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Estimation of Upper Limb Motion Based on

Skin Deformation Measured with

a Distance Sensor Array∗

Sung-Gwi Cho

Abstract

Upper limb motions have strong relationships with our daily life. We manipu-

late and grasp various daily life objects by using our upper limb. Many studies on

upper limb motion estimation for human-robot and human-computer interactions

have been conducted and provide important knowledge for the design of input

interfaces in virtual reality and robotic applications, as well as for hand motion

measurement in the medical, welfare, sporting, and manufacturing fields.

In our research, we focus on estimation of upper limb motions using skin

deformation. Skin deformation is caused by the activities of various body tissues

such as the muscles, tendons, and bones related to the motions. Especially, we

can observe the activities of the deep layer muscles from the skin deformation.

In this dissertation, we propose estimation methods of upper limb motion

based on the skin deformation. Two types of sensing devices are developed to

measure the whole circumference of the skin deformation on the forearm and

upper arm. We develop two categories of the motion estimation. In the first

category, we develop a motion recognition method based on forearm deformation.

The recognition method classifies seven different types of motions including the

motions caused by the activities of deep layer muscles. In the second category, we

develop two pose estimation methods. One method uses the forearm deformation

and the other uses the upper arm deformation. These pose estimation method

estimates multiple joint angles of the upper limb.

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science
and Technology, March 13, 2020.
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In the experiments of the motion recognition method based on the forearm

deformation, we confirmed that our proposed method could recognize seven dif-

ferent types of hand motions including the motions related to the activities of

not only surface layer muscles but also deep layer muscles. In the experiments

of the pose estimation based on the forearm deformation, we confirmed that our

proposed method could estimate multiple joint angles of the upper limb pose. In

the experiments of the pose estimation based on the upper-arm deformation, we

also confirmed that the forearm pose estimation is possible by using only upper

arm deformation. These results of the experiments demonstrate that the skin

deformation is useful for the upper limb motion estimation.

Keywords:

Skin deformation, distance sensor array, motion estimation/recognition, machine

learning, human-machine interface
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距離センサアレイを用いて計測した皮膚形状変化

に基づく上肢の動作推定∗

趙　崇貴

内容梗概

上肢動作は我々の日常生活と深い関わりを持つ．我々は上肢を用いることに

より，様々な日常物体の把持・操作を実現している．そのため，これまでに様々

な上肢動作推定手法が開発され，VRやロボットアプリケーションの入力インタ

フェースや，医療福祉，スポーツ，工業分野における動作計測に応用されている．

様々な信号が上肢動作推定の入力信号として用いられるなか，我々は皮膚形

状変化に着目した．皮膚形状変化は上肢の動作に関与する筋肉，腱，骨などの体

組織の運動情報を反映しており，特に既存の生体信号では計測が困難な深層筋の

活動を取得することができる．

本論文では，皮膚形状変化に基づく上肢の動作推定手法を提案する．はじめ

に，前腕と上腕の全周における皮膚形状変化を計測すべく，計測部位ごとに適し

た距離センサアレイを開発する．次に，様々なアプリケーションに対応すべく，

動作認識と姿勢推定の 2種類の手法を開発する．動作認識手法では，前腕におけ

る皮膚形状変化に基づいて深層筋の活動に関与する動作を含む 7種類の手の動作

を分類する．姿勢推定手法では，前腕における皮膚形状変化に基づいて前腕，手，

指の姿勢を推定する．また，上腕における皮膚形状変化に基づいて，前腕の姿勢

を推定する．

手の動作の認識実験では，前腕形状に基づき深層筋の活動に関与する動作を含

む 7種類の動作を分類可能であることを確認した．上肢の姿勢推定実験では，前

腕形状に基づき前腕，手，指の姿勢を連続的に推定可能であることを確認した．ま

た，上腕形状変化に基づき前腕の姿勢を連続的に推定可能であることを確認した．

これらの実験の結果，上肢動作推定における皮膚形状変化の有用性を確認した.

∗奈良先端科学技術大学院大学 情報科学研究科 博士論文, 2020年 3月 13日.
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Chapter1

Introduction

1.1 Background

Upper limb motions have strong relationships with our daily life. We manipulate

and grasp various daily life objects by using our upper limb. Many studies on

estimation of upper limb motion for human-robot and human-computer interac-

tions have been conducted and provide important knowledge for the design of

input interfaces in virtual reality and robotic applications [1–7], as well as for

hand motion measurement in the medical, welfare, sporting, and manufacturing

fields and daily life [8–12].

To accurately estimate the motions, various input information has been used

such as visual, inertial and magnetic information, and bio-signals. The first one

is visual information [13–17]. RGB and/or RGB-D cameras can acquire the

contour and appearance of the hand. By using a machine-learning-based method

such as a Convolutional Neural Network (CNN) [18], the upper limb motion is

accurately estimated [19,20]. Simon et al. [13] estimated 3D hand pose based on

a single RGB image using multiview bootstrapping. The visual-based method is

effective when the hand is not perfectly occluded by the objects or when multiple

cameras can be placed in the measurement environment.

The second one is information from the Inertial Measurement Unit (IMU)

sensors and magnetic sensors [21–26]. They are directly attached to the hands

to measure the hand pose. Kortier et al. [21] attached the IMU and magnetic

sensor on fingers and tracked independent finger poses. The IMU and magnetic

sensor-based methods are effective when the sensors can be attached directly to

the hand.

The third one is information from bio-signals such as a surface electromyo-

gram (sEMG) [5–7, 27–34]. These bio-signals are directly related to the hand

or elbow motions since these can include information about muscle activities.

In addition to the sEMG, a force myogram (FMG) is widely used. By using the

2



FMG measured with a force sensor [35–38] or an air-pressure sensor [39], the force

distribution between the skin and a fixture can be obtained. In addition, various

other signals are also used such as bend information [40], an ultrasound [41, 42]

and a bone sound [43]. In these methods, machine-learning-based methods have

been proposed to estimate hand motions by analyzing the measured bio-signals.

Yoshikawa et al. [27] recognized seven different hand motions based on the sEMG

using Support Vector Machine. Shima et al. [28] recognized combined hand mo-

tions based on the sEMG using Recurrent Log-Linearized Gaussian Mixture Net-

work. The bio-signal based method is effective when the measurement environ-

ment and conditions are not fixed because the signal can be measured using a

wearable sensor that is attached on the part of the body except for the hand.

Thus, the methods based on the bio-signals have gained popularity.

1.2 Skin Deformation

In our research, we focus on the estimation of upper limb motions using skin

deformation. The reason why we chose the skin deformation is that the activities

of surface and deep layer muscles, tendons, and bones can be extracted from

the skin deformation in a non-invasive manner. The skin shape is changed with

the body tissues related to upper limb motions. Especially, we can observe the

activities of the deep layer muscles from the skin deformation which is difficult

to observe from the sEMG.

To measure skin deformation, an optical sensor is often used. Makino et

al. [44] proposed a tangential force sensing system on the forearm using the photo

reflective sensors. Ogata et al. [45] proposed a skin gesture interaction system

using the photo reflective sensors. Oka et al. [46] developed a photo reflective

sensors array to measure muscle activity. Unlike the FMG-based method, by

using the optical sensor, skin deformation can be measured without the fixture

which is closely matched on the body part.

In previous methods for estimation of upper limb motion based on the skin

deformation, Fukui et al. [47] proposed a finger motion recognition method using

a wrist contour measuring device. Sugiura et al. [48] measured the deformation

on the back of the hand and recognized finger motions. These studies mainly

measure the activities of the tendons which related to finger motions. Kato et

3



Fig. 1. Radius and ulna bones displacement during pronation and supination of
the forearm measured with an MRI

al. [49] measured the muscle bulge movement along the longitudinal direction

of the forearm and estimated the wrist joint angle using an array of distance

sensors. Previous studies showed that to measure skin deformation near the

hand for estimating finger motions and to measure skin deformation along the

forearm in the longitudinal direction for estimating hand motions are effective.

On the other hand, skin deformation on the forearm where position close to

the elbow contains rich information from various muscle activities and bone move-

ments. In the forearm, the round pronator and the supinator muscles are deep

layer muscles and related to the forearm pronation and supination. When the

forearm is pronated and supinated, not only muscles but also bones are moved,

as shown in Fig. 1. By the deformation of the muscles and tendons and the dis-

placement of the bones, the shape of the skin is characteristically changed with

various upper limb motions including the motions related to the activities of the

deep layer muscles. Moreover, the forearm deformation provides the motions of

not only the forearm and hand but also the finger. In the forearm, the flexor dig-

itorum superficialis, flexor digitorum profundus, extensor digitorum communis,

and flexor pollicis longus muscles are related to finger motions. The deformation

related to finger motions also could be observed on the forearm position closed

to the elbow.

4
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Fig. 2 shows the cross-section of the forearm. There are many muscles related

to upper limb motions are involved. In order to measure the activities of various

muscles, it is necessary to measure the whole circumference of the measurement

part. If it becomes possible to measure the deformation of the entire region with

high accuracy, various upper limb motions can be estimated.

