
NAIST-IS-DD1761016

Doctoral Dissertation

Analysis of Regularization and Optimization for

Deep Learning

Yasutaka Furusho

March 13, 2020

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Yasutaka Furusho

Thesis Committee:

Professor Kazushi Ikeda (Supervisor)

Professor Yuji Matsumoto (Co-supervisor)

Associate Professor Junichiro Yoshimoto (Co-supervisor)

Assistant Professor Matthew J. Holland (Osaka University)

Analysis of Regularization and Optimization for

Deep Learning∗

Yasutaka Furusho

Abstract

Keys to the recent success of deep learning are regularization methods and

optimization algorithms. For example, deep neural networks (DNNs) such as

the MLP and ResNet overfit noise in the training set and training the DNNs

takes a long time due to slow convergence of the gradient descent (GD) while

deeper networks have higher expressive power. Various regularization methods

prevent the DNNs from over-fitting noise in the training set and optimization

algorithms such as the batch normalization (BN) and stochastic depth accelerate

the convergence of the GD. However, their mechanisms are not fully understood.

In this thesis, toward understanding the mechanisms, we provide theoretical novel

insight into the above phenomena as follows. The weight decay, L1, and path

regularizations discourage the MLP from learning high-frequency components of

training data. When we assume that the high-frequency components come from

noise in the training set, the regularization methods prevent the MLP from over-

fitting the noise while learning a true target function behind the noisy data. It is

necessary for the convergence of parameters of the ResNet into minima to set a

learning rate exponentially small with respect to the depth. The stochastic depth

relaxes the exponential term of this decrease and the BN relaxes the exponential

decrease into the polynomial order. Moreover, our experiments confirmed that

the BN and stochastic depth enabled the GD to use a large learning rate compared

with that of the vanilla ResNet and accelerated their training.

Keywords:

Deep learning, ResNet, Batch normalization, Stochastic depth, Regularization
∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, March 13, 2020.

i

深層学習の正則化と最適化の解析∗

古庄 泰隆

内容梗概

深層学習は多くの分野に適用されその優れた性能が報告されている. 近年の深
層学習の目覚ましい成果は正則化と最適化アルゴリズムに基づいている. 例えば
多層パーセプトロン (MLP)やResNetなどの深いニューラルネットワーク (DNN)

は高い表現能力を持つ一方,データセットに含まれるノイズに過剰適合したり学習
速度が遅いという問題がある. 多様な正則化手法はこれらのDNNが訓練データに
含まれるノイズに過剰適合するのを防ぎ, バッチ正規化 (BN)や stochastic depth

などの最適化手法は DNNの学習を加速させる. しかしながら,これらの手法が
上記のように性能を改善する理由は理論的には十分に明らかでなかった. そこで
我々はこの改善理由の理解に向けて,上記の正則化手法と最適化手法に関する以下
の理論的な結果を示した. まず荷重減衰や L1正則化,パス正則化はMLPがデー
タの高周波成分を学習するのを防ぐ. 高周波成分の大部分がノイズで構成されて
いると仮定すると,この結果は正則化によりMLPがノイズを学習するのを防ぐ
ことを示唆している. また ResNetが勾配降下法により極小解へ収束する必要条
件としてその学習率を層の数に対し指数的に小さく設定する必要がある. そして
stochastic depthはこの減少の指数部を小さくし,BNは指数的減少を多項式的減
少へ緩和する. 更に数値実験でも BNと stochastic depthにより大きな学習率が
使えResNetの学習を加速することを確認した.

キーワード

深層学習, ResNet, バッチ正規化, Stochastic depth, 正則化

∗奈良先端科学技術大学院大学 情報科学研究科 博士論文, 2020年 3月 13日.

ii

Contents

1. Introduction 1

1.1 Machine learning and deep learning 1

1.2 How fast deep learning methods are developing! 2

1.2.1 Regularization methods 3

1.2.2 Optimization algorithms 4

1.3 Our contribution . 6

2. Problem formulation 8

2.1 Samples for training . 8

2.2 Training for deep neural network 8

2.3 Regularization methods . 9

2.4 Optimization algorithms . 11

3. Analysis of regularization methods 14

3.1 Fourier spectra analysis . 14

3.2 Theoretical analysis . 14

3.3 Numerical experiments . 15

3.3.1 Toy examples . 15

3.3.2 Handwritten digit dataset 17

3.4 Conclusion . 19

4. Analysis of optimization algorithms 20

4.1 Structure of expected Fisher information matrix 20

4.2 Theoretical analysis . 21

4.3 Numerical experiments . 22

4.3.1 Dataset . 22

4.3.2 Eigenvalues of expected FIM 22

4.3.3 Convergence property of GD 24

4.3.4 Convergence speed . 25

4.4 Conclusion . 25

5. Conclusion 27

iii

Acknowledgements 29

References 30

Appendix 43

A. Regularization methods 43

A.1 Proof of Theorem 4 . 43

A.2 Proof of Theorem 5 . 43

B. Optimization algorithms 45

B.1 Proof of Theorem 6 . 45

B.2 Proof of Theorem 7 . 47

B.3 Proof of Theorem 8 . 49

B.4 Additional numerical experiments 50

B.4.1 Dataset . 50

B.4.2 Activation rate . 50

B.4.3 Eigenvalues of expected FIM 51

B.4.4 Convergence property of GD 51

B.4.5 Convergence speed . 51

iv

List of Figures

1 Landscape of a DNN with the ReLU activation. 2

2 Over-fitting of the DNN and effects of regularization. 3

3 Multi-layer perceptron (MLP). 4

4 ResNet. 5

5 Stochastic depth. 5

6 Architectures of the ResNet, ResNet with BN, and ResNet with

stochastic depth. 11

7 Convergence property of the GD and its learning rate. 13

8 Inputs and targets in the toy example and its Fourier coefficients. 15

9 Norms of the MLP with/without the regularization. 16

10 Fourier coefficients of the MLP with/without the regularization. . 16

11 Accuracy of the MLP with/without the regularization. 17

12 Trained MLP and its normalized Fourier coefficients. 18

13 Images generated by the VAE. 18

14 Structure of the expected FIM and roles of Assumptions 1 and 2. 20

15 Activation rate of the hidden units in each layer. 21

16 Eigenvalues of the expected FIMs. 23

17 Convergence of the GD on the dataset with D = 50. 24

18 Convergence of the GD on the 2-layers DNNs. 25

19 Loss of the DNNs . 26

20 Activation rate of hidden units in each layer. 51

21 Eigenvalues of the expected FIMs. 52

22 Convergence of the GD on the dataset with D = 50. 53

23 Convergence of the GD on the 2-layers DNN. 54

24 Loss of the DNNs . 54

v

1. Introduction

1.1 Machine learning and deep learning

Machine learning technologies are widely used in modern society from search

engine on the internet [1, 2] to handwritten zip code recognition system in the

post office [3, 4] and automate various manual works [5]. This spread of machine

learning is owing to its wide applicability and super-human ability.

Before the machine learning age, we have to write a program and tell a com-

puter an algorithm, a set of exact and unambiguous instructions, for what we

automate. It is often said that you don’t really understand something until you

can express it as an algorithm. However, we don’t completely understand almost

all the things we do in everyday life because we unconsciously do these things.

For example, we can recognize individual persons but cannot exactly explain how

to recognize them because our recognition ability is implicit knowledge: it is sur-

jective, grows through our individual experience, and thus it is difficult to explain

explicitly. On the other hand, machine learning feeds data, face images and the

labels that correspond to the individuals, and automatically writes this recogni-

tion algorithm such that it maps the face images into the corresponding labels in

the data. In this sense, machine learning is algorithm that creates an algorithm

based on data. Of course, machine learning can be applied to other tasks such as

object recognition [6, 7], language translation [8, 9, 10], and sport analysis [11, 12]

because all it needs is only data, inputs and the correspond targets. This wide

applicability is one reason why machine learning technologies are around us. The

other reason is its super-human performance achieved by one machine learning

algorithm called deep learning.

Although conventional machine learning can be applied to various applica-

tions, it has limitations in their performance. Constructing a machine learning

system with a better performance required careful engineering and expert domain

knowledge to design a good feature extractor, a transformation of raw input, for

predicting the target. Deep learning automatically creates a good feature ex-

tractor that captures complex patters in the data by composing a computational

model with stacking many layers that each transforms the features captured by

a previous layer [13, 14, 15, 16], which is called deep neural network (DNN), and

1

learning this model based on the given data, which is called training set. During

the training, the DNN predicts the corresponding targets for given inputs and

an optimization algorithm optimizes its parameters to reduce an empirical risk,

which measures a discrepancy between the predictions and true targets in the

training set. The most famous optimization algorithm for DNN is the gradient

descent (GD). Landscape of the empirical risk on the parameters is like a hill.

The GD calculates the gradient of this hill at current parameters, which looks at

the steepest descent direction, and slightly moves the parameters into this direc-

tion. Iterating this procedure makes the parameters converge into a point that

achieves a small empirical risk. Deep learning can be applied to complex tasks

that conventional machine learning didn’t make a good job [17, 18, 19] and has

been changing the history of machine learning in performance [20, 21, 22].

1.2 How fast deep learning methods are developing!

Deeper neural networks have higher expressive power owing to their depth. Con-

sider a DNN with the rectified linear unit (ReLU) activation functions, which

represents a piecewise linear function (Fig. 1). Its expressive ability can be mea-

sured by the number of its linear regions and it increases exponentially with

respect to the depth of the DNN [23, 24, 25, 26]. Although DNNs have massive

expressive power, it was thought that their training was difficult and this diffi-
x

1

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

x2

2.01.51.00.50.00.51.01.52.0

f(x
)

0.15
0.10
0.05
0.00
0.05
0.10
0.15

0.15

0.10

0.05

0.00

0.05

0.10

0.15

(a) Output of the DNN

-2 0 2

x1

-2

0

2

x 2

f(x)/ x1 + f(x)/ x2

0.2

0.1

0.0

0.1

0.2

(b) Gradient of the output

Figure 1. Landscape of a 2-layer DNN with the ReLU activation f : R2 → R.

2

culty closed the neural network boom at the end of the twenty century. At the

beginning of the twenty-first century, thanks to massive computational resources,

it was empirically observed that many heuristics can overcome this difficulty. And

now, hundreds of heuristics: regularization methods and optimization algorithms

for training extremely DNNs are developing day by day as follows.

