
Doctoral Dissertation

Learning and adaptation of end-to-end

multimodal dialog management

Tung The Nguyen

June 25, 2020

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Tung The Nguyen

Thesis Committee:

Professor Satoshi Nakamura (Supervisor)

Professor Taro Watanabe (Co-supervisor)

Professor Wolfgang Minker (Ulm University)

Assistant Professor Koichiro Yoshino (Co-supervisor)

Associate Professor Sakriani Sakti (Co-supervisor)

Learning and adaptation of end-to-end

multimodal dialog management∗

Tung The Nguyen

Abstract

Goal-oriented dialog systems are gaining much attention from the machine

learning research community, due to their practical applications to various tasks.

In the work flow of a dialog system with a user, the management process is critical.

Because the dialog management process directly governs the system’s behavior,

which decides whether the system successfully achieves its goal. In many tasks,

non-verbal information from different modalities is essential for the success of

the system. As a result, multiple studies have attempted to incorporate such

multimodal information into dialog management. However, the current studies

generally follow the modular-based approach when creating multimodal dialog

systems, and use additional components to process the multimodal features that

are needed. Since these components are usually built for a specific task, they

cannot be reused in a different dialog system. Thus, systems built using the

modular-based approach are difficult to overhaul and adapt to new tasks. In this

research, I study the application of the end-to-end approach using neural networks

for the dialog management of multimodal goal-oriented systems. Among the vast

number of challenges in this topic, my research tackles the following problems:

1. Multimodal information fusion: In many tasks, handling multimodal in-

formation is important to achieve success. However, the existing works in

multimodal dialog management only use the simple concatenation of input

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, June 25, 2020.

i

features as the fusion method, which is inefficient, leading to undesired per-

formance. Two main challenges must be faced when considering the multi-

modal fusion problem: the abstraction level of the input modalities and the

interaction features. In this research, to combine features of multimodal in-

put, I propose a neural network-based termed Hierarchical Tensor Fusion

Network. This method combines two existing fusion methods: hierarchical

fusion and tensor fusion. Experimental results show that the proposed hier-

archical tensor fusion network outperforms existing fusion methods in terms

of accuracy in the deception detection and sentiment analysis tasks.

2. Data sparsity: A popular approach for dialog management is the reinforce-

ment learning (RL) framework that learns a dialog policy that governs the

system’s action selection procedure. However, the amount of samples needed

to learn an optimal solution is usually prohibitive, especially for multimodal

dialog tasks, where data sparsity is a huge challenge. In such a situation, policy

adaptation is an effective solution, since it allows us to exploit the knowledge

from learning a policy in an existing task (the source task) to improve the

policy’s training in a new task (the target task). Current works in policy

adaptation for dialog management use a weight initialization strategy, which

requires RL training of the target policy. Although this method is effective, its

adaptation process is time-consuming and the learned policy might produce

inferior performance due to the small amount of available data. In this paper,

I propose a novel approach for dialog policy adaptation called Dialog Policy

Reuse Algorithm - DPRA that does not require training by reinforcement

learning on the target task. Experiments show that DPRA greatly reduces

training times, and its learned policy outperforms polices trained by existing

method when the target task’s dataset is limited.

Keywords:

dialog system, dialog management, multimodal processing, reinforcement learn-

ing, policy adaptation, mixture density network

ii

Acknowledgements

First and foremost, I would like to express my deepest thanks toward Prof.

Satoshi Nakamura for his continuous and enthusiastic supervision during three

years of my doctor course. His kind advices and guidance, which helped me real-

ize my weaknesses and improved myself to become not only a better student but

also a better researcher. I have been and will always be looking up to him as a

great teacher.

Professor Taro Watanabe and Professor Wolfgang Minker; who have been

taking part as members of my master thesis’s committee, I wish to thank them

for their careful reviews as well as many insightful advices to complete my thesis.

I would like to thank Asistant Prof. Koichiro Yoshino for his tireless support

that helped me overcame all the obstacles during my research. His knowledge

and professionalism really impresed me as well as other members of my lab. I

will always be looking at him as a model for me to follow. His guidance and

suggestions have helped me a lot in shaping up the idea of this research. In

addition to that, his tutorship has equipped me with lots of useful skills that

helped me to complete the research in my doctor course.

I wish to send my gratitude to Associate Prof. Sakriani Sakti; her advices

for my research were extremely valuable and helped me a lot to complete it with

success.

Especially, I want to thank Ms. Manami Matsuda, my lab’s assistant, who

has always given great helps, both in the lab and in my daily life. I also want to

send my thanks to all the lab’s members, from whom I received great support.

Finally, I want to send my deepest gratitude to my family. During my doctor

course, they have been continuously giving me motivation and inspiration to keep

going forward. Without them, this work could not have been completed.

iii

Contents

Acknowledgements iii

1. Introduction 1

1.1 Background . 1

1.2 Goal-oriented dialog modeling . 3

1.3 Challenges of multimodal dialog management 6

1.3.1 Fusion of multimodal information in dialog systems 7

1.3.2 Data sparsity problem and policy adaptation 9

1.4 Proposed solutions and approaches 10

1.4.1 Multimodal fusion with hierarchical tensor fusion network 10

1.4.2 Improving policy learning with policy adaptation 11

1.4.3 Study on multimodal goal-oriented dialog systems 12

1.5 Thesis overview . 13

2. Preliminaries 14

2.1 Reinforcement learning . 14

2.2 Dialog management using reinforcement learning 16

2.3 Policy adaptation . 18

2.4 Multimodal dialog tasks . 19

2.5 Dialog management performance metrics 22

3. Multimodal fusion with hierarchical tensor fusion network 23

3.1 Related works . 24

3.2 Method . 28

3.3 Evaluation I - Deception detection 29

3.3.1 Dataset . 29

3.3.2 Features extraction . 30

3.3.3 Results of deception detection 31

3.3.4 Relationship between deception detection accuracies and

numbers of parameters . 33

3.3.5 Dialog management performance based on predicted decep-

tion labels . 34

3.4 Evaluation II - Sentiment analysis 35

iv

3.4.1 Dataset . 35

3.4.2 Feature extraction and training details 36

3.4.3 Results . 39

3.5 Conclusion . 40

4. Dialog management with multimodal information 41

4.1 Modular-based approach . 41

4.2 End-to-end approach . 43

4.3 Multimodal user simulation . 45

4.4 Dialog management training with policy gradient methods 47

4.5 Evaluation . 48

4.5.1 Dataset . 48

4.5.2 Observations/Features extraction 49

4.5.3 Results . 50

5. Policy reuse with action relation probability 51

5.1 Related works . 51

5.2 Method . 52

5.2.1 Policy adaptation with action-relation probability 53

5.2.2 Action-relation probability modeling with mixture density

network . 54

5.3 Evaluation . 62

5.3.1 Setting . 62

5.3.2 Policy adaptation between similar tasks 63

5.3.3 Policy adaptation between distinctive tasks 69

6. Conclusions and future directions 73

6.1 Conclusions . 73

6.2 Future directions . 74

References 75

Appendix 83

A. Proof of equation 1 and equation 10 83

v

B. Results 84

C. Training dialog policy with REINFORCE 87

Publication list 89

vi

List of Figures

1 Example of utilizing multimodal information in goal-oriented dia-

log systems. 3

2 Example of a modular-based dialog system that handles multi-

modal information. The input of multimodal processing module

can be from visual or acoustic information of the conversation topic

or user. 4

3 Example of multimodal end-to-end dialog systems. 6

4 Examples of end-to-end dialog management. 18

5 Flow chart of the health consultation conversation. 20

6 Example of tasks that need processing of multimodal information. 23

7 Early and late fusion network architecture. 25

8 Hierarchical fusion architecture. 25

9 Tensor fusion architecture. 26

10 Hierarchical tensor fusion architecture. 28

11 Effect of network depth on detection performance. 34

12 Hierarchical tensor fusion network for sentiment analysis task with

three modalities. 37

13 Hierarchical fusion network for sentiment analysis task with three

modalities. 38

14 Modular dialog system for the health consultation task. 42

15 Multimodal dialog management using the end-to-end approach. . 45

16 State transition modeling by mixture density network.. 56

17 Working procedure of DPRA. 59

18 Experiment procedure of policy adaptation evaluation. Each phase

is illustrated with different colors and numbering. 63

19 Average reward received per episode of adapted policies in similar

tasks setting. 84

20 DA selection accuracy received per episode of adapted policies in

similar tasks setting. 85

21 Average reward received per episode of adapted policies in distinc-

tive tasks setting. 86

vii

22 DA selection accuracy received per episode of adapted policies in

distinctive tasks setting. 87

List of Tables

1 Dataset partitions. 30

2 Deception detection performance of models based on different fu-

sion methods. Precision, Recall, and F1-score are measured for the

positive (Lie) label. 31

3 Accuracy of dialog acts selection when using different deception

labels result. 35

4 Detail statistics of the CMU-MOSEI dataset. 36

5 Results of sentiment analysis on the CMU-MOSEI dataset. ↑ indi-
cates metrics that higher is better. ↓ indicates metrics that lower

is better. 39

6 Rewards in each turn for all possible combination of (s, a) in the

state-action space. 43

7 Statistics of deception labels and dialog acts in the health consul-

tation corpus. 49

8 Accuracy of dialog act selection when using different approaches. . 50

9 Reward definition for the source task. 64

10 Reward definition for the target task. 65

11 Comparison of training time required for different policy adapta-

tion methods. 65

12 Average reward per episode of the learned policies with different

amounts of available data. Numbers in bracket indicates 95% con-

fidence interval. 66

13 Dialog act selection accuracy of the learned policies with differ-

ent amount of available data. Numbers in bracket indicates 95%

confidence interval. 67

14 Average reward per episode of the policies that take only use lin-

guistic features (single-modality). Numbers in bracket indicates

95% confidence interval. 68

viii

15 Dialog act selection accuracy of the learned policies that only use

linguistic features (single-modality). Numbers in bracket indicates

95% confidence interval. 69

16 Emotion elicitation dataset statistics. 70

17 Average reward per episode of the learned policies with different

amount of available data. Numbers in bracket indicates 95% con-

fidence interval. 71

18 Dialog act selection accuracy of the learned policies with differ-

ent amount of available data. Numbers in bracket indicates 95%

confidence interval. 72

ix

1. Introduction

1.1 Background

Goal-oriented dialog systems refer to the type of conversational agents that have a

specific objective that must be achieved through conversations with a human user

[41, 52]. Task-oriented is another term that refers to this specific type of dialog

system, since its goal is to complete a certain task. Although dialog systems can

be constructed to converse with multiple users (multi-party), this research only

addresses single-party dialogs, where the interaction between the system and the

user is one-to-one. In contrast to goal-oriented studies, another branch of dialog

research tackles about chat-oriented or chat-based systems, where the system’s

purpose is to deliver coherent and relevant responses to the conversation topic [51,

38, 39]. Although current studies on chat-oriented dialog systems have achieved

promising results, the real-life applications of such system are still limited. As

a result, my research focuses on goal-oriented dialog system, which has various

applications in practical situations.

In the past, when discussing dialog systems, we usually referred to computer

programs. However, with technological advance, the definitions of dialog sys-

tem and conversational agent have changed. A dialog system can now refer to

a smartphone application or an embedded conversation module on a robot. The

applications of goal-oriented dialog systems are amazingly diverse. Some systems

assist users in such daily tasks as traffic navigation, news summarizing, or book-

ing restaurant. Apple’s Siri, Microsoft’s Cortana, or car navigation systems are

prime examples of such successful, practical dialog systems. Goal-oriented dialog

systems can also be used for more active roles, such as managing of discussions

or persuading the users to accept recommendations. For example, a commercial

seller system might convince users to buy its recommended products or a health

consultation system might persuade that persuades its users to adopt a healthier

lifestyle.

In the mid 50s of the 20th century, the interactions between humans and com-

puters or machines are text-based. Traditional dialog systems were only built for

handling lexical input (text) from user. As technologies steadily advances, smart

devices are able to capture non-verbal information such as facial expressions,

1

movements, or changes in the human vocal pitch. In many tasks, such information

is important for the system to successfully reach its goal. For example, assume

that an automatic health consultation system has just suggested that a user start

running three times a week. Naturally, most users do not immediately jump off

the coach and run a marathon; they ponder, consider, and reflect. During this

period, if the system has information about the user’s facial expressions, it can

evaluate the user’s interest level in the recommendation and determine whether to

continue to persuade the user or to recommend a new activity instead. For some

tasks, the multimodal information that used by the system might come from the

conversation topic. Assume that a commercial agent system is recommending the

purchase of a certain car (Figure 1). The system has access to the car’s image,

but no information about the available color. The system wants to compliment

the car’s color. In such a situation, it needs to process the car’s image to extract

a color and responses: “Red looks really great on this car, doesn’t it?”. Such a

response is more persuasive and helps the system to successfully reach its goal.

These are just a couple examples of the effectiveness of multimodal information

in goal-oriented dialog systems.

Based on the above reasons, the incorporation of multimodal information has

become a popular topic in the dialog research community. In general, three main

modalities have been commonly used in previous studies:linguistic(text), visual,

and acoustic. Note that multimodal processing also considers other modalities

including brain signals (EEG or fMRI) and biological readings (heart rate, blood

pressure). In this research, I avoid using these modalities because human mainly

perceives information from visual, acoustic, and linguistic features when talking

with each other and solving a task related to the conversation. Since the goal

of dialog research is to create human-like, intelligent conversational agents, I

follow previous works and focus on visual, acoustic, and linguistic modalities.

The schemes that takes input from two or more modalities are called multimodal

dialog system. They are the scope of this study. My research focuses on the

management process of multimodal goal-oriented dialog systems.

2

1. I recommend you to
buy this car.

1. Hmm, let me see.

2. The RED color looks really
nice on this car, isn't it?

2. Yes, you’re right. It is
really nice.

Can you provide other
information about it? 3. Sure. Please wait …

Figure 1. Example of utilizing multimodal information in goal-oriented dialog

systems.

1.2 Goal-oriented dialog modeling

This section discusses the general approaches for modeling multimodal goal-

oriented dialog. In principle, the interactions between systems and users can

be divided into smaller units, which is called turn. A modular dialog system con-

tains several components, each of which handles a small part of the interaction

process between the system and the user every turn (Figure 2).

The following is the working process of the dialog system. The Natural Lan-

guage Understanding (NLU) module takes input as the user’s spoken utterance

and recognizes the user’s dialog act (DA), which is a special label that represents

the user’s intention, or what he wants to say. The Multimodal Processing module

takes the input multimodal information and generates a multimodal label, which

depends on the task’s goal. For example, a commercial agent may need a label

3

System

NLU*:
recognizing user’s
intention (dialog act)

User

Dialog
state

tracker

Policy
manager

NLG**:
Converting system’s action
into speech/text

* Natural Language Understanding
** Natural Language Generation

User’s DAUtterance

Previous
turn’s state

Current
state

System’s DA

Multimodal
processing

Multimodal info

Figure 2. Example of a modular-based dialog system that handles multimodal

information. The input of multimodal processing module can be from visual or

acoustic information of the conversation topic or user.

that represents the user’s interest level in the recommended product. In the emo-

tion elicitation task, where the system tries to improve the user’s mood, this label

should represent the user’s emotion level. As mentioned in Section 1.1, the source

of the input multimodal information also varies by the task. Figure 2 shows an

example where the Multimodal processing module takes input information from

the user. Next, the Dialog State Tracker (DST) module takes the multimodal

label and the user’s DA as input and generates a dialog state, which summarizes

important information of the current turn. The DST’s working process is recur-

rent, since the previous turns are also considered during dialog state tracking.

The resultant dialog state from the DST is then fed to the Policy Manager or

the Dialog Manager module. This module performs dialog management process,

which selects an appropriate system’s dialog action as a response to the user. The

system’s action represents the functions provided by the system provides in con-

versations with the user. For example, in hotel booking tasks, the system action

set can contain actions such as inform(hotel name) or request(price range). The

4

policy manager can be built by hand-crafted rules or be trained using supervised

learning methods with manually annotated system action labels provided by ex-

perts. However, the most popular approach for dialog management utilizes the

reinforcement learning (RL) framework, which trains a dialog policy that governs

the action selection procedure. Finally, the Natural Language Generation module

creates a sentence in natural language as a response to the user. The generated

sentences can be text or spoken utterances, depending on how the system is de-

signed. After receiving the system’s response, the user makes a new utterance,

which starts a new dialog turn. This interaction process between the system and

the user continues until the conversation ends. Modular-based systems currently

remains a common approach for building goal-oriented dialog systems.

The major weakness of modular-based dialog systems is their rigidity. Since

each task requires a different kind of multimodal labels, except for NLU and

NLG, which can be used for multiple tasks, the remaining components are mostly

task-specific and cannot be reused. This increases the burden if we are going to

build multiple dialog systems. For a chat-based dialog system with an end-to-end

approach, this problem does not happen, since we can build a system using neural

network models such as encoder-decoder and adoption to a new domain can be

done immediately by training on the new data. Motivated by this observation,

several studies introduced neural networks for modeling goal-oriented dialogs,

allowing the system to be trained in an end-to-end manner. We call such systems

built using this approach end-to-end dialog system. The following two works,

[59, 11] are among the first that constructed goal-oriented dialog systems using

the end-to-end approach .

Figure 3 shows an example of the structure of a dialog system built with the

end-to-end approach. In principle, the roles of natural language understanding,

dialog state tracking, and dialog management are all performed by a single com-

ponent: the dialog manager. In practice, this can be done using neural networks

to construct each components and fully connect them. This allows us to train

the dialog management process in an end-to-end manner by propagation from the

output actions back into the input layer of multimodal information. In this case,

our system has an end-to-end dialog management procedure. As shown in Figure

3, the NLG is not connected to the policy manager; it is trained separately. The

5

Policy manager

User

User’s information

(linguistic, visual,
acoustic)

system’s action

NLG
utterance

DST

Policy

NLU

Multimodal
processing

System

Figure 3. Example of multimodal end-to-end dialog systems.

example in Figure 3 denotes single-modality system, where the user’s utterance

is used as input. To the best of my knowledge, most current works on end-to-

end goal-oriented dialog systems are for single-modality dialogs, The number of

studies of this approach for multimodal dialog systems is still very limited.

