
Doctoral Dissertation

Machine Speech Chain

Andros Tjandra

February 20, 2020

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Andros Tjandra

Thesis Committee:

Professor Satoshi Nakamura (Supervisor)

Professor Yuji Matsumoto RIKEN

Professor Florian Metze Carnegie Mellon University

Associate Professor Sakriani Sakti (Co-supervisor)

Professor Tsukasa Ogasawara (Co-supervisor)

Machine Speech Chain∗

Andros Tjandra

Abstract

Despite the close relationship between speech perception and production, re-

search in automatic speech recognition (ASR) and text-to-speech synthesis (TTS)

has progressed more or less independently without exerting much mutual influ-

ence. In human communication, on the other hand, a closed-loop speech chain

mechanism with auditory feedback from the speaker’s mouth to her ear is crucial.

We take a step further and develop a closed-loop machine speech chain model

based on deep learning. The sequence-to-sequence model in closed-loop archi-

tecture allows us to train our model on the concatenation of both labeled and

unlabeled data. While ASR transcribes the unlabeled speech features, TTS at-

tempts to reconstruct the original speech waveform based on the text from ASR.

In the opposite direction, ASR also attempts to reconstruct the original text tran-

scription given the synthesized speech. To the best of our knowledge, this is the

first deep learning framework that integrates human speech perception and pro-

duction behaviors. Our experimental results show that the proposed approach

significantly improved performance over that from separate systems that were

only trained with labeled data.

In this thesis, first I present a study about end-to-end speech modeling in gen-

eral and followed by their application for ASR and TTS. Later, the basic of ma-

chine speech chain is described in detail in Chapter 3. Next, we integrate speech

chain with speaker embedding model in Chapter 4 to achieve multi-speaker speech

chain and improve the ASR and TTS performance on multi-speaker dataset set-

tings. In Chapter 5, we identify the issue where the output of ASR is discrete

variables, therefore we proposed a way to fully backpropagate the loss from TTS

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, February 20, 2020.

i

to the ASR model by using the straight-through estimator. In Chapter 6, we

propose an alternative ASR training with reinforcement learning to solve the

discrepancy between training and inference stage.

Keywords:

speech chain, deep learning, machine learning, semi-supervised, speech recogni-

tion, speech synthesis

ii

Acknowledgements

Firstly, I would like to express my highest gratitude to Professor Satoshi Naka-

mura for giving me the opportunity to study and research under his excellent

supervision. I attribute the extent of my researches and participation in many

conferences to his incredible guidance and immense support; his discipline and

tenacity inspire me to become a better researcher.

Secondly, I would like to thank Research Associate Professor Sakriani Sakti

for her continuous guidance and recommendations to improve every aspect of my

research proficiency. She has provided me with plenty of advice on writing papers,

making research presentations, and solving new research problems. Additionally,

I thank all the staff in the AHCLab, especially Associate Professor Katsuhito

Sudoh, Assistant Professor Koichiro Yoshino, Assistant Professor Hiroki Tanaka,

and Research Associate Professor Keiji Yasuda for their feedback during group

meetings and seminars. Besides my professors and colleagues at the AHCLab,

I would like to thank Manami Matsuda, for her invaluable help with a wide

range of tasks, such as administrative work and adjusting to life in Japan as an

international student.

My sincere appreciation also goes to all my co-authors, students, and former

students of the AHCLab for maintaining a conducive and encouraging environ-

ment for conducting research and discussion. Furthermore, thank you to Kano-

san and Shinagawa-san for their assistance during my stay in Japan. I thank all

my dear friends in Japan who have made my life here cherishable, vibrant, and

adventurous. Likewise, thank you to all my friends outside of Japan who have

kept in touch with me after all these years.

Last but not least, I want to convey my deepest gratitude to my family for

their endless support and encouragement.

iii

Contents

Acknowledgements iii

1 Introduction 1

1.1. Speech Chain on Human Speech Communication 1

1.2. Technology for Speech Production and Perception 3

1.2.1 Speech Recognition . 3

1.2.2 Speech Synthesis . 3

1.2.3 Limitation . 4

1.3. Thesis Contribution . 4

2 End-to-End Speech Modeling 6

2.1. Sequence-to-Sequence . 6

2.2. Training and Decoding Sequence-to-Sequence Model 9

2.3. Sequence-to-Sequence ASR . 11

2.4. Sequence-to-Sequence Model for TTS 13

3 Basic Machine Speech Chain 16

3.1. Overview . 16

3.2. Experiment on Single-Speaker Task 17

3.2.1 Feature Extraction . 20

3.2.2 Model Details . 21

3.2.3 Experiment Results . 22

3.3. Discussion . 22

iv

4 Multispeaker Machine Speech Chain with One-shot Speaker Adap-

tation 27

4.1. Overview . 27

4.2. Speaker Recognition and Embedding 29

4.3. Sequence-to-Sequence TTS

with One-shot Speaker Adaptation 30

4.4. Experiment on Multi-speaker Task 34

4.4.1 Corpus Dataset . 34

4.4.2 Feature and Text Representation on WSJ dataset 34

4.4.3 Model Details . 34

4.4.4 Experiment Results . 35

4.5. Discussion . 37

5 End-to-end Feedback Loss on Speech Chain 39

5.1. Overview . 39

5.2. End-to-End Feedback Loss . 42

5.2.1 Straight-through Argmax 42

5.2.2 Straight-through Gumbel-Softmax 45

5.2.3 Combined Loss for ASR 45

5.3. Experiment on Multi-speaker Task in Supervised Settings 46

5.3.1 Dataset . 46

5.3.2 Model Details . 46

5.3.3 Experiment Results . 47

5.4. Discussion . 47

6 Improving End-to-End ASR via Reinforcement Learning 49

6.1. Introduction . 49

6.2. Related Works . 50

6.3. Sequence-to-Sequence ASR . 51

6.4. Reinforcement Learning . 54

6.5. Policy Gradient Training for Sequence-to-Sequence ASR 57

6.5.1 Policy Gradient . 57

6.5.2 Reward Construction for ASR Tasks 60

6.6. Experiment . 68

v

6.6.1 Speech Dataset and Feature Extraction 68

6.6.2 Model Architecture . 68

6.6.3 Results and Discussion . 71

6.7. Conclusion . 76

7 Discussion 77

7.1. Related Works . 77

7.2. Conclusions . 79

7.3. Future Directions . 81

References 83

List of publications 95

vi

List of Figures

1.1 Speech chain [1] and the connection with spoken language tech-

nologies. 2

2.1 Sequence-to-sequence architecture [2]. 6

2.2 Sequence-to-sequence architecture with attention mechanism. . . . 8

2.3 Teacher forcing training strategy: loss function L(·, ·) denotes the

loss between predicted p(yt) and ground-truth label yt. 9

2.4 Greedy decoding during inference stage. 10

2.5 Beam-search decoding during inference stage with size k = 2. . . . 11

2.6 Sequence-to-sequence ASR architecture: the encoder consists of a

fully connected layer + stack bidirectional LSTM and the decoder

consists of a unidirectional LSTM with attention mechanism. . . . 12

2.7 Sequence-to-sequence TTS (Tacotron) architecture with frame end-

ing binary prediction. (FC = Fully Connected, CBHG = Convo-

lution Bank + Highway + bi-GRU) 15

3.1 (a) Overview of machine speech chain architecture. Examples of

unrolled process: (b) from ASR to TTS and (c) from TTS to ASR. 16

3.2 Illustration for training data split between three different scenarios. 20

3.3 Side-by-side CER (%) comparison between baseline, speech chain

and upperbound with different percentage of paired speech-text

data. 24

3.4 MOS with 95% confidence interval between baseline, speech chain

and upperbound scenario. 26

vii

4.1 (a) Overview of proposed machine speech chain architecture with

speaker recognition; (b) Unrolled process with only speech utter-

ances and no text transcription (speech → [ASR,SPKREC] →
[text + speaker vector] → TTS → speech); (c) Unrolled process

with only text, but no corresponding speech utterance ([text +

speaker vector by sampling SPKREC]→TTS→ speech→ASR

→ text). Note: grayed box is the original speech chain mechanism. 28

4.2 Deep learning based speaker embedding (DeepSpeaker) architecture. 30

4.3 Proposed model: sequence-to-sequence TTS (Tacotron) + speaker

information via neural speaker embedding (Deep Speaker). 32

4.4 MOS with 95% confidence interval between baseline, speech chain

and upperbound scenario. 37

5.1 a) Multispeaker machine speech chain mechanism; b) Baseline

([3]): feedback loss from TTS is only backpropagated through the

TTS module, and the ASR module is not updated because vari-

able ŷ is non-differentiable; c) Proposal: feedback loss from TTS

is backpropagated through discrete variable ŷ, and ASR modules

are updated based on the estimated gradient from the TTS module

by a straight-through estimator. 41

5.2 Straight-through estimator on argmax function. Given in-

put x and model parameters θ, we calculate categorical proba-

bility mass P (x; θ) and apply discrete operation argmax. In the

backward pass, the gradient from stochastic node y to P (x; θ),

∂y/∂P (x; θ) ≈ 1 is approximated by identity. 42

5.3 Given speech feature x, ASR generates a sequence of probability

py = [py1 , py2 , ..., pyT]. If we have a ground-truth transcription, we

can calculate LASR (Eq. 2.9). The TTS module generates speech

features and we calculate reconstruction loss LrecTTS (Eq. 5.2). After

that, the gradients based on LASR are propagated through the ASR

module, and the gradients based on LrecTTS are propagated through

the TTS and ASR modules by a straight-through estimator. . . . 44

viii

6.1 Training stage: generation via teacher-forcing method sets the

model input with ground-truth transcription. For each time-step,

decoder generates probability vector p(yt), and we calculate nega-

tive log-likelihood between p(yt) and ground-truth y
(n)
t 53

6.2 Testing/inference stage: decoder doesn’t have access to ground-

truth transcription. Therefore, for each time-step t, decoder input

depends on model prediction from previous time-step t − 1. For

greedy decoding (1-best search), we took the label from highest

probability ỹt−1 = argmax
yt−1

P (yt−1|hD(n)
1) and use selected label ỹt−1

for current decoder input. 54

6.3 Interaction between agent and their environment inside an MDP.

Given current state st, the agent choose an action at. The envi-

ronment responds to the selected action and generates a new state

st+1 and a reward rt+1. 56

6.4 Policy gradient set decoder input to be conditioned on its own pre-

diction sampled from previous time-step to predict current time-

step output probability. Therefore, decoder doesn’t rely on a

ground-truth transcription like teacher-forcing method. Expected

rewards for model transcription are approximated by the average

from multiple sample trajectories. 61

6.5 Based on Eq. 6.20, we provide an example for how to calculate the

reward for each sample trajectory. 65

6.6 CER (%) comparisons between different sample sizes M 73

6.7 CER (%) comparison between different reward types and discount

factors γ. 74

ix

List of Tables

3.1 ASR experiment result for LJSpeech single-speaker natural speech

dataset. 23

3.2 TTS experiment result for LJSpeech single-speaker natural speech

dataset. 25

4.1 Character error rate (CER (%)) comparison between results of su-

pervised learning and those of a semi-supervised learning method,

evaluated on test eval92 set (without any lexicon & language model

on the decoding step) . 35

4.2 L2-norm squared on log-Mel spectrogram to compare the super-

vised learning and those of a semi-supervised learning method,

evaluated on test eval92 set. Note: We did not include standard

Tacotron (without SPKEMB) into the table since it cannot output

various target speakers. 36

5.1 ASR experiment result on WSJ dataset test eval92. 47

6.1 WSJ subset information . 68

6.2 Character error rate (CER) report from WSJ train si84 set (small

set), comparing the result between baseline (without RL) and pro-

posed method (NLL + RL). All decoding results were produced

without additional language model or lexicon dictionary. 71

6.3 Character error rate (CER) report from WSJ train si284 set (large

set), comparing the result between baseline (without RL) and pro-

posed method (NLL + RL). All decoding results were produced

without additional language model or lexicon dictionary. 75

x

Chapter 1

Introduction

1.1. Speech Chain on Human Speech Communi-

cation

Speech chain, a concept introduced by Denes et al. [1], describes the basic mech-

anism involved in speech communication when a spoken message travels from the

speaker’s mind to the listener’s mind (Fig. 1.1). It consists of a speech produc-

tion mechanism in which the speaker produces words and generates speech sound

waves, transmits the speech waveform through a medium (i.e., air), and creates

a speech perception process in a listener’s auditory system to perceive what was

said. Over the past few decades, researchers have struggled to understand the

principles underlying natural speech communication. Many attempts have also

been made to replicate human speech perception and production with machines

to support natural modality in human-machine interactions. In the following

subsection, we will describe several technologies that allow human-machine inter-

actions over speech information.

1

Figure 1.1. Speech chain [1] and the connection with spoken language technolo-

gies.

2

1.2. Technology for Speech Production and Per-

ception

1.2.1 Speech Recognition

Automatic speech recognition (ASR) is an advanced spoken language technologies

that enabled machines to process and transcript the speech into human readable

format. This process mimics the human auditory system where they listen with

their ears and process the sound waves into a concept inside their brain. Various

ASR approaches have relied on acoustic-phonetics knowledge [4] in earlier works

to template-based schemes with dynamic time warping (DTW) [5, 6]. Later on,

the data-driven approaches with rigorous statistical modeling of a hidden Markov

model-Gaussian mixture model (HMM-GMM) [7, 8] reached better performance

and scaled better with the amount of data and vocabulary size. Since the deep

learning [9] become a popular choice for many machine learning tasks, the role

of GMM for acoustic modeling was slowly replaced with various deep neural

network architecture such as deep stacked recurrent neural networks (RNNs)

[10, 11], convolutional layers [12], etc.

1.2.2 Speech Synthesis

Text-to-speech (TTS) or speech synthesis is an advanced speech generation tech-

nologies that enabled machines to produce natural sound waves based on the text

input. This process mimics the human vocal system where our brain produces

some context and our vocal chord start moving and produces sound waves. In a

similar direction as ASR, TTS technology has gradually shifted from the foun-

dation of a rule-based system using waveform coding and an analysis-synthesis

method [13, 14, 15] to waveform unit concatenation [16, 17] and a more flexible

approach using the statistical modeling of a hidden semi-Markov model-GMM

(HSMM-GMM) [18, 19]. Recently, after the resurgence of deep learning, interest

has also surfaced in the possibility of utilizing a neural approach for ASR and

TTS systems. Many state-of-the-art performances in ASR [10, 20, 21] and TTS

[22, 23, 24] tasks have been successfully constructed based on neural network

frameworks. Later on, end-to-end speech synthesis model [25, 26, 27] generates

3

high quality and natural speech.

1.2.3 Limitation

Despite the close relationship between speech perception and production, ASR

and TTS research has progressed more or less independently without exerting

much influence on each other. Training an accurate speech recognition system

usually requires large amount of paired speech and text dataset. In the process,

gathering a large amount of paired speech and text is costly and requires a lot

of effort and time consuming. It might be a difficult to have a large paired

data especially for low-resource languages. However, unlabeled data is cheap

and easy to obtain with minimal effort. Unfortunely, the current ASR or TTS

system are still cannot use the unlabeled data to improve their performance. In

human communication, on the other hand, a closed-loop speech chain mechanism

has a critical auditory feedback mechanism from the speaker’s mouth to her ear

(Fig. 1.1).

Unfortunately, investigating the inherent links between these two processes is

very challenging. Difficulties arise because methodologies and analyses are nec-

essarily quite different when they are extracting the underlying messages from

speech waveforms, as in speech perception, or generating an optimum dynamic

speaking style from the intended message, as in speech production. Until re-

cently, it was impossible in a joint approach to reunite the problems shared by

both modes. However, due to deep learning’s representational power, many com-

plicated hand-engineered models have been simplified by letting deep neural nets

(DNNs) learn their way from input to output spaces [28]. With this newly emerg-

ing approach to sequence-to-sequence mapping tasks, a model with a common ar-

chitecture can directly learn the mapping between variable-length representations

of different modalities: text-to-text sequences [29, 2], speech-to-text sequences

[30, 31], text-to-speech sequences [25], and image-to-text sequences [32], etc.

1.3. Thesis Contribution

The main goals of this thesis is to proposed a mechanism for the computer-based

speech processing system to handle data limitation inspired by human speech

4

chain mechanism. Specifically, we develop a closed-loop machine speech chain

model based on deep learning and construct a sequence-to-sequence model for

both ASR and TTS tasks, as well as a loop connection between these two pro-

cesses. The sequence-to-sequence model in closed-loop architecture allows us to

train our model on the concatenation of both labeled and unlabeled data. While

ASR transcribes the unlabeled speech features, TTS attempts to reconstruct the

original speech waveform based on text from ASR. In the opposite direction, ASR

also reconstructs the original text transcription given the synthesized speech. To

the best of our knowledge, this is the first deep learning model that integrates

human speech perception and production behaviors.