Moreover, skin deformation on the upper arm also has rich information to

estimate upper limb motions. Fig. 3 shows the cross-section of the upper arm.

The number of the muscles is few comparing with the forearm. The main muscles

in the upper arm are the biceps brachii and triceps brachii. The main function

of both muscles is the elbow flexion and extension. On the other hand, the

biceps brachii muscle also contributes to supinate the forearm when the elbow

is flexed. Therefore, the shape of the upper arm is changed not only the elbow

flexion and extension but also the forearm pronation and supination. The forearm

poses are decided by joint angles of both the elbow flexion and extension but also

the forearm pronation and supination. If it becomes possible to measure the

deformation on the upper arm, the forearm pose can be estimated.

In both of forearm and upper arm, we aim to estimate the motions of digital

parts from the measurement position. To measure the input signal on the digital

position from target body parts and estimate the motions, we can provide a

variety of sensor attachment positions.

1.3 Research Objective

In this dissertation, we propose estimation methods of upper-limb motions based

on the skin deformation on the forearm or upper arm (forearm deformation and

upper arm deformation). We measure the whole circumference of the forearm

deformation and upper arm deformation using a distance sensor array. By using

the measured skin deformation, we estimate various upper limb motions. To deal

with various applications, we develop two categories of motion estimation, as

shown in Fig. 4.

Motion recognition

In the first category, we develop a motion recognition method base on fore-

arm deformation. The motion recognition method classifies motion classes.

6



For example, for the input interface of the prosthesis hand, the motion

recognition method is widely used. To control axes corresponding to recog-

nized motions, the intuitive operation is realized. Skin deformation has a

possibility to recognize motions from the activities of not only the surface

layer muscles but also the deep layer muscles. If the motion recognition in-

cluding the motions from the activities of the deep layer muscles is possible,

we can confirm the usefulness of the skin deformation.

Therefore, we propose a motion recognition method based on forearm defor-

mation. The method recognizes seven different types of motions including

pronation and supination which are targeted in the previous method based

on the sEMG [27].

Pose estimation

In the second category, we develop two pose estimation methods. The stud-

ies of the pose estimation based on bio-signals are fewer than the studies

of motion recognition. The degree of freedom which needs to estimate is

higher than the motion recognition. For the pose estimation, the methods

based on visual or inertial and magnetic sensor information are widely used.

If the pose (e.g., joint angle) estimation is possible, we can confirm the use-

fulness of the skin deformation and expand the applied field of the method

based on bio-signals. Therefore, we propose pose estimation methods based

on forearm/upper-arm deformation.

The method based on the forearm deformation estimates the pose of the

forearm, hand, and finger. In the method, to confirm the performance for

not only interface but also motion measurement in daily life, we estimate

not only simple motion but also combined motion in daily life.

The method based on the upper arm deformation estimates the pose of the

forearm. When estimating the forearm pose, it is common to measure the

bio-signal on the forearm. However, if the forearm pose estimation based

on upper arm deformation is possible, we can remove the limitation of the

sensor attached part for the various application.

Table 1 shows the relationship between the measurement part and the esti-

mated motion/pose in this dissertation. We evaluate the performance of each

7
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Fig. 4. Required method on the estimation of upper-limb motion

Table 1. Relationship between measurement part and estimated motion/pose

Measurement part Types of estimation Target motion/pose

Forearm
Motion recognition Seven types of hand motions
Pose estimation Poses of forearm, hand, and finger

Upper arm Pose estimation Pose of forearm

method in this dissertation. This dissertation clarifies the performance of upper-

limb motion estimation from skin deformation.

1.4 Contribution

The contribution of this dissertation is three-fold.

• First, we develop a measurement system of the skin deformation using a

distance sensor array. Two types of distance sensor arrays are developed to

measure skin deformation on the forearm and upper arm.

• Second, we propose a hand motion recognition method based on forearm

deformation to recognize seven types of hand motions including the motions

related to the activities of the deep layer muscles.

• Third, we propose estimation methods of upper limb pose based on the skin

deformation. We estimate the upper limb pose based on forearm deforma-

tion. We also estimate forearm pose based on upper arm deformation.

8



1.5 Outline

The remainder of this dissertation is organized as follows.

Chapter 2 describes a measurement device of the skin deformation.

Chapter 3 describes a hand motion recognition method based on forearm defor-

mation.

Chapter 4 describes an estimation method of the upper-limb pose based on fore-

arm deformation.

Chapter 5 describes a forearm pose estimation method based on upper arm de-

formation.

Chapter 6 describes an analysis of the skin deformation and a discussion about

potential applications.

Finally, chapter 7 draws the conclusion of this dissertation.

9



Chapter2

Measurement Method of Skin

Deformation

To measure skin deformation, we develop distance sensor arrays. In this chapter,

we describe the measurement method of skin deformation using the distance

sensor array.

2.1 Distance Sensor Unit

To measure the deformation of the skin, we use a distance sensor array, which

consists of multiple distance sensor units. The distance sensor unit is developed

based on the sensor for the input interface of the electrical prosthesis hand [50].

Fig. 5 shows the structure of the distance sensor unit. The distance sensor (SG-

105, Kodenshi) converts a distance to a voltage using GaAs Infrared Emitting

Diodes (IRED) and a high-sensitivity phototransistor. The distance sensor unit

measures the distance between the infrared-based distance sensor and the ABS

resin plate. Fig. 6 shows the relationship between the distance and the output

voltage. The sensor can stably measure the distance from 0.5 to 3.0 mm. The

standard deviation for the output voltage of the sensor is less than 0.014 V in

each 0.1 mm on ten times.

An elastically deformable sponge (PORON, Rogers Inoac) which expands and

contracts in response to the forearm deformation is arranged around the distance

sensor, between the sensor and the resin plate. A reflection sheet (AHW001,

Waki Sangyo) is attached inside the plate to suppress noise caused by external

light. This sheet helps to keep the inside dark.

Note that the sensor unit can measure deformation even over clothing, unlike

sEMG sensing. The output signals of the distance sensor unit can be directly

inputted to an analog-to-digital (A/D) converter without an amplifier or filter.
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2.2 Distance Sensor Array

We develop two types of distance sensor arrays to measure skin deformation

on the forearm and upper arm. In this section, we describe the design of each

array. The measured signals from the arrays and the performance for the motion

estimation are discussed in chapter 3 to chapter 5.

2.2.1 Forearm Deformation

The array to measure forearm deformation has ten channels of the distance sensor

units. As shown in Fig. 7, the distance sensor units are arranged following the

cross-section of the forearm. The cross-section is not a perfect ellipsoid. The

ulna side is wider than the radius side because thick flexors exist on the ulna

side. Thus, we design the shape of the array to follow the forearm curve on the

cross-section. Since the size of user’s forearm varies, the amount of the distance

sensor unit has a screw mechanism that allows adjusting the position of the unit

to fit the user’s forearm.

When the user wears the distance sensor array on the forearm, the array is set

to the maximum circumference of the forearm. Moreover, Ch. 1 of the distance

sensor array is set over the extensor carpi radialis. We adjust the size so that

each channel sinks down at least 0.5 mm deflection in the initial pose.
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Fig. 7. Position setting of the ten distance sensor units (hand side view)
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2.2.2 Upper Arm Deformation

As shown in Fig. 8, eight channels of the distance sensor units are set to measure

upper arm deformation. The number of muscles in the upper arm is fewer than

the forearm. Therefore, we change the number of the distance sensor units from

ten to eight. We design the shape of the sensor array to fit the upper arm to

arrange Ch. 1 and Ch. 5 on the biceps brachii and the triceps brachii muscles,

respectively. An adjusting mechanism has also been designed to fit the size of the

array for various sizes of the upper arm. Since the size of user’s upper arm also

varies, the amount of the distance sensor unit has a screw mechanism that allows

adjusting the position of the unit to fit the user’s upper arm. By changing the

number of the distance sensor units, it is easy to adjust the array with various

size o the upper arm.

When the user wears the distance sensor array on the upper arm, the array

is adjusted to the position near the elbow on the upper arm. We attach the

developed distance sensor array to the user’s upper arm by setting the Ch. 1

sensor unit on the biceps brachii muscle. We adjust the size so that each channel

sinks down at least 0.5 mm deflection in the initial pose.
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Chapter3

Hand Motion Recognition Based

on Forearm Deformation

To recognize the motions from the activities of the deep layer muscles, we propose

a hand motion recognition method by measuring the forearm deformation using

a distance sensor array.

3.1 Method

3.1.1 Overview

Fig. 9 shows an overview of the hand motion recognition method. We focus on

recognizing seven different motions which are targeted in the previous method

based on the sEMG [27]:

• NE: neutral

• WF and WE: wrist flexion and extension

• HC and HO: hand closing and opening

• PR and SU: pronation and supination of the forearm.

