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Abstract

Keys to the recent success of deep learning are regularization methods and
optimization algorithms. For example, deep neural networks (DNNs) such as
the MLP and ResNet overfit noise in the training set and training the DNNs
takes a long time due to slow convergence of the gradient descent (GD) while
deeper networks have higher expressive power. Various regularization methods
prevent the DNNs from over-fitting noise in the training set and optimization
algorithms such as the batch normalization (BN) and stochastic depth accelerate
the convergence of the GD. However, their mechanisms are not fully understood.
In this thesis, toward understanding the mechanisms, we provide theoretical novel
insight into the above phenomena as follows. The weight decay, L1, and path
regularizations discourage the MLP from learning high-frequency components of
training data. When we assume that the high-frequency components come from
noise in the training set, the regularization methods prevent the MLP from over-
fitting the noise while learning a true target function behind the noisy data. It is
necessary for the convergence of parameters of the ResNet into minima to set a
learning rate exponentially small with respect to the depth. The stochastic depth
relaxes the exponential term of this decrease and the BN relaxes the exponential
decrease into the polynomial order. Moreover, our experiments confirmed that
the BN and stochastic depth enabled the GD to use a large learning rate compared

with that of the vanilla ResNet and accelerated their training.
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1. Introduction

1.1 Machine learning and deep learning

Machine learning technologies are widely used in modern society from search
engine on the internet [1, 2] to handwritten zip code recognition system in the
post office [3, 4] and automate various manual works [5]. This spread of machine
learning is owing to its wide applicability and super-human ability.

Before the machine learning age, we have to write a program and tell a com-
puter an algorithm, a set of exact and unambiguous instructions, for what we
automate. It is often said that you don’t really understand something until you
can express it as an algorithm. However, we don’t completely understand almost
all the things we do in everyday life because we unconsciously do these things.
For example, we can recognize individual persons but cannot exactly explain how
to recognize them because our recognition ability is implicit knowledge: it is sur-
jective, grows through our individual experience, and thus it is difficult to explain
explicitly. On the other hand, machine learning feeds data, face images and the
labels that correspond to the individuals, and automatically writes this recogni-
tion algorithm such that it maps the face images into the corresponding labels in
the data. In this sense, machine learning is algorithm that creates an algorithm
based on data. Of course, machine learning can be applied to other tasks such as
object recognition [6, 7], language translation [8, 9, 10], and sport analysis [11, 12]
because all it needs is only data, inputs and the correspond targets. This wide
applicability is one reason why machine learning technologies are around us. The
other reason is its super-human performance achieved by one machine learning
algorithm called deep learning.

Although conventional machine learning can be applied to various applica-
tions, it has limitations in their performance. Constructing a machine learning
system with a better performance required careful engineering and expert domain
knowledge to design a good feature extractor, a transformation of raw input, for
predicting the target. Deep learning automatically creates a good feature ex-
tractor that captures complex patters in the data by composing a computational
model with stacking many layers that each transforms the features captured by
a previous layer [13, 14, 15, 16], which is called deep neural network (DNN), and



learning this model based on the given data, which is called training set. During
the training, the DNN predicts the corresponding targets for given inputs and
an optimization algorithm optimizes its parameters to reduce an empirical risk,
which measures a discrepancy between the predictions and true targets in the
training set. The most famous optimization algorithm for DNN is the gradient
descent (GD). Landscape of the empirical risk on the parameters is like a hill.
The GD calculates the gradient of this hill at current parameters, which looks at
the steepest descent direction, and slightly moves the parameters into this direc-
tion. Iterating this procedure makes the parameters converge into a point that
achieves a small empirical risk. Deep learning can be applied to complex tasks
that conventional machine learning didn’t make a good job [17, 18, 19] and has

been changing the history of machine learning in performance [20, 21, 22].

1.2 How fast deep learning methods are developing!

Deeper neural networks have higher expressive power owing to their depth. Con-
sider a DNN with the rectified linear unit (ReLU) activation functions, which
represents a piecewise linear function (Fig. 1). Its expressive ability can be mea-
sured by the number of its linear regions and it increases exponentially with
respect to the depth of the DNN [23, 24, 25, 26]. Although DNNs have massive

expressive power, it was thought that their training was difficult and this diffi-
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Figure 1. Landscape of a 2-layer DNN with the ReLU activation f : R? — R.



culty closed the neural network boom at the end of the twenty century. At the
beginning of the twenty-first century, thanks to massive computational resources,
it was empirically observed that many heuristics can overcome this difficulty. And
now, hundreds of heuristics: regularization methods and optimization algorithms

for training extremely DNNs are developing day by day as follows.

1.2.1 Regularization methods

The extremely DNNs tend to over-fit noise in the training set (Fig. 2) although
their predictions should be generalized to unseen data, in other words, the DNN5s
should minimize a discrepancy between their predictions and true targets for
unseen inputs, which is called expected risk. This is because the extremely DNNs
have too much expressive power such that they can perfectly fit even input—
target relation of randomly generated data [28]. Various regularization techniques
prevented the DNNs from over-fitting noise in the training set while learning a
true target function behind the noisy data (Fig. 2) [29]. These regularization
methods modify optimization algorithm explicitly such as the dropout [30] or
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Figure 2. Over-fitting of the DNN f : R — R and effects of the regularization
technique (Modification of Fig. 1.4 in [27]).



add the regularization term to the loss function such as the weight decay.

Effects of these regularization methods on the generalization ability of DNNs
were theoretically analyzed by evaluating the model complexity measure such as
the Rademacher complexity [31, 32, 33, 34]. However, a recent experiment showed
that this measure is trivial and fail to explain their effects on the generalization
ability [28].

This has prompted recent works on implicit regularization, which is the inher-
ent mechanism in the optimization algorithm and the model architecture for high
generalization ability [35]. For example, the SGD learns simple patterns [29] and
low-frequency signals first [36]. Moreover, the SGD with a small mini-batch size
converges the parameters into the flat minima [37], which have high generaliza-
tion ability [38, 39, 40]. In the ResNet, skipping two layers by its shortcut makes
the loss landscape around the minima flatter than skipping one or no layer [41].
If the training data are linearly separable, the GD converges a linear feedforward
network into a maximum margin classifier [42, 43]. In the case of a linear convolu-
tional neural network, the GD converges this linear model into a sparse classifier
in the frequency domain [43]. In the matrix factorization, adding depth to the
linear model provides a low-rank solution [44].