As we describe in the outline before, we have made several novel ideas during

our studies:

1. Basic machine speech chain that integrates ASR and TTS and performs on

single-speaker task.

2. Multi-speaker speech chain with a speaker-embedding network for handling

speech with different voice characteristics.

3. Machine speech chain with a straight-through estimator to allow end-to-end

feedback loss through discrete units or subwords.

We shows that our proposed methods jointly train both ASR and TTS pa-

rameters together. Speech chain also greatly improved the performance of ASR

and TTS in the semi-supervised and supervised settings. In the latter part of

this thesis, I also proposed an alternative training mechanism to minimize the

discrepancy during training and inference stage for ASR. By using reinforcement

learning, we got a significant improvement compared to the model trained with

teacher forcing mechanism.

5

Chapter 2

End-to-End Speech Modeling

In this chapter, we cover some basic knowledges of sequence-to-sequence model.

After that, we explain about sequence-to-sequence ASR and TTS. These infor-

mation will be used extensively over many following chapters and served as the

main framework for our researches.

2.1. Sequence-to-Sequence

Figure 2.1. Sequence-to-sequence architecture [2].

Sequence-to-sequence model is a neural network that directly models condi-

tional probability between two dynamic length sequence pθ(y|x) = pθ(y1, .., yT |x1, .., xS)

where x = [x1, ..., xS] is the source sequence with length S and y = [y1, ..., yT] is

the target sequence with length T and parameterized by θ. Sequence-to-sequence

model [2, 33] consists of two components: encoder and decoder. The encoder

6

tasks is to represent a variable length source sequence x into fixed lengths vector

representation v. The decoder tasks is to generate the output target sequence yt

step-by-step, conditioned to the previous output y1, ..., y<t and fixed encoder rep-

resentation v. Both encoder and decoder are consisted of LSTM [11] layers. To

calculate the conditional probability of generating target sequence, we formulate

these operations as:

pθ(y1, .., yT |x1, .., xS) =
T∏
t=1

pθ(yt|y<t, v). (2.1)

However, encoder-decoder model has difficulty when the source or target se-

quence are too long. The reason is the decoder depends only to a fixed vector v

from the encoder side, creating an information bottleneck and limit the capabil-

ities to find relevant information in the specific time-step. Therefore, attention

mechanism was introduced by [29] to overcome the issue. Attention mechanism

creates a “bridge” between encoder hidden states with the decoder hidden states.

It allows the decoder to focus only the relevant information from the encoder

states and ignore the other information. Attention modules produce context in-

formation ct at time t based on the encoder hidden states hse and decoder hidden

states hdt :

he = [he1, .., h
e
S] = Enc(x) (2.2)

hdt = DecState(yt−1, h
d
t−1,h

e) (2.3)

at(s) = Align(hes, h
d
t)

=
exp(Score(hes, h

d
t))∑S

s=1 exp(Score(hes, h
d
t))
. (2.4)

ct =
S∑
s=1

at(s) ∗ hes (2.5)

There are several variations for score functions [34]:

Score(hes, h
d
t) =

〈hes, hdt 〉, dot product

heᵀs Wsh
d
t , bilinear

V ᵀ
s tanh(Ws[h

e
s, h

d
t]), MLP

(2.6)

7

where Score : (RM×RN)→ R, M is the number of hidden units for the last layer

of encoder and N is the number of hidden units for the decoder. We illustrates a

sequence-to-sequence with attention mechanism in Figure 2.2.

Figure 2.2. Sequence-to-sequence architecture with attention mechanism.

After we get the context information ct, we concatenated ct with hdt and predict

the target output yt:

yt = Wo [hdt , ct] (2.7)

where Wo is a matrix for linear projection in this example. The encoder and

decoder layers are not limited to LSTM, it could be replaced with GRU [35] or

convolution layer [36].

8

Figure 2.3. Teacher forcing training strategy: loss function L(·, ·) denotes the

loss between predicted p(yt) and ground-truth label yt.

2.2. Training and Decoding Sequence-to-Sequence

Model

In the sequence-to-sequence model, the decoder usually generate the output step-

by-step, not whole sequences at the same time. This type of decoder are usually

described as autoregressive decoder. Here, we formulate the autoregressive de-

coder that output probability over class as the prediction:

p(yt), h
d
t = Dec(yt−1, h

d
t−1,x), (2.8)

which calculate the output probability pyt by conditioning on previous output

yt−1, previous hidden state hdt−1 and input source sequence x. Function Dec is

a simplified decoder operation from Eqs. 2.3-2.5 which output decoder hidden

states hdt and predicted output p(yt).

Training autoregressive decoders are mostly done with teacher-forcing strat-

egy. Basically, teacher-forcing conditioned the input with ground-truth during

the training stage. In the Figure 2.3, we show the example of teacher forcing.

For each time step, we calculate a loss (the loss function itself depends on the na-

ture of the task and their output representation) and accumulate the loss across

multiple time-step. However, teacher-forcing training sometimes fail to account

9

Figure 2.4. Greedy decoding during inference stage.

the ground-truth are not available during inference. Thus, any errors during the

early time-step might accumulate in the later time-step and decrease the model

robustness against longer utterances. I will revisit this issue and propose a solu-

tion in Chapter 6

During the inference stage, we do not have any ground-truth for the decoder

input. Therefore, we replace previous output y<t with predicted ỹ<t. There are

two most common strategies for decoding during the inference stage: greedy and

beam-search decoding.

Greedy decoding is the simplest decoding strategy and runs with linear com-

plexity O(T) where T is the length of the target sequence. Based on the previous

hypothesis, we only need to pick the index with the largest probability as the pre-

dicted hypothesis at the current time-step. We show the process in Figure 2.4.

However, most of the time greedy decoding does not generate optimal hy-

potheses because we only consider one hypothesis in the current time-step instead

of expanding all search space. On the other hand, expanding the search space

S with size V = ‖S‖ exhaustively also not a good option since the space and

time complexity growth exponentially for each time-step with O(V T) complexity.

Therefore, beam-search decoding constraints the search space by only keeping a

limited number of good hypotheses and prune out hypotheses with low scores. In

the implementation, we could use the priority queue to sort the hypotheses and

10

Figure 2.5. Beam-search decoding during inference stage with size k = 2.

take only top-k hypothesis to be expended in the future steps and discard the

rest to avoid memory issues. In the end, beam-search time and space complexity

reduced into O(k T). In Figure 2.5, we simulate a beam search with search space

size 3 and beam size k = 2.

2.3. Sequence-to-Sequence ASR

Based on the sequence-to-sequence model on Section 2.1, sequence-to-sequence

ASR follows a similar architecture as Figure 2.2. We model the conditional proba-

bility pθ(y|x) where the input source x for speech recognition tasks is a sequence

of feature vectors like the MFCC or Mel-spectrogram. Therefore, x ∈ RS×D,

where D is the number of feature dimensions and S is the total frame length

for an utterance. Output y, which is a speech transcription sequence, can be

either a phoneme or grapheme (character) sequence. Figure 2.6 shows the overall

11

structure of the attention-based encoder-decoder model that consists of encoder,

decoder, and attention modules.

The loss function for ASR can be formulated as:

`ASR = LASR(y,py) = − 1

T

T∑
t=1

C∑
c=1

1(yt = c) ∗ log pyt [c], (2.9)

where C is the number of output classes.

Figure 2.6. Sequence-to-sequence ASR architecture: the encoder consists of a

fully connected layer + stack bidirectional LSTM and the decoder consists of a

unidirectional LSTM with attention mechanism.

12

2.4. Sequence-to-Sequence Model for TTS

Parametric speech synthesis resembles a sequence-to-sequence task where we gen-

erate speech given a sentence. Using a sequence-to-sequence model, we model the

conditional probability between pθ(x|y), where y = [y1, ..., yT] is the sequence of

characters with length T and x = [x1, ..., xS] is the sequence of (framed) speech

features with length S. From the sequence-to-sequence ASR model perspective,

we now have an inverse model for reconstructing the original speech given the

text.

In this work, our core architecture is based on Tacotron [25] with several struc-

tural modifications. Figure 2.7 illustrates our modified Tacotron. In the encoder

sides, we project our input characters with an embedding layer. The character

vectors are fed into several fully connected layers followed by a non-linear activa-

tion function. We pass the result into the CBHG block (1-D Convolution Bank

+ Highway + bidirectional GRU) with eight filter banks (filter size ranging from

1 to 8). The CBHG output is expected to produce representative information

he = [he1, ..., h
e
T] for the decoder.

Our modified decoder has one input layer and three output layers (instead

of two as in the original Tacotron). The first output layer generates a sequence

of log Mel-scale spectrogram frames xM = [xM1 , ..., x
M
S]. At the s-th step, the

input layer is fed by a previous step-log Mel-scale spectrogram xMs−1, and then

several fully connected layers and a non-linear activation function are processed.

Next, we use a stacked LSTM with a multilayer perceptron (MLP) attention with

alignment and context history [37] to extract the expected context cs information

based on the current decoder input and encoder states he. We project the context

with a fully connected layer to predict the Mel-scale spectrogram.

The second output layer reconstructs log-magnitude spectrogram xR = [xR1 , ..., x
R
S]

given the first layer generated output xM . After we get complete the sequences

of the log Mel-scale spectrogram, we feed them into a CBHG block followed by a

fully connected layer to predict the log magnitude spectrogram.

The third output layer generates binary prediction bs ∈ [0, 1] (1 if the s-th

frame is the end of speech, otherwise 0) based on the current log-Mel spectrogram

generated by the first output layer and expected context cs from the decoder with

the attention layer. We add the binary prediction layer because the output from

13

the first and second decoder layers is a real value vector, and we cannot use an

end-of-sentence (eos) token to determine when to stop the generation process.

Based on our initial experiment, we found that our modification helped Tacotron

determine the end of speech more robustly than forcing the decoder to generate

frames with a 0 value at the end of the speech. We also enable our model to

learn from multiple speakers by concatenating the projected speaker embedding

into the input before the LSTM layer, first output regression layer, and second

output regression layer.

For training the TTS model, we used the following loss function:

`TTS = LTTS(x, x̂) =
1

S

S∑
s=1

‖xMs − x̂Ms ‖22 + ‖xRs − x̂Rs ‖22

− (bs log(b̂s) + (1− bs) log(1− b̂s))

, (2.10)

where x̂ = (x̂M , x̂R, b̂) are the predicted Mel-scale spectrogram, the magnitude

spectrogram, and the end-of-frame probability, and x = (xM,xR, b) is the ground

truth. In the decoding process, we use the Griffin-Lim [38] algorithm to itera-

tively estimate the phase spectrogram and reconstruct the signal with the inverse

short-time Fourier transform (STFT) from the predicted magnitude and phase

spectrogram.

14

Figure 2.7. Sequence-to-sequence TTS (Tacotron) architecture with frame end-

ing binary prediction. (FC = Fully Connected, CBHG = Convolution Bank +

Highway + bi-GRU)

.

15

Chapter 3

Basic Machine Speech Chain

3.1. Overview

We start by explaining an overall basic machine speech chain mechanism. For a

better understanding, we illustrated the speech chain loop in Fig. 3.1(a). Speech

chain consists of a sequence-to-sequence ASR (see section 2.3), a sequence-to-

sequence TTS (see section 2.4), and a loop connection from ASR to TTS and

from TTS to ASR. The key idea is to jointly train both the ASR and TTS models.

As mentioned above, the sequence-to-sequence model in closed-loop architecture

allows us to train our model on the concatenation of both the labeled (paired)

and unlabeled (unpaired) data.

Figure 3.1. (a) Overview of machine speech chain architecture. Examples of

unrolled process: (b) from ASR to TTS and (c) from TTS to ASR.

To further clarify the learning process during supervised and unsupervised

16

training, we unrolled the architecture as follows:

1. Paired speech-text training for ASR and TTS

Given the labeled data (speech-text paired data), both models can be

trained independently by minimizing the loss between their predicted target

sequence and the ground truth sequence via teacher forcing.

2. Unpaired speech data only (ASR → TTS)

Given the unlabeled speech features, ASR transcribes the unlabeled input

speech, while TTS reconstructs the original speech waveform based on the

output text from ASR. Figure 3.1(b) illustrates the mechanism. We may

also treat it as an autoencoder model, where the speech-to-text ASR serves

as an encoder and the text-to-speech TTS as a decoder.

3. Unpaired text data only (TTS → ASR)

Given only the text input, TTS generates speech waveform, while ASR also

reconstructs the original text transcription given the synthesized speech.

Figure 3.1(c) illustrates the mechanism. Here, we may also treat it as

another autoencoder model, where the text-to-speech TTS serves as an

encoder and the speech-to-text ASR as a decoder.

With such autoencoder models, ASR and TTS can teach each other by adding

a reconstruction term of the observed unlabeled data to the training objective.

Details of the algorithm can be found in Alg. 1.

3.2. Experiment on Single-Speaker Task

To verify our proposed method, we experimented on a corpus with a single speaker

because, until recently, most TTS systems by deep learning are trained on a single

speaker dataset.

We utilized a natural speech single-speaker dataset named LJSpeech [39] that

contains about 13,100 utterances. Because there is no official dev and test split

from this dataset, we shuffled it and randomly took 94% (total 12,314 utts) for

training, 3% (total 393 utts) for dev, and 3% (total 393 utts) for the test set.

Later, we split the train-set again to smaller ratio to compare the result between

17

Algorithm 1 Speech Chain Algorithm (part 1)

1: Input:Paired speech and text dataset DP , text-only dataset YU , speech-only

dataset X U , supervised loss coefficient α, unsupervised loss coefficient β

2: REPEAT ...

3: A. Supervised training with speech-text data pairs

4: Sample paired speech and text (xP ,yP) = ([xP1 , .., x
P
SP

], [yP1 , .., y
P
TP

]) from DP

with speech length SP and text length TP .

5: Generate a text probability vector by ASR using teacher forcing:

pyt = P (yt|yP<t,xP ; θASR),∀t ∈ [1..TP]

6: Generate best predicted speech by TTS using teacher forcing:

x̂Ps = argmax
z

P (z|xP<s,yP ; θTTS);∀s ∈ [1..SP]

7: Calculate the loss for ASR and TTS . Eq. 2.9 & 2.10

`PASR = LASR(yP ,py; θASR) (3.1)

`PTTS = LTTS(xP , x̂P ; θTTS) (3.2)

8: B. Unsupervised training with unpaired speech and text

9: # Unpaired text data (TTS → ASR):

10: Sample text yU = [yU1 , .., y
U
TU

] from YU

11: Generate speech by TTS: x̂U ∼ PTTS(·|yU ; θTTS)

12: Generate text probability vector by ASR from TTS’s predicted speech using

teacher forcing: pyt = P (yt|yU<t, x̂U ; θASR); ∀t ∈ [1..TU]

13: Calculate the loss between original text yU and reconstruction probability py

`UASR = LASR(yU ,py; θASR) (3.3)

14: # Unpaired speech data (ASR → TTS):

15: Sample speech xU = [xU1 , .., x
U
SU

] from X U

16: Generate text by ASR: ŷU ∼ PASR(·|xU ; θASR)

17: Generate speech by TTS from ASR’s predicted text using teacher forcing:

x̂Us = argmax
z

PTTS(z|xU<s, ŷU ; θTTS); ∀s ∈ [1..S]

18: Calculate the loss between original speech xU and generated speech x̂U

`UTTS = LTTS(xU , x̂U ; θTTS) (3.4)

18

Algorithm 2 Speech Chain Algorithm (part 2)

19: # Loss combination:

20: Combine all weighted loss into a single loss variable

`ALL = α ∗ (`PTTS + `PASR) + β ∗ (`UTTS + `UASR) (3.5)

21: Calculate TTS and ASR parameters gradient with

the derivative of `ALL w.r.t θASR, θTTS

GASR = ∇θASR
` (3.6)

GTTS = ∇θTTS
` (3.7)

22: Update TTS and ASR parameters with gradient descent

optimization (SGD, Adam, etc)

θASR ← Optim(θASR, GASR) (3.8)

θTTS ← Optim(θTTS, GTTS) (3.9)

23: UNTIL convergence of parameter θTTS, θASR

19

the paired only and paired + unpaired data. In Figure 3.2, we illustrate how

we split the training data for supervised (baseline) with small ratio of paired

data, supervised (upperbound) with full paired data and semi-supervised with

paired, unpaired text and unpaired speech. For the unpaired speech and text,

there are 70% remaining unused data. To get the unpaired text, we take it by

randomly sample 35% (without replacement) from the unused data. For the

unpaired speech, we take it from the remaining 35% data. Therefore, there is no

overlap between unpaired speech and unpaired text dataset.

Figure 3.2. Illustration for training data split between three different scenarios.

