/birt/ Eclipse BIRT (Business Intelligence and (2,391)
Reporting Tools) Project
bugs.eclipse.org Eclipse Bugzilla 30,135
wiki.eclipse.org Eclipse wiki pages 22,920
download.eclipse.org download page for Eclipse product 9,343
dev.eclipse.org (currently not available or redirected to 9,297
wiki.eclipse.org/Development_ Resources)
/viewcvs/ Eclipse CVS repositories (not available) (4,528)
/newslists/ Eclipse news bulletin (not available) (2,533)
xtext.itemis.com Xtext framework for programming lan- 3,459

guage development

WWW.W3.0rg international standard organization of 3,323
world wide web

github.com web-based hosting service for version con- 3,298
trol using Git

twitter.com an online social networking site 3,096

git.eclipse.org Eclipse Git repositories 2,123

explicitly whether Junior, Member, or Senior. Furthermore, it does not have a
user identity number and a link that connects to the user’s profile. Since we
only focus to identify the three statuses of the user in the analyses, the messages
that were posted by “Eclipse User” were excluded. After the exclusion process,
we obtained 202,602 threads that were only posted by Juniors, Members and
Seniors.

Message distribution. Figure 26 shows the contributions of forum members
in the Eclipse forums. Even though the number of junior members is higher,
they had posted a smaller quantity of posts, compared with the two other user
categories. In contrast, although the total number of senior members is lower than
the other forum members, most seniors have contributed in the forum multiple

times.

97

Table 26: Frequency of posted threads based on the latest status of user

status # threads (%)
Junior Member 144,440 (50%)
Member 31,719 (11%)
Senior Member 26,443 (9%)
Eclipse User 86,459 (30%)
sum 289,061 (100%)
100,000,000
4
& 100,000
>
H+
100
| ‘]
0 500 1000 150
messages

Junior Member [l Member [J] Senior Member

Figure 26: Distribution of messages per user

Summary: We are able to classify the membership of forum users based
on the sequence number of messages posted by the users. Although the
majority of users are junior members, senior members tend to use the forum

more frequently.

4.3 An Empirical Analysis of Eclipse Community Forums

Taking the findings from the preliminary study, we are now able to study the
membership-based participation, discussion, and interaction in the Eclipse com-

munity forums.

98

4.3.1 Motivation

Our motivation for the empirical analysis is to present the nature of participation,
discussion, and interaction between users in the Eclipse forums. To guide the

study to achieve these goals, we constructed the following research questions.

e RQ.: What is the participation based on the membership?

The motivation of R(); is to analyze the extent to which type of developers
in the ecosystem that frequently responds the posts of a particular type of

user.

e RQ,: What kind of discussion are communicated based on the

membership?

The key motivation for R(), is to investigate the different kinds of discussion
that users share in forums. We conjecture that different memberships share

different types of discussion.

e RQs;: What is the sentiment of interactions based on the mem-

bership?

The motivation of R()3 is to get deep insight on developers sentiment while
sharing knowledge. Throughout this RQ, we aim to test the degree of

consistency while interacting with each other.

4.3.2 Results

In this section, we present the answer to the research questions and describe the

results.

4.3.2.1 RQ,: What is the participation based on the membership?

To study how forum users participate in the discussion, we divided the type
of threads into two categories, (i) bug-related threads, and (ii) non-bug-related
threads. In this analysis, we targeted all 202,602 threads that were posted by the
non-Eclipse Users (combination of Juniors, Members and Seniors). To distinguish
the category of threads, we filtered the threads using the Eclipse bug-report
URL as the keyword, that is, bugs.eclipse.org. If the threads contain at least

99

Table 27: Frequency of developers responding bug-related and non-bug-related
threads

Askers Bug-related Threads Non-bug-related Threads
Answerers Juniors Members Seniors | Juniors Members Seniors
Juniors 19,769 3,507 1,736 7,583 972 1,296
Members 15,097 2,180 1,346 1,740 1,262 809
Seniors 65,731 13,698 5,634 4,803 1,443 5,144

one keyword of the bug-report URL, the threads are categorized as bug-related
threads, otherwise, non-bug-related threads. After this process, we subsequently
investigated 113,592 bug-related threads, and 89,010 non-bug-related threads.

For both categories of threads, we separated the targeted threads into three
classes based on the status of the askers, that is, Juniors’ thread, Members’
thread, and Seniors’ thread. In each thread, we then classified the response
messages into the same classes as the askers to investigate the user types of
the answerers. To reduce bias, the answers from the same authors who ask the
questions in the threads were excluded. We also removed the response messages
with duplicate identification numbers of the answerers in each thread. Finally, we
quantified the frequency of the answerers grouped by their membership statuses.

As shown in Table 27, Seniors seem to be the most active forum users in
responding any category of questions, followed by Juniors and Members respec-
tively. In the category of bug-related threads, all types of users are more inter-
ested in answering questions that were posted by Junior members. It is shown by
the large number of authors replied Juniors’ questions. Table 27 also hints that
Seniors are more interested in answering the bug-related threads in comparison
with Juniors and Members. In the non-bug-related threads, the type of answerers
likely to have the same types as the askers, except the Members. Junior users
tend to answer juniors’ questions, and Senior users seem to be more interested in
answering seniors’ questions.

Although the number of responses is not as high as in the questions posted
by Juniors and Members in both categories of threads, the Juniors and Mem-
bers seem to reply the Seniors moderately. It indicates that the communication

between forum users is not limited by the type of users.

100

Summary: Compared with Juniors and Members, Seniors tend to respond
to bug-related threads more frequently. All forum users, irrespective of
membership type, actively participate in posting and responding to the

threads equally.

4.3.2.2 RQ,: What kind of discussion are communicated based on

the membership?

Our approach to answer RQs is through manual analysis of a representative sam-
ple to extract the category of discussion among the forum users. Since this anal-
ysis only focus on the threads that were posted by three types of registered users
(i.e. Juniors, Members and Seniors), we excluded all threads that were posted by
“Eclipse Users”. Similar to the procedure of forum linkage in Section 4.2.4.2; the
statistically representative samples from the 202,602 threads were prepared. The
calculation of the sample size yields 383 threads for each status of the askers.

To extract the discussion types, we conducted an interactive process of coding.
In this process, three authors of this chapter firstly discussed the initial coding
guide from previous work [11]. To make the coding guide fit with our study, the
initial coding guide were adjusted and the other codes were added for labeling the
threads. Then, the authors coded 30 main posts independently for each type of
askers in the sample using the designed labels. The kappa scores® for each status
of askers were calculated to see the level of agreement between three authors. We
gained 0.76 and 0.72 for both Juniors and Members which mean ‘acceptable’, and
0.82 for Seniors’ threads which indicates ‘almost perfect’ [114]. Based on these
motivated agreement scores, the coding task for the remaining main posts from
the sample were undertaken only by the first author.

The following terms list shows the labels used in our analysis to code the

threads discussed including the descriptions:

1. Q&A threads: if the thread is triggered by a question for asking a so-
lution, reason, advice, clarification, or guidance even if the questions are

unanswered, then we used the following coding guide:

S5http://justusrandolph.net/kappa,/

101

Errors: post contains exceptions or the stack trace and/or asks

for help in fixing an error or understanding what the exception means.