It is also possible to make a completely end-to-end goal-oriented dialog system

that generates natural sentences [13]. This approach resembles the method usu-

ally used in chat-based dialog systems [44, 26]. However, with this method, we do

not train a policy for dialog management. Instead, we train a system that learns

to imitate the example sentences prepared by humans; in other words, supervised

learning. As a result, the system’s performance is bounded by the quality of the

dataset. For complex tasks,since this supervised-learning-based approach usually

provides inadequate results, it is beyond the scope of my research, where RL is

used for dialog management.

1.3 Challenges of multimodal dialog management

In this section, I discuss issues toward the realization of end-to-end dialog man-

agement for multimodal dialogs, as described in the previous section. After scru-

6

tinizing the current works in this topic, I identify two major challenges that have

not been fully addressed in existing studies:

1. Multimodal fusion: Current works on multimodal dialogs use simple con-

catenation to combine multimodal information, a strategy that is inefficient.

This fusion method is widely used in both goal-oriented and chat-based dia-

log systems. I propose a novel method for multimodal fusion using a neural

network.

2. Data sparsity: Data scarcity has always been a huge challenge for goal-

oriented dialog research. Especially for multimodal dialogs, the current

available corpora are very limited. Existing works have tackled this problem

using policy adaptation, which allows the utilization of knowledge when

learning a policy from a source task to improve the policy training in a target

task. However, these works follow a weight initialization strategy, which is

very time-consuming and results in the learned policy with low performance

when the data is insufficient. I propose a new policy adaptation method

that does not require RL training of the target task’s policy, thus solving

the problems in current works.

While the topic of this thesis focuses on end-to-end dialog management for

multimodal goal-oriented dialogs, both proposed solutions for these issues can be

applied to a broader field without any restrictions.

1.3.1 Fusion of multimodal information in dialog systems

Multimodal dialog systems are a burgeoning field of interdisciplinary research

that attracts both the vision and language communities due to the potential

applications. This section discusses multimodal goal-oriented dialog systems,

where RL is used for dialog management. However, some works on systems with

supervised learning-based methods are also mentioned, to deepen the context for

the readers.

Visual question answering (VQA) [8], which is the most popular task setting,

is commonly used in multimodal dialogs. In this task, a conversational agent an-

swers questions regarding an assigned image based on a dialog history. Another

7

work [9] proposed a visual dialog system to handle this task by using reinforce-

ment learning. Separate encoders are used to learn embeddings that represent

the dialog context (linguistic) and the given image. The linguistic and visual em-

beddings are combined using concatenation and fed into a history encoder, which

actually performs the dialog state tracking. In a similar approach, two works [60]

and [58] fused the visual and linguistic information together by concatenating

the embedding vectors. Such a fusion method is also known as early fusion or

feature-level fusion in other literatures.

The use of acoustic information in goal-oriented dialogs has also been investi-

gated. A work [17] extended the visual question answering task into multimodal

scene scenario in which the system answers the user’s questions regarding a given

video with both visual and acoustic information. Similar to [9], this work uses

encoders to learn the embeddings of visual, linguistic, and acoustic information.

Instead of simple naive fusion like in previous works, [17] used the attentional

multimodal fusion, with different attention weights when combining visual and

acoustic embeddings. After that, the resultant vector is concatenated with the

embedding of the current user’s question and the dialog history embedding. Fi-

nally, this combination is fed into the decoder to generate a full-sentenced answer

to the user. This fusion approach provides good improvement since it focus on

the specific modalities of input based on the decoder’s current state to predict

the word sequence in the video description of the output answer.

Other research [40] proposed a multimodal dialog system for handling the

therapy of autistic children. In addition to the visual and acoustic information,

the features captured by a wristband worn by the children (users) were also used.

This work uses recurrent neural network (RNN) with long short-term memory cell

the decoder to separately classify each input modality into labels of engagement

level. The final decision of engagement label is decided by majority vote of the

labels from each modality. This label is then used for the dialog management

process. With this fusion method, since the multimodal information is combined

in the majority vote phase, it is termed late fusion or decision-level fusion.

In summary, the current works in multimodal dialogs rely heavily on concate-

nation for the fusion of different information modalities. Although such more

advanced methods as attentional fusion or late fusion have been considered, even

8

these methods contain drawbacks, as explained in more detail in Section 3.1.

1.3.2 Data sparsity problem and policy adaptation

The reinforcement learning framework is a popular method for goal-oriented di-

alog management. In principle, this framework provides mechanisms to learn

solutions for any task with sparse signals called rewards; in other words, hu-

man supervision is not necessary in RL training. Unfortunately, the amount of

samples needed to learn a optimal solution is usually prohibitive, especially in

multimodal dialogs, where data sparsity is a huge challenge [43, 33, 26]. Pol-

icy adaptation, or policy transfer, is a very useful technique that can tackle this

problem in reinforcement learning.

Policy adaptation refers to the process of reusing the knowledge that was

learned in one or multiple source tasks to a new target task. Various research

has studied about it in RL and proposed different techniques whose results are

very promising including the acceleration of convergence rates and the reduction

of data volume requirements [48, 23, 4, 20].

Within the scope of reinforcement learning-based dialog management, the

application of policy adaptation remains very limited. Current works in dialog

policy adaptation [6, 19, 29] follow the weight initialization strategy, which is

composed of two steps: pre-training and fine-tuning. The pre-training process

trains a policy in the source task, where the policy is usually represented by a

neural network. A part of the source policy’s weight parameters is used for the

initialization of the neural network’s weights in the training of a policy in the

target task.

However, when we do not have enough data for the target task, this strategy

does not work well because it barely uses the knowledge from the source task’s

policy and the target task’s policy is basically trained from scratch. Consider

a situation where we have a dialog policy that handles restaurant reservations,

which we want to adapt to manage the hotel reservation task. Obviously, we ex-

pect that this adaptation can be performed with a minor adjustment to the policy

of the restaurant reservation task. Existing works on dialog policy adaptation do

not satisfy this requirement; their adaptation process is very time-consuming. In

addition, since the RL training process of dialog policies usually involves in a

9

user simulation, if we do not have enough data for creating a good simulation,

the performance of the learned policies will be inadequate.

1.4 Proposed solutions and approaches

This section briefly discusses about the methods proposed in my research that

address the problems in the above discussions.

1.4.1 Multimodal fusion with hierarchical tensor fusion network

The two major challenges of multimodal fusion are balancing the abstraction level

of information from different modalities and learning of the feature interactions.

Tian et al. [49] argued that the information from modalities has a differ-

ent level of abstraction or describe the data at various timescales. A modality’s

abstraction level can be judged by how easily the task can be solved using the

information from this modality. For some tasks, visual information may be more

crucial than acoustic information; the reverse phenomenon can be observed in

other tasks. A previously proposed abstraction level by [49] resembles the repre-

sentation level in neural network studies. To balance the difference across modal-

ities, hierarchical fusion was proposed by [49], which is done by inputting features

from different modalities into different layers of a neural network. This configu-

ration balances the differences and improves the multimodal fusion effectiveness.

Other than the abstraction level of the modalities, the interactions among

features are another important aspect when considering multimodal fusion. A

previous work [56] suggested that when combining multiple modalities, a neural

network needs to learn both intra-modality and inter-modality feature interac-

tions. The former refers to the interactions that happen among features from

the same modality. Similarly, inter-modality interactions refer to the interactions

between features from different modalities. In early fusion, the interactions are

learned simultaneously, which is complex and inefficient. On the other hand, with

late fusion, inter-modality interactions are ignored. [56] proposed the tensor fu-

sion method that combines embedding features from different modalities with the

tensor (outer) product and separates the learning of the intra- and inter-modality

interactions.

10

In the context of multimodal dialog systems, most current works use early

fusion methods [9] that cannot balance the modality difference and the feature

interaction learning is entangled and inefficient. The late fusion method cannot

model the learning of inter-modality feature interactions since the combination

is performed at the decision level. A work [17] used attention to fuse modalities

allowing the difference of modalities to be balanced in a similar way to hierar-

chical fusion. However, neither of these methods tackles the problem of feature

interactions. Although tensor fusion efficiently learns feature interactions , it

cannot address the issue of modality balancing. In conclusion, with multimodal

dialogs and other multimodal processing tasks, there is no previous work that has

simultaneously addressed both the problems of modality balancing and feature

interaction learning.

Motivated by these observations, I propose the hierarchical tensor fusion net-

work, which is a fusion method based on neural networks. It exploits advantages

from both the hierarchical and tensor fusion methods and can simultaneously

solve both the problem of abstraction level and feature interactions. I hypothe-

size that hierarchical tensor fusion will allow us to train a better model for multi-

modal processing tasks. In Sections 3.3 and 3.4, I show empirical results to that

prove the proposed fusion method outperforms the existing works in deception

detection and sentiment analysis tasks.

1.4.2 Improving policy learning with policy adaptation

As described in the previous section, current policy adaptation in dialog man-

agement requires RL training for the policy on the target task. The weights of

the target task’s policy neural network are initialized using those trained in a

source task. Such a weight initialization method improves the learning of the

target task’s policy. However, for cases where dialog samples are insufficient, this

strategy struggles.

In this research, I show that a policy for the target task can be learned without

RL on this task. Instead of training a policy by interactions with a user simulator,

my proposed method establishes a connection between the policies of the source

and the target tasks through a special mapping distribution that is called the

action-relation probability. The proposed adaptation method, DPRA, learns this

11

distribution from the dialog samples in both tasks and immediately derives a

policy for the target task. Thus, DPRA remarkably reduces the learning time.

Since the proposed adaptation method does not require the user simulator, the

problem of low performance, which is caused by errors in constructing the user

simulator, can be avoided.

1.4.3 Study on multimodal goal-oriented dialog systems

In addition to the above two contributions, I also conducted a study on dialog

management for multimodal goal-oriented dialog systems using a health consulta-

tion task as a use case. A more detailed description of this task is given in Chapter

2. Several works have been conducted about multimodal goal-oriented dialog sys-

tems [8, 17, 47, 58]. However, all of these works use a question-answering setting

where the dialog system simply extracts the information of an image (visual) or

a video scene (visual-acoustic) and answers the user’s question. My research is

among the first that studies a multimodal dialog system where the user’s multi-

modal information (e.g., facial expressions, vocal pitch, and tone) is considered

in the dialog management process. I believe that this setting is more realistic and

practical than the popular question-answering task that is currently being used.

In this study, I built two dialog managers using modular-based and end-to-end

approaches. Although the application of end-to-end approaches in multimodal

dialog management has been investigated in previous studies, these works only

used simple concatenation for multimodal fusion [58] or trained the dialog man-

ager using supervised learning methods [17]. On the other hand, I propose an

end-to-end dialog manager that utilizes my novel hierarchical tensor fusion for

combining information from different modalities. This dialog model is one of the

first to incorporate multimodal fusion with end-to-end reinforcement learning-

based dialog management. A detailed analysis of the advantages and disadvan-

tages of the dialog managers in this study is provided in Chapter 4. In addition,

I experimentally evaluated the performance of these two dialog managers in a

health consultation task.

12

1.5 Thesis overview

The remaining parts of this thesis are organized as follows.

Chapter 2 provides background knowledge in reinforcement learning and dia-

log management with RL to deepen the readers’ comprehension of the proposed

methods. In chapter 3, I scrutiny the existing multimodal fusion methods and

their disadvantages and explain the hierarchical tensor fusion network, which is

my proposed method in this thesis. This chapter also describes how the current

problems of multimodal fusion are addressed using the proposed hierarchical ten-

sor fusion method. To evaluate its efficiency, I performed experiments with the

deception detection and sentiment analysis tasks.

In chapter 4, I first give an example of a modular-based dialog system that

handles multimodal information in a health consultation task. Next, I discuss how

to apply end-to-end dialog modeling for the same task, and provide details about

how the hierarchical tensor fusion is incorporated into this end-to-end dialog

model. In addition, a comparison of the performance of the modular-based and

end-to-end approaches is provided in the experiment section.

Chapter 5 explains the proposed dialog policy reuse algorithm. I show how to

create a connection that allows us to use the source task’s policy for the action

selection in the target task. Details explain how the action-relation probabilities

are modeled using a mixture density network. I show the results in terms of

the performance of the learned polices in comparison with previous works in two

setting: adaptation between similar and distinctive tasks.

Finally, in chapter 6, I summarize the works of this research and discusses of

the proposed methods and future directions that flow from my work.

13

2. Preliminaries

This section provides background knowledge and important definitions in rein-

forcement learning and dialog management that are used in this thesis.

2.1 Reinforcement learning

Reinforcement learning is a popular framework for learning autonomous behavior.

I consider the standard reinforcement learning setting where an agent interacts

with a environment, a Markov Decision Process (MDP), over a number of discrete

time steps [2]. At each time step t, the state, action, and reward are denoted

by st ∈ S, at ∈ A, and rt ∈ R respectively. The dynamics of the task, or the

environment, are characterized by two random variables. The first one is the

state transition probabilities,

P a
ss′ = P (st+1 = s′|st = s, at = a). (1)

The second environment dynamic variable is the expected reward, which is given

by,

Ra
s = E[rt+1|st = s, at = a]

=
∑
rt+1

rt+1P (rt+1|st = s, at = a). (2)

In this thesis, I follow the notations by [45], with the reward for selecting action

at given the state st is denoted by rt+1 instead of rt in some other literatures.

This notation allows us to emphasize on the fact that both the reward rt+1 and

the next state st+1 are results of selecting action at in the current time step.

The agent’s procedure of selecting an action a given a state s is the agent’s

policy, denoted by π(s, a) = P (a|s). We define the return, which is the total

rewards that the agent receives, as follows,

Rt = rt+1 + rt+2 + · · ·+ rT

=
T−k∑
k=1

rt+k.
(3)

with T is the final time step. The agent’s objective is to maximize the expected

return E[Rt|st, π] at each time step t when following a certain policy π. The

14

policy that satisfies this maximum condition is called the optimal policy, which

is denoted by π∗(s, a). To relax mathematical notation burden in the formulas,

the policy and optimal policy are also denoted by π and π∗ respectively in this

thesis. If the agent-environment interactions do not stop, T goes to ∞, we say

that our task is continuing. If the interactions eventually end when reaching

a certain terminal state, then our task is called episodic. In this setting, the

interactions from the beginning until the agent reaches a terminal state is called

an episode. The appropriate setting should be chosen depends on the problem

we want to solve using reinforcement learning. When our task is continuing, the

return becomes infinity and maximizing the objective is impossible. Therefore, in

continuing tasks, we use the discounted return as the agent’s objective, γ ∈ [0, 1)

is the discount factor,

Rt =
∞∑
k=1

γk−1rt+k. (4)

In this case, we say that our task is under the discounted setting. Similarly, if

the agent’s objective is the return, then the setting of our task is undiscounted.

Given a policy π, the state-action value is defined as the expectation of the

return if action a is chosen at time step t, which is given by,

Qπ(s, a) = E[
T−k∑
k=1

rt+k|st = s, at = a, π]. (5)

Qπ(s, a) is also referred to as Q-value in some other works. In this thesis, both of

these terms are use interchangeably. Similarly, we define a state value of policy

π as:

V π(s) = E[
T−k∑
k=1

rt+k|st = s, π]. (6)

Please note that the above definitions of state-action, and state value are under

the undiscounted setting. The state-action and state value for the discounted

setting are deduced by replacing Rt with the discounted return at time step t.

There are two classes of reinforcement learning algorithms: value-based and

policy-based. In value-based reinforcement learning methods, we estimate the

action-state Qπ(s, a) or the state value V π(s) by using a function approximator,

such as neural networks or simple value tables. The classic Q-learning [50] or deep

15

Q-network [30] are examples of this class of algorithms. In contrast to value-based

methods, policy-based RL algorithms parameterize the policy π by parameters

θ. We update the parameters θ by performing, typically approximate, gradient

ascent on the objective of maximizing E[Rt|π]. There are various policy-based

reinforcement learning studies, especially with policy gradient methods, such as

Actor-Critic [7, 22, 3] or REINFORCE [53], which is the method that I am using

in the evaluations in the remaining parts of this thesis.

The description above explains the fundamentals of the reinforcement learning

framework and Markov Decision Process. In MDP formulation, we assume that

all the information contained in the state s is fully observable. However, this

condition is difficult to fulfill since feature extraction may contain errors that

are propagated to the agent’s learning process. To alleviate this problem, we

usually use the Partially Observable Markov Decision Process - POMDP, which

can consider the imperfection of state information. In POMDP, the agent decides

the most appropriate action based on a belief b, which is the distribution over all

possible states.

b = (P (s1), P (s2), · · · , P (sn)) S = {s1, s2, · · · , sn} (7)

Under the assumption that the belief is Markovian, we can treat the belief as a

continuous state with n dimensions and apply RL algorithms to train the agent’s

policy. Note that if the original state s is continuous i.e., the state space S is

infinite, we can use discretization to create a state space with a finite number of

elements and apply POMDP formulation above.

2.2 Dialog management using reinforcement learning

We can divide a dialog into multiple turns. Each turn contains a user utterance

and a system response. We can formulate the problem of dialog management as

an MDP and apply any RL algorithm for solving it. We can define a set of actions

for the system to interact with the user and define a reward function based its

goal. The set of system actions is defined based on the function of the system’s

functions in the conversation. The system’s action is also referred to by the term

dialog act or DA. In dialog management by reinforcement learning, we can use

the two terms “agent” and “system” interchangeably because the learned policy

16

represents the system’s behavior. Since all dialogs only have a finite number of

turns or time steps, we need to use the episodic and undiscounted setting as the

formulation of dialog management.

