
Doctoral Dissertation

Studies on Efficient Parsing and Logic-based Inference
based on Combinatory Categorial Grammar

Masashi Yoshikawa

February 19, 2020

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Masashi Yoshikawa

Thesis Committee:
Professor Yuji Matsumoto (Supervisor)
Professor Satoshi Nakamura (Co-supervisor)
Associate Professor Masashi Shimbo (Co-supervisor)
Assistant Professor Hiroyuki Shindo (Co-supervisor)

Studies on Efficient Parsing and Logic-based Inference
based on Combinatory Categorial Grammar∗

Masashi Yoshikawa

Abstract

Combinatory Categorial Grammar (CCG) is a lexicalized grammatical formalism,
which has been used in theoretical linguistics to provide explanations to various lin-
guistic phenomena. It has also attracted attentions in the field of Natural Language
Processing, for developping systems to solve natural language inference tasks by uti-
lizing the linguistic insights. The goal of this thesis is to develop and extend infer-
ence systems that perform reasoning using logical formulas obtained from CCG trees.
Specifically, our contributions are as follows: developing (1) an efficient and accurate
CCG parsing method, (2) domain adaptation method of CCG parsing, and (3) knowl-
edge insertion method for logic-based natural language inference system.

The first contribution is the development of an accurate and efficient CCG parser.
Because pre-terminal categories (supertags) are highly informative in the lexicalized
grammar, the vast majority of the decisions made during parsing involve assigning the
correct syntactic role given by a supertag. Our method exploits these characteristics,
and models the probability of a tree through the supertags, resolving the remaining
ambiguities by syntactic dependencies. This strongly factored model allows the com-
putation of the most probable CCG tree using an efficient A* parsing algorithm. We
conduct various experiments, including evaluating the effect of the improved parsing
accuracy on Recognizing Textual Entailment (RTE) tasks, by integrating our parser
within logic-based reasoning systems. We observe that our parser leads to improved
performance in English RTE experiments.

Second, we work on the domain adaptation issue of CCG parsing, since we are inter-
ested in applications of CCG-based inference systems in various domains such as sci-
entific papers and speech conversation. We propose a new domain adaptation method,

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science and
Technology, February 19, 2020.

i

based on the idea of automatic generation of CCG corpora using cheaper dependency-
based linguistic resources. Our solution is simple and not relying on a specific parser
architecture, making it applicable to the current best-performing parsers. We conduct
parsing experiments on four different domains: biomedical texts, question sentences,
speech conversation, and math problems, for the latter two of which we constructed
the experimental datasets.

Our last contribution is on logic-based reasoning systems. We tackle the issue of
adding external knowledge to these systems; there is a tension in extending knowl-
edge base in these systems and their efficiency in solving a problem. We show that
the processing speed of a state-of-the-art logic-based RTE system can be significantly
improved by using techniques of Knowledge Base Completion. Additionally, we inte-
grate this mechanism in a Coq plugin that provides a proof automation tactic for natural
language inference. We show empirically that adding new knowledge data contributes
to better RTE performance while not harming the processing speed in this framework.

Keywords:

Natural Language Processing, Combinatory Categorial Grammar, Syntax, Parsing,
Domain Adaptation, Logical Inference

ii

組み合わせ範疇文法に基づく効率の良い
構文解析手法と論理推論に関する研究∗

吉川将司

内容梗概

組み合わせ範疇文法（Combinatory Categorial Grammar,以降CCG）は、理論言
語学において、様々な言語現象に対する適切な説明を与えることが可能である一
方で、理論の数学的な性質から、それらの理論的知見をプログラムとして実装可
能であるため、自然言語処理の文脈においても注目されている。本論文の目的は、
CCGに基づく構文木を論理式に変換し推論を行う自然言語推論システムの開発
と拡張を行うことである。本論文の貢献は具体的に、(1)高速かつ高精度なCCG
構文解析手法、(2) CCG解析の分野適応手法、(3)論理推論システムにおける自然
言語推論のための公理生成技術の開発である。
最初の貢献は、高速かつ高精度な CCG構文解析器の開発である。語彙化文法
であるCCGにおいては、前終端記号であるカテゴリ（あるいはスーパータグ）が
文の構造に関して多くの情報を保持しており、CCGに基づく構文解析では、スー
パータグにより決定する統語関係を解決することが大部分を占める。本研究にお
ける解析手法ではこの特徴を活かし、CCG木の確率をスーパータグの確率に基づ
いてモデリングし、それだけでは決まらない曖昧性は CCG木から取り出される
係り受け構造によって解消する。これにより、木構造の確率を局所的な要素の積
として表せ、高速なA*構文解析を用いて文に対する最尤なCCG木を計算するこ
とが可能になる。実験では、日英語の CCGツリーバンクにおける性能評価に加
え、提案法の解析器を論理に基づく自然言語推論システムに統合することで、提
案法の解析性能の含意関係認識タスクに対する影響も検証し、有用性を示した。
本研究では科学技術論文や対話を含む様々なドメインに対する CCGと論理推
論に基づく自然言語処理システムの開発を目指すが、そのためにはこれらの分野
のテキストに対して頑健に CCG解析ができる必要がある。本論文の２つ目の研
究では、CCG解析のための新たな分野適応技術を提案する。技術の要となるの

∗奈良先端科学技術大学院大学先端科学技術研究科情報科学領域博士論文, 2020年 2月 19日.

iii

は、比較的安価な係り受け構造に基づく言語リソースを用いた CCGツリーバン
クの自動生成である。提案法は、分野適応を行う解析器の構成に依らないもので
あり、近年の高性能な解析器にも適用可能である。実験では、生物医学論文、疑
問文、対話テキスト、数学問題の４つの分野において提案法の有用性を検証した。
中でも対話テキスト、数学問題において解析性能の著しい向上が見られた。
　本研究最後の貢献は、論理推論システムに対するものである。論理推論シス
テムに対して、知識ベースなどから得られる外部知識を導入する場合、知識デー
タを増やすにつれ問題を解く速度が低下してしまうという緊張関係が存在する。
そこで、本研究では知識グラフ補完の技術を応用することによりこの緊張関係を
緩和し、最高精度の論理に基づく含意関係認識システムの処理速度を大幅に改善
可能であることを示す。さらに、本研究ではその仕組を定理証明支援系のCoqの
プラグインとして実装することにより、自然言語推論のための知識推論を含めた
自動推論機構を構築する。実験において、提案法では処理速度を損なわずに知識
データを追加することで含意関係認識の精度を向上させることができた。

キーワード

自然言語処理、組み合わせ範疇文法,統語論,構文解析,意味解析,分野適応,論理
推論

iv

v

Acknowledgments

主指導教官の松本裕治教授には、大学院の日々を通して終始暖かくご指導して
いただき、研究内容に関する様々な助言をいただきました。なによりもまず、情
報科学の入門者だった自分に、自然言語処理に挑戦する機会を与えていただいた
ことについて感謝しきれません。それに加え、外部の研究室での長期滞在など、
自由な研究生活を許して頂いたことも深く感謝致します。
中村哲教授には、お忙しい中審査委員をお引き受けいただき、公聴会などで研
究に関する助言をいただきました。有難うございました。
新保仁准教授、進藤裕之助教には、お忙しい中審査委員をお引き受けいただき、
研究に関する様々な助言をいただいたきました。また、勉強会や個別でお話した
ときの議論はいつも興趣が尽きず、非常に有意義な学生生活となりました。有難
うございました。
学部時代に指導を受けました大阪大学外国語学部の藤家洋昭准教授には、計算
言語学や自然言語処理といった形式的に言語を扱う分野の存在を教えていただき
ました。先生との出会いがなければ、学問の世界には進めていなかったと思い、
感謝しきれません。また当時、先生のもとに長居し、言語学について色々お話を
聞かせていただいたことにも感謝しています。
松本研究室の方々や秘書の北川祐子さんには、研究面や生活面で助けていただ
きました。北川さんには東京奈良間の書類手続きのやり取り等でかなりお手数を
おかけしました。有難うございました。
産業総合研究所の能地宏先生には、私の研究を通して終始指導していただき大
変お世話になりました。研究上の鋭い指摘はもちろんのこと、読みやすい論文の
書き方やプレゼンテーションの心がけまで、自身の研究者としての成長において
大きな影響を与えていただきました。有難うございました。
また、博士後期課程の多くの時間をお世話になりましたお茶の水女子大学の戸
次大介准教授、峯島宏次特任准教授にも多くの影響を受けました。まず、２年半
という長期滞在を許していただき有難うございました。論文紹介を通した議論が
いつも楽しく、また普段の何気ない雑談における言語に対する深い造詣にいつも
感動していました。大規模の研究プロジェクトや学校での課題などで多くの活躍

の場を与えていただいたことにも感謝しています。学生でありながら、少し進ん
で研究者としての経験を多く積むことができました。
お茶の水女子大学戸次研究室の学生の方々にも大変お世話になりました。皆様
とゼミ、勉強会で活発な議論を通して勉強した時間はとても有意義でした。また
不定期開催の勉強会もとても楽しかったです。研究に関しては、馬目華奈さん、
鈴木莉子さんと一緒に研究をさせていただいたことは学ぶところの多い経験とな
りました。また、研究室で知り合った東京大学の渡邉知樹くんにも、大いに感謝
しています。数学について教えてもらったのみならず、難しい本をグループで読
みすすめることの生産性の高さなど学問一般の取り組み方について多く学ばせて
いただきました。博士後期課程は、奈良の山で修行僧のように過ごすのだろうと
覚悟していましたが、思いもよらず、皆様のおかげで楽しく、精神的にもとても
過ごしやすい時期となりました。大いに感謝しています。
最後に、これまで私を支えてくれた両親と二人の弟に感謝致します。

vi

vii

Contents

Acknowledgments v

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 4
1.3 Thesis Outline . 6
1.4 Programs and Resources . 7

2 Preliminaries 9
2.1 Combinatory Categorial Grammar 9

2.1.1 CCG Grammar for English Language 12
2.1.2 CCG Grammar for Japanese Language 12

2.2 CCG and Dependency Grammar . 13
2.3 Existing CCG Parsers . 14
2.4 CCG Parsing Evaluation . 15
2.5 CCG-based Natural Language Inference Systems 16

2.5.1 ccg2lambda . 17
2.5.2 LangPro . 17

3 A* CCG Parsing 19
3.1 Introduction . 19
3.2 Background . 21

3.2.1 Supertag-factored A* CCG Parsing 21
3.2.2 Bidirectional LSTM Dependency Parsing 23

3.3 Proposed Method . 23
3.3.1 A* Parsing with Supertag and Dependency Factored Model . . 23
3.3.2 Network Architecture . 25

3.4 CCG to Dependency Conversion . 27

3.4.1 LEWISRULE . 27
3.4.2 HEADFINAL . 28
3.4.3 HEADFIRST . 28

3.5 Tri-training . 30
3.6 Parsing Experiments . 31

3.6.1 English Experimental Settings 31
3.6.2 Japanese Experimental Settings 32
3.6.3 English Parsing Results . 33
3.6.4 Japanese Parsing Result . 36

3.7 RTE Experiments . 39
3.7.1 Experimental Settings . 39
3.7.2 English RTE Results . 41
3.7.3 Japanese RTE Results . 42

3.8 Related Work . 44
3.9 Summary . 46

4 Domain Adaptation for CCG Parsing 47
4.1 Introduction . 47
4.2 Problem Statement . 50
4.3 Dependency-to-CCG Converter . 50
4.4 Constrained Decoding . 52
4.5 Experiments . 53

4.5.1 Experimental Settings . 53
4.5.2 Evaluating Converter’s Performance 55
4.5.3 Biomedical Domain and Questions 56
4.5.4 Speech Conversation . 58
4.5.5 Math Problems . 61

4.6 Summary . 62

5 Axiom Injection for Logic-based Inference System 63
5.1 Introduction . 63
5.2 Related work . 66

5.2.1 Logic-based RTE systems 66
5.2.2 Knowledge Base Completion (KBC) 67

5.3 System overview . 68
5.3.1 CCG and semantic parsing 68

viii

5.3.2 Theorem proving . 69
5.3.3 Axiom insertion (abduction) 69

5.4 Proposed method . 70
5.4.1 Data creation . 71
5.4.2 Axiom injection with abduction tactic 72

5.5 Experiments . 73
5.5.1 SICK dataset . 73
5.5.2 New LexSICK lexical inference dataset 73
5.5.3 Experimental settings . 74
5.5.4 Results on SICK set . 76
5.5.5 Evaluating latent knowledge 77

5.6 Summary . 78

6 Conclusion 79

Appenix 82

A Details of English CCG Grammar 83

B Details of Japanese CCG Grammar 87

C LexSICK dataset 89

ix

xi

List of Figures

1.1 Syntactic trees for Anna wants to marry Kristoff based on UD and CCG 2

2.1 Example CCG derivation for a complex coordination structure 11
2.2 Example dependency extarction algorithm 13
2.3 Example CCG derivation tree for phrase cats that Kyle wants to see. . 15
2.4 Pipeline of ccg2lambda . 16

3.1 CCG trees equally likely under the supertag-factored model 20
3.2 Computation of Viterbi score in the proposed model 25
3.3 Neural networks of the proposed supertag and dependency factored

model . 26
3.4 Examples of applying conversion rules (Section 3.4) to English and

Japanese sentences. 29
3.5 An ambiguous Japanese sentence given fixed supertags 38
3.6 A sentence of the “there is NP PRP” construction in SICK 42
3.7 Examples of the use of ADNint and ADNext unary rules 45

4.1 Overview of the proposed method in Chapter 4 48
4.2 Parse output by the re-trained parser for sentence if CD = 8 and BE =

2, find AE. from math problems. 60

5.1 Pipeline of ccg2lambda . 67
5.2 Running example of abduction tactic in a Coq session 70

xiii

List of Tables

2.1 Set of common combinatory rules 10

3.1 Parsing results on English development set 33
3.2 Parsing results on English development set without normal form con-

straints . 34
3.3 Parsing results on English test set 35
3.4 Results of the parsing efficiency experiment 36
3.5 Results on the Japanese CCGbank 37
3.6 Example RTE problems from the SICK dataset 40
3.7 Example RTE problems from the JSeM dataset 41
3.8 RTE results on the test section of SICK 43
3.9 RTE results using ccg2lambda on JSeM 44

4.1 The performance of baseline CCG parsers and the proposed converter 55
4.2 Per-relation F1 scores of the proposed converter 55
4.3 Results on the biomedical domain dataset 56
4.4 Results on question sentences . 56
4.5 Sentences from the subset of the Switchboard test set 59
4.6 Error types observed in the manually annotated Switchboard subset data 59
4.7 Results on speech conversation texts 60
4.8 Results on math problems . 61

5.1 Triplet (s, r, o) and axioms generated in terms of r 70
5.2 Example RTE problems from the LexSICK dataset 74
5.3 The performance of KBC models 75
5.4 Results on the SICK test set . 76
5.5 Results on the LexSICK dataset . 76

A.1 Additional binary rules in our English parser 84

A.2 The set of unary rules in the English parser 85

B.1 The set of unary rules in the Japanese parser 88

xiv

1

Chapter 1

Introduction

1.1 Motivation
As a theory of human language, a syntactic theory should provide explanations to a

range of linguistic phenomena of natural languages, those arising from the way words
of a sentence are concatenated:

1. John [[saw [a girl]] [with a telescope]]]

2. Mary [[cooked] and [might eat] the beans]

The first example above is a case of the widely known PP-attachment, where a
prepositional phrase with a telescope can compose a larger phrase by attaching to
either saw or a girl, resulting in different readings of the sentence. The second ex-
ample is of coordination construction, which also has the similar sort of ambiguity.
Examples of such phenomena are numerous to mention; not only wh-constructions,
control verb, complement, active/passive voices, scope, etc., which are observable
cross-linguistically, but also those specific to some languages, such as so-called “eel
sentences”,1 double subject construction,2 and indirect passive voice,3 peculiar to some
languages such as Japanese.

1The construction in Japanese sentence 僕はうなぎだ。(Boku-wa unagi da) is basically used to
express copula “X is Y” , according to which the sentence is understood as meaning “I am an eel”. The
same sentence is also used to express that the speaker intends he or she will have an eel for dinner, where
the particle wa is used as topic marker.

2ジョンがメアリーが嫌い。(John-ga Mary-ga kirai), “It is in the case of John that Mary is disliked.”
The primary usage of the particle ga is marking a subject.

3太郎が妻に倒れられた。(Taroo-ga tuma-ni taore-rare-ta.), “Taro was in trouble because his wife
got sick in bed.”

Anna wants to marry Kristoff

nsubj

xcomp

mark dobj

nsubj

Anna wants to marry Kristoff
NPanna (Swant\NPz ,1)/(Sw,2\NPz) (Su\NPv)/(Su\NPv) (Smarry\NPs,1)/NPt,2 NPkristoff

>
Smarry\NPs,1 : t = kristoff

<
Smarry\NPv : u = marry, v = s

>
Swant\NPz ,1 : w = marry, z = v

<
Sdcl : z = anna

Figure 1.1: Syntactic trees for sentence Anna wants to marry Kristoff based on UD
(above, borrowed from Reddy et al. (2017)) and CCG (below). A QA system based on
UD tree (Reddy et al., 2017) has an issue in handling control verb, due to the lack of
information marking Anna as the subject of marry. Using CCG, such information is
available by reading the chain of variables s = v = z = anna, constructed according
to the CCG tree. See Section 2.4 for the mechanism of predicting such a relation.

Combinatory Categorial Grammar (CCG; Steedman (2000, 2012)) is a grammatical
formalism, that has its root in mathematical logic (Ajdukiewicz, 1997), and one of its
central characteristics is its formally defined transparent interface between syntax and
semantics. The syntactic theory has been long used as an analytical tool for theoretical
linguists to explain a wide range of linguistic phenomena, while its mathematical for-
mality and the special care taken on the computational complexity through the theory’s
development facilitate Natural Language Processing (NLP) researchers to implement
the theory, along with theoretical linguists’ insights, as a syntactic/semantic parsing
component of their NLP systems.

In the literature, there have been several applications of CCG in NLP researches such
as induction of meaning representations of a sentence (Artzi et al. (2015); Artzi and
Zettlemoyer (2013); Reddy et al. (2014), among others). However, it is fair to say that
dependency-based syntactic formalisms have attracted considerable attention of the
community, and their effort has been devoted to developing linguistic resources and
parsing algorithms for dependencies, whose most prominent case being the Universal
Dependencies (UD) project (Nivre et al., 2016), which is an ongoing program to assign
the consistent annotation of syntactic dependencies across different human languages.
We would like begin our thesis by arguing the attractiveness of CCG, sometimes by

2

comparing it with the UD syntax, and give the motivation of this entire thesis.
Firstly, CCG provides a unified platform for treating various linguistic constructions.

Previous work by Reddy et al. (2017) for developing a Question Answering (QA) sys-
tem uses a query language converted from the UD-based dependency structure of an
input sentence. Reportedly, they had a difficulty in handling some constructions, due to
the lack of some structural information in the UD trees. For example, Figure 1.1 above
(borrowed from Reddy et al. (2017)) is a UD-based syntactic representation for sen-
tence Marry wants to marry Kristoff, where it does not make explicit the subject-verb
relation between the subject Anna in the matrix clause and the infinitive verb to marry
(where want plays a role of so-called control verb). According to the UD project, there
will be an enhanced version of the UD, where this sort of relations are made explicit
in the annotation. However, we suspect this will in turn become problematic in terms
of the parsing algorithm, since existing dependency parsing methods exploit the sim-
plicity of dependency structure (one word one head). For CCG, capturing long-range
dependencies spanning multiple words like this example was the earliest interest of
the theory’s development, and it provides apparatus that effectively handles the above
example (see Figure 1.1 below), as well as other longer dependencies such as relative
clauses and wh-constructions.

As noted, the fact that the CCG grammar is formally defined makes it possible for
NLP researchers to be benefited from the insights of the theoretical linguistics, and
to address complex linguistic phenomena, those reside rather in the “long tail” of the
distribution, and as such, are difficult to address using purely data-driven machiner-
ies. Haruta et al. (2019) is one of such cases, where they address inference problems
involving comparative expressions (e.g., John runs as fast as Michael entails Michael
runs fast). By extending the meaning representation of a CCG-based inference system
by Mineshima et al. (2015), they achieve high scores on sections related to the com-
parative expressions of the FraCaS dataset, a collection of linguistically challenging
RTE problems (Cooper et al., 1994). A work by Matsuzaki et al. (2017) is another
outstanding example, where they extend the Japanese CCG grammar by Bekki (2010)
with analyses on sentences containing math expressions, and develop a CCG-based
semantic parser for pre-university math problems based on it. CCG-based inference
systems can be used to address highly domain-specific constructions as well.

Though the focus of the earliest work of the CCG literature has been wholly on Indo-
European languages such as English and Dutch, the seminal work by Bekki (2010)
provides detailed and comprehensive analyses for syntactic/semantic phenomena of

3

the Japanese language, including those listed at the beginning of this chapter, i.e., eel
sentences, double subject construction, and indirect/direct passive voice, and those in-
volve complex clauses: sentential noun modification, conditionals, and quotes. The
work is done by combining CCG and the latest semantic representation language at
the time. This empirically proves the theory’s strength in explaining various linguistic
phenomena of various human languages. On the other hand, the Parallel Meaning Bank
project (Abzianidze et al., 2017) has developed CCG-based treebanks for English, Ger-
man, Dutch and Italian languages, along with other semantic annotation layers, such as
meaning representations based on Discourse Representation Theory (Kamp and Reyle,
1993) and universal semantic tags (Bjerva et al., 2016). The project is still expanding,
and other languages such as Japanese will be included in future. CCG can be used to
universally annotate diverse human languages, while bringing those merits discussed
in this section. CCG and dependency-based syntactic representations may play com-
plementary roles in NLP, according to the granularity of information required for the
task to be solved.

To summarize, the CCG-based approach has potential to develop inference sys-
tems that, collaborating with theoretical linguistics, address natural language problems
which cannot be solved using purely data-driven methods. However, these advantages
are off course not for free; predicting more informative syntactic structure naturally
incurs solving more complex optimization problem. On top of that, there is an issue
in terms of linguistic resources. Annotating a CCG tree to a sentence is costly; the lin-
guistic expertise is required, and the grammar’s strict nature does not allow annotation
errors. In this thesis, by solving these problems, we aim to bring the advantages of
using formal grammar-based NLP systems closer to real applications.

1.2 Contribution
Based on the above arguments, this thesis aims at developing and extending NLP

systems that utilize syntactic structure provided by CCG. The contributions of this
thesis are summarized as follows.

First, we work on developing an accurate and efficient CCG-based syntactic parser,
which is indispensable for developing an accurate inference system based on the gram-
mar. Since CCG is a strongly lexicalized grammatical formalism (Section 2.1), in
which pre-terminal categories (supertags) are highly informative as to the higher-level
structure, the vast majority of the decisions made during parsing involve assigning the

4

correct syntactic role given by a supertag. In Chapter 3, we propose a new A* parsing
model for CCG that exploits this characteristics, by modeling the probability of a tree
through the supertags and resolving the remaining ambiguities by its syntactic depen-
dencies. The key of our method is that it predicts the probabilities of supertags and de-
pendency heads independently with a strong unigram model defined over bidirectional
LSTMs (Schuster and Paliwal, 1997). The factorization allows the precomputation
of the probabilities for all possible trees for a sentence, which enables very efficient
decoding combined with A* parsing (Klein and D. Manning, 2003). We conduct var-
ious experiments to verify the proposed method; we develop parsers for English and
Japanese languages, and evaluate them on the respective CCGbanks (Hockenmaier and
Steedman, 2007; Uematsu et al., 2015). Our model achieves the state-of-the-art results
on these settings. Additionally, we conduct Recognizing Textual Entailment (RTE)
experiments by integrating our parser within logic-based RTE systems (Section 2.3).
We observe that our parser leads to improved performance in English RTE experi-
ments, while, in the Japanese RTE experiment, we find out a drawback of our method
in handling unary rules, which is then inspected with a detailed analysis. We name the
developed parser in this chapter depccg, after the fact that the use of dependencies is
the key of the method. The depccg parser is used in various experiments throughout
this thesis.

To use CCG-based inference systems in real applications, such as inference systems
on scientific papers and speech conversation, the parsing accuracy on texts from these
domains is critical, since the succeeding components heavily rely on its output. Our
next focus in Chapter 4 is the domain adaptation issue of CCG parsers. We propose a
new domain adaptation method for CCG parsing, based on the idea of automatic gen-
eration of CCG corpora exploiting cheaper resources of dependency trees. Our solu-
tion is conceptually simple, and not relying on a specific parser architecture, making it
applicable to the current best-performing parsers. We conduct extensive parsing exper-
iments with detailed discussion; on top of existing benchmark datasets on (1) biomedi-
cal texts and (2) question sentences, we create experimental datasets of (3) speech con-
versation (on the Switchboard corpus (Godfrey et al., 1992)) and (4) math problems,
with applications of a CCG-based inference system on these domains. When applied
to the proposed method, our depccg parser developed in Chapter 3 shows significant
performance gains, improving from 90.7% to 96.6% on speech conversation, and from
88.5% to 96.8% on math problems.

Our last contribution is on inference systems based on CCG and logic. In logic-

5

based approaches to reasoning tasks such as RTE and QA, it is important for a system
to have a large amount of knowledge data. However, there is a tradeoff between adding
more knowledge data for improved RTE performance and maintaining an efficient RTE
system, as such a big database is problematic in terms of the memory usage and com-
putational complexity. In Chapter 5, we show the processing time of a state-of-the-art
logic-based RTE system can be significantly reduced by replacing its search-based
axiom injection (abduction) mechanism by that based on Knowledge Base Comple-
tion (e.g., Bordes et al. (2013); Trouillon et al. (2016); Dettmers et al. (2017)). We
integrate this mechanism in a Coq plugin (The Coq Development Team, 2017) that
provides a proof automation tactic for natural language inference. We show empiri-
cally that adding new knowledge data contributes to better RTE performance while not
harming the processing speed in this framework.

1.3 Thesis Outline
The remainder of this thesis is organized as follows:

Chapter 2: Preliminaries We first provide basic knowledge about CCG. Then, we
introduce how the grammar is used to derive the semantic structures of a sentence,
and how the structures are used in CCG parsing evaluation and existing logic-based
systems solving RTE tasks.

Chapter 3: A* CCG Parsing In this chapter, we propose a probabilistic model of a
CCG tree and an efficient parsing algorithm based on the A* algorithm. We evaluate
our method in terms of the wide range of settings; we develop parsers for English and
Japanese languages, each evaluated on the respective CCGbanks. We also evaluate the
parsers in terms of the performance gains they contribute to existing logic-based RTE
systems, which heavily rely a CCG parser to derive their meaning representations.