Review: this category merges the categories Decision Help and Re-
view [110], the category Better Solution [12], and What [93], as well
as How or Why something works [2]. Questioners of these posts ask
for better solutions or reviewing of their code snippets. Often, they
also ask for best practice approaches or ask for help to make decisions,

for instance, which API to select.

Plans: main question is asking for the future plans or processes of the

development.

Learning: this category merges the categories Learning a Language or
Technology [2] and Tutorials or Documentation [10]. In these posts,
the questioners ask for documentation, tutorials, or examples
to learn a tool or language. In contrast to the first category, they do
not aim at asking for a solution or instructions on how to do something.

Instead, they aim at asking for support to learn on their own.

Usage: this category subsumes questions of the types How to im-
plement something and Way of using something [2], as well as the
category How-to [12, 110], and the Interaction of API classes [10].
Specific functionalities are mentioned in the question. The questioner

is asking for concrete instructions.

Versions: this question category is equivalent to the categories Ver-
sion [12] and API Changes [10]. The questions arise due to the changes
in an API or due to compatibility issues between different versions

of an API. Specific versions are mentioned in the questions.

Conceptual: High-level question. The posts of this category are equiv-
alent to the category Conceptual [110] and subsumes the categories
Why...? and Is it possible...? [12]. Furthermore, it merges the
categories What [93] and How/Why something works [2]. The
posts consist of questions about the limitations of an API and API
behaviour, as well as about understanding concepts, such as design

patterns or architectural styles, and background information about

102

some API functionality.

e Discrepancy: Low-level question. This question category contains the
categories Do not work [2], Discrepancy [110], What is the Prob-
lem...?7 [12], as well as Why. The question is asking about problems
or other types of question, but the questioner has no clue how to

solve it.

2. non-Q&A threads: if the thread is triggered by a non-question post, we

categorized the topics using the following labels:

e Misuse: a post is identified out of the scope, unrelated to the commu-

nity forum, or difficult to understand.

o Announcement: a post provides an announcement from system or core

developers about specific events (e.g. future updates, file release).

e Information: a post provides a general information. It could be from

anyone.
e Recruitment: indicates an offer of a job vacancy or recruiting people.
o Test: a post is used for a test.

e Other: anything that does not fit the above labels, including posts
that answering questions from different threads (the post is not an

original question from the asker).

Taxonomy of discussion type. The results of our manual classification
show that the Eclipse forum is very much similar to other community-based
question-and-answer (Q&A) sites, dominated by the users that share problems
through questions to get the answers from the community. As shown in Table 28,
discrepancy is the most common type of problems shared by the forum members,
especially from junior members. Review, conceptual, usage, and errors complete
the top five types of discussion that dominate in the Eclipse forum shared by all
forum users, which accounts for more than 10% for each type. For the non-Q&A
threads, information and announcement are two types of discussion that were

most frequently shared between the forum members.

103

Table 28: Frequency of knowledge type and the number of links in our sample

(gray color represents Q&A threads, white color represents non-Q&A threads)

Topic Juniors Members Seniors Total
% # % # % # %
Discrepancy | 153 (39.9%) | 116 (30.3%) | 59 (15.4%) | 328 (28.5%)
Review 51 (13.3%) | 64 (16.7%) | 39 (10.2%) | 154 (13.4%)
Conceptual 31 (81%) | 50 (13.1%) | 62 (16.2%) 143 (12.4%)
Usage 45 (11.7%) | 36 (94%) | 45 (11.7%) 126 (11.0%)
Errors 49 (12.8%) | 41 (10.7%) | 32 (84%) | 122 (10.6%)
Information 6 (1.6%) | 17 (44%) | 46 (12.0%) 69 (6.0%)
Learning 19 (5.0%) | 19 (5.0%) | 13 (3.4%) 51 (4.4%)
Versions 9 (23%)| 22 (5.7%)| 18 (4.7%) 49 (4.3%)
Announcement 3 (0.8%) 5 (1.3%) 22 (5.7%) 30 (2.6%)
Plans 8 (21%)| 4 (1.0%) (2.3%) 21 (1.8%)
Misuse 1 (0.3%) 1 (0.3%) (1.6%) (0.7%)
Recruitment 2 (0.5%) 1 (0.3%) (0.5%) (0.4%)
Test 0 (0.0%)| 2 (0.5%) (0.8%) (0.4%)
Other 6 (1.6%) | 5 (1.3%)| 27 (7.0%) 38 (3.3%)
sum 383 (100%) | 383 (100%) | 383 (100%) | 1,149 (100%)

Our other findings on the discussion types that shared amongst the forum
members at least hint that the forum is not only utilized for asking solutions or
responses from other users, but also to announce some specific events or updates,
distributing general information, offering some job vacancies, or even just testing
the forum as well.

Membership based discussion types. Our findings also highlight that
there are several distinguished types of discussion that were communicated be-
tween the members based on their statuses. As illustrated in Figure 27, discrep-
ancy is the most common type that was shared by Junior members. However,
the number of this type reduces once the status of the user levels up into higher
status. Conversely, the quantity of conceptual discussions increases inline with
the changes of the user statuses, from the lowest level of membership (Juniors)
to the highest one (Seniors). This shows that the higher the membership status

of a user, the higher the level of the problems discussed in the forums. Further-

104

Seniors 22

17 15

0 20 40 60 80 100 120 140 160 180 200
threads

Members

Juniors

M Discrepancy ™ Conceptual ™ Information ™ Announcement

Figure 27: Four discussion types communicated in the forums

more, senior members posted general information and announcement more often
than the other types of users. The information shared in the forums is com-
monly general events, such as a seminar, presentation or competition to motivate
users’ participation. While the announcement describes specific events related to
products, for example, file release, future updates, etc. This result at least hints
that most of the senior members are core members of a software development
company who act as sources of information and convey the information to inspire

and motivate other people [121].

Summary: The Eclipse forums are dominated by question-and-answer
threads, especially discrepancies, which most of them were posted by junior
members. Furthermore, the status of users is likely relate to the topics
discussed in the forums. The higher the status of users, the more conceptual

the discussion type they communicate in forums.

105

4.3.2.3 RQ;: What is the sentiment of interactions based on the

membership?

Our approach to answer RQ3 is through manual analysis of a representative sam-
ples to understand the sentiment of forum users while sharing knowledge. To
analyze the sentiment, we only focus on the questions that were posted by three
types of users (i.e., Juniors, Members and Seniors) and their first replies of the
collected questions. This is because the first reply in each thread shows the tan-
gible feeling of a user reaction in responding to the main question. Similar to
Section 4.3.2.2, we excluded all the questions from “Eclipse User”. We then pre-
pared statistically representative samples for each users type with 95% confidence
interval.®* The calculation of the sample size yields 383 pairs of question and first
response for each status of user.

To find the types of sentiment among users, we conducted an interactive
process of coding. In this process, three authors of this chapter discussed the
initial coding guide from previous work [53]. To make the coding guide fit with
our study, the initial coding guides were adjusted. We then independently applied
the adjusted question coding rules on both questions and the first responses of
the first 30 samples of thread. We used the kappa score calculator® to check the
agreement level and find the score 0.78. According to [114], this kappa agreement
score is ‘acceptable’. Based on the agreement level, the coding tasks for the
remaining threads from samples were undertaken by the three authors, which
each author classified 383 different samples of threads.

