Doctoral Dissertation

Conversion of Noisy or Long Sentences Into
Readable Sentences

ITSUMI TAKAHASHI

MARCH 2020

Department of Information Processing
Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,
Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of
Doctor of ENGINEERING

Itsumi Takahashi

March 2020

Thesis Committee:
Professor Yuji Matsumoto (Supervisor)
Professor Satoshi Nakamura (Co-supervisor)
Associate Professor Masashi Shimbo (Co-supervisor)
Assistant Professor Hiroyuki Shindo (Co-supervisor)

ACKNOWLEDGMENT

EREHE OMAMBERIBH N U ET. 20K L E L0 ML H L
WIRHHE H 0 F U708, BAEITIFMEENS THREL W& L2 72, BlitL
WHIRIZBE T 2Rk A R TS 2 W R E E U BELSEE WL T

BtLwwih, BHEEHEEIZR > TWEEEE UM E8E, sz, ik
B2 BITEH N2 U ET. BEAL S IIFARm U R s 2 WZZEE L
2. HODRESTIVE LR F72, BEOILIH T X AITILIE R CHIZE X im SR
EEDDIIHI- 0L R IHEENWZEEE L. OB T VE LA

FRNEEDOEE S ZTOWEEZWENTTAT 4 74 YTV Yy AR DF %12
BN U 9. BB AFRL 724500 6 BMEE TR o ZMREIL NV —T) — &, KEFE
WS R, SNITEMMSRE, FREERMAEEICE#H N U 9. IREEREEIC
i, FIZHANTORBEB CTHREE TERRINZWZZE, gL -0 & b
WEALTHOWAHTHKATWAEEZEELEL H7a—-Fy—7T7—F77 FOHEEKIC
X, ARREO T —<HEEFEL T\ EREBMERITR0 £ U YO T — <
D5 D HOMENSE DO LRI DEF T L > TH Y, EMKOBEIZ > THL
MHEICRED N TEE L 72, BEHIEKRFICE NI HARMEBIRITIZT —
NFEDT RNAHFEZLTWZE, ZOHRENTTII a =7 — ¥ a YRIEERGEAICE
B ESE TOWREEZWE DEXCEDRREZ W72 \W2h 9574, BItLWHEZLD
THREEBO E U B#WEZLET. EHIOV-TY =X, WHRIEE, KEH
ZeH, PHHSEEICEHE WU 9. PEHERRIZE BT 3G SCHE L5 T — < D
Y HZBORISEREE W L DI, MERICEPTEAREAZBITWEEE
EFL7z B0V 7 bTREY TAYMOREK, BY = —OHIFKRIZIINTTOLZE
CLTXFIFRIEEZHATCWES2HIZ, TIA4R=- b NRHSEREESIETY

1l

EREEEUR. OB TEXVE LT

FADSRIE - B EH#H U 3. AR ZEL N E THEOBRIZMAE &V
B EMTEDIF, FREOBBEIIRIZIDEIAVREVEEZET.

BRI, HXDEEZ XA T NTWS RIZEH WU ET. RIEAHANTZ DA
bR ADEEZ B RO TZITAN, XA T NE LA —RAhiZta AELZEEL
BRABEOYFR— 2 LT NZRIZ, RROBE#HZEITET.

v

CONVERSION OF NOISY OR LONG SENTENCES INTO READABLE SENTENCES

2T FAPMPEWTFANDHEART VT F A MADEH

Abstract

Ttsumi Takahashi

In this thesis, we propose methods of converting noisy or long sentences into readable
sentences. Noisy texts such as social media and long documents are hard to read for humans
and machines. Converting these texts to readable texts is an important task to analyze
sentences accurately and to facilitate human communication. There are three main tasks we
tackled in this thesis.

The first task is a joint estimation of word-level normalization and morphological analysis.
In this study, we proposed a novel method of analyzing non-standard tokens. We achieved
higher accuracy and recall for word segmentation, POS tagging, and normalization than
those of conventional systems. Moreover, we proposed a novel method for automatically
extracting pairs of a variant word and its standard form from the unannotated text. We
incorporated the acquired variant-normalization pairs into Japanese morphological analysis,
and they improved the recall of normalization.

The second task is a sentence-level normalization. We proposed simple but effective
methods of data augmentation for encoder-decoder based neural normalization models. The
combination of proposed methods outperformed baselines.