3.2.1 Feature Extraction

For the speech features, we extracted two different sets of features: Mel spec-

trogram and magnitude spectrogram. Both the Mel spectrogram and magnitude

spectrogram are extracted based on STFT with the librosa package [40]. All

speech waveform were sampled at 16 kHz. Given the raw speech waveform, we

applied pre-emphasis (coefficient 0.97) and extracted the spectrogram with STFT

(50-ms frame length, 12.5-ms frame shift, 2048-points FFT). After getting the

spectrogram, we applied absolute and log operation to extract the log magnitude

spectrogram features. To generate the Mel spectrogram features, we extracted

the 80-dims Mel-scale coefficient from the magnitude spectrogram followed by

log operation. Our final set is comprised of an 80-dimension log-Mel spectrogram

and 1025-dimension log magnitude spectrogram. The log magnitude spectrogram

20

features are used by TTS and the log-Mel spectrogram features are used by both

TTS and ASR.

For the text, we converted all of the sentences into lowercase and replaced

some punctuation marks (for example, ” into ’). In the end, we have 26 letters

(a-z), six punctuation marks (,:’?.-), and three special tags (<s>, </s>, <spc>)

to denote the start, end of sentence, and spaces between words.

3.2.2 Model Details

Our ASR model is an encoder-decoder with an attention mechanism. On the en-

coder side, we used a log-Mel spectrogram as the input features (in unsupervised

process, the log-Mel spectrogram was generated by TTS), which are projected by

a fully connected layer and a LeakyReLU (l = 1e − 2) [41] activation function,

and processed by three stacked bidirectional LSTM (BiLSTM) layers with 256

hidden units for each direction (512 hidden units). We applied sequence subsam-

pling [33, 31] to reduce the memory usage and computation time on the each

LSTM layer and reduced the length of the speech features eight times shorter.

On the decoder side, the input character is projected with a 128-dims embedding

layer and fed into a one-layer LSTM with 512 hidden units. We calculated the

attention matrix with an MLP scorer (Eq. 2.6) followed by a fully connected layer

and a softmax function. In the decoding phase, the transcription was generated

by beam-search decoding (size = 5), and we normalized the log-likelihood score

by dividing it by its own length to prevent the decoder from favoring the shorter

transcriptions. We did not use any language model or lexicon dictionary in this

work.

Our TTS model hyperparameters are generally the same as the original Tacotron,

except that we used LeakyReLU instead of ReLU for most of the parts. On the

encoder sides, the CBHG used K = 8 different filter banks instead of 16 to reduce

our GPU memory consumption. For the decoder sides, we used a two-stacked

LSTM instead of a GRU with 256 hidden units. Our TTS predicted four consec-

utive frames in one time-step to reduce the number of time-steps in the decoding

process.

21

Both the ASR and TTS models are implemented with the PyTorch library 1.

3.2.3 Experiment Results

For the ASR, we compare the character error rate (CER) between different sce-

narios in Table 3.1. For the TTS experiment, we did both objective and subjective

evaluations. In the objective evaluation, we compare the L2-norm squared be-

tween the predicted and ground truth log Mel-spectrogram in Table 3.2. We

experimented with a different ratio between the paired and unpaired data from

the LJSpeech dataset. In the subjective evaluation, based on the quality of the

synthesized speech using mean opinion score (MOS) test based on five-point scale

(5: very good - 1: very poor). We compare three systems: 1) baseline with paired

speech-text 30%, 2) speech chain with paired speech-text 30%, unpaired text 35%

and unpaired speech 35 (no overlap)% and 3) upperbound paired speech-text

100%. To generate the samples, we randomly picked 20 utterances from the test

set. In total, we have 27 subjects and each subject evaluates 60 utterances. We

report the subjective evaluation result in Figure 3.4.

The results show that after the ASR and TTS models are trained with a

small paired dataset, they start to teach each other using unpaired data and gen-

erate useful feedback. Here, we improved both the ASR and TTS performance

significantly compared to only using a portion of the paired dataset. We pro-

vided some samples from the single speaker speech chain TTS experiments on

https://speech-chain-single-spk-demo.netlify.com/.

3.3. Discussion

In this section, we presented a basic speech chain mechanism and demonstrated

the ability to train both ASR and TTS modules with paired and unpaired speech

and a text dataset. However, there is a limitation in the unpaired training:

1. For training unpaired text, given an unpaired text, we can only generate

speech with a specific speaking style. The speaking style is limited based

on the speaker set that we used in the supervised TTS training.

1PyTorch https://github.com/pytorch/pytorch

22

https://speech-chain-single-spk-demo.netlify.com/
https://github.com/pytorch/pytorch

Table 3.1. ASR experiment result for LJSpeech single-speaker natural speech

dataset.
Supervised (Baseline)

Model Paired
Unpaired

CER (%)
Text Speech

Enc-Dec Att 10% - - 31.7

Enc-Dec Att 20% - - 9.9

Enc-Dec Att 30% - - 6.8

Enc-Dec Att 40% - - 4.9

Enc-Dec Att 50% - - 4.1

Semi-supervised (Speech Chain)

Enc-Dec Att 10% 45% 45% 12.3

Enc-Dec Att 20% 40% 40% 5.6

Enc-Dec Att 30% 35% 35% 4.7

Enc-Dec Att 40% 30% 30% 3.8

Enc-Dec Att 50% 25% 25% 3.5

Supervised (Upperbound)

Enc-Dec Att 100% - - 3.1

2. In the unpaired speech training, the ASR transcribes a sentence. However,

our TTS can only reconstruct the speech if the speaker identity from the

unpaired speech is provided and the speaker embedding for that person has

been seen during the supervised training.

23

Figure 3.3. Side-by-side CER (%) comparison between baseline, speech chain and

upperbound with different percentage of paired speech-text data.

24

Table 3.2. TTS experiment result for LJSpeech single-speaker natural speech

dataset.
Supervised (Baseline)

Model Paired
Unpaired

L2-norm2

Text Speech

Enc-Dec Att 10% - - 1.05

Enc-Dec Att 20% - - 0.91

Enc-Dec Att 30% - - 0.71

Enc-Dec Att 40% - - 0.69

Enc-Dec Att 50% - - 0.66

Semi-supervised (Speech Chain)

Enc-Dec Att 10% 45% 45% 0.87

Enc-Dec Att 20% 40% 40% 0.73

Enc-Dec Att 30% 35% 35% 0.66

Enc-Dec Att 40% 30% 30% 0.65

Enc-Dec Att 50% 25% 25% 0.64

Supervised (Upperbound)

Enc-Dec Att 100% - - 0.606

25

Figure 3.4. MOS with 95% confidence interval between baseline, speech chain

and upperbound scenario.

26

Chapter 4

Multispeaker Machine Speech

Chain with One-shot Speaker

Adaptation

4.1. Overview

Figure 4.1 illustrates the updated speech chain mechanism. Similar to the earlier

version, it consists of a sequence-to-sequence ASR [42, 31], a sequence-to-sequence

TTS [25], and a loop connection from ASR to TTS and from TTS to ASR. The

key idea is to jointly train the ASR and TTS models. The difference is that,

in this version, we integrate a speaker recognition (SPKREC) model inside the

loop illustrated in Fig. 4.1(a). As mentioned above, we can train our model on

the concatenation of both labeled (paired) and unlabeled (unpaired) data. We

describe the learning process below.

1. Paired speech-text dataset (see Fig. 4.1(a)) Given the speech utter-

ances x and the corresponding text transcription y from dataset DP , both

the ASR and TTS models can be trained independently. Here, we can train

ASR by calculating the ASR loss `PASR directly with teacher forcing. For

TTS training, we generate a speaker-embedding vector z = SPKREC(x),

integrate z information with TTS, and calculate the TTS loss `PTTS via

teacher forcing.

27

Figure 4.1. (a) Overview of proposed machine speech chain architecture with

speaker recognition; (b) Unrolled process with only speech utterances and no text

transcription (speech → [ASR,SPKREC] → [text + speaker vector] → TTS

→ speech); (c) Unrolled process with only text, but no corresponding speech

utterance ([text + speaker vector by sampling SPKREC] → TTS → speech →
ASR → text). Note: grayed box is the original speech chain mechanism.

2. Unpaired speech data only (see Fig. 4.1(b)) Given only the speech

utterances x from unpaired dataset DU , ASR generates the text transcrip-

tion ŷ (with greedy or beam-search decoding) and SPKREC provides a

speaker-embedding vector z = SPKREC(x). Given the generated text and

the original speaker vector z, TTS then reconstructs the speech waveform

x̂ = TTS(ŷ, z) via teacher forcing. We then calculate the loss `UTTS between

x and x̂.

3. Unpaired text data only (see Fig. 4.1(c)) Given only the text tran-

scription y from unpaired dataset DU , we need to sample speech from the

available dataset x̃ ∼ (DP ∪ DU) and generate a random speaker vector

z̃ = SPKREC(x̃) from SPKREC. Then, TTS generates the speech utter-

ance x̂ with greedy decoding. Given the generated speech x̂, ASR recon-

structs the text ŷ = ASR(x̂) via teacher forcing. We then calculate the

loss `UASR between y and ŷ.

We combine all losses together and update both the ASR and TTS model:

28

` = α ∗ (`PASR + `PTTS) + β ∗ (`UASR + `UTTS) (4.1)

θASR ← Optim(θASR,∇θASR
`) (4.2)

θTTS ← Optim(θTTS,∇θTTS
`), (4.3)

where α, β are hyperparameters to scale the loss between the supervised (paired)

and unsupervised (unpaired) loss, and ∇θASR
`, ∇θTTS

` are the gradient of com-

bined loss ` w.r.t. ASR θASR and TTS parameters θTTS.

4.2. Speaker Recognition and Embedding

Speaker recognition is a task to determine the identity of the speaker based on a

spoken utterances. Another related tasks to speaker recognition is speaker identi-

fication, where the speaker identification model needs to predict if a pair of speech

are come from same identity or not. By generating a embedding that correspond

to the speaker identity, it can be used to predict both tasks. There are several

traditional methods for speaker recognition such as i-vectors [43] and PLDA-

based approach [44]. Since the deep learning approach become more popular,

several deep learning architectures (DeepSpeaker [45], [46]) have been proposed

to directly learn speaker representation from speech features. In Figure 4.2 we

illustrate DeepSpeaker architecture in more details.

To generate a speaker representation for speaker recognition task, we assume

our input is a speech feature x ∈ RS×din . Then, we construct a deep neural

network by stacking convolution, recurrent, pooling, etc and generate a fixed size

vector z ∈ Rdz . On the top of dz, we attach a linear projection and softmax

activation function to calculate the probability along all possible N speakers.

z = SPKEMB(x) (4.4)

py = Softmax(zWz) (4.5)

To optimize the speaker representation model, there are several loss functions

such as negative log-likehood:

`NLL = −
N∑
n=1

1(y = n) ∗ log py[n], (4.6)

29

or distance-based such as triplet loss [47, 48]:

`TRI =
∑
a,p,n

ya=yp 6=yn

max(‖za − zp‖22 + ‖za − zn‖22, 0) (4.7)

where a, p, n are the anchor, positive and negative example and za, zp, zn are their

embedding respectively. In the training stage, those losses could be combined

together and improved the final model performance [45].

Figure 4.2. Deep learning based speaker embedding (DeepSpeaker) architecture.

4.3. Sequence-to-Sequence TTS

with One-shot Speaker Adaptation

A parametric TTS can be formulated as a sequence-to-sequence model where the

source sequence is a text utterance y = [y1, .., yT] with length T and the target

sequence is a speech feature x = [x1, .., xS] with length S. Our model objective is

30

to maximize P (x|y; θTTS) w.r.t. TTS parameter θTTS. We build our model upon

the basic structure of the “Tacotron” TTS [25] and “Deep Speaker” [45] models.

The original Tacotron is a single-speaker TTS system based on a sequence-to-

sequence model. Given a text utterance, Tacotron produces the Mel spectrogram

and linear spectrogram followed by the Griffin-Lim algorithm to recover the phase

and reconstruct the speech signal. However, the original model is not designed

to incorporate speaker identity or to generate speech from different speakers.

On the other hand, Deep Speaker is a deep neural speaker-embedding sys-

tem (here denoted as “SPKEMB”). Given a sequence of speech features x =

[x1, .., xS], Deep Speaker generates an L2-normalized continuous vector embed-

ding z. If x1 and x2 are spoken by the same speaker, the trained Deep Speaker

model will produce the vector z1 = SPKEMB(x1) and the vector z2 = SPKEMB(x2),

which are close to each other. Otherwise, the generated embeddings z1 and z2 will

be far from each other. By combining Tacotron with Deep Speaker, we can do

“one-shot” speaker adaptation by conditioning the Tacotron with the generated

fixed-size continuous vector z from Deep Speaker with a single speech utterance

from any speaker.

Here, we adopt both systems by modifying the original Tacotron TTS model

to integrate the Deep Speaker model. Figure 4.3 illustrates our proposed model.

From the encoder module, the character embedding maps a sequence of characters

into a continuous vector. The continuous vector is then projected by two fully

connected (FC) layers with the LReLU[41] function. We pass the results to a

CBHG module (1D Convolution Bank + Highway + bidirectional GRU) with

K=8 (1 to 8) different filter sizes. The final output he = [he1, ..h
e
T] from the

CBHG module represents high-level information from input text y.

On the decoder side, we have an autoregressive decoder that produces the cur-

rent output Mel spectrogram x̂Ms given the previous output xMs−1, the encoder con-

text vector ct, and the speaker-embedding vector z. First, at time-step s-th, the

previous input xMs−1 is projected by two FC layers with LReLU. Then, to tell our

decoder which speaker style will be produced, we feed the corresponding speech

utterance and generate speaker-embedding vector z = SPKEMB(xM). This

speaker embedding z is generated using only one utterance of the target speakers;

thus it is called “one-shot” speaker adaptation. After that, we integrate speaker

31

Figure 4.3. Proposed model: sequence-to-sequence TTS (Tacotron) + speaker

information via neural speaker embedding (Deep Speaker).

32

vector z with a linear projection and sum it with the last output from the FC layer.

Then, we apply two LSTM layers to generate current decoder state hds. To retrieve

the relevant information between the current decoder state and the entire encoder

state, we calculate the attention probability as(t) = Align(het , h
d
s);∀t ∈ [1..T] and

the expected context vector cs =
∑T

1 as(t)∗het . Then, we concatenate the decoder

state hds, context vector cs, and projected speaker-embedding z together into a

vector, followed by two fully connected layers to produce the current time-step

Mel spectrogram output xMs . Finally, all predicted outputs of Mel spectrogram

xM = [xM1 , .., x
M
S] are projected into a CBHG module to invert the correspond-

ing Mel spectrogram into a linear spectrogram xR = [xR1 , .., x
R
S]. Additionally,

we have an end-of-speech prediction module to predict when the speech is fin-

ished. The end-of-speech prediction module reads the predicted Mel spectrogram

x̂Ms and the context vector cs, followed by an FC layer and sigmoid function to

produce a scalar bs ∈ [0..1].

In the training stage, we optimized our proposed model by minimizing the

following loss function:

`TTS = LTTS(x, x̂, z, ẑ)

=

(
S∑
s=1

γ1
(
‖xMs − x̂Ms ‖22 + ‖xRs − x̂Rs ‖22

)
−γ2

(
bs log(b̂s) + (1− bs) log(1− b̂s)

))
+γ3

(
1− 〈ẑ, z〉
‖ẑ‖2 ‖z‖2

)
, (4.8)

where γ1, γ2, γ3 are our sub-loss hyperparameters, and xM ,xR, b, z are the ground-

truth Mel spectrogram, linear spectrogram, and end-of-speech label and speaker-

embedding vector from the real speech data, respectively. x̂M , x̂R, b̂ represent the

predicted Mel spectrogram, linear spectrogram, and end-of-speech label, respec-

tively, and speaker-embedding vector ẑ = SPKEMB(x̂M) is the predicted speaker

vector from the Tacotron output. Here, `TTS consists of three different loss for-

mulations: Eq. 4.8 line 1 applies L2-norm squared error between the ground

truth and predicted speech as a regression task, Eq. 4.8 line 2 applies binary

cross entropy for end-of-speech prediction as a classification task, and Eq. 4.8

33

line 3 applies cosine distance between the ground-truth speaker-embedding z and

predicted speaker-embedding ẑ, which is the common metric for measuring the

similarity between two vectors; furthermore, by minimizing this loss, we also

minimize the global loss of speaker style [49, 50].