1.2.1 Regularization methods

The extremely DNNs tend to over-fit noise in the training set (Fig. 2) although

their predictions should be generalized to unseen data, in other words, the DNNs

should minimize a discrepancy between their predictions and true targets for

unseen inputs, which is called expected risk. This is because the extremely DNNs

have too much expressive power such that they can perfectly fit even input–

target relation of randomly generated data [28]. Various regularization techniques

prevented the DNNs from over-fitting noise in the training set while learning a

true target function behind the noisy data (Fig. 2) [29]. These regularization

methods modify optimization algorithm explicitly such as the dropout [30] or

input

train data target function trained model

input

Figure 2. Over-fitting of the DNN f : R → R and effects of the regularization

technique (Modification of Fig. 1.4 in [27]).

3

add the regularization term to the loss function such as the weight decay.

Effects of these regularization methods on the generalization ability of DNNs

were theoretically analyzed by evaluating the model complexity measure such as

the Rademacher complexity [31, 32, 33, 34]. However, a recent experiment showed

that this measure is trivial and fail to explain their effects on the generalization

ability [28].

This has prompted recent works on implicit regularization, which is the inher-

ent mechanism in the optimization algorithm and the model architecture for high

generalization ability [35]. For example, the SGD learns simple patterns [29] and

low-frequency signals first [36]. Moreover, the SGD with a small mini-batch size

converges the parameters into the flat minima [37], which have high generaliza-

tion ability [38, 39, 40]. In the ResNet, skipping two layers by its shortcut makes

the loss landscape around the minima flatter than skipping one or no layer [41].

If the training data are linearly separable, the GD converges a linear feedforward

network into a maximum margin classifier [42, 43]. In the case of a linear convolu-

tional neural network, the GD converges this linear model into a sparse classifier

in the frequency domain [43]. In the matrix factorization, adding depth to the

linear model provides a low-rank solution [44].

However, the mechanism of the explicit regularization methods such as the

weight decay have been still unclear.

1.2.2 Optimization algorithms

Training deep conventional feedforward neural networks like the multi-layer per-

ceptron (MLP) (Fig. 3) degraded even an empirical risk compared with shallow

one while deeper networks have higher expressive power [23, 24, 25, 26]. For ex-

ample, this network with 56 layers had a larger empirical risk than one with 20

layers [45]. This is because some layers lose important information for predicting

the target. Some numerical experiments showed that the transformation by lay-

Figure 3. Multi-layer perceptron (MLP).

4

ers of the MLP decreased mutual information between transformed inputs and

the targets [46, 47]. Moreover, the transformation decreases the angle between

two data points, which makes the classification of data points difficult [48, 49].

To overcome this problem, the ResNet incorporates skip-connections between

layers [45, 50] (Fig. 4), which add an input of a layer into its output, and propa-

gate input information even at higher layers. These skip-connections enabled an

extremely DNN (1202 layers) to be trained with a small empirical risk. However,

training a deep ResNet takes a long time due to its slow convergence. For exam-

ple, even a modern computer with multiple GPUs requires several weeks to train

a 152-layer ResNet to learn the ImageNet dataset [45].

One reason for this slow convergence was said to be the internal covariate

shift: an optimization problem for each layer is changing during training because

a probability distribution of inputs of each layer is changing by updating param-

eters of its previous layer. The batch normalization (BN) was proposed to relax

this internal covariate shift by normalizing inputs of each layer and accelerated

the convergence of the GD with a large learning rate [51]. However, a recent

experiment showed that the internal covariate shift doesn’t occur [52].

Another reason for the slow convergence is the vanishing gradient problem:

norms of the gradients with respect to parameters vanish in early layers [53,

54, 55]. The stochastic depth trains a shallow ResNet by dropping layers at

random from the full ResNet for each iteration of training (Fig. 5) and relaxes this

vanishing gradient problem [56]. It reduces the training time by 25 percent with

Figure 4. ResNet (⊕ depicts element-wise vector addition).

Figure 5. Stochastic depth.

5

higher performance at the same number of iterations. However, the mechanism

of this acceleration is not fully understood.

Convergence property of the GD depends on the smoothness of the loss land-

scape of the DNN. The loss landscape is not only convex but also tends to have a

large number of sharp kinks, which makes the GD unstable [57]. For example, a

large step in updating the parameters by the GD tends to degrade its loss exper-

imentally due to the sharp kink. This forces us to carefully set a small learning

rate, which makes the convergence slow [58]. Theoretically, a small learning rate

is necessary for the convergence when the maximum eigenvalue of the Hessian

matrix is large at minima and a large condition number (ratio of the maximum

eigenvalue to the minimum eigenvalue) makes the convergence slow around the

minima [59]. Note that the relationship between the condition number and the

convergence speed holds only around the minima θ∗ but the GD and SGD make

the parameters converge into the minima under some conditions [60, 61, 62].

Karakida et al. [63, 64] theoretically calculated the eigenvalues of the Fisher in-

formation matrix (FIM) of the randomly initialized MLP and MLP with BN

because these eigenvalues approximate the eigenvalues of the Hessian matrix at

the minima [60, 63]. Their results showed that the BN decreases the maximum

eigenvalue and is helpful to set a large learning rate of the GD compared with that

of the vanilla MLP for its convergence. However, the counterparts of the ResNet,

ResNet with BN, and ResNet with stochastic depth haven’t been analyzed yet.

1.3 Our contribution

Although some regularization methods prevent DNNs from over-fitting noise in

the training set and the optimization algorithms accelerate the convergence of

the GD, their mechanisms are not fully understood. Toward understanding these

mechanisms, we aim to provide some novel theoretical insights into the prevention

of the over-fitting by the regularization methods and the fast convergence of the

GD by the BN and stochastic depth in this thesis.

First, toward understanding the prevention of the over-fitting by the weight

decay, L1 regularization, and path regularization, we rethink these regularization

methods from the perspective of the Fourier spectra and show that they penalize

the MLP to discourage it from learning high-frequency components of data. When

6

we assume that the high-frequency components come from noise in the training

set, this result implies that these regularization methods prevent the DNN from

over-fitting the noise while learning a true target function behind the noisy data.

Second, toward understanding mechanisms for the fast convergence of the

GD by the BN and stochastic depth, we calculated the maximum eigenvalues

of the FIMs of the randomly initialized ResNet, ResNet with BN, and ResNet

with stochastic depth. Our results show that the maximum eigenvalue of the

ResNet grows exponentially with respect to the depth, the stochastic depth re-

laxes this growth by decreasing exponential term, and the BN relaxes this ex-

ponential growth into at most the polynomial order. Thanks to this relaxation

of the maximum eigenvalue, the BN and stochastic depth are helpful to set a

large learning rate of the GD compared with that of the vanilla ResNet for its

convergence. Moreover, our experiments confirmed the acceleration of training

by the BN and stochastic depth with their optimal learning rates of the GD.

7

2. Problem formulation

2.1 Samples for training

Let a training set be denoted by S = {(x(n), y(n))}Nn=1. Each training example

is a pair of an input x(n) ∈ X and the corresponding target y(n) ∈ Y , which is

independently identically distributed from a probability distribution D, where X
and Y are an input space and target space. The indices of the set are omitted if

they are clear from the context.

2.2 Training for deep neural network

A DNN f : X × Θ → Y with parameters θ ∈ Θ predicts a corresponding target

y ∈ Y for a given input x ∈ X , where Θ is a parameter space. Its performance is

measured by an expected risk

R(θ) = Ex,y [ℓ(f(x, θ), y)] , (1)

where ℓ : Y × Y → R+ ∪ {0} is a loss function and we consider the squared loss

ℓ(f(x, θ), y) = 1
2
(f(x, θ) − y)2 unless otherwise noted. The expectation is taken

over the probability distribution D. The parameters θ are trained by the GD

θt+1 = θt − η∇θRS(θt) (2)

to minimize an empirical risk

RS(θ) =
1

N

N∑
n=1

ℓ(f(x(n), θ), y(n)) (3)

instead of the expected risk because we cannot calculate it directly due to in-

accessibility of the data distribution D. Note θt is an output of the GD at tth

update and η is a learning rate of the GD. A more popular gradient-based train-

ing algorithm is the stochastic GD (SGD), which randomly selects one or more

examples (a mini-batch) from the training set and updates the parameters using

the gradient of the loss with the mini-batch. And more practical gradient-based

training algorithm is the Adam [65], which uses learning rates for different param-

eters of the DNN and adaptively changes these learning rates based on estimated

second moment of the gradients. Initialization methods of the parameters θ0 are

specified in each subsequent analysis section.

8

2.3 Regularization methods

The L-layer MLP f : (x, θ) → ŷ with parameters θ = (W 1,W 2, ...,WL) ∈ Θ

predicts a corresponding target y ∈ R for an input x ∈ RD,

hl = ϕ(W lhl−1), ŷ = WLhL−1, (4)

where h0 = x is the input, ϕ(x)i = max{0, xi} is the element-wise ReLU function,

and the width of l-th hidden layer is denoted by Dl. Due to the ReLU function,

the MLP represents piecewise linear function and the number of linear regions

grows with respect to the depth, which implies that deeper MLP has higher

expressive power [23, 24, 25, 26]. Because of this high expression ability, a deep

MLP tends to over-fit noise in the training set.

To prevent the DNNs from the over-fitting, a regularizer ψ : Θ → R+ ∪{0} is

added to the empirical risk,

RS(θ) + C · ψ(θ), (5)

where C is the regularization coefficient, and the gradient based training algo-

rithm is applied to this objective. In the weight decay and L1 regularization,

their regularizers are the sum over the L2 norms of weights and that over the L1

norms, respectively.

ψL2(θ) =
L∑
l=1

∥∥W l
∥∥
2
, ψL1(θ) =

L∑
l=1

∥∥W l
∥∥
1

(6)

In the path regularization, its regularizer is the sum over the Lp norms of path

weights from the input nodes into the output node [33]. We consider the L1 norm

path regularizer.

ψP1(θ) =
∑

α∈[D0]×[D1]×···×[DL]

∣∣∣∣∣
L∏
l=1

W l
αl+1,αl

∣∣∣∣∣ (7)

The path regularizer involves an exponential number of terms. However, it can

be computed efficiently by dynamic programming in a single forward step [66].