The third task is length-controllable summarization. We propose a new prototype-guided
length-controllable abstractive summarization model to generate comprehensive texts from
a long document. Our model first extracts a prototype text and creates a summary by

jointly encoding and copying words from both the prototype text and source text. Experi-

ments with the CNN/Daily Mail dataset and the NEWSROOM dataset show that our model
outperformed previous models in standard and length-controlled settings.
The above studies are a proposal of methods to convert noisy sentences and long sentences

into readable sentences at a word level, sentence level, and document level.

Keywords: morphological analysis, normalization, summarization, encoder-decoder model

vi

CONVERSION OF NOISY OR LONG SENTENCES INTO READABLE SENTENCES

2T FAPRPEWTFANDHEART VT F A MADEH

Abstract

Ttsumi Takahashi

ARWFFE T, XEOBIENRRIABN LGS 5 720 BB >, XELEE Y
VTN TREOWUIERT 2 Hli R Y, ANz XEPREVWLEEZ DD R T VU AT
DHEMERET 5. AHFROBRRIFKREL3DH 5.

R, Twitter® & 5 RBEEICFE LR WAINZGEN S < & E N5 HFERD I
DWVWT, HEEL VO IERME & REEMRAT % FIRFIZIT S HiffiTd 5. WD AELEM T
Bl cld, BHFITRWHEEPATII NG LN ERL, BEOMMIZERDORZL LK
BENEINTLED 2 WH o7z AR TIE, HHITFELRVHANZOGEL B
ZAFAE T B IERLDGE IS 1) 2 R & JERESR Mt 2 AR 1217 5 Z & T, JERERMNT D
R b & IESAGIZ K D5 AR T W IANDEW DM % 2L L 7.

HE=a =T N2y MU= RHWT, i3 Z2IEHEEIZ L)L TEERT 5 il
Thbd. =a—J)htxy bERAVEXERIE, ZH#ITOTFANEEBHEDT A bR
TDFET = ZPRBIHFETE2HEICEEVHEEZERNTES I LMo NT VS,
72U, HEDSHEMEADER R 27 IZEWTIREET - 20340740, REDTF—X&
EANFCTHERTEILEEEIANTHHBEENTIZARWV. KT, 2EOAFT—
BIPSXFVRVDEHNZ v E2HE L, KRED T NVRLT — RIZEBNR V%2
TBHI LI TR RT T — X2 KEIZEKT 2 FEEZRE L. BEFHRIIK
D, FERFLDOMEIIEIREIER % FI N 72 FIRICHARERUT S R A1V TORE R E % ERK
L7z

BR3IE, RWXEHZE LS FHARTVWERN XA ELHT B TH 5. BfEmd HEE

DRVWERNY AT AIBEWTE, BRLEERE2TFAMIHLT—D20ENTFAML
W E N TERN. BEFIEE, HEEL OV ORI EHY & A ploi 2 % 2 R
IZHAG DTS Z LIZ &> T, ERMENORE R L& EX ORENED X % R L
7z.

BRI, BEL AL, XLR)L, XEBLRLVDOZNTNIIZEWTHNZ P
ROWXEEHAR T VUL T 2HAMORETH 5.

F—7— R JERESEMNT, EHML, B, =3 —X - Fa—-XETI)

viil

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT e iii

ABSTRACT . . . e v

ABSTRACT e vii

LIST OF TABLES e xii

LIST OF FIGURES e xiv
CHAPTER

1 Introduction 1

1.1 Motivation 1

1.2 Task Settings 1

1.3 Thesisoutline 2

2 Preliminaries 4

2.1 Japanese Morphological Analysis and Normalization 4

2.2 Neural Sequence to Sequence Models 5)

2.2.1 Attention based Encoder-Decoder model 6

2.2.2 Pointer-Generator based Encoder-Decoder Model 7

2.2.3 Introducing Controllability to An Encoder-Decoder Model 7

3 Morphological Analysis for Japanese Noisy Text Based on Character-

level and Word-level Normalization

3.1 Imntroduction

3.2 Backgroundo 12
3.2.1 Related Work 12
3.2.2 Data Collection and Analysis of Non-standard Tokens 13

1X

3.3 Proposed Method
3.3.1 Overview of Proposed System
3.3.2 Character-level Lattice
3.3.3 Generation of Word-level Lattice
3.3.4 Decoder

3.4 Experimentso
3.4.1 Dataset and Estimated Transformation Table
3.4.2 Baseline and Evaluation Metrics
3.4.3 Results and Discussion