Our sentiment analysis is composed of two different analysis, that is, (i) po-
larity, and (ii) interaction. The following terms list shows the labels used in our
analysis to code the type of polarity and interactions while sharing knowledge

through forums.

1. Polarity analysis: To analyze the polarity of messages, we used the fol-
lowing three labels:

o Positive: It includes posts that has positive feeling while reading and
also include positive words (i.e., good, nice, working example, thanks

a lot etc). For example:

Thanks, you have been a great help. It is enough for me.

106

o Neutral: It includes posts that has neutral feeling (e.g. started with
positive then ended with negative talks) while reading or do not in-

clude any biasing words (i.e., positive, negative). For example:

See the Task List’s view menu’s “Show UI Legend” action for

an explanation of the colors and a link to how to change them.

e Negative: It includes posts that has negative feeling while reading and
also include negative words (i.e., error, bug, not working etc). For

example:

I've added some custom key binds in M8 and sometimes they
don’t work. They still show up in the preferences dialog, but
they are not indicated on the menu items they are assigned
to. Closing Eclipse and restarting fized the problem. Anyone

else seen this? I don’t know of any repro steps at this point.

2. Interaction analysis: To analyze the interactions between forum mem-

bers in the threads, we used the following seven statements:

 Positive procedural (PPc): It includes procedural statements that are
goal oriented (i.e., pointing out or leading back to the topic), proce-
dural suggestion (i.e, suggestions for further procedure), procedural
questions (i.e., questions about further procedure), economical think-
ing (i.e, weighing costs/benefits), etc.

o Positive socioemotional (PS): It includes socioemotional talks like en-
courage participation, agreeing suggestions, offering praise, etc.

 Positive proactive (PPa): 1t includes proactive statements that discuss
about interesting ideas, plan actions, agreeing upon tasks to be carried

out, etc.

e Neutral: It includes statements that can’t fall in the above categories

or posts that are neutral in nature.

o Negative procedural (NP): It includes procedural statements that talks
more about failure of procedure, complaining the procedure (i.e., be-

haviour of API, code), irrelevant things, etc.

107

Table 29: Polarity of communication among developers

users’ . first response
main post — - sum
type positive neutral negative no response
positive 93 67 22 53 235
Juniors neutral 8 12 3 17 40
negative 23 32 28 25 108
positive 139 19 15 63 236
Members | neutral 10 2 2 20 34
negative 71 9 8 25 113
positive 56 24 14 75 169
Seniors neutral 19 16 9 53 97
negative 41 17 18 41 117
sum 460 198 119 372 | 1,149

o Negative socioemotional (NS): It includes socioemotional talks like

criticizing, disparaging comments about others, etc.

o Negative counteractive (NC): It includes counteractive statements that

cover irrelevant problems, no action plan, terminating discussions, etc.

Polarity detection. Table 29 shows the polarity results of main posts and
first responses among developers. We found that Juniors and Members post
more positive messages than Seniors. On the other hand, compared with the
other types of developers, neutral and negative messages were mostly posted by
senior developers We also observed that overall positive posts tend to receive
more replies while negative posts seem to receive less responses.

Social interaction. Figure 28 shows the nature of first responses in the
interaction among different type of developers. From Figure 28a and 28b, we
observed that social interaction by juniors and members are overall positive. We
found that juniors and members tend to post a thread in a more positive proce-
dural way. For this positive procedural type of interaction, juniors receive more
positive responses while members receive both positive and negative responses.

In contrast with the other types of developers, Figure 28c shows that seniors
post more neutral and negative messages. Complement to the RQs, the neutral

threads mostly include an announcement relates to a release of a new product,

108

ore U I .
PS PS 1.8
7 PPa 7 PPa 1.2
o <}
& &
.g Neutral .g Neutral ‘ 0.6
= = |
0.0
NS ’ NS
- —0.6
NC --1.2 NC
O < O B H ANV 4
SEE SREEEZ2 E
o o
~ z
First response First response
(a) Juniors thread (b) Members thread
PP g e . |-
PS 1.8 PS
1.2
= PPa 12 o PPa
o]
o, o 0.6
= Neutral 0.6 g Neutral
= S
= NP 00 = NP 0.0
NS - —0.6 NS - —0.6
NC NC
O S =T nNO & O N 8 5 A ND &4
&“‘&%ZZZE &‘L&§ZZZE
[
z 2 z z
First response First response
(c) Seniors thread (d) Combination of all user types

Figure 28: Nature of first responses in the interaction between forum members.
The color scale represents the frequency of the first responses. The darker the

area in the heatmap, the more frequent the first responses in the threads.

109

and general information such as advertisement, seminar, etc. In addition, seniors
did not receive responses in a large number of threads. This hints that seniors
tend to post more complex questions than juniors and members that may be
difficult to answer. If we combine all types of developers together as illustrated in
Figure 28d, we observed that the social interaction among developers are generally
similar to the polarity. The result shows that, procedural posts tend to receive
more responses than the other types of posts. This is indicated by positive and
negative procedural messages that receive the highest number of first responses.
Furthermore, posting a message in a positive procedural way is likely to have
higher chances of getting positive replies. In contrast, negative responses are
frequently addressed to negative procedural messages. In sum, the results suggest
that developers are encouraged to post procedural threads and thus increasing

the probability of receiving responses.

Summary: We found that sentiment among developers are consistent
while knowledge sharing. Interaction among developers shows that pro-
cedural threads overall have more chances to receive first responses than

the other types of interaction.

4.4 Recommendation

Based on our study results, we provide three sets of recommendation for forum
users, software development projects, and researchers.
For forum users, the recommendation regarding the threads and referencing

links are as follows:

e Join forum discussions, as forums play a role as the center of knowledge
sharing platform. Not only knowledge from community the users will re-

ceive, but also from external sources.

o Identify appropriate forum topic. As found in this chapter, some amount
of users posted their threads in the incorrect discussion groups. Sharing

problems in a compatible topic category would maximize the probability to

110

get responses and solutions. Otherwise, the questions might be marked out

of scope.

o Share knowledge in positive manner. As shown in the results, users are
likely to respond to a positive and procedural thread. Since the clarity of
knowledge shared in the forums might increase the chances to get responses,

describing the problems in a procedural way is essential.

The findings of this study also recommend to software development projects

as follows:

o Consider preparing project-specific discussion forums. As observed in the
study, Eclipse forums is not only limited to Q&A based discussion, but
also enable developers to provide Eclipse community-related information
or announcement. Since the information or announcement that specifically
relates to the software projects is important to share amongst the commu-
nity, providing a project-specific forum is necessary. GitHub Discussions,
a new feature of GitHub for asking questions or discussing topics outside
of specific Issues or Pull Requests,’® could be an option for projects hosted
on GitHub.