Chapter 4: Domain Adaptation In this chapter, we focus on the domain adaptation
issue of a CCG parser. We propose a domain adaptation method for CCG parsing,
which exploits cheaper and abundant dependency-based treebanks to obtain the corre-
sponding CCG treebanks (CCGbanks). We evaluate the method by performing parsing
experiments on new domains including biomedical texts, question sentences, speech

6

conversation and math problems, for the two latter of which we constructed the exper-
imental datasets.

Chapter 5: Axiom Injection In this chapter, we turn our focus to an issue of logic-
based RTE systems. We propose to leverage the techniques of Knowledge Base Com-
pletion to enable efficient insertion of lexical knowledge during solving an RTE prob-
lem. We evaluate the effectiveness of the method in terms of the RTE.

Chapter 6: Conclusion This chapter summarizes the thesis and discusses the direc-
tion of further research.

1.4 Programs and Resources
The programs and resources developed in our work in publicly available from the

following links:

• Chapter 3: depccg parser

– https://github.com/masashi-y/depccg

• Chapter 4: CCG treebanks on speech conversation (the Switchboard cor-
pus (Godfrey et al., 1992)) and math problems

– https://github.com/masashi-y/ud2ccg

• Chapter 5: Coq plugin for knowledge insertion

– https://github.com/masashi-y/abduction_kbc

7

https://github.com/masashi-y/depccg
https://github.com/masashi-y/ud2ccg
https://github.com/masashi-y/abduction_kbc

9

Chapter 2

Preliminaries

First, we introduce CCG and describe English and Japanese grammars adopted in
this work.

2.1 Combinatory Categorial Grammar
CCG is characterized by categories with rich internal structures, and a limited num-

ber of derivational rules, called combinatory rules. A CCG category is either atomic
(S, N , NP , etc.) or functional (complex), where a complex category of the form A/B

(or B\A) is equivalent to a functional type B → A, representing a function that re-
turns a result of type A when applied to an argument of type B. A forward slash / (or
backward \) indicates that the argument of type B must appear to the right (or left) of
that functor. A category can be marked with feature values, such as adj in Sadj, which
are rather language-specific, fine-grained controls over which pairs of categories can be
combined (See the documentation of respective CCGbanks for detailed specifications).

Combinatory rules are meta rules, in that they contain variables such as X and Y ,
that matches any category (cf. rules such as S ⇒ NP V P in a context-free gram-
mar does not contain any). Table 2.1 shows a set of combinatory rules. The forward
application, symbolically denoted as >, is a basic combinatory rule that combines cat-
egories X/Y and Y (occurring in this order) into X . Note that, in Table 2.1, a λ-term
is assigned to each category, as in “X/Y : λx.f(x)”. One of the notable features
of CCG is that it provides a transparent interface to semantic theories, i.e., a mean-
ing representation of a sentence is constructed concurrently with a derivation. This is
the fundamental principle that most of the logic-based RTE systems, some of which

X/Y : λx.f(x) Y : a
>

X : f(a)

Y : a X\Y : λx.f(x)
<

X : f(a)

X/Y : λx.f(x) Y/Z : λx.g(x)
>B1

X/Z : λx.f(g(x))

Y \Z : λx.g(x) X\Y : λx.f(x)
<B1

X\Z : λx.f(g(x))

X/Y : λx.f(x) Y \Z : λx.g(x)
>B1

×
X\Z : λx.f(g(x))

Y/Z : λx.g(x) X\Y : λx.f(x)
<B1

×
X/Z : λx.f(g(x))

X/Y : λx.f(x) Y/Z1| . . . |Zn : λzn . . . z1.g(z1, . . . , zn)
>Bn

X/Z1| . . . |Zn : λzn . . . z1.f(g(z1, . . . , zn))

Y \Z1| . . . |Zn : λzn . . . z1.g(z1, . . . , zn) X\Y : λx.f(x)
<Bn

X\Z1| . . . |Zn : λzn . . . z1.f(g(z1, . . . , zn))

X/Y : λx.f(x) Y \Z1| . . . |Zn : λzn . . . z1.g(z1, . . . , zn)
>Bn

×
X/Z1| . . . |Zn : λzn . . . z1.f(g(z1, . . . , zn))

Y/Z1| . . . |Zn : λzn . . . z1.g(z1, . . . , zn) X\Y : λx.f(x)
<Bn

×
X\Z1| . . . |Zn : λzn . . . z1.f(g(z1, . . . , zn))

Table 2.1: Set of common combinatory rules. Each English and Japanese parser devel-
oped in this work uses a subset of these rules. A vertical | bar can match both forward
and backward slashes. All /, \ and | are left-associative. See the text for details.

10

Eric likes and Kyle hates ziplining

NP : (S\NP)/NP : conj : NP : (S\NP)/NP : NP :
eric λy x.like(x, y) λg f y.f(y) ∧ g(y) kyle λy x.hate(x, y) ziplining

<tr> <tr>
S/(S\NP) : λf.f(eric) S/(S\NP) : λf.f(kyle)

>B >B
S/NP : λy.like(eric, y) S/NP : λy.hate(kyle, y)

<Φ>
(S\NP)\(S\NP) : λf y.f(y) ∧ hate(kyle, y)

<
S/NP : λy.like(eric, y) ∧ hate(kyle, y)

>
S : like(eric, ziplining) ∧ hate(kyle, ziplining)

Figure 2.1: Example CCG derivation for a complex coordination structure, where type
raising <tr> and forward composition >B1 play important roles.

we evaluate in the RTE experiments, are based on (Section 3.7). Figure 1.1 shows
an example CCG derivation using forward (and similarly defined backward <) ap-
plication. Conventionally, a CCG derivation is drawn top-down, resembling a proof
diagram in natural deduction (Prawitz, 1965). Since we are particularly interested in
the construction algorithm of derivations, λ-terms are omitted when they are not rele-
vant. Figure 2.1 shows a derivation (using combinatory rules explained below), where
a meaning representation is constructed according to the derivation.

Forward and backward composition rules (>B1 and <B1) and their crossed vari-
ants (>B1

× and <B1
×) compose a pair of complex categories; you can see from the

operation performed on the λ-terms in Table 2.1 that they literally correspond to func-
tion composition f ◦ g. They can be generalized to n ≥ 2 (in the last four rows in
the table), where a vertical bar | means that it can be either of / or \. Many elegant
CCG analyses for complex syntactic phenomena employ composition rules; Figure 2.1
is one of such cases, where forward composition married with a unary type raising
rule (X ⇒ Y \(Y/X), denoted as <tr>) explains a complex coordination structure.
Composition rules are also employed to capture phenomena that involve long-range
dependencies, such as wh-extraction.

While the strong expressivity of CCG plays various crucial roles in the analysis of
complex constructions, it also comes at a cost, i.e., it introduces spurious ambiguity.
For example, “Kyle hates” is licensed as a constituent (Figure 2.1); thus, it can be
combined with “ziplining” to derive exactly the same interpretation as a derivation that
combines “hates ziplining” first. To avoid combinatorial explosion during parsing, a
technique called normal form parsing (Eisner, 1996a; Hockenmaier and Bisk, 2010),
which imposes constraints such that only “normal-form” derivations are produced, has
been developed. One of the findings of Chapter 3 is that the proposed dependency-

11

augmented model can automatically learn softened versions of such constraints. Ex-
perimental results demonstrate that, compared to baseline methods, even though the
constraints are not given explicitly, the proposed parser violates the constraints signif-
icantly fewer times (Section 3.6).

2.1.1 CCG Grammar for English Language

Following Lewis and Steedman (2014a), our English parser uses the standard binary
rules from Steedman (2012): forward and backward application (> and <), (gener-
alized) forward composition (>Bn for n = 1, 2) and (generalized) backward crossed
composition (<Bn

× for n = 1, 2). In addition, the parser uses five binary rules that
include a coordination-specific conjunction rule (<Φ>) and exactly the same set of
unary rules in (Lewis and Steedman, 2014a), including type raising. The complete set
of combinatory rules is summarized in Appendix A.

2.1.2 CCG Grammar for Japanese Language

In Japanese CCG parsing, we use the set of binary rules found in the annotation
of Japanese CCGbank, which basically follows Bekki (2010): forward and backward
application (>, <), forward and backward composition (>B1, <B1), generalized
backward composition (<Bn for n = 2, 3, 4), generalized forward crossed composi-
tion (>Bn

× for n = 2, 3), and the “SSEQ” rule. SSEQ is rather specific to the corpus,
where multiple sentences can occur within a sentence when they are quoted:

「 [S [S 突然家が崩れ、着のみ着のまま飛びだした。] [S 生きてい
るのが不思議]]」と話した。(translation: “The house collapsed all of a
sudden and I ran out with nothing but the clothes on my back. I cannot
believe that I am still alive”, he said.)

In this example, the SSEQ rule performs S S ⇒ S. For the unary rules, we select
rules based on frequencies in the CCGbank. Most rules are related to sentential noun
modifiers that turn a sentence-like category (S and S\NP) into a nominal modifier
(N/N). A complete list of the rules used is provided in Appendix B.

12

John met Mary at the bar

S

John met Mary at the bar
((S\NP)\(S\NP))/NPNP NP(S\NP)/NP NP/N N

NP

(S\NP)\(S\NP)

S\NP

S\NP

met

at

bar

met

met

X X/X

X

X/X X

X
Rules

X/Y Y

X

Y X\Y

X

NP/N N

NP

Figure 2.2: Example dependency extarction algorithm. Extraction rules are shown at
the righthand side, where, given a subtree with two children, the child with the red
edge is specified as the head of the other. In the smallest subtree containing at the bar,
subtree with at is the head of the bar phrase (whose head is marked at the category as
bar), recovering at→ bar→ the relations.

2.2 CCG and Dependency Grammar
Since we will be using dependency trees (interchangeably called dependency struc-

tures or dependencies) in some of the following chapters, we briefly describe the gram-
mar here.

Formally, a dependency tree for sentence x of length N is a pair of d = (d1, ..., dN)

and ℓ = (ℓ1, ..., ℓN), where di ∈ {0, ..., N} is an index of its dependency parent of
i’th word (0 is the index for the root token), and ℓi is the label of the corresponding
dependency edge (e.g., nsubj). Sometimes labels ℓ is not specified, giving unlabeled
dependency structure. Example dependency trees are shown in Figure 1.1 and Fig-
ure 2.2 (the latter is unlabeled).

Under dependency-based formalisms, there are some representational variants (or
grammars), differing on how they express particular syntactic constructions. For ex-
ample, some grammars such as the Stanford dependencies (de Marneffe et al., 2006)
regard prepositions as gluing its argument to the predicate (e.g., met → at → bar),
meanwhile in others like UD, the argument is directly linked to the verb, reminiscent of
predicate argument structure. Such a syntactic representation of a sentence can also be
extracted from constituency-based syntactic representations such as CCG. We can con-
struct an extraction algorithm by defining, for all possible (binary) nodes, which of left

13

or right children becomes the parent of the other. The Figure 2.2 shows the algorithm
used in (Lewis and Steedman, 2014a). They define a subtree with a functor category
as the head of the other, with some exceptions such as determiners and modifiers (note
modifiers are characterized as having the X/X patterns), which are naturally attached
to their modifiees. Conversely, it is generally not possible to recover a constituency-like
syntactic representation from a dependency tree, given the information-losing nature
of the above algorithm. However, we will show modeling the dependency structure of
a CCG tree is effective to build an accurate CCG parser (Chapter 3).

2.3 Existing CCG Parsers
Here we summarize existing CCG parsers that will be used in experiments through-

out this thesis. One of the main contributions of this thesis is to add our own parser to
the list (see Chapter 3), which we call depccg, based on the fact that the key technique
of the parser is the introduction of dependency terms into the probabilistic model.

• C&C (Clark and Curran, 2007)1 is a well-known CCG parser. It is based on a
log-linear model defined over an entire parse tree and finds an optimal tree using
the CKY algorithm. The supertagger of this parser, which is also defined as a
log-linear model, first assigns the most probable supertags to the input sentence
to help reduce the search space in the succeeding CKY stage.

• EasyCCG (Lewis et al., 2016)2 implements the A* parser introduced in Sec-
tion 3.2, which our work in Chapter 3 is primarily based on. EasyCCG adopts
a supertag-factored model, where supertag probabilities are computed using a
feedforward neural network with fixed window context, and parsing ambigui-
ties are resolved heuristically prioritizing trees involving longer dependencies
(Section 3.2.1).

• EasySRL (Lewis et al., 2016)3 extends EasyCCG by replacing its supertag-
ger with one based on bidirectional LSTMs (Schuster and Paliwal, 1997). This
parser resolves parsing ambiguities using attach-low heuristics described in Sec-
tion 3.2.1.

1https://www.cl.cam.ac.uk/˜sc609/candc-1.00.html
2https://github.com/mikelewis0/easyccg
3https://github.com/uwnlp/EasySRL

14

https://www.cl.cam.ac.uk/~sc609/candc-1.00.html
https://github.com/mikelewis0/easyccg
https://github.com/uwnlp/EasySRL

cats that Kyle wants to see

Ncats (NPx\NPx)/(Sx\NPx) NPkyle (Swants\NPz,1)/(Sw,2\NPz) (Su\NPv)/(Su\NPv) (Ssee\NPs,1)/NPt,2
<un> <tr> >B

NPcats Sy/(Sy\NPkyle) (Ssee\NPv)/NPt : u = see, v = s
>B

(Swants\NPz)/NPt : w = see, z = v
>B

Sy/NPt : y = wants, z = kyle
>

NPx\NPx : x = t
<

NPcats : x = cats

Figure 2.3: Example CCG derivation tree for phrase cats that Kyle wants to see.

• neuralccg (Lee et al., 2016)4 extends EasySRL with scores from a TreeL-
STM (Tai et al., 2015). Using globally conditioned score, neuralccg achieves
the current state-of-the-art results in the CCGBank parsing. neuralccg also
uses A* parsing to obtain an optimal parse tree; however, calculating the scores
incurs significant computational costs thereby reducing processing speed (Sec-
tion 3.6.3).

• Jigg (Noji and Miyao, 2016)5 is a shift-reduce CCG parser for Japanese lan-
guage, implemented in an NLP tool Jigg (Noji and Miyao, 2016) (for simplicity,
we refer to the CCG parser as Jigg). Jigg is based on a linear model to pre-
dict an action for each time step, and uses beam search to reduce possible parse
errors.

2.4 CCG Parsing Evaluation
The semantic structure of a sentence can be extracted using the functional nature of

CCG categories. Figure 2.3 shows an example CCG derivation of a phrase cats that
Kyle wants to see, where categories are marked with variables and constants (e.g., kyle
in NPkyle), and argument ids in the case of verbs (subscripts in (Ssee\NPs,1)/NPt,2).
Unification is performed on these variables and constants in the course of derivation,
resulting in chains of equations s = v = z = kyle, and t = x = cats, success-
fully recovering the first and second argument of see: Kyle and cats (i.e., capturing
long-range dependencies). What is demonstrated here is performed in the standard
evaluation of CCG parsing, where the number of such correctly predicted predicate-
argument relations is calculated. In the parsing experiments, labeled and unlabeled F1

4https://github.com/uwnlp/neuralccg
5https://github.com/mynlp/jigg

15

https://github.com/uwnlp/neuralccg
https://github.com/mynlp/jigg

Hypothesis

Search
WordnetAdd new

axioms

list of predicates
Retry

(a) CCG
Parsing

(b) Semantic
Parsing

(c) Theorem
Proving
(Coq)

Yes, No,
Unknown

Premise
&

Hypothesis

(d) Axiom Injection

8x.(hike(x) ! walk(x))

(hike, hypernyms, walk)HypothesisA

NP/N
λF.λG.∃x.F (x) ∧G(x)

man

N
λx.man(x)

NP
λG.∃x.man(x) ∧G(x)

>
walks

S\NP
λQ.Q(λx.∃e.walk(e) ∧ subj(e, x))

S
∃x.man(x) ∧ ∃e.walk(e) ∧ subj(e, x)

<

PremiseA

NP/N
λF.λG.∃x.F (x) ∧G(x)

man

N
λx.man(x)

NP
λG.∃x.man(x) ∧G(x)

>
hikes

S\NP
λQ.Q(λx.∃e.hike(e) ∧ subj(e, x))

S
∃x.man(x) ∧ ∃e.hike(e) ∧ subj(e, x)

<

Martínez-Gómez et al., 2017

Figure 2.4: Pipeline of ccg2lambda. First, it applies CCG parser to premise (P)
and hypothesis (H) sentences (a), and then converts them to logical formulas (b). It
attempts to prove if entailment (contradiction) can be established by applying Coq to
the theorem P → H (P → ¬H) (c). If the theorem proving fails, it tries axiom
injection (d).

scores of the extracted CCG semantic dependencies are reported, where the “labeled”
metric takes into account the head category with which a predicate-argument relation
is constructed, while the unlabeled one only considers the relations alone (for the de-
tail, see (Clark et al., 2002)). Remarkably, it is also the basis of CCG-based semantic
parsing (Abzianidze, 2017; Martı́nez-Gómez et al., 2017; Matsuzaki et al., 2017). In
these systems, the above simple unification rule is replaced with more sophisticated
techniques such as λ-calculus, which are described in the next subsection.

2.5 CCG-based Natural Language Inference Systems
We introduce logic-based systems for solving the Recognizing Textual Entailment

(RTE) task. RTE is a challenging NLP task where the objective is to judge whether
a hypothesis H logically follows from premise(s) P. This task is fundamental, in that
advances in this task have positive implications in other areas such as information re-
trieval, question answering and reading comprehension. In Section 3, we evaluate our
developed parser in terms of the performance gains of these systems, and in Section 5,
we extend one of them using the proposed method.

16

2.5.1 ccg2lambda

Mineshima et al. (2015) develops a higher-order logic-based RTE system called
ccg2lambda. As shown in Figure 2.4, the ccg2lambda pipeline first processes
premise(s) and a hypothesis using a CCG parser. The parse trees are converted into log-
ical formulas by composing λ-terms assigned to each terminal word in accordance with
combinatory rules. For the assignment of λ-terms, ccg2lambda adopts a template-
based procedure, where closed-class words (logical or functional expressions) are
mapped to their specific meaning representations and other words to schematic mean-
ing representations based on CCG categories. In this work, we adopt a semantic tem-
plate based on Neo-Davidsonian Event Semantics (Parsons, 1990), where a sentence
is mapped to a formula involving quantification over events and a verb is analyzed as
a one-place predicate over events using auxiliary predicates for semantic roles such
as subj. The system uses an automated theorem proving in Coq (The Coq Devel-
opment Team, 2017) to determine whether entailment or contradiction holds between
the premise(s) and the hypothesis. The RTE system implements a specialized prover
for higher-order features in natural language, which is combined with Coq’s built-in
efficient first-order inference mechanism.

2.5.2 LangPro

LangPro (Abzianidze, 2017) is an analytic tableau system based on natural
logic (van Benthem, 2008). Natural logic seeks a formal logic whose formulas are
as close as possible to linguistic expressions. LangPro develops an efficient RTE
system based on natural logic by extending a previously proposed analytic tableau sys-
tem (Muskens, 2010), where higher-order logic based on a simple type theory is used
as natural logic and a version of an analytic tableau method is designed for it.
LangPro also constructs a meaning representation based on Lambda Logical

Form (LLF; Muskens (2010)) for a sentence in the accordance with CCG categories
and combinatory rules. LangPro constructs an intermediate representation by first
mapping each CCG category in a tree to a function type of λ-terms (e.g., mapping both
A/B andB\A to ⟨B, A⟩, an alternative notation ofB → A, which is common in formal
semantics). Then, its subtrees are rotated according to the order of the functional ap-
plication of those types. When this conversion is applied to a sentence “There is no one

17

cutting a tomato”, the result is as in Eq. 2.1.6 This process also involves procedures that
normalize the CCG tree (e.g. mapping “no one” to “no person”). Theorem proving op-
erates on LLFs obtained from this representation by mapping quantified noun phrases,
such as “no person” and “a tomato” to generalized quantifiers (Barwise and Cooper,
1981). Note that Eq. 2.2 represents such LLFs obtained from Eq. 2.1. The LangPro
system is described in detail in Abzianidze’s Ph.D. thesis (Abzianidze, 2016).

be⟨np,np,s⟩ (no⟨n,np⟩ (which⟨vp,n,n⟩ (cut⟨np,vp⟩ (a⟨n,np⟩ tomaton)) personn)) therenp
(2.1)

no⟨n,vp,s⟩ (which⟨vp,n,n⟩ (λynp. cut⟨np,vp⟩ y x) personn)(λznp. be⟨np,np,s⟩ z therenp)

(2.2)

While it implements some techniques to fix parse errors, the accurate CCG parsing is
important for the system, as demonstrated by the improved performance of a hybrid
approach (Abzianidze, 2015) that combines RTE predictions obtained by parse trees
of two different parsers.

6Note that, in Abzianidze’s method, via subtyping rules, s, n, np, etc. also qualify as semantic types
in much the same way as traditional entity “e” and truth value “t” types do.

18

19

Chapter 3

A* CCG Parsing

3.1 Introduction
In lexicalized grammar parsing, supertagging is known as almost parsing (Bangalore

and Joshi, 1999), in that each supertag is syntactically informative and most ambigui-
ties are resolved once a correct supertag (category) is assigned to each word. Recently
this property has been effectively exploited in A* CCG parsing (Lewis and Steedman,
2014a; Lewis et al., 2016), in which the probability of a CCG tree y for sentence x of
length N is the product of the probabilities of supertags ci (locally factored model):

p(y|x) =
N∏
i=1

ptag(ci|x). (3.1)

By not modeling every combinatory rule in a derivation, this formulation enables us
to employ an efficient A* search (Section 3.2) that finds the most probable supertag
sequence that can construct a well-formed CCG tree.

Although supertagging can resolve considerable ambiguity, some ambiguity re-
mains. Figure 3.1 shows an example, where two CCG parses are derived from the
same supertags. Lewis et al. proposed an approach to this problem that involved a de-
terministic rule. For example, motivated by the right-branching tendency of English,
Lewis et al. (2016) employ the attach low heuristics, and always prioritizes the result
shown in Figure 3.1(b) for this type of ambiguity. Though this approach works well for
English empirically, an obvious limitation is that it does not always derive the correct
parse. For example, consider the phrase “a house in Paris with a garden”, for which
the structure of the correct parse corresponds to Figure 3.1(a).

(a)

a house in Paris in France

NP (NP\NP)/NP NP (NP\NP)/NP NP
> >

NP\NP NP\NP
<

NP
<

NP

(b)

a house in Paris in France

NP (NP\NP)/NP NP (NP\NP)/NP NP
>

NP\NP
<

NP
>

NP\NP
<

NP

Figure 3.1: CCG trees that are equally likely under Eq. 3.1. The proposed model
resolves this ambiguity by modeling the head of each word (dependencies).

In this chapter, we provide a way to resolve these remaining ambiguities under the
locally factored model by explicitly modeling bi-lexical dependencies, as shown in
Figure 3.1.1 The proposed model is still locally factored so that an efficient A* search
can be applied. The key idea is to predict the head of each word independently, as in
Eq. 3.1, using a strong unigram model. Here we utilize the scoring model employed
in the recent successful graph-based dependency parsing on LSTMs (Kiperwasser and
Goldberg, 2016; Dozat and Manning, 2017). Specifically, we extend the bidirectional
LSTM architecture of Lewis et al. (2016) to predict the supertag and head of a word
simultaneously using a bilinear transformation.

The importance of modeling structures beyond supertags is demonstrated by the
performance gain reported by Lee et al. (2016), which adds a recursive component
to the model of Eq. 3.1. Unfortunately, compared to the original formulation, this
formulation is less efficient because it must compute a recursive neural network each
time it searches for a new node. The proposed model does not resort to the recursive
networks while modeling tree structures via dependencies.

We also extend the tri-training method of (Lewis et al., 2016) to learn our model with
dependencies from unlabeled data. With this technique, on English CCGbank test data,
the proposed model achieves 88.8% and 94.0% in terms of labeled and unlabeled F1,
which mark the best scores so far.

In addition to English, we conducted experiments on Japanese CCG parsing. In
Japanese, word order is relatively free and is dominated by case markers; thus, a deter-

1In English CCG parsing literature, the evaluation is performed in terms of “semantic dependencies”,
i.e., a meaning representation similar to predicate argument structure that is obtainable from a CCG
parse tree. Some studies in the literature define “dependency models”, where the optimization is done
in terms of this meaning representation (Section 3.8). Our work is different in that we utilize “syntactic
dependencies”, a common syntactic representation in dependency parsing literature. In this work, unless
otherwise stated, the term “dependencies” stands for syntactic dependencies.

20

ministic rule, such as the attach low method, may not work well. The proposed method
outperforms the simple application of (Lewis et al., 2016) by a large margin, i.e., 10.0
points in terms of bunsetsu2 dependency accuracy.

CCG parsing is an important intermediate step of logic-based RTE systems (Sec-
tion 2.5); thus, CCG parsing accuracy significantly affects RTE results. We evaluate
the proposed method in terms of RTE by combining it with existing state-of-the-art
RTE systems: ccg2lambda and LangPro. We observe that it consistently leads to
better recalls, showing that it can parse a broader range of sentences robustly.

3.2 Background
Our work is built on A* CCG parsing (Section 3.2.1), which we extend in Section

3.3 with a head prediction model based on bidirectional LSTM (Section 3.2.2).

3.2.1 Supertag-factored A* CCG Parsing

CCG has a nice property that every category is highly informative about attachment
decisions and assigning it to every word (supertagging) resolves most of its syntactic
structure. Previous work (Lewis and Steedman, 2014a) utilizes this characteristics of
the grammar. Let a CCG tree y be a list of categories (c1, . . . , cN) and a derivation on
it. Their model looks for the most probable y given sentence x of length N from the
set Y(x) of possible CCG trees under the model of Eq. 3.1:

ŷ = arg max
y∈Y(x)

N∑
i=1

log ptag(ci|x).

Since this score is factored into each supertag, they call the model a supertag-factored
model.

Exact inference of this problem is possible by A* parsing (Klein and D. Manning,

2A bunsetsu is a Japanese phrasal unit consisting of one or more adjoining content words (noun,
verb, adjective, etc.) and zero or more functional words (postposition, auxiliary verb, etc.) (Hashimoto,
1934).