At each time step t, the information that is necessary for the action selection

procedure is defined as the observation, denoted by ot. The type of information

included in the observation depends entirely on the task we are trying to solve.

For example, in dialog management, the observation may consist of recognition

results of slot information [19, 11, 6], user’s dialog action [15, 55], or some high-

level multimodal information such as user’s deception [34, 32]. Let us recall

that the policy is a conditional probability of selecting action a given the state

s, P (a|s); thus, the state must include important information for making the

decision. A natural approach is to represent the state by the vector of observation

or concatenation of observations from multiple time steps. We call this way of

representing the state as explicit state representation. In modular-based dialog

systems [41, 52, 15, 55, 34], the state is represented by this explicit representation.

In the dialog management procedure, the system needs to consider the dialog

history, which contains the user’s utterances and the system’s actions from the be-

ginning. With such a long-term tracking requirement, the explicit representation

becomes unsuitable if the observation is high-dimensional or the conversations

are lengthy. A common solution is to use a Recurrent Neural Network (RNN) to

learn a state embedding, which we can see as a latent state representation that

stores the dialog history and current observation [59, 11]. Such representation of

the state is used in end-to-end dialog modeling [59]. Figure 4 shows an example

of this approach. We can see that the RNN plays the role of DST, and its output,

the latent state representation, is used by the dialog policy module for manage-

ment. With the end-to-end approach, we are free from designing a complicated

explicit representation of the dialog states.

RL training requires a considerable amount of agent-environment interactions

in order to learn a good policy. In dialog management, it is impossible to collect

enough dialog samples to fulfill this requirement. [41] propose the use of user

simulator as a replacement for the real human user, for training the policy. This

approach has become the standard for training dialog policies with RL. The user

simulator is built from the dialog samples, by maximum likelihood or supervised

17

at-1 ol
t

LSTM

Dialog Policy

stst-1 st+1

at

Note:
ol: linguistic features
s: dialog state
a: system’s action

st
dialog state

at-1 ol
t

LSTM

Dialog Policy at+1

st+1

Figure 4. Examples of end-to-end dialog management.

learning methods to imitate the human user’s behavior. We can view the user

simulator can also be viewed as an approximation of the dialog management

task’s actual state transition P a
ss′ , which is provided by the real human user.

2.3 Policy adaptation

Humans can learn a task better and faster by transferring the knowledge re-

tained from solving similar tasks. This observation motivates the idea of trans-

ferring knowledge across different but related tasks to improve the performance

of machine learning (ML) algorithms. The techniques that allow such knowledge

transferring is termed transfer learning.

From the middle of the 2000s, application of transfer learning to RL algorithms

started to gain much attention, “policy adaptation” adapts the policy trained on

the source task to a new task (target task). In principle, the reinforcement learn-

ing framework provides mechanisms to learn solutions for any task with sparse

signals called rewards; in other words, human supervision is not necessary for RL

training. However, the amount of samples needed to learn an optimal solution

is usually prohibitive, especially in dialog management, where data sparsity is a

18

substantial challenge [43]. Transfer learning can build prior information from the

knowledge collected to solve a set of source tasks and use them to learn a policy

in the target task.

We can use many types of knowledge in transfer learning in RL, such as

samples, representation, or parameters [23]. Policy adaptation, or policy transfer,

refers to the transfer learning methods that use knowledge of the policy from the

source task for the transferring process. We can say that the policy adaptation

methods are a subclass of transfer learning solutions in reinforcement learning.

We usually face the problem of data sparsity when training policies for dialog

tasks. In this situation, the policy adaptation approach is a promising solution.

Multiple studies investigate the application of policy adaptation in reinforcement

learning-based dialog management [6, 19, 29]. All these methods show improve-

ment in terms of learning speed, reduction of data requirement, or performance.

2.4 Multimodal dialog tasks

This study uses the health consultation conversation as a use case for multimodal

dialog management. With this type of dialog, the system plays the role of a doctor

and tries to convince the user to adopt more healthy living habits. The topics of

this conversation can be one of the following: sleeping, food, working, exercises,

social media usage, and leisure activities. The user can use some deceptive reasons

to claim that changing to the new living habits is too difficult for him. Therefore,

the system needs to identify the user’s deception and provides appropriate action.

The system needs to consider the user’s facial expressions and other acoustic

clues, such as pitch, power or tones, to detect whether the user is lying or not,.

Therefore, the task of health consultation is a multimodal dialog management

problem. The conversation between the system and the user can be regarded

as a negotiation since the system can adjust its recommendation according to

whether it believes the user’s reason is honest.

Figure 5 shows the desired dialog behavior of the system, which considers the

user deceptions. The rectangles in this flowchart indicate system actions. The

set of dialog actions for the system include:

Offer: The system suggests the user should change to a new habit.

19

Start Offer

user’s
action?

FramingOffer

Hesitate RejectAccept

Framing

No

Yes
Lie? Lie?

Yes

EndEnd Offer

No

Framing

Question

Figure 5. Flow chart of the health consultation conversation.

Framing: The system provides arguments to persuade the user.

End: The system ends the conversation.

Similar to the work in [15], this study uses Framing to represent the system’s

dialog action that is used for persuading the user. In particular, this action

represents the function that the system gives information about a new habit

(system’s recommendation), the health benefits of the new habit, and the negative

effects of the user’s current habits. In the health consultation task, there are two

situations where the user can tell a lie. The first situation happens when the user

uses some deceptive reasons to reject the system’s recommendation. In the second

situation, the user pretends to accept that he/she will change to the suggested

habit. In both cases, the expected action that the system should select is Framing.

The action set of the user contains the following four dialog actions:

Accept: The user agrees to change the habit.

Reject: The user gives reasons why they cannot change their habit.

20

Hesitate: The user says he/she is unsure about whether to accept the offer

or not.

Question: The user asks the system to provide more details about the new

habit.

Below is an example of a conversation in the health consultation task, with the

numbering indicates turn number.

System-1 : Hello, thank you for coming today. Let’s talk about your working

habits first. I think that you are spending too much time sitting continuously

during working and you should take breaks more often. I suggest that you

take a break every hour, and during breaks, you should stand up, move away

from your desk, and do some light stretches outside of your office. Offer

User-1 : Why should I move away from my desk during breaks? I feel more

comfortable and relaxed sitting in my chair, reading news than going outside.

Question Truth

System-2 : It may be more comfortable for you to do so, but if you still work

with a computer like that during breaks, your eyes cannot rest. Continuously

straining your eyes like that is not good at all and worsen your eye health.

Framing

User-2 : I see that taking breaks is good for my eyes, however, if I go out

to take a break, I feel disrupted, and my productivity will be reduced when

return. I prefer to take breaks at my desk. Reject Deception

System-3 : Maybe your productivity will be reduced a little bit; however, in

return, your health will be better in the long term. Framing

User-3 : Okay, I’ll try to do as you suggested. Accept Deception

System-4 : That’s great! In case you also want to know, sitting continuously

for a long time also puts a lot of stress on your spine and neck, causing many

severe health problems. Doing some light stretches help you regain posture

and release stress from your body. Framing

User-4 : Oh, I see. Sometimes, I also feel my neck hurt a bit while doing

work, too. Maybe your suggestion can help. Hesitate Truth

System-5 : If you find it too distracted for your work to go out every break,

how about going out and do stretches just once or twice a day? For example,

21

you can take 3-4 breaks per day, and during one of those, you do some

stretches; for the remaining breaks, you stay at your desk. Offer

User-5 : That sounds good to me. Okay then, I will give it a try. Accept

Truth

System-6 : That’s right. If you follow my recommendation, soon, you will see

the problems related to your neck gone in no time! End

2.5 Dialog management performance metrics

This section explains the two common metrics used to measure dialog manage-

ment performance in this thesis.

The first metric that I use is the average reward per episode, also referred to

as total expected return [53, 30]. It is measured by summing all the rewards in

each episode and average the result over all the evaluation episodes. The average

reward per episode is the standard performance metric that is being used in most

of reinforcement learning research, especially for the episodic setting. Since the

dialog manager’s policies that are evaluated in this research are built by using

reinforcement learning, this is a suitable metric to evaluate the dialog managers’

performance. In reinforcement learning tasks, such as autonomous control, it is

common to use the same environments to train and test the policies. However,

in reinforcement learning-based dialog management, sometimes different environ-

ments (the user simulators) are used in training and testing. Since goal-oriented

dialog corpora are usually limited, this strategy ensures that the learned poli-

cies for dialog managers truly have good performance and are robust to different

datasets.

The second performance metric is dialog act (DA) selection accuracy, a pop-

ular measurement in various dialog studies. With this metric, we measure the

dialog managers’ performance in a similarly to classification, by treating the sys-

tem’s action as labels. In practice, human experts manually annotate the dataset

with the most appropriate system’s actions. These actions are used as ground

truth for measuring the dialog manager’s action selection accuracy. Usually, we

need to conduct an agreement analysis to ensure that the system action annota-

tion is similar across different annotators.

22

3. Multimodal fusion with hierarchical tensor fu-

sion network

Multimodal information
processing

sentimental analysis deception detection

Lie ? Truth ?

Figure 6. Example of tasks that need processing of multimodal information.

With the recent rapid progress of technologies, the interaction between hu-

mans and machines has become multimodal. Therefore, multimodal information

processing problem has attracted much attention from the machine learning com-

munity. This chapter discusses integrating information from multiple modalities

and the solution proposed in this research, the hierarchical tensor fusion. First, I

analyze the currently popular methods for multimodal fusion. From this analysis,

I identify two main problems that we need to address: balancing the modalities

and feature interactions learning. Next, I give the details of how the proposal,

hierarchical tensor fusion, can solve these problems. Finally, I show results and

analysis of the experiments using different fusion methods on deception detection

and sentiment analysis tasks.

23

3.1 Related works

This section describes current methods of modality combination using an example

of the deception detection task. The neural network model I used in this study is

the multi-layer perceptron (MLP), a fully-connected feed-forward neural network

with multiple hidden layers. The output contains two neurons with softmax

activation to determine the probability of deception. All the fusion methods used

in this study are an extension of this network. There are two reasons I use MLP

as the base model of the proposed method. First, it is a simple and effective

model widely used in various classification and regression tasks. Besides, MLP

is the most basic deep learning model, and we can be easily combine it with

other networks such as convolution neural network (CNN) or recurrent neural

network (RNN). Therefore, we can use the proposed fusion method for complex

input tasks like images (when combined with CNN) or sequential modeling tasks

(combined with RNN)

In all the examples of this section, the modalities used for fusion are visual

and acoustic. Denote the feature vectors for these modalities as xv - visual, and

xa - acoustic. Early and late fusions of features are common ways to integrate

multiple modalities. Network architectures of early and late fusion methods are

shown in Figure 7. With the early fusion, we concatenate the vectors that contain

acoustic and visual features into one single vector and then feed it to the MLP

network. Early fusion is the most widely used combination method in previous

studies for deception detection.

For the late fusion model, we can consider the network as a combination of

two MLPs that is similar to early fusion; one network takes visual features as

input, and the other network uses acoustic features. The outputs of these two

subnetworks are then fully connected to a final output layer with two neurons.

Models are trained separately among the two subnetworks and the network that

connects them into the output; thus, results from two networks are considered in

equal weight.

Hierarchical fusion is a method to combine different modalities proposed by

[49] in a work for emotion recognition. Figure 8 describes the structure of this

fusion method for the with an example of fusing visual and acoustic modalities.

As the name suggests, this fusion model’s architecture resembles a hierarchy

24

Early
fusion

…

visual

acoustic

…

…

visual

acoustic

Late
fusion

…

…

…

…

Figure 7. Early and late fusion network architecture.

…

…

…

visual

acoustic

Figure 8. Hierarchical fusion architecture.

graph with the layers of network equivalent to levels in a hierarchy. In this

25

example, the vector of acoustic features is fed into the input layer, which is fully

connected to a hidden layer. The vector containing visual features is concatenated

with this hidden layer, as shown in the figure. The resultant vector is fully

connected to an output layer. Denote the subnetwork connects the acoustic

input and hidden layer as fl1, the subnetwork connects to output as fl2, and the

network’s output as y, we have:

ha = fl1(xa)

y = fl2(ha ⊕ xv)
(8)

with ⊕ means concatenation of vectors. [49] argued that different modalities may

describe data at different timescales or have different levels of abstraction, thus

features from different modalities should be put into different layers of the net-

work. In particular, the features that describe data at a larger timescale and are

more abstract are used at higher levels, as shown in Figure 8. Detailed parame-

ter settings are described in Section 3.3. I use similar numbers of parameters in

different models to investigate the performances of model architectures.

…

…

visual

acoustic

M

𝑀𝑖𝑗 = 𝑣𝑗 . 𝑎𝑖
𝑣 = vector of visual embedding, 𝑣 = 𝑉
𝑎 = vector of acoustic embedding, 𝑎 =A

…
…

…

𝑥, 𝑥 = 𝑉 × 𝐴

…
…

…
…

Embedding subnetworks:
Learning intra-modality interactions

Fusion subnetwork:
Learning inter-modality interactions

Figure 9. Tensor fusion architecture.

The tensor fusion method is another approach for combining different modal-

ities in sentiment analysis [56] and face recognition [18]. [56] discussed that a

neural network needs to learn about intra-modality and inter-modality feature

interactions when combining multiple modalities. From Figure 7, we can see that

26

the late fusion network cannot learn inter-modality interactions, because the fea-

tures from different modalities are separated until the output layer. On the other

hand, the early-fusion network learns both kinds of interactions simultaneously,

so training is difficult. With TFN, learning of intra-modality and inter-modality

interactions is separated, making the training process easier. Another benefit of

TFN is that the representation of inter-modality interactions is given explicitly

to the network in the form of the outer product (tensor), thus reducing training

complexity. Because of these reasons, we expect TFN to work better than early

and late fusion methods. Both studies [56, 18] observed that the tensor fusion

outperformed early and late fusions in their respective tasks.

A TFN contains two kinds of subnetworks in its structure. The first one is the

embedding subnetwork, which performs learning of intra-modality interactions.

The outputs of those subnetworks are embedding vectors for each modality. Next,

we perform outer production of the embedding vectors (visual and acoustic). The

reason I use outer product to combine the vectors is that it can represent all the

interactions between each feature from visual and acoustic modalities. The result

is a matrix M : V ×A (V and A are the size of the visual and acoustic embedding

vectors, respectively), which is then flattened into a vector x with size V ×A. We

feed this x into the fusion subnetwork (which is a MLP), which has the role of

learning about the inter-modality interactions. Let us denote the visual, acoustic

embedding subnetworks, and the fusion subnetwork as fvemb
, faemb

and ffusion.

The output y of TFN is given by:

v emb = fv emb(xv)

a emb = fa emb(xa)

hmulti = v emb⊗ a emb

y = ffusion(hmulti)

(9)

with ⊗ is outer product operation and hmulti is the resultant matrix M in Fig-

ure 9 after flattening. Previous studies reported that the decomposition of the

tensor contributed to classification accuracies; however, I did not observe any im-

provement by the decomposition. Therefore, I only show the results of not using

decomposition in the experiments.

27

3.2 Method

…

…

visual

acoustic

M

𝑀𝑖𝑗 = 𝑣𝑗 . 𝑎𝑖
𝑣 = vector of visual embedding, 𝑣 = 𝑉
𝑎 = vector of acoustic embedding, 𝑎 =A

…
…

…

𝑥, 𝑥 = 𝑉 × 𝐴

…
…

…

Embedding subnetworks:
Learning intra-modality interactions

Fusion subnetwork:
Learning inter-modality interactions

Figure 10. Hierarchical tensor fusion architecture.

The structure of the proposed network is shown in Figure 10. As can be

seen from this figure, the hierarchical TFN structure is similar to a hierarchical

network, but multi-modality fusion is performed by using the outer product (same

as TFN) instead of concatenating. The proposed method’s advantages over a

hierarchical network is similar to that of TFN over early fusion thanks to the use

of the outer product for fusion.

The hierarchical TFN also resembles a TFN structure. However, raw acoustic

features are used as inputs of tensor fusion instead of an acoustic embedding vec-

tor, as shown in TFN. A substantial benefit over TFN that the proposed method

has is reducing the complexity of network structure and the number of parame-

ters. In some tasks (such as emotion recognition or deception detection), there

can be a modality whose intra-modality interactions are not as beneficial as those

of the other modalities. In such a situation, using a deep structured network to

learn about these intra-modality interactions is superfluous. Therefore, by re-

moving the embedding subnetwork for such modality, the whole system can focus

on more important feature interactions and train a better model. In our case,

empirical experiments show that visual feature interactions are less important

than those of acoustic features. Thus, a vector containing raw visual features is

used directly for fusion, as shown in Figure 10.

28

3.3 Evaluation I - Deception detection

In the first evaluation setting, I use the deception detection task to compare

the efficiency of different multimodal fusion methods. Deception detection is a

challenging task, even for humans, it is difficult to tell whether someone is lying

or not without some prior information.

3.3.1 Dataset

The dataset I use for deception detection includes two types of data. The first one

is taken from the Real-life Trial dataset [37]. I split the video into segments (as

each segment contains a single utterance) to suit this research’s purpose, which

is to detect lies at utterance level. If the video was annotated with a lie label in

the original dataset, I assign lie labels to all segments. I manually checked the

segmented videos and found out that many have a low quality (blurry video or

the speaker not facing the camera). Therefore, bad segments are filtered out by

using the confidence score provided by the OpenFace toolkit [1]. In particular,

if a video does not contain any frame with a confidence score of face tracking

higher than 0.85, then it is automatically removed. After this process, from the

trial dataset, we have 245 utterances; 105 of them are deceptive, and 140 of them

are truthful. The second data came from a health consultation between two

participants [32]. These data contain 844 truthful and 177 deceptive utterances.

In total, the deception detection dataset used in the experiment includes 1265

utterances.

I perform this experiment of deception detection using 4-fold cross-validation.