In the target motions, the pronation and supination of the forearm are caused by

the activities of the deep layer muscles (round pronator and supinator). In the

proposed method, the user’s forearm deformation is measured with the distance

sensor array. After measuring forearm deformation, the method recognizes hand

motions. The method consists of three parts which are listed here and described

below.

Feature Extraction

After measurement of the forearm deformation using the distance sensor

array, a feature vector for hand motion recognition is extracted.

16



Generation of Training Data

The motion labels are automatically assigned to reduce the burden on the

users. The method shows the instructions and timing of the hand motions

for training and then the method calculates motion segments based on signal

intensities and the instruction.

Learning & Classification

Finally, using extracted feature vectors and the annotated motion labels, a

motion classification model is trained. After training, the method recognizes

hand motions from forearm deformation.

Feature
extraction

Model
learning

Distance sensor array

Training 
phase 

Recognition 
phaseRaw 

data

Feature 
vector

Model

Feature
extraction

Motion
Classification

Class
labeling

Label

Neutral Wrist
flexion

Wrist
extension

Hand
closing

Hand
opening Pronation Supination

Fig. 9. Procedure of the hand motion recognition
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3.1.2 Measurement Setup

Fig. 10 shows the measurement setup. A PC and an A/D converter (USB-6218,

National Instruments) are connected with a USB cable. The distance sensor array,

A/D converter, and a stabilized power source are also connected with cables. We

adjust the size of the array so that each channel sinks down at least 0.5 mm

deflection in the neutral pose. The raw data from the distance sensor array is

measured using the A/D converter at a sampling rate of 2000 Hz.

Distance sensor 
array

PC

A/D 
converter

Stabilized power 
source

Fig. 10. Measurement setup for the hand motion recognition
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3.1.3 Feature Extraction

A feature vector is extracted for each frame. The number of samples in each

frame is N . We take the feature vector from 128 samples (64 ms) as one frame.

The frame is shifted for 32 samples (16 ms).

In each frame, we calculate an APR feature that we proposed for hand motion

recognition. The APR is the average of distance sensor data and is calculated as

follows:

APRl(p) =
1

N

N∑
n=1

PRl(n), (1)

where PRl (n = 1, · · · , N ; l = 1, · · · , L) is the nth sampled signal measured with

the lth channel in the pth frame. In this method, the number of channels L is ten.

The feature vector x(p) consists of the L-dimensional APR as follows:

x(p) = (APR1(p), · · · , APRL(p)). (2)

3.1.4 Generation of Training Data

Generally, collecting and annotating the training data is a key issue in the use of

machine learning. The training data should have paired input data, e.g., feature

vectors, and desired output, e.g., hand motion labels. The desired output must

be assigned carefully considering the input data.

In the training phase, users perform seven hand motions following the dis-

played motions of a virtual robot hand on a display. Fig. 11 shows the motions

of the robot hand which are used to guide the user’s motions. For training, the

users continuously perform the target motions just as in actual use. Then we

extract the motion segments consisting of the same type of motions.

Since the user imitates the robot hand motions, we assume that the boundary

of a segment is located near the center of the transition between the two motions.

First, the APRl is scaled and shifted with min = 0 and max = 1 for each channel.

Second, we calculate the displacement of the APR of each channel (APRdisp
l )

using the following equation:

APRdisp
l (p) = ∥APRl(p)− APRNE∥, (3)
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Fig. 11. Motions of the robot hand shown on a display

where APRNE is an average of APR in the segments where the robot hand is

fixed in the neutral posture. Third, APRdisp
c of a characteristic signal is searched

using the following equation:

c = arg max
1≤l≤L

APRdisp
l . (4)

Finally, the actual motion segment is determined between the maxAPRdisp
c

and maxAPRdisp
c × Th. In this study, we use Th = 0.5. Since we assume there

is a correlation between the hand motions and the forearm deformation, we take

50% from the peak for the operation segments.

Fig. 12 shows an example of the feature vector (10-dimensional APR) and

the calculated motion labels. For each motion, the motion labels are determined

for the motion segments and characteristic signals can then be observed in each

channel.
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3.1.5 Learning & Classification

To select an optimal classifier for hand motion recognition based on forearm

deformation, we test three types of classifiers which are often used: k-Nearest

Neighbor (k-NN) [51], Support Vector Machine (SVM) [52], and Deep Neural

Network (DNN) [53].

k-Nearest Neighbor (k-NN) k-NN classifies classes based on the number of

near samples in the input data. In our study, the best number of k, which is a

parameter of k-NN, is decided from five patterns (k ∈ {1, 3, 5, 7, 9}).

Support Vector Machine (SVM) In SVM, the decision function for classi-

fying the feature vector x is expressed as:

f(x) = sign(
D∑
i=1

λiyiK(xi,x) + b), (5)

where yi is a binary class label corresponding to the ith training sample xi. D

is the number of training samples, λi is a Lagrange multiplier, and b is a bias.

K(xi,x) is a kernel function. In our study, a radial basis function (RBF) kernel

is used as the kernel function K:

K(xi,x) = exp(−γ||xi − x||2), (6)

where γ is a kernel parameter.

To apply the SVM to multiple class classification problems, we use the one-

versus-one method. In this case, SVM classifies classes using O(O−1)/2 decision

functions, where O is the number of classes.

The best combination of hyperparameters is decided by a grid search. There

are 56 pattern combinations for the kernel parameter γ ∈ {2−5, 2−4, · · · , 21} and

the penalty C ∈ {21, 22, · · · , 28}. C is a parameter of the margin.

Deep Neural Network (DNN) We use a fully-connected multiple-layer deep

neural network. As shown in Fig. 13, our network consisted of an input layer, an

output layer, and five hidden layers. The number of the input nodes is ten. The
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Fig. 13. Structure of the deep neural network for the hand motion recognition

number of the output nodes is seven. The numbers of the nodes of each hidden

layer are 50, 100, 150, 100, and 50. A ReLU is used as the activation function of

the hidden layers. The activation function of the output layer is a softmax. The

structure of the network is experimentally determined.

We use an Adam [54] as the optimizer and a categorical cross-entropy as the

loss function. The model is trained with a batch size of 1000 and 100 epochs.
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3.2 Experiments

We describe the conditions and results of the hand motion recognition exper-

iments with the proposed method. We performed three types of hand motion

recognition experiments.

Experiment 1: Various users

For various applications, the method needs to recognize hand motions of

various users. We verified the accuracy of the proposed method with nine

different subjects.

Experiment 2: Different elbow posture

The shape of the forearm changes not only with hand motions but also with

elbow postures. We verified the accuracy of hand motion recognition with

three types of different elbow posture.

Experiment 3: Over clothing

Our distance sensor array can measure forearm deformation over clothing.

We verified the accuracy by comparing direct measurement and measure-

ment over clothing.

The experimental protocol was approved by the research ethics board of the

Nara Institute of Science and Technology. Before participation in the experi-

ments, informed consent was obtained from the subjects.
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3.2.1 Experiment 1: Various users

Conditions We performed this experiment with nine healthy subjects A to I

with the following characteristics:

• Age: eight in their 20’s, one in 40’s

• Gender: eight males, one female

• Dominant arm: eight right-handed, one left-handed.

For this experiment, the subject wearing the distance sensor array was asked

to keep their elbow posture at almost 90-degree flexion and perform seven different

types of hand motions during 60 seconds as one trial. The array was attached

to the subject’s dominant arm. The subject repeats neutral and the other six

hand motions. Hand motions were performed in the order of wrist flexion, wrist

extension, hand closing, hand opening, pronation, and supination. Each motion

was performed to the maximum angle in the movable range, and then returned

to the neutral position in about one second. Each trial conducted in five sets of

six motions. Each subject performed ten trials.

For each subject, the data from the ten trials was tested using five-fold cross-

validation. The feature vectors were then scaled and shifted as mean = 0 and

variance = 1. The number of frames for each trial data was 3747. We used

the frames from eight trials for training (29976 frames) and the frames from the

remaining two trials for testing data (7494 frames).

The accuracy of recognition of each motion was calculated by the following

equation:

Accuracy (%) =
number of correct frames

total number of frames
× 100. (7)
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Results Fig. 14 shows the accuracy of each hand motion with each classifier.

Except for neutral, with each classifier, the accuracy of recognition of hand mo-

tions was 98% or more. Note that the accuracy of recognition of pronation and

supination, which are related to the activities of the deep layer muscles, was also

high. These results show that our method can recognize hand motions caused by

the activities of both the surface layer and deep layer muscles.

For more detailed analysis, Fig. 15 shows the confusion matrix for each of the

three classifiers. With the classifiers, the recognition error between the target

motion and other classes was only 2% or less.

In regard to the adaptability of the method for various users, Table 2 shows the

accuracy of recognition of the seven different hand motions for each subject using

the DNN classifier. There were no large differences in the accuracy of recognition

among the different users, and a high level of accuracy was maintained for all

users.