These regularization methods made the MLP achieve a small test loss as well

as a small empirical risk empirically and their mechanisms were theoretically

9

analyzed by using the Rademacher complexity [33, 34, 67]. Let

H ◦ S = {(f(x(1), θ), f(x(2), θ), ..., f(x(N), θ)) | θ ∈ Θ} (8)

be the set of all possible evaluation of the MLP on the training set S. Then, its

Rademacher complexity is defined as

R(H ◦ S) =
1

N
Eσ

[
sup
θ∈Θ

N∑
n=1

σnf(x(n), θ)

]
, (9)

where σn ∈ {−1,+1} is the uniformly random variable and the expectation is

taken with respect to these random variables {σn}Nn=1. It measures ability of the

model to fit random binary labels and this measure is upper bounded.

Theorem 1. (Theorem 1 in [34]). Suppose that a parameter space is restricted

such that ∥WL∥2 = 1 and
∏L−1

l=1 ∥W l∥2 ≤ K. Then, the following inequality holds.

R(H ◦ S) ≤ 1√
N

2L−1/2K max
n∈[N]

∥x(n)∥2. (10)

The regularizers penalize norms of the weights, confine learning to a subset of

parameters with small norms, and thus it decreases the Rademacher complexity.

Thanks to this property, the regularizers decrease a gap between the expected

risk and empirical risk because the gap is upper bounded by the Rademacher

complexity.

Theorem 2. (Modification of Theorem. 26.5 in [32]). Assume that the loss func-

tion is α-Lipschitz and absolute value of the loss is upper bounded |ℓ(f(x, θ), y)| ≤
c for any θ ∈ Θ and (x, y) ∈ X × Y. Then, the following inequality holds with

probability of at least 1 − δ for all θ ∈ Θ.

R(θ) −RS(θ) ≤ 2αR(H ◦ S) + 4c

√
2 log(4/δ)

N
. (11)

However, a recent experiment showed that the MLP can fit the training set

with random binary labels perfectly even when the weight decay was used [28].

This implies that the Rademacher complexity is trivial for evaluating the effect

of the regularization methods on the generalization ability. Thus, we need to

rethink the regularization methods from different perspectives.

10

2.4 Optimization algorithms

Training a deep MLP degraded even its empirical risk compared with shallow one

while deeper MLP has higher expressive power [45]. To overcome this degradation

problem, the ResNet f : (x, θ) 7→ ŷ incorporates skip-connections between layers,

which add an input of a layer into its output (Fig. 6).

hl = W lϕ
(
hl−1

)
+ hl−1, ŷ = 1ThL, (12)

where h0 = u0 = W 0x ∈ RD is the linear transform of the input. Although an

extremely deep ResNet can be trained with high performance, it takes a long

time due to its slow convergence [45]. To accelerate this training, the BN [51]

and stochastic depth [56] were proposed.

The BN normalizes inputs of each layer (Fig. 6).

hl = W lϕ(BN(hl−1)) + hl−1 BN
(
hl
)
i

=
hli − Ex

[
hli
]√

Var
(
hli
) , ŷ = 1ThL, (13)

where the expectation is taken with respect to the input in the batch of the GD,

in other words, the input in the training set.

Projection

Input Prediction

Affine
transformReLU Batch

normalization
Bernoulli

random variable

ResNet ResNet with BN ResNet with stochastic depth

Entire architecture

Figure 6. Architectures of the ResNet, ResNet with BN, and ResNet with stochas-

tic depth.

11

The stochastic depth trains a shallow ResNet by dropping layers at random

from full ResNet for each iteration of training (Fig. 6).

hl = W lβl · ϕ
(
hl−1

)
+ hl−1 where βl ∼ Ber(p), ŷ = 1ThL, (14)

where p is the survival probability of each layer. Note the ResNet does not drop

layers and instead multiplies the output of each layer by the survival probability

for evaluation of its performance.

Convergence property of the GD depends on the smoothness of the loss land-

scape of the DNN. The empirical risk RS(θt) is approximated by the second-order

Taylor expansion around the minima θ∗ such that third and subsequent-order

terms can be ignored and hence the empirical risk on this region can be written

as

RS(θt) ≃ RS(θ∗) +
1

2
(θt − θ∗)

TH(θ∗)(θt − θ∗), (15)

where H(θ∗) = ∇θ∇θRS(θ∗) is the Hessian matrix. The Hessian matrix is decom-

posed as H(θ∗) = UΛUT , where U and Λ are a unitary square matrix with the

eigenvectors and a diagonal matrix filled with the eigenvalues, which simplifies

the empirical risk to

RS(θt) ≃ RS(θ∗) +
1

2
vTt Λvt, (16)

where vt = UT (θt − θ∗) and its update by the GD is

vt+1 = (I − ηΛ) vt. (17)

Let λmin and λmax be the minimum and maximum eigenvalues of H(θ∗). It is nec-

essary for the convergence of the GD into the minima to set a learning rate smaller

than 2/λmax (Fig. 7). Moreover, it converges fastest when η = 1/λmax around the

minima and a small condition number λmax/λmin induces fast convergence [59].

However, calculating the Hessian matrix and its eigenvalues are difficult owing

to the complicated structure of the DNNs. Karakida et al. [63, 64] found that

the FIM of probability distribution p(x, y; θ) represented by the MLP f(x, θ),

F (θ) = Ex,y

[
∇θ log p(x, y; θ) ∇θ log p(x, y; θ)T

]
, (18)

12

Figure 7. Convergence property of the GD and its learning rate.

approximates the Hessian matrix at the minima. Consider p(x, y; θ) = p(x)p(y|x; θ),

where p(x) is the probability of the input in the training set and p(y|x; θ) =

N (f(x; θ), 1). In this case, the FIM is rewritten as

F (θ) = Ex

[
∇θf(x, θ) ∇θf(x, θ)T

]
(19)

and the following holds:

H(θ) = F (θ) − Ex [(y − f(x, θ) · ∇θ∇θf(x, θ)] , (20)

where the second term is negligible when the error is small. In addition, the

eigenvalues of the FIM of a sufficiently wide MLP don’t change during training.

Karakida et al. [63, 64] also calculated the maximum eigenvalue of the FIM

of the randomly initialized MLP and MLP with BN. Their results showed that

the BN decreases the maximum eigenvalue and is helpful to set a large learning

rate of the GD compared with the vanilla MLP for its convergence under some

condition. However, the counterpart of the ResNet, ResNet with BN, and ResNet

with stochastic depth haven’t been analyzed yet.

13

3. Analysis of regularization methods

3.1 Fourier spectra analysis

We rethink the regularization methods from the perspective of the Fourier spectra

of the MLP. Let the MLP f(·, θ) be denoted by fθ(·) : RD → R. Then, the Fourier

transform of the MLP is written as

fθ(x) = (2π)−D/2

∫
f̃θ(k) ei⟨k,x⟩dk, where f̃θ(k) =

∫
fθ(x) e−i⟨k,x⟩dx. (21)

Rahaman et al. [36] calculated the Fourier coefficients and their upper bounds as

follows.

Theorem 3. (Modification of Theorem 1 in [36].) The Fourier coefficients of

the MLP fθ are upper bounded by the Lipschitz constant of the MLP ∥fθ∥Lip and

the number of linear regions represented by the MLP K(θ).

f̃θ(k) ≤
D∑

d=1

∥k∥−(d+1)
2 O

(
∥fθ∥Lip ·K(θ)

)
. (22)

Theorem 3 shows the implicit regularization of the MLP: the Fourier coeffi-

cient of the MLP shrinks polynomially with respect to the frequency. Moreover,

this theorem implies that the MLP needs a large Lipschitz constant to represent

the high frequency components. We focused on this property and analyzed the

relationship between the Lipschitz constant and the regularizers toward under-

standing the effects of the explicit regularization methods on the Fourier coeffi-

cients of the MLP.

3.2 Theoretical analysis

The Lipschitz constant of the MLP were theoretically analyzed by focusing on

its layered structure [68] and Theorem 4 is application of this result.

Theorem 4. The Lipschitz constant of the MLP is upper bounded by the product

over the L2 norms of the weights and that over the L1 norms.

∥fθ∥Lip ≤
L∏
l=1

∥W l∥2 ≤
L∏
l=1

∥W l∥1 (23)

14

In contrast, we derive Theorem 5 by focusing on its path-sum structure, that

is, the output of the MLP can be written as the sum over path weights from input

nodes to the output node.

Theorem 5. The Lipschitz constant of the MLP is upper bounded by the path

and L1 regularizers.

∥fθ∥Lip ≤ ψP1(θ) ≤ ψL1(θ)
L (24)

Remark 1. Theorems 3-5 imply that the weight decay, L1 regularization, and

path regularization decrease the Lipschitz constant and hence give a penalty for

the MLP to learn high-frequency components. When we assume that the high

frequency components come from noise in the training set, this result implies that

these regularization methods prevent the MLP from over-fitting the noise while

learning a target function behind the noisy data.

3.3 Numerical experiments

3.3.1 Toy examples

Our theory shows that the regularizations prevent the MLP from learning high-

frequency components. To confirm its validity, we made toy examples (Fig. 8).

Two hundred inputs x ∈ R were sampled from [0, 1] at equall intervals and the

targets y ∈ R were generated by the target function f0 and the noise function ϵ:

y = f0(x)+ϵ(x), where f0(x) =
3∑

i=1

sin(2πkix+φi), ϵ(x) =
6∑

i=4

0.4 sin(2πkix+φi),

(25)

0.00 0.25 0.50 0.75 1.00

Input x

2

0

2

y

Noisy target

0.00 0.25 0.50 0.75 1.00

Input x

1

0

1

2

f 0
(�

)
o
r

(�

)

Target and noise

0 10 20 30

Frequency k [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

f 0
(�

)
+

(�

)

Fourier coefficient

Figure 8. Inputs and targets in the toy example and its Fourier coefficients.

15

where k = (3, 6, 9, 20, 23, 26) are the frequencies and φ = (φ1, φ2, ..., φ6) ∈ [0, 2π]6

are the phases, which are randomly sampled. We initialized 5-layer MLP with

100 hidden units by the He initialization [69] and trained this model by the

Adam with a learning rate 0.001 to minimize the squared loss on this dataset.