For researcher, we can consider future works with the following possible chal-

lenges:

o Further studies of activities in multiple software development systems. Our
results show that forums are being actively used by contributors that are
also active in the other systems. This is indeed evidence that supports the
claim that forums do work as a center of knowledge-sharing. Possible future
directions could include tracking the actual threads to understand whether
the discussions in forums cross-over into the review and bugs systems, and
to what effect.

o Causal inference on promoting career. From Eclipse historical data of social

roles, we can also collect contributor metrics of leader. Combined with

56https://github.blog/2020-05-06-new-from-satellite-2020-github-codespaces-g
ithub-discussions-securing-code-in-private-repositories-and-more/\#discussio

ns

111

the metrics of committer, we can address the impact of the forum on the
social leadership, that is, the causal effect of forum participation on being

promoted from committers to leaders.

4.5 Threats to Validity

Several threats to the construct validity emerge in our study. Related to the PS;
and RQ)q, it is possible that there are identical users that have different identity
number and different status in the forums. We also found in several threads, a
message posted by a user had been duplicated with different message identity
number. Since we distinguished the users and the messages by their identity
number, in our analysis, we recorded them differently even though they are same.
In relation with forums linkage, we found that not all links in the threads can be
extracted since they are written in plain text by users. However, the number of
these issues were small. Thus, we consider that the impact of the missing links
is not significant.

Threats to the external validity appear in our data preparation. Even though
we investigated a large scale of discussion forum in Eclipse, the findings could not
be generalized to other organizations.

We diminished the threats to reliability by preparing the online appendix of
our collected threads, links, contributors, and the results of our manual annota-
tion for RQ, and RQ3 (see Section 4.2.3).

4.6 Related Work

In this section, we present some related works to analyze the forum discussions.

Stack Overflow. A number of studies on a web-based question-and-answer
communication channel, Stack Overflow (SO), has shown its importance. Zagal-
sky et al. [122] reported that SO with R-tag has became one of the two questions
and answers (Q&A) communication channels that have a relationship with the
users’ discussions in R software development community forum. The collabo-
ration between members and the independent individuals work have shaped the
knowledge characteristics of the community. Squire [103] showed that the quality

measurements, participation of users, and the effectiveness of responding time in

112

the SO forum have been the main factors that induced the developers’” movement
from self-supported forums and mailing lists. Ye et al. [120] analyzed the reason
behind the inclusion of web links in SO forum. It has been reported that the
forum users share the URLs in SO for various purposes. Referencing sources to
provide the solutions is the most prevalent purposes for the users who posted the
web links. The guidelines for users in making a successful question in SO forum
has been proposed by Calefato et al. [18], whilst Wang et al. [115] investigated
the factors related to the time of getting an accepted answer in four Stack Ex-
change websites. The factors of potential-to-success questions are conciseness,
completeness, and the exactness of the characters usage [18]. In line with that,
after controlling other factors, the accepted answers has been affected strongly
by the dimension of the answerers [115]. The more frequent a user in answering
the questions, the faster to receive an accepted answer. The study by Zou et al.
[126] describes the insights of developers’ requirements through SO. The authors
found that the usability and reliability are the most common topics discussed in
the SO forum and also the most unresolved problems faced by the users. By visu-
alizing the development activities evolution over time, most software developers
interested in the functionality and reliability, while the usability still becoming
the trends.

In our study, the basic idea of the thread codes basically referred to the
artifacts types proposed by Zagalsky et al. [122]. Since we analyzed the entire
discussion for each topic (not per message), we modified the label used in our
study to code the types of thread (see Section 4.3.2.2).

Twitter and news aggregators. Communication between programmers
not limited only in mailing lists and Q&A channels, but also frequently shared
on social media (i.e. Twitter) and news aggregators. The information hidden in
the tweets posted by Twitter users have been attracting for researchers to explore
in a number of studies. Mezouar et al. [72] investigated the tweets posted by
users to relate to the bug reports after removing the noisy tweets. Guzman
et al. [39] analyzed the characteristics of the usage of Twitter, information in
the messages, and classified automatically the potential messages about software
applications. The understanding of developers’ motivation to contribute, and how

the knowledge shaped in the community has also been explored from two modern

113

news aggregator sites: Reddit and Hacker News [3]. The authors highlighted that
the community size, the interaction scope between users, and the social features
might change the shape of knowledge and the sharing method of the development
communities.

Senior contributors. Software development could not be separated from
users’ participation in a discussion forum. Their contributions are not always
related to writing code. Recent studies show that every individual has an op-
portunity to become a valuable contributor. Zhou et al. [124] built a model to
analyze the users’ chances of becoming a senior contributor depend on her com-
petence, passion, and first-time contribution opportunity. Zhou et al. [125] found
that the participation of new members in the issue tracking system environment
might impact to their status of becoming a long term contributor.

Junior contributors. Despite most valuable information for the improve-
ment of a software quality come from the experienced members in a software
project [65], software developers should not underestimate the newcomers’ con-
tributions in a discussion forum. However, the support from core developers
are needed to motivate the young members to actively participate [82], even
though their contributions unrelated with programming. Steinmacher et al. [105]
identified that the lack of social interaction with the community, having unan-
swered questions or receiving delayed answers, and their technical experience
backgrounds are some difficulties of new members faced when they make con-
tributions to an open source software project. To support the newcomers to
overcome their obstacles since their first participation in an OSS project, Stein-
macher et al. [104] designed and built a conceptual model. The proposed model
has succeeded in guiding the young members and minimizing their problems dur-
ing the contribution process. The contribution characteristics of new members
in OSS development has also been studied by Middleton et al. [73]. The authors
identified that the participation forms of the newly members, such as pull request

and how they comment in the discussion influence the decision to join OSS teams.

4.7 Section Summary

To understand the impact of Eclipse community forums related to the linkage of

the ecosystem and the social leadership, we conducted (i) a preliminary statistical

114

study of 1,097,174 threads to analyze the characteristics of threads, contributions
of Eclipse users, and users’ classification; and also (ii) a large-scale study on the
membership-based participation, discussion, and a sentiment investigation on the
social interaction.

Our preliminary study has shown that forums are essential platform for linking
various resources in Eclipse ecosystem and a source of expert knowledge for other
development systems. The results of our analysis reveal that membership plays
an important role in shaping the community through participation, discussion
and interaction between developers. Thus, maintaining project-specific forums is
essential since it has an impact on the health of the ecosystem. Based on this work
that clarify the roles of forums in ecosystem linkage and the impact of membership
in shaping the knowledge sharing activities in the Eclipse community forums,
there are many open issues for future work: understanding and supporting forum
discussions, further studies of activities in multiple software development systems,

and causal inference for assessment, to name a few.

115

5 Conclusions

This thesis has addressed the impact of uncommunicated update on relevant
domains, the implementation of communication channels within software ecosys-
tems, and the human aspects for sharing knowledge in Eclipse community forums.

The summaries of this dissertation are as follows:

o Systematic mapping study. This work was initially carried out to in-
vestigate how previous studies implemented the git diff command. 52
papers were selected from 3 top journals and 8 high ranking international
conference proceedings that were published between 2013 and 2017. The
key outcome of this mapping study is a set of indicators for conducting

three comparison analyses.

e An empirical study of different diff algorithms in Git. Based on
three most common purposes for using git diff command that were found
in the systematic mapping study, three comparison analyses between two
diff algorithms were undertaken, that are, collection of metrics, identifi-
cation of bug-introduction using SZZ algorithm, and manual comparison
of patches. The main outcomes of these comparisons are two-fold. First,
there are 1% to 8% of the changed lines of code produced by Myers and
Histogram are identified differently in the number and the position, and 2%
to 7% files were detected differently in both metrics collection and SZZ algo-
rithm implementation. Second, based on the result of manual comparison
of patches, the Histogram diff algorithm is found to be more appropri-
ate than the Myers in 62% files to describe the changes of code. Since
the implementation of different diff algorithms has an impact on a study
result, considering different diff algorithms is an important knowledge.
Thus, various types of knowledge, either tacit or explicit, are necessary to

document and communicate.