However, the mechanism of the explicit regularization methods such as the

weight decay have been still unclear.

1.2.2 Optimization algorithms

Training deep conventional feedforward neural networks like the multi-layer per-
ceptron (MLP) (Fig. 3) degraded even an empirical risk compared with shallow
one while deeper networks have higher expressive power [23, 24, 25, 26]. For ex-
ample, this network with 56 layers had a larger empirical risk than one with 20
layers [45]. This is because some layers lose important information for predicting

the target. Some numerical experiments showed that the transformation by lay-
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Figure 3. Multi-layer perceptron (MLP).
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ers of the MLP decreased mutual information between transformed inputs and
the targets [46, 47]. Moreover, the transformation decreases the angle between
two data points, which makes the classification of data points difficult [48, 49].

To overcome this problem, the ResNet incorporates skip-connections between
layers [45, 50] (Fig. 4), which add an input of a layer into its output, and propa-
gate input information even at higher layers. These skip-connections enabled an
extremely DNN (1202 layers) to be trained with a small empirical risk. However,
training a deep ResNet takes a long time due to its slow convergence. For exam-
ple, even a modern computer with multiple GPUs requires several weeks to train
a 152-layer ResNet to learn the ImageNet dataset [45].

One reason for this slow convergence was said to be the internal covariate
shift: an optimization problem for each layer is changing during training because
a probability distribution of inputs of each layer is changing by updating param-
eters of its previous layer. The batch normalization (BN) was proposed to relax
this internal covariate shift by normalizing inputs of each layer and accelerated
the convergence of the GD with a large learning rate [51]. However, a recent
experiment showed that the internal covariate shift doesn’t occur [52].

Another reason for the slow convergence is the vanishing gradient problem:
norms of the gradients with respect to parameters vanish in early layers [53,
54, 55]. The stochastic depth trains a shallow ResNet by dropping layers at
random from the full ResNet for each iteration of training (Fig. 5) and relaxes this

vanishing gradient problem [56]. It reduces the training time by 25 percent with
Output Prediction
layer f(x)

Figure 4. ResNet (& depicts element-wise vector addition).

Output Predlctlon
layer

Figure 5. Stochastic depth.



higher performance at the same number of iterations. However, the mechanism
of this acceleration is not fully understood.

Convergence property of the GD depends on the smoothness of the loss land-
scape of the DNN. The loss landscape is not only convex but also tends to have a
large number of sharp kinks, which makes the GD unstable [57]. For example, a
large step in updating the parameters by the GD tends to degrade its loss exper-
imentally due to the sharp kink. This forces us to carefully set a small learning
rate, which makes the convergence slow [58]. Theoretically, a small learning rate
is necessary for the convergence when the maximum eigenvalue of the Hessian
matrix is large at minima and a large condition number (ratio of the maximum
eigenvalue to the minimum eigenvalue) makes the convergence slow around the
minima [59]. Note that the relationship between the condition number and the
convergence speed holds only around the minima 6, but the GD and SGD make
the parameters converge into the minima under some conditions [60, 61, 62].
Karakida et al. [63, 64] theoretically calculated the eigenvalues of the Fisher in-
formation matrix (FIM) of the randomly initialized MLP and MLP with BN
because these eigenvalues approximate the eigenvalues of the Hessian matrix at
the minima [60, 63]. Their results showed that the BN decreases the maximum
eigenvalue and is helpful to set a large learning rate of the GD compared with that
of the vanilla MLP for its convergence. However, the counterparts of the ResNet,
ResNet with BN, and ResNet with stochastic depth haven’t been analyzed yet.

1.3 Our contribution

Although some regularization methods prevent DNNs from over-fitting noise in
the training set and the optimization algorithms accelerate the convergence of
the GD, their mechanisms are not fully understood. Toward understanding these
mechanisms, we aim to provide some novel theoretical insights into the prevention
of the over-fitting by the regularization methods and the fast convergence of the
GD by the BN and stochastic depth in this thesis.

First, toward understanding the prevention of the over-fitting by the weight
decay, L1 regularization, and path regularization, we rethink these regularization
methods from the perspective of the Fourier spectra and show that they penalize

the MLP to discourage it from learning high-frequency components of data. When



we assume that the high-frequency components come from noise in the training
set, this result implies that these regularization methods prevent the DNN from
over-fitting the noise while learning a true target function behind the noisy data.

Second, toward understanding mechanisms for the fast convergence of the
GD by the BN and stochastic depth, we calculated the maximum eigenvalues
of the FIMs of the randomly initialized ResNet, ResNet with BN, and ResNet
with stochastic depth. Our results show that the maximum eigenvalue of the
ResNet grows exponentially with respect to the depth, the stochastic depth re-
laxes this growth by decreasing exponential term, and the BN relaxes this ex-
ponential growth into at most the polynomial order. Thanks to this relaxation
of the maximum eigenvalue, the BN and stochastic depth are helpful to set a
large learning rate of the GD compared with that of the vanilla ResNet for its
convergence. Moreover, our experiments confirmed the acceleration of training
by the BN and stochastic depth with their optimal learning rates of the GD.



2. Problem formulation

2.1 Samples for training

N
n=1"

Let a training set be denoted by S = {(z(n),y(n))}
is a pair of an input x(n) € X and the corresponding target y(n) € ), which is

Each training example

independently identically distributed from a probability distribution D, where X
and ) are an input space and target space. The indices of the set are omitted if

they are clear from the context.

2.2 Training for deep neural network

A DNN f: X x © — Y with parameters § € O predicts a corresponding target
y € Y for a given input x € X', where O is a parameter space. Its performance is

measured by an expected risk

R(0) = Eqy [((f(2,0), 9)], (1)

where £ : )Y x Y — R, U {0} is a loss function and we consider the squared loss
((f(z,0),y) = 3(f(x,0) — y)* unless otherwise noted. The expectation is taken
over the probability distribution D. The parameters 6 are trained by the GD

9t+1 =0, — TIV(JRS(Qt) (2)

to minimize an empirical risk

Rs(0) = Nzﬁ(f(ﬂf(n)ﬁ),y(n)) (3)

instead of the expected risk because we cannot calculate it directly due to in-
accessibility of the data distribution D. Note 6; is an output of the GD at tth
update and 7 is a learning rate of the GD. A more popular gradient-based train-
ing algorithm is the stochastic GD (SGD), which randomly selects one or more
examples (a mini-batch) from the training set and updates the parameters using
the gradient of the loss with the mini-batch. And more practical gradient-based
training algorithm is the Adam [65], which uses learning rates for different param-
eters of the DNN and adaptively changes these learning rates based on estimated
second moment of the gradients. Initialization methods of the parameters 6, are

specified in each subsequent analysis section.
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2.3 Regularization methods

The L-layer MLP f : (x,0) — ¢ with parameters § = (W', W?2 ... Wk) € 6

predicts a corresponding target y € R for an input x € R,
W=p(W'h™h), g =wEE, (4)

where h° = z is the input, ¢(z); = max{0, z;} is the element-wise ReLU function,
and the width of /-th hidden layer is denoted by D;. Due to the ReLLU function,
the MLP represents piecewise linear function and the number of linear regions
grows with respect to the depth, which implies that deeper MLP has higher
expressive power [23, 24, 25, 26]. Because of this high expression ability, a deep
MLP tends to over-fit noise in the training set.