In this experiment, there were no large differences in the accuracy among the

three classifiers. However, the accuracy of recognizing the neutral was higher

with the DNN classifier than with the other classifiers. This indicates that the

DNN classifier can improve the recognition of the neutral.
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Fig. 15. Confusion matrix of each classifier for all subjects [%]
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Table 2. Accuracy of hand motion recognition with DNN [%]

ID NE WF WE HC HO PR SU
A 96.1 99.7 99.8 99.2 99.7 99.3 99.9
B 96.0 99.2 98.9 99.4 99.4 97.9 99.7
C 93.8 99.2 96.8 98.9 98.6 99.7 96.9
D 97.3 98.0 99.4 99.1 99.4 99.7 99.3
E 92.6 98.6 98.9 99.7 99.4 99.6 98.0
F 94.0 99.0 99.0 99.5 97.8 99.2 97.7
G 94.5 96.4 99.6 98.9 97.8 99.6 97.9
H 95.8 99.7 99.6 99.7 99.6 99.7 99.2
I 95.2 99.2 99.6 99.5 99.3 99.3 98.0

Mean 95.0 98.9 99.2 99.3 99.0 99.3 98.5
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3.2.2 Experiment 2: Different elbow posture

Conditions In this experiment, three subjects (the 20’s, male, right-handed)

performed five trials of hand motions with three different types of the elbow

postures: flexion, middle, and extension, as shown in Fig. 16. To test the accuracy

for the different training conditions, we tested the two following scenarios:

Scenario 1

The classifiers were trained using one type of elbow posture and data from

four trials. Data from one trial of the hand motions for all the three types

of elbow postures were then tested with the classifiers.

Scenario 2

The classifiers were trained using four trials with all three types of elbow

postures (12 trials of data from four trials by three types of elbow postures).

Data from one trial of the hand motions with all three types of elbow

postures were then tested with the classifiers.

In both scenarios, the performance of classifiers was tested using five-fold

cross-validation.
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(a) Flexion (b) Middle

(c) Extension

Fig. 16. Tested elbow postures

31



Results Fig. 17 shows the total accuracy of each classifier for each elbow pos-

ture with scenario 1. For all the classifiers, when the elbow posture was the same

between the training and testing data, the accuracy was 94% or more. However,

when the elbow posture was different between the training and testing data, the

accuracy decreased. Specifically, the accuracy was less between extension and

flexion.

Fig. 18 shows the total accuracy of each classifier for each elbow posture with

scenario 2. In this scenario, with all of the elbow postures, accuracy was 94% or

higher. In particular, the accuracy of the DNN classifier was higher.

In summary, all the classifiers achieved 94% or higher accuracy in recognizing

hand motions with various elbow postures using training data with various elbow

postures. If the elbow posture of the hand motions is known, we can maintain

this high accuracy even if the training data is limited by the target posture.
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Fig. 17. Accuracy of each elbow posture in scenario 1 [%]
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Fig. 18. Accuracy of each elbow posture in scenario 2
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3.2.3 Experiment 3: Over clothing

Conditions In this experiment, three subjects (the 20’s, male, right-handed)

performed five trials of hand motions with two types of measurements, as shown

in Fig. 19, both direct and over clothing. All three subjects wore a shirt whose

thickness was about 0.5 mm. The data were tested using five-fold cross-validation.

Results Fig. 20 shows the accuracy of hand motion recognition of all three

classifiers with the data from the two conditions. With both conditions, the total

accuracy of the hand motions was 95% or more for all classifiers. There was no

large difference in the accuracy between the two conditions. Again, the accuracy

of the DNN classifier was higher than the other classifiers under both conditions.

These results show that the method can recognize hand motions through both

direct measurement and measurement over clothing.

(a) Direct (b) Over clothing

Fig. 19. Measurement conditions
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3.3 Discussion

The proposed method was able to accurately recognize seven different hand mo-

tions with various users. In particular, with all subjects, the accuracy of recog-

nition of pronation and supination was also higher. In the forearm, the round

pronator and supinator muscles are deep layer muscles. Pronation and supination

of the forearm are caused by the activities of these muscles, and are important

motions in the manipulation of objects in daily life.

For comparison, in a previous study using the sEMG [27], the accuracy of

recognition of pronation and supination was under 90%, because sEMG is difficult

to detect the activities of the deep layer muscles. This is an advantage of the

proposed method when compared to other studies of the hand motion recognition

based on the sEMG.

Our proposed method achieved better or similar performance compared to

previous studies based on the FMG which recognized similar motions [35, 36].

Unlike FMG-based methods, our method does not need to provide the fixture of

the sensor whose shape is closely matched to the forearm, because our distance

sensor array is fitted to the user’s forearm by the sponge. Moreover, the developed

sensor array could measure the forearm deformation at the position close to the

elbow where various muscles are located. Comparing to other studies that also

used distance sensor arrays [47–49] which measured deformation of the wrist, the

back of the hand, or the longitudinal direction on the forearm, our method could

obtain more information and recognize more hand motions from the activities

of the deep layer muscles. From the result, this method indicated a useful and

alternative measurement and recognition method for hand motion recognition

compared with other previous methods.

In addition, both hand motions and elbow postures change the shape of the

forearm. However, we confirmed that using training data of various elbow pos-

tures, the proposed method can recognize hand motions with different elbow

postures. From this result, it seems that the proposed method could be used

without restricting motions of other body parts of the user.

Also, we experimentally showed that this method could accurately recognize

hand motions both with direct measurement and measurement over clothing.

This is a useful ability for the input interfaces for prosthetic hands or robotic ex-
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oskeletons. For example, some users like to wear clothing when using a prosthetic

hand or robotic exoskeleton.

Finally, the results showed no large differences between the three types of clas-

sifiers. The DNN classifier was somewhat more accurate in recognizing the neutral

and recognizing hand motions with various measurement conditions. Since high

accuracy was obtained independently by each classifier, we concluded that mea-

surement of forearm deformation using a distance sensor array produces data

containing information for classifying hand motions.
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Chapter4

Estimation of Upper Limb Pose

Based on Forearm Deformation

For the motion/activity detection, it is enough to recognize types of motions. On

the other hand, to measure the motions in daily life or continuous control for

the robots/machines, we need not to recognize but to estimate pose (e.g., joint

angles). However, the studies based on the bio-signal to estimate the poses of

the upper limb are few with comparing the studies based on vision or inertial

and magnetic information. If it is possible to estimate the continuous poses of

the upper limb, the applications of the method based on the bio-signal will be

expanding. Therefore, we propose two types of pose estimation methods based

on forearm deformation and test the performance as follows:

Hand Joint Angle

To confirm the motion estimation at the level of the joint angle is possible,

we try to estimate three types of joint angles related to six types of the mo-

tions which are target motions in the hand motion-type recognition: wrist

flexion and extension, hand closing and opening, and forearm pronation and

supination. By using Support Vector Regression (SVR) [55], we estimate

those three types of joint angles based on forearm deformation.

Upper Limb Pose

To deal with various upper limb motions in daily life, we propose an esti-

mation method of upper limb pose based on forearm deformation. In this

method, we estimate the forearm, hand, and fingers poses as upper limb

pose. By using a DNN-based estimation model, upper limb poses are esti-

mated. We evaluate the performance of the method with single-axis motion

and daily life motions.
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4.1 Hand Joint Angle

To confirm the possibility of the motion estimation at the joint angle level, we

propose a hand joint angle estimation method based on forearm deformation.

4.1.1 Method Overview

As shown in Fig. 21, first, we measure forearm deformation using our developed

distance sensor array and hand joint angles using motion capture. Second, we

train estimation models using SVR that estimates three types of joint angles.

The angle θw is the joint angle related to wrist flexion and extension, the angle

θh is the joint angle related to hand closing and opening, and the angle θf is the

joint angle related to the pronation and supination of the forearm.	������
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Fig. 21. Overview of the estimation of hand joint angle
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4.1.2 Signal Measurement & Feature Extraction

Fig. 22 shows the measurement setup used with the proposed method. We adjust

the size of the array so that each channel sinks down at least 0.5 mm deflection

in the neutral pose. In this study, the raw data of the distance sensor array

is sampled at 2000 Hz using an analog-to-digital converter (USB-6218, National

Instruments). The distance sensor units, the A/D converter, and a stabilized

power source are connected with cables. The A/D converter and the Leap Motion

are connected to a PC using USB cables.

The hand joint angles are measured using a Leap Motion [56], which is a device

that can detect the hand position with an accuracy of 0.01 mm at about 60 Hz.

The joint angles are acquired from the Leap Motion API using the functions of

Hand.direction().yaw(), Hand.grabAngle(), and Hand.palmNormal().roll(). The

Hand.direction().yaw() return the angles related to wrist flexion and extension

(θw). The Hand.grabAngle() return the angles related to hand closing and opening

(θh). The Hand.palmNormal().roll() return the angles related to pronation and

supination of the forearm (θf ).