3.5 Conclusion and Future Work

Automatically Extracting Variant-Normalization Pairs for Japanese

Text Normalization
4.1 Introduction
4.2 Background
4.2.1 Japanese Morphological Analysis
4.2.2 Related Work
4.3 Proposed Method

4.3.1 Extracting Candidates of Variant-Normalization Pairs from Twitter

4.3.2 Normalization and Morphological Analysis
4.4 Experimentso
4.4.1 Data and Settingso
4.4.2 Baselines and Evaluation Metrics
443 Results
4.5 Conclusion and Future Work

Improving Neural Text Normalization with Data Augmentation at

Character- and Morphological Levels
5.1 Introduction
5.2 Text Normalization using Encoder-Decoder Model
5.3 Proposed Methodso
5.3.1 Generating Augmented Data using Morphological-level Conversion
5.3.2 Generating Augmented Data using Character-level Conversion

5.3.3 Training Procedure

47
49
49

5.4 Experiments 50

5.4.1 Data 50
5.4.2 Settings. 51
54.3 Results 52
5.5 Discussion 53
5.6 Conclusion 54

6 Length-controllable Abstractive Summarization by Guiding with Sum-

mary Prototype 55
6.1 Introduction 5Y)
6.2 Task Definition 59
6.3 Proposed Model 60
6.3.1 Overview 60
6.3.2 Prototype Extractor 61
6.3.3 Joint Encoder 62
6.3.4 Summary Decoder 63

6.4 Training 64
6.4.1 Generating Training Data 64
6.4.2 Loss Function 65

6.5 Inference 66
6.6 Experiments L 67
6.6.1 Datasets and settings L. 67

6.7 Model Configurations 67
6.7.1 Evaluation Metrics 68
6.7.2 Results 68

6.8 FExamples of the Prototype text and Generated Summary 75
6.9 Related Work and Discussion 75
6.10 Conclusion 79
7 Conclusion 80
7.1 SUMMATY o oo 80
7.2 Future Directions 81
7.2.1 An Unified Model of Normalization and Summarization Tasks. . . 81
7.2.2 Integration with Unsupervised Language Models 82
REFERENCES 88

x1

LIST OF TABLES

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

6.1

6.2

Types of non-standard tokens and examples of annotated data
Feature list of the decoder
Example of character-level transformation table
Results of precision and recall of test data
System output examples
Feature list
Example of extracted pair of variants-normalization candidates
Test data (Twitter) precision, recall, and F-value results
Example of morphological analysis and normalization outputs
Examples of extracted morphological conversion patterns

Example of generated augmentation data using morphological conversion pat-

BLEU scores of normalization. “/" indicates with (left) and without (right)

fine tuning. 200,000 pairs of augmented data were used.
Evaluation of oracle sentences
ROUGE scores (F1) of abstractive summarization models on CNN/DM . . .

Comparison between with and without dual encoder block

xii

6.3

6.4

6.5

6.6

6.7

6.8

6.9

ROUGE scores (F1) of abstractive summarization models with different lengths

on the CNN/DM dataset
ROUGE scores (F1) of our prototype extractor (LPAS-ext) on CNN/DM . .

ROUGE scores (F1) of abstractive summarization models with gold settings

on the CNN/DM dataset.,
ROUGE scores (F1) of proposed models on NEWSROOM dataset

ROUGE scores (F1) of abstractive summarization models with different lengths

on the NEWSROOM dataset.
Example of prototype texts and generated summaries in CNN/DM dataset. .

Example of prototype texts and generated summaries in CNN/DM dataset. .

xiil

70

72

73

73

74

76

7

LIST OF FIGURES

2.1

3.1

3.2

3.3

4.1

4.2

4.3

4.4

5.1

6.1

6.2

6.3

6.4

6.5

6.6

Example of Japanese morphological analysis and normalization 5
Structure of proposed systemo 15
Example of candidate generation00 15
Example of character alignment 0L 16
Example of Japanese morphological analysis and normalization 29
Overview of proposed system 29
Flow of generating coarsely segmented corpus 32
Example of proposed lattice 35
The effect of augmentation data 51
Output examples of our model 56
Comparison of previous length-controllable models and proposed model . . . 58

Comparison of previous extractive-and-abstractive models and proposed model 58

Architecture of proposed model 60
Results in the length-controlled setting on CNN/DM 71
Results in the length-controlled setting on NEWSROOM 75

Xiv

Chapter 1

Introduction

1.1 Motivation

There are many texts that are difficult to read for humans, such as noisy texts like social
media and long texts. For example, Social media texts are often written in a non-standard
style and include many lexical variants such as insertions, phonetic substitutions, abbrevia-
tions that mimic spoken language. By converting such a variety of non-standard tokens into
standard tokens, we can handle these texts more easily.