21

2003), which uses the following two scores on a chart:

b(Ci,j) =
∑

ck∈ci,j

log ptag(ck|x),

a(Ci,j) =
N∑
k=1

k ̸∈{i,...,j}

max
ck

log ptag(ck|x),

where Ci,j is a chart item called an edge, which abstracts parses spanning interval
{i, ..., j} rooted by category C. The chart maps each edge to the derivation with the
highest score, i.e., the Viterbi parse for Ci,j . ci,j (= cCi,j) is the sequence of categories3

for such a Viterbi parse, and thus b is called the Viterbi inside score, while a is the
approximation (upper bound) of the Viterbi outside score.

A* parsing is a kind of CKY chart parsing augmented with an agenda, a priority
queue that keeps the edges to be explored. At each step it pops the edge e with the
highest priority b(e)+a(e), inserts that into the chart, and enqueues any edges that can
be built by combining e with other edges in the chart. The algorithm terminates when
an edge C1,N is popped from the agenda.

The A* search in this model is quite efficient because both b and a can be obtained
from the unigram category distribution on all words, which can be precomputed prior
to a search. The heuristics a gives an upper bound on the true Viterbi outside score
(i.e., admissible). In addition, the condition that the inside score never increases by
expansion (monotonicity) guarantees that the first found derivation on C1,N is always
optimal. a(Ci,j) matches the true outside score if the one-best category assignments on
the outside words (argmaxck log ptag(ck|x)) can comprise a well-formed tree withCi,j .
As such, a tighter upper bound (and hence more efficient parsing) can be achievable
if the employed scoring model is more accurate. This is possible with recent neural
network-based models described next.

Scoring model For modeling ptag, a log-linear model with features from a fixed
window context is used in Lewis and Steedman (2014a). Later, the log-linear model is
extended with a bidirectional LSTM, which encode the complete sentence and capture
the long range syntactic information (Lewis et al., 2016). We base the proposed model
on this bidirectional LSTM architecture and extend it such that a head word can be
modeled simultaneously.

3We omit the dependence on C for simplicity when it is evident from the context. This rule applies
to the variable dC

i,j of a dependency structure, introduced shortly.

22

Attachment ambiguity In an A* search, an edge with the highest priority b + a is
searched first; however, as shown in Figure 3.1 the same categories (with the same pri-
ority) may sometimes derive more than one tree. In Lewis and Steedman (2014a), they
prioritize the parse with longer dependencies, which they determine using a conversion
rule from a CCG tree to a dependency tree (Section 3.4). It is later replaced with an-
other heuristics that prioritizes low attachments of constituencies (Lewis et al., 2016);
however inevitably these heuristics cannot be flawless in any situations. We provide a
simple solution to this problem by modeling bi-lexical dependencies explicitly.

3.2.2 Bidirectional LSTM Dependency Parsing

To model dependencies, we borrow the idea from the recent graph-based neural
dependency parsing (Kiperwasser and Goldberg, 2016; Dozat and Manning, 2017)
where each dependency arc is scored directly on the outputs of a bidirectional LSTM.
Although the model is first-order, the bidirectional LSTM enable conditioning on the
entire sentence and lead to the state-of-the-art performance. Note that this mechanism
is similar to modeling of the supertag distribution discussed above, in that, for each
word, the distribution of the head choice is unigram and can be precomputed. As
we will see this keeps our joint model still locally factored and A* search tractable.
For score calculation, we use an extended bilinear transformation proposed by Dozat
and Manning (2017) that models the headness of each token as well, which they call
biaffine.

3.3 Proposed Method

3.3.1 A* Parsing with Supertag and Dependency Factored Model

We define a CCG tree y for sentence x = (x1, . . . , xN) as a pair of CCG categories
c = (c1, . . . , cN) and dependencies d = (d1, . . . , dN),4where di ∈ {0, ..., N} is the
head index of xi (0 is the index for the root token). The proposed model is defined as
follows:

p(y|x) =
N∏
i=1

ptag(ci|x)
N∏
i=1

pdep(di|x). (3.2)

4In this work, we assume a pair c and d uniquely defines a CCG tree y, if one exists. This is a sound
assumption empirically, but strictly not true.

23

The added term pdep is a unigram distribution of the head choice.
Given that supertags determine syntactic relations among words, ci and di terms

naturally interact with each other. However, the independence assumption of these
terms is one of the keys of our method, which makes A* search tractable under this
model. The search problem is changed as follows:

ŷ = arg max
y∈Y(x)

(
N∑
i=1

log ptag(ci|x) +
N∑
i=1

log pdep(di|x)

)
,

and the inside score is expressed as follows:

b(Ci,j) =
∑

ck∈ci,j

log ptag(ck|x) +
∑

dk∈di,j

k ̸=root(di,j)

log pdep(dk|x), (3.3)

where di,j is a dependency subtree for the Viterbi parse on Ci,j , and root(d) returns
the root index. We exclude the head score for the subtree root token because its head
does not appear in {i, ..., j}. This causes the discrepancy between the goal inside score
b(C1,N) and the true model score (log of Eq. 3.2), which we adjust by applying a
special unary rule to the goal edge C1,N that adds log pdep(droot(d1,N) = 0|x).

We can calculate the dependency terms in Eq. 3.3 on the fly when expanding the
chart. Let the currently popped edge be Ai,k, which will be combined with Bk,j

to form a new subtree in Ci,j . The key observation is that only one dependency
arc (between root(dA

i,k) and root(dB
k,j)) is determined at every combination (Figure

3.2). For every rule C → A B we can define the head direction (Section 3.4)
and pdep is obtained accordingly. For example, when the right child B becomes the
head, b(Ci,j) = b(Ai,k) + b(Bk,j) + log pdep(dl = m|x), where l = root(dA

i,k) and
m = root(dB

k,j) (l < m).
The Viterbi outside score is changed as follows:

a(Ci,j) =
N∑
k=1

k ̸∈{i,...,j}

max
ck

log ptag(ck|x) +
N∑
k=1

k ̸∈{i,...,j}\{root(di,j)}

max
dk

log pdep(dk|x), (3.4)

We consider root(di,j) an outside word because its head is not yet defined. For
every outside word we independently assign the score of its argmax head, which
may not comprise a well-formed dependency tree. We initialize the agenda by
adding an item for every supertag C and word xi with the score a(Ci,i) =

24

John

b(e1)

NP

NP

b(e2)

S\NP

(S\NP)/NP NP
met Mary

b(e3) =
b(e1) + b(e2)

+log pdep(𝚖𝚎𝚝 → 𝙹𝚘𝚑𝚗)

S

John
NP NP

met
(S\NP)/NP

Mary

Figure 3.2: In the proposed model, the Viterbi inside score for edge e3 is the sum of
the e1 and e2 scores and the score of dependency arc going from the head of e2 to that
of e1. Note that the head direction changes according to the child categories.

∑N
k=1,k ̸=i maxck log ptag(ck|x) +

∑N
k=1maxdk log pdep(dk|x). Note that the depen-

dency component of a(Ci,i) is the same for every word.
Note that the proposed model has the same advantages of the supertag-factored

model (Section 3.2.1); a(Ci,j) defined above is admissible and monotone, guarantee-
ing the optimality of the first found tree. The upper bound is similarly the tightest if the
one-best category and head assignments can form a CCG tree, implying the importance
of an accurate scoring model.5

3.3.2 Network Architecture

Following Lewis et al. (2016) and Dozat and Manning (2017), we model ptag and
pdep using a bidirectional LSTM to exploit the entire sentence to capture the long range
phenomena. The overall network architecture is shown in Figure 3.3, where ptag and
pdep share common LSTM hidden vectors.

First we map each word xi to their hidden vector hi with a bidirectional LSTM. The
input to the LSTMs is word embeddings, details of which is described in Section 3.6.
We add special start and end tokens to each sentence with trainable parameters follow-
ing Lewis et al. (2016).

5Running a maximum spanning tree (MST) algorithm (e.g., Eisner (1996b)) on pdep terms can give
tighter estimates on the Viterbi outside score in case the one-best head assignments do not form a tree.
However, given that neural network-based head prediction is so accurate that the output fails to form a
tree only rarely, the computational complexity of the MST algorithm is rather harmful.

25

LSTM

LSTM

concat

x1

concat concat concath1 h2 h3 h4

Bilinear Biffine

x1 x2 x3 x4⋯
⋯⋯

NPS S/SN ⋯

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

x2 x3 x4

pdepptag

Figure 3.3: Neural networks of the proposed supertag and dependency factored model.
First, we map each word xi to a hidden vector hi using a bidirectional LSTM, and then
apply biaffine (Eq. 3.5) and bilinear (Eq. 3.6) transformations to obtain the distributions
of dependency heads pdep and supertags ptag.

For pdep, we use the biaffine transformation in (Dozat and Manning, 2017):

ri = ψdep
child(hi), rj = ψdep

head(hj),

si,j = r⊤
i Wrj +w⊤rj, (3.5)

pdep(di = j|x) ∝ exp(si,j),

where ψ is a multi-layer perceptron. Although previous work (Lewis et al., 2016) sim-
ply uses a multi-layer perceptron to map hi to ptag, we also utilize the hidden vector of
the most probable head d̂i = argmaxj pdep(di = j|x) (which is not necessarily identi-
cal to the head in the final output tree), and apply hi and hd̂i

to a bilinear function:6

qi = ψtag
child(hi), qd̂i

= ψtag
head(hd̂i

),

si,c = q⊤
i Wcqd̂i

+ v⊤
c qi + u⊤

c qd̂i
+ bc, (3.6)

ptag(ci = c|x) ∝ exp(si,c).

Formulating the prediction of ptag this way performs the best among other settings that
remove or reverse the dependence between the head model and the supertag model

6This is inspired by the formulation of label prediction in (Dozat and Manning, 2017).

26

empirically. Despite the actual dependence of supertags on a dependency structure in
the neural network prediction, we formulate our probabilistic model of a CCG tree as
in Eq. 3.2, where they are treated as independent. As in Lewis et al., these values can
be precomputed prior to search, which makes our A* parsing quite efficient.

3.4 CCG to Dependency Conversion
In this section, we describe our conversion rules from a CCG tree to a dependency

one, which we use in two purposes: (1) creation of the training data for the dependency
component of our model; and (2) extraction of a dependency arc at each combinatory
rule during A* search (Section 3.3.1). A previous work (Lewis and Steedman, 2014a)
describes one way to extract dependencies from a CCG tree (LEWISRULE). In addition
to LEWISRULE, we describe two simpler alternatives, i.e., HEADFIRST and HEADFI-
NAL, and verify the effects on parsing performance in our experiments (Section 3.6).
An overview of the CCG to dependency conversion is shown in Figure 3.4.

3.4.1 LEWISRULE

The LEWISRULE is the same as the conversion rule in (Lewis and Steedman, 2014a).
As shown in Figure 3.4c, the output looks a familiar English dependency tree.

For forward application and (generalized) forward composition, we define the head
to be the left argument of the combinatory rule, unless it matches either X/X or
X/(X\Y), in which case the right argument is the head. For example, on “Black
Monday” in Figure 3.4a, we select Monday as the head of Black. For the backward
rules, the conversions are defined as the reverse of the corresponding forward rules.
For other rules, remove punctuation (<rp>) selects the non-punctuation argument as
the head, while conjunction (<Φ>) selects the right argument.7

One issue when using this method to obtain the training data is that due to the mis-
match between the rule set of our CCG parser, for which we follow Lewis and Steed-
man (2014a), and the grammar in English CCGbank (Hockenmaier and Steedman,

7When applying LEWISRULE to Japanese, we ignore feature values when determining the head
argument, which often leads to a more natural dependency structure. For example, in “tabe ta” (eat
PAST), the category of auxiliary verb “ta” is Sf1\Sf2 with f1 ̸= f2, thus Sf1 ̸= Sf2 . In this case, we
select “tabe” as the head by removing the feature values, which makes the category X\X .

27

2007), we cannot extract dependencies from some of annotated CCG trees.8 Thus, we
instead obtain training data for this method from the original CCGbank dependency
annotations. Fortunately, in most cases, the CCGbank dependency annotations match
those of the LEWISRULE; thus they can well-approximate LEWISRULE dependencies.

3.4.2 HEADFINAL

Among SOV languages, Japanese is a strictly head final language, i.e., the head of
each word always follows the given word. Japanese dependency parsing (Uchimoto
et al., 1999; Kudo and Matsumoto, 2002) has exploited this property explicitly by
only allowing left-to-right dependency arcs. Inspired by this tradition, we try a simple
HEADFINAL rule in Japanese CCG parsing, where we always select the right argument
as the head. For example, we obtain the head final dependency tree shown in Figure
3.4e, from the Japanese CCG tree shown in Figure 3.4b.

3.4.3 HEADFIRST

We apply an idea similar to HEADFINAL to English. Differing from Japanese, En-
glish is an SVO language; therefore, we define a simple “head first” rule whereby the
left argument always becomes the head (Figure 3.4d).

Though this conversion may look odd at first, it has some advantages over the
LEWISRULE. First, since a model that employs the LEWISRULE is trained on CCG-
bank dependencies, at inference, occasionally the two components pdep and ptag result
in conflicting predictions. For example, the true Viterbi parse may have a lower score
in terms of dependencies, in which case the parser slows down and may degrade the
accuracy. HEADFIRST does not suffer from such conflicts. Second, because the arc di-
rectionality is fixed, the prediction of heads becomes easier. In Section 3.5, we demon-
strate that this is the case for existing dependency parsers, and in practice, we find that
the HEADFIRST conversion rule yields higher parsing scores than the LEWISRULE on
English (Section 3.6).

8For example, the combinatory rules in (Lewis and Steedman, 2014a) do not contain N N ⇒ Nconj

in CCGbank. Another difficulty is that in English CCGbank the name of each combinatory rule is not
annotated explicitly.

28

N
o

,
it

w
a
s

n
′ t

B
la
c
k

M
o
n
d
a
y

.

S
/
S

,
N
P

(S
\N

P
)/

N
P

(S
\N

P
)\

(S
\N

P
)

N
P
/
N
P

N
P

.
<

B
1 ×

>

S
\N

P
/
N
P

N
P

>
S
\N

P
<

S
r
p

S
>

S
r
p

S

(a
)E

ng
lis

h
se

nt
en

ce

I
S
U
B

E
n
g
li
sh

A
C
C

sp
e
a
k

w
a
n
t

.
僕

は
英
語

を
話
し

た
い

。

N
P

N
P
\N

P
N
P

N
P
\N

P
(S

\N
P
)\

N
P

S
\S

S
\S

<
<

<
B

2

N
P

N
P

(S
\N

P
)\

N
P

<
S
\N

P
<

S
<

S

(b
)J

ap
an

es
e

se
nt

en
ce

“I
w

an
tt

o
sp

ea
k

E
ng

lis
h.

”

N
o

,
it

w
as

n’
t

B
la

ck
M

on
da

y
.

(c
)

L
E

W
IS

R
U

L
E

N
o

,
it

w
as

n’
t

B
la

ck
M

on
da

y
.

(d
)

H
E

A
D

F
IR

S
T

僕
は

英
語

を
話
し

た
い

。
I

SU
B

E
ng

lis
h

A
C

C
sp

ea
k

w
an

t
.

(e
)

H
E

A
D

F
IN

A
L

Fi
gu

re
3.

4:
E

xa
m

pl
es

of
ap

pl
yi

ng
co

nv
er

si
on

ru
le

s
(S

ec
tio

n
3.

4)
to

E
ng

lis
h

an
d

Ja
pa

ne
se

se
nt

en
ce

s.

29

3.5 Tri-training
We extend the existing tri-training method and apply it to our English parsers. Tri-

training is one of the semi-supervised methods, where the outputs of two parsers on
unlabeled data are intersected to create new (silver) training data. This method has
been successfully applied to dependency parsing (Weiss et al., 2015) and CCG su-
pertagging (Lewis et al., 2016).

We simply combine the two previous approaches. Lewis et al. (2016) obtained their
silver data annotated with the high quality supertags by parsing One Billion Word
Benchmark dataset (Chelba et al., 2014). Since they make this data publicly available,9

we obtain our silver data by assigning dependency structures on top of them.
We train two very different dependency parsers on two types of training data ex-

tracted from CCGbank Section 02-21.10 The datasets differ depending on our depen-
dency conversion strategy employed (Section 3.4). For the LEWISRULE, we extract
the original CCGbank dependency annotations. For the HEADFIRST, we extract the
head first dependencies from the CCG trees. Note that we cannot annotate dependency
labels; thus, we assign a dummy “none” label to each arc. The first parser is the graph-
based RBGParser (Lei et al., 2014) with the default settings except that we train
an unlabeled parser and use the word embeddings of Turian et al. (2010). The sec-
ond parser is the transition-based lstm-parser (Dyer et al., 2015) with the default
parameters.

On the development set (Section 00), with LEWISRULE dependencies the
RBGParser shows 93.8% unlabeled attachment score while that of the
lstm-parser is 92.5% using gold POS tags. Interestingly, the parsers with HEAD-
FIRST dependencies achieve higher scores: 94.9% by RBGParser and 94.6% by
lstm-parser, suggesting that HEADFIRST dependencies are easier to parse. For
both dependencies, we obtain more than 1.7 million sentences on which two parsers
agree.

Following Lewis et al. (2016), we include 15 copies of CCGbank training set when
using these silver data. In addition, we reduce the effects of the tri-training samples by
multiplying their loss by 0.4.

9https://github.com/uwnlp/taggerflow
10We annotate POS tags on this data using the Stanford POS tagger (Toutanova et al., 2003).

30

https://github.com/uwnlp/taggerflow

3.6 Parsing Experiments
In this section, we describe experiments performed to evaluate the parsing perfor-

mance of the proposed method on English and Japanese CCGbanks.

3.6.1 English Experimental Settings

In the English experiment, we use the CCGBank dataset (Hockenmaier and Steed-
man, 2007), which was constructed by converting the Wall Street Journal part of the
Penn Treebank (Marcus et al., 1994), and hence contains the same set of sentences an-
notated with CCG trees. The data split is also defined in the same way; Sections 02-21
for training, Section 00 for development, and Section 23 for final evaluation, each of
which consists of 39,604 / 1,913 / 2,407 sentences. The English CCGbank dataset con-
tains 1,030,345 running words with 41,478 (lowercased) word types, and the average
sentence length is 23.45. We report labeled and unlabeled F1 scores of the extracted
CCG semantic dependencies, following the standard CCG parsing evaluation protocol
(Section 2.4).

For our models, we adopt the pruning strategies proposed by Lewis and Steedman
(2014a) and allow at most 50 categories per word, use a variable-width beam with
β = 0.00001, and utilize a tag dictionary, which maps frequent words to the possi-
ble supertags11. Unless otherwise stated, we only allow normal form parses (Eisner,
1996a; Hockenmaier and Bisk, 2010), choosing the same subset of the constraints as
(Lewis and Steedman, 2014a).

For word representation, we use the concatenation of word vectors initialized to
GloVe12 (Pennington et al., 2014), and randomly initialized prefix and suffix vectors of
length 1 to 4, which is inspired by Lewis et al. (2016). Affixes that only appear once
in the training data are mapped to “UNK”.

Other model configurations include: 4-layer bidirectional LSTM with left and right
300-dimensional LSTMs, 1-layer 100-dimensional multi-layer perceptrons with ELU
non-linearity (Clevert et al., 2016) for all ψdep

child, ψdep
head, ψtag

child and ψtag
head, and the Adam

optimizer with β1 = 0.9, β2 = 0.9, L2 norm (10−6), and learning rate decay with a
ratio of 0.75 for every 2,500 iteration starting from 0.002, which has been shown to be
effective for training the biaffine parser (Dozat and Manning, 2017).

11We use the tag dictionary provided with their bidirectional LSTM model.
12http://nlp.stanford.edu/projects/glove/

31

http://nlp.stanford.edu/projects/glove/

We compare the proposed method to the following baseline methods: C&C (Clark
and Curran, 2007), EasySRL (Lewis et al., 2016), and neuralccg (Lee et al., 2016)
(see Section 2.3 for the details). For C&C, we also report the performance of an ex-
tension with an LSTM supertagger (Vaswani et al., 2016), and for EasySRL, we also
report results obtained with EasySRL reimpl, our reimplemantation of EasySRL.
Note that only C&C and its extension contain the part-of-speech tagging phase (which
is implemented internally). The inputs to the other parsers are untagged raw sentences.

3.6.2 Japanese Experimental Settings

In this experiment, we use the Japanese CCGbank (Uematsu et al., 2015). We follow
the default train / dev / test splits, each of which contains of 23,375 / 4,645 / 8,948 sen-
tences. The Japanese CCGbank dataset contains 1,004,038 running words and 25,902
word types (both calculated in terms of lemma). The average sentence length is 27.15.
As baselines, we use a shift-reduce CCG parser implemented in an NLP tool Jigg (Noji
and Miyao, 2016)13 (for simplicity, we refer to it as Jigg) with beam size = 64, and
our adaptation of the supertag-factored model using a bidirectional LSTM.

For Japanese word representation, we use the concatenation of word vectors ini-
tialized to the Japanese Wikipedia Entity Vector14, and 100-dimensional vectors com-
puted from randomly initialized 50-dimensional character embeddings through con-
volution (dos Santos and Zadrozny, 2014). We do not use affix vectors as affixes are
less informative in Japanese. Characters that only appear once in the training data
are mapped to “UNK”. For the bidirectional LSTM, multi-layer perceptrons, and opti-
mization, we use the same parameter settings used in the English experiment.

One issue in Japanese experiments is evaluation. The Japanese CCGbank is encoded
in a different format than the English bank, and no stand-alone script for extracting se-
mantic dependencies is available yet. For this reason, we evaluate parser outputs by
converting them to bunsetsu dependencies, the syntactic representation typically used
in Japanese NLP (Kudo and Matsumoto, 2002). Given a CCG tree, we obtain bunsetsu
dependencies by first segmenting a sentence into bunsetsu (chunks) using CaboCha15.
After obtaining the word-level, head final dependencies as in Figure 3.4b, dependen-
cies that cross a bunsetsu boundary are extracted. For example, the sentence in Figure

13https://github.com/mynlp/jigg
14http://www.cl.ecei.tohoku.ac.jp/˜m-suzuki/jawiki_vector/
15http://taku910.github.io/cabocha/

32

https://github.com/mynlp/jigg
http://www.cl.ecei.tohoku.ac.jp/~m-suzuki/jawiki_vector/
http://taku910.github.io/cabocha/

Method Labeled Unlabeled
CCGbank

LEWISRULE w/o dep 85.8 91.7
LEWISRULE 86.0 92.5
HEADFIRST w/o dep 85.6 91.6
HEADFIRST 86.6 92.8

Tri-training
LEWISRULE 86.9 93.0
HEADFIRST 87.6 93.3

Table 3.1: Parsing results (F1) on English development set. “w/o dep” means that the
model discards dependency components at prediction.

3.4e is segmented as “Boku wa | eigo wo | hanashi tai”, from which we extract two de-
pendencies (Boku wa)← (hanashi tai) and (eigo wo)← (hanashi tai). We perform this
conversion for both gold and output CCG trees and calculate the (unlabeled) attach-
ment accuracy (Bunsetsu Dep.). We also report the accuracy of pre-terminal supertag
assignment (Category), because it is crucial in determining the overall parse structure
(Section 3.2). Though this process is imperfect, it can detect important parse errors
such as attachment errors and thus can be a good proxy to evaluate the performance of
a CCG parser.

3.6.3 English Parsing Results

Effect of Dependency

We first see how the added dependency components in our model affect perfor-
mance. Table 3.1 shows the results on the development set with several configurations.
Here, “w/o dep” means the dependency terms of the model are discarded, and the
attach low heuristics (Section 3.1) is used instead, i.e., a supertag-factored model (Sec-
tion 3.2.1). As can be seen, adding dependency terms improves the performance for
both LEWISRULE and HEADFIRST methods.

33

Method Labeled Unlabeled # violations
CCGbank

LEWISRULE w/o dep 85.8 91.7 2,732
LEWISRULE 85.4 92.2 283
HEADFIRST w/o dep 85.6 91.6 2,773
HEADFIRST 86.8 93.0 89

Tri-training
LEWISRULE 86.7 92.8 253
HEADFIRST 87.7 93.5 66

Table 3.2: Parsing results (F1) on English development set when normal form con-
straints are excluded. The # violations column shows the number of combinations that
violate the constraints on the outputs.

Choice of Dependency Conversion Rule

To our surprise, our simple HEADFIRST strategy always leads to better results than
the linguistically motivated LEWISRULE (except for w/o dep settings). The absolute
improvements by tri-training are equally large (approximately 0.5 points), suggesting
that the proposed model with dependencies can also benefit from the silver data.

Excluding Normal Form Constraints

One advantage of HEADFIRST is that the arc direction is always right, which makes
the structures simpler and more accurately parsable (Section 3.5). From another view-
point, this fixed direction means that the constituent structure behind a (head first)
dependency tree is almost unique.16 Since the constituent structures of CCGbank trees
basically follow the normal form (NF), we hypothesize that the model learned with
HEADFIRST has an ability to force the outputs in NF automatically. We summarize
the results without the NF constraints in Table 3.2. These results demonstrates that
the above argument is correct; with HEADFIRST, the number of times NF rules are
violated is significantly less than the number of time such rules are violated using

16There is a bijection between a head first dependency structure and an unlabeled binary constituency
structure (modulo the use of unary rules). Basically we can recover a constituency tree by considering
each dependency edge i→ j as a constituent that spans from the i’th word to the rightmost descendant
of the j’th word (or itself when there is none).

34

Method Labeled Unlabeled
CCGbank
C&C (Clark and Curran, 2007) 85.5 91.7

w/ LSTMs (Vaswani et al., 2016) 88.3 -
EasySRL (Lewis et al., 2016) 87.2 -
EasySRL reimpl 86.8 92.3
HEADFIRST w/o NF (Ours) 87.7 93.4

Tri-training
EasySRL (Lewis et al., 2016) 88.0 92.9
neuralccg (Lee et al., 2016) 88.7 93.7
HEADFIRST w/o NF (Ours) 88.8 94.0

Table 3.3: Parsing results (F1) on English test set (Section 23).

LEWISRULE (89 vs. 283). Interestingly the scores of HEADFIRST models increase
slightly compared to models with NF (e.g., 86.8 vs. 86.6 for CCGbank), suggesting
that NF constraints occasionally hinder HEADFIRST model’s search process.