We use 10-dimensional APR as feature vector and θw, θh, and θf as the target

values. The signal of the distance sensor array is arranged with the frame rate of

62.5 (APR), and the target values are arranged to match the frame rate of the

APR.
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Fig. 22. The measurement setup for the estimation of the hand joint angle
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4.1.3 Joint Angle Regression by SVR

In the proposed method, we use an SVR for joint angle regression. The input of

the model is a 10-dimensional APR. The output of the model is a joint angle

acquired from the Leap Motion. A radial basis function (RBF) kernel is used in

our method. As shown in Fig. 23, three types of the joint angles are estimated

by each model.

Regressor (!")

Regressor (!# )

Regressor (!$)

Feature vector Hand Motion

Fig. 23. Flow of the estimation
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4.1.4 Experiments

We describe the experimental methods and results of the hand joint angle esti-

mation experiments that we performed to test our proposed method. The exper-

imental protocol was approved by the research ethics board of the Nara Institute

of Science and Technology. Before participation in the experiments, informed

consent was obtained from the subjects.

Conditions We performed experiments with five healthy subjects, A to E (the

20’s, male, right-handed).

The protocol of the experiments was the same as experiment 1 of chapter

3. In this experiment, each subject performed five trials. When performing the

hand motion, the subject placed their hand so that the wrist joint was positioned

above the Leap Motion. Using the Leap Motion, we collected the data.

For each subject, the five-trial data was then tested using five-fold cross-

validation. We used four-fifth of the data for training, one-fifth of the data for

testing. The number of frames for each trial was 3747. The length of the training

data was 3747 × 4 = 14988 frames and the length of the testing data was 3747.

In this experiment, we used γ = 2 and C = 256 for the hyperparameters of the

SVR. These values were experimentally selected.

The accuracy of the proposed method was evaluated in terms of the root mean

squared error (RMSE). The RMSE of each joint angle was calculated as follows:

RMSE =

√√√√ 1

M

M∑
m=1

(θLeap(m)− θEstimated(m))2, (8)

where M is the total number of frames for the testing data, θLeap is the joint

angles acquired from the Leap Motion API, and θEstimated is the estimated joint

angles using the proposed method in the mth frame.
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Results As an example of how closely the estimated joint angles and the mea-

surements of the Leap Motion match, Fig. 24 shows the results of the hand joint

angle estimation in one trial. Table 3 shows the RMSE of the estimated joint an-

gles for each subject and the total for all subjects. This shows that the proposed

method estimated the hand joint angle with the RMSE of 6.6 degrees for all joint

angles. Specifically, the totals of RMSE for all subjects were 4.6 degrees for θw,

6.6 degrees for θh, and 5.3 degrees for θf .

The RMSE of θf related to the pronation and supination of the forearm was

5.3 degrees. This shows that the proposed method can estimate the hand joint

angle from the activities of the deep layer muscles. Moreover, the maximum

RMSEs for all subjects were 5.7 degrees for θw, 7.8 degrees for θh, and 5.9 degrees

for θf . This shows that our method has the possibility to be applied to various

users.

As shown in Fig. 24, no sudden erroneous estimation occurred between each

hand joint angle. Moreover, there was no large phase lag between the estimated

hand joint angles and the actual hand joint angles. In other words, the estimated

angles and the measured angles were matched closely.

Table 3. RMSE for each subject on the hand joint angle estimation

Subjects θw [deg] θh [deg] θf [deg]
A 4.0 4.9 5.3
B 5.7 6.7 5.1
C 4.6 7.6 5.2
D 4.6 7.8 4.8
E 4.0 5.7 5.9

Total 4.6 6.6 5.3
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Fig. 24. An example of the results of the hand joint angle estimation
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4.2 Upper Limb Pose

From the results of the experiments for the estimation of the hand joint angle,

we confirmed that the estimation of the joint angle is possible by using forearm

deformation. Moreover, from the experiments of the motion recognition, the

shape of the forearm is changed with an elbow pose. In other words, the forearm

deformation provides the motion information about not only the hand but also

the elbow joint.

In this section, we expand the method to estimate the upper limb pose and

evaluate the performance of the method on not only single-axis motions that

move each axis independently but also daily life motions.

4.2.1 Method Overview

As shown in Fig. 25, first, we measure forearm deformation using our developed

distance sensor array and upper limb pose using motion capture. Second, we

train a DNN that estimates the upper limb pose. In this method, we estimate

the poses of the forearm, hand, and five fingers.	������
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Fig. 25. Overview of the upper limb pose estimation
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Motion capture
(Perception neuron)

Distance sensor 
array

Fig. 26. Measurement setup for the upper limb pose estimation

4.2.2 Signal Measurement & Feature Extraction

As shown in Fig. 26, in this method, we measure forearm deformation using

our developed distance sensor array and upper limb pose using a motion capture

(Perception Neuron 2.0) [57]. We adjust the size of the array so that each channel

sinks down at least 0.5 mm deflection in the elbow extension pose. The motion

capture can measure poses of the forearm, hand, five fingers as a BVH format.

As shown in Fig. 26, the sensors of the motion capture are set on the upper arm,

forearm, hand, and five fingers. The distance sensor array and an A/D converter

(USB-6218, National Instruments) are connected with cables. The A/D converter

and the motion capture device are connected to the PC with USB cables. The

signal of the distance sensor array is measured at 2000 Hz and the signal of the

motion capture is measured at about 120 Hz.

The outputted values of the motion capture is 23 axes as follows:

Forearm

3 axes: Y-forearm, X-forearm, Z-forearm

Hand

3 axes: Y-hand, X-hand, Z-hand
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Distal, middle, and proximal of the thumb

5 axes: Y-thumb1, Z-thumb1, Y-thumb2, Z-thumb2, Y-thumb3

Distal, middle, and proximal of four fingers

3 axes: Z-index1, Z-index2, Z-index3

3 axes: Z-middle1, Z-middle2, Z-middle3

3 axes: Z-ring1, Z-ring2, Z-ring3

3 axes: Z-pinky1, Z-pinky2, Z-pinky3.

The outputted values of the motion capture are calculated by the Euler angle of

YXZ-rotation.

We use a 10-dimensional APR as a feature vector and the outputted 23 axes

from the motion capture as the target values. For the upper limb pose estimation,

the signal of the distance sensor array is arranged with the frame rate of 62.5

(APR), and the signal of the motion capture is arranged to match to the frame

rate of the APR. Fig. 27 and Fig. 28 shows an example of the APR and acquired

poses. The measured motions are as follows: elbow extension: EE, forearm

pronation and supination: PR and SU, wrist flexion and extension: WF and

WE, radial and ulnar flexion: RAF and UF, thumb flexion: TF, index flexion:

IF, middle flexion: MF, ring flexion: RIF, and pinky flexion: PF.
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Fig. 27. APR of each channel with upper limb motions
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Fig. 28. An example of the acquired angles
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4.2.3 Upper Limb Pose Estimation by DNN

In this method, we use a DNN to estimate the upper limb pose, as shown in

Fig. 29. The DNN-based model consists of input and output layers and six

hidden layers.

To consider a time series of the forearm deformation, we use data of about

one second (60 frames) from the target frame to past as input. Thus, the number

of the node of the input layer (Nin) is 600 (60 frames × 10-dimensional APR).

The number of the node of the output layer (Nout) is 23. The number of hidden

layers is six. The numbers of nodes of the hidden layers (Nhidden) are 500, 400,

300, 200, 100, and 50. A ReLU is used as the activation function of each layer.

A mean squared error is used as the loss function. The structure of the network

is experimentally determined.

An Adam is used as an optimizer. The model is trained with a batch size of 32

and 50 epochs. The score of the training is checked with the loss of the training

data. When the loss of the training data is not decreased during two epochs, the

model training is stopped. The weights of the best score for the training data are

used.

N"#: 600 N$%&: 23

N'"((()#: 500, 400, 300, 200, 100, and 50
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・
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・
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Fig. 29. Structure of the network for the upper limb pose estimation
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4.2.4 Experiments

To evaluate the performance of the method, we performed estimation experiments

of upper limb poses. We verified the performance with two types of experiments

as follows:

Experiment 1: Single-axis motion

First, to confirm the possibility of the upper limb pose estimation based on

only forearm deformation, we tested to estimate single-axis motions. In the

experiment 1, subjects moved their upper limb with the following motions:

elbow extension and flexion, forearm pronation and supination, radial and

ulnar flexion, wrist flexion and extension, and flexion and extension of five

fingers.

Experiment 2: Daily life motion

Second, to confirm the performance of the estimation in the daily life mo-

tion, we tested to estimate seven types of upper limb motions: opening a

cap of a bottle, putting the cap, grasping the bottle, pouring to the cup,

putting the bottle, grasping a cup, and bring the cup to the mouth. Those

target motions include the combined motions of the forearm, hand, and

fingers.

The experimental protocol was approved by the research ethics board of the

Nara Institute of Science and Technology. Before participation in the experi-

ments, informed consent was obtained from the subjects.
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Experiment 1: Conditions We performed this experiment with six subjects

(five 20’s and one 40’s, five males and one female, right-handed). The subject

repeat neutral (elbow flexion pose) and the other 12 upper limb motions with

guide motions of a robot arm, as shown in Fig. 30. Upper limb motions were

performed in the order of elbow extension, forearm pronation and supination,

wrist flexion and extension, radial and ulnar flexion, and flexion of five fingers.