To prevent the DNNs from the over-fitting, a regularizer ¢ : © — R, U{0} is
added to the empirical risk,

Rs(0) +C - (0), ()

where C' is the regularization coefficient, and the gradient based training algo-
rithm is applied to this objective. In the weight decay and L1 regularization,
their regularizers are the sum over the L2 norms of weights and that over the L1

norms, respectively.

Vra(0) = D_IW'lys vua(0) =3 [W, (6)

In the path regularization, its regularizer is the sum over the Lp norms of path
weights from the input nodes into the output node [33]. We consider the L1 norm

path regularizer.

L

l
H Wal+1’al

=1

Yp1(0) = Z

a€[Do]|x[D1]x-+-x[Dy]

(7)

The path regularizer involves an exponential number of terms. However, it can
be computed efficiently by dynamic programming in a single forward step [66].
These regularization methods made the MLP achieve a small test loss as well

as a small empirical risk empirically and their mechanisms were theoretically

9



analyzed by using the Rademacher complexity [33, 34, 67]. Let

HoS={(f(2(1),0), [(2(2),0),.... f(x(N),0)) | 6 € O} (8)

be the set of all possible evaluation of the MLP on the training set S. Then, its

Rademacher complexity is defined as

N

sup 3 0, f(2(n), e>] , (9)

0e0 *—

1
R(HoS) = <E,

where 0, € {—1,+1} is the uniformly random variable and the expectation is
taken with respect to these random variables {0, }._,. It measures ability of the

model to fit random binary labels and this measure is upper bounded.

Theorem 1. (Theorem 1 in [34]). Suppose that a parameter space is restricted
such that ||W¥||s = 1 and HlL;ll WYl < K. Then, the following inequality holds.

R(HoS) < \/LN2L_1/2K max [|z(n)]|2. (10)

née[N]

The regularizers penalize norms of the weights, confine learning to a subset of
parameters with small norms, and thus it decreases the Rademacher complexity.
Thanks to this property, the regularizers decrease a gap between the expected
risk and empirical risk because the gap is upper bounded by the Rademacher

complexity.

Theorem 2. (Modification of Theorem. 26.5 in [32]). Assume that the loss func-
tion is a-Lipschitz and absolute value of the loss is upper bounded |¢(f(x,0),y)| <
¢ for any 6 € © and (x,y) € X x Y. Then, the following inequality holds with
probability of at least 1 — § for all § € ©.

2log(4/9)

R(0) = Rs(0) < 20R(H 0 ) + ey | =5 (11)

However, a recent experiment showed that the MLP can fit the training set
with random binary labels perfectly even when the weight decay was used [28].
This implies that the Rademacher complexity is trivial for evaluating the effect
of the regularization methods on the generalization ability. Thus, we need to

rethink the regularization methods from different perspectives.
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2.4 Optimization algorithms

Training a deep MLP degraded even its empirical risk compared with shallow one
while deeper MLP has higher expressive power [45]. To overcome this degradation
problem, the ResNet f : (x,0) — ¢ incorporates skip-connections between layers,

which add an input of a layer into its output (Fig. 6).
hl — Wl¢ (hlfl) + hl*l, g — 1ThL, (12)

where h? = 4u® = W% € RP? is the linear transform of the input. Although an
extremely deep ResNet can be trained with high performance, it takes a long
time due to its slow convergence [45]. To accelerate this training, the BN [51]
and stochastic depth [56] were proposed.

The BN normalizes inputs of each layer (Fig. 6).

hi B ]Em [hq

(2

ht = W'$(BN(h'™1) + hi™t BN (h), = :
Var (ki)

%

y= 1ThL, (13)

where the expectation is taken with respect to the input in the batch of the GD,

in other words, the input in the training set.

B Entire architecture

Input Prediction
reRP —woLé | Layer 1 &4~ Layer 2 |- LayerL l>—>fq;9 eR

PrOJectlon
B ResNet Il ResNet with BN B ResNet with stochastic depth
" Affine ‘Batch Bernoull
RelLU N k
transform normalization random variable

Figure 6. Architectures of the ResNet, ResNet with BN, and ResNet with stochas-
tic depth.
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The stochastic depth trains a shallow ResNet by dropping layers at random
from full ResNet for each iteration of training (Fig. 6).

W =w's"-¢ (") +h'"" where 8 ~ Ber(p), ¢=1"n", (14)

where p is the survival probability of each layer. Note the ResNet does not drop
layers and instead multiplies the output of each layer by the survival probability
for evaluation of its performance.

Convergence property of the GD depends on the smoothness of the loss land-
scape of the DNN. The empirical risk Rg(f;) is approximated by the second-order
Taylor expansion around the minima 6, such that third and subsequent-order
terms can be ignored and hence the empirical risk on this region can be written

Rs(00) = Rs(0.) + 56— 0. H(8.)(6. —0.), (15)

where H(6,) = VoVyRs(0.) is the Hessian matrix. The Hessian matrix is decom-
posed as H(0,) = UAUT, where U and A are a unitary square matrix with the
eigenvectors and a diagonal matrix filled with the eigenvalues, which simplifies

the empirical risk to

1
Rs(0:) 2 Rs(6.) + v/ Avy, (16)

where v; = UT (; — 6.) and its update by the GD is
Vi1 = (I — nA) v, (17)

Let Apin and Apax be the minimum and maximum eigenvalues of H(6,). It is nec-
essary for the convergence of the GD into the minima to set a learning rate smaller
than 2/A\nax (Fig. 7). Moreover, it converges fastest when 7 = 1/A\pax around the
minima and a small condition number Ap.x/Amin induces fast convergence [59].
However, calculating the Hessian matrix and its eigenvalues are difficult owing
to the complicated structure of the DNNs. Karakida et al. [63, 64] found that
the FIM of probability distribution p(x,y;6) represented by the MLP f(x,8),

F(0) =E,, [Vologp(z,y;0) Vologp(z,y;0)"], (18)

12
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Figure 7. Convergence property of the GD and its learning rate.

approximates the Hessian matrix at the minima. Consider p(x,y; 0) = p(z)p(y|z; 6),
where p(z) is the probability of the input in the training set and p(y|z;6) =
N (f(x;0),1). In this case, the FIM is rewritten as

F(0) =E, [Vof(z,0) Vof(z,0)"] (19)

and the following holds:

where the second term is negligible when the error is small. In addition, the
eigenvalues of the FIM of a sufficiently wide MLP don’t change during training.