Moreover, it takes a long time to read long texts. We can save time by converting these
texts into shorter and readable texts. Such conversions are essential to perform correct

analysis for machines and facilitate human communications.

1.2 Task Settings

In this thesis, we tackled mainly three tasks: First two are related to converting noisy
sentences to standard sentences and third one is related to converting long documents to

short sentences.

Task 1 (Joint estimation of word-level normalization and morphological analysis). In this

task, an input is a sentence, and outputs are word segmentations, POS-taggings, and standard

forms of each word.

In Japanese, there is no space between words, and it is necessary to perform morphological

analysis and normalization simultaneously.

Task 2 (Sentence-level normalization). In this task, an input is a sentence, and an output

18 a normalized sentence.

In this task, we used a character-level encoder-decoder model and performed sentence-
level normalization. Attention-based encoder-decoder models are widely used for generating
natural languages. Unlike task 1, the encoder-decoder model integrates a language model and
a character-level conversion model. This model can perform the sentence-level conversion in

an end-to-end manner.

Task 3 (Converting long document to length-controllable summary texts). In this task,
mputs are a long document and a desired number of words in summary, and an output is a

summary text.

Recent state-of-the-art abstractive summarization models based on encoder-decoder mod-
els generate only one summary per source text. However, controllable summarization, es-
pecially of the length, is an important aspect for practical applications. By generating
length-controllable summaries, it is possible to generate readable summaries to meet user

requirements.

1.3 Thesis outline

The rest of this thesis is organized as follows: As preliminaries, we will provide a brief
introduction of Japanese morphological analysis and normalization tasks and background.

We also introduce a sequence to sequence models. These techniques are leveraged in the

following chapters. In Chapter 3 and Chapter 4, we present a supervised and unsupervised
model of normalization and Japanese morphological analysis for task 1. In Chapter 5, we
present a sentence-level normalization model using character-based encoder-decoder model
for task 2. In Chapter 6, we present a novel length-controllable summarization model for

task 3. We summarize the thesis and set forth further directions in Chapter 7.

Chapter 2

Preliminaries

2.1 Japanese Morphological Analysis and Normalization

Many approaches to joint word segmentation and POS tagging including Japanese Mor-
phological analysis can be interpreted as re-ranking while using a word lattice (Kaji and
Kitsuregawa, 2013). There are two points to consider in the analysis procedure: how to
generate the word lattice and how to formulate the cost of each path. In Japanese morpho-
logical analysis, the dictionary-based approach has been widely used to generate the word
lattice (Kudo, Yamamoto, and Matsumoto, 2004, Kurohashi et al., 1994). In a traditional
approach, an optimal path is sought by using the sum of the two types of costs for the path:
the cost for a candidate word that reflects the word’s occurrence probability, and the cost
for a pair of adjacent POS that reflects the probability of an adjacent occurrence of the pair
(Kudo, Yamamoto, and Matsumoto, 2004, Kurohashi et al., 1994). A greater cost means
less probability. The Viterbi algorithm is usually used for finding the optimal path.

Several studies have been conducted on Japanese morphological analysis in the normal-
ized form. The approach proposed by Sasano, Kurohashi, and Okumura (2013) aims to
develop heuristics to flexibly search by using a simple, manually created derivational rule.

Their system generates normalized character sequence based on the derivational rule, and

input: 3 —Z<ZE L (suugoku tanoshii, “It is such fun”)

3_ 1 - | | :< H '7%[_/ Ly
[prefix] [unk] [fairly, adverb] [fun, adjective] [unk]
BOS | ————————————— . \ - - ' EOS
I -7 oo (FELLY
{___[such, adverbl | {___[fun,adjective] |