4.4. Experiment on Multi-speaker Task

4.4.1 Corpus Dataset

In this study, we ran our experiment on the Wall Street Journal (WSJ) CSR Cor-

pus [51]. The complete data are contained in an SI284 (SI84+SI200) dataset. We

followed the standard Kaldi [52] s5 recipe to split the training set, development

set, and test set. To reformulate the speech chain as a semi-supervised learning

method, we prepared SI84 and SI200 as paired and unpaired training sets, re-

spectively. SI84 consists of 7138 utterances (about 16 hours of speech) spoken

by 83 speakers, and SI200 consists of 30,180 utterances (about 66 hours) spoken

by 200 speakers (without any overlap with speakers of SI84). We use “dev93” to

denote the development and “eval92” for the test set.

4.4.2 Feature and Text Representation on WSJ dataset

For the feature extraction, we use a same configuration as Section 3.2.1 The text

utterances were tokenized as characters and mapped into a 33-character set: 26

alphabetic letters (a-z), 3 punctuation marks (’.-), and 4 special tags 〈noise〉,
〈spc〉,〈s〉, and 〈/s〉 as noise, space, start-of-sequence, and end-of-sequence to-

kens, respectively. Both the ASR input and TTS output shared the same text

representation.

4.4.3 Model Details

For the ASR and TTS encoder-decoder, we use a same setting as Section 3.2.2.

We set the sub-loss hyperparameter in Eq. 4.8 with γ1 = 1, γ2 = 1, γ3 = 0.25.

For the speaker recognition model, we used the Deep Speaker model and

followed the original hyperparameters in the original paper. However, our Deep

34

Table 4.1. Character error rate (CER (%)) comparison between results of su-

pervised learning and those of a semi-supervised learning method, evaluated on

test eval92 set (without any lexicon & language model on the decoding step)
Model CER (%)

Supervised training:

WSJ train si84 (paired) → Baseline

Att Enc-Dec [54] 17.01

Att Enc-Dec [55] 17.68

Att Enc-Dec (ours) 17.35

Supervised training:

WSJ train si284 (paired) → Upperbound

Att Enc-Dec [54] 8.17

Att Enc-Dec [55] 7.69

Att Enc-Dec (ours) 7.12

Semi-supervised training:

WSJ train si84 (paired) + train si200 (unpaired)

Label propagation (greedy) 17.52

Label propagation (beam=5) 14.58

Proposed speech chain (Sec. 4) 9.86

Speaker is only trained on the WSJ SI84 set with 83 unique speakers. Thus, the

model is expected to generalize effectively across all remaining unseen speakers

to assist the TTS and speech chain training. We used Adam optimization with a

learning rate of 5e−4 for the ASR and TTS models and 1e−3 for the Deep Speaker

model. All of our models in this manuscript are implemented with PyTorch [53].

4.4.4 Experiment Results

Table 4.1 shows the ASR results from multiple scenarios evaluated on eval92.

In the first block, we trained our baseline model by using paired samples from

the SI84 set only, and we achieved 17.35% CER. In the second block, we trained

our model with paired data of the full WSJ SI284 data, and we achieved 7.12%

CER as our upperbound performance. In the last block, we trained our model

with a semi-supervised learning approach using SI84 as paired data and SI200 as

unpaired data. For comparison with other models trained with semi-supervised

35

Table 4.2. L2-norm squared on log-Mel spectrogram to compare the supervised

learning and those of a semi-supervised learning method, evaluated on test eval92

set. Note: We did not include standard Tacotron (without SPKEMB) into the

table since it cannot output various target speakers.
Model L2-norm2

Supervised training:

WSJ train si84 (paired) → Baseline

Proposed Tacotron (Sec. 4.3) (ours) 1.036

Supervised training:

WSJ train si284 (paired) → Upperbound

Proposed Tacotron (Sec. 4.3) (ours) 0.836

Semi-supervised training:

WSJ train si84 (paired) + train si200 (unpaired)

Proposed speech chain (Sec. 4 + Sec. 4.3) 0.886

learning, we carried out label-propagation [56]. Label propagation is a simple way

to do semi-supervised learning. First, we train initial model with paired speech-

text DP . The pre-trained model is used to generate the hypothesis from the

unpaired speech X U . Later, we add the unpaired speech and their correspondent

hypothesis into training set and treat them as a paired dataset. Our result showed

that by using label-propagation with beam-size=5, we successfully reduced the

CER to 14.58%. Nevertheless, our proposed speech-chain model could achieve

a significant improvement over all baselines (paired only and label-propagation)

with 9.89% CER, close to the upperbound results.

For the TTS experiment, we did both objective and subjective evaluations.

In the objective evaluation, we calculated the difference with L2-norm squared

between ground truth and the predicted log-Mel spectrogram and presented the

result on Table 4.2. We observed similar trends with the ASR results, where the

semi-supervised training with speech chain method improved significantly over

the baseline and close to the upperbound result. In the subjective evaluation,

based on the quality of the synthesized speech using mean opinion score (MOS)

test based on five-point scale (5: very good - 1: very poor). To generate the sam-

ples, we randomly picked 20 utterances from the test set. In total, we have 26

subjects and each subject evaluates 60 utterances. We report the subjective eval-

36

Figure 4.4. MOS with 95% confidence interval between baseline, speech chain

and upperbound scenario.

uation result in Figure 4.4. We provided some samples from multi-speaker speech

chain TTS experiments on https://speech-chain-multi-spk-demo.netlify.com/.

4.5. Discussion

In this section, we introduced an improved speech chain mechanism by integrat-

ing a speaker recognition model inside the loop. By using the new system, we

eliminated the downside from our basic speech chain, where we are unable to

incorporate the data from unseen speakers. We also extended the capability of

TTS to generate speech from an unseen speaker by implementing the one-shot

speaker adaptation. Thus, the TTS can generate speech with a similar voice char-

acteristic only with a one-shot speaker example. Inside the speech chain loop, the

ASR also gets new data from the combination between a text sentence and an

arbitrary voice characteristic. Our results show that after we deployed the speech-

chain loop, the ASR system achieved significant improvement compared to the

37

https://speech-chain-multi-spk-demo.netlify.com/

baseline (supervised training only) and other semi-supervised technique (label

propagation). Like the trends in ASR, the TTS system also showed improvement

compared to the baseline (supervised training only).

However, there is a limitation from the single speaker speech chain (Chapter 3)

and multispeaker speech chain. We could not backpropagate the loss from the

TTS into the ASR modules because of the output from the ASR model are discrete

variables. Therefore, we tried to mitigate this issue in the following chapter.

38

Chapter 5

End-to-end Feedback Loss on

Speech Chain

5.1. Overview

In the speech chain mechanism, given speech features x = [x1, .., xS] (e.g., Mel

spectrogram) and text y = [y1, .., yT], we fed the speech to the ASR module and

the ASR decoder generated continuous vector hdt step by step. To calculate proba-

bility vector py = [py1 , .., pyT], we applied the softmax function pyt = softmax(hdt)

to decoder output hdt . For each class probability mass in pyt , pyt [c] was defined

as:

pyt [c] =
exp(hdt [c]/τ)∑C
i=1 exp(hdt [i]/τ)

, ∀c ∈ [1..C]. (5.1)

Here, C is the total number of classes, hdt ∈ RC are the logits produced by the

last decoder layer, and τ is the temperature parameters. Setting temperature τ

using a larger value (τ > 1) produces a smoother probability mass over classes

[57].

For the generation process, we generally have two different methods:

1. Conditional generation given ground truth (teacher forcing):

If we have paired speech and text (x,y), we can generate pyt from autore-

gressive ASR decoder DecASR(yt−1,h
e), conditioned to ground-truth text

39

yt−1 in the current time-step and encoded speech feature he = EncASR(x).

At the end, the length of probability vector py is fixed to T time-steps.

2. Conditional generation given previous step model prediction:

Another generation process to decode ASR transcription uses its own pre-

diction to generate probability vector pyt . There are many different genera-

tion methods, such as greedy decoding (1-best beam-search) (ỹt = argmaxcpyt [c]),

beam-search, or stochastic sampling (ỹt ∼ Cat(pyt)).

After the generation process, we obtained probability vector py and applied dis-

cretization from continuous probability vector pyt to ỹt either by taking the class

with the highest probability or sampling from a categorical random variable. Af-

ter getting a single class to represent the probability vector, we encoded it into

vector [0, 0, .., 1, .., 0] with one-hot encoding representation and gave it to the

TTS as the encoder input. The TTS reconstructs Mel spectrogram x̂ with the

teacher-forcing approach. The reconstruction loss is calculated by:

`recTTS = LrecTTS(x, x̂) =
1

S

S∑
s=1

‖xMs − x̂Ms ‖22, (5.2)

where x̂Ms is the predicted (or reconstructed) Mel spectrogram and xMs is the

ground-truth spectrogram at s-th time-step.

We directly calculated the gradient from the reconstruction loss w.r.t. the

TTS parameters (∂`recTTS/ ∂θTTS) because all the operations inside the TTS mod-

ule are continuous and differentiable. However, we could not calculate the gra-

dient from the reconstruction loss w.r.t. the ASR parameters (∂`recTTS/∂θASR)

because we have a discretization operation from pyt → onehot(ỹt). Therefore, we

applied a straight-through estimator to enable the loss from `recTTS to pass through

discrete variable ỹt.

40

Figure 5.1. a) Multispeaker machine speech chain mechanism; b) Baseline ([3]):

feedback loss from TTS is only backpropagated through the TTS module, and the

ASR module is not updated because variable ŷ is non-differentiable; c) Proposal:

feedback loss from TTS is backpropagated through discrete variable ŷ, and ASR

modules are updated based on the estimated gradient from the TTS module by

a straight-through estimator.

41

5.2. End-to-End Feedback Loss

5.2.1 Straight-through Argmax

The straight-through estimator [58, 59] is a method for estimating or propagating

gradients through stochastic discrete variables. Its main idea is to backpropagate

through discrete operations (e.g., argmaxc pyt [c] or sampling ỹt ∼ Cat(pyt)) like an

identity function. We describe the forward process and the gradient calculation

with a straight-through estimator in Fig. 5.2.

Figure 5.2. Straight-through estimator on argmax function. Given in-

put x and model parameters θ, we calculate categorical probability mass P (x; θ)

and apply discrete operation argmax. In the backward pass, the gradient from

stochastic node y to P (x; θ), ∂y/∂P (x; θ) ≈ 1 is approximated by identity.

42

In the implementation, we created a function with different forward and back-

ward operations. For the argmax one-hot encoding function, we formulated the

forward operation:

z̃t = argmax
c

pyt [c] (5.3)

ỹt = onehot(z̃t). (5.4)

Here, we describe ỹt as a one-hot encoding vector with the same length as

the pyt vector. When the loss is calculated and the gradients are backpropagated

from loss `recTTS, we formulate the backward operation:

∂ỹt
∂pyt

≈ 1. (5.5)

Therefore, when we backpropagate the loss from Eq. 5.2 with the straight-

through estimator approach, we calculate the TTS reconstruction loss gradient

w.r.t. θASR:

∂`recTTS
∂θASR

=
T∑
t=1

∂`recTTS
∂ỹt

· ∂ỹt
∂pyt

· ∂pyt
∂θASR

(5.6)

≈
T∑
t=1

∂`recTTS
∂ỹt

· 1 · ∂pyt
∂θASR

. (5.7)

43

Figure 5.3. Given speech feature x, ASR generates a sequence of probability

py = [py1 , py2 , ..., pyT]. If we have a ground-truth transcription, we can calculate

LASR (Eq. 2.9). The TTS module generates speech features and we calculate

reconstruction loss LrecTTS (Eq. 5.2). After that, the gradients based on LASR
are propagated through the ASR module, and the gradients based on LrecTTS are

propagated through the TTS and ASR modules by a straight-through estimator.

44

5.2.2 Straight-through Gumbel-Softmax

Besides taking argmax class from probability vector pyt , we also generated a

one-hot encoding by sampling with the Gumbel-Softmax distribution [60, 61].

Gumbel-Softmax is a continuous distribution that approximates categorical sam-

ples and the gradients can be calculated with a reparameterization trick. For

Gumbel-Softmax, we replaced the softmax formula for calculating pyt (Eq. 5.1):

pyt [c] =
exp((hdt [c] + gc)/τ)∑C
i=1 exp((hdt [i] + gi)/τ)

, ∀c ∈ [1..C], (5.8)

where g1, .., gC are i.i.d. samples drawn from Gumbel (0, 1) and τ is the

temperature. We sample gc by drawing samples from the uniform distribution:

uc ∼ Uniform(0, 1) (5.9)

gc = − log(− log(uc)), ∀c ∈ [1..C]. (5.10)

To generate a one-hot encoding, we define our forward operation:

z̃t = argmaxc pyt [c] (5.11)

ỹt = onehot(z̃t). (5.12)

At the backpropagation time, we use the same straight-through estimator

(Eq. 5.5) to allow the gradients to flow through the discrete operation.

5.2.3 Combined Loss for ASR

Our final loss function for ASR is a combination from negative likelihood (Eq. 2.9)

and TTS reconstruction loss (Eq. 5.2) by sum operation:

`FASR = `ASR + `recTTS. (5.13)

To summarize our explanation in this section, we provide an illustration in

Fig. 5.3 that explains how sub-losses `ASR and `recTTS are backpropagated to the

rest of the ASR and TTS modules.

45

5.3. Experiment on Multi-speaker Task in Su-

pervised Settings

5.3.1 Dataset

We evaluated the performance of our proposed method on the WSJ dataset [51].

Our settings for the training, development, and test sets are the same as the

Kaldi s5 recipe [52]. We trained our model with WSJ-SI284 data. Our validation

set was dev 93 and our test set was eval 92. For the feature extraction and text

tokenization, we use the same setting as Section 4.4.2.

5.3.2 Model Details

For the ASR model, we used a standard sequence-to-sequence model with an

attention module (Section 2.3). We use the same encoder setting as Section 3.2.2.

On the decoder sides, we projected one-hot encoding from the previous character

into a 256-dims continuous vector with an embedding matrix, followed by one

unidirectional LSTM with 512 hidden units. For the attention module, we used

the content-based attention + multiscale alignment (denoted as “Att MLP-MA”)

[37] with a 1-history size. In the evaluation stage, the transcription was generated

by beam-search decoding (size = 5), and we normalized the log-likelihood score

by dividing it by its own length to prevent the decoder from favoring shorter

transcriptions. We did not use any language model or lexicon dictionary in this

work. In the training stage, we tried ST-argmax (Section 5.2.1) and ST-Gumbel

softmax (Section 5.2.2). We also tried both teacher forcing and greedy decoding

to generate ASR probability vectors py in the training stage. For each scenario,

we treated temperature τ = [0.25, 0.5, 1, 2] as our hyperparameter and searched

for the best temperature based on the CER on the development set.

For the TTS model, we used the modified Tacotron which is explained in

Section 2.4 and we use same settings as Section 3.2.2.

46

Table 5.1. ASR experiment result on WSJ dataset test eval92.

Baseline (`ASR)

Model CER (%)

Att MLP [54] 11.08

Att MLP + Location [54] 8.17

Att MLP [55] 7.12

Att MLP-MA (ours) [37] 6.43

Proposed (`ASR + `recTTS)

Model pyt generation ST CER (%)

Att MLP-MA argmax 5.75

Att MLP-MA
Teacher forcing

gumbel 5.7

Att MLP-MA argmax 5.84

Att MLP-MA
Greedy

gumbel 5.88

5.3.3 Experiment Results

For our baseline, we trained an encoder-decoder with MLP + multiscale alignment

with a 1-history size [37]. We also added several published results to our baseline.

All of the baseline models were trained by minimizing negative log-likelihood `ASR

(Eq. 2.9).

All the models in the proposed section were trained with a combination from

two losses, `ASR + `recTTS, and the ASR parameters were updated based on the

gradient from the sum of the two losses. We have four different scenarios, most

of which provide significant improvement compared to the baseline model that

is only trained on LASR loss. With teacher forcing and sampling from Gumbel-

softmax, we obtained 11% relative improvement compared to our best baseline

Att MLP-MA.

5.4. Discussion

In this chapter, we trained our ASR module by adding feedback from the TTS

reconstruction loss. However, the ASR output is not differentiable because of the

transcription generated by the discretization process. To address this problem, we

47

used a straight-through estimator to enable the gradient from the TTS module to

flow through discrete variables. We tried various scenarios with different decoding

and discretization processes. From our experimental results, with teacher-forcing

and sampling from Gumbel-Softmax, we improved the ASR performances by 11%

relative CER reduction compared to our baseline.

48

Chapter 6

Improving End-to-End ASR via

Reinforcement Learning

In this chapter, I will discuss about my additional research contribution on speech

recognition. We revisit the problem of discrepancy between training and inference

stage on sequence-to-sequence ASR (as we mentioned in Section 2.2).