Regularization coefficients were CL2 = 0.03, CL1 = 0.002, and CP1 = 0.00001,

respectively. Every 100 updates, the norms (Fig. 9) and the Fourier coefficients

of the MLP (Fig. 10) were calculated. Note that the Fourier coefficients were

calculated by applying the fast Fourier transform (FFT) to the pair of the input

x ∈ R and the output of the MLP fθ(x) ∈ R.

The norms of the MLP without the regularization grew (Fig. 9a) and the

MLP learned the high-frequency noise components (Fig. 10a). On the other

hand, the regularizers suppressed the norms (Figs. 9b-d) and prevented the MLP

from learning the high-frequency noise (Figs. 10b-d). These results agreed with

our analysis.

0 500 1000 1500 2000

Updates t

101

102

103

104

N
o
rm

(a) w/o regularization

0 500 1000 1500 2000

Updates t

101

102

103

104

N
o
rm

(b) Weight decay

0 500 1000 1500 2000

Updates t

101

102

103

104

N
o
rm

(c) L1 regularization

0 500 1000 1500 2000

Updates t

101

102

103

104

N
o
rm

(d) Path regularization

Figure 9. Norms (solid line: average, shaded area: within one s.d. over 3 trials).

3 6 9 20 23 26

Frequency k [Hz]

2
0

0
0

1
0

0
0

0

#
 U

p
d
a
te

s

0.0

0.2

0.4

0.6

0.8

1.0

(a) w/o regularization

3 6 9 20 23 26

Frequency k [Hz]

2
0

0
0

1
0

0
0

0

#
 U

p
d
a
te

s

0.0

0.2

0.4

0.6

0.8

1.0

(b) Weight decay

3 6 9 20 23 26

Frequency k [Hz]

2
0

0
0

1
0

0
0

0

#
 U

p
d
a
te

s

0.0

0.2

0.4

0.6

0.8

1.0

(c) L1 regularization

3 6 9 20 23 26

Frequency k [Hz]

2
0

0
0

1
0

0
0

0

#
 U

p
d
a
te

s

0.0

0.2

0.4

0.6

0.8

1.0

(d) Path regularization

Figure 10. Fourier coefficients of the MLP (color map: average over 3 trials).

16

3.3.2 Handwritten digit dataset

In real-life applications, similar inputs have similar targets, that is, the true target

function is smooth. Therefore, our theory implies that the regularizations prevent

the MLP from over-fitting the noise while learning the unknown target function

behind noisy data. To confirm this, we carried out the following experiment.

A training set and a test set were made by sampling from the handwritten

digit dataset [70] with the target of 0 or 1. We chose this small dataset for easy

evaluation of the Fourier coefficients of the MLP as we explain later. In the

training set, 65% of the targets were randomly replaced with 0 or 1. We stacked

the logistic sigmoid function σ(ŷ) = 1/(1 + exp(−ŷ)) on a 4-layer MLP with 20

0 20 40 60 80 100

Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra
c
y

(a) Without regularization

0 20 40 60 80 100

Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra
c
y

(b) Weight decay

0 20 40 60 80 100

Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra
c
y

(c) L1 regularization

0 20 40 60 80 100

Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra
c
y

(d) Path regularization

Figure 11. Accuracy of the MLP on the training set (partially random label) and

test set (true label). (solid line: average, shaded area: within one s.d. over 3

trials).

17

hidden units and trained this model by the SGD with a mini-batch size 32 and

a learning rate 0.001 to minimize the binary cross entropy loss on the training

set. Regularization coefficients were CL2 = 0.1, CL1 = 0.01, and CP1 = 0.0003,

respectively. The training accuracy and the test accuracy were calculated at each

epoch (Fig. 11). The Fourier coefficients of the MLP were calculated after training

and these coefficients are normalized such that

√∑
k σ̃ ◦ fθT (k)2 = 1 (Fig. 12).

Because the FFT becomes prohibitively expensive for a large input dimension D,

we trained the variational autoencoder (VAE) [71] with one dimensional latent

space z ∈ R, and the VAE generated 100 digit images x(z) along with this latent

space z ∈ [−2, 2] (Fig. 13). Then, the Fourier coefficients of the MLP were

calculated by applying the FFT to the pair of the latent variable z ∈ R and the

2 1 0 1 2

Latent variable z

0.40

0.45

0.50

0.55

0.60

0.65

f
T(

x

(�

))

DNN

0 5 10

Frequency k [Hz]

10 3

10 2

10 1

100

f
T(

�

)
/
|

f
T|

2

Fourier coefficient

Figure 12. Trained MLP and its normalized Fourier coefficients.

Figure 13. Images generated by the VAE along with the latent space z ∈ [−2, 2].

18

output of the MLP σ ◦ f(x(z)) ∈ R (Fig. 12).

The MLP without the regularization first learned the target function but

over-fitted the noise after a few epochs (Fig. 11a). On the other hand, the reg-

ularizations prevented the MLP from over-fitting the noise while learning the

target function (Figs. 11b-d). Fig. 12 also shows that the regularizations made

the MLP ignore the spiky noise and learn the smooth target function.

3.4 Conclusion

The DNNs such as the MLP tend to over-fit noise in the training set because they

have too much expressive power such that they can fit even input–target relation

of randomly generated data. Various regularization techniques prevented a DNN

from over-fitting the noise in the training set while learning the target function

behind the noisy data.

Their generalization abilities were theoretically analyzed by evaluating the

model complexity measures such as the Rademacher complexity. However, a

recent experiment showed that this measure is trivial and fails to explain the

effects of the regularization methods on the generalization ability. Thus, we need

to rethink the regularization methods from different perspectives.

We rethink the regularization methods from the Fourier spectra perspective

toward understanding the prevention of the over-fitting by the regularization. We

applied the Fourier spectra analysis of the MLP into the weight decay, L1, and

path regularizations and showed that they discourage the MLP from learning

high-frequency components. When we assume that the high-frequency compo-

nents come from noise in the training set, they prevent the MLP from over-fitting

the noise while learning the target function behind the noisy data. Numerical ex-

periments confirmed the validity of our analysis.

19

4. Analysis of optimization algorithms

4.1 Structure of expected Fisher information matrix

Convergence property of the GD is related to the maximum eigenvalue of the FIM

of the initialized DNN as shown in Sec. 2.4. Under the same setting, we calcu-

lated the eigenvalues of FIMs of the ResNet, ResNet with BN, and ResNet with

stochastic depth averaged over the random initialization of the parameters [55, 69]

(expected FIMs),

W 0
i,j ∼ N

(
0,

1

D

)
, W l

i,j ∼ N
(

0,
2

D

)
for all l ∈ [L], (26)

toward understanding effects of the BN and stochastic depth on the convergence

property of the GD.

The maximum eigenvalue of the expected FIM is upper bounded by the sum

over its diagonal elements and lower bounded by the the mean of its diagonal

elements. Let uli = ϕ(hl−1)i, u
l
i = ϕ(BN(hl−1))i, and uli = βl · ϕ(hl−1)i be for-

ward signals of the ResNet, ResNet with BN, and ResNet with stochastic depth

respectively for l ∈ [L]. Then, the bounds can be obtained by calculating the

second moment of the forward signal uli and that of the backward error signal

δli = ∂f(x;θ)

∂hl
i

under Assumption 1 (Fig. 14).

Assumption 1. The forward signal uli is independent of the backward error signal

δli, in particular, Eθ,x

[
uli

2 · δli
2
]

= Eθ,x

[
uli

2
]
· Eθ,x

[
δli

2
]
.

Expected FIM Assumption 1

Assumption 2 ease counting this number
path1

path2

Figure 14. Structure of the expected FIM and roles of Assumptions 1 and 2.

20

This approximation error Eθ,x

[
uli

2 · δli
2
]
−Eθ,x

[
uli

2
]
·Eθ,x

[
δli

2
]

can be written

as the 3rd and 4th-order joint cumulants and small joint cumulants decrease the

approximation error [72].

The second moments of the forward signal and the backward error signal can

be calculated by counting the number of active path of the DNNs (Fig. 14). The

active path is the path from an input unit to the output unit on which activations

of all hidden units are active. Assumption 2 makes this counting easy.

Assumption 2. Half of the hidden units are active 1
D

∑D
i=1 ϕ

′(hli) = 1
2
per layer.

The numerical experiments on the binary class PCA-whitened MNIST dataset

(Fig. 15) confirmed that this assumption is almost satisfied.

4.2 Theoretical analysis

We calculated the maximum eigenvalues of the expected FIMs of the ResNet,

ResNet with BN, and ResNet with stochastic depth under Assumptions 1 and

2. Without loss of generality, we suppose that inputs in the training set are

normalized Ex [xi] = 0 and Var(xi) = 1.

Theorem 6. (Theorem 4 in [73]). Under Assumptions 1 and 2, the maximum

eigenvalue λmax of the expected FIM of the ResNet grows exponentially with depth,

mλ =
L+ 4

4L+ 4
· 2L, mλ ≤ λmax ≤ (L+ 1)D2mλ, (27)

where mλ is the mean of the eigenvalues {λi}(L+1)D2

i=1 .

2 4 6 8 10

index of layer l
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ra
tio

 o
f a

ct
iv

at
io

n

ResNet
BN

Stochastic
Assumption

Figure 15. Activation rate of the hidden units in each layer.

21

Remark 2. Setting a learning rate exponentially small with respect to the depth

is necessary for the convergence of the GD.

Theorem 7. (Theorem 5 in [73]). Under Assumptions 1 and 2, the BN relaxes

the exponential growth of the maximum eigenvalue to L logL order at most,

mλ =
HL+1 + 1

2
, mλ ≤ λmax ≤ (L+ 1)D2mλ, (28)

where HL =
∑L

k=1
1
k
is the harmonic number.

Suppose that the stochastic depth drops 100·(1−p) percent of layers in ResNet

rather than dropping each layer with probability 100 · (1 − p) for simplicity. An

extremely deep ResNet satisfied this owing to the law of large numbers.

Theorem 8. Under Assumptions 1 and 2, the stochastic depth relaxes the expo-

nential growth of the eigenvalues of the ResNet by reducing the exponent,

mλ =
pL+ 4

4L+ 4
· 2pL, mλ ≤ λmax ≤ (L+ 1)D2mλ. (29)

Remark 3. The BN and stochastic depth are helpful to set a large learning rate

of the GD compared with that of the ResNet for its convergence.