Figure 2.1 Example of Japanese morphological analysis and normalization

adding new nodes that are generated from normalized character sequence when generating
the word lattice using dictionary lookup. Figure 4.1 presents an example of this approach.
If the non-standard written sentence 3 — Z < 28U v (suugoku tanoshii, “It is such fun”)
is input, the traditional dictionary-based system generates Nodes that are described using
solid lines, as shown in Fig. 4.1. Since “ 9 — Z <" (suugoku, “such”) and “3& L " (tanoshii,
“fun”) are OOVs, the traditional system cannot generate the correct word segments or POS
tags. However, their system generates additional nodes for the OOVs, shown as broken line
rectangles in Fig. 4.1. In this case, derivational rules that substitute “—" with “null” and
“W7 (4) with “\ (7) are used and the system can generate the standard forms “ 3 Z <”
(sugoku, “such”) and “3£ L\ (tanoshii, “fun”) and their POS tags. If we can generate suf-
ficiently appropriate rules, these approaches seem to be effective. However, there are many
types of derivational patterns in SNS text and it is difficult to cover all of them by hand.
Moreover, it becomes a serious problem how to set the path cost for appropriately re-ranking
the word lattice when the number of candidates increases. In Chapter 3 and Chapter 4, we

tackled to the problem that automatically extend derivational patterns and incorporated

them into the word lattice.

2.2 Neural Sequence to Sequence Models

Neural sequence to sequence models such as an encoder-decoder model is widely used for
many language generation tasks such as machine translation and summarization. We use

an encoder-decoder model in Chapter 5 and Chapter 6. There are several variations on the

encoder-decoder model. We describe these variations in the following subsections.

2.2.1 Attention based Encoder-Decoder model

The attention-based neural encoder-decoder model was proposed by Bahdanau, Cho, and
Bengio (2015). It is an extension model of a simple encoder-decoder model (Cho et al., 2014).
Instead of converting the input context vector into a fixed length vector, the attention-based
encoder-decoder model compute different context vectors depending on the decoder state.
By introducing attention mechanism, long sentences can be converted with high accuracy.

Let s = (s1,82,...,5,) be an input sentence. Similarly, let ¢ = (¢1,t3,...,%,) be an
output sentence. The notations n and m are the total lengths of the characters in s and ¢,
respectively.

Then, the generation probability of ¢ given input sentence s can be written as

m

p(tls,0) = | [o(t;lt<;,). (2.1)

Jj=1

where 0 represents a set of all model parameters in the encoder-decoder model, which are
determined by the parameter-estimation process of a standard softmax cross-entropy loss
minimization using training data. Therefore, given 6 and s, output sequence is generated

by finding ¢ with maximum probability:
t = argmax,{p(t|s,)}, (2.2)

where ¢ represents the solution.

More specifically, p(t;|t<;, s) can be written as

p(t]"t<j7s) :p<tj|t<j7ujacj)> (23)

Where u; is the state of a decoder at time step j and c¢; is the context vector at time step

J. Context vector ¢; is calculated as follows:

€j; = S(hl, Sj—l) (24)

o — exp(ejq)
" exp(er)

C; = Z ajihi (26)
i=1

(2.5)

In Chapter 5, we applied this model to character sequences.

2.2.2 Pointer-Generator based Encoder-Decoder Model

See, P. J. Liu, and Manning (2017) proposed a pointer-generator model that directly copies
words from the source text via pointing (Vinyals, Fortunato, and Jaitly, 2015). Use of a
pointer network improves accuracy and handling of OOV words, and many studies especially
for summarization tasks have used this model as a basis. We also used this model as a basis

in Chapter 6.

2.2.3 Introducing Controllability to An Encoder-Decoder Model

There are another lines of extension of the encoder-decoder model. Some researchers have
investigated how to introduce controllability to the encoder-decoder model. Kikuchi et al.
(2016) were the first to propose using length embedding for length-controlled abstractive
summarization. Fan, Grangier, and Auli (2018) also introduced special embeddings at the
beginning of the decoder module for control the summary length, summary style and sum-
mary focus. Takase and Okazaki (2019) introduced positional encoding that represents the
remaining length at each decoder step of Transformer-based encoder-decoder model. These
previous models use simple special embeddings for controlling the length or content in the

decoding module. We introduced a new idea that using an extractive module instead of

special embeddings for controlling the summary length.

Chapter 3

Morphological Analysis for Japanese
Noisy Text Based on Character-level and

Word-level Normalization

3.1 Introduction

Social media texts attract a lot of attention in the fields of information extraction and text
mining. Although texts of this type contain a lot of information, such as one’s reputation
or emotions, they often contain non-standard tokens (lexical variants) that are considered
out-of-Vocabulary (OOV) terms. We define an OOV as a word that does not exist in the
dictionary. Texts in micro-blogging services such as Twitter are particularly apt to contain
words written in a non-standard style, e.g., by lengthening them (“goooood” for “good”) or
abbreviating them (“thinkin’ ” for “thinking”). This is also seen in the Japanese language,
which has standard word forms and variants of them that are often used in social media texts.