Results on Test Set

Parsing results on the test set (Section 23) are shown in Table 3.3. In Table 3.3,
we compare the HEADFIRST dependency model without NF constraints that returns
the best results to several existing parsers. In the CCGbank experiment, the proposed
parser demonstrates better results than all the baseline parsers, except for C&C with an
LSTM supertagger (Vaswani et al., 2016). In terms of labeled F1, the proposed parser
outperforms EasySRL and our reimplementation of that parser (EasySRL reimpl)
by 0.5% and 0.9%, respectively. In the tri-training experiment, the proposed parser’s
performance increases significantly, i.e., 88.8% for labeled F1 and 94.0% for unlabeled
F1. Here, the proposed parser outperforms the state-of-the-art neuralccg (Lee et al.,
2016), which uses recursive neural networks, by 0.1 and 0.3 points in terms of labeled
and unlabeled F1, respectively. To the best of our knowledge, these are the best re-
ported F1 scores for English CCG parsing. When three independent HeadFirst models
are trained using the tri-training setup with different initial weight parameters, they
have resulted in the labeled and unlabeled F1 scores of 88.46± 0.24 and 93.80± 0.13,
on average.

35

EasySRL reimpl neuralccg Ours
Tagging 24.8 21.7 16.6
A* Search 185.2 16.7 114.6
Total 21.9 9.33 14.5

Table 3.4: Results of the efficiency experiment, where each number is the num-
ber of sentences processed per second. We compare our proposed parser against
neuralccg and our reimplementation of EasySRL.

Efficiency Comparison

We compare the efficiency of the proposed parser to neuralccg and
EasySRL reimpl (Table 3.4).17 For overall speed (the third row), the proposed
parser is faster than neuralccg; however it is slower than EasySRL reimpl. The
proposed supertagger runs slower than those of neuralccg and EasySRL reimpl.
However, for A* search, the proposed parser processes over seven times more sen-
tences than neuralccg. The delay in supertagging can be attributed to several
factors, in particular the differences in network architectures including the num-
ber of bidirectional LSTM layers (4 vs. 2) and the use of bilinear transformation
rather than linear transformation. In addition, there are many implementation dif-
ferences in our parsers (C++ A* parser with a neural network model implemented
with Chainer (Tokui et al., 2015)) and neuralccg (Java parser with C++ Tensor-
Flow (Abadi et al., 2016) supertagger and recursive neural model in C++ DyNet (Neu-
big et al., 2017))18.

3.6.4 Japanese Parsing Result

We show the results of the Japanese parsing experiment in Table 3.5, where the bun-
setsu attachment accuracy of a Japanese dependency parser CaboCha (Kudo and Mat-
sumoto, 2002) is included for reference. We train and evaluate the CaboCha parser on
the same sets of sentences as CCGBank train and test sets, extracted from the Kyoto

17This experiment was conducted on a laptop with a 2-core 4-thread 2.0 GHz CPU.
18There seems to be room to optimize the proposed parser’s efficiency. We found that our

EasySRL reimpl is slower than the original implementation of the supertag-factored model (Lewis
et al., 2016), which neuralccg uses internally.

36

Method Category Bunsetsu Dep.
CaboCha (Kudo and Matsumoto, 2002) - 91.7
Transition-based (Jigg; Noji and Miyao (2016)) 93.0 87.5
Supertag model 93.7 81.5
LEWISRULE (Ours) 93.8 90.8
HEADFINAL (Ours) 94.1 91.5

Table 3.5: Results on the Japanese CCGbank.

University Text Corpus (Kawahara et al., 2002). It achieves a slightly better score, pre-
sumably because it is directly optimized for this metric. The simple application of the
supertag-factored model (Lewis et al., 2016) is not effective for Japanese, showing the
lowest attachment score of 81.5%. We observe a performance boost with the proposed
method, particularly with HEADFINAL dependencies, which outperforms the baseline
shift-reduce parser by 1.1 points on category assignments and 4.0 points on bunsetsu
dependencies.

The reduced performance of the simple application of the supertag-factored model
can be attributed to the fact that Japanese sentence structure is still highly ambigu-
ous given supertags. This seems primarily due to the fact that the language has freer
word ordering. Many parsing errors are observed around constructions where adverbial
modifiers are involved (Figure 3.5). They are ambiguous in that which of succeeding
verbs it modifies cannot be determined only from the modifier’s supertag. The result
suggests the importance of modeling dependencies in some languages, e.g., Japanese.

Comparing A* Parser and Shift-Reduce Parser

To the best of our knowledge, this is the first work that develops an A* CCG parsing
method for the Japanese language. Jigg implements a transition-based parser adopt-
ing shift-reduce algorithm. One of the critical issues with a transition-based method for
CCG is that, the sequence of predicted actions must be strictly consistent across time
steps; there can occur a situation wherein the transition system gets stuck in the mid-
dle of parsing and thus it cannot output a tree, because there are no combinatory rules
(correspondingly no transition actions) applicable to the root categories of the two top
stack elements. To overcome this situation, the Jigg parser implements a heuristic
rule that forcibly combines them into one. In fact, the Jigg parser encountered such

37

Yesterday store−LOC buy−PAST curry−ACC eat−PRES
昨日 お店で 買った カレーを 食べる

S/S S/S S NP S\NP
>

S
>

S
un

NP/NP
>

NP
<

S
Yesterday store−LOC buy−PAST curry−ACC eat−PRES
昨日 お店で 買った カレーを 食べる

S/S S/S S NP S\NP
>

S
un

NP/NP
>

NP
<

S
>

S

Figure 3.5: An ambiguous Japanese sentence given fixed supertags. The tree above is
the more probable (The translation is “I eat the curry I bought at a store yesterday”).
In the right below, it is unlikely that “昨日” (yesterday) modifies the last verb in the
present tense, when it is immediately followed by “買った” (buy-PAST).

a situation in 7.2% (642 out of 8,948) of the test sentences. The proposed chart-based
A* parser is guaranteed to output a well-formed tree. It should be emphasized that in
the conducted experiments throughout this chapter (regardless of English or Japanese),
the proposed method always outputs a tree.

Transition-based parsers are well-known for their efficiency, because their computa-
tional complexity only increases linearly in terms of the length of the input sentence.
Since we have also emphasized the efficiency of the proposed method, which results
from the combination of a locally-factored model and A* parsing, we compare the
proposed method and the Jigg parser in terms of processing speed using the Japanese
CCGBank test set.19 We found that the proposed method processes 14.2 sentences
per second while Jigg 16.0 sentences. Although, in terms of processing speed, the

19This experiment was conducted on a laptop with a 2-core 4-thread 2.5 GHz CPU.

38

transition-based parser outperforms the proposed parser, the gap is rather tolerable
given the merits noted above.

3.7 RTE Experiments
In addition to the parsing experiments, we conduct experiments to evaluate the pro-

posed method in terms of RTE task. RTE is an elemental technology for semantic
analysis of multiple sentences, where, given premise(s) and a hypothesis, a system pre-
dicts whether the former entails (entailment), contradicts (contradiction), or is neutral
to (unknown), the latter. The experiments are performed by combining the proposed
CCG parser with ccg2lambda and LangPro, logic-based RTE systems that reason
over meaning representations converted from CCG trees (Section 2.5). Previously, it
has been reported that one of such systems shows significantly improved RTE per-
formance by using gold CCG trees rather than predicted ones (from 74.1% to 87.3%
accuracy, on the JSeM dataset), implying the huge impact of the accuracy of CCG pars-
ing on RTE (Mineshima et al., 2016). We evaluate how much the parsing performance
achieved in the previous section transfers to one of the other application tasks.

3.7.1 Experimental Settings

English

In the English experiment, we test the performance of ccg2lambda and LangPro
combined with the proposed CCG parser on the SICK dataset (Marelli et al., 2014).
This dataset was originally developed to test approaches of compositional distribu-
tional semantics and includes a variety of syntactic, lexical, and semantic phenomena.
The dataset contains 4,500 problems (a pair of premise and hypothesis) for training,
500 for trial and 4,927 for testing, with a ratio of entailment / contradiction / un-
known problems of .29 / .15 / .56 in all splits. Table 3.6 shows some problems from
the dataset, that contain complex syntactic phenomena such as PP-attachment, passive
construction and coordination. It is evident that accurate CCG parsing is important to
solve this dataset.

Here, we report results for ccg2lambda with the default settings (with SPSA ab-
duction; Martı́nez-Gómez et al. (2017)) and results for two versions of LangPro, one
described in (Abzianidze, 2015) (henceforth we refer to it as LangPro15) and the

39

ID Premise and Hypothesis Label

1761
P: A flute is being played in a lovely way by a girl.

entailment
H: One woman is playing a flute

880
P: The girl in the blue and white uniform is cheering.

entailment
H: Some cheers are being performed by the girl in the blue and white uniform.

3013
P: The man on stage is singing into the microphone.

unknown
H: There is no man in a suit standing at a microphone and singing .

Table 3.6: Example RTE problems from the SICK dataset. To solve this dataset, cap-
turing syntactic phenomena such as PP-attachment, passive construction and coordi-
nation accurately is as important as logical reasoning and external lexical knowledge.

other in (Abzianidze, 2017) (LangPro17). We report accuracy / precision / recall /
F1 values20 of the two RTE systems that use the best performing HEADFIRST parser
without NF constraints trained on tri-training (hereafter depccg) as a syntactic pars-
ing component instead of the baseline CCG parsers, i.e., C&C (Clark and Curran, 2007)
and EasyCCG (Lewis and Steedman, 2014a).

It is well known that the CCG parsing accuracy is one of the bottlenecks of logic-
based systems. To mitigate the error propagation, ccg2lambda has an option to use
multiple CCG parsers and aggregates their results (multi-parsing setting). In this work,
we also report RTE scores obtained by combining depccg with C&C and EasyCCG.
We regard two results as contradicted with each other if one is entailment and the other
is contradiction. In such cases the system outputs unknown; otherwise, if at least one
parser results in entailment or contradiction, that is adopted as the system output.

Japanese

In the Japanese experiment, we evaluate the performance of the Japanese version of
ccg2lambda, combined with the best performing HEADFINAL (depccg). We use
the JSeM RTE dataset (Kawazoe et al., 2017) for evaluation. Following Mineshima
et al. (2016), we report scores obtained for a subset of 523 problems, which includes
Japanese translations of the FraCaS dataset (Cooper et al., 1994). These datasets focus
on types of logical inferences that do not require world knowledge. The problems used

20In the RTE literature, these metrics are defined as follows: recall is the number of correctly predicted
entailments divided by the total number of premise-hypothesis pairs given to a system; precision is the
number of correctly predicted entailments divided by the number of predictions made by the system.

40

Section Premise and Hypothesis Label

Attitude

P:花子は太郎が次郎の結婚式に来ることを期待していた。

unknown
“Hanako expected that Taro went Jiro’s wedding ceremony.”

H:太郎は次郎の結婚式に来た。
“Taro went Jiro’s wedding ceremony.”

Plural

P:会議に出席していた人々全員が新しい議長に投票した。

entailment
“All the people who were at the meeting voted for a new chairman.”

H:会議に出席していたすべての人が新しい議長に投票した。
“Everyone at the meeting voted for a new chairman.”

Table 3.7: Example RTE problems from the JSeM dataset.

in the experiment are labeled with one of the tags from generalized quantifier, plural,
adjective, verb, and attitude, and treat linguistic phenomena related to it. Table 3.7
shows the example problems. We use the same baseline parser Jigg (Noji and Miyao,
2016) used in the CCGBank experiment. We also report multi-parsing results obtained
by combining depccg and Jigg (Section 3.7.1).

3.7.2 English RTE Results

Table 3.8 shows the experimental results on the SICK dataset. As can be seen, when
combined with LangPro15 and LangPro17, the proposed parser (depccg) con-
tributes to consistent improvement in the accuracy and recall (with a drop in precision),
which yields the improved overall F1 scores (0.87 % and 0.96 % up for both systems
compared to C&C). When combined with ccg2lambda, the proposed parser shows
the same tendency as LangPro, where better accuracy and recall yield the improved
F1 score. This is also evident in the multi-parsing setting where the proposed depccg
is used on top of C&C and EasyCCG.

Interestingly, the proposed parser always contributes to improved recall under all
settings. When the proposed parser is used in combination with C&C and EasyCCG,
greater than 1% recall improvement is observed, which indicates that the proposed
parser complements existing parsers. Given the definition of recall in RTE, it can be
speculated that the proposed parser can parse a broader range of sentences (in terms
of constructions) robustly. In error analysis, we find that this is actually the case. In
the SICK dataset, there are many examples of the “there is” construction, such as
“There is no dog barking” (Figure 3.6), which contains a noun phrase followed by a

41

There is no dog barking

NP (S\NP)/NP NP/N N S\NP
> un

NP NP\NP
<

NP
>

S\NP
<

S

Figure 3.6: In SICK, there are many examples of the “there is [NP NP PRP]” construc-
tion (PRP: present participle adjective). Existing parsers incorrectly analyze the NP
constituent as a noun preceded by modifiers (N/N N/N N).

present participle adjective (with categories NP/N, N, S\NP). We have observed cases
where C&C and EasyCCG incorrectly parse the phrase as “N/N N/N N”, where the
last adjective is analyzed as a noun modified by the preceding words. In contrast, the
proposed parser correctly predicts the structure shown in Figure 3.6.

3.7.3 Japanese RTE Results

In the Japanese experiment, the proposed parser has resulted in poor RTE perfor-
mance compared to the baseline Jigg parser (Table 3.9). We hypothesize that this is
due to the fact that the previous work created the semantic templates for this language
by analyzing Jigg’s parse outputs (and thus designed them to absorb the errors of a spe-
cific parser). We speculate that this resulted in a kind of “overfitting” in the templates.
In future work, we will conduct a detailed investigation of the issue. The RTE per-
formance has significantly improved when the parsers are combined in multi-parsing
setting. Among 538 test problems, ccg2lambda combined with depccg has solved
30 problems for which the one with jigg has failed. Conversely, the latter is suc-
cessful in 44 problems for which the former is not, which further indicates that the
proposed parser works complementarily to existing parsers, which is in accordance
with the English RTE experiments.

One critical issues with our model is that it does not consider the probability of ap-
plying a unary rule directly. In the Japanese CCGBank, the ADNint and ADNext unary
rules are employed to account for two classes of sentential noun modification (Tera-
mura, 1969): “inner relationship”, a relative clause equivalent in Japanese that involves

42

Method Accuracy Precision Recall F1
LangPro15 (Abzianidze, 2015)
C&C 79.93 97.99 54.73 70.23
EasyCCG 79.05 98.00 52.67 68.51
depccg 80.37 97.94 55.81 71.10
LangPro17 (Abzianidze, 2017)
C&C 81.04 97.62 57.55 72.41
EasyCCG 81.04 97.47 57.69 72.48
depccg 81.53 97.51 58.81 73.37
ccg2lambda (Martı́nez-Gómez et al., 2017)
C&C 81.95 96.81 59.88 73.99
EasyCCG 81.59 97.73 58.48 73.17
depccg 81.95 97.19 59.98 74.18
C&C + EasyCCG 83.13 97.04 63.64 77.14
C&C + EasyCCG + depccg 83.82 96.57 64.66 77.46

Table 3.8: RTE results on the test section of SICK

argument extraction from within the subordinate clause (Figure 3.7a), and “outer re-
lationship”, another broader class of sentential modifier that includes complements
(Figure 3.7b). As such, these unary rules result in largely different logical formu-
las in semantic parsing. In the case of ccg2lambda, the former is converted to a
conjunctive modifier, while the latter to a higher-order Content predicate, as shown
in Figure 3.7. Among the 44 problems for which only Jigg is successful, we have
found examples where the proposed method predicts ADNint where ADNext is appro-
priate (and vice versa). Currently, the adequacy of applying either of these rules is
modeled indirectly through the probability of the structure of the modifier clause.

In the current evaluation protocol of Japanese CCG parsing (Section 3.6.2), mispre-
diction of either of these unary rules is captured via the Category metric (cf. Fig-
ure 3.7). We approximate the accuracy of the use of ADNint/ADNext by computing
that metric only on those verbs (determined based on their gold part-of-speech tag)
that appear under these unary rules in the Japanese CCGBank test set (5,171 test sen-
tences contain at least one such verb occurrence, resulting in 12,227 verbs considered
in total). Note that this is considered an “approximation” because not all of the verbs
may be involved with the constructions. The result is 83.5%, which is considerably low

43

Method Accuracy Precision Recall F1
jigg 74.76 92.62 65.12 76.47
depccg 69.40 88.74 59.07 70.92
jigg + depccg 79.34 90.52 74.35 81.64

Table 3.9: RTE results using ccg2lambda on JSeM

given that the metric on all words in the dataset is 94.1% (Table 3.5). Actually this is
one of the causes of the large performance drop of the system combined with depccg
alone. Its failure in analyzing the sentence “会議に出席していたすべての人が新し
い議長に投票した。”(Everyone at the meeting voted for a new chairman.), which is
contained in four test problems, has resulted in the failure of theorem proving on all
of the problems. Extending the proposed method to model unary rules explicitly is an
important future direction relative to realizing robust semantic parsing using CCG.

3.8 Related Work
Previous studies have utilized dependencies in lexicalized grammar parsing.
For Head-driven Phrase Structure Grammar (HPSG; Pollard and Sag (1994)), sev-

eral studies used the predicted dependency structure to improve the accuracy of HPSG
parsing. In (Sagae et al., 2007), the form of the output tree is constrained to match
the dependencies. As in our method, for each rule (schema) application, they define
which child becomes the head and impose a soft constraint that these dependencies
agree with the output of a dependency parser. The proposed method is different in that
we do not use the one-best dependency structure alone. Rather, we search for a CCG
tree that is optimal in terms of dependencies and CCG supertags. Zhang et al. (2010)
analyzes that capturing two syntactic properties, i.e., the subject and complements, is
important for HPSG supertagging. Based on this observation, they developed a two-
stage method that first parses the input sentence into a dependency structure and then
uses dependency-based discrete features for an averaged perceptron-based supertagger,
which results in improved tagging accuracy.

In CCG parsing literature, some studies have focused on the optimization of depen-
dency models (Xu et al., 2014; Clark and Curran, 2007), which are a class of models
defined over semantic dependencies obtained from a CCG tree (similar to a predi-

44

(a) Transfer−ACC wish− PRS − REL worker NOM exists
異動を 希望している 社員 が いる

NP (S\NP)\NP NP NP\NP S\NP
<

S\NP
ADNint

NP/NP
>

NP
<

NP
<

S :
∃x.(worker(x)∧∃y.(transfer(y)∧∃e.(wish(e)∧Nom(e) = x∧Acc(e) = y)))

(b) Transfer−ACC wish− PRS − REL reason NOM exists
異動を 希望している 理由 が ある

NP S\NP NP NP\NP S\NP
<

S
ADNext

NP/NP
>

NP
<

NP
<

S :
∃x.(reason(x) ∧ Content(x, λK.∃y.(transfer(y) ∧ ∃e.(K(λe′.wish(e′), e) ∧

Acc(e) = y))))

Figure 3.7: Examples of the use of ADNint (inner relationship) and ADNext (outer
relationship) unary rules. The English translation is (a) “There exists a worker who
wants to transfer his post” and (b) “There is a reason why he wants to transfer his
post”.

45

cate argument structure). Such optimization is typically achieved by summing over
all derivations that realize the same semantic dependencies. This approach is reason-
able given that the objective matches the evaluation metric. Rather than modeling
only dependencies, the proposed method finds a CCG derivation with a higher depen-
dency score. CCG-based semantic dependencies are also used as features in joint CCG
parsing and semantic role labeling (Lewis et al., 2015); however such features are in-
effective to recover long-range dependencies over LSTMs in CCGbank parsing (Lewis
et al., 2016).

3.9 Summary
We have proposed an A* CCG parsing method, in which the probability of a CCG

tree is decomposed into local factors of the CCG categories and its dependency struc-
ture. By modeling the dependency structure explicitly, we do not require any deter-
ministic heuristics to resolve attachment ambiguities and can keep the model locally
factored such that all probabilities can be precomputed prior to running the search.
The proposed parser finds the optimal parses efficiently and achieves the state-of-the-
art performance in both English and Japanese parsing. We also evaluated the proposed
parser in terms of logic-based RTE systems. The experimental results demonstrate the
proposed method’s robustness against a wide range of constructions while also high-
lighting the future direction of improvement in terms of the use of unary rules.

46

47

Chapter 4

Domain Adaptation for CCG Parsing

4.1 Introduction
The recent advancement of CCG parsing, combined with formal semantics, has

enabled high-performing natural language inference systems (as introduced in Sec-
tion 2.5). Our interest in this chapter is to transfer the success to a range of applications,
such as building inference systems on scientific papers and speech conversation.

To achieve the goal, it is urgent to enhance the CCG parsing accuracy on new do-
mains, i.e., solving a notorious problem of domain adaptation of a statistical parser,
which has long been addressed in the literature. Especially in CCG parsing, prior
work (Rimell and Clark, 2008; Lewis et al., 2016) has taken advantage of highly infor-
mative categories, which determine the most part of sentence structure once correctly
assigned to words. It is demonstrated that the annotation of only pre-terminal cat-
egories is sufficient to adapt a CCG parser to new domains. However, the solution
is limited to a specific parser’s architecture, making non-trivial the application of the
method to the current state-of-the-art parsers (Section 2.3), which require full parse
annotation. Additionally, some ambiguities remain unresolved with mere supertags,
especially in languages other than English, as discussed in the previous chapter (Sec-
tion 3.6.2), to which the method is not portable.

Distributional embeddings are proven to be powerful tools for solving the issue of
domain adaption, with their unlimited applications in NLP, not to mention syntac-
tic parsing (Lewis and Steedman, 2014b; Mitchell and Steedman, 2015; Peters et al.,
2018). Among others, Joshi et al. (2018) reports huge performance boosts in con-
stituency parsing using contextualized word embeddings (Peters et al., 2018), which is
orthogonal to our work, and the combination shows huge gains. Including (Joshi et al.,

Trained
Converter

the government reported that ...

det nsubj ...mark

the government reported that ...
NP/N N (S\NP)/S S

NP S\NP

S

reported

govern-
ment

that

...
Bidirectional TreeLSTM

(Miwa et al.,2016)

i
Vector

encodings

Dependency tree
CCG tree

(a) Training the converter

A* parsing
decoder

Circadian rhythm in glucocorticoid ...

amod
nmod

case ...

Genia
Dep.

Corpus

Genia
CCG

Corpus

(b) Using the trained converter

root

root (c) Fine-tune a CCG parser

N/N N/N N
N

N
the

NP/N
NP

government reported
that

N
NP/S

S

...
S

NP
S\NP>

>
>

<

(S\NP)/NP

Figure 4.1: Overview of the proposed method. (a) A neural network-based model
is trained to convert a dependency tree to a CCG one using aligned annotations on
WSJ part of the Penn Treebank and the English CCGbank. (b) The trained converter
is applied to an existing dependency corpus (e.g., the Genia corpus) to generate a
CCGbank, (c) which is then used to fine-tune the parameters of an off-the-shelf CCG
parser.

2018), there are studies to learn from partially annotated trees (Mirroshandel and Nasr,
2011; Li et al., 2016; Joshi et al., 2018), again, most of which exploit specific parser
architecture.

In this work, we propose a conceptually simpler approach to the issue, which is
agnostic on any parser architecture, namely, automatic generation of CCGbanks (i.e.,
CCG treebanks)1 for new domains, by exploiting cheaper resources of dependency
trees. Specifically, we train a deep conversion model to map a dependency tree to a
CCG tree, on aligned annotations of the Penn Treebank (Marcus et al., 1993) and the
English CCGbank (Hockenmaier and Steedman, 2007) (Figure 4.1a). When we need a
CCG parser tailored for a new domain, the trained converter is applied to a dependency
corpus in that domain to obtain a new CCGbank (4.1b), which is then used to fine-tune
an off-the-shelf CCG parser (4.1c). The assumption that we have a dependency corpus
in that target domain is not demanding given the abundance of existing dependency
resources along with its developed annotation procedure, e.g., Universal Dependencies
(UD) project (Nivre et al., 2016), and the cheaper cost to train an annotator.

1In this chapter, we call a treebank based on CCG grammar a CCGbank, and refer to the specific
one constructed in (Hockenmaier and Steedman, 2007) as the English CCGbank.

48

One of the biggest bottlenecks of syntactic parsing is handling of countless unknown
words. It is also true that there exist such unfamiliar input data types to our converter,
e.g., disfluencies in speech and symbols in math problems. We address these issues by
constrained decoding (Section 4.4), enabled by incorporating a parsing technique into
our converter. Nevertheless, syntactic structures exhibit less variance across textual
domains than words do; our proposed converter suffers less from such unseen events,
and expectedly produces high-quality CCGbanks.

The work closest to ours is (Jiang et al., 2018), where a conversion model is trained
to map dependency treebanks of different annotation principles, which is used to in-
crease the amount of labeled data in the target-side treebank. Our work extends theirs
and solves a more challenging task; the mapping to learn is to more complex CCG
trees, and it is applied to datasets coming from plainly different natures (i.e., domains).
Some prior studies design conversion algorithms to induce CCGbanks for languages
other than English from dependency treebanks (Bos et al., 2009; Ambati et al., 2013).
Though the methods may be applied to our problem, they usually cannot cover the en-
tire dataset, consequently discarding sentences with characteristic features. On top of
that, unavoidable information gaps between the two syntactic formalisms may at most
be addressed probabilistically.

To verify the generalizability of our approach, on top of existing benchmarks on (1)
biomedical texts and (2) question sentences (Rimell and Clark, 2008), we conduct
parsing experiments on (3) speech conversation texts, which exhibit other challenges
such as handling informal expressions and lengthy sentences. We create a CCG ver-
sion of the Switchboard corpus (Godfrey et al., 1992), consisting of full train/dev/test
sets of automatically generated trees and manually annotated 100 sentences for a de-
tailed evaluation. Additionally, we manually construct experimental data for parsing
(4) math problems (Seo et al., 2015), for which the importance of domain adaptation
is previously demonstrated by Joshi et al. (2018). We observe huge additive gains in
the performance of the depccg parser, developed in Chapter 3, by combining contex-
tualized word embeddings (Peters et al., 2018) and our domain adaptation method: in
terms of unlabeled F1 scores, 90.68% to 95.63% on speech conversation, and 88.49%
to 95.83% on math problems, respectively.

49

4.2 Problem Statement
Currently, there are mainly two resources available for CCG parsing: the English

CCGbank (Hockenmaier and Steedman, 2007) for news texts, and the Groningen
Meaning Bank (Bos et al., 2017) for wider domains, including Aesop’s fables. How-
ever, when one wants a CCG parser tuned for a specific domain, he or she faces the
issue of its high annotation cost:

• The annotation requires linguistic expertise, being able to keep track of semantic
composition performed during a derivation.

• An annotated tree must strictly conform to the grammar, e.g., inconsistencies
such as combining N and S\NP result in ill-formed trees and hence must be
disallowed.

The alternative approach may be first to parse sentences in the target domain into CCG
trees, and then manually fix the resulting trees. This may reduce the above costs, but
not fully eliminates them, given that the parsed trees can contain lots of errors (this is
why domain adaptation is needed).