« A topological analysis of communication channels for knowledge
sharing. The first finding of this study is the classification of 13 com-
munication channels adopted in 7 different ecosystems into two different

knowledge forms, that are, externalization and combination. To understand

116

how software projects share knowledge within the ecosystems, an analysis
of various communication channels using topological approach was then
performed. The results of the analysis show that communication channels
change over time. Furthermore, GitHub projects tend to adopt multiple
channels for either capturing new knowledge (externalization) or updating

the existing knowledge (combination).

An investigation on the human aspects of forums with such con-
nective information. This work is conducted to investigate the human
aspects in the Eclipse community forums. The results of the preliminary
study show that Eclipse manages the forums in a various way. Forums are
also essential platform for linking various resources in Eclipse ecosystem.
This is demonstrated by a multitude types of links referenced by forum users
in the discussion threads. In addition, Eclipse forums have been a source of
expert knowledge for other development systems, since active contributors
in the ecosystem tend to be also active in forums. Finally, the main find-
ings of the analysis indicate that human factors play an important role in
the Eclipse community forums. The membership-based participation and
interactions between individuals within the Eclipse forums have an effect
on shaping the knowledge sharing activities. Different statuses of users
tend to post different types of messages and behavioural expression while

knowledge sharing.

This thesis shows that problem of communication, such as uncommunicated

update, in software development processes might leverage the results of the rel-

evant works. Thus, various types of knowledge, either tacit or explicit within

an organization is necessary to document, communicate and share between in-

dividuals. To achieve the success of knowledge sharing, software projects are

required to start adopting multiple communication channels for both capturing

new knowledge and updating the existing knowledge. Project-specific commu-

nication channels, such as Eclipse forums, can also be beneficial as a center of

knowledge sharing platforms since it links to numerous resources in the ecosystem

and as a source of expert knowledge for other development systems. In addition,

contributing to forums has an impact on shaping the community.

117

In sum, the results of this dissertation highlight that since maintaining knowl-
edge sharing in software development environment is challenging, therefore, a
better understanding of where and how knowledge is captured and shared in
software development is necessary. This is significant to both researcher and
practitioners. To the researcher, this dissertation confirms that the notion of
knowledge sources should be treated as distinct for knowledge sharing success,
while the establishment of the technological and human aspects is important to

enhance the knowledge sharing outcome for practitioners.

118

References

1]

Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and
Emad Shihab. Why do developers use trivial packages? an empirical case
study on npm. In Proceedings of the 2017 11th on Foundations of Software
Engineering, pages 385-395, 2017.

Miltiadis Allamanis and Charles Sutton. Why, when, and what: Analyzing
stack overflow questions by topic, type, and code. In Proceedings of the
2013 10th Working Conference on Mining Software Repositories, pages 53—
56, 2013.

Mauricio Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo
Pinto, Margaret-Anne Storey, and Marco Aurélio Gerosa. How modern
news aggregators help development communities shape and share knowl-
edge. In Proceedings of the 40th International Conference on Software
Engineering, pages 499-510, 2018.

John Anvik, Lyndon Hiew, and Gail C. Murphy. Coping with an open
bug repository. In Proceedings of the 2005 OOPSLA Workshop on Eclipse
Technology eXchange, pages 35-39, 2005.

Rayhab Anwar, Mobashar Rehman, Khor Siak Wang, Manzoor Ahmed
Hashmani, and Amjad Shamim. Investigation of knowledge sharing be-

havior in global software development organizations using social cognitive
theory. IEEE Access, T:71286-71298, 2019.

Linda Argote and Ella Miron-Spektor. Organizational learning: From ex-

perience to knowledge. Organization science, 22(5):1123-1137, 2011.

Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Feder-
ica Sarro. The plastic surgery hypothesis. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineer-
ing, pages 306-317, 2014.

Irma Becerra-Fernandez and Rajiv Sabherwal. Knowledge management:

Systems and processes. Routledge, 2014.

119

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Dane Bertram, Amy Voida, Saul Greenberg, and Robert Walker. Com-
munication, collaboration, and bugs: The social nature of issue tracking in
small, collocated teams. In Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work, pages 291-300, 2010.

Stefanie Beyer, Christian Macho, Massimiliano Di Penta, and Martin
Pinzger. Analyzing the relationships between android api classes and their
references on stack overflow. Technical report, Technical Report. University

of Klagenfurt, University of Sannio, 2017.

Stefanie Beyer, Christian Macho, Massimiliano Di Penta, and Martin
Pinzger. What kind of questions do developers ask on stack overflow? a
comparison of automated approaches to classify posts into question cate-
gories. Empirical Software Engineering, 25:2258-2301, 2020.

Stefanie Beyer and Martin Pinzger. A manual categorization of android
app development issues on stack overflow. In Proceedings of the 2014 IEEE
International Conference on Software Maintenance and FEvolution, pages
531-535, 2014.

Hudson Borges, Andre Hora, and Marco Tulio Valente. Understanding the
factors that impact the popularity of github repositories. In Proceedings
of the 2016 IEEE International Conference on Software Maintenance and
Evolution, pages 334-344, 2016.

Gilberto Borrego, Alberto L. Moran, Ramén Palacio, and Oscar M. Ro-
driguez. Understanding architectural knowledge sharing in agsd teams: An
empirical study. In Proceedings of the 2016 IEEE 11th International Con-
ference on Global Software Engineering, pages 109-118, 2016.

David Budgen, Mark Turner, Pearl Brereton, and Barbara Kitchenham.
Using mapping studies in software engineering. In PPIG, volume 8, pages
195-204, 2008.

Andrew Lincoln Burrow. Negotiating access within wiki: A system to
construct and maintain a taxonomy of access rules. In Proceedings of the
15th ACM Conference on Hypertext and Hypermedia, pages 77-86, 2004.

120

[17]

[20]

[22]

[23]

[25]

Elizabeth F. Cabrera and Angel Cabrera. Fostering knowledge sharing
through people management practices. The International Journal of Human
Resource Management, 16(5):720-735, 2005.

Fabio Calefato, Filippo Lanubile, and Nicole Novielli. How to ask for techni-
cal help? evidence-based guidelines for writing questions on stack overflow.
Information and Software Technology, 94:186-207, 2018.

Suranjan Chakraborty, Saonee Sarker, and Suprateek Sarker. An explo-
ration into the process of requirements elicitation: A grounded approach.
Journal of the Association for Information Systems, 11(4), 2010.

Thomas Chau and Frank Maurer. Knowledge sharing in agile software
teams. In Logic versus Approzimation: Fssays Dedicated to Michael M.
Richter on the Occasion of his 65th Birthday, pages 173-183. Springer,
Berlin, Heidelberg, 2004.