6.1. Introduction

End-to-end sequence models are typically composed of three different compo-

nents: encoder, decoder, and attention. The encoder part extracts features from

the source sequence. The decoder part forms an autoregressive model, which

conditionally generates the target sequence step-by-step based on the previous

output, current state, and encoder features. The attention part is used to calcu-

late the relevance between the current decoder state and encoder features. For

training an autoregressive decoder model, the most popular approach is by using

teacher forcing [62]. In teacher forcing, the decoder generates output prediction

by using the ground-truth input for current time-step. However, in the inference

stage, the decoder has no access to the ground-truth transcription. The decoder

needs to rely on its own previous prediction as to the input. As the decoding

steps going further, any mistakes from the decoder might be accumulated into the

future and the predicted target sequence are diverging from the optimal solution.

Besides the difference between the generation method, the mismatch between

49

the objective in the training and the metric for evaluation could also been prob-

lematic [63, 64]. In the training stage, the probability predicted by teacher forc-

ing are trained via maximum likelihood estimation (MLE). Therefore, the loss

are usually calculated based on the log-probability for each time-step. However,

a models are usually evaluated with different objective or metric such as Lev-

enshtein distance for speech recognition and BLEU [65] for machine translation.

Therefore, optimizing the model parameters with the correct metric is necessary

to obtain its best performance in the inference stage.

Here, we introduce an alternative method for optimizing the ASR model by

utilizing the concept from reinforcement learning (RL). To be more precise, we

apply one of the RL methods called a policy gradient (REINFORCE) [66] to

solve the problem arising from teacher forcing and MLE objective. We assume

the ASR autoregressive decoder as an RL agent that produces an action for each

time-step, thus we could (1) generate the target sequence transcription with the

model’s own prediction instead of teacher forcing, thus simulates the prediction in

the inference stage, and (2) construct a reward function that is highly correlated

with Levenshtein distance and maximize the expected reward with respect to the

agent. By incorporating the RL method for optimizing our model, the model

is still able to be trained end-to-end and also optimized exactly towards ASR

evaluation metric.

6.2. Related Works

Reinforcement learning is one of important types of machine learning where an

agent that interacts with its environment learns how to maximize the rewards

using feedback signals. Reinforcement learning have been successfully applied in

many applications, including building an agent that can learn how to behave in

environment and play a game without having any explicit knowledge [67, 68],

control tasks in robotics [69], and dialogue system agents [70, 71].

Not limited to those areas, reinforcement learning has also been adopted

for improving end-to-end deep learning architecture. To date, Ranzato et al.

[63] proposed to combine REINFORCE with an MLE training objective called

MIXER. In the early stage of training, the first s steps were trained with MLE

50

and the remaining T -s steps with REINFORCE. They decreased s as the training

progress over time. By using REINFORCE, they trained the model using non-

differentiable task-related rewards (e.g., BLEU for machine translation). In this

manuscript, we did not need to deal with any scheduling or mix any sampling with

the teacher-forcing ground-truth. Furthermore, MIXER did not sample multiple

sequences based on the REINFORCE Monte Carlo approximation.

In machine translation tasks, Shen et al. [72] could improve the neural ma-

chine translation (NMT) model using Minimum Risk Training (MRT). A Google

NMT [64] system combined MLE and MRT objectives to achieve better results.

Zhang et al. [73] also points out the gap between training and inference, they

address this issue by sampling context words not only from the ground truth

sequence but from the model prediction during training. In ASR tasks, Shanon

et al. [74] performed WER optimization by sampling paths from the lattices that

were used during sMBR training, which seemingly resembles the REINFORCE

algorithm. But the work was only applied to a CTC-based model. From a proba-

bilistic perspective, MRT formulation resembles the expected reward formulation

used in reinforcement learning. Here, MRT formulation equally distributed the

sentence-level loss into all of the time-steps in the sample. To the best of our

knowledge, we are the first to publish the work on optimizing attention-based

encoder-decoder ASR with reinforcement learning approach [75]. Later on, sim-

ilar work is also published by Karita et al. [76]. The main difference between

our work and their work is the design of the reward function and the sampling

process.

6.3. Sequence-to-Sequence ASR

A sequence-to-sequence (seq2seq) is an end-to-end neural network model that map

a dynamic length sequence X = [x1, x2, ..., xS] with length S to another dynamic

length sequence Y = [y1, y2, ..., yT] with length T time-step [2]. In the basic form,

seq2seq could be formulated as Pθ(Y|X) parameterized by model parameters θ.

In ASR case, we build a seq2seq model that generate a text transcription Y

(e.g., character or phoneme) given a speech features X (e.g., MFCC or Mel-

spectrogram). We show our complete structure for seq2seq ASR in Chapter 2.3.

51

The decoder task is to generate a target discrete sequence Y :

P (Y |X; θ) =
T∏
t=1

P (yt|ct, hDt , yt−1; θ), (6.1)

where ct is the relevant context generated by the attention module. This equation

represent an conditional autoregressive model that produces current time-step

target probability yt given the previous time-step output yt−1, a decoder state hDt
(which consists of a compressed representation for decoder from time 1 to t− 1)

and a context vector ct.

Training seq2seq model mostly done by using maximum likelihood estimation

(MLE):

θ∗ = argmax
θ

P (Y |X; θ)

= argmax
θ

T∏
t=1

P (yt|ct, hDt , yt−1; θ). (6.2)

Based on the maximum likelihood criterion, we obtained optimal model θ∗ by

minimizing the negative log-likelihood (NLL) calculated by the teacher-forcing

generation method:

LNLL = − logP (y|x; θ),

= − log
T∏
t=1

P (yt|ct, hDt , yt−1; θ),

= −
T∑
t=1

logP (yt|ct, hDt , yt−1; θ). (6.3)

For each time-step, the teacher-forcing approach generates the label probability

based on the ground-truth label at time-t. In Fig. 6.1, we illustrate the generation

process based on the teacher-forcing method. Loss function NLL is described as

follows:

NLL(yt, p(yt)) = −
∑
c

1{yt = c} log p(yt = c), (6.4)

where p(yt) = P (yt|ct, hDt , yt−1; θ).
However, in the inference stage, since we have no access to the ground-truth

transcription, our model must rely on its own previous prediction as input for the

52

current time-step. We illustrated the decoding process with a greedy approach by

taking the label index based on the highest probability mass on p(yt) in Fig. 6.2.

Figure 6.1. Training stage: generation via teacher-forcing method sets the model

input with ground-truth transcription. For each time-step, decoder generates

probability vector p(yt), and we calculate negative log-likelihood between p(yt)

and ground-truth y
(n)
t .

53

Figure 6.2. Testing/inference stage: decoder doesn’t have access to ground-truth

transcription. Therefore, for each time-step t, decoder input depends on model

prediction from previous time-step t − 1. For greedy decoding (1-best search),

we took the label from highest probability ỹt−1 = argmax
yt−1

P (yt−1|hD(n)
1) and use

selected label ỹt−1 for current decoder input.

6.4. Reinforcement Learning

In this section, we briefly discuss reinforcement learning, which is an area of

machine learning where the agent learns by interacting inside a specific environ-

ment. In the learning stage, the agent receives a state and sequentially generates

an action through multiple time-steps and eventually the environment returns a

reward as a signal feedback for the agent. If agents get a high reward value, it

means that they are doing a good job related to their given tasks. Our final goal

is to make agents that can choose a series of optimal actions that maximize the

reward in that environment.

The RL method can be described formally by the Markov Decision Process

(MDP) [77]. Here the agent and environment interact in discrete time-steps

t = [1, 2, .., T]. We formulate a MDP property as a tuple: (S,A,P ,R) where

54

• S = {S1, S2, .., Sn} is a set of the environment’s states and ∀t ∈ [1..T], st ∈
S;

• A = {A1, A2, .., Am} is a set of possible actions for the agent and ∀t ∈
[1..T], at ∈ A;

• P : S × S × A → [0, 1] is a state transition probability where P(s′|s, a) is

the probability of transitioning to state s′ given state s and action a;

• R : S ×A → R is a reward function that returns a value given a state and

an action.

In Fig. 6.3, we illustrated the interaction between an agent and its environment

within MDP notation. The MDP process starts from state s1 as the initial agent’s

state. The initial state s1 is defined by the environment (e.g., s1 is the location

of robot starting point inside certain arena). Based on the initial state s1, the

agent chooses actions a1 ∈ A. Given current state s1 ∈ S and selected action

a1, new state s2 is drawn or generated based on state transition probabilities

s2 ∼ P(s2|s1, a1) where s2 ∈ S. We repeat the process and generate a sequence

of states and action from time t ∈ [1..T]:

s1
a1−→ s2

a2−→ s3
a3−→ ...

aT−2−−−→ sT−1
aT−1−−−→ sT . (6.5)

For each trajectory s1, a1, s2, a2, .., the environment returns a series of rewards

as a signal feedback:

R(s1, a1) + γR(s2, a2) + γ2R(s3, a3) + .., (6.6)

where γ ∈ [0, 1) is the discount factor for future rewards. RL’s main target is to

optimize an agent that chooses the most optimal actions over time to maximize

the expected reward:

Eat∼π[R(s1, a1) + γR(s2, a2) + γ2R(s3, a3) + ..] (6.7)

Policy function π : S → A maps a state to an action. Given state st, the policy

function returns feasible action at = π(st). Value function V π(s) : S → R is

defined:

V π(s) = Eat∼π[R(s1, a1) + γR(s2, a2) + ..|s1 = s]. (6.8)

55

Figure 6.3. Interaction between agent and their environment inside an MDP.

Given current state st, the agent choose an action at. The environment responds

to the selected action and generates a new state st+1 and a reward rt+1.

The value function calculates the expected reward given state s and action at ∼ π

taken from policy π. We got the following optimal value function

V ∗(s) = max
π

V π(s) ∀s ∈ S. (6.9)

Given optimal value function V ∗(s), optimal policy π∗ becomes

π∗ = argmax
π

V ∗(s) ∀s ∈ S. (6.10)

To extend the value function, a Q-function predicts the expected reward given

state-action pair Q : S ×A → R defined:

Qπ(s, a) = Eat∼π[R(s1, a1) + γR(s2, a2) + ..|s1 = s, a1 = a]. (6.11)

The optimal Q-function Q∗(s, a) is the maximum action value-function over poli-

cies

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S,∀a ∈ A. (6.12)

We retrieved best policy π∗(s) given state s:

π∗(s) = argmax
a

Q∗(s, a) ∀s ∈ S. (6.13)

Reinforcement learning can be solved in several ways. First, we can directly

optimize policy function π to maximize the expected reward in Eq. 6.7. Policy

56

gradient [66] is one of the algorithm that optimizes parameterized policy πθ with

respect to the expected reward. Parameterized policy πθ can also be represented

with a neural network and optimized directly by first-order optimization such as

stochastic gradient descent (SGD). Second, we can find the optimal policy based

on Eq. 6.13 based on the Q-function. Q-learning [78] learns a policy and informs

the agent of the expected reward given a certain state and action pair. If we have

discrete states and actions, Q-learning can be implemented with a simple table

where the state and action pairs are defined by columns and rows and the expected

reward value is in the cell. However, when we have high-dimensional states and

action spaces, we can replace the table with a function that approximates the

Q-function, such as simple linear regression or a deep neural network [79].

6.5. Policy Gradient Training for Sequence-to-

Sequence ASR

We present our proposed method to incorporate policy optimization with seq2seq

ASR architecture. First, we present an overview about policy gradient (REIN-

FORCE) optimization strategy. Later, we describe several reward functions that

we used to optimize our agent in the reinforcement learning environment.

6.5.1 Policy Gradient

Policy gradient is a method based on policy function formulation. The policy

πθ(a|s) optimized directly by adapting the parameters θ to increase the expected

reward E[Rt|πθ] [77]. The parameters θ depends on the function that we use to

approximate the policy. Here, we use deep neural network to parameterized the

policy function and θ denotes a collections of neural network weight matrices. To

bridge the ASR with reinforcement learning optimization, we need to formulate

within an MDP tuple (S,A,P ,R), where S is the state space, A is the action

space, P is the transition probability between a state to another state, and R is

the reward function.

We define our RL agent as a seq2seq ASR model where the agent function

is to predict the transcription given a sequence of speech features. We describe

57

the state st ∈ S as a temporary state st = [ct, h
D
t] from seq2seq decoder at time

t ∈ {1..T}. Action state at ∈ A is the discrete output token from the decoder

such as character or phoneme symbols. The transition probability P are implied

by the operation from RNN cell inside the decoder. Lastly, reward function R
are designed to be highly correlated with the quality measure for an ASR system.

We provide the detail in Section 6.5.2.

We assume
(
X(n), Y (n)

)
is a pair between speech features and their groundtruth

transcription. The reward R(n) calculated between the groundtruth Y (n) and

sampled transcription Ỹ (n,·). We are looking to maximize the expected reward

EY [R(n)|πθ] with respect to seq2seq parameters θ where πθ(at|st) = P (yt|hD(n)
t , c

(n)
t ; θ) =

P (yt|y<t, X(n); θ). In order to optimize θ, we calculate the expected reward gra-

dient with respect to the parameters θ:

∇θEY
[
R(n)|πθ

]
= ∇θ

∫
P (Y |X(n); θ)R(n) dY

=

∫
∇θP (Y |X(n); θ)R(n) dY

=

∫
P (Y |X(n); θ)

∇θP (Y |X(n); θ)

P (Y |X(n); θ)
R(n) dY

=

∫
P (Y |X(n); θ)∇θ logP (Y |X(n); θ)R(n) dY

= EY
[
∇θ logP (Y |X(n); θ)R(n)

]
≈ 1

M

M∑
m=1

R(n,m)∇θ logP (Ỹ (n,m)|X(n); θ), (6.14)

whereM is the number of samples, Ỹ (n,m) ∼ P (Y |X(n); θ) is them-th sample from

model θ conditioned on input X(n), and R(n,m) is the calculated reward between

ground-truth Y (n) and sample Ỹ (n,m). From another perspective, Eq. 6.14 is a bit

identical with the gradient from Minimum Risk Training (MRT) [72].

Occasionally using only a single reward signal for a whole sequence of sample

Ỹ (m,n) is not sufficient. For example, Eq. 6.14 can be expanded as:

1

M

M∑
m=1

M∑
m=1

R(n,m)∇θ

T∑
t=1

logP (ỹ
(n,m)
t |X(n); θ) (6.15)

58

which is we distribute the sequence reward R(n,m) to all time-step equally. There

might be a sub-optimal case where the reward is negative caused by several

time-step action, but we penalize all time-step with negative reward instead.

Therefore, we could substitute the reward R(n) with time-distributed reward

R
(n)
t ∈ R, ∀t ∈ {1..T}. The reward R

(n)
t might have different value between differ-

ent time-step, thus it could provide more informative feedback for each time-step.

Mathematically, we substitute Eq. 6.14 t = [1, .., T] with:

∇θEY

[
T∑
t=1

R
(n)
t |πθ

]

= ∇θ

∫
P (Y |X(n); θ)

(
T∑
t=1

R
(n)
t

)
dY

=

∫
P (Y |X(n); θ)

∇θP (Y |X(n); θ)

P (Y |X(n); θ)

(
T∑
t=1

R
(n)
t

)
dY

=

∫
P (Y |X(n); θ)∇θ logP (Y |X(n); θ)

(
T∑
t=1

R
(n)
t

)
dY

= EY

[(
T∑
t=1

R
(n)
t

)
∇θ logP (Y |X(n); θ)

]

= EY

[(
T∑
t=1

R
(n)
t

)
T∑
t=1

∇θ logP (yt|y<t, X(n); θ)

]

≈ EY

[
T∑
t=1

R
(n)
t ∇θ logP (yt|y<t, X(n); θ)

]
(6.16)

≈ 1

M

M∑
m=1

T (m)∑
t=1

R
(n,m)
t ∇θ logP (ỹ

(n,m)
t |ỹ(n,m)

<t , X(n); θ), (6.17)

where T is the length of transcription Y , R
(n)
t is the generalized reward based

on the current state and action at time-t. In Eq. 6.17, R
(n,m)
t is the reward from

m-th sample, time-step t-th and compared with n-th utterance groundtruth, and

T (m) denotes the sample Ỹ (n,m) length. To calculate the expected reward from

Eq. 6.14 and Eq. 6.17, we need to integrate all possible transcription across ran-

dom variable Y . It is unrealistic because the search space are growing exponential

for each time-step. Therefore, we do Monte-carlo sampling M times per sequence

59

Ỹ (n,m) ∼ P (Y |X(n); θ) for each utterance X(n) to get an approximated expected

reward.

To summarize our explanation, we compared the differences between teacher-

forcing and policy gradient loss calculation from Figs. 6.1 and 6.4. In the teacher-

forcing method, the model predictions are generated based on the ground-truth

transcription. However, in the policy gradient method, first we sample M se-

quences by Monte Carlo sampling and stop after getting an </s> symbol. Then

we calculate discounted reward R
(n,m)
t for each time-step based on the future

rewards. We provide pseudocode to complete our explanation in Alg. 3.