We relax these assumptions by using dependency tree, which is a simpler represen-
tation of the syntactic structure, i.e., it lacks information of long-range dependencies
and conjunct spans of a coordination structure. However, due to its simplicity and
flexibility, it is easier to train an annotator for the grammar, and there exist plenty of
accessible dependency-based resources. It is also easier to manually check errors in
automatically parsed trees in the target domain. We exploit these merits in this work.

4.3 Dependency-to-CCG Converter
We propose a domain adaptation method based on the automatic generation of a

CCGbank out of a dependency treebank in the target domain. This is achieved by our
dependency-to-CCG converter, a neural network model consisting of a dependency
tree encoder and a CCG tree decoder.

In the encoder, higher-order interactions among dependency edges are modeled with
a bidirectional TreeLSTM (Miwa and Bansal, 2016), which is important to facilitate
mapping from a dependency tree to a more complex CCG tree. Due to the strict nature

50

of CCG grammar, we model the output space of CCG trees explicitly;2 our decoder
is inspired by the idea of A* CCG parsing described in Chapter 3, where the most
probable valid tree is found using A* parsing. In the following, we describe the details
of the proposed converter.

Firstly, we define a probabilistic model of the dependency-to-CCG conversion pro-
cess. Our finding in the previous chapter is that, the structure of a CCG tree y for
sentence x = (x1, ..., xN) is almost uniquely determined if a sequence of the pre-
terminal CCG categories (supertags) c = (c1, ..., cN) and a dependency structure
d = (d1, ..., dN), where di ∈ {0, ..., N} is an index of dependency parent of xi (0 rep-
resents a root node), are provided. Note that the dependency structure d is generally
different from an input dependency tree.3 Let the input dependency tree of sentence x

be z = (p,d′, ℓ), where pi is a part-of-speech tag of xi, d′i an index of its dependency
parent, and ℓi is the label of the corresponding dependency edge, then the conversion
process is expressed as follows:4

P (y|x, z) =
N∏
i=1

ptag(ci|x, z)
N∏
i=1

pdep(di|x, z).

Based on this formulation, we model ci and di conditioned on a dependency tree z,
and search for y that maximizes P (y|x, z) using A* parsing.

Encoder A bidirectional TreeLSTM consists of two distinct TreeLSTMs (Tai et al.,
2015). A bottom-up TreeLSTM recursively computes a hidden vector h↑

i for each
xi, from vector representation ei of the word and hidden vectors of its dependency
children {h↑

j |d′j = i}. A top-down TreeLSTM, in turn, computes h↓
i using ei and a

hidden vector of the dependency parent h↓
d′i

. In total, a bidirectional TreeLSTM returns

concatenations of hidden vectors for all words: hi = h↑
i ⊕ h↓

i .
We encode a dependency tree as follows, where ev denotes the vector representation

of variable v, and Ω and Ξd′ are shorthand notations of the series of operations of

2The strictness and the large number of categories make it still hard to leave everything to neural net-
works to learn. We trained constituency-based RSP parser (Joshi et al., 2018) on the English CCGbank
by disguising the trees as constituency ones, whose performance could not be evaluated since most of
the output trees violated the grammar.

3In this work, input dependency tree is based on Universal Dependencies (Nivre et al., 2016), while
dependency structure d of a CCG tree is HEADFIRST dependency tree introduced in the previous chapter
(Section 3.4). See Section 4.5.1 for the details of the actual implementation.

4As the previous Chapter 3, the independence of each ci and di is assumed here.

51

sequential and tree bidirectional LSTMs, respectively:

e1, ..., eN = Ω(ep1 ⊕ ex1 , ..., epN ⊕ exN
),

h1, ...,hN = Ξd′(e1 ⊕ eℓ1 , ..., eN ⊕ eℓN).

Decoder The decoder part adopts the same architecture as one in the depccg parser
(Section 3.3.1), where pdep|tag probabilities are computed on top of {hi}Ni=0, using a
biaffine layer (Dozat and Manning, 2017) and a bilinear layer, respectively, which are
then used in A* parsing to find the most probable CCG tree.

For the completeness, a biaffine layer is used to compute unigram head probabilities
pdep as follows:

ri = ψdep
child(hi), rj = ψdep

head(hj),

si,j = r⊤
i Wrj +w⊤rj,

pdep(di = j|x, z) ∝ exp(si,j),

where ψ denotes a multi-layer perceptron. The probabilities ptag are computed by a
bilinear transformation of vector encodings xi and xd̂i , where d̂i is the most probable
dependency head of xi with respect to pdep: d̂i = argmaxj pdep(di = j|x, z).

qi = ψtag
child(hi), qd̂i

= ψtag
head(hd̂i

),

si,c = q⊤
i Wcqd̂i

+ v⊤
c qi + u⊤

c qd̂i
+ bc,

ptag(ci = c|x, z) ∝ exp(si,c).

A* Parsing Since the probability P (y|x, z) of a CCG tree y has the exactly same
structure as the probabilistic model for parsing proposed in the previous chapter (Sec-
tion 3.3.1), we can use A* parsing to obtain the most probable tree. Here, we perform
A* parsing as described in the section, and adopt an admissible heuristic by taking the
sum of the max ptag|dep probabilities outside a subtree. The advantage of employing
an A* parsing-based decoder is not limited to the optimality guarantee of the decoded
tree; it enables constrained decoding, which is described next.

4.4 Constrained Decoding
While our method is a fully automated treebank generation method, there are often

cases where we want to control the form of output trees by using external language

52

resources. For example, when generating a CCGbank for biomedical domain, it will
be convenient if a disease dictionary is utilized to ensure that a complex disease name
in a text is always assigned the category NP . In our decoder based on A* parsing, it is
possible to perform such a controlled generation of a CCG tree by imposing constraints
on the space of trees.

A constraint is a triplet (c, i, j) representing a constituent of category c spanning over
words xi, ..., xj . The constrained decoding is achieved by refusing to add a subtree
(denoted as (c′, k, l), likewise, with its category and span) to the priority queue when
it meets one of the following conditions:

• The spans overlap: i < k ≤ j < l or k < i ≤ l < j.

• The spans are identical (i = k and j = l), while the categories are different
(c ≠ c′) and no category c′′ exists such that c′ ⇒ c′′ is a valid unary rule.

The last condition on unary rule is necessary to prevent structures such as
(NP (N dog)) from being accidentally discarded, when using a constraint to make
a noun phrase to be NP . A set of multiple constraints are imposed by checking the
above conditions for each of the constraints when adding a new item to the priority
queue. When one wants to constrain a pre-terminal category to be c, that is achieved
by manipulating ptag: ptag(c|x, z) = 1 and for all categories c′ ̸= c, ptag(c′|x, z) = 0.

4.5 Experiments

4.5.1 Experimental Settings

We evaluate our method in terms of performance gain obtained by fine-tuning the
depccg parser (Chapter 3), on a variety of CCGbanks obtained by converting existing
dependency resources using the method.

As described in the chapter, in the plain depccg, the word representation exi
is

a concatenation of GloVe5 vectors and vector representations of affixes. The parser
is trained on both the English CCGbank (Hockenmaier and Steedman, 2007) and the
tri-training dataset (Section 3.5). In this work, on top of that, we include as a baseline
a setting where the affix vectors are replaced by contextualized word representation

5https://nlp.stanford.edu/projects/glove/

53

https://nlp.stanford.edu/projects/glove/

(ELMo (Peters et al., 2018); exi
= xGloV e

xi
⊕xELMo

xi
),6 which we find marks the current

best scores in the English CCGbank parsing (Table 4.1).
The evaluation is based on the standard evaluation metric, where the number of cor-

rectly predicted predicate argument relations is calculated (Section 2.4), where labeled
metrics take into account the category through which the dependency is constructed,
while unlabeled ones do not.

Implementation Details The input word representations to the converter are the con-
catenation of GloVe and ELMo representations. Each of epi and eℓi is randomly ini-
tialized 50-dimensional vectors, and the two-layer sequential LSTMs Ω outputs 300
dimensional vectors, as well as bidirectional TreeLSTM Ξd′ , whose outputs are then
fed into 1-layer 100-dimensional MLPs with ELU non-linearity (Clevert et al., 2016).
The training is done by minimizing the sum of negative log likelihood of ptag|dep using
the Adam optimizer (with β1 = β2 = 0.9), on a dataset detailed below.

Data Processing In this work, the input tree to the converter follows Universal De-
pendencies (UD) v1 (Nivre et al., 2016). Constituency-based treebanks are converted
using the Stanford Converter7 to obtain UD trees. The output dependency structure d

follows HEADFIRST dependency tree (Section 3.4), where a dependency arc is always
from left to right. These choices are made by the following consideration: (1) since
available UD-based resources are abundant and increasing, it is meaningful to evalu-
ate the effectiveness of our method in terms of them considering future applications,
and (2) modeling HEADFIRST dependencies in a CCG tree is found the most effec-
tive in the previous chapter. The conversion model is trained to map UD trees in the
Wall Street Journal (WSJ) portion 2-21 of the Penn Treebank (Marcus et al., 1993) to
its corresponding CCG trees in the English CCGbank (Hockenmaier and Steedman,
2007).

Fine-tuning the CCG Parser In each of the following domain adaptation experi-
ments, newly obtained CCGbanks are used to fine-tune the parameters of the baseline
parser described above, by re-training it on the mixture of labeled examples from the
new target-domain CCGbank, the English CCGbank, and the tri-training dataset.

6We used the “original” ELMo model, with 1,024-dimensional word vector outputs (https://
allennlp.org/elmo).

7https://nlp.stanford.edu/software/stanford-dependencies.shtml. We
used the version 3.9.1.

54

https://allennlp.org/elmo
https://allennlp.org/elmo
https://nlp.stanford.edu/software/stanford-dependencies.shtml

Method UF1 LF1
depccg 94.0 88.8
+ ELMo 94.98 90.51

Converter 96.48 92.68

Table 4.1: The performance of baseline CCG parsers and the proposed converter on
WSJ23, where UF1 and LF1 represents unlabeled and labeled F1, respectively.

Relation Parser Converter #
(a) PPs attaching to NP / VP

(NP\NP)/NP 90.62 97.46 2,561
(S\NP)\(S\NP))/NP 81.15 88.63 1,074
(b) Subject / object relative clauses
(NP\NP)/(Sdcl\NP) 93.44 98.71 307
(NP\NP)/(Sdcl/NP) 90.48 93.02 20

Table 4.2: Per-relation F1 scores of the proposed converter and depccg + ELMo
(Parser). “#” column shows the number of occurrence of the phenomenon.

4.5.2 Evaluating Converter’s Performance

First, we examine whether the trained converter can produce high-quality CCG trees,
by applying it to dependency trees in the test portion (WSJ23) of Penn Treebank and
then calculating the standard evaluation metrics between the resulting trees and the
corresponding gold trees (Table 4.1). This can be regarded as evaluating the upper
bound of the conversion quality, since the evaluated data comes from the same domain
as the converter’s training data. Our converter shows much higher scores compared
to the current best-performing depccg combined with ELMo (1.5% and 2.17% up
in unlabeled/labeled F1 scores), suggesting that, using the proposed converter, we can
obtain CCGbanks of high quality.

Inspecting the details, the improvement is observed across the board (Table 4.2); the
converter precisely handles PP-attachment (4.2a), notoriously hard parsing problem,
by utilizing input’s pobj dependency edges, as well as relative clauses (4.2b), one
of well-known sources of long-range dependencies, for which the converter has to
learn from the non-local combinations of edges, their labels and part-of-speech tags

55

Method P R F1
C&C 77.8 71.4 74.5
EasySRL 81.8 82.6 82.2
depccg 83.11 82.63 82.87
+ ELMo 85.87 85.34 85.61
+ GENIA1000 85.45 84.49 84.97
+ Proposed 86.90 86.14 86.52

Table 4.3: Results on the biomedical domain dataset (Section 4.5.3). P and R represent
precision and recall, respectively. The scores of C&C and EasySRL fine-tuned on the
GENIA1000 is included for comparison (excerpted from (Lewis et al., 2016)).

Method P R F1
C&C - - 86.8
EasySRL 88.2 87.9 88.0
depccg 90.42 90.15 90.29
+ ELMo 90.55 89.86 90.21
+ Proposed 90.27 89.97 90.12

Table 4.4: Results on question sentences (Section 4.5.3). All of baseline C&C,
EasySRL and depccg parsers are retrained on Questions data.

surrounding the phenomenon.

4.5.3 Biomedical Domain and Questions

Previous work (Rimell and Clark, 2008) provides CCG parsing benchmark datasets
in biomedical texts and question sentences, each representing two contrasting chal-
lenges for a newswire-trained parser, i.e., a large amount of out-of-vocabulary words
(biomedical texts), and rare or even unseen grammatical constructions (questions).

Since the work also provides small training datasets for each domain, we utilize them
as well: GENIA1000 with 1,000 sentences and Questions with 1,328 sentences,
both annotated with pre-terminal CCG categories. Since pre-terminal categories are
not sufficient to train depccg, we automatically annotate HEADFIRST dependencies

56

using RBGParser (Lei et al., 2014), trained to produce this type of trees (We use the
same parser trained in the Section 3.5).

Following the previous work, the evaluation is based on the Stanford grammatical
relations (GR; (Marneffe et al., 2006)), a deep syntactic representation that can be
recovered from a CCG tree.8

Biomedical Domain By converting the Genia corpus (Tateisi et al., 2005), we ob-
tain a new CCGbank of 4,432 sentences from biomedical papers annotated with CCG
trees. During the process, we have successfully assigned the category NP to all the
occurrences of complex biomedical terms by imposing constraints (Section 4.4) that
NP spans in the original corpus be assigned the category NP in the resulting CCG
trees as well.

Table 4.3 shows the results of the parsing experiment, where the scores of previ-
ous work (C&C and EasySRL; Section 2.3) are included for reference. The plain
depccg already achieves higher scores than these methods, and boosts when com-
bined with ELMo (improvement of 2.73 points in terms of F1). Fine-tuning the parser
on GENIA1000 results in a mixed result, with slightly lower scores. This is presum-
ably because the automatically annotated HEADFIRST dependencies are not accurate.
Finally, by fine-tuning on the Genia CCGbank, we observe another improvement, re-
sulting in the highest 86.52 F1 score.

Questions In this experiment, we obtain a CCG version of the QuestionBank (Judge
et al., 2006), consisting of 3,622 question sentences, excluding ones contained in the
evaluation data.

Table 4.4 compares the performance of depccg fine-tuned on the QuestionBank,
along with other baselines. Contrary to our expectation, the plain depccg retrained
on Questions data performs the best, with neither ELMo nor the proposed method
taking any effect. We hypothesize that, since the evaluation set contains sentences with
similar constructions, the contributions of the latter two methods are less observable
on top of Questions data. Inspection of the output trees reveals that this is actually
the case; the majority of differences among parser’s configurations are irrelevant to
question constructions, suggesting that the models capture well the syntax of question
in the data.9

8We used their public script (https://www.cl.cam.ac.uk/˜sc609/candc-1.00.
html).

9Due to many-to-many nature of mapping to GRs, the evaluation set contains relations not recov-

57

https://www.cl.cam.ac.uk/~sc609/candc-1.00.html
https://www.cl.cam.ac.uk/~sc609/candc-1.00.html

4.5.4 Speech Conversation

Setup We apply the proposed method to a new domain, transcription texts of speech
conversation, with new applications of CCG parsing in mind. We create the CCG
version of the Switchboard corpus (Godfrey et al., 1992), by which, as far as we are
aware of, we conduct the first CCG parsing experiments on speech conversation.10

We obtain a new CCGbank of 59,029/3,799/7,681 sentences for each of the train/test
/development set, where the data split follows prior work on dependency parsing on
this dataset (Honnibal and Johnson, 2014).

In the conversion, we have to handle one of the characteristics of speech transcrip-
tion texts, disfluencies. In real application, it is ideal to remove disfluencies such as
interjection and repairs (e.g., I want a flight to Boston um to Denver), prior to perform-
ing CCG-based semantic composition. Since this corpus contains a layer of annotation
that labels their occurrences, we perform constrained decoding to mark the gold dis-
fluencies in a tree with a dummy category X , which can combine with any category
from both sides (i.e., for all category C, C X ⇒ C and X C ⇒ C are allowed).
In this work, we perform parsing experiments on texts that are clean of disfluencies,
by removing X-marked words from sentences (i.e., a pipeline system setting with an
oracle disfluency detection preprocessor).11

Another issue in conducting experiments on this dataset is evaluation. Since there
exists no evaluation protocol for CCG parsing on speech texts, we evaluate the quality
of output trees by two procedures; in the first experiment, we parse the entire test set,
and convert them to constituency trees using a method by Kummerfeld et al. (2012).12

We report labeled bracket F1 scores between the resulting trees and the gold trees in
the true Switchboard corpus, using the EVALB script.13 However, the reported scores
suffer from the compound effect of failures in CCG parsing as well as ones occurred
in the conversion to the constituency trees. To evaluate the parsing performance in
detail, the first author manually annotated a subset of randomly sampled 100 sentences

erable from the gold supertags using the provided script; for example, we find that from the annotated
supertags of sentence How many battles did she win ?, the (amod battle many) relation is obtained
instead of the gold det relation. This implies one of the difficulties to obtain further improvement on
this set.

10Since the annotated part-of-speech tags are noisy, we automatically reannotate them using the
core web sm model of spaCy (https://spacy.io/), version 2.0.16.

11We regard developing joint disfluency detection and syntactic parsing method based on CCG as
future work.

12https://github.com/jkkummerfeld/berkeley-ccg2pst
13https://nlp.cs.nyu.edu/evalb/

58

https://spacy.io/
https://github.com/jkkummerfeld/berkeley-ccg2pst
https://nlp.cs.nyu.edu/evalb/

a. we should cause it does help

b. the only problem i see with term limita-

tions is that i think that the bureaucracy

in our government as is with most gov-

ernments is just so complex that there

is a learning curve and that you ca n’t

just send someone off to washington and

expect his first day to be an effective

congress precision

Table 4.5: Example sentences from the manually annotated subset of Switchboard test
set.

Error type #
PP-attachment 3
Adverbs attaching wrong place 11
Predicate-argument 5
Imperative 2
Informal functional words 2
Others 11

Table 4.6: Error types observed in the manually annotated Switchboard subset data.

from the test set. Sentences with less than four words are not contained, to exclude
short phrases such as nodding. Using this test set, we report the standard CCG parsing
metrics. Sentences from this domain exhibit other challenging aspects (Table 4.5), such
as less formal expressions (e.g., use of cause instead of because) (4.5a), and lengthy
sentences with many embedded phrases (4.5b).14

Results On the whole test set, depccg shows consistent improvements when com-
bined with ELMo and the proposed method, in the constituency-based metrics (Whole
columns in Table 4.7). Though the entire scores are relatively lower, the result sug-
gests that the proposed method is effective to this domain on the whole. By directly

14Following Honnibal and Johnson (2014), sentences in this data are fully lower-cased and contain
no punctuation.

59

Method
Whole Subset

P R F1 UF1 LF1
depccg 74.73 73.91 74.32 90.68 82.46
+ ELMo 75.76 76.62 76.19 93.23 86.46
+ Proposed 78.03 77.06 77.54 95.63 92.65

Table 4.7: Results on speech conversation texts (Section 4.5.4), on the whole test set
and the manually annotated subset.

if CD = 8 and BE = 2 , find AE .

((S\NP)/(S\NP))/Sdcl N (Sdcl\NP)/NP N : conj N (Sdcl\NP)/NP N , (Sdcl\NP)/NP N .
un un un un un

NP NP NP NP NP
> > >

Sdcl\NP Sdcl\NP Sdcl\NP
< < rp

Sdcl Sdcl Sdcl\NP
<Φ> rp

Sdcl\Sdcl Sdcl\NP
<

Sdcl
>

(S\NP)/(S\NP)
>

Sdcl\NP

Figure 4.2: Parse output by the re-trained parser for sentence if CD = 8 and BE = 2,
find AE. from math problems.

evaluating the parser’s performance in terms of predicate argument relations (Subset
columns), we observe that it actually recovers the most of the dependencies, with the
fine-tuned depccg achieving as high as 95.63% unlabeled F1 score.

We further investigate error cases of the fine-tuned depccg in the subset dataset
(Table 4.6). The tendency of error types is in accordance with other domains, with fre-
quent errors in PP-attachment and predicate-argument structure, and seemingly more
cases of attachment errors of adverbial phrases (11 cases), which occur in lengthy
sentences such as in Table 4.5b. Other types of error are failures to recognize that
the sentence is in imperative form (2 cases), and ones in handling informal functional
words such as cause (Table 4.5a). We conclude that the performance on this domain is
as high as it is usable in application. Since the remaining errors are general ones, they
will be solved by improving general parsing techniques.

60

Method UF1 LF1
depccg 88.49 66.15
+ ELMo 89.32 70.74
+ Proposed 95.83 80.53

Table 4.8: Results on math problems (Section 4.5.5).

4.5.5 Math Problems

Setup Finally, we conduct another experiment on parsing math problems. Following
previous work of constituency parsing on math problem (Joshi et al., 2018), we use the
same train/test sets by Seo et al. (2015), consisting of 63/62 sentences respectively, and
see if a CCG parser can be adapted with the small training samples. Again, the first
author annotated both train/test sets, dependency trees on the train set, and CCG trees
on the test set, respectively. In the annotation, we follow the manuals of the English
CCGbank and the UD. We regard as an important future work extending the annotation
to include fine-grained feature values in categories, e.g., marking a distinction between
integers and real numbers (Matsuzaki et al., 2017). Figure 4.2 shows an example CCG
tree from this domain, successfully parsed by fine-tuned depccg.

Results Table 4.8 shows the F1 scores of depccg in the respective settings. Re-
markably, we observe huge additive performance improvement. While, in terms of
labeled F1, ELMo contributes about 4 points on top of the plain depccg, adding the
new training set (converted from dependency trees) improves more than 10 points.15

Examining the resulting trees, we observe that the huge gain is primarily involved with
expressions unique to math. Figure 4.2 is one of such cases, which the plain depccg
falsely analyzes as one huge NP phrase. However, after fine-tuning, it successfully
produces the correct “If S1 and S2, S3” structure, recognizing that the equal sign is a
predicate.

15Note that, while in the experiment on this dataset in the previous constituency parsing work (Joshi
et al., 2018), they evaluate on partially annotated (unlabeled) trees, we perform the “full” CCG pars-
ing evaluation, employing the standard evaluation metrics. Given that, the improvement is even more
significant.

61

4.6 Summary
In this work, we have proposed a domain adaptation method for CCG parsing, based

on the automatic generation of new CCG treebanks from dependency resources. We
have conducted experiments to verify the effectiveness of the proposed method on
diverse domains: on top of existing benchmarks on biomedical texts and question sen-
tences, we newly conduct parsing experiments on speech conversation and math prob-
lems. Remarkably, when applied to our domain adaptation method, the improvements
in the latter two domains are significant, with the achievement of more than 5 points in
the unlabeled metric.

Finally, the technique developed in this chapter is actually not limited to domain
adaptation. The huge gains in various domains suggest effective applications of the
method in other settings; for example, the method may be used to increase the labeled
samples in the news-wire domain, which may in turn makes it possible to construct an
even performant parser on CCGBank parsing benchmarks (Section 3.6). Evaluating
this aspect of our method is an important direction in future work.

62

63

Chapter 5

Axiom Injection for Logic-based
Inference System

5.1 Introduction
RTE is a challenging NLP task where the objective is to judge whether a hypothesis

H logically follows from premise(s) P . Advances in RTE have positive implications
in other areas such as information retrieval, question answering and reading compre-
hension. Various approaches have been proposed to the RTE problem in the literature.
Some methods are based on deep neural networks (Rocktäschel et al., 2016; Chen
et al., 2018; Nie and Bansal, 2017), where a classifier is trained to predict the rela-
tion using H and P encoded in a high-dimensional space. Other methods are purely
symbolic (Bos et al., 2004; Mineshima et al., 2015; Abzianidze, 2015), where logical
formulas that represent H and P are constructed and used in a formal proof system. In
this chapter, we adopt a strategy based on logic, encouraged by the high-performance
that these systems achieve in linguistically complex datasets (Mineshima et al., 2015;
Abzianidze, 2015), which contain a variety of semantic phenomena that are still chal-
lenging for the current neural models (Wang et al., 2018).

Contrary to the end-to-end machine learning approaches, a logic-based system must
explicitly maintain lexical knowledge necessary for inference. A critical challenge here
is to deal with such knowledge in an efficient and scalable way. A promising approach
in past work is on-demand axiom injection (abduction mechanism; Martı́nez-Gómez
et al. (2017)), which allows one to construct knowledge between words in P and H
as lexical axioms, and feed them to a logic prover when necessary. Combined with
ccg2lambda (Section 2.5), their method demonstrates that injecting lexical knowl-

edge from WordNet (Miller, 1995) and VerbOcean (Chklovski and Pantel, 2004) sig-
nificantly improves the performance.

Although their method provides a basis for handling external knowledge with a
logic-based RTE system, there still remains a practical issue in terms of scalability
and efficiency. Their abduction mechanism generates relevant axioms on-the-fly for a
present P andH pair, but this means we have to maintain a large knowledge base inside
the system. This is costly in terms of memory, and it also leads to slower search due
to a huge search space during inference. WordNet already contains relations among
more than 150,000 words, and in practice, we want to increase the coverage of external
knowledge more by adding different kinds of database such as Freebase. To achieve
such a scalable RTE system, we need a more efficient way to preserve database knowl-
edge.

In this chapter, we present an approach to axiom injection, which, by not holding
databases explicitly, allows handling of massive amount of knowledge without losing
efficiency. Our work is built on Knowledge Base Completion (KBC), which recently
has seen a remarkable advancement in the machine learning community. Although
KBC models and logic-based approaches to RTE have been studied separately so far,
we show that they can be combined to improve the overall performance of RTE sys-
tems. Specifically, we replace the search of necessary knowledge on the database with
a judgment of whether the triplet (s, r, o) is a fact or not in an n-dimensional vector
space that encodes entities s and o and relation r. For each triplet, this computation is
efficient and can be done in O(n) complexity. To this end we construct a new dataset
from WordNet for training a KBC model that is suitable for RTE. We then show that
this approach allows adding new knowledge from VerbOcean without losing efficiency.