When checking the real-life trial dataset [36], I found out that many of the videos

are taken from the same trial recording and were assigned the same label (lie or

truth). It means there is a chance that the classifiers learn to predict recordings

instead of deception labels if the partitioning of the dataset into train, develop-

ment, and test sets are random. To avoid such a problem, I separate the samples

in this dataset by the recording that they belong to, from 70 recordings of the

original dataset to five portions. Details of data separation is shown in Table 1.

In previous studies [31, 36, 16], samples were chosen so that the ratio of

lie/truth is balance (1:1). I followed the same configuration and allocated the

samples in such a way that development and test set have ratio of lie/truth close

29

Table 1. Dataset partitions.

recordings Recording ID # lie # honest

Partition 1 3 1,2,13 66 77

Partition 2 11 3,4,14,16,17,18, 59 76

19,24,26,27,35

Partition 3 13 10,23,25,28,29, 62 79

30,31,32,33,34,

36,37,38

Partition 4 4 9,15,17,23 60 77

Partition 5 39 the remaining 38 671

to 1:1. Particularly, for each split in this cross-validation setup, I pick out two

partitions (1-2, 2-3, 3-4, and 4-1) to be used as development and test set; the

remaining three partitions are used as training set. In partition 5, the number of

honest samples exceeds the number of lie samples by a large margin, therefore, I

did not use this partition for development and testing. I used over-sampling to

achieve 1:1 ratio between lie and truth samples used for training.

3.3.2 Features extraction

I use the OpenFace toolkit [1] to extract facial features, which include 14 face

action unit (AU) regressions and 6 AU classification values as well as head posi-

tion, and head direction parameters for each frame by using this toolkit. These

values were then normalized and discretized into five different levels of intensity

to be used as features for deception detection. Acoustic features were extracted

from audio files using the OpenSMILE toolkit [14]. I use the Interspeech 2009

(IS09) emotion challenge standard feature-set as the acoustic features [42]. These

features were also used in previous studies of the deception detection task [31, 28].

In conclusion, for each segment sample in the dataset, I am able to extract 78

visual and 384 acoustic features.

30

Table 2. Deception detection performance of models based on different fusion

methods. Precision, Recall, and F1-score are measured for the positive (Lie)

label.

Model # layers # parameters Accuracy Precision Recall F1-score

single acoustic 4 162,900 53.78% 0.4747 0.5000 0.4870

single visual 4 164,352 49.28% 0.4095 0.3525 0.3879

multi early 4 169,872 53.42% 0.4603 0.3566 0.4018

multi late 4 164,972 54.68% 0.4794 0.3811 0.4247

multi hierarchical 4 168.192 53.78% 0.4733 0.4713 0.4723

multi TFN 5 163,528 50.36% 0.4216 0.3525 0.3839

multi hierarchical TFN 5 166,448 58.63% 0.5304 0.5000 0.5148

3.3.3 Results of deception detection

In the first experiment, single-visual, single-acoustic, and early fusion models all

have two hidden layers, with the first layer have 256 units. The hierarchical fusion

model contains two hidden layers. The first layer is fully-connected with the input

layer from acoustic modality. This hidden layer has 256 units and is concatenated

with the input visual features vector. The resultant concatenation fully connects

with the second hidden layer, which is in turn fully-connected with the output.

For TFN models, the embedding subnetworks have one hidden layer which has

the same number of units as the output embedding vector (32 units). Similar to

that from the original work [56], I use ReLU as the activation function for the

embedding subnetwork. The fusion subnetwork of TFN has one hidden layer. I

did not augment the embedding vectors with 1 since the empirical experiment

results showed no improvement. In other words, the TFN model used in this

experiment is equivalent to TFNbimodal of visual and acoustic modalities from

the prior work [56]. With hierarchical TFN, the embedding subnetwork has one

hidden layer (256 units), and the output has 32 units. Similar to TFN model,

the fusion subnetwork of hierarchical TFN also contains one hidden layer.

All the models were trained using the Adam optimizer [21] with a softmax

cross entropy loss function. I use the loss value attained in the development

dataset to tune up the learning rate; the remaining hyper-parameters are the

31

default setting of Chainer1. I train the deception detection models using mini-

batch, with a batch size of 16. The learning rate decreased by 10% at every epoch.

The loss on the development set was used to determine the point to stop; if we

do not see improvement of the development loss for 100 epochs, the training was

stopped. All the models are configured to have a similar number of parameters,

ranging from 163,000 to 170,000.

Table 2 summarizes the parameters and performance of different models in

the deception detection task. In this table, “single” refers to the models that

use only one modality (visual or acoustic), and “multi” refers to the models that

use both modalities. Early, late, hierarchical, and TFN indicate their integration

methods. The numbers are averaged from 4-fold cross-validation results. Accu-

racy is measured for both labels (truthful and deceptive). Precision, recall, and

F1-score are measured for the deceptive label.

From these results, it is clear that the proposed hierarchical TFN has the

highest overall performance, outperforming hierarchical fusion (p < 0.05) and

TFN (p < 0.05). In particular, we can see a considerable improvement in precision

and F1-score compared to the other models.

We can see that the single visual model performs a bit worse than the sin-

gle acoustic model (p ≈ 0.105) in terms of accuracy, while the precision, recall,

and F1-score are much lower. This difference can be explained by how we ex-

tracted features from raw data. Acoustic features are extracted from raw audio

at 100 frames per second (fps), while visual features are extracted at only 30

frames per second (since all videos are recorded at 30 fps). Therefore, with the

same spoken uttThus, we can expect that the visual modality’s contribution to

performance is less than the acoustic one. Another reason for the disparity in

performance between visual and acoustic modality is the nature of recordings in

the recorded deception dataset. Within every recording, the speaker knows that

their statement will be assessed for honesty, and thus, the speaker tries to conceal

their facial expressions as much as possible to avoid getting caught lying. Hence,

detecting deception from visual clues (facial expressions) is not trivial.

The results reported here indicate another benefit brought by the fusion of

modalities by a hierarchical structure. If information from one modality is less

1https://chainer.org/

32

useful for the given task compared with other modalities, hierarchical fusion can

balance this difference and improve multimodal fusion. The reason for this phe-

nomenon is that, since we input the less effective modality’s features into the

deeper layer of a neural network, there are fewer parameters used for learning

that modality’s intra-interactions. Therefore, our network can focus on other

modalities’ interactions, which is more critical for the task and increases perfor-

mance. This reason also explains why the proposed hierarchical tensor fusion

works well with the dataset. Since visual modality interactions are less impor-

tant than that of acoustic, by removing the subnetwork that learns intra-modality

interactions of visual features, the training of the network becomes more efficient.

3.3.4 Relationship between deception detection accuracies and num-

bers of parameters

In this experiment, I assess the effect of network depth on deception detection

performance of hierarchical structures. I measured the accuracy when changing

the number of hidden layers in hierarchical fusion and hierarchical TFN models.

With hierarchical fusion, the number of hidden layers refers to the number of

layers between the resultant concatenation and the output layer. For hierarchi-

cal TFN, the number of hidden layers refers to the hidden layers of the fusion

subnetwork. The 1-layer models are taken directly from the previous experiment.

With the 1-layer models as a base structure, I add new hidden layers (each has

256 units) to construct the 2-layer and 3-layer models.

Figure 11 illustrates the relations between the accuracy and layer numbers

for both the hierarchical architecture and the hierarchical tensor fusion network

architecture. We can see that there is no significant gain by increasing the number

of hidden layers from one, two, or three. It indicates that a deep structure does

not always contributes to the accuracy of deception detection, especially for a

small dataset as I am using. However, it is difficult to prepare a large-scale

dataset for deception detection. I leave further analysis in this aspect for future

works.

33

40.00%

45.00%

50.00%

55.00%

60.00%

1 layer 2 layers 3 layers

Hierarchical Hierarchical TFN

Figure 11. Effect of network depth on detection performance.

3.3.5 Dialog management performance based on predicted deception

labels

In this experiment, I use predicted labels from deception detection models for a

negotiation system that decides output dialog acts (DA) on the basis of the user’s

deception information (whether the user is lying or not). The dialog tactics of

the system should change in accordance with the user deception; thus, I use a

reinforcement learning based dialog manager that can change the system’s dialog

act by using the deceptive information of users [32]. This experiment was also

conducted using the health consultation data from [32], where the system acts

as the health consultant and persuades a human user to adopt a more healthy

lifestyle.

I measured the system’s performance by DA selection accuracy, which refers

to the precision of the system’s chosen dialog acts against reference actions chosen

by a human when given the same user input utterance. All of the results shown

in Table 3 used the policy trained with gold-labels of deception and the dialog

act. Similar to the previous experiment, we can see that the negotiation system

achieves the highest DA selection accuracy when using deception labels from

34

Table 3. Accuracy of dialog acts selection when using different deception labels

result.

Deception labels used for dialog management
DA

accuracy

chance rate deception 65.69%

gold-label deception 80.31%

single visual prediction 70.15%

single acoustic prediction 66.22%

multi early prediction 66.48%

multi late prediction 68.58%

multi hierarchical prediction 69.10%

multi TFN prediction 69.66%

multi hierarchical TFN prediction 71.20%

the proposed hierarchical TFN model. This result indicates that the proposed

method contributes not only to deception detection but also helps the dialog

system achieve high performance as well.

3.4 Evaluation II - Sentiment analysis

In this evaluation, I compare the hierarchical tensor fusion method’s efficiency

with current works in the sentiment analysis task. This task is a popular multi-

modal processing problem that has been used in existing studies.

3.4.1 Dataset

The dataset that I use for the experiment is the CMU Multimodal Opinion

Sentiment and Emotion Intensity (CMU-MOSEI) [57]. This dataset consists

of YouTube videos in which the speakers express their opinions about topics of

interest. Each video contains only one single speaker who is facing the camera

directly. This condition ensures that the speaker’s expressions can be captured

clearly for feature extraction. Fourteen expert judges manually check the quality

of video, audio, and transcript of the acquired videos. After this manual quality

35

inspection, a set of 3228 videos remained and were used as the dataset. The

statistics of the CMU-MOSEI dataset are given in Table 3.4.1.

Table 4. Detail statistics of the CMU-MOSEI dataset.

Total number of videos 3228

Total number of sentences 23453

Total number of distinct speaker 1000

Total number of topics 250

Average number of sentence in a video 7.3

Average length of a sentence in seconds 7.28

Total number of words 447143

Total number of unique words 23026

Total number of words with frequency > 10 3413

Total number of words with frequency > 20 1971

Total number of words with frequency > 50 888

Each sentence is annotated with a sentiment value in the [−3, 3] Likert scale
of: [-3: highly negative, -2: negative, -1: weakly negative, 0: neutral, 1: weakly

positive, 2: positive, 3: highly positive]. Three annotators annotated the senti-

ment values, and the average results are used as final sentiment values. Note that

sentences from the same video can have different sentiment values. From this

dataset, 16237 sentences are used for training set, 1871 are used for development

set, and the remaining 4662 sentences are used for testing.

3.4.2 Feature extraction and training details

The CMU-MOSEI dataset were provided with pre-extracted features of visual,

acoustic, and linguistic of each sentence. Details of feature extraction are as

follows.

Visual. Frames are extracted from the full videos at 30Hz. The visual features

follow the Facial Action Coding System (FACS) [12]. Additionally, a set of six

basic emotions extracted from static faces using Emotient FACET. The OpenFace

toolkit is used to extract facial landmarks, facial shape parameters, head pose,

and eye gaze [1].

36

Acoustic. Acoustic features in terms of Mel-frequence coefficient, pitch, glot-

tal source parameters, are extracted using the COVAREP software [10].

Linguistic. The provided manual transcriptions of each video are used for

linguistic features. Glove word embeddings [35] were used to extract word vectors

from transcripts. Features in terms of visual and acoustic are aligned based on

the words in each sentence. As a result, each sentence has three sequences of

visual, acoustic, and linguistic features with the same length.

…

… …

… …

…
…

……

…

linguistic

visual

M𝑣,𝑙
…

acoustic

M𝑣,𝑙,𝑎

… …

Figure 12. Hierarchical tensor fusion network for sentiment analysis task with

three modalities.

The network model for the proposed hierarchical tensor fusion in this task is

shown in Figure 12. First, visual and linguistic features are fused using hierarchi-

cal tensor fusion. Note that the embedding network for visual features has one

hidden layer. On the other hand, the input and output layer of the embedding

network for linguistic features are fully connected to each other. The resultant

vector of visual and linguistic features - Mv,l is fed into a fully-connected layer

which outputs a visual-linguistic embedding. After that, we fuse this embedding

vector with the acoustic features using outer product. Finally, the resultant fusion

vector for all three modalities - Mv,l,a is fed into an MLP with one hidden layer

and output the sentiment regression value. For the hierarchical tensor fusion,

visual, linguistic, and acoustic features are respectively fed into the first, second,

and third hidden layer of the network. Fusion is performed by concatenation at

37

…

…
…

…

linguistic

visual

acoustic

Figure 13. Hierarchical fusion network for sentiment analysis task with three

modalities.

the third layer as shown in Figure 13. One hidden layer is connected to this fusion

layer and the output.

With the tensor fusion network, the embedding network for visual features

has one hidden layer. The embedding networks for acoustic and linguistic both

have the output fully connected to the input layer. The fusion subnetwork is an

MLP with one hidden layer.

I use Adam optimizer for training the parameters of all the models used in this

experiment. The learning rate is set to 1e-3 at the beginning, then anneal toward

1e-4. The parameters are updated using gradients calculated from smooth L1-

loss with delta = 1. Note that, similar to the deception detection evaluation, in

this experiment, I set the size of hidden layers and embedding vectors so that all

three models (Hierarchical TFN, Hierarchical, and TFN) have the same number

of parameters, which is around 1.3 million.

38

Table 5. Results of sentiment analysis on the CMU-MOSEI dataset. ↑ indicates
metrics that higher is better. ↓ indicates metrics that lower is better.

Model A2 ↑ F1-score ↑ A5 ↑ A7 ↑ MAE ↓ r ↑
Hierarchical [49] 76.19 82.58 46.53 45.49 0.67 0.61

Tensor fusion [56] 79.94 85.84 48.54 47.98 0.64 0.64

Hierarchical tensor fusion 79.08 85.11 51.00 49.91 0.62 0.67

3.4.3 Results

The results of this experiment are shown in Table 5. The performance is re-

ported using six metrics. A2, A5, A7 refers to accuracy of binary, 5-class, and

7-class classification results. For binary classification, if the sentiment values

from both prediction and groundtruth are less than zero then the class is -1, oth-

erwise the sentiment class is 1. In Table 5, I report both accuracy and F1-score

of binary classification. In 7-class, the sentiment classes are created by round-

ing the sentiment values in the range [-3,3] into the nearest natural numbers.

For 5-class, we first clip the sentiment values into the range [-2,2], then apply

the same strategy used for making the labels in 7-class. MAE metric refers to

mean absolute error. Finally, the Pearson’s correlation r between the predictions

and groudtruths is also reported. Note that since the samples in CMU-MOSEI

dataset are sequential, a convolutional neural network with two layers is used

to extract sentence-level features for visual, acoustic, and linguistic modalities.

These features are used as input of the models in this experiment. As can be

seen from Table 5, the proposed hierarchical tensor fusion achieves the highest

performance in almost every metrics. Since the sentiment analysis task is mod-

eled as a regression problem, A5, A7, MAE, and correlation are more accurate

metrics to represent the performance of the models. Therefore, the hierarchical

tensor fusion has the best performance overall in this task. These results show the

generality of the proposed fusion method and confirm its efficiency in combining

multimodal features compared to previous methods.

39

3.5 Conclusion

In this study about multimodal fusion, I described the hierarchical tensor fusion

method, a novel approach for combining features from different modalities. The

network in Figure 12 is not the only way to set up the network model configuration

for the proposed hierarchical tensor fusion; there are various ways to configure the

network’s structure. For example, instead of using a layer to learn an embedding

of visual and linguistic from Mv,l and fuse all modalities by tensor product, we

can directly perform a fusion of Mv,l and the acoustic embedding with the tensor

product operation. In addition, for different tasks, the layer where we input

the same modality can be different. An example is shown in Figure 10, where

the acoustic features are fed into the first layer while in Figure 12, the same

features are input into the deeper layer. This difference is due to the abstraction

level of the same modality that can change with different tasks, and thus the

structure of the network should change accordingly. A simple way to find out the

correct network structure is by trying out each configuration and compare the

performance on a development dataset. Finally, the evaluations with deception

detection and sentiment analysis tasks in 3.3 and 3.4 show that the proposed

method is more efficient and outperforms previous works significantly.

40

4. Dialog management with multimodal informa-

tion

In this chapter, I discuss the modeling for multimodal dialog management using

modular-based and end-to-end approaches in the use-case of health consultation.

The first section describes a modular-based dialog manager for the health con-

sultation task, which was described in Chapter 2. In this chapter, I discuss the

modeling for multimodal dialog management using modular-based and end-to-

end approaches in the use-case of health consultation. Section 4.3, 4.4, and 4.5

describe details of user simulation, RL algorithm used for training the policy and

performance metrics. Finally, a comparison of modular-based and end-to-end

dialog managers’ performance is provided in the evaluation section.

4.1 Modular-based approach

The structure of the modular-based dialog system is shown in Figure 14.Since

the information of the user’s deception is essential in the health consultation

task, the multimodal processing that the system uses is a deception detector.

This module’s input is similar to the visual and acoustic features used in the

deception detection experiment in the previous chapter. The deception detection

module outputs a deception label, which is used by DST for dialog state tracking.

This modular-based dialog system uses an explicit representation for the dialog

state. In particular, the dialog state s is represented by a tuple (u, d), with u and

d are the user’s dialog action and user’s deception respectively. u, d can be seen

as the observations in this formulation of dialog management.