Each motion was performed to the maximum angle in the movable range, and

then returned to the neutral position in about one second. Each trial was five

sets of 12 motions during 120 seconds. Each subject performed four trials.

For each subject, the four trial data were tested by the four-fold cross-validation.

The feature vectors were then scaled and shifted as min = 0 and max = 1. The

number of frames for one trial was 7437. We used three trial data for training

(22311) and the remaining one trial data for testing (7437). The performance

of the method was evaluated with the RMSE and a percentage of RMSE in a

moving range of the target motions.
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Neutral & Elbow flexion

Elbow extension Forearm pronation Forearm supination Wrist flexion

Wrist extension Radial flexion Ulnar flexion Thumb flexion

Index flexion Middle flexion Ring flexion Pinky flexion

Fig. 30. Guide motions of a robot arm
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Experiment 1: Results Fig. 31 shows an example of the estimation results.

The red line shows estimated angles and the broken blue line shows target angles

acquired from the motion capture. In all of the axes, the estimated and target

angles were matched closely.

Fig. 32 shows the RMSE of each joint angles for all subjects. The RMSE of

all joint angles was 6 degrees or less. Fig. 33 shows the harmonic mean of the

percentage of RMSE in the moving range for all subjects. In the experiment 1,

the percentage of RMSE in the moving range was small for the forearm and hand.

The percentage of RMSE in the moving range was high for the fingers compared

with the forearm and hand. Though, the percentage of RMSE in the moving

range was 8% or less for all axes.

Fig. 34 shows the estimation results with plotting by a BVH viewer. The left

one is the estimated poses and the right one is the target poses. All of the poses

were accurately estimated compared with the target poses.
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Fig. 31. An example of the estimated and target poses in the experiment 1
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Fig. 32. RMSE of each axis in the experiment 1
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Fig. 33. RMSE in the moving range of each axis in the experiment 1
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Neutral & Elbow flexion

Left: Estimated pose Right: Target pose

Elbow extension Forearm pronation Forearm supination Wrist flexion

Wrist extension Radial flexion Ulnar flexion Thumb flexion

Index flexion Middle flexion Ring flexion Pinky flexion

Fig. 34. An example of the estimated and target poses with BVH viewer in the
experiment 1
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Experiment 2: Conditions We performed this experiment with five subjects

(four 20’s and one 40’s, four males and one female, right-handed). As shown in

Fig. 35, subjects were asked to perform the following procedure of seven types

of upper limb motions: opening a cap of a bottle, putting the cap, grasping the

bottle, pouring to the cup, putting the bottle, grasping the cup, and bring the

cup to the mouth. In this experiment, we did not decide the speed of the motions.

So, the subjects performed the motions with their speed. Each subject performed

the procedure ten trials.

The ten trial motions were tested with ten-fold cross-validation. We used

nine trial data for training and the remaining one trial data for testing. The

performance of the method in experiment 2 was also evaluated with the RMSE

and a percentage of RMSE in a moving range of the target motions the same as

the experiment 1.

Start

Opening a cap Putting the cap Grasping a bottle Pouring

Putting the bottle Grasping a cup Bring the cup 
to the mouth 

Finish

Fig. 35. Target motions in the experiment 2
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Experiment 2: Results Fig. 36 shows an example of the estimation results.

The estimated and target angles were matched.

Fig. 37 shows the RMSE of each joint angles for all subjects. The RMSE of

all joint angles was 11 degrees or less. Fig. 38 shows the harmonic mean of the

percentage of RMSE in the moving range for all subjects. In the experiment 2,

the percentage of RMSE in the moving range was high for the hand, thumb, and

index finger. Though, the percentage of RMSE in the moving range was 11% or

less for all axes.

Fig. 39 shows the estimation results with plotting by the BVH viewer. The

left one is the estimated poses and the right one is the target poses. All of the

poses were accurately estimated compared with the target poses.
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Fig. 36. An example of the estimated and target poses in the experiment 2
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Fig. 37. RMSE of each axis in the experiment 2
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Fig. 38. RMSE in the moving range of each axis in the experiment 2
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Start

Left: Estimated pose Right: Target pose

Opening a cap Putting the cap Grasping a bottle Pouring

Putting the bottle Grasping a cup Bring the cup 
to the mouth Finish

Fig. 39. An example of the estimated and target poses with BVH viewer in the
experiment 2
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4.3 Discussion

From the results of the experiments, the upper limb pose estimation using the

forearm deformation achieves better performance in not only single-axis motions

but also daily life motions.

In experiments of the hand joint angle and upper limb pose estimation, the

forearm deformation still shows a good performance to estimate motions related

to the activities of the deep layer muscles. Moreover, to focus on a characteristic

of the forearm deformation which the shape of the forearm is changed with elbow

joint angles, the method realizes to estimate motions with elbow joint angles.

In the related research, Ngeo et al. [58] estimated the poses of the five fingers

based on the sEMG. They set the eight-channel of the sEMG-sensors from the

position close to the elbow to the position close to the wrist on the forearm. By

using the measured signal, they realized the finger pose estimation.

On the other hand, our proposed method was able to estimate not only the

fingers but also the forearm and hand motions. In particular, our method was

able to estimate the pose of the upper limb using only the wearable device which is

attached to the forearm position close to the elbow. Quivira et al. [59] estimated

finger position and joint angles based on the sEMG on the position closed to

the elbow. In their method, the RMSE of the finger joint angles is around 10

degrees. Our method achieved similar results in the method. Moreover, from

our best knowledge, the study of the pose estimation at the multiple joint angles

including the forearm, hand, and fingers based on bio-signal is nothing. Thus,

our method showed a possibility to expand the application of the methods based

on the bio-signals.

In addition, since the high performance with the method, we confirmed that

measurement of forearm deformation using the distance sensor array also pro-

duces data containing information for estimation of upper limb pose.
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Chapter5

Forearm Pose Estimation Based

on Upper Arm Deformation

The upper arm deformation also has rich information related to upper limb mo-

tions. To estimate the forearm poses with measurement of the upper arm defor-

mation, we can provide the variation of the sensor attached position for various

applications.

5.1 Method

We propose a method to estimate the pose of the forearm (flexion/extension,

pronation/supination) based on the upper arm deformation. As shown in Fig. 40,

first, we measure the upper arm deformation using the developed distance sensor

array. Second, we train a DNN that estimates the elbow joint angle (θe) and the

forearm pronation and supination angle (θf ).

Distance sensor array

Forearm pose

Upper arm 
deformation

Joint angles

DNN-based
estimation model

𝜃𝑓

Pronation Supination
Wrist
flexion

Wrist
extension

Hand
closing

Hand
opening Pronation Supination

!" !# !$

Flexion Extension

𝜃𝑒

Fig. 40. Overview of the forearm pose estimation
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5.1.1 Signal Measurement & Feature Extraction

We measure upper arm deformation using our developed distance sensor array.

We adjust the size of the array so that each channel sinks down at least 0.5

mm deflection in the elbow extension pose and the neutral pose of the forearm.

We also measure the forearm poses using a motion capture (OptiTrack) only for

training, as shown in Fig. 41. Pairs of markers of the motion capture are attached

on the shoulder, the elbow, and the wrist to estimate the joint positions.

The signals of the distance sensor array are read via an A/D converter (USB-

6218, National Instruments). Due to the quality of the signals, a stable power

source supplies the energy to the array. The A/D converter and a PC are con-

nected with a USB cable. A motion capture system and the PC are connected

with a LAN cable. The upper arm deformation is measured at 1200 Hz. Data on

the motion capture is measured at 120 Hz.

We use a 8-dimensional APR as the feature vector and θe and θf as the target

values of the estimation. In this method, the APR is obtained by averaging

ten samples, which are re-sampled to synchronize the frame rate of the motion

capture. The target values are calculated by the positions of the makers of the

motion capture. Fig. 42 shows an example of the feature vectors and the forearm

poses.

Marker 
(shoulder)

Marker 
(elbow)

Marker
(wrist)

Distance sensor 
array

Fig. 41. Measurement setup for the forearm pose estimation
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5.1.2 Forearm Pose Estimation by DNN

Fig. 43 shows the architecture of the proposed model. A fully-connected multiple

layer neural network model is used. The proposed model consists of input and

output layers and four hidden layers. To consider a time series of the upper arm

deformation, we use 25 frames data (12 frames before and after the target frames)

as the input data. The number of the input nodes (Nin) is 200 (25 frames × 8-

dimensional APR). The number of the output nodes (Nout) is two (joint angles θe

and θf ). The numbers of the nodes of each hidden layer (Nhidden) are 100, 50, 25,

and 12. A ReLU is used for the activation function for each layer. The structure

of the network is experimentally determined.

An Adam is used as the optimizer, and the mean squared error is used as the

loss function. The model is trained with a batch size of 128 and 150 epochs. The

score of the training is checked with the loss of the training data. The weights of

the best score for the training data are used.