Throughout this chapter, we will focus on inferences that require lexical knowl-
edge such as synonym and antonym and its interaction with the logical and linguistic
structure of a sentence, distinguishing them from common sense reasoning (e.g., John
jumped into the lake entails John is wet) and inferences based on world knowledge
(e.g., Chris lives in Hawaii entails Chris lives in USA). For evaluation, we use the
SICK (Sentences Involving Compositional Knowledge) dataset (Marelli et al., 2014),
which focuses on lexical inferences combined with linguistic phenomena.1

Another advantage of our approach is that we can complement the missing lexical

1Large-scale datasets for training neural natural language inference models such as SNLI (Williams
et al., 2018) and MultiNLI (Williams et al., 2018) are not constrained to focus on lexical and linguistic
aspects of inferences, which can produce confounding factors in analysis, hence are not suitable for our
purposes.

64

knowledge in existing knowledge bases as latent knowledge. The previous method is
limited in that it can only extract relations that are directly connected or reachable by
devising some relation path (e.g. transitive closure for hypernym relation); however,
there are also lexical relations that are not explicitly available and hence latent in the
networks. To carefully evaluate this aspect of our method, we manually create a small
new RTE dataset, where each example requires complex lexical reasoning, and find
that our system is able to find and utilize such latent knowledge that cannot be reached
by the existing approach.

Our final system achieves a competitive RTE performance with Martı́nez-Gómez
et al. (2017)’s one, while keeping the processing speed of the baseline method that
does not use any external resources. The last key technique for this efficiency is a new
abduction tactic, a plugin for a theorem prover Coq (The Coq Development Team,
2017). One bottleneck of Martı́nez-Gómez et al. (2017)’s approach is that in their
system Coq must be rerun each time new axioms are added. To remedy this overhead
we develop abduction tactic that enables searching knowledge bases and executing
a KBC scoring function during running Coq.

Our contributions are summarized as follow:

• We propose to combine KBC with a logic-based RTE system for efficient and
scalable reasoning.

• We develop an efficient abduction plugin for Coq, which we make publicly avail-
able (Section 1.4).

• We show that our techniques achieve a competitive score to the existing abduc-
tion technique while maintaining the efficiency of the baseline with no knowl-
edge bases.

• We construct a set of lexically challenging RTE problems and conduct extensive
experiments to evaluate the latent knowledge our KBC model has learned. We
demonstrate many examples of those knowledge that are not available for the
previous method.

65

5.2 Related work

5.2.1 Logic-based RTE systems

Earlier work on logic-based approaches to RTE exploited off-the-shelf first-order
reasoning tools (theorem provers and model-builders) for the inference compo-
nent (Bos and Markert, 2005). Such a logic-based system tends to have high precision
and low recall for RTE tasks, suffering from the lack of an efficient method to integrate
external knowledge in the inference system.

Meanwhile, researchers in Natural Logic (van Benthem, 2008) have observed that
the iteration depth of logical operators such as negations and quantifiers in natural
languages is limited and, accordingly, have developed a variety of proof systems such
as monotonicity calculus (Icard and Moss, 2014) adapted for natural languages that
use small parts of first-order logic.

The idea of natural logic has recently led to a renewed interest in symbolic ap-
proaches to modeling natural language inference in the context of NLP (MacCartney
and Manning, 2008). In particular, theorem provers designed for natural languages
have been recently developed, where a proof system such as analytic tableau (Abzian-
idze, 2015) and natural deduction (Mineshima et al., 2015) is used in combination with
wide-coverage parsers. These systems allow a controlled use of higher-order logic, fol-
lowing the tradition of formal semantics (Montague, 1974), and thereby have achieved
efficient reasoning for logically complex RTE problems such as those in the FraCaS
test suite (Cooper et al., 1994). However, it has remained unclear how one can add
robust external knowledge to such logic-based RTE systems without loss of efficiency
of reasoning. The aim of this chapter is to address this issue.

We use Coq, an interactive proof assistant based on the Calculus of Inductive Con-
structions (CiC), in order to implement an RTE system with our method of axiom
insertion. Although Coq is known as an interactive proof assistant, it has a powerful
proof automation facility where one can introduce user-defined proof strategies called
tactics. The work closest to our approach in this respect is a system based on Modern
Type Theory (Chatzikyriakidis and Luo, 2014), which uses Coq as an automated the-
orem prover for natural language inferences. It was shown that the system achieved
high accuracy on the FraCaS test suite (Bernardy and Chatzikyriakidis, 2017). How-
ever, the system relies on a hand-written grammar, suffering from scalability issues.
Additionally, this work did not evaluate the efficiency of theorem proving for RTE, nor
address the issue of how to extend their RTE system with robust external knowledge.

66

Search
WordnetAdd new

axioms

list of predicates

Retry

(a) CCG
Parsing

(b) Semantic
Parsing

(c) Theorem
Proving
(Coq)

Yes, No,
Unknown

Premise
&

Hypothesis

(d) Axiom Injection
8x.(hike(x) ! walk(x))

(hike, hypernyms, walk)

A

NP/N
λF.λG.∃x.F (x) ∧G(x)

man

N
λx.man(x)

NP
λG.∃x.man(x) ∧G(x)

>
walks

S\NP
λQ.Q(λx.∃e.walk(e) ∧ subj(e, x))

S
∃x.man(x) ∧ ∃e.walk(e) ∧ subj(e, x)

<

A

NP/N
λF.λG.∃x.F (x) ∧G(x)

man

N
λx.man(x)

NP
λG.∃x.man(x) ∧G(x)

>
hikes

S\NP
λQ.Q(λx.∃e.hike(e) ∧ subj(e, x))

S
∃x.man(x) ∧ ∃e.hike(e) ∧ subj(e, x)

<

Premise

Hypothesis

Figure 5.1: A pipeline of ccg2lambda. It firstly applies CCG parser to premise (P)
and hypothesis (H) sentences (a), and then convert them to logical formulas (b). It
tries to prove if entailment (contradiction) can be established by applying Coq to the
theorem P → H (P → ¬H) (c). If the proving fails, it tries axiom injection (d).

Generally speaking, it seems fair to say that the issue of efficiency of logic-based
reasoning systems with a large database has been under-appreciated in the literature on
RTE. To fill this gap, we investigate how our logic-based approach to RTE, combined
with machine learning-based Knowledge Base Completion, can contribute to robust
and efficient natural language reasoning.

5.2.2 Knowledge Base Completion (KBC)

Several KBC models have been proposed in the literature (Bordes et al., 2013;
Trouillon et al., 2016; Dettmers et al., 2017). Among them we use ComplEx (Trouillon
et al., 2016), which models triplet (s, r, o) for entities s, o ∈ E and relation r ∈ R in
an n-dimensional complex vector space2:

ψr(s, o) = σ(Re(⟨es, er, eo⟩)), (5.1)

where es, er, eo ∈ Cn, ⟨x,y, z⟩ =
∑

i xiyizi, and σ is the sigmoid function. Since
Eq. 5.1 consists of one dot-product among three vectors, its computational complexity
is O(n). The training is done by minimizing the logistic loss:

2C denotes the set of complex numbers. For x ∈ C, Re(x) denotes its real part and x its complex
conjugate.

67

∑
((s,r,o),t)∈D

t logψr(s, o)+(1− t) log(1− ψr(s, o)), (5.2)

where D is the training data. We have t = 1 if the triplet is a fact and t = 0 if
not (negative example). While negative examples are usually collected by negative
sampling, 1-N scoring has been proposed to accelerate training (Dettmers et al., 2017).
In 1-N scoring, unlike other KBC models that take an entity pair and a relation as a
triplet (s, r, o) and score it (1-1 scoring), one takes one (s, r) pair and scores it against
all entities o ∈ E simultaneously. It is reported that this brings over 300 times faster
computation of the loss for their convolution-based model. This method is applicable
to other models including ComplEx and scales to large knowledge bases. We employ
this technique in our experiments.

5.3 System overview
We build our system on ccg2lambda. Though we have briefly introduced the

system Chapter 2.5, here, we describe the system in detail for the purpose of this
chapter. Figure 2.4 (repeated as Figure 5.1) shows the pipeline of the system.

Note that although we use a particular RTE system to test our hypotheses, other
logic-based RTE systems can also benefit from our KBC-based method. In so far as a
lexical relation is modeled as a triplet, it could be adapted to their inference modules;
for instance, if r is a hypernym relation, a triplet (s, r, o) is mapped to s ⊑ o, where
⊑ is a containment relation in Natural Logic (MacCartney and Manning, 2008) or a
subtyping relation in Modern Type Theory (Chatzikyriakidis and Luo, 2014), rather
than to ∀x.(s(x)→ o(x)) as in the standard logic we use in this chapter.

5.3.1 CCG and semantic parsing

The system processes premise(s) (P) and a hypothesis (H) using CCG parsers. CCG
is a lexicalized grammar that provides syntactic structures transparent to semantic rep-
resentations (Figure 5.1a). In CCG, each lexical item is assigned a pair (C,M) of
the syntactic category C and a meaning representation M encoded as a λ-term; for
instance, “man” is assigned (N, λx.man(x)). The parses (called derivation trees) are

68

converted into logical formulas by composing λ-terms assigned to each terminal word
in accordance with combinatory rules (Figure 5.1b).

For the assignment of λ-terms, we use a template-based procedure, where closed-
class words (logical or functional expressions) are mapped to their specific meaning
representations and other words to schematic meaning representations based on CCG
categories. In this work, we adopt a semantic template based on Neo-Davidsonian
Event Semantics (Parsons, 1990), where a sentence is mapped to a formula involving
quantification over events and a verb is analyzed as a 1-place predicate over events
using auxiliary predicates for semantic roles such as subj (see the formulas in Fig-
ure 5.1b). One of the main attractions of this approach is that it facilitates the simple
representation of lexical relations for nouns and verbs, since both can be uniformly
analyzed as 1-place predicates (see the axioms in Table 5.1).

5.3.2 Theorem proving

The system uses automated theorem proving in Coq (Figure 5.1c) to judge whether
entailment (P → H) or contradiction (P → ¬H) holds between the premise and
the hypothesis. It implements a specialized prover for higher-order features in natural
language, which is combined with Coq’s build-in efficient first-order inference mech-
anism. Coq has a language called Ltac for user-defined automated tactics (Delahaye,
2000). The additional axioms and tactics specialized for natural language construc-
tions are written in Ltac. We run Coq in a fully automated way, by feeding to its
interactive mode a set of predefined tactics combined with user-defined proof-search
tactics.

5.3.3 Axiom insertion (abduction)

Previous work (Martı́nez-Gómez et al., 2017) extends ccg2lambda with an axiom
injection mechanism using databases such as WordNet (Miller, 1995). When a proof
of T → H or T → ¬H fails, it searches these databases for lexical relations that can
be used to complete the theorem at issue. It then restarts a proof search after declaring
the lexical relations as axioms (Figure 5.1d). This mechanism of on-demand insertion
of axioms is called abduction.

A problem here is that this abduction mechanism slows down the overall process-
ing speed. This is mainly due to the following reasons: (1) searches for some sort of

69

Relation r Generated Axiom Example
synonym, hypernym,

∀x.s(x)→ o(x) (make, synonym, build) ; ∀e.make(e)→ build(e)
derivationally-related

antonym ∀x.s(x)→ ¬o(x) (parent, r, child) ; ∀x.parent(x)→ ¬child(x)
hyponym ∀x.o(x)→ s(x) (talk, r, advise) ; ∀e.advise(e)→ talk(e)

Table 5.1: Triplet (s, r, o) and axioms generated in terms of r. The type of an argument
is determined in the semantic parsing part of ccg2lambda. While we use unary
predicates (Neo-Davidsonian semantics), it can be generalized to any arity.

1 subgoal

 (exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)) ->
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

t < intro.
 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

t < abduction.
 H : exists x : Entity, man x /\ (exists e : Event, hike e /\ subj e x)
 NLax1 : forall x : Event, hike x -> walk x
 ============================
 exists x : Entity, man x /\ (exists e : Event, walk e /\ subj e x)

(man, walk)
 (man, hike)
 (hike, walk)

(hike, hypernym, walk)

Send them to Python server

Evaluate all the predicate
pairs using ComplEx

Construct a list of predicate
 pairs from context and goal

Filter them by score

Add them as axioms

Figure 5.2: Running example of abduction tactic in a Coq session proving “A man
hikes” → “A man walks”. When the tactic is executed, it interacts with a ComplEx
model on a different process and injects high scoring triplets as axioms.

relations incur multi-step inference over triplets (e.g. transitive closure of hypernym
relation); (2) the theorem proving must be done all over again to run an external pro-
gram that searches the knowledge bases. In this work, to solve (1), we propose an
efficient O(n) abduction mechanism based on KBC (Section 5.4.1). For (2), we de-
velop abduction tactic, that enables adding new lexical axioms without quitting a
Coq process (Section 5.4.2).

5.4 Proposed method
Our abduction mechanism adds new axioms whenever the prover stops due to

the lack of lexical knowledge. Specifically, the system collects pairs of predicates
from a current proof state and evaluates the pairs for every relation r ∈ R =

{synonym, hypernym, antonym, hyponym, derivationally–related} with Com-
plEx (Eq. 5.1). It then declares as axioms logical formulas converted from the triplets

70

whose scores are above a predefined threshold θ. See Table 5.1 for the conversion
rules. We describe the construction of a training data for ComplEx in Section 5.4.1
and abduction tactic that performs the axiom injection in Section 5.4.2.

5.4.1 Data creation

Although there already exist benchmark datasets for WordNet completion (e.g.,
WN18 (Bordes et al., 2013)), we construct our own dataset. We find two problems
on the existing datasets considering its application to RTE tasks. One is a gap between
the entities and relations appearing in those benchmark datasets and those needed to
solve RTE datasets. For example the knowledge on disease names are not necessary
for the present dataset.

Another, more critical issue is that in WordNet many relations including hypernym
and hyponym are defined among synsets, i.e., sets of synonymous lemmas, and the
existing datasets also define a graph on them. This is problematic in practice for
ccg2lambda, which normalizes a word’s surface form into its lemma when obtaining
a logical formula. A possible option to mitigate this discrepancy is to normalize each
word into synset by adding word-sense disambiguation (WSD) step in ccg2lambda.
Another option is to construct a new dataset in which each relation is defined among
lemmas. We choose the latter for two reasons: (1) existing WSD systems do not per-
form well and cause error propagation; and (2) a dataset defined among lemmas eases
the data augmentation using other resources. For example, VerbOcean defines rela-
tions between lemmas so it is straightforward to augment the training data with it, as
we show later.

We use different strategies to extract relations for each relation r ∈ R from WordNet
as follows.3

synonym Since synonym relation is not defined in WordNet, we find them from
other relations. We regard two synsets s1 and s2 as synonym if they are in
also sees, verb groups, or similar tos relation, or if they share some
lemma l ∈ s1 ∩ s2. Then, we take a Cartesian product of s1 and s2, that is,
(l1, synonym, l2) for all l1 ∈ s1 and l2 ∈ s2, and add them to the dataset.

hypernym and hyponym These relations are defined among synsets in WordNet. As
in synonym, for hypernym we take a Cartesian product of s1 and s2, when

3For simplicity, we use the set theoretical notation: l ∈ s denotes lemma l is an element of synset s.

71

they are in hypernym relation. We also collect the triplets obtained from its tran-
sitive closure, since hypernym is a transitive relation.4 We process hyponym
relations in the same way.

antonym and derivationally-related Since antonym and derivationally-related rela-
tions are defined among lemmas in WordNet, we simply collect them.

Since the constructed dataset contains many entities that will not be used in the
existing RTE datasets, we strip off triplets (s, r, o) if s or o is not found in our prede-
fined lemma list, consisting of all lemmas of words appearing in the training part of
SICK (Marelli et al., 2014) and SNLI (Williams et al., 2018), as well as the pre-trained
GloVe word vectors.5 The resulting dataset contains 1,656,021 triplets and the number
of the entities is 41,577. We spare random 10,000 triplets for development and use the
rest for training.

VerbOcean is a semi-automatically constructed repository of semantic relations
among verbs. Since it defines a triplet among lemmas, we simply map the relations in
the dataset to R after filtering triplets using the lemma list above. Concretely, in the
experiments we use similar relations, which consists of 17,694 triplets.

5.4.2 Axiom injection with abduction tactic

As mentioned earlier, the abduction method in the previous work needs to rerun
Coq when adding new axioms. Now we introduce our abduction tactic that enables
adding new axioms on the fly without quitting the program.

Figure 5.2 shows a running example of abduction tactic. When executed, this
tactic collects from the context (the set of hypotheses) and the goal (the theorem to be
proven) all the pairs of predicates and sends them to a Python server running on other
process. The Python program evaluates the pairs for all relations in R with ComplEx
and then sends back the triplets whose score is above a threshold θ. In Coq, these are
converted to logical formulas according to Table 5.1 and finally added to the context
as axioms.

In Coq, as one can compose tactics into another tactic, it is possible to construct
a tactic that performs higher-order reasoning for natural language that additionally

4e.g., (puppy, hypernym, animal) follows from (puppy, hypernym, dog) and
(dog, hypernym, animal).

5https://nlp.stanford.edu/projects/glove/. We use the one with 6 billion tokens.

72

https://nlp.stanford.edu/projects/glove/

injects lexical axioms when needed. Note that search-based axiom injection also can
be performed with this tactic, by replacing the KBC-based scoring function with the
search on databases.

We should note that one can combine our abduction tactic with other seman-
tic theories (e.g. (Chatzikyriakidis and Luo, 2014); (Bernardy and Chatzikyriakidis,
2017)) and put the system in application. Coq has been used mainly for system ver-
ification and formalization of mathematics and there has been no tactic that is solely
aimed at natural language reasoning. However, Coq provides an expressive formal
language that combines higher-order logic and richly-typed functional programming
language, and thus offers a general platform for various natural language semantics.
We believe that with our work, it will be easier to develop an NLP systems based on
advanced linguistic theories. This architecture also opens up new opportunities to in-
tegrate theorem proving and sophisticated machine-learning techniques. For example,
we could implement in a tactic more complex tasks such as premise selection with
deep models (Alemi et al., 2016).

5.5 Experiments

5.5.1 SICK dataset

We evaluate the proposed method on SICK dataset (Marelli et al., 2014), which
we have used in Chapter 3 for evaluating our parser developed in the chapter (Sec-
tion 3.7.1). Table 3.6 shows example problems from this dataset. Note that
ccg2lambda itself is an unsupervised system and does not use any training data.
We use the train part for the lemma list in data construction (Section 5.4.1) only and
use the trial part to determine a threshold θ and to evaluate the processing speed.

5.5.2 New LexSICK lexical inference dataset

While SICK dataset provides a good testbed for evaluating logical inference in-
volving linguistic phenomena such as negation and quantification, we found that the
dataset is not ideal for evaluating complex lexical inference, specifically latent knowl-
edge learned by a KBC model.

To evaluate the capability of our knowledge-empowered logic-based method, we
construct our own dataset, which is small but challenging because of its combination

73

Id: (a) Label: CONTRADICTION

P: A white and tan dog is running through the tall and green grass
H: A white and tan dog is ambling through a field
Id: (b) Label: ENTAILMENT

P: Someone is dropping the meat into a pan
H: The meat is being thrown into a pan
Id: (c) Label: ENTAILMENT

P: The man is singing and playing the guitar
H: The guitar is being performed by a man
Id: (d) Label: CONTRADICTION

P: A man and a woman are walking together through the wood
H: A man and a woman are staying together
Id: (e) Label: ENTAILMENT

P: A man is emptying a container made of plastic completely
H: A man is clearing a container made of plastic completely

Table 5.2: LexSICK RTE problems require a mix of logical reasoning and external
lexical knowledge.

of non-trivial lexical gaps and linguistic phenomena. Table 5.2 shows example prob-
lems, where lexical inferences are combined with linguistic phenomena such as quan-
tification (Example b), verb coordination (Example c), and passive-active alternation
(Example b, c). The process of the dataset construction is as follow: a human expert
picks a sentence (premise) from SICK dataset, changes a word to its synonym/antonym
according to thesauruses,6 and then changes its sentence structure as well to construct
a hypothesis.

The dataset (we refer to it as LexSICK) contains 58 problems, 29 of which is labeled
entailment, 29 contradiction, and no unknown label. The problems in the dataset is
listed in Appendix C.

5.5.3 Experimental settings

Settings for ComplEx Unless otherwise stated, we set the dimension of embed-
dings n = 50 and train it on the triplets obtained from WordNet (excluding VerbOcean

6We avoided WordNet and used thesaurus.com (http://www.thesaurus.com/) and
Merriam-Webster (http://www.merriam-webster.com/).

74

http://www.thesaurus.com/
http://www.merriam-webster.com/

Method MRR
Hits

@1 @3 @10
ComplEx 77.68 71.07 81.76 90.08

ConvE 67.41 57.11 75.02 85.76

Table 5.3: The performance of KBC models trained and evaluated on WordNet triplets
in Section 5.4.1. We report filtered scores.7

triplets) in Section 5.4.1 by minimizing the logistic loss (Eq. 5.2) using Adam opti-
mizer. We use 1-N scoring (Section 5.2.2), since our dataset is fairly large compared to
standard benchmark datasets. For the other hyperparameters, we use the same setting
as in (Trouillon et al., 2016), except for the batch size of 128. In Table 5.3, we show
Mean Reciprocal Rank (MRR) and Hits@N (N = 1, 3, 10) of ComplEx model (and
the state-of-the-art ConvE (Dettmers et al., 2017) with the default hyperparameters
for comparison) on development part of the dataset in Section 5.4.1.7 The ComplEx
model scores 77.68 in MRR, which is comparably lower than scores reported for the
widely used WN18 benchmark data (above 93). Notably, ComplEx performs better
than ConvE in terms of all metrics in this experiment. We adopt ComplEx in this
work, since it achieves better results with much lower computational load.

Settings for ccg2lambda We decide the threshold θ = 0.4 for filtering triplets
based on the accuracy on the SICK trial set. As baselines, we replicate the system of
Martı́nez-Gómez et al. (2017) with the default settings of ccg2lambda8. As we have
done in Section 3.7.1, we use multi-parsing setting of the system, where it uses four
CCG parsers and aggregates the results: C&C, EasyCCG, EasySRL and depccg.

We report accuracy / precision / recall / F1 on the test part and processing speed
(macro average of five runs) in the trial set.9

7 We report the scores in filtered setting. That is, compute the rank of o for gold (s, r, o) against all
e ∈ E such that (s, r, e) is not in either of training or development data.

8We use a version of ccg2lambda committed to the master branch on October 2, 2017.
9We preprocess each RTE problem and do not include in the reported times those involved with

CCG/semantic parsing. We set the time limit of proving to 100 seconds. These experiments are con-
ducted on a machine with 18 core 2.30 GHz Intel Xeon CPU × 2.

75

System
Method Dataset

Accuracy Precision Recall F1 Speed
search KBC tactic WN VO

Mineshima et al. (2015) 77.30 98.93 48,07 64.68 3.79

Martı́nez-Gómez et al. (2017)
3 3 83.55 97.20 63.63 76.90 9.15
3 3 3 83.68 96.88 64.15 77.16 9.42

Ours
3 3 3 3 83.64 97.15 64.01 77.16 7.07

3 3 3 83.55 96.28 64.38 77.14 4.03
3 3 3 3 83.45 95.75 64.47 77.04 3.84

Table 5.4: Results on the SICK test set. The results of the baseline systems are above
the dashed line. The Method columns represent the use of search-based abduction,
KBC-based abduction and abduction tactic, while the Dataset columns datasets
used in abduction: WordNet (WN) and VerbOcean (VO). Speed shows macro average
of processing time (sec.) of an RTE problem.

Method #Correct
ResEncoder (Nie and Bansal, 2017) 18 / 58

search-based abduction 20 / 58
KBC-based abduction 21 / 58

Table 5.5: Experimental results on LexSICK. Both search- and KBC-based abductions
use WordNet and VerbOcean.

5.5.4 Results on SICK set

Table 5.4 shows the experimental results on SICK. The first row is a baseline result
without any abduction mechanism, followed by ones using WordNet and VerbOcean
additively with the search-based axiom injection. By introducing our abduction
tactic that is combined with the search-based axiom injection (4th row), we have suc-
cessfully reduced the computation time (-2.35 sec. compared to 3rd row). By replac-
ing the search-based abduction with the ComplEx model, the averaged time to process
an RTE problem is again significantly reduced (5th row). The time gets close to the
baseline without any database (only +0.24 sec.), with much improvement in terms of
RTE performance, achieving the exactly same accuracy with Martı́nez-Gómez et al.
(2017)’s WordNet-based abduction.

Finally, we re-train a ComplEx model with similar relations from VerbOcean (fi-
nal row). When combining the datasets, we find that setting the dimension of embed-
dings larger to n = 100 leads to better performance. This may help the KBC model

76

accommodate the relatively noisy nature of VerbOcean triplets. The VerbOcean triplets
have contributed to the improved recall by providing more knowledge not covered by
WordNet, while it has resulted in drops in the other metrics. Inspecting the details, it
has actually solved more examples than when using only WordNet triplets; however,
noisy relations in the data, such as (black, similar, white), falsely lead to proving
entailment / contradiction for problems whose true label is unknown. The higher recall
has contributed to the overall processing speed, since it has led more problems to be
proven before the timeout (-0.25 sec.).

We conduct detailed error analysis on 500 SICK trial problems. The RTE sys-
tem combined with our KBC-based abduction (trained only on WordNet) has cor-
rectly solved one more problem than a Martı́nez-Gómez et al. (2017)’s baseline sys-
tem (which additionally uses VerbOcean), resulting in the accuracy of 84.8%. In this
subset, we found the following error cases: 71 cases related to lexical knowledge, 4
failures in CCG parsing, and 1 timeout in theorem proving. This shows that CCG pars-
ing is quite reliable. Around five cases among lexical ones are due to false positively
asserted lexical axioms, while the most of the others are due to the lack of knowledge.
In the following, we exclusively focus on issues related to lexical inference.

5.5.5 Evaluating latent knowledge

Table 5.5 shows experimental results on LexSICK dataset. For comparison, we
add a result of ResEncoder (Nie and Bansal, 2017), one of the state-of-the-art neural
network-based RTE models. When trained on the training part of SICK, it scores
82.00% accuracy on the SICK test part, while performs badly on LexSICK, indicating
this dataset is more challenging. The accuracies of two logic-based methods are also
not high, suggesting the difficulty of this problem. The KBC-based method shows the
same tendency as in the results in the previous section; it solves more examples than
the search-based method, along with false positive predictions.