In order to find the best strategy for the dialog system against the user’s decep-

tive behavior, it is necessary to consider errors in the prediction of the deception

detection module. As shown in Chapter 3, all deception detection models do not

have very high performance. The best model created from hierarchical tensor

fusion still achieves less than 60% prediction accuracy. The partially observable

Markov decision process (POMDP) is widely used to learn dialog systems’ best

strategy for such error-containing observations [55]. In POMDP, the action selec-

tion procedure is based on the belief state bt - which is a probability distribution

over all possible dialog states. In other words, we replace state st in the reinforce-

41

System

NLU

User

Dialog
state

tracker

Dialog
manager

NLG

User’s DAUtterance

Previous
turn’s state

Current
state

Response System’s DA

Deception
detection

deception labelVisual

Acoustic

Figure 14. Modular dialog system for the health consultation task.

ment learning formulation described in Chapter 2 with the belief bt. This belief

is updated at every turn by the DST using the current observation ut, dt and the

previous belief bt−1. The belief state is represented by a 4-tuple u, P (u), d, P (d)

with u is the user’s action with the highest probability in the user’s action set

and d = 0. In order to simplify the representation further, the probabilities

P (u), P (d) are rounded by 0.1. For example, if P (u) = 0.45 and P (d) = 0.63 ,

the state representation will be u, 0.5, d, 0.6. This strategy of representing the be-

lief state allows us to have a compact finite state space and still retain important

information for action selection.

In this research, the dialog manager is trained using tabular Q-learning [50],

a popular method to train the optimal policy π∗. For the proposed system, the

training of Q-learning is done by iteratively performing the following update:

Q(bt, at)← (1− ϵ)Q(bt, at) + ϵ[R(bt, at) + γmax
at+1

Q(bt+1, at+1)], (10)

where ϵ is the learning rate, γ is the discount factor, and R(bt, at) is the reward

the system receives when it performs an action at, given a dialog belief state

bt. While the deception detection modules are created using deep learning, I

42

choose Q-learning with the Q-table to approximate the state-action value for

two reasons.First, the state representation contains only two values, the user’s

dialog actions, and the user’s deception. Thus, deep learning-based RL algorithms

such as deep Q-network [30] is unnecessary. Furthermore, tabular Q-learning can

actually learn the true optimal policy, provided that all state-action pairs are

visited during the training process. On the other hand, deep Q-network uses

gradient descent to optimize its parameters; thus, it can only guarantee local

convergence. In summary, if we use the explicit state representation that is low-

dimension, using a deep reinforcement learning solution is a bad choice.

The reward function is shown in Table 6. I design the system’s rewards based

on two points: the system follows the desired behavior (Figure 5). The system

successfully persuades the user to accept its recommendation truly. A dialog is

considered to be successful if the user honestly accepts to change his/her habits.

This condition is equivalent to the user’s dialog action is Accept, and the user’s

deception label is 0 (honest) in Table 6.

Table 6. Rewards in each turn for all possible combination of (s, a) in the state-

action space.

Dialog state Rewards

User DA (s) d Offer Framing End

Accept
0 –10 –10 +100

1 –10 +10 -100

Reject
0 +10 +10 –100

1 –10 +10 –100

Question 0 –10 +10 –100

Hesitate 0 +10 +10 –100

4.2 End-to-end approach

Before going into details of the end-to-end dialog management approach, I use

the health consultation task as a motivation example of how this approach is

more beneficial than the modular-based approach.

43

Let us consider the situation where we have already built a health consultation

dialog system using the modular-based approach. After analyzing the system’s

performance, we decide to incorporate the user’s emotion information into the

dialog management process. Such changes require the following steps:

1. Construction of an emotion recognition module.

2. Re-annotate the dialog dataset with emotion labels and build a new user

simulator.

3. Train the DST and policy manager modules.

The problem lies in the first step, where we need to construct the emotion recog-

nition module.Like deception detection, this task is also difficult, and building a

good emotion detector is time-consuming. When we train the end-to-end dialog

manager, information on the user’s emotion will be learned automatically by in-

teracting with the new user simulator. The manager can incorporate emotion in-

formation into the latent dialog state without explicit emotion labels. Therefore,

the end-to-end approach does not require construction of an emotion recognition

module, saving us much time for the system overhaul.

Figure 15 shows the structure of the end-to-end dialog manager for the task

of health consultation. The input observations are denoted by ol, ov, oa, which

denotes the observation for linguistic, visual, and acoustic modality, respectively.

Here in this end-to-end model, the hierarchical tensor fusion is directly in-

tegrated into the end-to-end dialog manager. In practice, this integration is

performed by connect a hierarchical tensor network with the input of LSTM

layer. This fusion network is represented by the component Hier-TFN in Figure

15. The role of this component is to summarize input multimodal observation

features into a high-level representation, the multimodal observation. Therefore,

with the multimodal end-to-end dialog manager, input of state tracking is this

“latent” multimodal observation instead of the raw observation features, as shown

in Figure 4. Next, the LSTM layer performs state tracking from this multimodal

observation and outputs the dialog state. Finally, the policy select the most ap-

propriate system’s action at as the response. The neural network that represents

the end-to-end dialog manager in Figure 15 can be seen as a combination of three

44

at-1 ol
t oa

tov
t

Hier-TFN

LSTM

Dialog Policy

Hier-TFN

LSTM
st

Dialog Policy

st-1 st+1

at

Note:
ol: linguistic features
ov: visual features
oa: acoustic features
s: dialog state

st-1
dialog state

multimodal
observation

at ol
t+1 oa

t+1ov
t+1

Figure 15. Multimodal dialog management using the end-to-end approach.

“components”: the multimodal fusion (Hier-TFN), the state tracker(LSTM), and

the dialog policy.

4.3 Multimodal user simulation

This section explain the construction of user simulators for training the policies

for the task of health consultation. In this task, the user can use deceptions in

the negotiation with the system; thus, I create a user simulator that generates

labels of user’s action u and deception information d with the following intention

and deception models:

intention model = P (ut+1|ut, dt, dt+1, at)

deception model = P (dt+1|ut, dt, at) (11)

The probability distributions in Equation 11 are estimated by using maximum

likelihood from the health consultation dialog corpus. I provide more details

about this dataset in Section 4.5. Figure 14 shows the full system structure that

45

can interact with the human user naturally. However, in the training of dialog

manager modules, natural language understanding and deception detection are

not necessary. Instead, the dialog state tracker takes the input of the user’s

action u and user’s deception d directly from the user simulator. To recreate the

uncertainty in prediction of deception detection module, the probabilities P (u)

and P (s) are randomized from the range [0, 1].

For the end-to-end dialog manager’s training, I use the same user simulator

that was defined in Equation 11. Let us recall that in each turn, the dialog

manager takes input features (observations) from three modalities: linguistic,

visual, and acoustic. As a result, It is not possible to directly use outputs of user

simulator for training the policy in the case of end-to-end dialog management.

Zhao and Eskenazie (2016) use random sampling of user utterances from dialog

corpus given the user’s action generated by the simulator. In this research, I adopt

the same strategy but with some modification for multimodal dialog. Particularly,

I use the user’s action u as the linguistic observation ol directly. Given the pair

of u and d, the set of tuples ov, oa for this specific u, d are extracted from the

dialog corpus. After that, one tuple is randomly selected as input for training

the policy. More details about the visual and acoustic observations are given in

Section 4.5.

The simulation modeling described above is not the only way to build a user

simulator. There are many other choices, such as using supervised generative

models. In addition to that, it is not compulsory to have high-level multimodal

labels such as deception or emotion to build the user simulator. We can build

a user simulator with generative modeling that directly generates raw features

(observations) without generating multimodal labels. The user simulation mod-

eling method described in this section is the most popular and simple [41, 55, 34];

thus, I used it for my research. In general, the more accurate the user simulator

imitates the real human user’s behavior, the better policy we can train. The

construction of a multimodal user simulator is also an interesting topic; however,

I leave further investigation for future works.

46

4.4 Dialog management training with policy gradient meth-

ods

In principle, any reinforcement learning algorithm can be used for training the

dialog policy. In this research, I use the REINFORCE algorithm [53] for policy

learning. This algorithm is a classic solution that has been used for various

problems, not just in reinforcement learning. Even though many other algorithms

have been developed since the REINFORCE proposal, this algorithm remains a

popular choice in reinforcement learning research due to its simplicity and good

performance.

The REINFORCE algorithm belongs to the policy gradient class of reinforce-

ment learning algorithms [46]. The training of the policy in REINFORCE, or

other policy gradient-based algorithms, is called on-policy learning. This is be-

cause the interaction samples used for the training is from the same policy that

we are optimizing. Compared to off-policy methods such as Q-learning or DQN

[50, 30], on-policy algorithms like REINFORCE are simpler in general, have less

variance, and are faster to converge. These are the reasons why I choose REIN-

FORCE as the training algorithm in this research.

Let us denote the parameters of the policy as θ. With REINFORCE algo-

rithm, we update θ with the following gradient,

∂(θ) = E

[
T∑
t=0

Rt
∂πθ(st, at)

πθ(st, at)∂θ

∣∣∣∣π
]

= E

[
T∑
t=0

Rt
∂logπθ(st, at)

∂θ

∣∣∣∣π
] (12)

with Rt is the return at time step t, as defined in Chapter 2 and πθ(s, a) denotes

policy with its parameters θ. In general, updating the parameters using 12 has

large variance, especially with one-sample update (the policy is updated after

each episode). Thus, a variance reduction method was introduced [54, 25] by

using a baseline b(st), and the gradient becomes,

∂(θ) = E

[
T∑
t=0

(Rt − b(st))
∂logπθ(st, at)

∂θ

∣∣∣∣π
]

(13)

47

The baseline is not necessary a function of st, it can be a random variable or

even a constant number, as long as it does not vary with a. In the appendix, I

show why including the baseline does not affect estimation of the gradient ∂(θ).

[46] show that the most natural and effective baseline is actually the state-value

function V π(s). Replace this into Equation 13, we have the true gradient update,

which is given as,

∂(θ) = E

[
T∑
t=0

(Rt − V π(st))
∂logπθ(st, at)

∂θ

∣∣∣∣π
]

(14)

4.5 Evaluation

4.5.1 Dataset

I collected a dialog dataset for the health consultation scenario using two settings:

Wizard-of-Oz and direct conversation. The details for each setting are provided

below. The corpus that I collected consists of dialogs between two students fluent

in English. Both participants role-played as consultant and consultee, and the

consultant tried to persuade the consultee to change some actual living habits.

All participants were working in the same academic environment at the time of

data collection. A total of seven participants took part in the recordings. Four of

them played the role of consultant (system), and six played the role of consultee

(user).

Each recording session was carried out by two participants, one playing the

system’s role and the other of the user. Each session consisted of six dialogs for

each of the living habit topics. The participants who played the consultee’s role

were given payment as a reward for the outcome of the conversation. If they

pretended to agree with the system’s offer, they would receive a lower payment;

otherwise, the participant would get a higher payment with the condition that

they would need to adopt the new habit for at least one week. The payment

was intended to create a situation where the user has to choose between an easy

activity (continuing a current habit) with low reward and challenging activity

with a higher reward (changing to a new habit) to observe more lies.

In the WoZ setting, the two participants sit in front of a laptop in two separate

rooms and cannot see each other. The utterances spoken by a participant in

48

one room were transmitted to the other room and output by a speaker. The

recorded WoZ data’s total duration is about three hours and 20 minutes long

and contained 35 dialogs, with an average of 5.8 turns per dialog. One expert

annotated DA labels, and deception labels were provided by the participant who

made the deceptions.

The recording setup was similar to the WoZ scenario with the direct conver-

sation setting but without TTS, since the participants were now talking directly

with each other. The dialogs collected using this setup are more complex and

more helpful for assessing dialog management performance. The direct conver-

sation dataset’s total duration is about two hours and 35 minutes in length and

contained 36 dialogs, with an average of 4.94 turns per dialog. 7 shows the statis-

tics for both type of recorded data. For the experiments, I use the WoZ data to

create the user simulator used for training the policies. On the other hand, the

direct conversation data is used to create the simulator for evaluation.

Table 7. Statistics of deception labels and dialog acts in the health consultation

corpus.

Data Train Test

Consultant DA

End 14.43% 17.54%

Framing 43.30% 36.26%

Offer 42.27% 46.20%

Consultee DA

Hesitate 21.69% 17.64%

Question 3.61% 9.86%

Accept 51.81% 19.72%

Reject 22.89% 52.82%

% lie in user utterances 18.07% 19.72%

4.5.2 Observations/Features extraction

The observations for end-to-end dialog managers are created as follows. Let us

recall that in the health consultation dataset, . In each turn, I split the recorded

video of the user into 30 segments, and sample one frame randomly from each

49

segment. I use the OpenFace toolkit [1] to extract 14 face action unit (AU)

regressions and 6 AU classification values for each frame. The visual observation

at each turn ov is the vector that contains these extracted values. Acoustic

features are extracted from the audio using the OpenSMILE toolkit [14] with

the Interspeech 2009 (IS09) emotion challenge standard feature-set as the feature

template [42]. I use these extracted features to create the acoustic observation

oa. As explain above in Section 4.3, observations ov and oa are sampled uniformly

from the dataset with the condition of u and d, which are generated by the user

simulator.

4.5.3 Results

Even though the input dialog managers based on modular and end-to-end ap-

proaches are different since I use the same distribution models (intention and

deception model); the evaluation condition is fair.

In this experiment, I use the dialog action selection accuracy as the measure-

ment for dialog management performance. The results are shown in Table 8. As

can be seen, there are no significant differences between the modular-based and

end-to-end managers’ performance. This result means that the end-to-end dialog

manager successfully incorporates the user’s deceptive behavior in its latent state

representation without using deception labels as in the modular-based manager.

Table 8. Accuracy of dialog act selection when using different approaches.

Dialog manager models
DA selection

accuracy

Modular-based 71.20%

End-to-end 69.95%

50

5. Policy reuse with action relation probability

Current policy adaptation studies in reinforcement learning-based dialog man-

agement follow the “weight initialization” approach [19, 6, 29]. As explained in

Chapter 1, this strategy requires us to train the target policy from scratch with

an RL algorithm, which is a tedious process and needs lots of effort, especially

for complex tasks. Besides, let us recall that the construction of dialog policy

usually involves user simulation. When we have only a small amount of data

in the target dataset, the user simulator does not well-represent the real human

user’s behavior. Therefore, the policy that we train can have high performance

against the simulator but does not work well versus real human users.

Problem statement. Given a source task with the state space SA and the

action set A. Let us assume that we have trained a policy π(s, a) for the source

task. The target task’s state space and action set are denoted as SB and B,

respectively. Is it possible to derive a policy π(s, b) for the target task from

π(s, a), without RL training?

This chapter provides an answer to this question, which is the dialog policy

reuse algorithm, a novel adaptation method that does not rely on RL training.

5.1 Related works

There have been a variety of studies about policy adaptation for reinforcement

learning-based goal-oriented dialog management.

[6] proposes a policy adaptation method by using a multi-agent dialog policy.

[6] uses an explicit representation of the dialog state, which contains multiple

slot information. For each slot, we build an “agent” that learns how to choose

actions corresponding to this slot. The dialog policy is an ensemble of these

agents. In the target task, for each new slot information, the network weights of

its corresponding agent are initialized using weights of the agents that have been

trained in the source task. While this adaptation method does not require the

state representation to be similar, as in DPRA, it has the restriction that state

representation of both tasks must contain values of slot information. Also, this

method requires the action set for each agent to be the same in order to perform

weight initialization. This requirement makes [6] not as flexible as DPRA in

51

terms of action space restriction.

[19] introduces a new policy adaptation method by using weight bootstrap-

ping. [19] also uses slot information for the state representation. This method

proposes sharing the slots and actions across the source, and the target task A

neural network is constructed with the input layer has the number of neurons

equal to the number of total grouped slots. Similarly, the output layer has the

number of neurons equal to the number of total grouped actions. First, we train

a policy on source task by reinforcement learning. The network weights are then

fine-tuned by training on the target task. This adaptation method has the same

restriction of state representation as in [6]. Furthermore, [19] also requires over-

lapping the source task’s action sets and the target task. The proposed method,

DPRA, is more flexible and does not have this limitation.

[29] proposes an adaptation of dialog policy by using action embeddings. They

argue that a set of action embeddings can be shared across the source and the

target tasks. In practice, action embedding is represented by a hidden layer

that is fully connected to both the input and output layers. After training the

policies from all the source tasks, the weight parameters that connect the input

layer and the hidden layer are used to initialize the corresponding weights in

the target policy’s neural network. I use this method as the baseline because

this adaptation method does not require any additional knowledge or relations

between the source and the target task and is comparable to the proposed method

in terms of flexibility.

5.2 Method

This section answers the problem statement that was raised previously. I partic-

ularly show that it is possible to learn a policy for the target task without RL.

Instead of training policy by interactions with a user simulator, we can establish a

connection between the source task’s policies and the target task through a special

mapping distribution, which is called action-relation probability. The proposed

adaptation method, DPRA, learns this distribution from the dialog samples in

both tasks and can immediately derive a policy for the target task. Thus, DPRA

can reduce learning time remarkably. Since the proposed method does not use

the user simulator, we can avoid a low performance due to errors in constructing

52

the user simulator.

5.2.1 Policy adaptation with action-relation probability

We consider the policy adaptation from a source task to a target task. First, we

make the following assumptions, which allow derivation of relation between the

source’s and the target task’s policies:

Assumption 1: The source task and the target task share the same state

space S.

This assumption is not restrictive. The union space S = SA ∪ SB is the state

space that satisfies the assumption.

Assumption 2: The source task and the target task has similar state repre-

sentation.

As defined above, the observation refers to the information necessary for the

agent’s action selection in each time step. An example of the observation is

the features extracted from the user’s utterance at each turn. Obviously, in

policy adaptation settings, the source and target task are different and require a

distinctive set of features. Thus, the source task’s state representation is also not

the same as the target task’s. However, we can define a unified set of features for

those tasks; therefore, we can have the same observation across the source and

the target tasks.