4.3 Numerical experiments

To confirm the validity of the above analysis, some numerical experiments were

carried out.

4.3.1 Dataset

The dataset was a subset of the MNIST dataset with class label of 0 or 1 and

its inputs were preprocessed by the PCA-whitening: its inputs were projected

into D-dimensional subspace and normalized, that is, ∀d ∈ [D],E [xd] = 0 and

Var(xd) = 1.

4.3.2 Eigenvalues of expected FIM

The mean eigenvalues and maximum eigenvalues of the expected FIMs of the

ResNet, ResNet with BN, and ResNet with stochastic depth were calculated

(Fig. 16). The mean eigenvalues agreed with our theoretical values and the max-

imum eigenvalues were between the theoretical upper and lower bounds.

22

2 4 6 8 10

layers L
10 1

100

101

102

103

m
ea

n
ei

ge
nv

al
ue

 m ResNet
Stochastic
BN
Theory

2 4 6 8 10

layers L
10 1

101

103

105

107

109

m
ax

 e
ig

en
va

lu
e

m
ax ResNet

Stochastic
BN
Bounds

(a) Dependence of depth L (p = 0.5 and D = 50)

0.4 0.6 0.8 1.0

survival probability p

100

m
ea

n
ei

ge
nv

al
ue

 m Stochastic
Theory

0.4 0.6 0.8 1.0

survival probability p

100

101

102

103

104

105

m
ax

 e
ig

en
va

lu
e

m
ax

Stochastic
Bounds

(b) Dependence of survival probability p (L = 4 and D = 50)

20 30 40 50 60

Input dimension D
10 1

100

101

102

103

m
ea

n
ei

ge
nv

al
ue

 m ResNet
Stochastic
BN
Theory

20 30 40 50 60

Input dimension D
10 1

101

103

105

107

109

m
ax

 e
ig

en
va

lu
e

m
ax ResNet

Stochastic
BN
Bounds

(c) Dependence of width D (L = 2 and p = 0.5)

Figure 16. Eigenvalues of the expected FIMs.

23

4.3.3 Convergence property of GD

The convergence properties of the ResNet, ResNets with BN, and ResNet with

stochastic depth were numerically examined. Each algorithm with various num-

bers of layers L, input dimension D and learning rates η updated the parameters

50 times for each run and the training loss was calculated by averaging over five

runs (Figs. 17 and 18). The maximum learning rate for convergence in theory (red

line), calculated as 2/(upper bound of λmax), matched the boundary between the

convergence (colored) and the divergence, i.e. the loss is larger than 1000 (white).

In addition, the BN and stochastic depth enabled the GD to use a larger learning

rate than that of the vanilla ResNet when the network is deep.

2 3 4 5 6 7 8 9 10

layers L
10 6

10 5

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

100

200

300

400

500

(a) ResNet

2 3 4 5 6 7 8 9 10

layers L
10 6

10 5

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

100

200

300

400

500

(b) ResNet with BN

2 4 6 8 10

layers L
10 6

10 5

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

100

200

300

400

500

(c) ResNet with stochastic depth

Figure 17. Convergence of the GD on the dataset with D = 50.

24

20 25 30 35 40 45 50 55

Input dimension D

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

5

10

15

20

25

30

35

40

(a) ResNet

20 25 30 35 40 45 50 55

Input dimension D

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

5

10

15

20

25

30

35

40

(b) ResNet with BN

20 25 30 35 40 45 50 55

Input dimension D

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

5

10

15

20

25

30

35

40

(c) ResNet with stochastic depth

Figure 18. Convergence of the GD on the 2-layers DNNs.

4.3.4 Convergence speed

The training loss and test loss of the ResNet, ResNets with BN, and ResNet with

stochastic depth at each update were evaluated over 10 runs (Fig. 19). Each

algorithm used the optimal learning rate η = 1/(upper bound of λmax). These

results showed that the BN and stochastic depth accelerates training.

4.4 Conclusion

Although an extremely deep ResNet can be trained with high performance, it

takes a long time due to its slow convergence. The BN and stochastic depth

empirically accelerated convergence of the GD.

25

0 50 100 150 200

updates
100

101

102

103

104
lo

ss
training loss

ResNet
BN
Stochastic

0 50 100 150 200

updates
100

101

102

103

104

test loss

Figure 19. Loss of the 4-layer DNNs on the dataset with D = 50 (solid line:

average, shadowed area: within one s.d.)

The convergence property of the GD is related to the maximum eigenvalue of

the FIM of the randomly initialized DNN. In the case of the MLP, Karakida et

al. [63, 64] calculated the eigenvalues of the randomly initialized MLP and MLP

with BN and showed that the BN decrease the maximum eigenvalue under some

condition. However, the counterpart of the ResNet, ResNet with BN, ResNet

with stochastic depth haven’t been analyzed yet.

We calculated the eigenvalues of the FIMs of these models and showed that

the maximum eigenvalue of the ResNet grows exponentially with respect to the

depth, the stochastic depth relaxes this growth by decreasing exponential term,

and the BN relaxes this exponential growth into the polynomial order. Thanks

to this relaxation of the maximum eigenvalue, the BN and stochastic depth are

helpful to set a large learning rate compared with that of the vanilla ResNet for

its convergence. Moreover, our experiments confirmed the acceleration of training

by the BN and stochastic depth with their optimal learning rates of the GD.

26

5. Conclusion

Keys to the recent success of deep learning are their regularization methods and

optimization algorithms for training extremely DNNs. Some regularization meth-

ods prevent the DNN from over-fitting noise in the training set while learning the

target function behind the noisy data. The BN and stochastic depth accelerate

the convergence of the GD.

Many studies tried to clear these mechanisms. The effects of regularization

methods on the generalization ability of the DNNs were theoretically analyzed

by evaluating the model complexity measure such as the Rademacher complexity.

However, a recent experiment showed that this measure is trivial and fail to

explain their generalization abilities. Thus, we need to rethink the regularization

method from different perspectives. The fast convergence of the GD by the BN

was analyzed in the case of the MLP by calculating the maximum eigenvalues

of the FIMs of the randomly initialized MLP and MLP with BN. However, the

counterpart of the ResNet, ResNet with BN, and ResNet with stochastic depth

haven’t been analyzed yet. In this thesis, we provided some novel theoretical

insights into the prevention of the over-fitting by the regularization methods

from the Fourier spectra perspective and the fast convergence by the BN and

stochastic depth in the case of the ResNet.

Toward understanding the prevention of the over-fitting by the regularization

methods, we applied the Fourier spectra analysis of the MLP into the weight

decay, L1, and path regularization and showed that they penalize the MLP to

discourage it from learning high-frequency components. When we assume that

the high-frequency components come from noise in the training set, this implies

that they prevent the MLP from over-fitting the noise while learning the target

function behind the noisy data.

Toward understanding the fast convergence of the GD by the BN and stochas-

tic depth, we calculated the maximum eigenvalue of the FIM of randomly initial-

ized ResNet, ResNet with BN, and ResNet with stochastic depth and showed that

the maximum eigenvalue of the ResNet grows exponentially with respect to the

depth, the stochastic depth relaxes this growth by decreasing exponential term,

and the BN relaxes this exponential growth into the polynomial order. Thanks

to this relaxation of the maximum eigenvalue, the BN and stochastic depth are

27

helpful to set a large learning rate compared with that of the vanilla ResNet for

its convergence.

28

Acknowledgements

Before I enrolled in Nara Institute of Science and Technology (NAIST), I studied

computer vision and dived into deep learning to seek higher performance. At that

time, many heuristics were proposed and I was wondering about reasons why these

heuristics make deep learning achieve better performance. To clear my question,

I joined the mathematical informatics laboratory in NAIST, learned many things

from many peoples, and finally cleared some of them. I think I couldn’t do it

without the devotion of many peoples who helped with my research activities.

First, I must thank Professor Kazushi Ikeda for giving me interesting research

topics which had not been clarified yet and teaching me beautiful analysis tools

for clearing these research topics. Thanks to his good lecture, I noticed and

understood how mathematics beautiful is, which led me into the doctoral course.

In addition, he taught me how to make a good story for my research papers by

revision. It makes these papers to be published in a journal article and conference

publications. These experiences must be a foundation for my future research

activities. I would like to thank him deeply.

I also thank Professor Yuji Matsumoto for reviewing this thesis. In addition,

he also accepted my application into his project practice class when I was a

master student. At that time, he and his laboratory’s members devoted their

time to my work and gave me advice from a professional perspective. Thanks to

this experience, I got an interest in natural language processing and used these

techniques in my research.

I also thank Associate Professor Junichiro Yoshimoto. He always gave me

advanced advice from a unique viewpoint whenever I presented my research.

This advice gave me inspiration for future research. Actually, his advice directly

contributed to my new research and publication.

I also thank Assistant Professor Matthew J. Holland. He was a senior doctor

student when I was a master student. At that time, I always respected his passion

for research and tried to reference him, which made me move forward and now I

reached here.

Lastly, I would like to thank members in the mathematical informatics labo-

ratory for helping my research activities.

29

References

[1] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their compositional-

ity. In Advances in neural information processing systems, pages 3111–3119,

2013.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[3] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation ap-

plied to handwritten zip code recognition. Neural computation, 1(4):541–551,

1989.

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[5] Pedro Domingos. The master algorithm: How the quest for the ultimate

learning machine will remake our world. Basic Books, 2015.

[6] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. Technical report, Citeseer, 2009.

[7] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 1–9, 2015.

[8] Nicola Ueffing, Gholamreza Haffari, and Anoop Sarkar. Transductive learn-

ing for statistical machine translation. In Proceedings of the 45th Annual

Meeting of the Association of Computational Linguistics, pages 25–32, 2007.

30

[9] I Sutskever, O Vinyals, and QV Le. Sequence to sequence learning with

neural networks. Advances in NIPS, 2014.

[10] Sebastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio.

On using very large target vocabulary for neural machine translation. In

53rd Annual Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language Processing of

the Asian Federation of Natural Language Processing, ACL-IJCNLP 2015,

pages 1–10. Association for Computational Linguistics (ACL), 2015.