6.5.2 Reward Construction for ASR Tasks

One important component for optimizing an agent using an reinforcement learn-

ing approach is to design a good reward function that closely corresponds to the

metric that we used to evaluate our agent performance. In our case, our agent is

ASR systems that were evaluated based on the edit-distance or the Levenshtein

distance algorithm. Therefore, we composed our reward function with a modified

edit-distance algorithm and divided the reward into two different types:

Sentence-level reward

Based on Eq. 6.14, we need to calculate the reward by comparing ground-truth

transcription Y (n) and sampled transcription Ỹ (n,m). In this case, we designed

reward function R(Ỹ (n,m), Y (n)) to calculate R(n,m):

R(n,m) = R(Ỹ (n,m), Y (n)) = −ED(Ỹ (n,m), Y (n))

|Y (n)|
, (6.18)

where ED(·, ·) is an edit-distance function. In practice, we would like to min-

imize the edit-distance between the sample and the ground-truth transcription.

However, for the reinforcement learning environment, we design a reward func-

tion with the opposite output. For example, if our model produces two samples,

Ỹ (n,1) and Ỹ (n,2), the first Ỹ (n,1) is “closer” to Y (n) than the second Ỹ (n,2), then

the reward function must fulfill: R(Ỹ (n,1), Y (n)) > R(Ỹ (n,2), Y (n)). Therefore, we

multiply the edit-distance result by -1 to fulfill the requirement of the reward

function.

60

Figure 6.4. Policy gradient set decoder input to be conditioned on its own

prediction sampled from previous time-step to predict current time-step output

probability. Therefore, decoder doesn’t rely on a ground-truth transcription like

teacher-forcing method. Expected rewards for model transcription are approxi-

mated by the average from multiple sample trajectories.

61

Algorithm 3 Pseudocode for sampling text on sequence-to-sequence ASR

1: procedure Sample(Speech features x, sample size M, vocab size V)

2: y in = [<S>,..,<S>] ∈ RM . init with start token <S> M times

3: l sample logp = [[] for in [1..M]]

4: l sample act = [[] for in [1..M]]

5: l sample len = [-1,..,-1] . init sample length

6: tt = 0

7: model.encode(x) . encode speech into hE

8: finished = False

9: repeat

10: p y = model.decode(y in) ∈ RM×V

11: log p y = log(p y)

12: for m in [1..M] do

13: a y ∼ Categorical (p y[m]) . sample action from Categorical

distribution
14: y in[m] = a y . set next decoder input

15: if l sample len[m] == -1 then

16: l sample logp[m].add(

log p y[m, a y]))

17: l sample act[m].add(a y)

18: if a y == <\s> then

19: l sample len[m] = tt+1

20: end if

21: end if

22: end for

23: finished = all(l sample len 6= -1)

24: until finished == True . all samples meet </s>

25: return l sample logp, l sample act

26: end procedure

62

Since the REINFORCE gradient estimator is usually too noisy and might

hinder our learning process, there are several tricks to reduce the variance [80, 81].

Here we normalize reward R(n,m):

µn =
1

M

M∑
m=1

R(Ỹ (n,m), Y (n))

σ2
n =

1

M

M∑
m=1

(
R(Ỹ (n,m), Y (n))− µn

)2
R(n,m) =

R(Ỹ (n,m), Y (n))− µn
σn

. (6.19)

We normalize our reward across M samples into zero mean and unit variance.

We provide the pseudocode for calculating sentence-level reward in Algorithm 4.

Token-level reward

Rather than having only a single reward attributed to the whole sequence, we

could also construct a better reward function which give a feedback for every time-

step. Here we design a reward function that could provide an intermediate reward

before the sample transcription finished. This reward functionR(Ỹ , Y (n), t) calcu-

late R
(n)
t by utilizing the edit-distance algorithm. We define reward R(Ỹ , Y (n), t):

R(Ỹ (n,m), Y (n), t) =
|Y (n)| − ED(Ỹ

(n,m)
1:t , Y (n)) if t = 1

ED(Ỹ
(n,m)
1:t−1 , Y

(n))− ED(Ỹ
(n,m)
1:t , Y (n)) if 1 < t < T

−ED(Ỹ (n,m), Y (n)) if t = T

(6.20)

where ED(·, ·) is the edit-distance function between two transcriptions, Ỹ
(n,m)
1:t is

a substring of Ỹ (n,m) from index 1 to t, |Y (n)| is the ground-truth length, and

T is the sample transcription Ỹ (n,m) length. Intuitively, we calculate whether

the current new transcription at time-t decreases the edit-distance compared to

previous transcriptions and multiply it by -1 for a positive reward if our new

edit-distance at time t is smaller than the previous t − 1 edit-distance. Also, at

63

the end-of-sentence at time-T , we give a penalty based on the final edit-distance

between the sample and the ground-truth transcription. In Fig. 6.5, we illustrate

our reward scoring at each time-step from different trajectory samples.

In most cases, the current selected action affects future states and actions as

well. Therefore, we should also account for some of the future rewards in the

current time-step. Reward R
(n)
t can be written:

R
(n,m)
t =R(Ỹ (n,m), Y (n), t)

+ γR(Ỹ (n,m), Y (n), t+ 1)

+ γ2R(Ỹ (n,m), Y (n), t+ 2) + ...

+ γT−tR(Ỹ (n,m), Y (n), T), (6.21)

where γ is the discount factor.

Additionally, since the REINFORCE estimator has high variance and could

cause instability in the training stage, we apply the following normalization for

reward R(n,m):

R
(n,m)
t =

R(Ỹ (n,m), Y (n), t)− µ(n,t)

σ(n,t)
if 1 ≤ t < T

R(Ỹ (n,m), Y (n), t)− µ(n,</s>)

σ(n,</s>)

if t = T ,

(6.22)

where µ(n,t), σ(n,t) is the reward mean and standard deviation for all samples at

the t-th timestep, µ(n,</s>), σ(n,</s>) is the reward mean and standard deviation

for all the samples at the end of the transcription (denoted with <\s>), and T

is the sample transcription Ỹ (n,m) length. We separate the mean and the stan-

dard deviations between <\s> and non-<\s> labels because the reward function

(Eq. 6.20) has different ways to calculate the reward. We provide the pseudocode

for calculating token-level reward in Algorithm 5.

64

Figure 6.5. Based on Eq. 6.20, we provide an example for how to calculate the

reward for each sample trajectory.

65

Algorithm 4 Pseudo-code for policy gradient with sentence-level reward R

1: procedure LossPGSentence(Speech features x, ground-truth text y gold,

sample size M, vocab size V)

2: l s logp, l s act = Sample(x, M, V)

. Algorithm 3
3: l r = []

4: for m in [1..M] do

5: # Calculate reward between ground-truth and each sample

6: l r.add(R(y gold, l s act[m])) . Eq. 6.18

7: end for

8: # Reward normalization

9: l r = (l r - mean(l r)) / std(l r) . Eq. 6.19

10: # Calculate loss and update θASR model

11: L = 0

12: for m in [1..M] do

13: for t in [1..len(l s act[m])] do

14: L += -l s logp[m, t] * l r[m]

15: end for

16: end for

17: θASR = Optim(θASR,∇θASR
L) . update ASR parameters

18: end procedure

66

Algorithm 5 Pseudocode for policy gradient with token-level reward Rt

1: procedure LossPGToken(Speech features x, ground-truth text y gold,

sample size M, discount factor γ, vocab size V)

2: l s logp, l s act = Sample(x, M, V)

. Algorithm 3
3: l r = [[] for in [0..M]]

4: for m in [1..M] do

5: for t in [1..len(l s act[m])] do

6: # Calculate reward between ground-truth and each sam-

ple at time-t

7: l r[m].add(R(l s act[m],

y gold, t)) . Eq. 6.20
8: end for

9: end for

10: # Calculate discounted reward

11: for m in [1..M] do

12: R = 0

13: for t in [len(l s act[m]) .. 1] do

14: R = l r[m, t] + γ * R

15: l r[m, t] = R

16: end for

17: end for

18: # Reward normalization

19: l r = normalization(l r) . Eq. 6.22

20: # Calculate loss and update θASR model

21: for m in [1..M] do

22: for t in [1..len(l s act[m])] do

23: L += -l s logp[m, t] * l r[m, t]

24: end for

25: end for

26: θASR = Optim(θASR,∇θASR
L) . update ASR parameters

27: end procedure

67

Table 6.1. WSJ subset information
Subset Utterances Duration Speakers

train si84 7138 16 h 83

train s284 38154 80 h 282

eval dev93 503 65 m 10

eval test92 333 42 m 8

6.6. Experiment

6.6.1 Speech Dataset and Feature Extraction

We evaluate our proposed method using Wall Street Journal dataset (WSJ) [82].

Following Kaldi s5 recipe [52], we use same training, validation and test sets

partition. For the training, we a smaller set (train si84) for preliminary and

faster experiment, then later we use full set (train si284). The speech features

are computed with 80-dimension log Mel-filterbank with 25 ms window width and

10 ms window step. The text transcription are tokenized into characters, which

contains alphabet, space, dashes, periods, apostrophes, noise and end-of-sentence

(</s>). We describe the details for such as number of utterances, duration and

unique speakers for each set on WSJ in Table 6.1.

6.6.2 Model Architecture

Our encoder input is a sequence of Mel-frequency spectrogram with 80 dimen-

sions. For each frame, the input is projected by a dense linear layer with 512

output units and transformed by leaky rectifier unit (LeakyReLU) [41] as the

non-linear activation function. Later, the output from dense linear layer was pro-

cessed by three bi-directional LSTMs [11] (bi-LSTM) with 512 hidden units (256

hidden units for each direction). We apply hierarchical sub-sampling [83, 42]

by a factor of 2 for all bi-LSTM output and the final encoder states has T/8

length compared to the original speech features. This trick is useful to reduce the

computation time and memory usage for seq2seq model.

Our decoder has an autoregressive form which takes the character output

from the previous time-step as the current time-step input. Every character is

68

projected by a continuous vector via character embedding with 128 dimensions.

Later, one uni-directional LSTM with 512 units project the character vector.

The attention module with MLP scorer (256 units projection layer) calculates

the context vector ct, concatenated with the LSTM output and finally projected

into a categorical probability distribution with a softmax layer. To optimize our

seq2seq ASR model, we use Adam [84] with learning rate lr = 0.0005.

We have two steps of training seq2seq ASR. First, we pre-train seq2seq ASR

by minimizing NLL criterion (Eq. 6.4) via teacher forcing generation until the

loss is stable and converged. Later, we continue the training by summing the RL

objective with the NLL criterion at the same time until the character error rate

(CER) in the dev set stops decreasing.

We use beam-search (beam-size = 5) decoding to transcript the speech utter-

ance in the testing step. Each beam score is calculated by their log probability

logP (Y |X; θ) and divided by the hypothesis length to prevent the top-K beams

promoting shorter hypothesis. In this work, we did not utilize any lexicon dictio-

nary or language model. We use Pytorch k1 library to implement our model and

loss function.

1PyTorch https://github.com/pytorch/pytorch/

69

https://github.com/pytorch/pytorch/

70

6.6.3 Results and Discussion

Table 6.2. Character error rate (CER) report from WSJ train si84 set (small

set), comparing the result between baseline (without RL) and proposed method

(NLL + RL). All decoding results were produced without additional language

model or lexicon dictionary.
Models Results

WSJ-SI84 CER (%)

NLL

CTC [54] 20.34 %

Seq2Seq Content [54] 20.06 %

Seq2Seq Location [54] 17.01 %

Joint CTC+Att (MTL) [54] 14.53 %

Seq2Seq (ours) 17.68 %

NLL + RL

Seq2Seq + RL

(sentence-level R, M = 5)
16.88 %

Seq2Seq + RL

(sentence-level R, M = 10)
15.38 %

Seq2Seq + RL

(sentence-level R, M = 15)
15.21 %

Seq2Seq + RL

(token-level Rt, M = 5, γ = 0)
15.17 %

Seq2Seq + RL

(token-level Rt, M = 5, γ = 0.5)
15.34 %

Seq2Seq + RL

(token-level Rt, M = 5, γ = 0.95)
14.75 %

Seq2Seq + RL

(token-level Rt, M = 10, γ = 0)
15.08 %

Seq2Seq + RL

(token-level Rt, M = 10, γ = 0.5)
14.45 %

Seq2Seq + RL

(token-level Rt, M = 10, γ = 0.95)
14.29 %

Seq2Seq + RL

(token-level Rt, M = 15, γ = 0)
14.99 %

Seq2Seq + RL

(token-level Rt, M = 15, γ = 0.5)
14.25 %

Seq2Seq + RL

(token-level Rt, M = 15, γ = 0.95)
13.92 %

71

Table 6.2 shows the ASR performance on the WSJ-SI84. Here, we compare our

proposed model (NLL + RL) with the baseline (without RL). Our baseline model

is an attention encoder-decoder that was only trained with the NLL objective. In

addition, we also compared our results with several published models, including

CTC, standard seq2seq, and the Joint CTC-Attention model trained with the

NLL objective. The main difference between our seq2seq model with others is

that our decoder calculates the attention probability and context vector based

on the current hidden state instead of the previous hidden state. Furthermore,

we also reused the previous context vector by concatenating it with the input

embedding vector.

We ran various experiments with different scenarios:

• Reward types:

1. sentence-level reward (Sec. 6.5.2)

2. token-level reward (Sec. 6.5.2)

• Sample sizes:

1. M = 5

2. M = 10

3. M = 15

• Discount factors (for token-level reward):

1. γ = 0

2. γ = 0.5

3. γ = 0.95

To show the effect of different sample sizes, we plotted the performances into

different lines with respect to the CER in Fig. 6.6. From another perspective,

we also provided Fig. 6.7 to compare the performances within different reward

formulations and discount factors.

Based on the result in Table 6.2, we observed the following:

72

Figure 6.6. CER (%) comparisons between different sample sizes M

73

Figure 6.7. CER (%) comparison between different reward types and discount

factors γ.

74

1. Increasing sample size M from 5 to 10 and 10 to 15 generally improved the

performance. Unfortunately, the training time also increased linearly with

sample size M .

2. Token-level reward improved the performance more than the model trained

with the sentence-level reward.

3. Discount factor γ = 0.95 provided a better result than γ = 0.5 and γ = 0.0

in most cases.

Next we extended our experiment on WSJ train si284, which is much larger

than train si84. Since our previous observation about the train si84 dataset con-

cluded that sample M = 15 gave a better result than any smaller sample size, we

fixed our sample size to M = 15.

Table 6.3. Character error rate (CER) report from WSJ train si284 set (large

set), comparing the result between baseline (without RL) and proposed method

(NLL + RL). All decoding results were produced without additional language

model or lexicon dictionary.

Models Results

WSJ-SI284 CER (%)

MLE

CTC [54] 8.97 %

Seq2Seq Content [54] 11.08 %

Seq2Seq Location [54] 8.17 %

Joint CTC+Att (MTL) [54] 7.36 %

Seq2Seq (ours) 7.69%

MLE+RL

Seq2Seq + RL

(sentence-level R)
7.26%

Seq2Seq + RL

(token-level Rt, M = 15, γ = 0)
6.64 %

Seq2Seq + RL

(token-level Rt, M = 15, γ = 0.5)
6.37 %

Seq2Seq + RL

(token-level Rt, M = 15, γ = 0.95)
6.10 %

75

We provide the result from WSJ train si284 in Table 6.3. From the table,

we could observe that the combination between NLL teacher forcing and RL ob-

jective significantly improve the seq2seq ASR performance compared to a model

trained by NLL teacher forcing only. For both train si84 and train si284 dataset,

the best discount factor for token-level reward is γ = 0.95.

6.7. Conclusion

This manuscript introduced an alternative strategy for training end-to-end ASR

models by integrating an idea from reinforcement learning. Our proposed method

integrates: (1) the power of sequence-to-sequence approaches to learn mapping

between speech signals and text transcription; and (2) the strength of reinforce-

ment learning to directly optimize the model with ASR performance metrics.

Here, several different scenarios for training with RL-based objectives are explored

with various reward functions, sample sizes, and discount factors. Experimental

results reveal that by combining RL-based objectives with MLE objectives, our

model performance could significantly improve in comparison to the model that

just trained with MLE objectives. The best system achieved up to 6.10% CER in

WSJ-SI284 using token-level rewards, sample size M = 15, and discount factor

γ = 0.95.