To take one word as an example, the standard form is &\ U\ (oishii, “It is delicious”)

where the underlined characters are the differences from the standard form. Such non-

standard tokens often degrade the accuracy of existing language processing systems, which
are trained using a clean corpus.

Almost all text normalization tasks for languages other than Japanese (e.g., English),
aim to replace the non-standard tokens that are explicitly segmented using the context-
appropriate standard words (Han, Cook, and Baldwin, 2012; Han and Baldwin, 2011; Hassan
and Menezes, 2013; Chen Li and Yang Liu, 2012; F. Liu, Weng, and X. Jiang, 2012; F. Liu,
Weng, B. Wang, et al., 2011; Pennell and Yang Liu, 2011; Cook and Stevenson, 2009; Aw
et al., 2006). On the other hand, the problem is more complicated in Japanese morphologi-
cal analysis because Japanese words are not segmented by explicit delimiters. In traditional
Japanese morphological analysis, word segmentation and part-of-speech (POS) tagging are
simultaneously estimated. Therefore, we have to simultaneously analyze normalization, word
segmentation, and POS tagging to estimate the normalized form using the context informa-
tion. For example, the input /N> 4 —F & \w L — W (pan-keiki oishiiii, “This pancake tastes
good”) written in the standard form is /8> 4 —F E WL L (pan-keiki oishii). The result
obtained with the conventional Japanese morphological analyzer MeCab (T. Kudo, 2005)
for this input is /N> 4 — F (pancake, noun)/# \ L (unk)/—(unk)/\ (unk)/, where
slashes indicate the word segmentations and “unk” means an unknown word. As this result
shows, Japanese morphological analyzers often fail to correctly estimate the word segmen-
tation if there are unknown words, so the pipeline method (e.g., first estimating the word
segmentations and then estimating the normalization forms) is unsuitable.

Moreover, Japanese has several writing scripts, the main ones being Kanji, Hiragana, and
Katakana. Each word has its own formal written script (e.g., BUBIE (kyoukasyo, “textbook”)
as formally written in Kanji), but in noisy text, there are many words that are intentionally
written in a different script (e.g., & & 2 2 U & (kyoukasyo, “textbook”) is the Hiragana
form of R} Z). These tokens written in different script also degrade the performance of
existing systems because dictionaries basically include only the standard script. Unlike the

character-level variation we described above, this type of variation occurs on a word—level one.

10

Therefore, there are both character-level and word-level non-standard tokens in Japanese
informal written text. Several normalization approaches have been applied to Japanese text.
Sasano, Kurohashi, and Okumura (2013) and Oka et al. (2011) introduced simple character
level derivational rules for Japanese morphological analysis that are used to normalize specific
patterns of non-standard tokens, such as for word lengthening and lower-case substitution.
Although these approaches handle Japanese noisy text fairly effectively, they can handle
only limited kinds of non-standard tokens.

We propose a novel method of normalization in this study that can handle both character-
and word-level lexical variations in one model. Since it automatically extracts character-
level transformation patterns in character-level normalization, it can handle many types of
character-level transformations. It uses two steps (character- and word-level) to generate
normalization candidates, and then formulates a cost function of the word sequences as a
discriminative model. The contributions this research makes can be summarized by citing
three points. First, the proposed system can analyze a wider variety of non-standard token
patterns than the conventional system by using our two-step normalization candidate gen-
eration algorithms. Second, it can largely improve the accuracy of Japanese morphological
analysis for non-standard written text by simultaneously performing the normalization and
morphological analyses. Third, it can automatically extract character alignments and in so
doing reduces the cost of manually creating many types of transformation patterns. The
rest of this paper is organized as follows. Section 2 describes the background to our re-
search, including Japanese traditional morphological analysis, related work, and data collec-
tion methods. Section 3 introduces the proposed approach, which includes lattice generation
and formulation, as a discriminative model. Section 4 discusses experiments we performed
and our analyses of the experimental results. Section 5 concludes the paper with a brief

summary and a mention of future work.

11

3.2 Background

3.2.1 Related Work

Several studies have been conducted on Japanese morphological analysis in the normalized
form. The approach proposed by Sasano, Kurohashi, and Okumura (2013) aims to develop
heuristics to flexibly search by using a simple, manually created derivational rule. Our ap-
proach is also based on the dictionary-based approach, however, our approach is significantly
dissimilar from their approach in two ways. First, we automatically generate derivational
patterns (we call them transformation tables) based on the character-level alignment between
non-standard tokens and their standard forms. Compared to generating the rules by hand,
our approach can generate broad coverage rules. Second, we use discriminative methods
to formulate a cost function. W. Jiang, Mi, and Q. Liu (2008) and Kaji and Kitsuregawa
(2013) introduce several features to appropriately re-rank the added nodes. This enables our
system to perform well even when the number of candidates increases.