We can establish a connection between the source and the target task’s policy

with the following equation:

Let us denote the source task’s policy as π(s, a) and the target task’s policy as

π(s, b), with a ∈ A, b ∈ B are action set in the source and target task respectively.

We have,

π(s, b) =
∑
a∈A

P (b|a, s)π(s, a). (15)

Equation 15 says that with any conditional distribution of P (b|a, s), from the

source policy π(s, a), we can directly infer a policy for the target task π(s, b) with-

out RL training. This distribution P (b|a, s) is termed action-relation probability.

The proposed method of policy adaptation models this distribution instead of

performing RL training.

53

5.2.2 Action-relation probability modeling with mixture density net-

work

This section explains a modeling of action-relation probability distribution. First,

let us denote the state and action at time step t as s = st and a = at respectively,

the state at the next time step is s′ = st+1. We have the state transition in the

target task is given as,

P (s′|a, s) =
∑
b∈B

P (s′, b|a, s) (law of total probability)

=
∑
b∈B

P (s′|b, a, s)P (b|a, s).
(16)

The state transition of the source task has the form of a mixture model with

the action-relation probability as the component weights. Mixture density net-

work (MDN) [5], or MDN, is a suitable approach for modeling the state transition

P (s′|a, s). In principle, mixture density network is a type of Gaussian mixture

model (GMM) that utilizes artificial neural network. Given multivariate random

variables x, y, MDN models the conditional probability density p(y|x) as,

p(y|x) =
M∑

m=1

wm(x) · N (y;µm(x), σ
2
m(x)). (17)

M is the number of components, wm(x), µm(x), and σ2
m(x) are the component

weight, mean, and standard deviation for component m. I make an assumption

that that these mixture variables are functions of the input x and they are approx-

imated by neural networks fw
m, f

µ
m, f

σ
m, parameterized by θwm, θ

µ
m, θ

σ
m respectively.

With some slight abuse of notation, we have:

wm(x) ≈
exp(fwm(x; θ

w
m))∑M

l=1 exp(f
w
l (x; θ

w
l))

(18a)

µm(x) ≈ fµ
m(x; θ

µ
m) (18b)

σ(x) ≈ exp(fσm(x; θ
σ
m)) (18c)

With MDN, we assume that all components in the multivariate random variable

y are mutually independent, thus the covariance matrix is diagonal and can be

represented by a vector with the same dimension as fµ
m(x). Let us denote the

54

dataset as D = {(x(i),y(i))}, i = 1..N , with x,y are observed data for random

variables x and y. The parameters are optimized using gradient descent with the

following negative log-likelihood:

L = −log(
N∏
i=1

p(
M∑

m=1

wm(x
(i)) · N (y(i);µm(x

(i)), σ2
m(x

(i))))) (19)

By replacing the probabilities with probability density functions, the mixture

model in (16) is now given by,

p(s′|ai, s) = pi(s
′|s) (ai ∈ A)

=

|B|∑
j=1

Pij(s) · pij(s′|s)

=

|B|∑
j=1

wij(s) · N (s′;µij(s), σ
2
ij(s)).

(20)

An illustration of these mixture models are given in Figure 16. In principle, the

density of state transition caused by ai, is a mixture model with each component

pij(s
′|s) = p(s′|ai, bj, s) follows a Gaussian distribution N (s′;µij(s), σ

2
ij(s)). For

each action ai in the source task, we can train its corresponding MDN with just

the samples (s′, ai, s). The action-relation probability P (b = bj|a = ai, s) is

approximated by fw(x; θwij)) as shown in (18a). However, in that case, we cannot

guarantee that N (s′;µij(s), σ
2
ij(s)) truly models the state transition p(s′|ai, bj, s)

since the source task samples do not contain information of bj. A natural solution

is to additionally train the components by using the samples (s′, bj, s) in the

target task. I call this process “component matching” since it actually “matches”

the distribution of Gaussian component N (s′;µij(s), σ
2
ij(s)) to the transition of

p(s′|bj, s).
In this work, I propose two methods of component matching. In the first

method, I assume that p(s′|ai, bj, s) = p(s′|bj, s)∀ai ∈ A, bj ∈ B. With this

assumption, we can perform component matching by simply optimizing the net-

works’ parameters using negative log-likelihood of the target task’s samples:

L = −log(
N∏
i=1

N (s′
(i)
;µ(s(i)), σ2(s(i)))). (21)

55

𝑎1
𝑝 𝑠′ 𝑎1, 𝑠

… …
𝑁 𝑠′; 𝜇11 𝑠 , 𝜎11

2 𝑠

𝑏1 𝑏𝑗… 𝑏𝐿…

𝑁 𝑠′; 𝜇11 𝑠 , 𝜎11
2 𝑠 𝑁 𝑠′; 𝜇1𝐿 𝑠 , 𝜎1𝐿

2 𝑠

𝑎𝑖

…

𝑁 𝑠′; 𝜇𝑖1 𝑠 , 𝜎𝑖1
2 𝑠 𝑁 𝑠′; 𝜇𝑖𝑗 𝑠 , 𝜎𝑖𝑗

2 𝑠

𝑎𝐾

𝑝 𝑠′ 𝑎𝑖 , 𝑠

…

… …

𝑝 𝑠′ 𝑎𝐾 , 𝑠

𝑁 𝑠′; 𝜇𝑖𝐿 𝑠 , 𝜎𝑖𝐿
2 𝑠

𝑁 𝑠′; 𝜇𝑖1 𝑠 , 𝜎𝑖1
2 𝑠 𝑁 𝑠′; 𝜇11 𝑠 , 𝜎11

2 𝑠 𝑁 𝑠′; 𝜇𝐾𝐿 𝑠 , 𝜎𝐾𝐿
2 𝑠

𝐴 = 𝐾; 𝐵 = 𝐿

… …

𝑝 𝑠′ 𝑏1, 𝑠 𝑝 𝑠′ 𝑏𝑗 , 𝑠 𝑝 𝑠′ 𝑏𝐿, 𝑠

Figure 16. State transition modeling by mixture density network..

Since the training of this component matching method is similar to the training

process of a regression model, I define it with the term component matching by

regression. Algorithm 1 shows the pseudo code for the training process of the

mixture model in Equation 20 by using component matching by regression.

56

Algorithm 1 Action-relation probability modeling by MDN with component

matching by regression

Initialize the network weights θw, θµ, θσ randomly

Initialize the MDN gradient dθMDN ← 0

Initialize the gradient for component matching dθCM ← 0

Initialize the iteration counter t← 0

repeat

for all ai such that ai ∈ A do

for all bj such that bj ∈ B do

Calculate the gradient dθCM by (21)

Update parameters θµ, θσ with dθCM

end for

Calculate the gradient dθMDN by (19)

Update parameters θw, θµ, θσ with dθMDN

end for

t← t+ 1

until t > tmax

The second component matching method stems from the following derivation:

P (s′|b, s) =
∑
a∈A

P (s′, a|b, s) (law of total probability)

=
∑
a∈A

P (s′|b, a, s)P (a|b, s).
(22)

Equation (22) says that the transition distribution P (s′|b, s) also has the form of

a mixture model and we can model it by MDN. We can see that the mixture in

Equation (22) has the same component P (s′|a, b, s) as in (16), but different com-

ponent weights P (a|b, s). I define the parameter of the network that approximates

the component weights as θ̂w.

57

Algorithm 2 Action-relation probability modeling by MDN with component

matching by MDN

Initialize the network weights θw, θ̂w, θµ, θσ randomly

Initialize the MDN gradient dθMDN ← 0

Initialize the gradient for component matching dθCM ← 0

Initialize the iteration counter t← 0

repeat

for all ai such that ai ∈ A do

for all bj such that bj ∈ B do

Calculate the gradient dθCM by (23)

Update parameters θ̂w, θµ, θσ with dθCM

end for

Calculate the gradient dθMDN by (19)

Update parameters θw, θµ, θσ with dθMDN

end for

t← t+ 1

until t > tmax

In principle, the components in column of bj in Figure 16 form a mixture

model for the density of state transition p(s′|bj, s). Similarly, we can train this

mixture with a loss function that is similar to (19) by using the target task

samples (s′, bj, s), which is given by,

L = −log(
N∏
i=1

p(
M∑

m=1

ŵm(x
(i)) · N (y(i);µm(x

(i)), σ2
m(x

(i))))). (23)

Therefore, in this research, the term to describe this method is component

matching by MDN. The pseudo-code for action-relation probability modeling us-

ing MDN component matching is shown in Algorithm 2.

Finally, the procedure of my proposed method, the dialog policy reuse algo-

rithm, is shown in Algorithm 3:

58

Algorithm 3 Dialog policy reuse algorithm - DPRA

Step 1: Train a policy π(s, a) for source task

Step 2: Model the action-relation probability P (b|s, a) by using either Algo-

rithm 1 or Algorithm 2

Step 3: Create a policy for target task π(s, b) , by using Theorem 15, with the

action-relation probability learned in Step 2.

To summarize this section, I show that the resultant policy π(s, b) of DPRA

is a proper policy, which means: ∑
b∈B

π(s, b) = 1 (24)

The proof for this statement is provided in the Appendix. Intuitively, DPRA

works as follows. Given policy π(s, a) in the source task, let us assume that the

agent with pi selects action a given current state s. DPRA finds action b in the

target task that causes similar transition s → s′ of an action a in the source

task, in other words P (s′|s, a) ≃ P (s′|s, b). Instead of making a deterministic

mapping, we learn a distribution that connects a to all available actions in the

target task, which is P (b|a, s). This is the reason why I use the term action-

relation probability to define this special distribution. With the condition that

the source and the target task are also similar in the rewards dynamic, if the

learned policy π(s, a) in the source task is optimal, then the policy π(s, b) learned

by DPRA is nearly optimal as well.

DPRA requires identical state space and state representation of the source and

target tasks (Assumption 1 and 2). Recall that all policy adaptation methods

Source task:
State space: S
Action set: A
Policy: 𝜋 𝑠, 𝑎

Target task:
State space: S
Action set: B
Policy: 𝜋 𝑠, 𝑏

DPRA
Model the distribution

𝑃(𝑏|𝑎, 𝑠)

Figure 17. Working procedure of DPRA.

59

only work in cases where the source and target tasks are similar. In this situation,

even if the two tasks’ state spaces and state representations are not completely

identical, we expect that they still share considerable similarities. Thus, the

proposed method can still learn a good policy for the target task without the

ideal conditions in Assumption 1 and 2.

In the context of a multimodal dialog, similarities in terms of modalities be-

tween the source and the target task are not always guaranteed. From the view

of multi-modalities, the task differences come from the modality type difference

or feature difference. However, it is reasonable to assume that if a modality is

used in both the source and target task, the features extracted for this modality

are similar in those tasks. Therefore, the differences in terms of modalities be-

tween the source and the target task only come from their modality types. Let

us denote the set of modalities in the source task as MS and the target task as

MT . There are three situations where MS and MT are different.

1. There exists Mi ∈MS and Mj ∈MT such that Mi /∈MT and MJ /∈MS.

2. MT ⊂MS or ∀Mj ∈MT ,Mj ∈MS.

3. MS ⊂MT or ∀Mi ∈MS,Mi ∈MT .

In all of the situations above, the condition of a similar state representation is

not satisfied. However, we can alleviate this issue by using a “padding” strategy

[24, 19]. First, we define a union set of modalities in the source and target

task, M = MS ∪ MT . We use the input features from all modalities in M

when training a policy in the source or target task. If a modality is missing,

we replace its features with a vector of zeros. This strategy allows us to have

the same representation of the state in the source and target task, and we can

apply the proposed adaptation algorithm. However, if there is a modality in the

target task that does not exist in the source task (situation 1 and 3 above), the

source task’s policy cannot handle features from this modality. As a result, the

adapted policy will not be optimal, since it also does not know how to handle

unseen information from modalities that do not appear in the source task. In

summary, if the adaptation setting falls into either the first or the third situation,

the proposed method cannot guarantee to learn a good policy. However, since

60

all necessary information in the target task is included in the source task, the

adapted policy can select appropriate actions in the second situation. Note that

in the second situation, a simpler strategy is to discard all the features from

modalities in the source task that does not appear in the target task, then use

the remaining features as input for training a policy for the source task. However,

this strategy limits the generalization of the source task’s policy. When we need

to perform adaptation with different target task, the source task’s policy needs

to be trained again.

When performing policy adaptation, it is also desirable if we can determine

the similarities between the source and target tasks. From the multi-modality

viewpoint, if the adaptation setting falls into situations 1 or 3 above, then we can

say that the source and target tasks are dissimilar. Thus, the policy learned by

DPRA cannot guarantee to have good performance. On the other hand, if the

adaptation setting is the second situation or an ideal situation (MT ≡MS) then

the DPRA can learn a good policy for the target task.

While in this research, I use the health consultation task (negotiation) as a use

case for the study about multimodal dialog management, the proposed DPRA

is flexible and can be applied for any reinforcement-learning-based dialog policy

adaptation. In principle, if we want to adapt from a source to a target task that

satisfies Assumption 1 and 2, then DPRA can be used. For example, we can

use DPRA to adapt policies for visual question-answering tasks where the source

and target tasks have a different set of questions that the system can make. In

addition to that, we can use DPRA for policy adaptation in both modular-based

and end-to-end dialog management. Since the state representation in a modular-

based approach usually has a lower number of general dimensions, I expect that

the adaptation of modular-based polices will be easier than end-to-end policies.

However, with modular-based policy adaptation, the training data must include

high-level multimodal labels such as deception or emotion. On the other hand,

adaptation for end-to-end policies does not have this requirement, and the amount

of data for adaptation can be much larger.

61

5.3 Evaluation

5.3.1 Setting

I conduct experiments to assess the following hypotheses:

1. The proposed adaptation algorithm, PDRA, requires much less training

time than the conventional fine-tuning methods.

2. PDRA achieves equivalent or higher performance compared to current meth-

ods in the case of limited data available in the target task.

For comparison with the proposed methods, I use policy adaptation by action

embedding [29]. This method uses the same network of the end-to-end dialog

modeling and changes the last part of the network for connecting to a new action

space in the target task. This model is straightforward but does not require any

prior information, such as relations between actions. The proposed algorithm

also does not require such prior information; thus, I select this method as the

baseline.

In the evaluation, I perform policy adaptation for multimodal goal-oriented

dialog system with end-to-end approach.As discussed in [43], the available corpora

for this type of conversation are mostly in small-scale; thus, it is suitable for the

assessment of the second hypothesis. I use similar end-to-end dialog model as

shown in Figure 15, with a multimodal fusion component that uses Hierarchical

Tensor Fusion Network.

Like the previous chapter, I formulate the problem of dialog management with

the episodic and undiscounted reward setting and train the dialog policies using

REINFORCE [53] with the state value function as a baseline.

The output layers of the multimodal fusion component and the DST both

have 128 units. Therefore, the dialog state is represented by a vector s ∈ R128.

The neural network representing the dialog policy has one single hidden layer

with a dimension of 128, which is fully connected to the input and output layer. I

use Adam optimizer to optimize the networks’ parameters, and the learning rate

is initialized at 1e− 3. I train the policies for source and target tasks with 20,000

and 10,000 episodes respectively, each episode can be seen as a simulated dialog

with the user simulator. The learning rate decreases by 10% every 1000 episodes.

62

The neural networks that approximate the mixture variables in Algorithm 1

and Algorithm 2 have one hidden layer with 256 units. I also use Adam optimizer

for parameter optimization, the learning rate is fixed at 1e− 4, and the number

of training epochs is 10. Note that in Algorithm 1 and Algorithm 2, the network

parameters are updated sequentially with two different gradients. Thus, the

training process may have large oscillation and converges slowly. To avoid this

problem, I adopt p : q training scheme. Every epoch, I perform component

matching for p = 2 times and train the mixture model for q = 2 times.

Source task
dataset

User simulator

1. RL
training

Policy
𝜋 𝑠, 𝑎

2. Policy
adaptation

Policy
𝜋 𝑠, 𝑏

Target task
dataset

User simulator

3.1 Evaluation
with simulator

3.2 Evaluation
by DA

selection

Figure 18. Experiment procedure of policy adaptation evaluation. Each phase is

illustrated with different colors and numbering.

I perform evaluation with two settings: similar tasks adaptation and distinc-

tive tasks adaptation, which are explained in Section 5.3.2 and 5.3.3.

5.3.2 Policy adaptation between similar tasks

In this evaluation setting, both the source and the target task are negotiation in

the healthcare domain. In particular, the system tries to convince the user that

their current living style is unhealthy, and the user needs to adopt a living habit

proposed by the system.

63

The healthcare consultation task described in Chapter 2 is chosen as the

source task. I use the healthcare consultation dataset in [34], which contains

conversations of six topics: sleeping, eating, working, exercising, social media

usage, and leisure activities. The conversations of the first four topics (51 dialogs

in total) are used for training the policy of source task. The remaining 24 dialogs

in two topics are used for training in the target task. In each turn, I split the

recorded video of the user into 30 segments, and sample one frame randomly from

each segment. I use the OpenFace toolkit [1] to extract 14 face action unit (AU)

regressions and 6 AU classification values for each frame. The visual observation

at each turn ov is the vector that contains these extracted values. Acoustic

features are extracted from the audio using the OpenSMILE toolkit [14] with

the Interspeech 2009 (IS09) emotion challenge standard feature-set as the feature

template [42]. I use these extracted features to create the acoustic observation

oa. Table 9 shows the reward in the source task that the agent receives when

selecting an action given the user dialog act (u) and deception label (d), which

are generated by the user simulator. The reward function for the source task is

defined in Table 9.

Table 9. Reward definition for the source task.

Dialog state Rewards

User DA (u) d Offer Framing End

Accept
0 –10 –10 +100

1 –10 +10 -100

Reject
0 +10 +10 –100

1 –10 +10 –100

Question 0 –10 +10 –100

Hesitate 0 +10 +10 –100

In order to make differences between the target and the source task, I change

the system’s action set of the target task into {Offer New, Offer Change, Fram-

ing Argue, Framing Answer, End Dialog}. Therefore, the source policy never

sees these actions during training. The new reward definition is shown in Table

10. Offer New gives +10 reward only if it is selected in the first turn. I use the

same multimodel user simulation as described in Chapter 4 for the training of

64

policies in this evaluation.