𝑁"#: 200 𝑁$%&: 2 

𝑁'"(()#: 100, 50, 25, and 12

・
・
・

・
・
・

・
・
・

・
・

・

Fig. 43. Architecture of the model for the forearm pose estimation
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5.2 Experiments

To confirm the performance of the proposed method, we performed a forearm pose

estimation experiment. The experimental protocol was approved by the research

ethics board of the Nara Institute of Science and Technology. Before participation

in the experiments, informed consent was obtained from the subjects.

5.2.1 Conditions

We performed the experiment with five healthy subjects, A to E (the 20’s, male,

right-handed). The subjects wore the distance sensor array and motion capture

marker and performed different motion: the elbow flexion and extension, and the

pronation and supination of the forearm simultaneously. In this experiment, we

asked the subjects to move their forearm with fixing the upper arm pose.

For each subject, 12 types of motions were measured in each of the following

two conditions:

Condition 1

Subjects move between one of the three poses (pronation, neutral, and

supination) in the flexing elbow and another pose in the extending elbow,

as shown in Fig. 44(a). In one trial, the elbow flexion and extension were

performed three times. Every subject performed nine types of movements.

Condition 2

Subjects move their forearm from pronation to supination with a fixed elbow

joint angle (flexion, middle, and extension), as shown in Fig. 44(b). In one

trial, the forearm pronation and supination were performed three times.

Three types of movements were performed by the subjects.

One trial was taken in 12 seconds. Subjects performed each motion five times.

The total number of trials of all the patterns was 12× 5 = 60.

For the evaluation, we tested 60 trial data with five-fold cross-validation. The

feature vectors were then scaled and shifted as mean = 0 and variance = 1. Every

four trial data of each pattern were used for training and the remaining one trial

data of each pattern were used for testing. The number of one trial data was 1416.

Thus, the number of the training data was 67968 and the number of the testing
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Fig. 44. Measured motion conditions

data was 16992. The pose estimation model was trained with each subject. The

performance of the proposed method was evaluated with the RMSE.
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5.2.2 Results

Fig. 45 shows the estimated results when the subject moved the forearm between

supination/pronation and pronation/supination during the elbow flexion and ex-

tension in the condition 1. The red line shows the estimated joint angles and the

broken blue line shows the target joint angles. In the condition 1, the estimated

joint angles were matched to the target joint angles in both joints.

Fig. 46 shows the estimated results when the subject pronated and supinated

the forearm when keeping the elbow joint angle in the condition 2. In the con-

dition 2, the estimated joint angles were also matched to the target joint angles

well in both joints.

In both conditions, the method was able to estimate the two joint angles of

the forearm pose. There was no large difference between the estimated pose and

the target pose and no large phase difference. Table 4 shows the RMSE of each

subject and the total for all subjects. The totals of RMSE for all subjects were

2.9 degrees for the θe, and 7.6 degrees for the θf . The maximum RMSEs of the

joint angles were 3.9 degrees for the θe, and 10.1 degrees for the θf .

Table 4. RMSE for each subject on the forearm pose estimation

θe [deg] θf [deg]
A 2.4 6.4
B 2.5 7.8
C 2.5 6.8
D 3.2 6.3
E 3.9 10.1

Total 2.9 7.6
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(b) Pronation to supination

Fig. 45. Estimation results on the condition 1
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(b) Extension

Fig. 46. Estimation results on the condition 2
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5.3 Discussion

The RMSE of the elbow joint angle (θe) was lower than that of the forearm

pronation and supination angle (θf ). This is because the muscles in the upper

arm such as the biceps brachii and the triceps brachii muscles mainly contribute

to the elbow flexion and extension. These muscles contribute to the forearm

pronation and supination on a certain level, though several muscles in the forearm

mainly work for these motions. It may be the reason that the RMSE of the θf is

also not large.

In the condition 2, when comparing the estimation results of the θf between

the flexion and extension of the elbow pose, the results of the flexion were better

than those of the extension, as shown in Fig. 46. It is because the work of the

biceps brachii muscle for supination becomes more dominant when the elbow

joint was flexed. Since there were no large differences between the estimated and

the target θf when the elbow joint was extended, our proposed method was able

to estimate the θf . These results showed that our proposed method was able to

estimate the forearm pose only from the upper arm deformation.

The method based on the sEMG [60] estimated the same joint angles of θe and

θf which are targeted in our method. The RMSE of the elbow joint angle (θe) is

around 10 degrees, and the forearm pronation and supination angle (θf ) is around

20 degrees. They tested the performance with different motions. Although the

accuracy is affected by the type of motion, it was confirmed that the proposed

method has a similar or better performance with the existing method based on

the sEMG.

Since high performance with the method, we confirmed that measurement of

upper arm deformation using the distance sensor array produces data containing

information for estimation of forearm pose. Upper arm deformation showed a

possibility to provide the variation of the sensor attached position for the various

application.
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Chapter6

Analysis and Discussion

In this chapter, we describe an analysis and a discussion about the skin defor-

mation and applications of our proposed methods. We compare the difference

between the skin deformation and the sEMG. In addition, we discuss potential

applications and demands that need to be satisfied.

6.1 Comparison Between the Skin Deformation and the

sEMG

Table 5 and 6 show the functions of the muscles of the forearm and the upper arm

[61]. The muscles mentioned above related one or two motions. For example, in

the forearm case, the extensor carpi radialis contributes both the wrist extension

and the radial flexion. Fig. 47 shows the forearm deformation measured with the

developed distance sensor array in both the wrist extension and the radial flexion.

The gray and blue lines indicate the shape of the forearm in the neutral and the

shape after the motion, respectively. The shape of the neutral was decided to be

similar to the actual shape. When attaching the array on the forearm, Ch. 1 was

set on the top of extensor carpi radialis. Thus, in both poses, Ch. 1 captured the

activities of the extensor carpi radialis through the deformation.

Moreover, when the motion is even a single joint movement, multiple muscles

contribute to the motion. In the multiple joints movement case, Sato et al. [62]

reported that the forearm pronation force is different between the pose of wrist

flexion and wrist extension. The combination of the many muscles causes varieties

of motions.

Table 7 shows the differences between the sEGM and skin deformation. The

sEMG and the skin deformation have advantages and limitations independently.

The differences are three: measurement conditions, target tissues, and acquired

signals.

The first one is the measurement conditions. The sEMG needs to attach a
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Table 5. Functions of the forearm muscles

Muscle Functions
Flexor carpi radialis Wrist flexion and radial flexion
Flexor pollicis longus Thumb flexion
Flexor carpi ulnaris Wrist flexion and ulnar flexion

Flexor digitorum superficialis 2-5th finger PIP flexion and wrist flexion
Flexor digitorum profundus 2-5th finger DIP flexion and wrist flexion

Extensor carpi radialis Wrist extension and radial flexion
Extensor digitorum communis 2-5th finger extension and wrist extension

Extensor carpi ulnaris Wrist extension and ulnar flexion
Brachioradialis Elbow flexion and moving the forearm to neutral
Palmaris longus Wrist flexion
Round pronator Forearm pronation

Supinator Forearm supination

Table 6. Functions of the upper arm muscles

Muscle Functions
Biceps brachii Elbow flexion and forearm supination
Triceps brachii Elbow extension

Brachialis Elbow flexion

sensor on the skin directly. An advantage of the skin deformation is that it can

measure the signal both direct on the skin or over the clothing.

The second one is the target tissues. The target tissues of the sEMG are the

muscles, and those of the skin deformation are the muscles, bones, and tendons.

The third one is the acquired signals. By using the sEMG, we can acquire

the activities of the muscles which are located just below a sensor. By using the

skin deformation, we can get the activities of the muscles, bones, and tendons as

deformation of the whole circumference. When we need to measure the activity

of the pinpointed muscle and when the target muscle is one of the surface layer

muscles, the measurement of the sEMG is a useful way. This is an advantage of

the sEMG. The measurement of the sEMG of surface layer muscles is used for

a kind of ground truth or an evaluation index of the motion analysis [63]. On
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Wrist extension Radial flexion

Fig. 47. Forearm deformation measured with the developed distance sensor array
in the poses of wrist extension and radial flexion

the other hand, the detection of the activity of the pinpointed muscle using the

skin deformation is more difficult than the sEMG, since the skin deformation is a

complex signal. The skin deformation is caused by the activities of the muscles,

bones, and tendons. When we need to comprehend these activities as the whole

deformation, the measurement of the skin deformation is a useful way.

In short, the skin deformation has the advantage in measurement conditions

and acquired signals compare with the sEMG. In the forearm case, the round

pronator and supinator muscles are mainly related to the forearm pronation and

supination. On the other hand, other muscles are also related to the motions.

The sEMG-based methods should be use the activities of the other muscles to

estimate the motions.