[11] Tom Decroos, Lotte Bransen, Jan Van Haaren, and Jesse Davis. Actions

speak louder than goals: Valuing player actions in soccer. In Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pages 1851–1861. ACM, 2019.

[12] Yasutaka Furusho and Kazushi Ikeda. Generation and visualization of tennis

swing motion by conditional variational rnn with hidden markov model. In

Asian Conference on Machine Learning: Trajectory, Activiy, and Behaviour

workshop, 2019.

[13] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolu-

tional deep belief networks for scalable unsupervised learning of hierarchical

representations. In Proceedings of the 26th annual international conference

on machine learning, pages 609–616. ACM, 2009.

[14] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol,

Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help

deep learning? Journal of Machine Learning Research, 11(Feb):625–660,

2010.

[15] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin.

Exploring strategies for training deep neural networks. Journal of machine

learning research, 10(Jan):1–40, 2009.

[16] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. In European conference on computer vision, pages 818–833.

Springer, 2014.

31

[17] Frank Seide, Gang Li, and Dong Yu. Conversational speech transcription

using context-dependent deep neural networks. In Twelfth annual conference

of the international speech communication association, 2011.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-

jeland, Georg Ostrovski, et al. Human-level control through deep reinforce-

ment learning. Nature, 518(7540):529, 2015.

[19] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. nature, 529(7587):484, 2016.

[20] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436, 2015.

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, et al. Imagenet large scale visual recognition challenge. International

Journal of Computer Vision, 115(3):211–252, 2015.

[23] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and

trends R⃝ in Machine Learning, 2(1):1–127, 2009.

[24] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.

On the number of linear regions of deep neural networks. In Advances in

neural information processing systems, pages 2924–2932, 2014.

[25] Matus Telgarsky. benefits of depth in neural networks. In Conference on

Learning Theory, pages 1517–1539, 2016.

[26] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-

Dickstein. On the expressive power of deep neural networks. In International

Conference on Machine Learning, pages 2847–2854, 2017.

32

[27] Christopher M Bishop. Pattern recognition and machine learning. springer,

2006.

[28] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol

Vinyals. Understanding deep learning requires rethinking generalization.

International Conference on Learning Representations, 2017.

[29] Devansh Arpit, Stanis law Jastrzebski, Nicolas Ballas, David Krueger, Em-

manuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron

Courville, Yoshua Bengio, et al. A closer look at memorization in deep

networks. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 233–242. JMLR. org, 2017.

[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research, 15(1):1929–1958,

2014.

[31] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian com-

plexities: Risk bounds and structural results. Journal of Machine Learning

Research, 3(Nov):463–482, 2002.

[32] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:

From theory to algorithms. Cambridge university press, 2014.

[33] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based ca-

pacity control in neural networks. In Conference on Learning Theory, pages

1376–1401, 2015.

[34] Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues.

Lessons from the rademacher complexity for deep learning. International

Conference on Learning Representations: workshop, 2016.

[35] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the

real inductive bias: On the role of implicit regularization in deep learning.

International Conference on Learning Representations, 2015.

33

[36] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin,

Fred Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias

of neural networks. In International Conference on Machine Learning, pages

5301–5310, 2019.

[37] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-

skiy, and Ping Tak Peter Tang. On large-batch training for deep learning:

Generalization gap and sharp minima. International Conference on Learning

Representations, 2017.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computa-

tion, 9(1):1–42, 1997.

[39] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Sre-

bro. Exploring generalization in deep learning. In Advances in Neural Infor-

mation Processing Systems, pages 5947–5956, 2017.

[40] Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of

learning algorithms that converge to global optima. International Conference

on Machine Learning, 2018.

[41] Yasutaka Furusho, Tongliang Liu, and Kazushi Ikeda. Skipping two layers in

resnet makes the generalization gap smaller than skipping one or no layer. In

Recent Advances in Big Data and Deep Learning, Proceedings of the INNS

Big Data and Deep Learning Conference INNSBDDL 2019, held at Sestri

Levante, Genova, Italy 16-18 April 2019, pages 349–358, 2019.

[42] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and

Nathan Srebro. The implicit bias of gradient descent on separable data. The

Journal of Machine Learning Research, 19(1):2822–2878, 2018.

[43] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit

bias of gradient descent on linear convolutional networks. In Advances in

Neural Information Processing Systems, pages 9461–9471, 2018.

[44] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regulariza-

tion in deep matrix factorization. Advances in neural information processing

systems, 2019.

34

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[46] Yasutaka Furusho, Takatomi Kubo, and Kazushi Ikeda. Information theo-

retical analysis of deep learning representations. In International Conference

on Neural Information Processing, pages 599–605. Springer, 2015.

[47] Yasutaka Furusho, Takatomi Kubo, and Kazushi Ikeda. Roles of pre-training

in deep neural networks from information theoretical perspective. Neurocom-

puting, 248:76–79, 2017.

[48] Yasutaka Furusho and Kazushi Ikeda. Additive or concatenating skip-

connection improve data separability. In International Conference on

Machine Learning: Understanding and Improving Generalization in Deep

Learning, 2019.

[49] Yasutaka Furusho and Kazushi Ikeda. Resnet and batch-normalization im-

prove data separability. In Asian Conference on Machine Learning, pages

94–108, 2019.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity map-

pings in deep residual networks. In European conference on computer vision,

pages 630–645. Springer, 2016.

[51] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International Con-

ference on Machine Learning, pages 448–456, 2015.

[52] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.

How does batch normalization help optimization? In Advances in Neural

Information Processing Systems, pages 2483–2493, 2018.

[53] Sepp Hochreiter. The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

35

[54] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of

training recurrent neural networks. In International conference on machine

learning, pages 1310–1318, 2013.

[55] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth inter-

national conference on artificial intelligence and statistics, pages 249–256,

2010.

[56] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger.

Deep networks with stochastic depth. In European conference on computer

vision, pages 646–661. Springer, 2016.

[57] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in

Neural Information Processing Systems, pages 586–594, 2016.

[58] Yanzhao Wu, Ling Liu, Juhyun Bae, Ka-Ho Chow, Arun Iyengar, Calton Pu,

Wenqi Wei, Lei Yu, and Qi Zhang. Demystifying learning rate polices for high

accuracy training of deep neural networks. arXiv preprint arXiv:1908.06477,

2019.

[59] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller.

Efficient backprop. In Neural networks: Tricks of the trade, pages 9–48.

Springer, 2012.

[60] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:

Convergence and generalization in neural networks. In Advances in neural

information processing systems, pages 8571–8580, 2018.

[61] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle

points—online stochastic gradient for tensor decomposition. In Conference

on Learning Theory, pages 797–842, 2015.

[62] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gra-

dient descent converges to minimizers. arXiv preprint arXiv:1602.04915,

2016.

36

[63] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics

of fisher information in deep neural networks: Mean field approach. In The

22nd International Conference on Artificial Intelligence and Statistics, pages

1032–1041, 2019.

[64] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. The normalization

method for alleviating pathological sharpness in wide neural networks. Ad-

vances in neural information processing systems, 2019.

[65] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. International Conference on Learning Representations, 2015.

[66] Behnam Neyshabur, Ruslan R Salakhutdinov, and Nati Srebro. Path-sgd:

Path-normalized optimization in deep neural networks. In Advances in Neu-

ral Information Processing Systems, pages 2422–2430, 2015.

[67] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-

normalized margin bounds for neural networks. In Advances in Neural In-

formation Processing Systems, pages 6240–6249, 2017.

[68] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

Spectral normalization for generative adversarial networks. International

Conference on Learning Representations, 2018.

[69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE international conference on computer vision, pages

1026–1034, 2015.

[70] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[71] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In-

ternational Conference on Learning Representations, 2014.

[72] James Martens and Roger Grosse. Optimizing neural networks with

kronecker-factored approximate curvature. In International conference on

machine learning, pages 2408–2417, 2015.

37

[73] Yasutaka Furusho and Kazushi Ikeda. Theoretical analysis of resnet and

batch normalization from generalization and optimization perspectives. In

APSIPA Transactions on Signal and Information Processing, To appear.

[74] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma,

and Brian McWilliams. The shattered gradients problem: If resnets are the

answer, then what is the question? In International Conference on Machine

Learning, pages 342–350, 2017.

38

Publication list

Journal Article

1. Yasutaka Furusho and Kazushi Ikeda. Theoretical analysis of ResNet and

batch normalization from generalization and optimization perspectives. AP-

SIPA Transactions on Signal and Information Processing, to appear.

2. Yasutaka Furusho, Takatomi Kubo, and Kazushi Ikeda. Roles of pre-

training in deep neural networks from information theoretical perspective.

Neurocomputing, 2017.

3. Yasutaka Furusho and Kazushi Ikeda. Fourier Spectral analysis of explicit

regularization for preventing memorization of neural networks. Under re-

view.

4. Yasutaka Furusho and Kazushi Ikeda. Theoretical analysis of neural net-

work with stochastic depth from optimization perspective. Under review.

International Conference and Workshop

1. Yasutaka Furusho and Kazushi Ikeda. ResNet and batch normalization

improve data separability. Asian Conference on Machine Learning, 2019.

2. Yasutaka Furusho and Kazushi Ikeda. Generation and visualization of

tennis swing motion by conditional variational RNN with hidden Markov

model, Asian Conference on Machine Learning: Trajectory, Activity, and

Behavior workshop, 2019.

3. Yasutaka Furusho and Kazushi Ikeda. Theoretical analysis of the fixup

initialization for fast convergence and high generalization ability. Inter-

national Conference on Machine Learning: Understanding and Improving

Generalization in Deep Learning workshop, 2019.

39

4. Yasutaka Furusho and Kazushi Ikeda. Additive or concatenating skip-

connections improve data separability. International Conference on Ma-

chine Learning: Understanding and Improving Generalization in Deep Learn-

ing workshop, 2019.

5. Yasutaka Furusho and Kazushi Ikeda. Effects of skip-connection in ResNet

and batch normalization on Fisher information matrix. INNS Big Data and

Deep Learning, 2019.

6. Yasutaka Furusho, Tongliang Liu, and Kazushi Ikeda. Skipping two layers

in ResNet makes the generalization gap smaller than skipping one or no

layers. INNS Big Data and Deep Learning, 2019.