We observe interesting examples that show the effectiveness of using latent lex-
ical knowledge. One is Example (d) in Table 5.2, for which a latent relation
(walk, antonym, stay) is predicted by the KBC model, while it is not available
for the search-based method. Another case is Example (e) in Table 5.2, where
our method obtains the axiom ∀x.clear(x) → empty(x) by scoring the triplet
(empty, synonym, clear) as high as (empty, hyponym, clear), leading to the correct
prediction. The search-based method derives only ∀x.empty(x)→clear(x), which is

77

not relevant in this case.
Similarly, by examining the results on SICK dataset, we found more examples that

the KBC-based method has successfully solved by utilizing latent lexical knowledge.
For example, in SICK-6874 we have a premise A couple of white dogs are running
and jumping along a beach and a hypothesis Two dogs are playing on the beach.
The KBC model successfully proves the inference by producing multiple axioms:
∀x.along(x) → on(x), ∀x.couple(x) → two(x) and ∀x.run(x) → play(x). One
characteristic of the KBC-based method is that it can utilize lexical relations between
general words such as frequent verbs and prepositions. Though this may cause more
false positive predictions, our experiments showed that under the control of the abduc-
tion method, it contributed to improving recall while keeping high precision.

5.6 Summary
In this work, we have proposed an automatic axiom injection mechanism for nat-

ural language reasoning based on Knowledge Base Completion. In the experiments,
we show that our method has significantly improved the processing speed of an RTE
problem, while it also achieves the competitive accuracy, by utilizing the obtained la-
tent knowledge.

In future work, we are interested in extending this framework to generate phrasal
axioms (e.g., ∀x.have(x) ∧ fun(x) → enjoy(x)). Generating this sort of axioms
accurately is the key for logic-based systems to achieve high performance. In order to
do that, we will need a framework to learn to compute compositionally a vector from
those of have and fun and to predict relations such as synonym between the vector
and that of enjoy.

78

79

Chapter 6

Conclusion

In this thesis, we have addressed problems in developing natural language inference
systems based on CCG and logic. The main contributions are summarized as follows:
the development of (1) an efficient and accurate CCG parsing method, (2) domain
adaptation method of CCG parsing, and (3) knowledge insertion mechanism for logic-
based natural language inference system.

In Chapter 3, we have proposed a new probabilistic model of a CCG tree and an ef-
ficient parsing algorithm based on the A* algorithm. The key of the proposed method
is that it models the probability of a CCG tree by local factors of supertags and de-
pendency edges, which are predicted independently with a strong unigram model de-
fined over bidirectional LSTMs. In the experiments, we have demonstrated the pro-
posed method is effective in various settings: in CCGbank parsing in the English and
Japanese languages, and in RTE experiments for the two languages.

In Chapter 4, we have focused on the domain adaptation issue of a CCG parser.
We have proposed a new domain adaptation method for CCG parsing, where we ex-
ploit cheaper and abundant dependency-based treebanks and convert them to the corre-
sponding CCGbanks, using a dependency-to-CCG converter developed by extending
the parsing technique in the previous chapter. We have conducted extensive parsing ex-
periments; on top of existing benchmark datasets on (1) biomedical texts and (2) ques-
tion sentences, we have evaluated the method on (3) speech conversation and (4) math
problems. Using the proposed technique, we have demonstrated the parser developed
in Chapter 3 shows further improvement, from 90.7% to 96.6% on speech conversa-
tion, and from 88.5% to 96.8% on math problems.

In Chapter 5, we have solved an issue of logic-based natural language inference
systems: the tension between adding more knowledge data to the system for the ca-

pability of wider coverage of reasoning types, and the system’s efficiency in solving a
problem. We have shown the processing time of an RTE system can be significantly re-
duced by replacing its search-based knowledge insertion mechanism by that based on
Knowledge Base Completion. We have also integrated the mechanism within a Coq
plugin. We have shown empirically that, in this framework, adding new knowledge
data contributes to better RTE performance while not harming the processing speed.

Throughout this thesis, we have demonstrated logic-based systems can perform on
par with the latest deep learning-based models on some RTE benchmarks (e.g., SICK),
and they even show superiority on the linguistically challenging FraCaS and JSeM
datasets, owing to their strengths in handling linguistic constructions. However, we
are aware of some weaknesses of these systems. For example, some RTE datasets such
as SNLI (Bowman et al., 2015) and MultiNLI (Williams et al., 2018) are currently
difficult for these systems due to several reasons. To solve these datasets, among oth-
ers, a system must be equipped with knowledge on relations among multiple words
(phrases), in addition to those between single words; for a system to be able to judge
that A black race car starts up in front of a crowd of people does not entail A man is
driving down a lonely road (a problem from SNLI), the system must know that pairs
of phrases a crowd of people and lonely, and car starts up and driving are related to
each other. As pointed out in the conclusion of Chapter 5, one of solutions to handle
these relations is to extend the RTE systems with phrasal axioms. On top of that, there
seem to be two promising directions to address this issue.

There are some projects on constructing so-called Entailment Graph, whose nodes
are text segments (words or any longer phrases) and directed edge between nodes rep-
resents entailment relation (Hosseini et al., 2018, 2019). The constructed graph will
be used, for example, in a Question Answering system, where various ways of asking
a question are normalized using the knowledge graph (e.g., Does Verizon own Yahoo?
vs. Does Verizon buy Yahoo? vs. Is Yahoo owned by Verizon?). The graph will nat-
urally be useful in solving RTE tasks as well; it can be converted to a set of logical
formulas, to be used in theorem proving.

The other approach is the Vector-based Semantics (Kartsaklis and Sadrzadeh, 2016;
Wijnholds and Sadrzadeh, 2019), in which they replace logical meaning representa-
tions with vector embeddings. Their vector representations for larger phrases are cal-
culated according to the syntactic structure using a tensor-based operation. The re-
search group have been conducting challenging experiments, such as the evaluation of
whether their method can handle phenomena such as the extraction of relative clauses,

80

by constructing the RELPRON dataset (Rimell et al., 2016). Though the result in the
paper is unfortunately not as expected, where the simple vector addition model beats
others, we believe that this direction is also intriguing and promising.

Finally, it must be an interesting venue to pursue to transfer the success in this thesis
to languages other than English and Japanese. The idea of converting dependency-
based resources to CCGbanks may be used to construct a CCG alternative of Universal
Dependencies (Nivre et al., 2016). Concretely, we can use the techniques of recently
developed unsupervised constituency/dependency parsing (He et al., 2018; Kim et al.,
2019), and instead of simply applying them to CCG, we can use the techniques in a way
that a CCG tree is generated conditionally on the corresponding UD tree. Evaluating
our parser on languages in Parallel Meaning Bank (Abzianidze et al., 2017) must be
also an interesting future direction.

81

83

Appendix A

Details of English CCG Grammar

In the following we summarize the details of English and Japanese CCG grammars
implemented in our parser. Please refer to Table 2.1 for the details of the basic combi-
natory rules.
The set of binary combinatory rules:

• forward application >

• backward application <

• forward composition >B1

• backward crossed composition <B1
×

• generalized forward composition >Bn, where n = 2

• generalized backward crossed composition <Bn
×, where n = 2

The other binary rules are summarized in Table A.1. Here, PUNCT ∈
{comma, conj , semicolon}. Notationally, Cx|y is an atomic category having either
of x or y as its feature. This rule generalizes to the case with more than one vertical
bar. Rules marked with ∗ are found in the implementation of EasySRL. In this work,
we also employ these rules. The set of unary rules is summarized in Table A.2.

Our parser is configured to output only those derivations whose root category is from
the following list:

Sdcl, Swq, Sq, Sqem, NP

conjunction
conj X

<Φ>
X\X

remove punctuation right
PUNCT X

<rp>
X

remove punctuation left
X PUNCT

<lp>
X

comma verb phrase to adverb∗ comma Sng|pass\NP
<∗>

(S\NP)\(S\NP)

parenthetical direct speech∗ comma Sdcl/Sdcl
<∗>

(S\NP)/(S\NP)

Table A.1: Additional binary rules in our English parser. X is a variable matching any
category, and PUNCT ∈ {comma, conj , semicolon}.

84

Bare noun phrases
N

<un>
NP

Type raising

NP
<un>

S/(S\NP)
NP

<un>
(S\NP)/((S\NP)/NP)

PP
<un>

(S\NP)/((S\NP)/PP)

Reduced relative clause

Spss|ng|adj|to\NP
<un>

NP\NP
Sto\NP

<un>
N\N

Sdcl/NP
<un>

NP\NP

VP sentence modifiers
Spss|ng|to\NP

<un>
S/S

Table A.2: The set of unary rules in the English parser.

85

87

Appendix B

Details of Japanese CCG Grammar

The set of binary combinatory rules:

• forward application >

• backward application <

• forward composition >B1

• backward composition <B1

• generalized backward composition <Bn for n ∈ {2, 3, 4}

• cross forward composition >Bn for n ∈ {2, 3}

• SSEQ

SSEQ combines two constituents each licensed as a sentence; for all category X in the
set of categories that can appear at a root of a CCG tree (defined below), X X ⇒ X .
The set of unary rules are summarized in Table B.1. In the table, Smod=X,form=Y,fin=Z is
abbreviated as SX,Y,Z and NPcase=X,mod=Y,fin=Z as NPX,Y,Z for simplicity.

Our parser outputs only derivations whose root category is from the following list:

NPnc,nm,f, NPnc,nm,t, Snm,attr,t, Snm,base,f, Snm,base,t, Snm,cont,f, Snm,cont,t,
Snm,da,f, Snm,da,t, Snm,hyp,t, Snm,imp,f, Snm,imp,t, Snm,r,t, Snm,s,t, Snm,stem,f,
Snm,stem,t

Adnominal Modifier
(Inner relationship)

Sadn,attr|base,f\NPga|o,nm,f
<un>

NPnc,X1,X2/NPnc,X1,X2

Adnominal Modifier
(Outer relationship)

Sadn,attr|base|cont|hyp|imp|stem,f
<un>

NPnc,X1,X2/NPnc,X1,X2

Adverbial Modifier

Sadv,cont|hyp|stem,f
<un>

SX1,X2,X3/SX1,X2,X3

Sadv,cont,f\NPga,nm,f
<un>

(SX1,X2,X3\NPga,nm,f)/(SX1,X2,X3\NPga,nm,f)

Other
NPnc,adv,f

<un>
SX1,X2,X3/SX1,X2,X3

Table B.1: The set of unary rules in the Japanese parser. Cx|...|y is an atomic category
having a feature listed in x|...|y.

88

89

Appendix C

LexSICK dataset

Premise and Hypothesis Label
P: A girl in white is dancing entailmentH: A girl in white is stepping
P: A white and tan dog is running through the tall and green grass contradictionH: A white and tan dog is strolling through the tall and green grass
P: A white and tan dog is running through the tall and green grass contradictionH: A white and tan dog is ambling through a field
P: A man and a woman are hiking through a wooded area contradictionH: A man and a woman are staying
P: A man and a woman are walking together through the woods contradictionH: A man and a woman are staying together
P: The woman is measuring the other woman entailmentH: A woman is being scaled by another woman
P: A man is emptying a container made of plastic completely entailmentH: A man is clearing a container made of plastic completely
P: A man is emptying a container made of plastic completely contradictionH: A man is filling a container made of plastic
P: Some cameras are being burned by a person with a blow torch entailmentH: Some cameras are being melted by a person with a blow torch
P: Some cameras are being burned by a person with a blow torch entailmentH: Some cameras are being heated by a person with a blow torch
P: The lady is slicing a tomato entailmentH: Someone is chopping a tomato
P: Someone is strumming the guitar entailmentH: Someone is picking the guitar.
P: A bull dog is being brushed by the monkey entailmentH: A bull dog is being cleaned by the monkey.
P: A bull dog is being brushed by the monkey entailmentH: The monkey is washing a bull dog
P: A bull dog is being brushed by the monkey entailmentH: The monkey is sweeping a bull dog.
P: A guinea pig, which is small, is gnawing and eating a piece of carrot on the floor entailment

H: A small guinea pig is gnawing and champing a piece of carrot on the floor
P: A guinea pig, which is small, is gnawing and eating a piece of carrot on the floor entailmentH: A guinea pig, which is small, is nibbling and eating a piece of carrot on the floor
P: The man is lifting barbells contradictionH: The man is dropping barbells
P: The man is lifting barbells contradictionH: The man is lowering barbells
P: A large green ball is hitting a potato contradictionH: A large green colored ball is missing a potato
P: A kitten is getting bored contradictionH: A kitten is animated
P: A kitten is getting bored contradictionH: A kitten is energized
P: A woman is placing two eggs into a pot of water entailmentH: A woman is setting two eggs into a pot of water
P: A boy is waving at some young runners from the ocean entailmentH: A boy is gesturing at some young runners from the ocean
P: A boy is nodding at some young runners from the ocean entailmentH: A boy is gesturing at some young runners from the ocean
P: A woman is cleaning a shrimp contradictionH: The woman is contaminating a shrimp
P: A woman is cleaning a shrimp contradictionH: Someone is dirtying a shrimp
P: A panda bear is eating some bamboo entailmentH: Some bamboo is being consumed by a panda bear
P: A panda bear is eating some bamboo entailmentH: Some bamboo is being devoured by a panda bear
P: A man is unfolding a tortilla entailmentH: A man is unrolling a tortilla
P: A woman is freeing a fish entailmentH: A woman is releasing a fish
P: A person is jotting something down with a pencil entailmentH: A person is scribbling something with a pencil
P: A person is scribbling something with a pencil entailmentH: A person is writing
P: The man is skillfully playing the guitar contradictionH: The man is awkwardly playing a guitar
P: Some fish are swimming quickly. contradictionH: Some fish are swimming slowly
P: Someone is dropping the meat into a pan entailmentH: The meat is being thrown into a pan
P: The person is slicing onions entailmentH: Onions are being cut by the person
P: The person is slicing onions entailmentH: Onions are being split by the person
P: A person is scrubbing a zucchini entailmentH: The person is brushing a zucchini
P: A person is scrubbing a zucchini entailment

90

H: The person is dirtying a zucchini
P: A woman is slicing a pepper which is green entailmentH: A woman is chopping a green pepper
P: The man is singing and playing the guitar entailmentH: The guitar is being performed by a man
P: The man is singing and performing with a guitar entailmentH: The guitar is being played by a man
P: A man is recklessly climbing a rope entailmentH: A man is ascending a rope
P: A man is recklessly climbing a rope contradictionH: A man is descending a rope
P: A man is recklessly climbing a rope contradictionH: A man is descending a rope
P: A yellow dog is running on white snow on a very sunny day contradictionH: A yellow dog is running on a rainy day
P: A man is recklessly climbing a rope entailmentH: A man is rashly climbing a rope
P: A man is recklessly climbing a rope contradictionH: A man is carelessly climbing a rope
P: A man is recklessly climbing a rope contradictionH: A man is cautiously climbing a rope
P: The doctors are healing a man contradictionH: The doctor is damaging the man
P: The doctors are healing a man contradictionH: The doctor is hurting the man
P: A large flute is being played by a man contradictionH: A man is playing a tiny flute
P: A yellow dog is running on white snow on a very sunny day contradictionH: A yellow dog is running on a rainy day
P: A yellow dog is running on white snow on a very sunny day contradictionH: A yellow dog is running on a cloudy day
P: A large brown dog and a small grey dog are standing on a rocky surface. contradictionH: A big brown dog and a small grey dog are moving
P: The group of people is standing together and looking at the camera contradictionH: A group of people is standing together and ignoring the camera
P: The group of people is sitting in a dim room contradictionH: The group of people is sitting in a room which is shiny

91

References
Martı́n Abadi et al. 2016. TensorFlow: A System for Large-scale Machine Learning.

In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 265–283, Savannah, GA, USA. USENIX Associ-
ation.

Lasha Abzianidze. 2015. A tableau prover for natural logic and language. In Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 2492–2502, Lisbon, Portugal. Association for Computational Linguistics.

Lasha Abzianidze. 2016. A Natural proof System for Natural Language. Ph.D. thesis,
Tilburg University.

Lasha Abzianidze. 2017. LangPro: Natural Language Theorem Prover. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 115–120, Copenhagen, Denmark. Association
for Computational Linguistics.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hessel Haagsma, Rik van Noord,
Pierre Ludmann, Duc-Duy Nguyen, and Johan Bos. 2017. The Parallel Meaning
Bank: Towards a Multilingual Corpus of Translations Annotated with Composi-
tional Meaning Representations. In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, pages 242–247,
Valencia, Spain. Association for Computational Linguistics.

Kazimierz Ajdukiewicz. 1997. Die Syntaktische Konnexität. Studia Philosophica,
1:1–27.

Alexander A. Alemi, François Chollet, Niklas Een, Geoffrey Irving, Christian Szegedy,
and Josef Urban. 2016. DeepMath - Deep Sequence Models for Premise Selection.
In Proceedings of the 30th International Conference on Neural Information Pro-
cessing Systems, pages 2243–2251, Barcelona, Spain. Curran Associates Inc.

Bharat Ram Ambati, Tejaswini Deoskar, and Mark Steedman. 2013. Using CCG cat-
egories to improve Hindi dependency parsing. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, pages 604–609. Associa-
tion for Computational Linguistics.

92

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://aclweb.org/anthology/D15-1296
https://naturallogic.pro/phd/
http://www.aclweb.org/anthology/D17-2020
https://www.aclweb.org/anthology/E17-2039
https://www.aclweb.org/anthology/E17-2039
https://www.aclweb.org/anthology/E17-2039
http://dl.acm.org/citation.cfm?id=3157096.3157347
https://www.aclweb.org/anthology/P13-2107
https://www.aclweb.org/anthology/P13-2107

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015. Broad-coverage CCG Semantic
Parsing with AMR. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1699–1710, Lisbon, Portugal. Association
for Computational Linguistics.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly Supervised Learning of Semantic
Parsers for Mapping Instructions to Actions. Transactions of the Association for
Computational Linguistics, 1:49–62.

Srinivas Bangalore and Aravind K Joshi. 1999. Supertagging: An Approach to Almost
Parsing. Computational Linguistics, 25(2):237–265.

Jon Barwise and Robin Cooper. 1981. Generalized quantifiers and natural language.
Linguistics and Philosophy, 4(2):159–219.

Daisuke Bekki. 2010. A Formal Theory of Japanese Grammar: The Conjugation Sys-
tem, Syntactic Structures, and Semantic Composition. Kuroshio. (In Japanese).

Johan van Benthem. 2008. A brief history of natural logic. In Logic, Navya-Nyāya
& Applications: Homage to Bimal Krishna Matilal, pages 21–42. College Publica-
tions.

Jean-Philippe Bernardy and Stergios Chatzikyriakidis. 2017. A Type-Theoretical sys-
tem for the FraCaS test suite: Grammatical Framework meets Coq. In IWCS 2017 -
12th International Conference on Computational Semantics.

Johannes Bjerva, Barbara Plank, and Johan Bos. 2016. Semantic Tagging with Deep
Residual Networks. In Proceedings of COLING 2016, the 26th International Con-
ference on Computational Linguistics, pages 3531–3541, Osaka, Japan. The COL-
ING 2016 Organizing Committee.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana
Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational Data. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems, pages 2787–2795, Lake Tahoe, Nevada. Curran Associates Inc.

Johan Bos, Valerio Basile, Kilian Evang, Noortje J. Venhuizen, and Johannes Bjerva.
2017. The Groningen Meaning Bank. In Handbook of Linguistic Annotation, pages
463–496. Springer Netherlands.

93

https://doi.org/10.18653/v1/D15-1198
https://doi.org/10.18653/v1/D15-1198
https://www.aclweb.org/anthology/Q13-1005
https://www.aclweb.org/anthology/Q13-1005
https://www.aclweb.org/anthology/J99-2004
https://www.aclweb.org/anthology/J99-2004
https://doi.org/10.1007/BF00350139
https://www.aclweb.org/anthology/W17-6801
https://www.aclweb.org/anthology/W17-6801
https://www.aclweb.org/anthology/C16-1333
https://www.aclweb.org/anthology/C16-1333
http://dl.acm.org/citation.cfm?id=2999792.2999923
https://doi.org/10.1007/978-94-024-0881-2_18

Johan Bos, Stephen Clark, Mark Steedman, James R. Curran, and Julia Hockenmaier.
2004. Wide-Coverage Semantic Representations from a CCG Parser. In COLING
2004: Proceedings of the 20th International Conference on Computational Linguis-
tics, pages 1240–1246, Geneva, Switzerland. COLING.

Johan Bos, Bosco Cristina, and Mazzei Alessandro. 2009. Converting a Dependency
Treebank to a Categorial Grammar Treebank for Italian. In In Proceedings of the
Eighth International Workshop on Treebanks and Linguistic Theories, pages 27–38.

Johan Bos and Katja Markert. 2005. Recognising Textual Entailment with Logical
Inference. In Proceedings of Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language Processing, pages 628–635,
Vancouver, British Columbia, Canada. Association for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning.
2015. A large annotated corpus for learning natural language inference. In Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 632–642, Lisbon, Portugal. Association for Computational Linguistics.

Stergios Chatzikyriakidis and Zhaohui Luo. 2014. Natural Language Inference in Coq.
Journal of Logic, Language and Information, 23(4):441–480.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp
Koehn. 2014. One Billion Word Benchmark for Measuring Progress in Statistical
Language Modeling. In Proceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH, pages 2635–2639, Singapore.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana Inkpen, and Si Wei. 2018. Neu-
ral Natural Language Inference Models Enhanced with External Knowledge. In
Proceedings of the 56th Annual Meeting of the Association for Computational Lin-
guistics, pages 2406–2417, Melbourne, Australia. Association for Computational
Linguistics.

Timothy Chklovski and Patrick Pantel. 2004. VerbOcean: Mining the Web for Fine-
Grained Semantic Verb Relations. In Proceedings of the 2004 Conference on Em-
pirical Methods in Natural Language Processing, pages 33–40, Barcelona, Spain.
Association for Computational Linguistics.

94

https://www.aclweb.org/anthology/C04-1180
https://www.aclweb.org/anthology/H05-1079
https://www.aclweb.org/anthology/H05-1079
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.1007/s10849-014-9208-x
https://www.isca-speech.org/archive/interspeech_2014/i14_2635.html
https://www.isca-speech.org/archive/interspeech_2014/i14_2635.html
https://doi.org/10.18653/v1/P18-1224
https://doi.org/10.18653/v1/P18-1224
https://www.aclweb.org/anthology/W04-3205
https://www.aclweb.org/anthology/W04-3205

Stephen Clark and James R. Curran. 2007. Wide-Coverage Efficient Statistical Parsing
with CCG and Log-Linear Models. Computational Linguistics, Volume 33, Number
4, December 2007, 33(4):493–552.

Stephen Clark, Julia Hockenmaier, and Mark Steedman. 2002. Building Deep De-
pendency Structures with a Wide-coverage CCG Parser. In Proceedings of the
40th Annual Meeting on Association for Computational Linguistics, pages 327–334,
Philadelphia, Pennsylvania. Association for Computational Linguistics.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and Accu-
rate Deep Network Learning by Exponential Linear Units (ELUs). In Proceedings
of the 2016 International Conference on Learning Representations, San Juan, Puerto
Rico.

Robin Cooper, Richard Crouch, Jan van Eijck, Chris Fox, Josef van Genabith, Jan
Jaspers, Hans Kamp, Manfred Pinkal, Massimo Poesio, Stephen Pulman, et al. 1994.
FraCaS–a framework for computational semantics. Deliverable, D6.

David Delahaye. 2000. A Tactic Language for the System Coq. In Logic for Program-
ming and Automated Reasoning, pages 85–95. Springer.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2017.
Convolutional 2D Knowledge Graph Embeddings. In Proceedings of the 32th AAAI
Conference on Artificial Intelligence, pages 1811–1818.

Timothy Dozat and Christopher D. Manning. 2017. Deep Biaffine Attention for Neu-
ral Dependency Parsing. In Proceedings of the 2017 International Conference on
Learning Representations, Toulon, France.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and A. Noah Smith.
2015. Transition-Based Dependency Parsing with Stack Long Short-Term Memory.
In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing, pages 334–343, Beijing, China. Association for Computational Linguistics.

Jason Eisner. 1996a. Efficient Normal-Form Parsing for Combinatory Categorial
Grammar. In 34th Annual Meeting of the Association for Computational Linguistics,
pages 79–86, Santa Cruz, California, USA. Association for Computational Linguis-
tics.

95

http://aclweb.org/anthology/J07-4004
http://aclweb.org/anthology/J07-4004
https://doi.org/10.3115/1073083.1073138
https://doi.org/10.3115/1073083.1073138
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17366/15884
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/981863.981874
https://doi.org/10.3115/981863.981874

Jason M. Eisner. 1996b. Three New Probabilistic Models for Dependency Parsing: An
Exploration. In Proceedings of COLING 1996, The 16th International Conference
on Computational Linguistics, pages 340–345, Copenhagen, Denmark. The COL-
ING 1996 Organizing Committee.

John J. Godfrey, Edward C. Holliman, and Jane McDaniel. 1992. SWITCHBOARD:
Telephone Speech Corpus for Research and Development. In Proceedings of the
1992 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 517–520, San Francisco, California. IEEE Computer Society.

Izumi Haruta, Koji Mineshima, and Daisuke Bekki. 2019. A CCG-based Composi-
tional Semantics and Inference System for Comparatives. In Proceedings of the
33rd Pacific Asia Conference on Language, Information and Computation, Hako-
date. Association for Computational Linguistics.

Shinkichi Hashimoto. 1934. Essentials of Japanese Grammar (Kokugoho Yousetsu).
Iwanami.

Junxian He, Graham Neubig, and Taylor Berg-Kirkpatrick. 2018. Unsupervised
Learning of Syntactic Structure with Invertible Neural Projections. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 1292–1302, Brussels, Belgium. Association for Computational Linguistics.

Julia Hockenmaier and Yonatan Bisk. 2010. Normal-form parsing for Combinatory
Categorial Grammars with generalized composition and type-raising. In Proceed-
ings of the 23rd International Conference on Computational Linguistics, pages 465–
473, Beijing, China. Coling 2010 Organizing Committee.

Julia Hockenmaier and Mark Steedman. 2007. CCGbank: A Corpus of CCG Deriva-
tions and Dependency Structures Extracted from the Penn Treebank. Computational
Linguistics, 33(3):355–396.

Matthew Honnibal and Mark Johnson. 2014. Joint Incremental Disfluency Detection
and Dependency Parsing. Transactions of the Association for Computational Lin-
guistics, 2:131–142.