Ai Ling Chua and Shan L. Pan. Knowledge transfer and organizational
learning in is offshore sourcing. Omega, 36(2):267-281, 2008. Special Issue

on Knowledge Management and Organizational Learning.

Jailton Coelho and Marco Tulio Valente. Why modern open source projects
fail. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 186-196, 2017.

Kieran Conboy, Sharon Coyle, Xiaofeng Wang, and Minna Pikkarainen.
People over process: Key challenges in agile development. IEEE Software,
28(4):48-57, 2011.

Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uirda Kulesza,
Roberta Coelho, and Ahmed E. Hassan. A framework for evaluating the
results of the szz approach for identifying bug-introducing changes. IEEE
Transactions on Software Engineering, 43(7):641-657, 2017.

Thomas H. Davenport and Lawrence Prusak. Working knowledge: How

organizations manage what they know. Ubiquity, 2000(August):6, 2000.

121

[20]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Monika Davidekova and Jozef Hvorecky. Collaboration tools for virtual
teams in terms of the seci model. In Proceedings of the International Con-

ference on Interactive Collaborative Learning, pages 97-111, 2017.

Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact of se-
curity vulnerabilities in the npm package dependency network. In Proceed-
ings of the 15th International Workshop on Mining Software Repositories,
pages 181-191, 2018.

Torgeir Dingsgyr and Emil Rgyrvik. An empirical study of an informal
knowledge repository in a medium-sized software consulting company. In
Proceedings of the 25th International Conference on Software Engineering,
pages 84-92, 2003.

Yvonne Dittrich. What does it mean to use a method? towards a prac-
tice theory for software engineering. Information and Software Technology,
70:220 — 231, 2016.

Georg Dotzler and Michael Philippsen. Move-optimized source code tree
differencing. In Proceedings of 2016 31st IEEE/ACM International Con-
ference on Automated Software Engineering, pages 660-671, 2016.

Ekwa Duala-Ekoko and Martin P. Robillard. Tracking code clones in evolv-
ing software. In Proceedings of the 29th International Conference on Soft-

ware Engineering, pages 158-167, 2007.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and
Martin Monperrus. Fine-grained and accurate source code differencing. In
Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, pages 313-324, 2014.

Beat Fluri, Michael Wuersch, Martin Plnzger, and Harald Gall. Change
distilling: Tree differencing for fine-grained source code change extraction.
IEEE Transactions on Software Engineering, 33(11):725-743, 2007.

Nicolai J. Foss and Torben Pedersen. Transferring knowledge in mncs: The
role of sources of subsidiary knowledge and organizational context. Journal
of International Management, 8(1):49-67, 2002.

122

[35]

[37]

[41]

[42]

[43]

Shahla Ghobadi. Challenges of cross-functional software development
teams: A conceptual study. Journal of Information Technology Manage-
ment, 22(3):26-35, 2011.

Jesus M. Gonzalez-Barahona, Paul Sherwood, Gregorio Robles, and Daniel
Izquierdo. Technical lag in software compilations: Measuring how outdated
a software deployment is. In Proceedings of the International Conference

on Open Source Systems, pages 182-192, 2017.

Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. Measuring
developer contribution from software repository data. In Proceedings of the
2008 International Working Conference on Mining Software Repositories,
pages 129-132, 2008.

Robert M. Grant. Toward a knowledge-based theory of the firm. Strategic
Management Journal, 17(52):109-122, 1996.

Emitza Guzman, Rana Alkadhi, and Norbert Seyff. A needle in a haystack:
What do twitter users say about software? In Proceedings of the 2016 IEEE
24th International Requirements Engineering Conference (RE), pages 96—
105, 2016.

Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and
Arie van Deursen. Communication in open source software development
mailing lists. In Proceedings of the 10th Working Conference on Mining
Software Repositories, pages 277-286, 2013.

Masatomo Hashimoto and Akira Mori. Diff/ts: A tool for fine-grained
structural change analysis. In Proceedings of the 2008 15th Working Con-
ference on Reverse Engineering, pages 279288, 2008.

Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. Bug prediction based
on fine-grained module histories. In Proceedings of the 34th International

Conference on Software Engineering, pages 200-210, 2012.

Hideaki Hata, Taiki Todo, Saya Onoue, and Kenichi Matsumoto. Charac-

teristics of sustainable oss projects: A theoretical and empirical study. In

123

[44]

[46]

[47]

[49]

[50]

Proceedings of the 2015 IEEE/ACM 8th International Workshop on Coop-
erative and Human Aspects of Software Engineering, pages 15-21, 2015.

Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio.
9.6 million links in source code comments: Purpose, evolution, and decay. In

Proceedings of the 41st International Conference on Software Engineering,
ICSE 19, pages 1211-1221, 2019.

Claudia Hauff and Georgios Gousios. Matching github developer profiles
to job advertisements. In Proceedings of the 12th Working Conference on
Mining Software Repositories, pages 362-366, 2015.

Joseph Hejderup, Arie van Deursen, and Georgios Gousios. Software ecosys-
tem call graph for dependency management. In Proceedings of the 2018
IEEE/ACM 40th International Conference on Software Engineering: New
Ideas and Emerging Technologies Results, pages 101-104, 2018.

Yoshiki Higo, Akio Ohtani, and Shinji Kusumoto. Generating simpler ast
edit scripts by considering copy-and-paste. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering,
pages 532-542, 2017.

Kaifeng Huang, Bihuan Chen, Xin Peng, Daihong Zhou, Ying Wang, Yang
Liu, and Wenyun Zhao. Cldiff: Generating concise linked code differences.
In Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pages 679-690, 2018.

James W. Hunt and M. Douglas Macllroy. An algorithm for differential file
comparison. Computing science technical report. Bell Laboratories Murray
Hill, 1976.

Abasiofiok M. Ibekwe, Jincai Ma, David E. Crowley, Ching-Hong Yang,
Alexis M. Johnson, Tanya C. Petrossian, Pek Y. Lum, Eelco Franz, and
Antje Flieger. Topological data analysis of Escherichia coli O157:H7 and
non-O157 survival in soils. Frontiers in Cellular and Infection Microbiology,
4:1-10, 2014.

124

[51]

[54]

[55]

[56]

[58]

[59]

Nafiseh Kahani, Mojtaba Bagherzadeh, Juergen Dingel, and James R.
Cordy. The problems with eclipse modeling tools: A topic analysis of eclipse
forums. In Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems, pages 227-237, 2016.

Yasutaka Kamei and Emad Shihab. Defect prediction: Accomplishments
and future challenges. In Proceedings of the 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, volume 5,
pages 33-45, 2016.

Simone Kauffeld and Nale Lehmann-Willenbrock. Meetings matter: Ef-
fects of team meetings on team and organizational success. Small Group
Research, 43(2):130-158, 2012.

Karlheinz Kautz and Annemette Kjeergaard. Knowledge sharing in software
development. P.A. Nielsen and K., Kautz (Editions), Software Processes
& Knowledge. Beyond Conventional Software Process Improvement, pages
43-68, 2008.

R. Kavitha. Collection development in digital libraries: trends and prob-
lems. Indian Journal of Science and Technology, 2(12), 2009.