The skin deformation can also get the displacement of the bones. Fig. 48

shows that forearm deformation measured with the distance sensor array and

cross-section measured with an MRI. In the pronation and supination motions,

the radius bone is displaced by the muscle activity. By the displacement of the

bone, the shape of the cross-section is changed. This difference may be the reason
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MRI Distance sensor array

Ulna Radius

Neutral

Pronation

Supination

Pronation

Supination

Fig. 48. Forearm deformation measured with the distance sensor array and cross-
section measured with an MRI in the pose of pronation and supination

why our proposed method could robustly recognize the motions from the activities

of deep layer muscles.
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6.2 Potential Applications

Hand motion recognition

The hand motion recognition method could be applied to the input inter-

face of the command control. For example, the current prosthesis hands

are controlled by the command corresponding to the hand motion which

is predicted/recognized by some machine learning-based methods or rule-

based methods. Our proposed method can be applied to the interface, since

the method could robustly recognize seven different types of hand motions

including the motions from the activities of the deep layer muscles. More-

over, the skin deformation could be measured with over clothing by using

developed distance sensor array and the performance of the hand motion

recognition is kept even compared with measurement directly.

To apply the method to the input interface of the prosthesis hand, we

need to consider the following two additional things. The first one is an

attachment method of the distance sensor array. In the case of the prosthesis

hand, users wear the sensor array on the amputation stump of the forearm.

When grasping heavy objects, the reaction is taken on the amputation

stump. In this case, output signals of the sensor array are changed with

not only motions but also the reaction. Therefore, the development of an

attachment method of the sensor array which is insulated from the influence

of the reaction is needed. The second one is a variety of the amputation

stump of the forearm. For many reasons, the amputation stump of the users

are different. The amount of the muscles and the length of the forearm is

also different. Moreover, congenital users do not have a sense of motion.

For these reasons, it is necessary to check which imaginary actions of the

user the proposed method can recognize.

Upper limb pose estimation

The upper limb pose estimation method could be applied to not only input

interface but also motion measurement in various fields. Our proposed

method could estimate upper limb poses of not only single motion but

also daily life motions using only a wearable device that is attached to the

position close to the elbow. Therefore, by using the method, we may expand
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a variation of the applied measurement condition and environment.

To apply the method in various fields, we need to develop a measurement

system that can quickly get the target motions for the learning. In the

experiments of the estimation of the upper limb pose, we used the motion

capture based on the IMU and magnetic sensors. For daily use, it is difficult

to use motion capture. Therefore, by using the existing method such as

Simon’s method [13], we may get the 3D poses using a camera only.

Forearm pose estimation

The forearm pose estimation method has the potential to apply to the con-

trol interface of the upper limb prosthesis hand and motion measurement.

In the case of the forearm prosthesis hand, the sensor can be placed on

the forearm. However, in the case of the upper arm prosthesis, the sensor

cannot be placed. Since it was shown that the poses of the forearm could be

estimated from the upper arm deformation, the sensor placement position

can be selected according to the application.

For the upper limb prosthesis, we need to consider the additional work

which is the same as the forearm prosthesis. Moreover, we also consider the

pose of the upper arm. The shape of the upper arm is changed with the

pose of not only the forearm but also the upper arm.

Bio-mechanical analysis

In this dissertation, we focused on motion estimation and clarified the per-

formance of the skin deformation. The skin deformation has the potential

to estimate upper limb motions. On the other hand, the skin deformation

is caused by the activities of the body tissues such as deformation of the

cross-section of the muscles, displacement of the bones, and expansion and

contraction of the tendons. There is a possibility that the activities of the

body tissues can be obtained from the skin deformation. If it is possible to

estimate or calculate the activities, we can get more rich information in a

non-invasive manner.

In the previous study, Sagawa et al. [63] estimated the muscle activity and

joint angles of the lower limb based on the 3D shape of the lower limb
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measured with a projector-camera system. It showed that the activity of

the muscle could be estimated by the skin deformation.

Difficulties for the bio-mechanical analysis are that the parameters of the

skin deformation are too high and the ground truth of the activities of body

tissues is hard to get. Especially, measurement of the activities of the deep

layer muscles is difficult in a non-invasive manner.

To analyze or estimate the activities of the body tissues (e.g., muscle con-

traction and bone displacement) from the skin deformation, we need to

create a database of the activities and the deformation. If we can measure

the skin deformation by using the sensor array and an image of the cross-

section of the forearm or upper arm by using an MRI at the same time, we

can make the database. By using the MRI, we can also get the displacement

of the bones. By using the database and some machine learning techniques,

there is a possibility to estimate the activities of the body tissues from the

skin deformation.
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Chapter7

Conclusion

7.1 Summary

In this dissertation, we proposed upper limb motion estimation methods based on

skin deformation. We developed the distance sensor arrays to measure the skin

deformation on the forearm and upper arm. To apply the methods to various

applications, we developed two categories of motion estimation. In the first cat-

egory, we developed a motion recognition method base on forearm deformation.

The recognition method classified seven different types of motions including the

motions caused by the activities of deep layer muscles. In the second category,

we developed two pose estimation methods. One method used the forearm de-

formation and the other used the upper arm deformation. These pose estimation

methods estimated multiple joint angles of the upper limb.

Generally, our proposed method was accurately able to estimate the aspects

related to the activities of the deep layer muscles. This is an advantage of our

method compared to other studies of the motion estimation based on sEMG.

Moreover, unlike FMG-based methods, our method does not need to provide

the fixture of the sensor whose shape is closely matched to the forearm, because

our distance sensor array is fitted to the user’s forearm by the sponge. From

the results of chapter 3 to chapter 5, the skin deformation measured with the

developed distance sensor arrays showed better performance and usefulness for

the upper limb motion estimation.

In chapter 2, we designed the arrays to accurately measure skin deformation

as displacements on several points on the skin surface. By the size-adjustment

mechanism, the arrays could be applied to a variety of the size of the forearm and

upper arm. The signals of the arrays could be measure without any amplifier or

filters. Moreover, the arrays could measure skin deformation over the clothing.

In chapter 3, we confirmed that our proposed method could accurately recog-

nize seven different types of hand motions including the motions related to the
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activities of the deep layer muscles. The developed sensor array could measure the

forearm deformation at the position close to the elbow where various muscles are

located. Comparing to other studies that also used distance sensor arrays which

measured deformation of the wrist, the back of the hand, or the longitudinal di-

rection on the forearm, our method could obtain more information and recognize

more hand motions from the activities of the deep layer muscles. Also, we con-

firmed that using training data of various elbow postures, the proposed method

could recognize hand motions with different elbow postures. This result supports

that the proposed method can be used without restricting motions of other body

parts of the user. Also, we experimentally showed that this method could accu-

rately recognize hand motions both with direct measurement and measurement

over the clothing. This is a useful ability for the input interfaces of prosthetic

hands or robotic exoskeletons since some users like to wear clothing when using

a prosthetic hand or robotic exoskeleton.

In chapter 4, we confirmed that our proposed method was able to estimate

multiple joint angles of the upper limb based on the forearm deformation. From

the results of the experiments, forearm deformation shows the better performance

of the upper limb motion estimation in not only single-axis motions but also daily

life motions. In experiments where hand joint angles and upper limb poses are

estimated, the forearm deformation still showed a good performance to estimate

motions related to the activities of the deep layer muscles. The method could also

estimate elbow joint angles; we regard the characteristic that elbow motion also

deforms a forearm not as a nuisance rather as useful information. Our method

uses only the wearable device which is attached to the forearm position close to

the elbow. From our best knowledge, the study of the pose estimation at the

multiple joint angles including the forearm, hand, and fingers based on bio-signal

of the forearm position close to the elbow is nothing. Thus, our method showed

a possibility to expand the application of the methods based on the bio-signals.

In chapter 5, we also confirmed that the upper arm deformation enabled the

forearm pose estimation. Our method was able to estimate joint angles of elbow

flexion and extension and forearm pronation and supination at the same time

with combined motions. Our method could estimate the forearm poses only from

the upper arm (not forearm) deformation. That provides the variation of the
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sensor attached position for the various application.

In chapter 6, we analyzed the relationship between the skin deformation and

the sEMG. The differences are measurement conditions, target tissues, and ac-

quired signals. In particular, the advantage of the skin deformation is that it

could provide not only the activities of the muscles but also the displacement

of the bones and tendons. We also discussed the potential applications of the

methods. By realizing additional things by each application, the methods will

apply various fields.

In short, from high performance with all of the methods, we confirmed that

measurement of skin deformation using the distance sensor array produces data

containing information for estimation of upper limb motion. Thus, we verified

that the potential of the skin deformation for the input source of information for

the upper limb motion estimation.

7.2 Future Work

In the future, we will try to apply the methods to various applications. The target

motions and the number of the sensors which can be attached to the body may be

different by each application. As the number of sensors decreases, the number of

motion types/joints to be estimated tends to be reduced. But the measurement

system is rather miniaturized and simplified. Moreover, skin deformation may

provide information of not only pose but also force. We experimentally confirmed

the possibility of the estimation for both pose and force [64]. So, we will also try

to estimate not only the upper limb pose but also joint torque. In addition, we

will try to apply the skin deformation for the bio-mechanical analysis.
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