Table 10. Reward definition for the target task.

Dialog state Rewards

User DA (u) d Offer Change Offer New Framing Answer Framing Argue End

Accept
0 –10 –10 –10 –10 +100

1 –10 –10 –10 +10 -100

Reject
0 +10 –10 –10 –10 –100

1 –10 –10 –10 +10 –100

Question 0 –10 –10 +10 –10 –100

Hesitate 0 +10 –10 –10 +10 –100

Table 11. Comparison of training time required for different policy adaptation

methods.

Model
Training

time

DPRA - regression component matching ∼ 40s

DPRA - MDN component matching ∼ 45s

Policy adaptation by action embedding [29] ∼ 350s

Table 11 shows the training time required for all policy adaptation methods.

The numbers reported for DPRA are from the case in which all 24 dialogs of

the target task are available for training. For the cases where we have a smaller

amount of data, it will take less time for training with DPRA. With policy adap-

tation by action embedding [29], I choose the number of episodes (interactions

with simulated user) for training the target policy based on average rewards re-

ceived per episode during learning. As can be seen from table 11, PDRA requires

significantly less time for training; thus, the first hypothesis stands.

I recreate a scenario where the amount of data available for training in the

target task is limited to assess the second hypothesis. In particular, I sample

k dialogs from the source task dataset, k ∈ {1, 2, 4, 8, 16}. After that, I use

these k dialog samples to create the user simulator to train the target policy

in ActEmb adaptation method and modeling the action-relation probability in

PDRA. For each value of k, I sample k dialogs five times, thus making five

65

Table 12. Average reward per episode of the learned policies with different

amounts of available data. Numbers in bracket indicates 95% confidence interval.

Model

available

dialogs 1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs

DPRA - MDN -25.43 -10.33 -2.18 14.93 17.21

(±16.16) (±8.94) (±10.71) (±4.11) (±4.2)
DPRA - regression -12.96 -0.01 6.11 14.65 19.41

(±11.05) (±10.24) (±6.03) (±6.27) (±4.49)
ActEmb - 2k -33.56 -11.48 0.01 -8.56 12.86

(±17.03) (±10.33) (±11.45) (±13.00) (±11.05)
ActEmb - 10k -29.98 -18.07 -13.42 0.64 2.04

(±13.12) (±11.60) (±12.22) (±11.99) (±13.72)
NoAdapt - 2k -52.93 -23.42 -26.61 -19.15 -11.77

(±16.59) (±13.93) (±17.98) (±18.29) (±19.80)
NoAdapt - 10k -36.95 -17.72 -9.02 -7.75 10.55

(±15.21) (±16.27) (±13.92) (±14.40) (±19.95)

different datasets. With each dataset, I perform policy adaptation ten times for

each method. Therefore, I conducted 50 runs of the policy adaptation experiment

with each sampling of k dialogs.

Table 12 shows the performance of dialog policies in terms of average reward

per episode. The details of reward function for both the source and target task

are provided in Appendix (ref here). DPRA-MDN and DPRA-regression refer to

the proposed policy adaptation method with component matching by MDN and

regression respectively. ActEmb-2k and ActEmb-10k refers to policy adaptation

by action embedding method, with the number of episodes for training in the

target task is 2,000 and 10,000. Finally, NoAdapt refers to the policy that is

trained on the source task without adaptation, the notation for number of training

episodes is the same as ActEmb. As can be seen, in general, the performance

goes higher with more data available. In Table 12, bold numbers indicate the

policy with highest average reward per episode in each scenario of k dialogs

available. We can see that DPRA shows significantly improvement in comparison

66

Table 13. Dialog act selection accuracy of the learned policies with different

amount of available data. Numbers in bracket indicates 95% confidence interval.

Model

available

dialogs 1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs

DPRA - MDN 40.96% 39.86% 56.16% 62.05% 62.05%

(±7.79%) (±6.81%) (±7.82%) (±4.94%) (±4.64%)

DPRA - regression 45.41% 52.79% 60.48% 62.98% 69.30%

(±5.99%) (±5.18%) (±6.02%) (±5.08%) (±3.22%)

ActEmb - 2k 33.83% 33.25% 41.41% 39.41% 43.64%

(±4.88%) (±4.73%) (±5.92%) (±5.75%) (±5.41%)

ActEmb - 10k 28.04% 24.79% 26.11% 25.62% 29.30%

(±5.24%) (±5.04%) (±6.78%) (±6.06%) (±5.04%)

NoAdapt - 2k 33.80% 35.86% 35.62% 34.80% 43.14%

(±7.54%) (±7.06%) (±7.06%) (±7.17%) (±7.50%)

NoAdapt - 10k 37.39% 44.50% 47.86% 44.41% 52.16%

(±6.91%) (±8.01%) (±7.61%) (±6.31%) (±7.76%)

with ActEmb and NoAdapt (p < 0.05), especially when k is small. We can also

observe that ActEmb-2k and ActEmb-10k performs similarly; on the other hand,

the performance of NoAdapt-10k is remarkably higher than NoAdapt-2k.

The performance in terms of dialog act selection accuracy for all policies is

shown in Table 13. Similarly, the dialog policies learned by PDRA outperform

those from ActEmb and NoAdapt with a large margin (p < 0.05). Surprisingly,

with more data available, the performance gap between DPRA and the other

methods becomes bigger. There is only a subtle increase in action selection

accuracy of the policies learned by ActEmb and NoAdapt when k increases from

1 to 16. Let us recall that the results in Table 12 are reported under the setting

where I run the policies are against a simulator that is created from all 24 dialogs

in the target dataset. Therefore, if we train a policy by using a simulator created

form 16 dialogs, the performance in terms of average reward per episode will

be much higher than using the simulator from one dialog. However, because

ActEmbed and NoAdapt do not use full knowledge from the source task policy, 16

dialogs are not enough to train a policy with high action selection accuracy. Thus,

67

the gain when increasing the amount of available data in Table 13 is modest. In

contrast, DPRA can retain knowledge from the source task policy and effectively

adapts it to the target task, thus achieving high performance in terms of action

selection accuracy, especially when more data is available.

Table 14. Average reward per episode of the policies that take only use linguistic

features (single-modality). Numbers in bracket indicates 95% confidence interval.

Model

available

dialogs 1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs

DPRA - MDN -16.61 -15.61 -6.60 -2.15 8.07

(±5.79) (±15.43) (±6.71) (±5.60) (±5.27)
DPRA - regression -19.98 -8.59 2.53 2.71 3.52

(±14.07) (±8.81) (±7.01) (±8.19) (±5.46)
ActEmb - 2k -33.49 -23.78 -19.40 -15.66 -8.45

(±12.02) (±10.27) (±13.08) (±14.22) (±14.11)
ActEmb - 10k -41.42 -16.78 -18.97 1.69 0.65

(±14.56) (±9.92) (±14.765) (±11.85) (±18.98)
NoAdapt - 2k -47.47 -44.22 -40.98 -28.17 -23.95

(±13.77) (±14.51) (±16.31) (±11.94) (±19.42)
NoAdapt - 10k -45.71 -34.14 -23.81 -12.86 -11.35

(±13.09) (±17.69) (±15.53) (±16.52) (±22.79)

In addition to experiments with multimodal dialog policies, I also conduct

adaptation experiments for adaptation in the case of single-modality dialog man-

agement. In this setting, the dialog managers select actions based on linguistic

features only. I use exactly the same setup used in the previous experiment with

multimodal dialog management. For each sampling of k dialogs as the training

dataset, I run the experiments for five times. Table 14 and 15 show the results in

terms of average rewards received per episode and DA selection accuracy. As can

be seen, policies adapted by DPRA achieves best performance in both metrics.

In terms of average reward, DPRA significantly outperforms other adaptation

method when k ∈ 1, 2, 4 with p < 0.05. In terms of DA selection, the proposed

method gets significantly higher performance with all values of k except for k = 1.

68

Another notable point is that performance in terms of DA selection decreases re-

markably when the dialog managers use features from only one modality. This

phenomenon proves that for the health consultation task, multimodality infor-

mation is important.

Table 15. Dialog act selection accuracy of the learned policies that only use lin-

guistic features (single-modality). Numbers in bracket indicates 95% confidence

interval.

Model

available

dialogs 1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs

DPRA - MDN 38.77% 41.29% 47.73% 49.92% 51.24%

(±5.24%) (±4.48%) (±2.57%) (±2.09%) (±4.21%)

DPRA - regression 30.98% 37.02% 46.16% 44.72% 50.74%

(±8.07%) (±6.61%) (±5.49%) (±4.27%) (±4.24%)

ActEmb - 2k 33.11% 32.10% 35.37% 37.99% 46.05%

(±6.86%) (±6.51%) (±5.34%) (±5.75%) (±6.01%)

ActEmb - 10k 36.37% 38.88% 42.57% 44.37% 45.25%

(±5.20%) (±5.65%) (±5.59%) (±6.39%) (±6.36%)

NoAdapt - 2k 32.55% 29.02% 30.06% 33.27% 43.00%

(±4.54%) (±4.99%) (±6.79%) (±4.63%) (±6.62%)

NoAdapt - 10k 33.54% 39.90% 44.05% 43.80% 46.35%

(±5.04%) (±6.14%) (±5.12%) (±5.15%) (±6.93%)

5.3.3 Policy adaptation between distinctive tasks

With this evaluation, I choose the negotiation task described previously as the

source task. The target task is positive emotion elicitation, where the system

needs to evoke positive emotions from the user and makes them feel better.

Similar to the previous evaluation, I use the healthcare consultation corpus in

[34] as the source task dataset. In this case, I use all of the data (75 dialogs) to

train the source task’s policy. For the target task, I use the emotion elicitation

dialog corpus [26, 27], which contains 58 conversations in total. Each conversation

corresponds to a session where a participant watches an emotion-induced video

and then proceeds to talk with an expert, a professional counselor. The goal of the

69

expert is to elicit positive emotions from the participant during this conversation.

Table 16 shows some statistics of the emotion elicitation dataset.

Table 16. Emotion elicitation dataset statistics.

Total number of sessions 58

Total duration of all sessions 23 hours 41 minutes

Average duration per session 23.6 minutes

Minimum duration 10 minutes

Maximum duration 33 minutes

In the emotion elicitation task, the user simulator is built similarly to the one

described in Section 4.3, with the change into emotion model instead of deception

model,

intention model = P (ut+1|ut, et, et+1, at)

emotion model = P (et+1|ut, et, at) (25)

The emotion label in Equation 25 is decided based on the annotated valence

values, which are quantized into {0, 1, 2, 3, 4} from the range [−1, 1]. Since the

conversations in emotion elicitation tasks are much longer, the training of a policy

for this task is also more difficult. Therefore, I increase the number of episodes

for policy learning from 10,000 to 25,000. Besides, videos in the emotion dataset

are of insufficient quality for facial expression extraction. As a result, the dialog

manager does not take visual observation as input in the target task. When using

the dialog manager’s network from the source task to perform state tracking in the

target task, visual observation is replaced by a constant vector with all values are

equal to one. All other experiment settings are similar to description in Section

5.3.1.

This adaptation setting does not follow the assumptions raised in Section

5.2, because the source and the target task has little similarities in both state

representation and the state space. Let us recall that we use the dialog manager

in the source task to perform state tracking and get the dialog samples for policy

adaptation by DPRA. This strategy ensures that the state representation is the

same between the source and the target task. However, the resultant of DST

70

of the source task’s dialog manager is a state that does not contain emotion

information, since the user simulator does not have it. On the other hand, in

the target task, emotion information is essential and should be included in state

representation. Therefore, I expect that the policies that are adapted by DPRA

do not work well in this setting.

Table 17. Average reward per episode of the learned policies with different amount

of available data. Numbers in bracket indicates 95% confidence interval.

Model

available

dialogs 1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs 32dialogs

DPRA - MDN 32.15 29.47 34.65 13.13 23.49 24.90

(±9.05) (±9.90) (±12.23) (±4.90) (±10.53) (±9.13)
DPRA - regression 38.73 21.57 31.32 18.61 1.46 32.56

(±10.94) (±9.47) (±7.15) (±7.45) (±2.85) (±10.48)
ActEmb - 5k 48.08 33.31 46.13 5.61 79.72 44.30

(±8.08) (±13.84) (±10.89) (±38.33) (±36.50) (±15.78)
ActEmb - 25k 42.51) 37.43 30.21 45.35 48.84 86.67

(±13.45) (±11.44) (±13.68) (±9.85) (±13.78) (±42.12)
NoAdapt - 5k 33.97 31.06 36.36 45.96 38.65 45.16

(±13.62) (±11.56) (±10.17) (±23.65) (±7.09) (±10.15)
NoAdapt - 25k 66.53 26.47 35.05 71.84 53.06 72.78

(±44.95) (±11.84) (±11.71) (±45.52) (±11.75) (±18.37)

Table 17 shows the average of total reward per episode of the policies adapted

for the emotion elicitation task. As expected, since there are few similarities

between the source and the target task in this setting, the proposed method

does not work as well as ActEmb or NoAdapt. The adapted policies have lower

performance in terms of total reward per episode. However, we can still see that

policies adapted by DPRA gain positive rewards in all scenarios, which indicates a

small connection between the health consultation task and the emotion elicitation

task.

In Table 18, we can see that in terms of DA selection accuracy, there are not

much difference between the policies learned by the proposed method and previ-

ous methods. Overall, the performance of policies trained by adaptation methods

(DPRA and ActEmbed) are not higher than those trained without adaptation

(NoAdapt).

71

Table 18. Dialog act selection accuracy of the learned policies with different

amount of available data. Numbers in bracket indicates 95% confidence interval.

Model

available

dialogs 1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs 32 dialogs

DPRA - MDN 21.94% 24.79% 24.03% 30.14% 19.27% 31.09%

(±5.35%) (±6.59%) (±6.12%) (±4.07%) (±4.84%) (±5.64%)

DPRA - regression 23.79% 28.46% 23.33% 29.59% 42.37% 26.59%

(±7.40%) (±7.07%) (±5.45%) (±7.31%) (±2.19%) (±5.27%)

ActEmb - 5k 31.49% 28.12% 37.53% 32.91% 23.22% 23.00%

(±4.48%) (±7.21%) (±5.05%) (±6.50%) (±7.10%) (±8.49%)

ActEmb - 25k 35.19% 28.91% 40.29% 34.62% 22.07% 21.23%

(±4.30%) (±7.38%) (±5.50%) (±6.18%) (±6.92%) (±7.84%)

NoAdapt - 5k 29.75% 28.29% 25.55% 31.99% 18.85% 27.24%

(±6.54%) (±6.87%) (±8.20%) (±7.53%) (±7.25%) (±7.60%)

NoAdapt - 25k 31.11% 19.38% 28.46% 35.54% 20.21% 30.26%

(±7.39%) (±7.03%) (±8.63%) (±5.40%) (±6.96%) (±6.58%)

72

6. Conclusions and future directions

6.1 Conclusions

This research studied the application of the end-to-end approach for multimodal

goal-oriented dialog management. This thesis tackled two major challenges of

this topic: fusion of multimodal information and data sparsity. I also conducted

a study that compares modular-based and end-to-end dialog management.

This research introduces a new method called hierarchical tensor fusion net-

work for combining multiple modalities. Unlike previous works, the proposed

method can balance the difference between modalities and learn about feature

interactions simultaneously, which allows us to create better multimodal process-

ing models. Experimental results indicated that the hierarchical tensor fusion

model has the best performance, outperforming the existing approaches used in

previous studies (hierarchical and tensor fusion) in the deception detection and

sentiment analysis tasks. I also investigated in experiments about the DA selec-

tion accuracy of a negotiation dialog system. I found out that the dialog system

achieves better performance when using labels from the deception detection model

that uses hierarchical tensor fusion.

For the problem of data sparsity, I proposed a novel method for policy adap-

tation in dialog management, which is termed dialog policy reuse algorithm –

DPRA. The proposed method uses the action-relation probability for adaptation,

which allows reusing of the source task policy for action selection of the target

task. DPRA learns the action-relation probability from the dialog samples in

both tasks using mixture density network, and is able to immediately derive a

policy for the target task. Thus, DPRA can learn the target task’s policy in

a much shorter time in comparison to conventional methods that require RL

training and user simulation. Since the proposed method does not use the user

simulator, the problem of low performance due to errors in constructing the user

simulator can be avoided. Experimental results showed that the policy learned

by DPRA performs better than those adapted by previous adaptation methods

when the amount of available data is small and the source and target tasks are

similar.

73

6.2 Future directions

Regarding the future direction of hierarchical tensor fusion, the major drawback

of the proposed and current methods is that they require a manual design of

the network structure, which is tedious and requires much effort. A possible

solution is to apply the meta-learning method and create a network that can

perform structure self-organization. Besides, a combination of hierarchical tensor

fusion with the attentional fusion [17] can also help alleviate this problem since

the attention weights also balance the modalities without using fully-connected

layers.

In terms of policy adaptation, I would like to conduct a scrutiny analysis of

DPRA to understand in which adaptation setting it works and what kind of per-

formance we should expect from it. In addition, DPRA does not consider reward

dynamics at the moment. I believe that if we can incorporate the estimation of

changing reward functions between the source and the target task, we can further

improve the performance of the policies learned by DPRA. Finally, I also want to

investigate the proposed adaptation method’s application to other settings, such

as adaptation for autonomous control tasks.

As discussed previously, accurately constructing a multimodal user simulator

also affects the dialog manager’s performance. In this research, I use a conven-

tional method based on a simple maximum likelihood for building the multimodal

user simulator. In the future, I am planning to work on creating simulator with

more powerful generative models such as variational auto encoder or generative

adversarial networks. Such methods may bring benefit to the training of dialog

manager using reinforcement learning.