On the other hand, several studies have applied a statistical approach. For example,
Sasaki et al. (2013) proposed a character-level sequential labeling method for normaliza-
tion. However, it handles only one-to-one character transformations and does not take the
word-level context into account. The proposed method can handle many-to-many character
transformations and takes word-level context into account, so the scope for handling non-
standard tokens is different. Many studies have been done on text normalization for English;
for example Han and Baldwin (2011) classifies whether or not OOVs are non-standard tokens
and estimates standard forms on the basis of contextual, string, and phonetic similarities.
In these studies it was assumed that clear word segmentations existed. However, since
Japanese is an unsegmented language the normalization problem needs to be treated as a
joint normalization, word segmentation, and POS tagging problem.

In the field of speech recognition, similar techniques have been developed, such as conver-

sion from phoneme to word using WFST (Mohri, Pereira, and Riley, 2002) and many-to-many

12

type non-standard form standard form

(1) Insertion H YD ——2 (arigatoou) BH Y ML D (arigatou, “Thank you”)

(2) Deletion S (samu) L (samui, “cold”)

(3) Substitution with phonetic variation Wb Z A (kawaee) WOV (kawaii, “cute”)

(4) Substitution with lowercases and uppercases & D A& 5 (arigatou) HYMED (arigatou, “Thank you”)

(5) Hiragana substitution H\VT v — (aidei) ID (aidei, “identification card”)

(6) Katakana substitution 7 YA Y (arigatou) HYME D (arigatou, “Thank you”)

(7) Any combination of (1) to (6) 5 Alz— (kaunta) 717V & — (kaunta, “counter”)
HoDw (attsui) HD\ (atsui, “hot”)

Table 3.1 Types of non-standard tokens and examples of annotated data

character alignment (Bisani and Ney, 2008; Sittichai, Grzegorz, and Tarek, 2007). Although
the method of lattice extension is based on the idea of these existing researches, our study
introduces these method for morphological analysis and normalization task for the first time.
In addition, in the training of decoder, we introduced several specific features for this task.
In the Japanese morphological analysis, many words can be analyzed by existing dictionary
words. Therefore, it is important to normalize the non-standard words without degrading
the overall accuracy. We customized the features that suppresses excessive normalization

and the overall accuracy degradation was prevented.

3.2.2 Data Collection and Analysis of Non-standard Tokens

In previous studies (Hassan and Menezes, 2013; Ling et al., 2013; F. Liu, Weng, B. Wang,
et al., 2011), the researchers proposed unsupervised ways to extract non-standard tokens
and their standard forms. For Japanese text, however, it is very difficult to extract word
pairs in an unsupervised way because there is no clear word segmentation. To address this
problem we first extracted non-standard tokens from Twitter text and blog text and manually
annotated their standard (dictionary) forms. In total, we annotated 4808 tweets and 8023
blog text sentences. Table 1 lists the types of non-standard tokens that we targeted in this
study and examples of the annotated data. Types (1), (2), (3) and (4) are similar to English

transform patterns. Types (5) and (6) are distinctive patterns in Japanese. As previously

13

mentioned Japanese has several kinds of scripts, the main ones being Kanji, Hiragana, and
Katakana. These scripts can be used to write the same word in several ways. For example,
the dictionary entry J64E (sensei, “teacher”) can also be written in Hiragana form & A&
W (sensei) or Katakana form ¥ > & 1 (sensei). Most words are normally written in the
standard form, but in informal written text (e.g., Twitter text), these same words are often
written in a non-standard form. In examining Twitter data for such non-standard tokens, we
found that 55.0% of them were types (1) to (3) in Table 1, 4.5% were type (4), 20.1% were
types (5) to (6), 2.7% were type (7), and the rest did not fall under any of these types since
they were the result of dialects, typos, and other factors. In other words, a large majority
of the non-standard tokens fell under types (1) to (7). We excluded those that did not as
targets in this study because our proposed method cannot easily handle them. Types (1) to
(4) occur at character-level and so can be learned from character-level alignment, but types
(5) to (6) occur at word-level and it is inefficient to learn them on a character—level basis.
Accordingly, we considered generating candidates and features on two levels: character-level

and word-level.