7. Yasutaka Furusho and Kazushi Ikeda. Non-asymptotic analysis of Fisher

information matrices of multi-layer perceptron, ResNet, and batch normal-

ization. INCF Advances in NeuroInformatics, 2018.

8. Yasutaka Furusho, Takatomi Kubo, Kazushi Ikeda.: Information Theoret-

ical Analysis of Deep Learning Representations. International Conference

on Neural Information Processing, 2015.

Other Conference Publications

1. 古庄泰隆, 池田和氏. Stochastic depthが勾配降下法の学習速度に与える影
響の理論解析. 情報論的学習理論ワークショップ, 2019.

2. 古庄泰隆, 池田和司. 古典的なニューラルネットワークの問題点と加算型及
び結合型ショートカットによる改善. 情報論的学習理論と機械学習研究会,

2019.

3. 古庄泰隆, 池田和司. ResNetと batch normalizationによるデータ分離能力
の向上. 情報論的学習理論と機械学習研究会, 2019.

4. 古庄泰隆,池田和司. Fixup initializationの理論解析: 学習の高速化とResNet

の汎化能力向上. 情報論的学習理論と機械学習研究会, 2019.

40

5. 古庄泰隆, 池田和司. Batch normalizationがResNetのフィッシャー情報行
列に与える影響の理論解析. 情報論的学習理論と機械学習研究会, 2019.

6. 古庄泰隆,池田和司. ニューラルネットワークの隠れ層のユニット数とReLU

関数が汎化能力に与える影響の理論解析. 情報論的学習理論と機械学習研
究会, 2019.

7. 古庄泰隆, 池田和司. Effects of skip-connection in ResNet and batch nor-

malization on Fisher information matrix. 脳と心のメカニズム 冬のワーク
ショップ, 2018.

8. 古庄泰隆, 池田和司. Stable embedding of wide neural networks with ReLU

activation and its generalization ability. 脳と心のメカニズム 冬のワーク
ショップ, 2018.

9. 古庄泰隆, 池田和司. ニューラルネットワークの埋め込み安定性と汎化能力
の関係. コンピューテーショナル・インテリジェンス研究会, 2018.

10. 古庄泰隆, Tongliang Liu, 池田和司. ResNetのショートカットが学習速度
と汎化ギャップに及ぼす影響の理論解析情報論的学習理論ワークショップ,

2018.

11. Yasutaka Furusho, Takatomi Kubo, and Kazushi Ikeda. Roles of pre-

training in deep neural networks from information theoretical perspective.

Brain and Artificial Intelligence Symposium, Brain Engineering Society of

Korea, 2017.

12. 古庄泰隆, 久保孝富, 池田和司. ディープニューラルネットワークの入力符
号化能力の情報理論的評価. 計測自動制御学会 システム・情報部門 学術講
演会, 2015.

Award

1. 古庄泰隆, 池田和司, SICE学術奨励賞, 計測自動制御学会, 2019.

41

2. 古庄泰隆, 池田和司, IBISML研究会賞ファイナリスト, 情報論的学習理論と
機械学習研究会, 2018.

3. Yasutaka Furusho, Takatomi Kubo, and Kazushi Ikeda, Best Poster Paper

Award of Artificial Intelligence Symposium, Brain Engineering Society of

Korea, 2017.

42

Appendix

A. Regularization methods

A.1 Proof of Theorem 4

Proof of Theorem 4. The Lipschitz constant of the composition function is upper

bounded by those of the element functions.

∥fθ∥Lip ≤ ∥TL∥Lip · ∥ϕ∥Lip · ∥TL−1∥Lip · · · ∥ϕ∥Lip · ∥T 1∥Lip, (30)

where T l(·) = W l· is the affine transformation by the weight W l ∈ RDl×Dl−1 .

On the basis of the facts that the ReLU function does not increase the Lipschitz

constant, the Lipschitz constant of the affine transformation is upper bounded

by its L2 norm, and the L2 norm is upper bounded by the L1 norm, the theorem

holds.

∥fθ∥Lip ≤
L∏
l=1

∥T l∥Lip ≤
L∏
l=1

∥W l∥2 ≤
L∏
l=1

∥W l∥1 (31)

A.2 Proof of Theorem 5

Proof of Theorem 5. The output of the neural network can be written as the sum

over the path weights and activations of these paths from the input nodes to the

output node:

fθ(x) =
∑

α∈[D0]×[D1]×···×[DL]

L∏
l=1

W l
αl+1,αl

·
L−1∏
l=1

ϕ′(ulαl
) · xα1 , (32)

where ul = W lhl−1 is the output of the l-th linear layer. This path-sum represen-

tation relates the regularizers to the Lipschitz constant. The mean value theorem

shows that, for any x, x′ ∈ RD0 , there exists α ∈ [0, 1] such that

f(x) − f(x′) ≤ ∇xf(z) · (x− x′), where z = α · x− (1 − α) · x′. (33)

On the basis of the Cauchy–Schwartz inequality and the fact that the L2 norm

is upper bounded by the L1 norm, the following inequality holds.

∥fθ(x) − fθ(x
′)∥2 ≤ ∥∇xfθ(z)∥1 · ∥x− x′∥2 (34)

43

Therefore, the Lipschitz constant of the MLP ∥fθ∥Lip is upper bounded by

∥∇xf(z)∥1 =

D0∑
i=1

∣∣∣∣∣∣
∑

α∈{i}×[D1]×···×{DL}

L∏
l=1

W l
αl+1,αl

·
L−1∏
l=1

ϕ′(ulαl
)

∣∣∣∣∣∣ . (35)

Because the activations of the paths depend on the unknown input z, we consider

the worst-case input z′ ∈ RD0 , which induces the path regularizer.

∥∇xfθ(z)∥1 ≤ sup
z′∈RD0

∥∇xfθ(z
′)∥1 = ψP1(θ). (36)

Theorem 5 of [33] shows that ψP1(θ) ≤ ψL1(θ)
L.

44

B. Optimization algorithms

B.1 Proof of Theorem 6

Lemma 1. (Modification of Theorem 1 in [63].) The mean of the eigenvalues

mλ and the maximum eigenvalue λmax of the expected FIM can be written by the

forward signal uli and the backward error signal δli = ∂f(x;θ)

∂hl
i
,

mλ =
1

(L+ 1)D2

{
D∑

i,j=1

Eθ,x

[
δ0i

2
u0j

2
]

+
L∑
l=1

D∑
i,j=1

Eθ,x

[
δli

2
ulj

2
]}

,

mλ ≤ λmax ≤ (L+ 1)D2mλ,

(37)

where the expectation is taken over the initial parameters θ and the input x in the

training set.

Note that Eθ,x

[
δli

2
ulj

2]
= Eθ,x

[
δli

2] · Eθ,x

[
ulj

2]
thanks to Assumption 1. Now,

we calculate these terms. When you consider that W 0 is initialized by sampling

from N
(
0, 1

D

)
, the second moment of its transformation of input is

Eθ,x

[
u0i

2
]

=
1

D

D∑
n=1

Ex

[
x2i
]

= 1. (38)

We can calculate the remaining terms by neural functional analysis [74].

Lemma 2. Under Assumption 2, the second moments of the forward signal and

the backward error signal of the ResNet are

Eθ,x

[
ulj

2
]

= 2l−2 for all l ∈ [L],

Eθ,x

[
δli

2
]

= 2L−l for all l ∈ [L] ∪ {0},
(39)

respectively.

Proof of Lemma 2. First, we calculate the second moment of the forward signal.

Define the path set from the hidden units {u0i }Di=1 to the hidden unit hl−1
j as

f-path :=
{

(F, α)| F ⊂ [l − 1], α ∈ [D]|F | × {j}
}
. (40)

45

Then, the forward signal can be written as the path weights and the activations

of these paths,

hl−1
j =

∑
α̃∈f-path

Wα̃Aα̃u
0
α1
, ulj = ϕ

(
hl−1
j

)
, (41)

where

Wα̃ =

{
1 if F = ∅∏|F |

l=1W
Fl
αl+1,αl

otherwise,
(42)

Aα̃ =

{
1 if F = ∅∏|F |

l=1 ϕ
′(hFl−1

αl
) otherwise.

(43)

The path weights are orthogonal such that

Eθ [Wα̃1Wα̃2] =

{
(2
D

)|F | if α̃1 = α̃2

0 otherwise.
(44)

Under Assumption 2, the second moment of hlj can be easily calculated using the

orthogonality of the path weights,

Eθ,x

[
hl−1
j

2
]

= Eθ,x

 ∑
α̃∈f-path

W 2
α̃A

2
α̃u

0
α1

2

 =
∑

F⊂[l−1]

(
2

D

)|F |(
D

2

)|F |

= 2l−1.

(45)

The first equality holds thanks to the orthogonality of the path weights. The

second equality holds because the second moment of the path weight and the

number of active paths are Eθ [W 2
α̃] =

(
2
D

)|F |
and

∑
α̃∈f-pathA

2
α̃ =

(
D
2

)|F |
, re-

spectively, for the length of the path |F | and Eθ,x

[
u0i

2
]

= 1. Then, the second

moment of the forward signal is

Eθ,x

[
ulj

2
]

= Eθ,x

[
ϕ(hl−1

j)
2
]

=
1

2
· Eθ,x

[
hl−1
j

2
]

= 2l−2. (46)

The second equality holds because the weights are initialized with the Gaussian

distribution with mean zero and thus hl−1
j is a symmetric random variable around

zero.

Next, we calculate the second moment of the backward error signal. Define

the path-set from the hidden unit hli into the output unit as

b-path :=
{

(F, α)| F ⊂ [L] \ [l], α ∈ {i} × [D]|F |} . (47)

46

Then, the backward error signal can be written as the path weights and the

activations of these paths,

δli =
∑

α̃∈b-path

Wα̃Aα̃. (48)

Under Assumption 2, the second moment of δli can be easily calculated using the

orthogonality of the path weights,

Eθ,x

[
δli

2
]

= Eθ,x

 ∑
α̃∈b-path

W 2
α̃A

2
α̃

 =
∑

F⊂[L]\[l]

(
2

D

)|F |(
D

2

)|F |

= 2L−l. (49)

Then, we can derive Theorem 2 by substituting Eqs. 46 and 49 into Eq. 37.