Karakida et al. [63, 64] also calculated the maximum eigenvalue of the FIM
of the randomly initialized MLP and MLP with BN. Their results showed that
the BN decreases the maximum eigenvalue and is helpful to set a large learning
rate of the GD compared with the vanilla MLP for its convergence under some
condition. However, the counterpart of the ResNet, ResNet with BN, and ResNet
with stochastic depth haven’t been analyzed yet.
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3. Analysis of regularization methods

3.1 Fourier spectra analysis

We rethink the regularization methods from the perspective of the Fourier spectra
of the MLP. Let the MLP f(-,6) be denoted by fy(:) : R — R. Then, the Fourier

transform of the MLP is written as
fo(x) = (QW)_D/Q/fe(k) e dk, where fo(k) = /f@(x) e "0 de.(21)

Rahaman et al. [36] calculated the Fourier coefficients and their upper bounds as

follows.

Theorem 3. (Modification of Theorem 1 in [36].) The Fourier coefficients of
the MLP fy are upper bounded by the Lipschitz constant of the MLP || fp|rip and
the number of linear regions represented by the MLP K(6).

fok) < 3 1kl O (I follusy - K(9)). (22)

Theorem 3 shows the implicit regularization of the MLP: the Fourier coeffi-
cient of the MLP shrinks polynomially with respect to the frequency. Moreover,
this theorem implies that the MLP needs a large Lipschitz constant to represent
the high frequency components. We focused on this property and analyzed the
relationship between the Lipschitz constant and the regularizers toward under-
standing the effects of the explicit regularization methods on the Fourier coeffi-
cients of the MLP.

3.2 Theoretical analysis

The Lipschitz constant of the MLP were theoretically analyzed by focusing on

its layered structure [68] and Theorem 4 is application of this result.

Theorem 4. The Lipschitz constant of the MLP is upper bounded by the product

over the L2 norms of the weights and that over the L1 norms.
L L
I folls < TT IVl < TT I (23)
1=1 =1
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In contrast, we derive Theorem 5 by focusing on its path-sum structure, that
is, the output of the MLP can be written as the sum over path weights from input

nodes to the output node.

Theorem 5. The Lipschitz constant of the MLP is upper bounded by the path

and L1 reqularizers.

I folluip < ¥p1(6) < vra(6)” (24)

Remark 1. Theorems 3-5 imply that the weight decay, L1 regularization, and
path regularization decrease the Lipschitz constant and hence give a penalty for
the MLP to learn high-frequency components. When we assume that the high
frequency components come from noise in the training set, this result implies that
these reqularization methods prevent the MLP from over-fitting the noise while

learning a target function behind the noisy data.

3.3 Numerical experiments
3.3.1 Toy examples

Our theory shows that the regularizations prevent the MLP from learning high-
frequency components. To confirm its validity, we made toy examples (Fig. 8).
Two hundred inputs € R were sampled from [0, 1] at equall intervals and the

targets y € R were generated by the target function f, and the noise function e:

3 6

y = fo(x)+e(x), where fo(x) = Zsin(%rkl-:c—i—gpi), €(zr) = Z 0.4sin(2mk;x+;),
1=1 =4

(25)

Noisy target Target and noise Fourier coefficient

21 X 27 ~ 5. —— Target
w 20y .
o /\ /\ ﬂ W ooe Noise
> 0 o | +
— oy U \l \/ v 0.4
] \>.</ -1 \, ‘ \I v ~=0.21
2 = \} S
' ' ' ' ' b ' ' ' ' ' 0.01: ' —
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0 10 20 30
Input x Input x Frequency k [Hz]

Figure 8. Inputs and targets in the toy example and its Fourier coefficients.
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where k = (3,6,9, 20,23, 26) are the frequencies and ¢ = (1, s, ..., g) € [0, 27]
are the phases, which are randomly sampled. We initialized 5-layer MLP with
100 hidden units by the He initialization [69] and trained this model by the
Adam with a learning rate 0.001 to minimize the squared loss on this dataset.
Regularization coefficients were Crs = 0.03, C; = 0.002, and Cp; = 0.00001,
respectively. Every 100 updates, the norms (Fig. 9) and the Fourier coefficients
of the MLP (Fig. 10) were calculated. Note that the Fourier coefficients were
calculated by applying the fast Fourier transform (FFT) to the pair of the input
x € R and the output of the MLP fy(z) € R.

The norms of the MLP without the regularization grew (Fig. 9a) and the
MLP learned the high-frequency noise components (Fig. 10a). On the other
hand, the regularizers suppressed the norms (Figs. 9b-d) and prevented the MLP
from learning the high-frequency noise (Figs. 10b-d). These results agreed with

our analysis.

10 10% 4 10° 10
= — w116y = ; = \ = | —
C 10° (9) = 10° = 10° \ = 10°
o Y2(0t o ) o
= — yp1(6) == =z — | =z
10 10 102 10
T ~— \\77 B —
10t 4 T T T T 10t T T T T 10t 4 T T T T 10t T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
# Updates t # Updates t # Updates t # Updates t

(a) w/o regularization  (b) Weight decay (¢) L1 regularization (d) Path regularization

Figure 9. Norms (solid line: average, shaded area: within one s.d. over 3 trials).