Mohammad Javad Hosseini, Nathanael Chambers, Siva Reddy, Xavier R. Holt,
Shay B. Cohen, Mark Johnson, and Mark Steedman. 2018. Learning Typed En-

96

https://www.aclweb.org/anthology/C96-1058
https://www.aclweb.org/anthology/C96-1058
http://dl.acm.org/citation.cfm?id=1895550.1895693
http://dl.acm.org/citation.cfm?id=1895550.1895693
https://www.aclweb.org/anthology/Y18-1007
https://www.aclweb.org/anthology/Y18-1007
https://doi.org/10.18653/v1/D18-1160
https://doi.org/10.18653/v1/D18-1160
http://aclweb.org/anthology/C10-1053
http://aclweb.org/anthology/C10-1053
http://www.aclweb.org/anthology/J07-3004
http://www.aclweb.org/anthology/J07-3004
http://aclweb.org/anthology/Q14-1011
http://aclweb.org/anthology/Q14-1011
https://doi.org/10.1162/tacl_a_00250
https://doi.org/10.1162/tacl_a_00250

tailment Graphs with Global Soft Constraints. Transactions of the Association for
Computational Linguistics, 6:703–717.

Mohammad Javad Hosseini, Shay B. Cohen, Mark Johnson, and Mark Steedman.
2019. Duality of Link Prediction and Entailment Graph Induction. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 4736–4746, Florence, Italy. Association for Computational Linguistics.

Thomas Icard and Lawrence Moss. 2014. Recent progress in monotonicity. Linguistic
Issues in Language Technology (LiLT), 9:1–29.

Xinzhou Jiang, Zhenghua Li, Bo Zhang, Min Zhang, Sheng Li, and Luo Si. 2018.
Supervised Treebank Conversion: Data and Approaches. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics, pages 2706–2716,
Melbourne, Australia. Association for Computational Linguistics.

Vidur Joshi, Matthew Peters, and Mark Hopkins. 2018. Extending a Parser to Distant
Domains Using a Few Dozen Partially Annotated Examples. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics, pages 1190–
1199, Melbourne, Australia. Association for Computational Linguistics.

John Judge, Aoife Cahill, and Josef van Genabith. 2006. QuestionBank: Creating
a Corpus of Parse-Annotated Questions. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 497–504, Sydney, Australia. Association
for Computational Linguistics.

Hans Kamp and Uwe Reyle. 1993. From Discourse to Logic; An Introduction to Mod-
eltheoretic Semantics of Natural Language, Formal Logic and DRT. kluwer.

Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. 2016. Distributional Inclusion Hypoth-
esis for Tensor-based Composition. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers, pages
2849–2860, Osaka, Japan. The COLING 2016 Organizing Committee.

Daisuke Kawahara, Sadao Kurohashi, and Kôiti Hasida. 2002. Construction of a
Japanese Relevance-tagged Corpus. In Proceedings of the Third International Con-
ference on Language Resources and Evaluation, Las Palmas, Canary Islands - Spain.
European Language Resources Association.

97

https://doi.org/10.1162/tacl_a_00250
https://doi.org/10.18653/v1/P19-1468
http://aclweb.org/anthology/P18-1252
http://aclweb.org/anthology/P18-1110
http://aclweb.org/anthology/P18-1110
http://aclweb.org/anthology/P06-1063
http://aclweb.org/anthology/P06-1063
https://www.aclweb.org/anthology/C16-1268
https://www.aclweb.org/anthology/C16-1268
http://www.lrec-conf.org/proceedings/lrec2002/pdf/302.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/302.pdf

Ai Kawazoe, Ribeka Tanaka, Koji Mineshima, and Daisuke Bekki. 2017. An Infer-
ence Problem Set for Evaluating Semantic Theories and Semantic Processing Sys-
tems for Japanese. In New Frontiers in Artificial Intelligence: JSAI-isAI 2015 Work-
shops, LENLS, JURISIN, AAA, HAT-MASH, TSDAA, ASD-HR, and SKL, pages 58–
65, Cham. Springer International Publishing.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019. Compound probabilistic context-
free grammars for grammar induction. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 2369–2385, Florence, Italy.
Association for Computational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and Accurate Dependency
Parsing Using Bidirectional LSTM Feature Representations. Transactions of the
Association for Computational Linguistics, 4:313–327.

Dan Klein and Christopher D. Manning. 2003. A* Parsing: Fast Exact Viterbi Parse
Selection. In Proceedings of the 2003 Human Language Technology Conference
of the North American Chapter of the Association for Computational Linguistics,
pages 40–47.

Taku Kudo and Yuji Matsumoto. 2002. Japanese Dependency Analysis using Cas-
caded Chunking. In Proceedings of the 6th Conference on Natural Language Learn-
ing, CoNLL 2002, pages 63–69, Taipei, Taiwan. Association for Computational Lin-
guistics.

Jonathan K. Kummerfeld, Dan Klein, and James R. Curran. 2012. Robust Conversion
of CCG Derivations to Phrase Structure Trees. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics, pages 105–109, Jeju Is-
land, Korea. Association for Computational Linguistics.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2016. Global Neural CCG Parsing
with Optimality Guarantees. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2366–2376, Austin, Texas. Asso-
ciation for Computational Linguistics.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. 2014. Low-
Rank Tensors for Scoring Dependency Structures. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational Linguistics, pages 1381–1391,
Baltimore, Maryland. Association for Computational Linguistics.

98

https://doi.org/10.1007/978-3-319-50953-2_5
https://doi.org/10.1007/978-3-319-50953-2_5
https://doi.org/10.1007/978-3-319-50953-2_5
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://www.transacl.org/ojs/index.php/tacl/article/view/885
https://www.transacl.org/ojs/index.php/tacl/article/view/885
http://aclweb.org/anthology/N03-1016
http://aclweb.org/anthology/N03-1016
http://aclweb.org/anthology/W/W02/W02-2016.pdf
http://aclweb.org/anthology/W/W02/W02-2016.pdf
http://aclweb.org/anthology/P12-2021
http://aclweb.org/anthology/P12-2021
http://aclweb.org/anthology/D16-1262
http://aclweb.org/anthology/D16-1262
https://doi.org/10.3115/v1/P14-1130
https://doi.org/10.3115/v1/P14-1130

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015. Joint A* CCG Parsing and
Semantic Role Labelling. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1444–1454, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016. LSTM CCG Parsing. In
Proceedings of the 2016 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, pages 221–
231, San Diego, California. Association for Computational Linguistics.

Mike Lewis and Mark Steedman. 2014a. A* CCG Parsing with a Supertag-factored
Model. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, pages 990–1000, Doha, Qatar. Association for Computational
Linguistics.

Mike Lewis and Mark Steedman. 2014b. Improved CCG Parsing with Semi-
supervised Supertagging. Transactions of the Association for Computational Lin-
guistics, 2:327–338.

Zhenghua Li, Min Zhang, Yue Zhang, Zhanyi Liu, Wenliang Chen, Hua Wu, and
Haifeng Wang. 2016. Active Learning for Dependency Parsing with Partial Anno-
tation. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics, pages 344–354, Berlin, Germany. Association for Computational
Linguistics.

Bill MacCartney and Christopher D. Manning. 2008. Modeling Semantic Containment
and Exclusion in Natural Language Inference. In Proceedings of the 22nd Interna-
tional Conference on Computational Linguistics, pages 521–528, Manchester, UK.
Coling 2008 Organizing Committee.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn Treebank: An-
notating Predicate Argument Structure. In Proceedings of the Workshop on Human
Language Technology, pages 114–119, Plainsboro, NJ. Association for Computa-
tional Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building
a Large Annotated Corpus of English: The Penn Treebank. Computational Linguis-
tics, 19(2):314–330.

99

https://doi.org/10.18653/v1/D15-1169
https://doi.org/10.18653/v1/D15-1169
https://doi.org/10.18653/v1/N16-1026
https://doi.org/10.3115/v1/D14-1107
https://doi.org/10.3115/v1/D14-1107
http://aclweb.org/anthology/Q14-1026
http://aclweb.org/anthology/Q14-1026
https://doi.org/10.18653/v1/P16-1033
https://doi.org/10.18653/v1/P16-1033
https://www.aclweb.org/anthology/C08-1066
https://www.aclweb.org/anthology/C08-1066
https://doi.org/10.3115/1075812.1075835
https://doi.org/10.3115/1075812.1075835
http://aclweb.org/anthology/J93-2004
http://aclweb.org/anthology/J93-2004

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella bernardi,
and Roberto Zamparelli. 2014. A SICK cure for the evaluation of compositional
distributional semantic models. In Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation, pages 216–223, Reykjavik, Iceland.
European Language Resources Association.

M. Marneffe, B. Maccartney, and C. Manning. 2006. Generating Typed Dependency
Parses from Phrase Structure Parses. In Proceedings of the Fifth International Con-
ference on Language Resources and Evaluation, pages 449–454, Genoa, Italy. Eu-
ropean Language Resources Association.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. 2006.
Generating Typed Dependency Parses from Phrase Structure Parses. In Proceed-
ings of the Fifth International Conference on Language Resources and Evaluation,
Genoa, Italy. European Language Resources Association (ELRA).

Pascual Martı́nez-Gómez, Koji Mineshima, Yusuke Miyao, and Daisuke Bekki. 2017.
On-demand Injection of Lexical Knowledge for Recognising Textual Entailment. In
Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics, pages 710–720, Valencia, Spain. Association for Com-
putational Linguistics.

Takuya Matsuzaki, Takumi Ito, Hidenao Iwane, Hirokazu Anai, and Noriko H. Arai.
2017. Semantic Parsing of Pre-university Math Problems. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics, pages 2131–
2141, Vancouver, Canada. Association for Computational Linguistics.

George A. Miller. 1995. WordNet: A Lexical Database for English. Communications
of the ACM, 38(11):39–41.

Koji Mineshima, Pascual Martı́nez-Gómez, Yusuke Miyao, and Daisuke Bekki. 2015.
Higher-order logical inference with compositional semantics. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing, pages
2055–2061, Lisbon, Portugal. Association for Computational Linguistics.

Koji Mineshima, Ribeka Tanaka, Pascual Martı́nez-Gómez, Yusuke Miyao, and
Daisuke Bekki. 2016. Building compositional semantics and higher-order inference

100

http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
http://www.aclweb.org/anthology/E17-1067
https://doi.org/10.18653/v1/P17-1195
https://doi.org/10.1145/219717.219748
https://doi.org/10.18653/v1/D15-1244
http://aclweb.org/anthology/D16-1242
http://aclweb.org/anthology/D16-1242

system for a wide-coverage Japanese CCG parser. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Processing, pages 2236–2242,
Austin, Texas. Association for Computational Linguistics.

Seyed Abolghasem Mirroshandel and Alexis Nasr. 2011. Active Learning for De-
pendency Parsing Using Partially Annotated Sentences. In Proceedings of the 12th
International Conference on Parsing Technologies, pages 140–149, Dublin, Ireland.
Association for Computational Linguistics.

Jeff Mitchell and Mark Steedman. 2015. Parser Adaptation to the Biomedical Domain
without Re-Training. In Proceedings of the Sixth International Workshop on Health
Text Mining and Information Analysis, pages 79–89, Lisbon, Portugal. Association
for Computational Linguistics.

Makoto Miwa and Mohit Bansal. 2016. End-to-End Relation Extraction using LSTMs
on Sequences and Tree Structures. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, pages 1105–1116, Berlin, Germany.
Association for Computational Linguistics.

Richard Montague. 1974. Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven.

Reinhard Muskens. 2010. An Analytic Tableau System for Natural Logic. In Logic,
Language and Meaning, pages 104–113, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Graham Neubig et al. 2017. DyNet: The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980.

Yixin Nie and Mohit Bansal. 2017. Shortcut-Stacked Sentence Encoders for Multi-
Domain Inference. In Proceedings of the 2nd Workshop on Evaluating Vector
Space Representations for NLP, pages 41–45, Copenhagen, Denmark. Association
for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic,
Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Sil-
veira, Reut Tsarfaty, and Daniel Zeman. 2016. Universal Dependencies v1: A Mul-
tilingual Treebank Collection. In Proceedings of the Tenth International Conference

101

http://aclweb.org/anthology/D16-1242
http://dl.acm.org/citation.cfm?id=2206329.2206346
http://dl.acm.org/citation.cfm?id=2206329.2206346
https://doi.org/10.18653/v1/W15-2610
https://doi.org/10.18653/v1/W15-2610
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
https://arxiv.org/abs/1701.03980
https://doi.org/10.18653/v1/W17-5308
https://doi.org/10.18653/v1/W17-5308
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf

on Language Resources and Evaluation, pages 1659–1666, Portorož, Slovenia. Eu-
ropean Language Resources Association.

Hiroshi Noji and Yusuke Miyao. 2016. Jigg: A Framework for an Easy Natural Lan-
guage Processing Pipeline. In Proceedings of ACL-2016 System Demonstrations,
pages 103–108, Berlin, Germany. Association for Computational Linguistics.

Terence Parsons. 1990. Events in The Semantics of English: a Study in Subatomic
Semantics. The MIT Press.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, pages 2227–
2237, New Orleans, Louisiana. Association for Computational Linguistics.

Carl Pollard and Ivan A Sag. 1994. Head-driven phrase structure grammar. Univer-
sity of Chicago Press.

Dag Prawitz. 1965. Natural Deduction – A Proof Theoretical Study. Almqvist &
Wiksell.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014. Large-scale Semantic Parsing
without Question-Answer Pairs. Transactions of the Association for Computational
Linguistics, 2:377–392.

Siva Reddy, Oscar Täckström, Slav Petrov, Mark Steedman, and Mirella Lapata. 2017.
Universal semantic parsing. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 89–101, Copenhagen, Denmark.
Association for Computational Linguistics.

Laura Rimell and Stephen Clark. 2008. Adapting a Lexicalized-Grammar Parser to
Contrasting Domains. In Proceedings of the 2008 Conference on Empirical Methods
in Natural Language Processing, pages 475–484, Honolulu, Hawaii. Association for
Computational Linguistics.

102

https://doi.org/10.18653/v1/P16-4018
https://doi.org/10.18653/v1/P16-4018
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/Q14-1030
https://www.aclweb.org/anthology/Q14-1030
https://doi.org/10.18653/v1/D17-1009
http://aclweb.org/anthology/D08-1050
http://aclweb.org/anthology/D08-1050

Laura Rimell, Jean Maillard, Tamara Polajnar, and Stephen Clark. 2016. RELPRON:
A Relative Clause Evaluation Data Set for Compositional Distributional Semantics.
Computational Linguistics, 42(4):661–701.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský, and
Phil Blunsom. 2016. Reasoning about Entailment with Neural Attention. In Pro-
ceedings of the 2016 International Conference on Learning Representations, San
Juan, Puerto Rico.

Kenji Sagae, Yusuke Miyao, and Jun’ichi Tsujii. 2007. HPSG Parsing with Shallow
Dependency Constraints. In Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 624–631, Prague, Czech Republic.
Association for Computational Linguistics.

Cı́cero Nogueira dos Santos and Bianca Zadrozny. 2014. Learning Character-level
Representations for Part-of-speech Tagging. In Proceedings of the 31st Interna-
tional Conference on International Conference on Machine Learning, pages 1818–
1826, Beijing, China. JMLR.org.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirectional Recurrent Neural Networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni, and Clint Malcolm.
2015. Solving geometry problems: Combining text and diagram interpretation. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1466–1476, Lisbon, Portugal. Association for Computational
Linguistics.

Mark Steedman. 2000. The Syntactic Process. The MIT Press.

Mark Steedman. 2012. Taking Scope: The Natural Semantics of Quantifiers. The MIT
Press.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved Seman-
tic Representations From Tree-Structured Long Short-Term Memory Networks. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Process-
ing, pages 1556–1566, Beijing, China. Association for Computational Linguistics.

103

https://doi.org/10.1162/COLI_a_00263
https://doi.org/10.1162/COLI_a_00263
http://aclweb.org/anthology/P07-1079
http://aclweb.org/anthology/P07-1079
http://dl.acm.org/citation.cfm?id=3044805.3045095
http://dl.acm.org/citation.cfm?id=3044805.3045095
https://doi.org/10.1109/78.650093
https://doi.org/10.18653/v1/D15-1171
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and Jun’ichi Tsujii. 2005. Syntax Anno-
tation for the GENIA Corpus. In Companion Volume to the Proceedings of Confer-
ence including Posters/Demos and tutorial abstracts, pages 220–225. Association
for Computational Linguistics.

Hideo Teramura. 1969. The Syntax of Noun Modification in Japanese. The Journal-
Newsletter of the Association of Teachers of Japanese, 6(1):64–74.

The Coq Development Team. 2017. The Coq Proof Assistant: Reference Manual:
Version 8.7.1. INRIA.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. 2015. Chainer: a Next-
Generation Open Source Framework for Deep Learning. In Proceedings of Work-
shop on Machine Learning Systems in The Twenty-ninth Annual Conference on Neu-
ral Information Processing Systems.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. 2003.
Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In Pro-
ceedings of the 2003 Human Language Technology Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics, pages 173–180.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In Proceed-
ings of the 33rd International Conference on International Conference on Machine
Learning, pages 2071–2080, New York, USA. JMLR.org.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word Representations:
A Simple and General Method for Semi-Supervised Learning. In Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics, pages
384–394, Uppsala, Sweden. Association for Computational Linguistics.

Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi Isahara. 1999. Japanese Dependency
Structure Analysis Based on Maximum Entropy Models. In Ninth Conference of
the European Chapter of the Association for Computational Linguistics, pages 196–
203, Bergen, Norway. Association for Computational Linguistics.

Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka, Yusuke Miyao, and Hideki
Mima. 2015. Integrating Multiple Dependency Corpora for Inducing Wide-

104

http://aclweb.org/anthology/I05-2038
http://aclweb.org/anthology/I05-2038
http://www.jstor.org/stable/488720
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://www.aclweb.org/anthology/N03-1033
http://dl.acm.org/citation.cfm?id=3045390.3045609
http://aclweb.org/anthology/P10-1040
http://aclweb.org/anthology/P10-1040
http://aclweb.org/anthology/E99-1026
http://aclweb.org/anthology/E99-1026
https://doi.org/10.1145/2658997
https://doi.org/10.1145/2658997

Coverage Japanese CCG Resources. ACM Transactions on Asian and Low-Resource
Language Information Processing, 14(1):1:1–1:24.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan Musa. 2016. Supertagging
With LSTMs. In Proceedings of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technolo-
gies, pages 232–237, San Diego, California. Association for Computational Linguis-
tics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for Natu-
ral Language Understanding. In Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
Brussels, Belgium. Association for Computational Linguistics.

David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. 2015. Structured Train-
ing for Neural Network Transition-Based Parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing, pages 323–333, Beijing,
China. Association for Computational Linguistics.

Gijs Wijnholds and Mehrnoosh Sadrzadeh. 2019. Evaluating Composition Models
for Verb Phrase Elliptical Sentence Embeddings. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 261–271, Minneapolis, Minnesota.
Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage Chal-
lenge Corpus for Sentence Understanding through Inference. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguistics.

Wenduan Xu, Stephen Clark, and Yue Zhang. 2014. Shift-Reduce CCG Parsing with a
Dependency Model. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, pages 218–227, Baltimore, Maryland. Association
for Computational Linguistics.

105

https://doi.org/10.1145/2658997
https://doi.org/10.18653/v1/N16-1027
https://doi.org/10.18653/v1/N16-1027
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.18653/v1/N19-1023
https://doi.org/10.18653/v1/N19-1023
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.3115/v1/P14-1021
https://doi.org/10.3115/v1/P14-1021

Yao-zhong Zhang, Takuya Matsuzaki, and Jun’ichi Tsujii. 2010. A Simple Approach
for HPSG Supertagging Using Dependency Information. In Human Language Tech-
nologies: The 2010 Annual Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 645–648, Los Angeles, California.
Association for Computational Linguistics.

106

http://aclweb.org/anthology/N10-1090
http://aclweb.org/anthology/N10-1090

107

List of Publications

Journal
1. Masashi Yoshikawa, Hiroshi Noji, and Yuji Matsumoto, A* CCG Parsing with

a Supertag and Dependency Factored Model, 自然言語処理, Vol.26 No.1, pp.
83–119, March 2019.

International Conferences (Refereed)
1. Masashi Yoshikawa, Hiroshi Noji, Koji Mineshima and Daisuke Bekki, Auto-

matic Generation of High Quality CCGbanks for Parser Domain Adaptation, In
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (ACL 2019), pp. 129–139, Florence, Italy, July 2019.

2. Masashi Yoshikawa, Koji Mineshima, Hiroshi Noji and Daisuke Bekki, Com-
bining Axiom Injection and Knowledge Base Completion for Efficient Natural
Language Inference, In Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI-2019), pp. 7410–7417, Honolulu, Hawaii, USA, January
2019.

3. Masashi Yoshikawa, Hiroshi Noji, and Yuji Matsumoto, A* CCG Parsing with
a Supertag and Dependency Factored Model, In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (ACL-2017), pp.
277–287, Vancouver, Canada, July 2017.

Other Publications (Refereed)
1. Riko Suzuki, Hitomi Yanaka, Masashi Yoshikawa, Koji Mineshima and Daisuke

Bekki, Building a Logical Inference System for Visual-Textual Entailment, In

Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics: Student Research Workshop (ACL-SRW 2019), pp. 386–392, Flo-
rence, Italy, July 2019.

2. Riko Suzuki, Hitomi Yanaka, Masashi Yoshikawa, Koji Mineshima and Daisuke
Bekki, Towards building a logical inference system for image retrieval, In Pro-
ceedings of the Second Workshop on Shortcomings in Vision and Language
(SiVL) NAACL-HLT2019, 2 pages, Minneapolis, USA, June 2019.

3. Kana Manome, Masashi Yoshikawa, Hitomi Yanaka, Pascual Martı́nez-Gómez,
Koji Mineshima and Daisuke Bekki, Neural sentence generation from formal
semantics, In Proceedings of the 11th International Conference on Natural Lan-
guage Generation (INLG-2018), pp.408–414, Tilburg, Netherlands, November
2018.

4. Masashi Yoshikawa, Koji Mineshima, Hiroshi Noji and Daisuke Bekki, Consis-
tent CCG Parsing over Multiple Sentences for Improved Logical Reasoning, In
Proceedings of the 16th Annual Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT-2018), pp.407–412, New Orleans, USA, June 2018.

5. Masashi Yoshikawa, Hiroyuki Shindo, and Yuji Matsumoto, Joint Transition-
based Dependency Parsing and Disfluency Detection for Automatic Speech
Recognition Texts, In Proceedings of Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP-2016), pp.1036–1041, Texas, USA, Novem-
ber 2016.

Domestic Conferences (Non-refereed)
1. 鈴木莉子,吉川将司,谷中瞳,峯島宏次,戸次大介,「テキスト情報と画像情報
を組み合わせた論理推論システムの構築」,人工知能学会第 33回全国大会
(JSAI2019), 4 pages, June 2019.

2. 吉川将司,能地宏,峯島宏次,戸次大介,「係り受け木を用いたツリーバンク自
動生成によるCCG解析分野適応」,言語処理学会第25回年次大会 (NLP2019),
pp. 197–200, March 2019.

108

3. 吉川将司,峯島宏次,能地宏,戸次大介,「知識ベース補完を用いた高階論理
推論のための自動公理生成」,言語処理学会第 24回年次大会 (NLP2018), pp.
113–116, March 2018.

4. 馬目華奈,谷中瞳,吉川将司,峯島宏次,戸次大介,「RNN系列変換モデルを用
いた高階論理式からの文生成」,言語処理学会第 24回年次大会 (NLP2018),
pp. 380–383, March 2018.

5. 吉川将司,能地宏,松本裕治,「係り受け構造とスーパータグの同時予測に
よる A* CCG解析」,情報処理学会第 231回自然言語処理研究会, 9 pages,
May 2017.

6. 吉川将司,能地宏,松本裕治,「係り受け構造との同時予測によるA* CCG解
析」,言語処理学会第 23回年次大会 (NLP2017), pp. 274–277, March 2017.

7. 吉川将司,進藤裕之,松本裕治,「話し言葉の依存構造解析における音声認識
誤りの影響と評価」,言語処理学会第 22回年次大会 (NLP2016), pp. 477–480,
March 2016.

Awards
1. 優秀賞,言語処理学会第 23回年次大会 (NLP2017), 2017（主著論文）

2. 若手奨励賞,言語処理学会第 25回年次大会 (NLP2019), 2019.（主著論文）

3. 優秀賞,人工知能学会第 33会全国大会 (JSAI2019)口頭発表部門, 2019（共
著論文）

109

	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Thesis Outline
	1.4 Programs and Resources

	2 Preliminaries
	2.1 Combinatory Categorial Grammar
	2.1.1 CCG Grammar for English Language
	2.1.2 CCG Grammar for Japanese Language

	2.2 CCG and Dependency Grammar
	2.3 Existing CCG Parsers
	2.4 CCG Parsing Evaluation
	2.5 CCG-based Natural Language Inference Systems
	2.5.1 ccg2lambda
	2.5.2 LangPro

	3 A* CCG Parsing
	3.1 Introduction
	3.2 Background
	3.2.1 Supertag-factored A* CCG Parsing
	3.2.2 Bidirectional LSTM Dependency Parsing

	3.3 Proposed Method
	3.3.1 A* Parsing with Supertag and Dependency Factored Model
	3.3.2 Network Architecture

	3.4 CCG to Dependency Conversion
	3.4.1 LewisRule
	3.4.2 HeadFinal
	3.4.3 HeadFirst

	3.5 Tri-training
	3.6 Parsing Experiments
	3.6.1 English Experimental Settings
	3.6.2 Japanese Experimental Settings
	3.6.3 English Parsing Results
	3.6.4 Japanese Parsing Result

	3.7 RTE Experiments
	3.7.1 Experimental Settings
	3.7.2 English RTE Results
	3.7.3 Japanese RTE Results

	3.8 Related Work
	3.9 Summary

	4 Domain Adaptation for CCG Parsing
	4.1 Introduction
	4.2 Problem Statement
	4.3 Dependency-to-CCG Converter
	4.4 Constrained Decoding
	4.5 Experiments
	4.5.1 Experimental Settings
	4.5.2 Evaluating Converter's Performance
	4.5.3 Biomedical Domain and Questions
	4.5.4 Speech Conversation
	4.5.5 Math Problems

	4.6 Summary

	5 Axiom Injection for Logic-based Inference System
	5.1 Introduction
	5.2 Related work
	5.2.1 Logic-based RTE systems
	5.2.2 Knowledge Base Completion (KBC)

	5.3 System overview
	5.3.1 CCG and semantic parsing
	5.3.2 Theorem proving
	5.3.3 Axiom insertion (abduction)

	5.4 Proposed method
	5.4.1 Data creation
	5.4.2 Axiom injection with abduction tactic

	5.5 Experiments
	5.5.1 SICK dataset
	5.5.2 New LexSICK lexical inference dataset
	5.5.3 Experimental settings
	5.5.4 Results on SICK set
	5.5.5 Evaluating latent knowledge

	5.6 Summary

	6 Conclusion
	Appenix
	A Details of English CCG Grammar
	B Details of Japanese CCG Grammar
	C LexSICK dataset