B.2 Proof of Theorem 7

In combination with Lemma 1 and the following lemma, we can derive Theorem 7

in the same way as the proof of Theorem 6.

Lemma 3. Under Assumption 2, the second moments of the forward signal and

the backward error signal of the ResNet with BN are

Eθ,x

[
ulj

2
]

=
1

2
for all l ∈ [L],

Eθ,x

[
δli

2
]

=
L+ 1

l + 1
for all l ∈ [L] ∪ {0},

(50)

respectively.

Proof of Lemma 3. The second moment of the forward signal ulj = ϕ
(
BN

(
hl−1

))
is obvious because the mean and variance of the outputs of the BN is zero and

one respectively.

Next, we calculate the second moment of the backward error signal. First, we

calculated the statistics of the BN. The mean is

Eθ,x

[
hli
]

= Eθ,x

[
D∑
j=1

W l
i,ju

l
j + hl−1

i

]
= Eθ,x

[
D∑
j=1

W l
i,ju

l
j

]
+ Eθ,x

[
hl−1
i

]
= Eθ,x

[
hl−1
i

]
= Eθ,x

[
h0i
]

= 0.

(51)

47

The variance is

Var
(
hli
)

= Var

(
D∑
j=1

W l
i,ju

l
j + hl−1

i

)
= Var

(
D∑
j=1

W l
i,ju

l
j

)
+ Var

(
hl−1
i

)
(52)

= 1 + Var
(
hl−1
i

)
= l + Var

(
h0i
)

(53)

= l +
1

D

D∑
n=1

Var (xi) = l + 1. (54)

Substitute these values into the statistics of the BN. Define the path-set from the

hidden unit hli into the output unit as

b-path :=
{

(F, α)| F ⊂ [L] \ [l], α ∈ {i} × [D]|F |} . (55)

Then, the back ward error signal can be written as the path weights, the activa-

tions of these paths, and the statistics of the BN of these paths,

δli =
∑

α̃∈b-path

Wα̃Aα̃Λα̃, (56)

where

Wα̃ =

{
1 if F = ∅∏|F |

l=1W
Fl
αl+1,αl

otherwise,

Aα̃ =

{
1 if F = ∅∏|F |

l=1 ϕ
′(hFl−1

αl
) otherwise,

Λα̃ =

{
1 if F = ∅∏|F |

l=1
1√

Fl−1+1
=
∏|F |

l=1
1√
Fl

otherwise.

(57)

Under Assumption 2, the second moment of the backward error signal can be

calculated using the orthogonality of the path weights,

Eθ,x

[
δli

2
]

= Eθ,x

[
W 2

α̃A
2
α̃Λ2

α̃

]
=

∑
F⊂[L]\[l]

(
2

D

)|F |(
D

2

)|F |
(∏

k∈F

1

k

)

=
L∏

k=l+1

(
1 +

1

k

)
=
L+ 1

l + 1
.

(58)

48

B.3 Proof of Theorem 8

In combination with Lemma 1 and the following lemma, we can derive Theorem 8

in the same way as the proof of Theorem 6.

Lemma 4. Under Assumption 2, the second moments of the forward signal and

the backward error signal of the ResNet with stochastic depth are

Eθ,x

[
ulj

2
]

= p · 2l−2 for all l ∈ [L],

Eθ,x

[
δli

2
]

= 2pL−l for all l ∈ [L] ∪ {0},
(59)

respectively.

Proof of Lemma 4. Consider the pL-layer shallow ResNet sampled by the stochas-

tic depth. First, we calculate the second moment of the forward signal. Define

the path set from the hidden units {u0i }Di=0 to the hidden unit hl−1
j as

f-path :=
{

(F, α)| F ⊂ [l − 1], α ∈ [D]|F | × {j}
}
. (60)

Then, the forward signal can be written as the path weights and the activations

of these paths,

hl−1
j =

∑
α̃∈f-path

Wα̃Aα̃u
0
α1
, ulj = βl · ϕ

(
hl−1
j

)
, (61)

where βl ∼ Ber(p) is a Bernoulli random variable and

Wα̃ =

{
1 if F = ∅∏|F |

l=1W
Fl
αl+1,αl

otherwise,

Aα̃ =

{
1 if F = ∅∏|F |

l=1 ϕ
′(hFl−1

αl
) otherwise,

(62)

Under Assumption 2, the second moment of hl−1
j can be easily calculated using

the orthogonality of the path weights,

Eθ,x

[
hl−1
j

2
]

= Eθ,x

 ∑
α̃∈f-path

W 2
α̃A

2
α̃u

0
α1

2

 =
∑

F⊂[l−1]

(
2

D

)|F |(
D

2

)|F |

= 2l−1,

(63)

49

Then, the second moment of the forward signal is

Eθ,x

[
ulj

2
]

= p · Eθ,x

[
ϕ(hl−1

j)
2
]

=
p

2
· Eθ,x

[
hl−1
j

2
]

= p · 2l−2. (64)

Next, we calculate the second moment of the backward error signal. Define

the path-set from the hidden unit hli into the output unit as

b-path :=
{

(F, α)| F ⊂ [pL] \ [l], α ∈ {i} × [D]|F |} . (65)

Then, the backward error signal can be written as the path weights and the

activations of these paths,

δli =
∑

α̃∈b-path

Wα̃Aα̃. (66)

Under Assumption 2, the second moment of δli can be easily calculated using the

orthogonality of the path weights,

Eθ,n

[
δli

2
]

= Eθ,n

 ∑
α̃∈b-path

W 2
α̃A

2
α̃

 =
∑

F⊂[pL]\[l]

(
2

D

)|F |(
D

2

)|F |

= 2pL−l. (67)

B.4 Additional numerical experiments

In Section 4.3, we ran numerical experiments on the MNIST dataset. Here, we

apply the same numerical experiments to the CIFAR10 dataset [6].

B.4.1 Dataset

A dataset was made by sampling from the CIFAR10 dataset with class label of

0 or 1 and its inputs were preprocessed by the PCA-whitening: its inputs were

projected into D-dimensional subspace and normalized, that is, ∀d ∈ [D],E [xd] =

0 and Var(xd) = 1.

B.4.2 Activation rate

Activation rates of hidden units in each layer of the ResNet, ResNet with BN,

and ResNet with stochastic depth were calculated (Fig. 20) to confirm that these

DNNs satisfy Assumption 2. These results confirmed the validity of Assump-

tion 2.

50

2 4 6 8 10

index of layer l
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ra
tio

 o
f a

ct
iv

at
io

n

ResNet
BN

Stochastic
Assumption

Figure 20. Activation rate of hidden units in each layer.

B.4.3 Eigenvalues of expected FIM

The mean eigenvalues and maximum eigenvalues of the expected FIMs of the

ResNet and ResNet with BN and stochastic depth were calculated (Fig. 21). The

mean eigenvalues agreed with our theoretical values and the maximum eigenvalues

were between the theoretical upper and lower bounds.

B.4.4 Convergence property of GD

The convergence properties of the ResNet and ResNets with BN and stochastic

depth were numerically examined. Each algorithm with various numbers of layers

L, input dimensions D, and learning rates η updated the parameters 50 times

for each run and the training loss was calculated by averaging over five runs

(Figs. 22 and 23). The maximum learning rate for convergence in theory (red

line), calculated as 2/(upper bound of λmax), matched the boundary between the

convergence (colored) and the divergence, i.e. the loss is larger than 1000 (white).

In addition, the BN and stochastic depth enabled the GD to use a larger learning

rate than that of the vanilla ResNet.

B.4.5 Convergence speed

The training loss and test loss of the ResNet and ResNets with BN and stochastic

depth at each update were evaluated over 10 runs (Fig. 24). Each algorithm used

the optimal learning rate η = 1/(upper bound of λmax). These results showed

that the BN and stochastic depth accelerates training.

51

2 4 6 8 10

layers L
10 1

100

101

102

103

m
ea

n
ei

ge
nv

al
ue

 m ResNet
Stochastic
BN
Theory

2 4 6 8 10

layers L
10 1

101

103

105

107

109

m
ax

 e
ig

en
va

lu
e

m
ax ResNet

Stochastic
BN
Bounds

(a) Dependence of depth L (p = 0.5 and D = 50)

0.4 0.6 0.8 1.0

survival probability p

100

m
ea

n
ei

ge
nv

al
ue

 m Stochastic
Theory

0.4 0.6 0.8 1.0

survival probability p

100

101

102

103

104

105

m
ax

 e
ig

en
va

lu
e

m
ax

Stochastic
Bounds

(b) Dependence of survival probability p (L = 4 and D = 50)

20 30 40 50 60

Input dimension D
10 1

100

101

102

103

m
ea

n
ei

ge
nv

al
ue

 m ResNet
Stochastic
BN
Theory

20 30 40 50 60

Input dimension D
10 1

101

103

105

107

109

m
ax

 e
ig

en
va

lu
e

m
ax ResNet

Stochastic
BN
Bounds

(c) Dependence of width D (p = 0.5 and L = 2)

Figure 21. Eigenvalues of the expected FIMs.

52

2 3 4 5 6 7 8 9 10

layers L
10 6

10 5

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

100

200

300

400

500

(a) ResNet

2 3 4 5 6 7 8 9 10

layers L
10 6

10 5

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

100

200

300

400

500

(b) ResNet with BN

2 4 6 8 10

layers L
10 6

10 5

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

100

200

300

400

500

(c) ResNet with stochastic depth

Figure 22. Convergence of the GD on the dataset with D = 50.

53

20 25 30 35 40 45 50 55

Input dimension D

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

5

10

15

20

25

30

35

40

(a) ResNet

20 25 30 35 40 45 50 55

Input dimension D

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

5

10

15

20

25

30

35

40

(b) ResNet with BN

20 25 30 35 40 45 50 55

Input dimension D

10 4

10 3

10 2

le
ar

ni
ng

 ra
te

5

10

15

20

25

30

35

40

(c) ResNet with stochastic depth

Figure 23. Convergence of the GD on the 2-layers DNN.

0 50 100 150 200

updates
10 1

100

101

102

103

104

105

lo
ss

training loss
ResNet
BN
Stochastic

0 50 100 150 200

updates
10 1

100

101

102

103

104

105
test loss

Figure 24. Loss of the 4-layer DNNs (solid line: average, shadowed area: within

one s.d.)

54