-1.0 -1.0 -1.0

2000
L
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L
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L
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L
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0
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e

# Updates

3 6 9 20 23 26

Frequency k [Hz] Frequency k [Hz] Frequency k [Hz] Frequency k [Hz]

3 6 9 20 23 26 3 6 9 20 23 26

(a) w/o regularization  (b) Weight decay (¢) L1 regularization (d) Path regularization

Figure 10. Fourier coefficients of the MLP (color map: average over 3 trials).
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3.3.2 Handwritten digit dataset

In real-life applications, similar inputs have similar targets, that is, the true target
function is smooth. Therefore, our theory implies that the regularizations prevent
the MLP from over-fitting the noise while learning the unknown target function
behind noisy data. To confirm this, we carried out the following experiment.

A training set and a test set were made by sampling from the handwritten
digit dataset [70] with the target of 0 or 1. We chose this small dataset for easy
evaluation of the Fourier coefficients of the MLP as we explain later. In the
training set, 65% of the targets were randomly replaced with 0 or 1. We stacked
the logistic sigmoid function o(y) = 1/(1 4+ exp(—y)) on a 4-layer MLP with 20

1.0 1.0
0.9 0.9
5 Ay | =
S 081 : o8
| - | -
> 0.7 > 0.7 LA ANV
O 06 —— Train | O os —— Train
< 0.5 1 Test < 0.5 Test
0.4 ; ; . : ; 0.4 1 : ; ; : ;
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch
(a) Without regularization (b) Weight decay
1.0 1.0
0.9 0.9
9 9
2 081 o8
S 07 S 07
.} - AA
O 0.6 —— Train O 06 —— Train
< < .
057 p Test 05{ Test
0.4 T T T T T T 0.4 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch
(c) L1 regularization (d) Path regularization

Figure 11. Accuracy of the MLP on the training set (partially random label) and
test set (true label). (solid line: average, shaded area: within one s.d. over 3

trials).

17



hidden units and trained this model by the SGD with a mini-batch size 32 and
a learning rate 0.001 to minimize the binary cross entropy loss on the training
set. Regularization coefficients were Cro = 0.1, C; = 0.01, and Cp; = 0.0003,
respectively. The training accuracy and the test accuracy were calculated at each
epoch (Fig. 11). The Fourier coeflicients of the MLP were calculated after training

and these coefficients are normalized such that \/ Dok a/o\/feT(k;)2 =1 (Fig. 12).

Because the FFT becomes prohibitively expensive for a large input dimension D,

we trained the variational autoencoder (VAE) [71] with one dimensional latent
space z € R, and the VAE generated 100 digit images x(z) along with this latent
space z € [—2,2] (Fig. 13). Then, the Fourier coefficients of the MLP were
calculated by applying the FFT to the pair of the latent variable z € R and the

DNN Fourier coefficient
0.65 A ~ 100_
— — w/o
| D
: 0.60 qo_ ] Ll
% 0.55 - 3 i — L2
\;?050- : —— Path
Y— Y 1072
[o) N
b 0.45 A qig
0.40 - é 1073 5
2 1 o 1 2 0 5 10
Latent variable z Frequency k [HZz]

Figure 12. Trained MLP and its normalized Fourier coefficients.

AR AR NE AR JETEe10e00]0x]

Figure 13. Images generated by the VAE along with the latent space z € [—2,2].
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output of the MLP o o f(z(z2)) € R (Fig. 12).

The MLP without the regularization first learned the target function but
over-fitted the noise after a few epochs (Fig. 11a). On the other hand, the reg-
ularizations prevented the MLP from over-fitting the noise while learning the
target function (Figs. 11b-d). Fig. 12 also shows that the regularizations made
the MLP ignore the spiky noise and learn the smooth target function.

3.4 Conclusion

The DNNs such as the MLP tend to over-fit noise in the training set because they
have too much expressive power such that they can fit even input—target relation
of randomly generated data. Various regularization techniques prevented a DNN
from over-fitting the noise in the training set while learning the target function
behind the noisy data.

Their generalization abilities were theoretically analyzed by evaluating the
model complexity measures such as the Rademacher complexity. However, a
recent experiment showed that this measure is trivial and fails to explain the
effects of the regularization methods on the generalization ability. Thus, we need
to rethink the regularization methods from different perspectives.

We rethink the regularization methods from the Fourier spectra perspective
toward understanding the prevention of the over-fitting by the regularization. We
applied the Fourier spectra analysis of the MLP into the weight decay, L1, and
path regularizations and showed that they discourage the MLP from learning
high-frequency components. When we assume that the high-frequency compo-
nents come from noise in the training set, they prevent the MLP from over-fitting
the noise while learning the target function behind the noisy data. Numerical ex-

periments confirmed the validity of our analysis.
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4. Analysis of optimization algorithms

4.1 Structure of expected Fisher information matrix

Convergence property of the GD is related to the maximum eigenvalue of the FIM
of the initialized DNN as shown in Sec. 2.4. Under the same setting, we calcu-
lated the eigenvalues of FIMs of the ResNet, ResNet with BN, and ResNet with
stochastic depth averaged over the random initialization of the parameters [55, 69
(expected FIMs),

WO

1]

1 l 2
~N (0, 5) , Wi~N <O, 5) for all I € [L], (26)

toward understanding effects of the BN and stochastic depth on the convergence
property of the GD.

The maximum eigenvalue of the expected FIM is upper bounded by the sum
over its diagonal elements and lower bounded by the the mean of its diagonal
elements. Let ul = ¢(h!™1);, ul = ¢(BN(h!Y));, and ul = B - ¢(h!71); be for-
ward signals of the ResNet, ResNet with BN, and ResNet with stochastic depth
respectively for [ € [L]. Then, the bounds can be obtained by calculating the
second moment of the forward signal u! and that of the backward error signal

ol = % under Assumption 1 (Fig. 14).

Assumption 1. The forward signal ul is independent of the backward error signal
8L, in particular, Eg, [ul-2 : 552] =Ey, [ulﬂ ‘Eg [(552}.

(2 3

Expected FIM Assumption 1

________ E@,LL‘ |:ui2 ’ 552] = E@,x [ui2i| ' E@,x [552}
AN / o« number of active path

Assumption 2 ease counting this number

’

N----

7 path1
x f(x;0)
path2

Figure 14. Structure of the expected FIM and roles of Assumptions 1 and 2.
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This approximation error Ey , [uﬁz . 552] —Eo, [uf} Eo . [552] can be written
as the 3rd and 4th-order joint cumulants and small joint cumulants decrease the
approximation error [72].