76

Chapter 7

Discussion

7.1. Related Works

The learning process by using reconstruction loss as the criterion has been pop-

ularized by autoencoder-based models. For example, denoising autoencoder [85]

learns robust representative features by learning to reconstruct from a noisy in-

put. Constrastive autoencoder [86] improves the representation upon denoising

autoencoder model by penalized the norm for the Jacobian matrix of encoder ac-

tivation with respect to the input. Variational autoencoder (VAE) [87] introduced

an stochastic autoencoder under Bayesian formulation with simple normal distri-

bution as the prior. All of these model has either implicit or explicit objective

that encourage the latent variable to be compact and contain enough informa-

tion to reconstruct the input. It draws a similarity with speech chain during a

scenario: (speech → ASR → text → TTS → speech) where the text represent

compact representation of speech utterances.

In the computer vision field, image-to-image translation between different

styles is a very hard problem since there is a limited number of pairs and it is

hard to create the annotation. However, CycleGAN [88] is proposed to tackle

the image-to-image translation with purely unsupervised data. They have two

generators, where the first generator transforms the image from domain A to

domain B, and the second generator inverse transforms the image from domain

B to domain B. During the training stage, combining cycle consistency loss from

the first generator and second generator with adversarial loss. However, there

77

are some similarities between domain A and B (e.g, from horse images to zebra

images) and CycleGAN use identity loss to preserve some similarity from image

A and image B. Compared to our problem, speech and text doesn’t contain the

same amount of information and there is no intermediate loss such as identity loss

to guide the generation in the middle. In the speech chain, we use standard loss

functions such as regression loss L2-norm for TTS and classification loss negative

log-likelihood (NLL) for ASR. Compared to GAN loss which involves minimax

game between the generator and discriminator, standard reconstruction losses are

less sensitive to the change of hyperparameters or architectures.

Approaches that utilize learning from source-to-target and vice-versa, as well

as feedback links, remain scant. He et al. [89] quite recently published a work

that addressed a mechanism called dual learning in neural machine translation.

Their system has a dual task: source-to-target language translation (primal)

versus target-to-source language translation (dual). The primal and dual tasks

form a closed loop and generate informative feedback signals to train the trans-

lation models, even without the involvement of a human labeler. This approach

was originally proposed to tackle training data bottleneck problems. With a

dual-learning mechanism, the system can leverage monolingual data (in both the

source and target languages) more effectively. First, they construct one model to

translate from the source to the target language and another to translate from

the target to the source language. After both the first and second models have

been trained with a small parallel corpus, they start to teach each other using

monolingual data and generate useful feedback with language model likelihood

and reconstruction error to further improve the performance.

Another similar work in neural machine translation was introduced by Cheng

et al. [90] and Senrich et al. [91]. This approach also exploited monolingual

corpora to improve neural machine translation. Their system utilizes a semi-

supervised approach for training neural machine translation (NMT) models on the

concatenation of labeled (parallel corpora) and unlabeled (monolingual corpora)

data. The central idea is to reconstruct monolingual corpora using an autoencoder

in which the source-to-target and target-to-source translation models serve as the

encoder and decoder, respectively.

In this manuscript, we addressed similar problems in spoken language pro-

78

cessing tasks. This paper presents a novel mechanism that integrates human

speech perception and production behaviors. With a concept that resembles dual

learning in NMT, we utilize the primal model (ASR) that transcribes the text

given the speech versus the dual model (TTS) that synthesizes the speech given

the text. However, the main difference between NMT is that the domain be-

tween the source and the target here are different (speech versus text). While

ASR transcribes the unlabeled speech features, TTS attempts to reconstruct the

original speech waveform based on the text from ASR. In the opposite direction,

ASR also attempts to reconstruct the original text transcription given the syn-

thesized speech. Nevertheless, our experimental results show that the proposed

approach also identified a successful learning strategy and significantly improved

performance over that of separate systems that were only trained with labeled

data.

After our preliminary work, several works have discussed our methods and

built on top of them. Karita et al. [92] form a text and speech autoencoder

and train unpaired data with reconstruction loss. Ren et al., [93] replaced the

LSTM-based encoder-decoder with Transformer modules for both ASR and TTS

and achieved good performance with small paired speech-text in single speaker

dataset. Rosenberg et al. [94] explored the effect of data augmentation by using

TTS on the larger experiment. Kurata et al. [95] improved ASR performance

by adding feature reconstruction loss during training. Ueno et al. [96] use syn-

thetic speeches from multi-speaker TTS to improve their Acoustic2Word speech

recognition system. Baskar et al. [97] proposed an alternative to backpropagate

through discrete variables by using a policy-gradient method, compared to our

proposal using a straight-through estimator. Hori et al. [98] replaced TTS with

text-to-encoder (TTE) to avoid the need for modeling the speaking style during

the reconstruction.

7.2. Conclusions

This thesis addressed various issues of current speech processing technology such

as the ASR and TTS research are independently progressed without exerting

much influence on each other, limitation of current ASR and TTS where we

79

required a large amount of paired speech and text to achieved high accuracy re-

sult. Inspired by the nature of human communication where there is an auditory

feedback mechanism from the speaker’s to their ear, called a speech chain mecha-

nism. Here, we proposed a novel machine speech chain mechanism based on deep

learning to emulate the feedback loop idea to the computer system.

In the Chapter 3, we present the basic speech chain with sequence-to-sequence

model. The closed-loop architecture allows us to train our model on the concate-

nation of both labeled and unlabeled data. To test the feasibility of our idea,

we run the experiment on the single-speaker dataset. Based on the experiment

result, the unpaired data from speech and text can improve the performance of

ASR and TTS on the single speaker task.

After the success of our preliminary experiment on the single-speaker dataset.

We expand our single speaker speech chain into a multi-speaker speech chain in

Chapter 4. However, there are some obstacles where most of the TTS systems are

designed to generate voice from a single speaker. Therefore, we proposed a new

end-to-end TTS architecture with one-shot speaker adaptation by conditioning

the decoder with speaker embedding from a speaker embedding network. Our

experimental results show improvement in the ASR and TTS models for the

multi-speaker dataset.

During the development of the speech chain, we noticed that there is a dis-

continuity between the ASR and TTS module, caused by the output of ASR

are represented with discrete variables. Because we represent the text with dis-

crete variables, we could not do backpropagate TTS loss with respect to the

ASR parameters. Therefore, we introduced an extension to allow backpropaga-

tion through the discrete output from the ASR module with a straight-through

estimator in Chapter 5.

During my research period, I analyzed some problems in the training sequence-

to-sequence ASR. Most of the sequence-to-sequence models are trained by the

teacher forcing method because of its simplicity and effectiveness. However, there

is a discrepancy between the training and the inference stage. In the inference

stage, the model does not have access to the ground truth during the decod-

ing and any small error during the early stage of decoding might propagate to

the later stage. Another problem also arises from the objective function where

80

the teacher forcing use negative log-likelihood instead of the directly minimizing

ASR task metric such as word/character error rate. To solve both issues, we pro-

posed another method for training ASR via reinforcement learning in Chapter 6.

We showed that by optimizing the ASR model with reinforcement learning and

deriving a reward function based on edit-distance, we could improve the ASR

performance significantly.

7.3. Future Directions

At the moment, the machine speech chain has been extended for various appli-

cations such as:

1. Code-switching ASR [99]

Creating a parallel code-switching corpus is hard and time-consuming. There-

fore, we tried to develop a code-switching ASR by using paired non-code

switching datasets and unpaired code-switching speech and text. This ap-

proach successfully improved the ASR performance on code-switching sig-

nificantly in terms of word error rate on the code-switching speech.

2. Multimodal speech-chain [100]

Extending speech chain capabilities into other modalities such as visual

modality. This approach incorporates image captioning and image re-

trieval/generation into the speech chain loop and improves the performance

of the ASR system.

3. Unsupervised subword discovery with speaker style disentanglement [101].

Inspired by a similar architecture with a multi-speaker machine speech

chain, we build a conditional autoencoder with the discrete variable to

represent the context of the speech and disentangle the speaker’s identity

as well. The proposed model are successfully achieved low ABX discrim-

ination score and high-quality voice conversion result in ZeroSpeech 2019

challenge [102].

In the future, is necessary to further validate the effectiveness of our ap-

proach to various languages and conditions (i.e., spontaneous, noisy, and emo-

tion). Speech synthesis with one-shot adaptation (e.g. emotion, speaking rate,

81

etc) also worth to be explored near the future.Lastly, we also interested to explore

how to implement the speech chain mechanism to assist human communication,

for example, provide assistance for a person who has a hearing impairment.

82

References

[1] P.B. Denes and E. Pinson. The Speech Chain. Anchor books. Worth Pub-

lishers, 1993.

[2] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence-to-Sequence learn-

ing with neural networks. In Advances in neural information processing

systems, pages 3104–3112, 2014.

[3] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Machine speech

chain with one-shot speaker adaptation. In Interspeech 2018, 19th An-

nual Conference of the International Speech Communication Association,

Hyderabad, India, 2-6 September 2018., pages 887–891, 2018.

[4] K. H. Davis, R. Biddulph, and S. Balashek. Automatic recognition of spoken

digits. Acoustic Society of America, pages 627–642, 1952.

[5] T. K. Vintsyuk. Speech discrimination by dynamic programming. Kiber-

netika, pages 81–88, 1968.

[6] H. Sakoe and S. Chiba. Dynamic programming algorithm quantization

for spoken word recognition. IEEE Transaction on Acoustics, Speech and

Signal Processing, ASSP-26(1):43–49, 1978.

[7] F. Jelinek. Continuous speech recognition by statistical methods. IEEE,

64:532–536, 1976.

[8] J. G. Wilpon, L. R. Rabiner, C. H. Lee, and E. R. Goldman. Auto-

matic recognition of keywords in unconstrained speech using hidden Markov

models. IEEE Transaction on Acoustics, Speech and Signal Processing,

38(11):1870–1878, 1990.

83

[9] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[10] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recog-

nition with deep recurrent neural networks. In Acoustics, speech and signal

processing (icassp), 2013 ieee international conference on, pages 6645–6649.

IEEE, 2013.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[12] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang

Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang

Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech recognition

in english and mandarin. In International Conference on Machine Learning,

pages 173–182, 2016.

[13] John N Holmes, Ignatius G Mattingly, and John N Shearme. Speech syn-

thesis by rule. Language and speech, 7(3):127–143, 1964.

[14] J. P. Olive. Rule synthesis of speech from dyadic units. In Proceedings of

ICASSP, pages 568–570, 1977.

[15] Y. Sagisaka. Speech synthesis by rule using an optimal selection of non-

uniform synthesis units. In Proceedings of ICASSP, 1988.

[16] Y. Sagisaka, N. Kaiki, N. Iwahashi, and K. Mimura. Atr υ-talk speech. In

Proceedings of ICSLP, pages 483–486, 1992.

[17] A. Hunt and A. Black. Unit selection in a concatenative speech synthesis

system using a large speech database. In Proceedings of ICASSP, pages

373–376, 1996.

[18] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura.

Simultaneous modeling of spectrum, pitch and duration in HMM-based

speech synthesis. In Proceedings of Eurospeech, pages 2347—-2350, 1999.

84

[19] K. Tokuda, T. Kobayashi, and S. Imai. Speech parameter generation from

HMM using dynamic features. In Proceedings of ICASSP, pages 660—-663,

1995.

[20] Dimitri Palaz, Mathew Magimai Doss, and Ronan Collobert. Convolutional

neural networks-based continuous speech recognition using raw speech sig-

nal. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE

International Conference on, pages 4295–4299. IEEE, 2015.

[21] Tara N Sainath, Ron J Weiss, Andrew W Senior, Kevin W Wilson, and

Oriol Vinyals. Learning the speech front-end with raw waveform cldnns. In

Interspeech, volume 2015, 2015.

[22] Heiga Zen, Andrew Senior, and Mike Schuster. Statistical parametric speech

synthesis using deep neural networks. In Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing (ICASSP),

pages 7962–7966, 2013.

[23] A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative

model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[24] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang,

X. Li, J. Miller, A. Ng, J. Raiman, S. Sengupta, and M. Shoeybi. Deep

voice: Real-time neural text-to-speech. arXiv preprint arXiv:1702.07825,

2017.

[25] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss,

Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio,

et al. Tacotron: A fully end-to-end text-to-speech synthesis model. arXiv

preprint arXiv:1703.10135, 2017.

[26] Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep

Jaitly, Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-

Ryan, et al. Natural tts synthesis by conditioning wavenet on mel spectro-

gram predictions. In 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 4779–4783. IEEE, 2018.

85

[27] Wei-Ning Hsu, Yu Zhang, Ron J Weiss, Heiga Zen, Yonghui Wu, Yuxuan

Wang, Yuan Cao, Ye Jia, Zhifeng Chen, Jonathan Shen, et al. Hierarchi-

cal generative modeling for controllable speech synthesis. arXiv preprint

arXiv:1810.07217, 2018.

[28] Shinji Watanabe, Marc Delcroix, Florian Metze, and John R. Hershey, ed-

itors. New Era for Robust Speech Recognition, Exploiting Deep Learning.

Springer, 2017.

[29] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473, 2014.

[30] Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

End-to-end continuous speech recognition using attention-based recurrent

NN: First results. arXiv preprint arXiv:1412.1602, 2014.

[31] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend

and spell: A neural network for large vocabulary conversational speech

recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2016

IEEE International Conference on, pages 4960–4964. IEEE, 2016.

[32] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville,

Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. Show, attend

and tell: Neural image caption generation with visual attention. In Pro-

ceedings of the 32nd International Conference on Machine Learning, ICML

2015, Lille, France, 6-11 July 2015, pages 2048–2057, 2015.

[33] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning

phrase representations using RNN encoder-decoder for statistical machine

translation. arXiv preprint arXiv:1406.1078, 2014.

[34] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective

approaches to attention-based neural machine translation. arXiv preprint

arXiv:1508.04025, 2015.

86

[35] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.

Empirical evaluation of gated recurrent neural networks on sequence mod-

eling. arXiv preprint arXiv:1412.3555, 2014.

[36] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N

Dauphin. Convolutional sequence to sequence learning. In Proceedings of

the 34th International Conference on Machine Learning-Volume 70, pages

1243–1252. JMLR. org, 2017.

[37] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Multi-scale

alignment and contextual history for attention mechanism in sequence-to-

sequence model. To appear in IEEE SLT 2018, 2018.

[38] Daniel Griffin and Jae Lim. Signal estimation from modified short-time

fourier transform. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 32(2):236–243, 1984.

[39] Keith Ito. The LJ speech dataset. https://keithito.com/

LJ-Speech-Dataset/, 2017.

[40] Brian McFee, Matt McVicar, Oriol Nieto, Stefan Balke, Carl Thome, Dawen

Liang, Eric Battenberg, Josh Moore, Rachel Bittner, Ryuichi Yamamoto,

and et al. librosa 0.5.0. Feb 2017.

[41] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evalu-

ation of rectified activations in convolutional network. arXiv preprint

arXiv:1505.00853, 2015.

[42] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel,

and Yoshua Bengio. End-to-end attention-based large vocabulary speech

recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2016

IEEE International Conference on, pages 4945–4949. IEEE, 2016.

[43] Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell McLaren. A novel

scheme for speaker recognition using a phonetically-aware deep neural net-

work. In 2014 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 1695–1699. IEEE, 2014.

87

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

[44] Pavel Matějka, Ondřej Glembek, Fabio Castaldo, Md Jahangir Alam,

Oldřich Plchot, Patrick Kenny, Lukáš Burget, and Jan Černocky. Full-

covariance ubm and heavy-tailed plda in i-vector speaker verification. In

2011 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 4828–4831. IEEE, 2011.

[45] Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu,

Ying Cao, Ajay Kannan, and Zhenyao Zhu. Deep speaker: an end-to-end

neural speaker embedding system. arXiv preprint arXiv:1705.02304, 2017.

[46] Yingke Zhu, Tom Ko, David Snyder, Brian Mak, and Daniel Povey. Self-

attentive speaker embeddings for text-independent speaker verification.

Proc. Interspeech 2018, pages 3573–3577, 2018.

[47] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for

large margin nearest neighbor classification. Journal of Machine Learning

Research, 10(Feb):207–244, 2009.

[48] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A

unified embedding for face recognition and clustering. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 815–

823, 2015.

[49] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and

Ole Winther. Autoencoding beyond pixels using a learned similarity metric.

In International Conference on Machine Learning, pages 1558–1566, 2016.

[50] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European Conference on

Computer Vision, pages 694–711. Springer, 2016.

[51] Douglas B Paul and Janet M Baker. The design for the wall street journal-

based csr corpus. In Proceedings of the workshop on Speech and Natural

Language, pages 357–362. Association for Computational Linguistics, 1992.

[52] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej

Glembek, Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian,

88

Petr Schwarz, Jan Silovsky, Georg Stemmer, and Karel Vesely. The Kaldi

speech recognition toolkit. In IEEE 2011 Workshop on Automatic Speech

Recognition and Understanding. IEEE Signal Processing Society, December

2011. IEEE Catalog No.: CFP11SRW-USB.

[53] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and

Adam Lerer. Automatic differentiation in pytorch. 2017.