74

References

[1] Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. Openface:

an open source facial behavior analysis toolkit. In Applications of Computer

Vision (WACV), 2016 IEEE Winter Conference on, pages 1–10. IEEE, 2016.

[2] Richard Bellman. A markovian decision process. Journal of mathematics

and mechanics, pages 679–684, 1957.

[3] Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark

Lee. Natural actor–critic algorithms. Automatica, 45(11):2471–2482, 2009.

[4] Reinaldo AC Bianchi, Luiz A Celiberto Jr, Paulo E Santos, Jackson P Mat-

suura, and Ramon Lopez de Mantaras. Transferring knowledge as heuristics

in reinforcement learning: A case-based approach. Artificial Intelligence,

226:102–121, 2015.

[5] Christopher M Bishop. Mixture density networks. 1994.

[6] Lu Chen, Cheng Chang, Zhi Chen, Bowen Tan, Milica Gašić, and Kai Yu.

Policy adaptation for deep reinforcement learning-based dialogue manage-

ment. In 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 6074–6078. IEEE, 2018.

[7] Robert H Crites and Andrew G Barto. An actor/critic algorithm that is

equivalent to q-learning. In Advances in neural information processing sys-

tems, pages 401–408, 1995.

[8] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav,

José MFMoura, Devi Parikh, and Dhruv Batra. Visual dialog. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

326–335, 2017.

[9] Abhishek Das, Satwik Kottur, José MFMoura, Stefan Lee, and Dhruv Batra.

Learning cooperative visual dialog agents with deep reinforcement learning.

In Proceedings of the IEEE international conference on computer vision,

pages 2951–2960, 2017.

75

[10] Gilles Degottex, John Kane, Thomas Drugman, Tuomo Raitio, and Stefan

Scherer. Covarep―a collaborative voice analysis repository for speech tech-

nologies. In 2014 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 960–964. IEEE, 2014.

[11] Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen,

Faisal Ahmad, and Li Deng. Towards end-to-end reinforcement learning of

dialogue agents for information access. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 484–495, 2017.

[12] Paul Ekman, Wallace V Freisen, and Sonia Ancoli. Facial signs of emotional

experience. Journal of personality and social psychology, 39(6):1125, 1980.

[13] Mihail Eric and Christopher D Manning. A copy-augmented sequence-to-

sequence architecture gives good performance on task-oriented dialogue. In

Proceedings of the 15th Conference of the European Chapter of the Associa-

tion for Computational Linguistics: Volume 2, Short Papers, pages 468–473,

2017.

[14] Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: the munich

versatile and fast open-source audio feature extractor. In Proceedings of the

18th ACM international conference on Multimedia, pages 1459–1462. ACM,

2010.

[15] Takuya Hiraoka, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi

Nakamura. Reinforcement learning of cooperative persuasive dialogue poli-

cies using framing. In COLING, pages 1706–1717, 2014.

[16] Julia Hirschberg, Stefan Benus, Jason M Brenier, Frank Enos, Sarah Fried-

man, Sarah Gilman, Cynthia Girand, Martin Graciarena, Andreas Kathol,

Laura Michaelis, et al. Distinguishing deceptive from non-deceptive speech.

In Interspeech, pages 1833–1836, 2005.

[17] Chiori Hori, Huda Alamri, Jue Wang, Gordon Wichern, Takaaki Hori, Anoop

Cherian, Tim K Marks, Vincent Cartillier, Raphael Gontijo Lopes, Abhishek

Das, et al. End-to-end audio visual scene-aware dialog using multimodal

76

attention-based video features. In 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 2352–2356. IEEE,

2019.

[18] Guosheng Hu, Yang Hua, Yang Yuan, Zhihong Zhang, Zheng Lu, Sankha S

Mukherjee, Timothy M Hospedales, Neil Martin Robertson, and Yongxin

Yang. Attribute-enhanced face recognition with neural tensor fusion net-

works. In Proceedings of ICCV 2017, 2017.

[19] Vladimir Ilievski, Claudiu Musat, Andreea Hossmann, and Michael

Baeriswyl. Goal-oriented chatbot dialog management bootstrapping with

transfer learning. In Proceedings of the 27th International Joint Conference

on Artificial Intelligence, pages 4115–4121, 2018.

[20] Taylor W Killian, Samuel Daulton, George Konidaris, and Finale Doshi-

Velez. Robust and efficient transfer learning with hidden parameter markov

decision processes. In Advances in neural information processing systems,

pages 6250–6261, 2017.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. ICLR 2015, 2015.

[22] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances

in neural information processing systems, pages 1008–1014, 2000.

[23] Alessandro Lazaric. Transfer in reinforcement learning: a framework and a

survey. In Reinforcement Learning, pages 143–173. Springer, 2012.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[25] Pierre L’Ecuyer. Efficiency improvement and variance reduction. In Pro-

ceedings of Winter Simulation Conference, pages 122–132. IEEE, 1994.

[26] Nurul Lubis, Sakriani Sakti, Koichiro Yoshino, and Satoshi Nakamura. Elic-

iting positive emotion through affect-sensitive dialogue response generation:

A neural network approach. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

77

[27] Nurul Lubis, Sakriani Sakti, Koichiro Yoshino, and Satoshi Nakamura. Pos-

itive emotion elicitation in chat-based dialogue systems. IEEE/ACM Trans-

actions on Audio, Speech, and Language Processing, 27(4):866–877, 2019.

[28] Gideon Mendels, Sarah Ita Levitan, Kai-Zhan Lee, and Julia Hirschberg.

Hybrid acoustic-lexical deep learning approach for deception detection. Proc.

Interspeech 2017, pages 1472–1476, 2017.

[29] Jorge A Mendez, Alborz Geramifard, Mohammad Ghavamzadeh, and Bing

Liu. Reinforcement learning of multi-domain dialog policies via action em-

beddings. In The 3rd Workshop on Conversational AI: Today ’s Practice

Tomorrow ’s Potential, NeurIPS., 2019.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-

jeland, Georg Ostrovski, et al. Human-level control through deep reinforce-

ment learning. Nature, 518(7540):529–533, 2015.

[31] Hosomi Naoki, Sakti Sakriani, Koichiro Yoshino, and Satoshi Nakamura.

Deception detection and analysis in spoken dialogues based on fasttext. Proc.

APSIPA 2018, 2018.

[32] Tung The Nguyen, Koichiro Yoshino, Sakriani Sakti, and Satoshi Nakamura.

Impact of deception information on negotiation dialog management. IWSDS,

2018.

[33] Tung The NGUYEN, Koichiro YOSHINO, Sakriani SAKTI, Satoshi NAKA-

MURA, et al. Utilizing deception information for dialog management of

doctor-patient conversations. JSAI 大会論文集, 2018:2M201–2M201, 2018.

[34] Tung The Nguyen, Koichiro Yoshino, Sakriani Sakti, Satoshi Nakamura,

et al. Dialog management of healthcare consulting system by utilizing de-

ceptive information. Transactions of the Japanese Society for Artificial In-

telligence, 35(1):DSI–C 1, 2020.

[35] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:

Global vectors for word representation. In Proceedings of the 2014 conference

78

on empirical methods in natural language processing (EMNLP), pages 1532–

1543, 2014.

[36] Verónica Pérez-Rosas, Mohamed Abouelenien, Rada Mihalcea, and Mihai

Burzo. Deception detection using real-life trial data. In Proceedings of the

2015 ACM on International Conference on Multimodal Interaction, pages

59–66. ACM, 2015.

[37] Verónica Pérez-Rosas, Mohamed Abouelenien, Rada Mihalcea, Yao Xiao,

CJ Linton, and Mihai Burzo. Verbal and nonverbal clues for real-life decep-

tion detection. In Proceedings of the 2015 conference on empirical methods

in natural language processing (EMNLP), pages 2336–2346, 2015.

[38] Alan Ritter, Colin Cherry, and Bill Dolan. Unsupervised modeling of twitter

conversations. In Human Language Technologies: The 2010 Annual Confer-

ence of the North American Chapter of the Association for Computational

Linguistics, pages 172–180, 2010.

[39] Alan Ritter, Colin Cherry, and William B Dolan. Data-driven response gen-

eration in social media. In Proceedings of the 2011 Conference on Empirical

Methods in Natural Language Processing, pages 583–593, 2011.

[40] Ognjen Rudovic, Meiru Zhang, Bjorn Schuller, and Rosalind Picard. Multi-

modal active learning from human data: A deep reinforcement learning ap-

proach. In 2019 International Conference on Multimodal Interaction, pages

6–15, 2019.

[41] Konrad Scheffler and Steve Young. Automatic learning of dialogue strategy

using dialogue simulation and reinforcement learning. In Proceedings of the

second international conference on Human Language Technology Research,

pages 12–19. Citeseer, 2002.

[42] Björn Schuller, Stefan Steidl, and Anton Batliner. The interspeech 2009

emotion challenge. In Tenth Annual Conference of the International Speech

Communication Association, 2009.

79

[43] Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, and

Joelle Pineau. A survey of available corpora for building data-driven dialogue

systems: The journal version. Dialogue & Discourse, 9(1):1–49, 2018.

[44] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob

Grue Simonsen, and Jian-Yun Nie. A hierarchical recurrent encoder-decoder

for generative context-aware query suggestion. In Proceedings of the 24th

ACM International on Conference on Information and Knowledge Manage-

ment, pages 553–562, 2015.

[45] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 2018.

[46] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Man-

sour. Policy gradient methods for reinforcement learning with function ap-

proximation. In Advances in neural information processing systems, pages

1057–1063, 2000.

[47] Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba,

Raquel Urtasun, and Sanja Fidler. Movieqa: Understanding stories in movies

through question-answering. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 4631–4640, 2016.

[48] Matthew E Taylor, Gregory Kuhlmann, and Peter Stone. Autonomous trans-

fer for reinforcement learning. In AAMAS (1), pages 283–290. Citeseer, 2008.

[49] Leimin Tian, Johanna Moore, and Catherine Lai. Recognizing emotions in

spoken dialogue with hierarchically fused acoustic and lexical features. In

Spoken Language Technology Workshop (SLT), 2016 IEEE, pages 565–572.

IEEE, 2016.

[50] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,

8(3-4):279–292, 1992.

[51] Joseph Weizenbaum. Eliza―a computer program for the study of natural

language communication between man and machine. Communications of the

ACM, 9(1):36–45, 1966.

80

[52] Jason D Williams, Pascal Poupart, and Steve Young. Partially observable

markov decision processes with continuous observations for dialogue man-

agement. In Proceedings of the 6th Annual Meeting of the Special Interest

Group on Discourse and Dialogue, 2005.

[53] Ronald J Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[54] James R Wilson. Variance reduction techniques for digital simulation. Amer-

ican Journal of Mathematical and Management Sciences, 4(3-4):277–312,

1984.

[55] Koichiro Yoshino and Tatsuya Kawahara. Conversational system for infor-

mation navigation based on pomdp with user focus tracking. Computer

Speech & Language, 34(1):275–291, 2015.

[56] Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria, and Louis-

Philippe Morency. Tensor fusion network for multimodal sentiment analy-

sis. In Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1103–1114. Association for Compu-

tational Linguistics, 2017.

[57] AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and

Louis-Philippe Morency. Multimodal language analysis in the wild: Cmu-

mosei dataset and interpretable dynamic fusion graph. In Proceedings of

the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 2236–2246, 2018.

[58] Jiaping Zhang, Tiancheng Zhao, and Zhou Yu. Multimodal hierarchical

reinforcement learning policy for task-oriented visual dialog. In Proceedings

of the 19th Annual Meeting of the Special Interest Group on Discourse and

Dialogue, pages 140–150, 2018.

[59] Tiancheng Zhao and Maxine Eskenazi. Towards end-to-end learning for di-

alog state tracking and management using deep reinforcement learning. In

Proceedings of the 17th Annual Meeting of the Special Interest Group on

Discourse and Dialogue, pages 1–10, 2016.

81

[60] Mingyang Zhou, Josh Arnold, and Zhou Yu. Building task-oriented visual

dialog systems through alternative optimization between dialog policy and

language generation. In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), pages 143–

153, 2019.

82

Appendix

A. Proof of equation 1 and equation 10

First, I show the proof for (15):

π(s, b) = P (b|s)

=
∑
a∈A

P (b, a|s) (law of total probability)

=
∑
a∈A

P (b|a, s)P (a|s)

=
∑
a∈A

P (b|a, s)π(s, a) Q.E.D

The full proof for (23) is as follows:∑
b∈B

π(s, b) =
∑
bj∈B

P (bj|s)

=
∑
bj∈B

∑
ai∈A

P (ai, bj|s)

=
∑
bj∈B

∑
ai∈A

P (ai|s)P (bj|ai, s)

=
∑
ai∈A

P (ai|s)(
∑
bj∈B

P (bj|ai, s))

=
∑
ai∈A

P (ai|s)(
∑
bj∈B

wij(s))

=
∑
ai∈A

P (ai|s) · 1

(sum of component weights is 1)

=
∑
a∈A

P (a|s) = 1 Q.E.D

83

B. Results

The results of Table 12 is shown as a line chart in Figure 19. The error bars

indicate 95% confidence interval for each value point.

-80

-60

-40

-20

0

20

40

1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs

MDN

regression

ActEmb-2k

ActEmb-10k

NoAdapt-2k

NoAdapt-10k

Figure 19. Average reward received per episode of adapted policies in similar

tasks setting.

84

Figure 20 shows the results from Table 13 but in line chart. Similarly, error

bars show 95% confidence interval of each value point.

-80

-60

-40

-20

0

20

40

1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs

MDN

regression

ActEmb-2k

ActEmb-10k

NoAdapt-2k

NoAdapt-10k

Figure 20. DA selection accuracy received per episode of adapted policies in

similar tasks setting.

85

Figure 21 shows the policies’ performance in terms of average total reward

per episode in Table 17. The error bars indicate 95% confidence interval for each

value point.

-20

0

20

40

60

80

100

120

140

1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs 32 dialogs

MDN

regression

ActEmb-5k

ActEmb-25k

NoAdapt-5k

NoAdapt-25k

Figure 21. Average reward received per episode of adapted policies in distinctive

tasks setting.

86

Figure 22 displays the results from Table 18 in line chart. Similarly, error bars

show 95% confidence interval of each value point.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

1 dialog 2 dialogs 4 dialogs 8 dialogs 16 dialogs 32 dialogs

MDN

regression

ActEmb-5k

ActEmb-25k

NoAdapt-5k

NoAdapt-25k

Figure 22. DA selection accuracy received per episode of adapted policies in

distinctive tasks setting.

C. Training dialog policy with REINFORCE

This section explains in more details how the policies are trained using REIN-

FORCE. First, I show why the gradient in Equation 13 is equivalent to Equation

12. The right hand side (R.H.S) of Equation 13 can be rewritten as,

E

[
T∑
t=0

Rt
∂logπθ(st, at)

∂θ

∣∣∣∣π
]
− E

[
T∑
t=0

b(st)
∂logπθ(st, at)

∂θ

∣∣∣∣π
]

(26)

87

We can derive the right component of this equation as follows:

E

[
T∑
t=0

b(st)
∂logπθ(st, at)

∂θ

∣∣∣∣π
]

=
∑
at

πθ(st, at)
T∑
t=0

b(st)
∂logπθ(st, at)

∂θ

=
T∑
t=0

b(st)
∑
at

∂πθ(st, at)

πθ(st, at)∂θ

=
T∑
t=0

b(st)
∑
at

πθ(st, at)
∂πθ(st, at)

πθ(st, at)∂θ

=
T∑
t=0

b(st)
∂
∑

at
πθ(st, at)

∂θ

=
T∑
t=0

b(st) · 0 (since
∑
at

πθ(st, at) = 1)

= 0

Replace this result into Equation 26, we can see that introducing the baseline

b(st) into Equation 12 does not change the gradient.

Equation 14 shows the true gradient that is used for updating policy param-

eters θ. However, the baseline V θ(st) cannot be estimated without bias in the

case of one-sample update. [46] provide a solution for this problem using func-

tion approximation. In principle, we use a function fw(s) with parameter w to

estimate V θ(s). This function can be trained using mean-squared-error on the

sampled return.

LMSE =
1

2
(Rt − fw(st))

2 (27)

The update gradient for policy training by REINFORCE is then given by,

∂(θ) = E

[
T∑
t=0

(Rt − fw(st))
∂logπθ(st, at)

∂θ

∣∣∣∣π
]

(28)

88

Publication list

1. ”Impact of deception information on negotiation dialog: a use case on

doctor-patient conversation,” Tung The Nguyen, Koichiro Yoshino, Sakti

Sakriani and Satoshi Nakamura, in International Workshop on Spoken Di-

alogue System Technology (IWSDS2018), Singapore, Singapore, 2018

2. ”Utilizing deception information for dialog management of doctor-patient

conversations,” Tung The, NGUYEN, YOSHINO, Koichiro, Sakriani SAKTI,

and Satoshi NAKAMURA, in The 32th Annual Conference of the Japanese

Society for Artificial Intelligence, 人工知能学会全国大会論文集 第 32 回全

国大会 (2018). 一般社団法人 人工知能学会, 2018.

3. ”Hierarchical Tensor Fusion Network for Deception Handling Negotiation

Dialog Model,” Tung, The Nguyen, Yoshino, Koichiro, Sakriani Sakti, and

Satoshi Nakamura, in The 3rd conversational AI workshop – NeurIPS 2019.

4. ”Dialog management of healthcare consulting system by utilizing decep-

tive information,” Tung The Nguyen, Yoshino Koichiro, Sakti Sakriani and

Satoshi Nakamura, in Transactions of the Japanese Society for Artificial

Intelligence, 35(1):DSI–C 1, 2020.

5. ”Policy reuse for dialog management using action-relation probability,”

Tung, The Nguyen, Yoshino, Koichiro, Sakriani Sakti, and Satoshi Naka-

mura, in IEEE Access, vol. 8, pp. 159639-159649, 2020.

89