The second moments of the forward signal and the backward error signal can
be calculated by counting the number of active path of the DNNs (Fig. 14). The
active path is the path from an input unit to the output unit on which activations

of all hidden units are active. Assumption 2 makes this counting easy.
Assumption 2. Half of the hidden units are active 3 P () = < per layer.

The numerical experiments on the binary class PCA-whitened MNIST dataset
(Fig. 15) confirmed that this assumption is almost satisfied.

4.2 Theoretical analysis

We calculated the maximum eigenvalues of the expected FIMs of the ResNet,
ResNet with BN, and ResNet with stochastic depth under Assumptions 1 and
2. Without loss of generality, we suppose that inputs in the training set are

normalized E, [z;] = 0 and Var(z;) = 1.
Theorem 6. (Theorem 4 in [73]). Under Assumptions 1 and 2, the mazimum
eigenvalue Ay of the expected FIM of the ResNet grows exponentially with depth,

4L+ 4 ’

mx my S )\max S (L + 1)D2m)\7 (27)

where my, is the mean of the eigenvalues {)\i}l(-iirl)Dz.

1.0
091 —e— ResNet Stochastic
0.8 BN e Assumption
0.7 4
0.6 1
051 e o SR
0.4 1

0.3

ratio of activation

2 10

4 6 8
index of layer |

Figure 15. Activation rate of the hidden units in each layer.
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Remark 2. Setting a learning rate exponentially small with respect to the depth

1s necessary for the convergence of the GD.

Theorem 7. (Theorem 5 in [73]). Under Assumptions 1 and 2, the BN relazes

the exponential growth of the maximum eigenvalue to Llog L order at most,

 Hpp+1
5

L : :
where Hy, =, 1 is the harmonic number.

my my < )\max < (L + ].)ng)\, (28)

Suppose that the stochastic depth drops 100-(1—p) percent of layers in ResNet
rather than dropping each layer with probability 100 - (1 — p) for simplicity. An

extremely deep ResNet satisfied this owing to the law of large numbers.

Theorem 8. Under Assumptions 1 and 2, the stochastic depth relaxes the expo-
nential growth of the eigenvalues of the ResNet by reducing the exponent,

pL +4
T 4L +4
Remark 3. The BN and stochastic depth are helpful to set a large learning rate
of the GD compared with that of the ResNet for its convergence.

S2PE iy < Aax < (L4 1) D?my, (29)

my

4.3 Numerical experiments

To confirm the validity of the above analysis, some numerical experiments were

carried out.

4.3.1 Dataset

The dataset was a subset of the MNIST dataset with class label of 0 or 1 and
its inputs were preprocessed by the PCA-whitening: its inputs were projected

into D-dimensional subspace and normalized, that is, Vd € [D],E[z4] = 0 and
Var(zy4) = 1.

4.3.2 Eigenvalues of expected FIM

The mean eigenvalues and maximum eigenvalues of the expected FIMs of the
ResNet, ResNet with BN, and ResNet with stochastic depth were calculated
(Fig. 16). The mean eigenvalues agreed with our theoretical values and the max-

imum eigenvalues were between the theoretical upper and lower bounds.
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4.3.3 Convergence property of GD

The convergence properties of the ResNet, ResNets with BN, and ResNet with
stochastic depth were numerically examined. Each algorithm with various num-
bers of layers L, input dimension D and learning rates n updated the parameters
50 times for each run and the training loss was calculated by averaging over five
runs (Figs. 17 and 18). The maximum learning rate for convergence in theory (red
line), calculated as 2/(upper bound of A,y ), matched the boundary between the
convergence (colored) and the divergence, i.e. the loss is larger than 1000 (white).
In addition, the BN and stochastic depth enabled the GD to use a larger learning
rate than that of the vanilla ResNet when the network is deep.
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Figure 17. Convergence of the GD on the dataset with D = 50.
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Figure 18. Convergence of the GD on the 2-layers DNNs.

4.3.4 Convergence speed

The training loss and test loss of the ResNet, ResNets with BN, and ResNet with
stochastic depth at each update were evaluated over 10 runs (Fig. 19). Each
algorithm used the optimal learning rate n = 1/(upper bound of Apax). These
results showed that the BN and stochastic depth accelerates training.

4.4 Conclusion

Although an extremely deep ResNet can be trained with high performance, it
takes a long time due to its slow convergence. The BN and stochastic depth

empirically accelerated convergence of the GD.
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Figure 19. Loss of the 4-layer DNNs on the dataset with D = 50 (solid line:

average, shadowed area: within one s.d.)

The convergence property of the GD is related to the maximum eigenvalue of
the FIM of the randomly initialized DNN. In the case of the MLP, Karakida et
al. [63, 64] calculated the eigenvalues of the randomly initialized MLP and MLP
with BN and showed that the BN decrease the maximum eigenvalue under some
condition. However, the counterpart of the ResNet, ResNet with BN, ResNet
with stochastic depth haven’t been analyzed yet.

We calculated the eigenvalues of the FIMs of these models and showed that
the maximum eigenvalue of the ResNet grows exponentially with respect to the
depth, the stochastic depth relaxes this growth by decreasing exponential term,
and the BN relaxes this exponential growth into the polynomial order. Thanks
to this relaxation of the maximum eigenvalue, the BN and stochastic depth are
helpful to set a large learning rate compared with that of the vanilla ResNet for
its convergence. Moreover, our experiments confirmed the acceleration of training
by the BN and stochastic depth with their optimal learning rates of the GD.
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5. Conclusion

Keys to the recent success of deep learning are their regularization methods and
optimization algorithms for training extremely DNNs. Some regularization meth-
ods prevent the DNN from over-fitting noise in the training set while learning the
target function behind the noisy data. The BN and stochastic depth accelerate
the convergence of the GD.

Many studies tried to clear these mechanisms. The effects of regularization
methods on the generalization ability of the DNNs were theoretically analyzed
by evaluating the model complexity measure such as the Rademacher complexity.
However, a recent experiment showed that this measure is trivial and fail to
explain their generalization abilities. Thus, we need to rethink the regularization
method from different perspectives. The fast convergence of the GD by the BN
was analyzed in the case of the MLP by calculating the maximum eigenvalues
of the FIMs of the randomly initialized MLP and MLP with BN. However, the
counterpart of the ResNet, ResNet with BN, and ResNet with stochastic depth
haven’t been analyzed yet. In this thesis, we provided some novel theoretical
insights into the prevention of the over-fitting by the regularization methods
from the Fourier spectra perspective and the fast convergence by the BN and
stochastic depth in the case of the ResNet.