[54] Suyoun Kim, Takaaki Hori, and Shinji Watanabe. Joint CTC-attention

based end-to-end speech recognition using multi-task learning. In Acoustics,

Speech and Signal Processing (ICASSP), 2017 IEEE International Confer-

ence on, pages 4835–4839. IEEE, 2017.

[55] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Attention-based

wav2text with feature transfer learning. In 2017 IEEE Automatic Speech

Recognition and Understanding Workshop, ASRU 2017, Okinawa, Japan,

December 16-20, 2017, pages 309–315, 2017.

[56] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled

data with label propagation. Technical report, 2002.

[57] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531, 2015.

[58] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or

propagating gradients through stochastic neurons for conditional computa-

tion. arXiv preprint arXiv:1308.3432, 2013.

[59] Geoffrey Hinton. Neural networks for machine learning, Coursera video

lectures. 2012.

[60] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization

with gumbel-softmax. 2017.

[61] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribu-

tion: A continuous relaxation of discrete random variables. arXiv preprint

arXiv:1611.00712, 2016.

89

[62] Ronald J Williams and David Zipser. A learning algorithm for continually

running fully recurrent neural networks. Neural computation, 1(2):270–280,

1989.

[63] Marc Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech

Zaremba. Sequence level training with recurrent neural networks. arXiv

preprint arXiv:1511.06732, 2015.

[64] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad

Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus

Macherey, et al. Google’s neural machine translation system: Bridg-

ing the gap between human and machine translation. arXiv preprint

arXiv:1609.08144, 2016.

[65] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of

the 40th annual meeting on association for computational linguistics, pages

311–318. Association for Computational Linguistics, 2002.

[66] Ronald J Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[67] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel

Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.

Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,

Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,

Shane Legg, and Demis Hassabis. Human-level control through deep re-

inforcement learning. Nature, 518(7540):529–533, 02 2015.

[68] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. Nature, 529(7587):484–489, 2016.

[69] Jens Kober and Jan Peters. Reinforcement learning in robotics: A survey.

In Reinforcement Learning, pages 579–610. Springer, 2012.

90

[70] Satinder P Singh, Michael J Kearns, Diane J Litman, and Marilyn A

Walker. Reinforcement learning for spoken dialogue systems. In Advances

in Neural Information Processing Systems, pages 956–962, 2000.

[71] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and

Dan Jurafsky. Deep reinforcement learning for dialogue generation. arXiv

preprint arXiv:1606.01541, 2016.

[72] Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and

Yang Liu. Minimum risk training for neural machine translation. In Pro-

ceedings of the 54th Annual Meeting of the Association for Computational

Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1:

Long Papers, 2016.

[73] Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun Liu. Bridging

the gap between training and inference for neural machine translation. In

Proceedings of the 57th Annual Meeting of the Association for Computa-

tional Linguistics, pages 4334–4343, Florence, Italy, July 2019. Association

for Computational Linguistics.

[74] Matt Shannon. Optimizing expected word error rate via sampling for speech

recognition. arXiv preprint arXiv:1706.02776, 2017.

[75] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Sequence-to-

sequence asr optimization via reinforcement learning. arXiv preprint

arXiv:1710.10774, 2017.

[76] S. Karita, A. Ogawa, M. Delcroix, and T. Nakatani. Sequence training of

encoder-decoder model using policy gradient for end- to-end speech recog-

nition. In 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 5839–5843, April 2018.

[77] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement

Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[78] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,

8(3-4):279–292, 1992.

91

[79] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neu-

ral networks, 61:85–117, 2015.

[80] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduc-

tion techniques for gradient estimates in reinforcement learning. Journal of

Machine Learning Research, 5(Nov):1471–1530, 2004.

[81] Andriy Mnih and Karol Gregor. Neural variational inference and learning

in belief networks. In Proceedings of the 31st International Conference on

International Conference on Machine Learning-Volume 32, pages II–1791.

JMLR. org, 2014.

[82] Douglas B. Paul and Janet M. Baker. The design for the Wall Street

Journal-based CSR corpus. In Proceedings of the Workshop on Speech and

Natural Language, HLT ’91, pages 357–362, Stroudsburg, PA, USA, 1992.

Association for Computational Linguistics.

[83] Alex Graves. Supervised sequence labelling. In Supervised Sequence La-

belling with Recurrent Neural Networks, pages 5–13. Springer, 2012.

[84] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[85] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-

zagol. Extracting and composing robust features with denoising autoen-

coders. In Proceedings of the 25th international conference on Machine

learning, pages 1096–1103. ACM, 2008.

[86] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Ben-

gio. Contractive auto-encoders: Explicit invariance during feature extrac-

tion. In Proceedings of the 28th International Conference on International

Conference on Machine Learning, pages 833–840. Omnipress, 2011.

[87] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114, 2013.

[88] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired

image-to-image translation using cycle-consistent adversarial networks. In

92

Proceedings of the IEEE international conference on computer vision, pages

2223–2232, 2017.

[89] Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tieyan Liu, and Wei-

Ying Ma. Dual learning for machine translation. In Advances in Neural

Information Processing Systems, pages 820–828, 2016.

[90] Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and

Yang Liu. Semi-supervised learning for neural machine translation. arXiv

preprint arXiv:1606.04596, 2016.

[91] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural ma-

chine translation models with monolingual data. In Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), volume 1, pages 86–96, 2016.

[92] Shigeki Karita, Shinji Watanabe, Tomoharu Iwata, Atsunori Ogawa, and

Marc Delcroix. Semi-supervised end-to-end speech recognition. Proc. In-

terspeech 2018, pages 2–6, 2018.

[93] Yi Ren, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Al-

most unsupervised text to speech and automatic speech recognition. arXiv

preprint arXiv:1905.06791, 2019.

[94] Andrew Rosenberg, Yu Zhang, Bhuvana Ramabhadran, Ye Jia, Pedro

Moreno, Yonghui Wu, and Zelin Wu. Speech recognition with augmented

synthesized speech. arXiv preprint arXiv:1909.11699, 2019.

[95] Gakuto Kurata and Kartik Audhkhasi. Multi-task ctc training with auxil-

iary feature reconstruction for end-to-end speech recognition. Proc. Inter-

speech 2019, pages 1636–1640, 2019.

[96] Sei Ueno, Masato Mimura, Shinsuke Sakai, and Tatsuya Kawahara. Multi-

speaker sequence-to-sequence speech synthesis for data augmentation in

acoustic-to-word speech recognition. In ICASSP 2019-2019 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 6161–6165. IEEE, 2019.

93

[97] Murali Karthick Baskar, Shinji Watanabe, Ramon Astudillo, Takaaki Hori,

Lukáš Burget, and Jan Černockỳ. Self-supervised sequence-to-sequence asr

using unpaired speech and text. arXiv preprint arXiv:1905.01152, 2019.

[98] Takaaki Hori, Ramon Astudillo, Tomoki Hayashi, Yu Zhang, Shinji Watan-

abe, and Jonathan Le Roux. Cycle-consistency training for end-to-end

speech recognition. In ICASSP 2019-2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 6271–6275.

IEEE, 2019.

[99] Sahoko Nakayama, Andros Tjandra, Sakriani Sakti, and Satoshi Naka-

mura. Speech chain for semi-supervised learning of japanese-english code-

switching asr and tts. In 2018 IEEE Spoken Language Technology Workshop

(SLT), pages 182–189. IEEE, 2018.

[100] Johanes Effendi, Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura.

From speech chain to multimodal chain: Leveraging cross-modal data aug-

mentation for semi-supervised learning. CoRR, abs/1906.00579, 2019.

[101] Andros Tjandra, Berrak Sisman, Mingyang Zhang, Sakriani Sakti, Haizhou

Li, and Satoshi Nakamura. VQVAE Unsupervised Unit Discovery and

Multi-Scale Code2Spec Inverter for Zerospeech Challenge 2019. In Proc.

Interspeech 2019, pages 1118–1122, 2019.

[102] Ewan Dunbar, Robin Algayres, Julien Karadayi, Mathieu Bernard, Juan

Benjumea, Xuan-Nga Cao, Lucie Miskic, Charlotte Dugrain, Lucas Ondel,

Alan W Black, Laurent Besacier, Sakriani Sakti, and Emmanuel Dupoux.

The Zero Resource Speech Challenge 2019: TTS without T. In Interspeech

2019 - 20th Annual Conference of the International Speech Communication

Association, Graz, Austria, September 2019.

94

List of publications

For the latest publication list, please refer to: https://scholar.google.com/

citations?user=Bvox_f8AAAAJ&hl=en.

Publications

Journal Paper (peer-reviewed)

1. Machine Speech Chain

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE/ACM Transactions on Audio, Speech, and Language Processing Vol.28,

976-989

2. End-to-End Speech Recognition Sequence Training With Reinforcement Learn-

ing

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE Access 7, 79758-79769

3. Recurrent Neural Network Compression based on Low-Rank Tensor Repre-

sentation

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEICE Transaction

Conference papers (peer-reviewed)

1. Transformer VQ-VAE for Unsupervised Unit Discovery and Speech Synthe-

sis: ZeroSpeech 2020 Challenge

95

https://scholar.google.com/citations?user=Bvox_f8AAAAJ&hl=en
https://scholar.google.com/citations?user=Bvox_f8AAAAJ&hl=en

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

INTERSPEECH, 2020

2. Deja-vu: Double Feature Presentation in Deep Transformer Networks

Andros Tjandra, Chunxi Liu, Frank Zhang, Xiaohui Zhang, Yongqiang

Wang, Gabriel Synnaeve, Satoshi Nakamura, Geoffrey Zweig

IEEE International Acoustics, Speech and Signal Processing (ICASSP),

2020

3. Transformer-based Acoustic Modeling for Hybrid Speech Recognition

Yongqiang Wang, Abdelrahman Mohamed, Duc Le, Chunxi Liu, Alex Xiao,

Jay Mahadeokar, Hongzhao Huang, Andros Tjandra, Xiaohui Zhang,

Frank Zhang, Christian Fuegen, Geoffrey Zweig, Michael L Seltzer.

IEEE International Acoustics, Speech and Signal Processing (ICASSP),

2020

4. Cross-Lingual Machine Speech Chain for Javanese, Sundanese, Balinese,

and Bataks Speech Recognition and Synthesis

Sashi Novitasari, Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

Joint Workshop on Spoken Language Technologies for Under-resourced lan-

guages (SLTU) and Collaboration and Computing for Under-Resourced

Languages, 2020

5. Speech-to-speech Translation between Untranscribed Unknown Languages

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),

2019

6. Zero-Shot Code-Switching ASR and TTS with Multilingual Machine Speech

Chain

Sahoko Nakayama, Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),

2019

96

7. Listening while Speaking and Visualizing: Improving ASR through Multi-

modal Chain

Johannes Effendi, Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),

2019

8. VQVAE Unsupervised Unit Discovery and Multi-scale Code2Spec Inverter

for Zerospeech Challenge 2019

Andros Tjandra, Berrak Sisman, Mingyang Zhang, Sakriani Sakti, Haizhou

Li, Satoshi Nakamura.

INTERSPEECH, 2019

9. Sequence-to-Sequence Learning via Attention Transfer for Incremental Speech

Recognition

Sashi Novitasari, Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

INTERSPEECH, 2019

10. End-to-End Feedback Loss in Speech Chain Framework via Straight-Through

Estimator

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE International Acoustics, Speech and Signal Processing (ICASSP),

2019

11. Recognition and translation of code-switching speech utterances.

Sahoko Nakayama, Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

22nd Conference of the Oriental COCOSDA International Committee for

the Co-ordination and Standardisation of Speech Databases and Assessment

Techniques, 2019

12. Multi-scale Alignment and Contextual History for Attention Mechanism in

Sequence-to-sequence Model

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE Spoken Language Technology (SLT), 2018

97

13. Speech Chain for Semi-Supervised Learning of Japanese-English Code-Switching

ASR and TTS

Sahoko Nakayama, Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE Spoken Language Technology (SLT), 2018

14. Machine Speech Chain with One-shot Speaker Adaptation

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

INTERSPEECH, 2018

15. Compressing End-to-end ASR Networks by Tensor-Train Decomposition

Takuma Mori, Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

INTERSPEECH, 2018

16. Tensor decomposition for compressing recurrent neural network

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE International Joint Conference Neural Networks (IJCNN), 2018

17. Sequence-to-Sequence ASR optimization via reinforcement learning

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE International Acoustics, Speech and Signal Processing (ICASSP),

2018

18. Listening while speaking: Speech chain by deep learning

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),

2017 (Best student paper award)

19. Attention-based Wav2Text with feature transfer learning

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),

2017

20. Speech recognition features based on deep latent Gaussian models

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

98

IEEE Workshop on Machine Learning for Signal Processing (MLSP), 2017

21. Local monotonic attention mechanism for end-to-end speech recognition and

language processing

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

International Joint Conference on Natural Language Processing (IJCNLP),

2017

22. Compressing recurrent neural network with Tensor-Train

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

IEEE International Joint Conference Neural Networks (IJCNN), 2017

23. Gated recurrent neural tensor network

Andros Tjandra, Sakriani Sakti, Ruli Manurung, Mirna Adriani, Satoshi

Nakamura.

IEEE International Joint Conference Neural Networks (IJCNN), 2016

24. Stochastic gradient variational Bayes for deep learning-based ASR

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura, Mirna Adriani.

IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),

2015

25. A heuristic Hidden Markov Model to recognize inflectional words in sign

system for Indonesian language known as SIBI (Sistem Isyarat Bahasa In-

donesia)

Erdefi Rakun, Mohammad Ivan Fanany, I Wayan Wiprayoga, Andros

Tjandra.

International Conference on Technology, Informatics, Management, Engi-

neering & Environment (TIME-E), 2015

26. Combination of two-dimensional cochleogram and spectrogram features for

deep learning-based ASR

Andros Tjandra, Sakriani Sakti, Graham Neubig, Tomoki Toda, Mirna

Adriani, Satoshi Nakamura.

99

IEEE International Acoustics, Speech and Signal Processing (ICASSP),

2015

27. Combining depth image and skeleton data from kinect for recognizing words

in the sign system for Indonesian language (SIBI [Sistem Isyarat Bahasa

Indonesia])

Erdefi Rakun, Mirna Adriani, I Wayan Wiprayoga, Ken Danniswara, An-

dros Tjandra.

International Conference on Advanced Computer Science and Information

Systems (ICACSIS), 2013

28. Spectral domain cross correlation function and generalized learning vector

quantization for recognizing and classifying Indonesian sign language

Erdefi Rakun, Muhammad Febrian Rachmadi, Andros Tjandra, Ken

Danniswara.

International Conference on Advanced Computer Science and Information

Systems (ICACSIS), 2012

Workshop paper (peer-reviewed) + Pre-print (non peer-

reviewed)

1. End-to-End Speech Recognition with Local Monotonic Attention

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

NIPS Workshop Machine Learning for Audio Signal Processing (ML4Audio),

2017

2. Compact recurrent neural network based on Tensor-Train for polyphonic

music modelling

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura.

NIPS Workshop Machine Learning for Audio Signal Processing (ML4Audio),

2017

100

	Acknowledgements
	Introduction
	Speech Chain on Human Speech Communication
	Technology for Speech Production and Perception
	Speech Recognition
	Speech Synthesis
	Limitation

	Thesis Contribution

	End-to-End Speech Modeling
	Sequence-to-Sequence
	Training and Decoding Sequence-to-Sequence Model
	Sequence-to-Sequence ASR
	Sequence-to-Sequence Model for TTS

	Basic Machine Speech Chain
	Overview
	Experiment on Single-Speaker Task
	Feature Extraction
	Model Details
	Experiment Results

	Discussion

	Multispeaker Machine Speech Chain with One-shot Speaker Adaptation
	Overview
	Speaker Recognition and Embedding
	Sequence-to-Sequence TTS with One-shot Speaker Adaptation
	Experiment on Multi-speaker Task
	Corpus Dataset
	Feature and Text Representation on WSJ dataset
	Model Details
	Experiment Results

	Discussion

	End-to-end Feedback Loss on Speech Chain
	Overview
	End-to-End Feedback Loss
	Straight-through Argmax
	Straight-through Gumbel-Softmax
	Combined Loss for ASR

	Experiment on Multi-speaker Task in Supervised Settings
	Dataset
	Model Details
	Experiment Results

	Discussion

	Improving End-to-End ASR via Reinforcement Learning
	Introduction
	Related Works
	Sequence-to-Sequence ASR
	Reinforcement Learning
	Policy Gradient Training for Sequence-to-Sequence ASR
	Policy Gradient
	Reward Construction for ASR Tasks

	Experiment
	Speech Dataset and Feature Extraction
	Model Architecture
	Results and Discussion

	Conclusion

	Discussion
	Related Works
	Conclusions
	Future Directions

	References
	List of publications