Joann Keyton. Communication in organizations. Annual Review of Orga-
nizational Psychology and Organizational Behavior, 4(1):501-526, 2017.

Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. Struc-
ture and evolution of package dependency networks. In Proceedings of

the 14th International Conference on Mining Software Repositories, pages
102-112, 2017.

Miryung Kim, David Notkin, Dan Grossman, and Gary Wilson. Identi-
fying and summarizing systematic code changes via rule inference. IEEE
Transactions on Software Engineering, 39(1):45-62, 2013.

Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empir-
ical study of code clone genealogies. In Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM SIGSOFT

125

[62]

[65]

[66]

International Symposium on Foundations of Software Engineering, pages
187-196, 2005.

Julia Kotlarsky, Man Oshri, Jos van Hillegersberg, and Kuldeep Ku-
mar. Globally distributed component-based software development: An ex-
ploratory study of knowledge management and work division. Journal of
Information Technology, 22(2):161-173, 2007.

Marco Kuhrmann, Fernandez, Daniel Mendez, and Maya Daneva. On
the pragmatic design of literature studies in software engineering: An
experience-based guideline. Empirical Software Engineering, 22(6):2852—
2891, 2017.

Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and
Katsuro Inoue. Do developers update their library dependencies? Empirical
Software Engineering, 23(1):384-417, 2018.

Filippo Lanubile. Social software as key enabler of collaborative develop-
ment environments, 2013. [Online]. Available: https://www.slideshare
.net/lanubile/lanubilesse2013-25350287.

Nuttapon Lertwittayatrai, Raula Gaikovina Kula, Saya Onoue, Hideaki
Hata, Arnon Rungsawang, Pattara Leelaprute, and Kenichi Matsumoto.
Extracting insights from the topology of the javascript package ecosystem.
In Proceedings of the 2017 24th Asia-Pacific Software Engineering Confer-
ence, pages 298-307, 2017.

Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. What makes a great software
engineer? In Proceedings of the 37th International Conference on Software

Engineering, volume 1, pages 700710, 2015.

Yngve Lindsjorn, Dag [.LK. Sjeberg, Torgeir Dingsgyr, Gunnar R. Bergersen,
and Tore Dyba. Teamwork quality and project success in software devel-
opment: A survey of agile development teams. Journal of Systems and
Software, 122:274-286, 2016.

126

[67]

[68]

[69]

[71]

[72]

[73]

[74]

Xiang Lingzi and Lin Zhi. An overview of source code audit. In Proceedings
of the 2015 International Conference on Industrial Informatics - Comput-
ing Technology, Intelligent Technology, Industrial Information Integration,
pages 2629, 2015.

Pek Y. Lum, Gurjeet Singh, Alan Lehman, Tigran Ishkanov, Mikael
Vejdemo-Johansson, Muthu Alagappan, John Carlsson, and Gunnar Carls-
son. Extracting insights from the shape of complex data using topology.
Scientific Reports, 3(1236), 2013.

Lech Madeyski and Marian Jureczko. Which process metrics can signif-
icantly improve defect prediction models? an empirical study. Software
Quality Journal, 23(3):393-422, 2015.

Xiaozhu Meng, Barton P. Miller, William R. Williams, and Andrew R.
Bernat. Mining software repositories for accurate authorship. In Proceedings

of the 2013 IEEFE International Conference on Software Maintenance, pages
250-259, 2013.

Tom Mens. An ecosystemic and socio-technical view on software main-
tenance and evolution. In Proceedings of the 2016 IEEE International
Conference on Software Maintenance and Evolution (Invited Paper), 2016.

Mariam El Mezouar, Feng Zhang, and Ying Zou. Are tweets useful in the
bug fixing process? an empirical study on firefox and chrome. FEmpirical
Software Engineering, 23(3):1704-1742, 2018.

Justin Middleton, Emerson Murphy-Hill, Demetrius Green, Adam Meade,
Roger Mayer, David White, and Steve McDonald. Which contributions
predict whether developers are accepted into github teams. In Proceedings

of the 15th International Conference on Mining Software Repositories, pages
403-413, 2018.

Samim Mirhosseini and Chris Parnin. Can automated pull requests en-
courage software developers to upgrade out-of-date dependencies? In Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pages 84-94, 2017.

127

[75]

[76]

[80]

[31]

[82]

[84]

Eugene W. Myers. An o(nd) difference algorithm and its variations. Algo-
rithmica, 1:251-266, 1986.

Nachiappan Nagappan and Thomas Ball. Use of relative code churn mea-
sures to predict system defect density. In Proceedings of the 27th Interna-
tional Conference on Software Engineering, pages 284-292, 2005.

Keitaro Nakasai, Hideaki Hata, and Kenichi Matsumoto. Are donation
badges appealing? a case study of developer responses to eclipse bug re-
ports. IEEE Software, 2018.

Ikujiro Nonaka. Management of knowledge creation: A theory of organiza-

tional knowledge creation. Tokyo: Nihon Keizai Shinbun-sha, 1990.

Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge-creating Company:
How Japanese Companies Create the Dynamics of Innovation. Everyman’s
library. Oxford University Press, 1995.

Saya Onoue, Hideaki Hata, Raula Gaikovina Kula, and Kenichi Matsumoto.
Human capital in software engineering: A systematic mapping of reconcep-
tualized human aspect studies. arXiv preprint arXiv:1805.03844, 2018.

Marc Palyart, Gail C. Murphy, and Vaden Masrani. A study of social
interactions in open source component use. IEEE Transactions on Software
Engineering, 44(12):1132-1145, 2018.

Sebastiano Panichella. Supporting newcomers in software development
projects. In Proceedings of the 2015 IEEE International Conference on
Software Maintenance and Evolution, pages 586-589, 2015.

Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Sys-
tematic mapping studies in software engineering. In Proceedings of the
12th International Conference on Evaluation and Assessment in Software

Engineering, pages 68-77, 2008.

Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and Software Technology, 64:1-18, 2015.

128

[85]

[89]

[90]

[91]

[92]

[93]

Joao Pita Costa and Tihana Galinac Grbac. The topological data analy-
sis of time series failure data in software evolution. In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering
Companion, pages 25-30, 2017.

Michael Polanyi. Tacit knowing: Its bearing on some problems of philoso-
phy. Review of Modern Physics, 34:601-616, 1962.

Michael Polanyi. The logic of tacit inference. Philosophy, 41(155):1-18,
1966.

Foyzur Rahman and Premkumar Devanbu. Ownership, experience and
defects: A fine-grained study of authorship. In Proceedings of the 33rd
International Conference on Software Engineering, pages 491-500, 2011.

Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte.
An empirical analysis of build failures in the continuous integration work-
flows of java-based open-source software. In Proceedings of the 14th In-

ternational Conference on Mining Software Repositories, pages 345-355,
2017.

Baishakhi Ray, Meiyappan Nagappan, Christian Bird, Nachiappan Nagap-
pan, and Thomas Zimmermann. The uniqueness of changes: Characteristics
and applications. In Proceedings of the 12th Working Conference on Mining
Software Repositories, pages 34-44, 2015.

Gema Rodriguez-Perez, Gregorio Robles, and Jesus M. Gonzalez-Barahona.
Reproducibility and credibility in empirical software engineering: A case
study based on a systematic literature review of the use of the szz algorithm.
Information and Software Technology, 99:164-176, 2018.