Toward understanding the prevention of the over-fitting by the regularization
methods, we applied the Fourier spectra analysis of the MLP into the weight
decay, L1, and path regularization and showed that they penalize the MLP to
discourage it from learning high-frequency components. When we assume that
the high-frequency components come from noise in the training set, this implies
that they prevent the MLP from over-fitting the noise while learning the target
function behind the noisy data.

Toward understanding the fast convergence of the GD by the BN and stochas-
tic depth, we calculated the maximum eigenvalue of the FIM of randomly initial-
ized ResNet, ResNet with BN, and ResNet with stochastic depth and showed that
the maximum eigenvalue of the ResNet grows exponentially with respect to the
depth, the stochastic depth relaxes this growth by decreasing exponential term,
and the BN relaxes this exponential growth into the polynomial order. Thanks

to this relaxation of the maximum eigenvalue, the BN and stochastic depth are
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helpful to set a large learning rate compared with that of the vanilla ResNet for

its convergence.
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Appendix

A. Regularization methods

A.1 Proof of Theorem 4

Proof of Theorem 4. The Lipschitz constant of the composition function is upper

bounded by those of the element functions.

I follip < 17" [lwip - 1 8llcip - 1T Hlwip - 18llip - 17 1ip, (30)

where T'(-) = W' is the affine transformation by the weight W' € RP>*Pi-1,
On the basis of the facts that the ReLU function does not increase the Lipschitz
constant, the Lipschitz constant of the affine transformation is upper bounded
by its L2 norm, and the L2 norm is upper bounded by the L1 norm, the theorem
holds.

L L L

foll < TTIT I < TTIW!1: < TT IV (31)
=1 =1 =1

O

A.2 Proof of Theorem 5

Proof of Theorem 5. The output of the neural network can be written as the sum
over the path weights and activations of these paths from the input nodes to the

output node:
L

L—1
f@(ZE) = Z H WCZYZ+1,CYZ ’ H gb,(“éq) *Lag s (32)
=1

a€[Do]x[D1]x--x[Dg] I=1

where u! = W'h!~! is the output of the I-th linear layer. This path-sum represen-
tation relates the regularizers to the Lipschitz constant. The mean value theorem
shows that, for any z, 2’ € R, there exists a € [0, 1] such that

flx) = f(2") < V.f(z) - (x —2'), where z=a-z—(1—a)- 2" (33)

On the basis of the Cauchy—Schwartz inequality and the fact that the L2 norm
is upper bounded by the L1 norm, the following inequality holds.

1fo(z) = fo(@)ll2 < [Vafo(2)ll1 - 1z — 2|2 (34)
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Therefore, the Lipschitz constant of the MLP || fy|Lip is upper bounded by

Do

9 @ =3 Y TIWL. TIe0)]. 69

=1 |ae{i}x[D1]x--x{Dp} I=1

Because the activations of the paths depend on the unknown input z, we consider

the worst-case input 2’ € RP0, which induces the path regularizer.

IVafo(2)llh < sup IVafo(2)ll = 1p1(6). (36)
Theorem 5 of [33] shows that ¢p1(0) < 11, (0)F. O
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B. Optimization algorithms

B.1 Proof of Theorem 6

Lemma 1. (Modification of Theorem 1 in [63].) The mean of the eigenvalues

my and the mazimum eigenvalue Apax of the expected FIM can be written by the
0f (z;0)

forward signal ut and the backward error signal 6! = ETARE

= L+1 {ZE“ P+ 33 B [552“22}}’ (37)

=1 i,j=1

my S Amax =~ (L + 1)D ma,

where the expectation is taken over the initial parameters 6 and the input x in the

training set.

Note that Eg [5’2ul 2} =Ey, [5 } ng[ } thanks to Assumption 1. Now,

we calculate these terms. When you consider that W70 is initialized by sampling

from NV (O, %), the second moment of its transformation of input is

By [ul?] = %Z B, [2%] = 1. (38)

We can calculate the remaining terms by neural functional analysis [74].

Lemma 2. Under Assumption 2, the second moments of the forward signal and

the backward error signal of the ResNet are
Eg . [uf] =272 forall 1€ L),
) (39)
Ey., [5§ } = 9L forall 1€ [L]U{0},

respectively.

Proof of Lemma 2. First, we calculate the second moment of the forward signal.
Define the path set from the hidden units {u?}2, to the hidden unit hé-’l as

fpath == {(F,a)] F C [l —1], a € [D]"I x {j}}. (40)
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Then, the forward signal can be written as the path weights and the activations

of these paths,

W= YD Wadag, = (A7), (41)
act-path
where
1 if F' =
Wa=1 T i (42)
oy Wi, otherwise,
—+1,%]

i 15 ¢'(h5i~") otherwise.

The path weights are orthogonal such that
() if al = a2

. (44)
0 otherwise.

Eg [Wa1Waso| = {
Under Assumption 2, the second moment of hé- can be easily calculated using the
orthogonality of the path weights,

E, . |n1% =g 242,02 _ 2\ (D |F|_ -1

. [ ! ] —Ee, | Y w2AZS| = Y <5) (5> — i1,
acf-path Fcli-1]

(45)

The first equality holds thanks to the orthogonality of the path weights. The

second equality holds because the second moment of the path weight and the

number of active paths are Eq [W2] = (%)'F| and Zdef—path A2 = (%)IF|7 re-

spectively, for the length of the path |F| and Eg, [qu] = 1. Then, the second

moment of the forward signal is

o [uf] —Ey, [¢(h§f1)2] — % o [héfﬂ] =22, (46)

The second equality holds because the weights are initialized with the Gaussian

distribution with mean zero and thus hé-_l is a symmetric random variable around
zZero.

Next, we calculate the second moment of the backward error signal. Define

the path-set from the hidden unit A} into the output unit as

b-path := {(F,a)| F C [L]\ [I], « € {i} x [D]'"1}. (47)
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Then, the backward error signal can be written as the path weights and the

activations of these paths,
0= ). Wada (48)
acb-path

Under Assumption 2, the second moment of &} can be easily calculated using the

orthogonality of the path weights,

o [55.2]:1&),90 Sowzaz| = % (%)m @)m — ol (49)

aeb-path FC[L\[]

Then, we can derive Theorem 2 by substituting Eqgs. 46 and 49 into Eq. 37.