David Rooney, Greg Hearn, and Abraham Ninan. Handbook on the knowl-
edge economy. Edward Elgar Publishing, 2005.

Christoffer Rosen and Emad Shihab. What are mobile developers asking
about? a large scale study using stack overflow. Empirical Software Engi-
neering, 21:1192—1223, 2016.

129

[94]

100]

[101]

102]

103]

Shinobu Saito, Yukako limura, Aaron K. Massey, and Annie I. Antén. Dis-
covering undocumented knowledge through visualization of agile software

development activities. Requirements Engineering, 23(3):381-399, 2018.

Saonee Sarker, Suprateek Sarker, Darren B. Nicholson, and Kshiti D. Joshi.
Knowledge transfer in virtual systems development teams: an exploratory
study of four key enablers. IEFE Transactions on Professional Communi-
cation, 48(2):201-218, 2005.

Walt Scacchi. Understanding the requirements for developing open source
software systems. IEE Proceedings - Software, 149(1):24-39, 2002.

Kjeld Schmidt. The trouble with ‘tacit knowledge’. Computer Supported
Cooperative Work, 21(2-3):163-225, 2012.

Ken Schwaber and Mike Beedle. Agile Software Development with Scrum,
volume 1. Prentice Hall Upper Saddle River, 2001.

Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne.
Evaluating complexity, code churn, and developer activity metrics as in-
dicators of software vulnerabilities. IEEE Transactions on Software Engi-
neering, 37(6):772-787, 2011.

Gurjeet Singh, Facundo Mémoli, and Gunnar Carlsson. Topological meth-
ods for the analysis of high dimensional data sets and 3d object recognition.

Eurographics Symposium on Point-Based Graphics, 91, 2007.

Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do
changes induce fixes? SIGSOFT Software Engineering Notes, 30(4):1-5,
May 2005.

John-Christopher Spender and Robert M. Grant. Knowledge and the firm:
Overview. Strategic management journal, 17(S2):5-9, 1996.

Megan Squire. Should we move to stack overflow?: Measuring the utility of
social media for developer support. In Proceedings of the 37th International

Conference on Software Engineering, volume 2, pages 219-228, 2015.

130

104]

[105]

[106]

107]

[108]

109]

[110]

Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Au-
rélio Gerosa. Overcoming open source project entry barriers with a portal
for newcomers. In Proceedings of the 38th International Conference on
Software Engineering, pages 273-284, 2016.

Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa,
and David F. Redmiles. A systematic literature review on the barriers
faced by newcomers to open source software projects. Information and
Software Technology, 59:67 — 85, 2015.

Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif
Singer, and Daniel M. German. How social and communication channels
shape and challenge a participatory culture in software development. IEEFE
Transactions on Software Engineering, 43(2):185-204, 2017.

Damian A. Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy
Zaidman. Discovering community patterns in open-source: a systematic
approach and its evaluation. FEmpirical Software Engineering, 24:1369—
1417, 2019.

Jirateep Tantisuwankul, Yusuf Sulistyo Nugroho, Raula Gaikovina Kula,
Hideaki Hata, Arnon Rungsawang, Pattara Leelaprute, and Kenichi Mat-
sumoto. A topological analysis of communication channels for knowledge
sharing in contemporary github projects. Journal of Systems and Software,
158:110416, 2019.

Paivi M. Tikka, Markku T. Kuitunen, and Salla M. Tynys. Effects of edu-
cational background on students’ attitudes, activity levels, and knowledge
concerning the environment. The Journal of Environmental Education,
31(3):12-19, 2000.

Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do pro-
grammers ask and answer questions on the web? (nier track). In Proceed-

ings of the 33rd International Conference on Software Engineering, pages
804—807, 2011.

131

[111]

[112]

[113]

[114]

115]

[116]

[117)

[118]

[119]

Christoph Treude and Margaret-Anne Storey. Effective communication
of software development knowledge through community portals. In Pro-
ceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, pages 91-101, 2011.

Laurens Van Der Maaten and Geoffrey Hinton. Visualizing Data using
t-SNE. Journal of Machine Learning Research, 9:2579-2605, 2008.

Christopher Vendome, Mario Linares-Vasquez, Gabriele Bavota, Massimil-
iano Di Penta, Daniel German, and Denys Poshyvanyk. License usage and
changes: A large-scale study of java projects on github. In Proceedings of
the 2015 IEEFE 23rd International Conference on Program Comprehension,
pages 218-228 2015.

Anthony J. Viera and Joanne M. Garrett. Understanding interobserver
agreement: The kappa statistic. Family Medicine, 37(5):360-363, 5 2005.

Shaowei Wang, Tse-Hsun Chen, and Ahmed E. Hassan. Understanding
the factors for fast answers in technical q&a websites. Empirical Software
Engineering, 23(3):1552-1593, 2018.

Yang Wang, Daniel Graziotin, Stefan Kriso, and Stefan Wagner. Commu-
nication channels in safety analysis: An industrial exploratory case study.
Journal of Systems and Software, 153:135-151, 2019.

Laurie Williams and Robert Kessler. Pair Programming Illuminated.
Addison-Wesley Longman Publishing Co., Inc., 2002.

Claes Wohlin, Per Runeson, Paulo Anselmo da Mota Silveira Neto, Emelie
Engstrom, Ivan do Carmo Machado, and Eduardo Santana de Almeida.
On the reliability of mapping studies in software engineering. Journal of
Systems and Software, 86(10):2594-2610, 2013.

Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M. German, and Katsuro
Inoue. Analysis of license inconsistency in large collections of open source
projects. Empirical Software Engineering, 22(3):1194-1222, 2017.

132

120]

[121]

[122]

[123]

[124]

[125]

[126]

Deheng Ye, Zhenchang Xing, and Nachiket Kapre. The structure and dy-
namics of knowledge network in domain-specific q&a sites: A case study of
stack overflow. Empirical Software Engineering, 22(1):375-406, 2017.

Yunwen Ye and K. Kishida. Toward an understanding of the motivation of
open source software developers. In Proceedings of the 25th International

Conference on Software Engineering, pages 419-429, 2003.

Alexey Zagalsky, Daniel M. German, Margaret-Anne Storey, Carlos Gomez
Teshima, and Germén Poo-Caamano. How the r community creates and
curates knowledge: An extended study of stack overflow and mailing lists.
Empirical Software Engineering, 23(2):953-986, 2018.

Mansooreh Zahedi, Mojtaba Shahin, and Muhammad Ali Babar. A sys-
tematic review of knowledge sharing challenges and practices in global

software development. International Journal of Information Management,
36(6):995-1019, 2016.

Minghui Zhou and Audris Mockus. What make long term contributors:
Willingness and opportunity in oss community. In Proceedings of the 2012
34th International Conference on Software Engineering, pages 518-528,
2012.

Minghui Zhou and Audris Mockus. Who will stay in the floss community?
modeling participant’s initial behavior. [EFEE Transactions on Software
Engineering, 41(1):82-99, 2015.

Jie Zou, Ling Xu, Mengning Yang, Xiaohong Zhang, and Dan Yang. To-
wards comprehending the non-functional requirements through developers
eves. Information and Software Technology, 84:19-32, 2017.

133