B.2 Proof of Theorem 7

In combination with Lemma 1 and the following lemma, we can derive Theorem 7

in the same way as the proof of Theorem 6.

Lemma 3. Under Assumption 2, the second moments of the forward signal and
the backward error signal of the ResNet with BN are

1
Eg . [ulﬂ =3 for all 1€ [L],

J
12 _L+1
Ey. [52.]_—“1 for all 1€ [L]U{0},

(50)

respectively.

Proof of Lemma 3. The second moment of the forward signal ué =0 (BN (hl_l))
is obvious because the mean and variance of the outputs of the BN is zero and
one respectively.

Next, we calculate the second moment of the backward error signal. First, we
calculated the statistics of the BN. The mean is

D

1,1 -1
> Wiul+ b
=1

= ]EG,I [hi_l} = ]EG,:E |:h0

1

E97$ [hﬂ = E97$ = E@J + EG,I [hi_l}

(51)

D

I 1

Z W, ju;
j=1

] =o.
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The variance is

D
Var (h) = Var ( Wl + by~ 1) = Var (Z Wiﬂé) + Var (") (52)

j=1

=1+ Var (h;") = 1+ Var () (53)

D
1
:l—i—BZVar(xi):l—l—l. (54)

Substitute these values into the statistics of the BN. Define the path-set from the

hidden unit k! into the output unit as
b-path := {(F,a)| F C [L]\ [I], a € {i} x |F|} (55)

Then, the back ward error signal can be written as the path weights, the activa-
tions of these paths, and the statistics of the BN of these paths,

& = Z WaAala, (56)
acb-path
where
W 1 if F =10
“ H‘F‘ Wfllﬂ o Otherwise,
1 if F =10
As = 57
{ H|F| ¢'(h5i~") otherwise, (57)
a — F F .
HLll \/ﬁ = HLll \/LFT otherwise.

Under Assumption 2, the second moment of the backward error signal can be

calculated using the orthogonality of the path weights,

Epe |0] = B, [W2AZAZ]

« (6o}

T E g \D ( )|F| (g)'” (,g %) (58)

_ﬁ( ) L+1
e [+1

k=
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B.3 Proof of Theorem 8

In combination with Lemma 1 and the following lemma, we can derive Theorem 8

in the same way as the proof of Theorem 6.

Lemma 4. Under Assumption 2, the second moments of the forward signal and

the backward error signal of the ResNet with stochastic depth are

J

Eo . [ul-z] =p-272 forall 1€ [L],
2 (59)
o [55. } — 9Ll for all 1€ [L]U {0},

respectively.

Proof of Lemma 4. Consider the pL-layer shallow ResNet sampled by the stochas-
tic depth. First, we calculate the second moment of the forward signal. Define
the path set from the hidden units {uf}2 to the hidden unit 2" as

f-path := {(F,a)| F C [l - 1], a € [D]F1 x {j}}. (60)

Then, the forward signal can be written as the path weights and the activations

of these paths,

Mt= Y0 Wadah, =80 (1), (61)
aef-path

where 3" ~ Ber(p) is a Bernoulli random variable and

1 if [1 =
Wa=3 rlon !
[1- Wal o otherwise,
| (62)

1 if =0
A&:{ IF

1 ¢/ (h5)  otherwise,

Under Assumption 2, the second moment of hé_l can be easily calculated using

the orthogonality of the path weights,

) , 9\ IFl 7 D\ P!
o i < | X waat?| - ¥ (2)7(5)" -

aef-path FCli-1]
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Then, the second moment of the forward signal is
2 182 P 12 _
Eow [0 =+ Bo [0’ = 5 Bou [ =p- 272 (04)

Next, we calculate the second moment of the backward error signal. Define

the path-set from the hidden unit A} into the output unit as
b-path := {(F,a)| F C [pL]\ [I], a € {i} x [D]""1}. (65)

Then, the backward error signal can be written as the path weights and the

activations of these paths,
=) Wada (66)
aeb-path
Under Assumption 2, the second moment of §! can be easily calculated using the
orthogonality of the path weights,

) 5\ IFI 7 p\ 1P
Egyn |:(5£ :| = Eg}n Z WO%Aé = Z (5> (E) — 2pol' (67)

aeb-path FCpL\[1]
]

B.4 Additional numerical experiments

In Section 4.3, we ran numerical experiments on the MNIST dataset. Here, we

apply the same numerical experiments to the CIFAR10 dataset [6].

B.4.1 Dataset

A dataset was made by sampling from the CIFAR10 dataset with class label of
0 or 1 and its inputs were preprocessed by the PCA-whitening: its inputs were

projected into D-dimensional subspace and normalized, that is, Vd € [D], E [z,] =
0 and Var(zy) = 1.

B.4.2 Activation rate

Activation rates of hidden units in each layer of the ResNet, ResNet with BN,
and ResNet with stochastic depth were calculated (Fig. 20) to confirm that these
DNNs satisfy Assumption 2. These results confirmed the validity of Assump-

tion 2.
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Figure 20. Activation rate of hidden units in each layer.

B.4.3 Eigenvalues of expected FIM

The mean eigenvalues and maximum eigenvalues of the expected FIMs of the
ResNet and ResNet with BN and stochastic depth were calculated (Fig. 21). The
mean eigenvalues agreed with our theoretical values and the maximum eigenvalues

were between the theoretical upper and lower bounds.

B.4.4 Convergence property of GD

The convergence properties of the ResNet and ResNets with BN and stochastic
depth were numerically examined. Each algorithm with various numbers of layers
L, input dimensions D, and learning rates n updated the parameters 50 times
for each run and the training loss was calculated by averaging over five runs
(Figs. 22 and 23). The maximum learning rate for convergence in theory (red
line), calculated as 2/(upper bound of A.x), matched the boundary between the
convergence (colored) and the divergence, i.e. the loss is larger than 1000 (white).
In addition, the BN and stochastic depth enabled the GD to use a larger learning
rate than that of the vanilla ResNet.

B.4.5 Convergence speed

The training loss and test loss of the ResNet and ResNets with BN and stochastic
depth at each update were evaluated over 10 runs (Fig. 24). Each algorithm used
the optimal learning rate n = 1/(upper bound of A\y.y). These results showed
that the BN and stochastic depth accelerates training.
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Figure 21. Eigenvalues of the expected FIMs.
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Figure 22. Convergence of the GD on the dataset with D = 50.
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Figure 24. Loss of the 4-layer DNNs (solid line: average, shadowed area: within

one s.d.)
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