3.3 Proposed Method

3.3.1 Overview of Proposed System

We showed the structure of the proposed system in Fig. 3.1. Our approach adds possible
normalization candidates to a word lattice and finds the best sequence using a Viterbi de-
coder based on a discriminative model. We introduced several features that can be used to
appropriately evaluate the confidence of the added nodes as normalization candidates. We
generate normalization candidates as indicated in Fig. 3.2. We describe the details in the

following section.

14

Input: Non-standard written text

v
Standard forms for
non-standard tokens

Standard and non-standard

token character alighment

BOS

(3.2.1)
J

Discriminative
model (3.4)

annotation

Model estimation

Input: Non-standard written text

decoder

Character
transformation

Character-level lattice
generation (3.2.2)
v

table

Word-level lattice
generation (3.3)
W

_ ——
Model

Selection of optimal word

segments and POS tags

parameters

\4

Output: Optimal word segmentationsand POS tags

Figure 3.1 Structure of proposed system

input: B k#5717 14 (tyoo kawaii, “super cute”)

[chi]

[wa]

|4 ANeos|] [eos

114

Li]

Dictionary lookup

Character-level lattice generation

b | B HhT14
L EOS
TES W v
i [drunk, verb] WA I[river, E_i [good, !
TN o] adiective]
B85 prmooezeeaooeo
1 [butterfly, noun] | y fJ\bL\L\
".'_:'_'_:'_'_:'_'_:'_'_:I' :l [cute, adjective] E
ﬁ S T

Word-level lattice generation

Figure 3.2 Example of candidate generation

15

Non-standard token
(BHYHE—5, arigatoou, “Thank you”)

F.)] h & — 5 Path1:
) \ Pathi S | A={0BB). YUY B E=2.EDY)
Standard form Y G {("B.B"), ("), (BB, ("E—5,EDM)
(BYUMES, arigatou, .
“Thank you”) h Path2:
& q={("®,HY).(YBY).(ELE). (= mull).("5.D")}
5 G BBY).CUBY).CEE).C—). ("5.5")

Figure 3.3 Example of character alignment

3.3.2 Character-level Lattice
Character Alignment between Non-standard Tokens and Their Normalized Forms

We have to create a character-level transformation table to generate the character-level
lattice. We used the joint multigram model proposed by Sittichai, Grzegorz, and Tarek
(2007) to create the transformation table because this model can handle many-to-many
character alignments between two character sequences. In observing non-standard tokens
and their standard forms, we find there are not only one-to-one character transformations
but also many-to-many character transformations. Furthermore, unlike in translation, there
is no character reordering so the problems that arise are similar to those in transliteration.
Accordingly, we adopted a joint multigram model that is widely used for transliteration
problems. The optimal alignment can be formulated as § =qex, [[,cqP(q) , Where d is a
pair of non-standard tokens and its standard form (e.g., d is & D A& — 5 (arigatoou), &
D A& S (arigatou). Here, q is a partial character alignment in d (e.g., gis“& — 5, & 57),
q is the character alignment ¢ set in d (e.g., q of path 1 in Fig. 3.3 is {(“®, ®”), (*V, 07),
(D3,), (& —5, &5} K, is the possible character alignment sequence candidates

generated from d. We generate n-best optimal path for K in this study.

16

pa) = /D> (3.1)

q€Q
[I7(a)

Y = pla)n, i
T TR S T

qeKqq9€q

and where D is the number of the d pair, @) is the set of ¢, and n,(q) is the count of g that
occurred in q. In our system, we allow for standard form deletions (i.e., mapping of a non-
standard character to a null standard character) but not non-standard token deletions. Since
we use this alignment as the transformation table when generating a character-level lattice,
the lattice size becomes unnecessarily large if we allow for non-standard form deletions. In the
calculation step of the EM algorithm, we calculate the expectation (partial counts) -, of each
alignment in the E-step, calculate the joint probability p(g) that maximizes the likelihood
function in the M-step as described before, and repeat these steps until convergence occurs.
p(q) indicates the result of p(q) calculated in the previous step over the iteration. When
generating the character-level lattice, we used alignments that were expected to exceed a
predefined threshold. We used v, (¢ = (¢, ¢,)) and 7(ct, ¢,) as thereshold, where ¢; and ¢,
are the partial character sequence of non-standard token and it’s standard form respectively.
r(c, ¢y) is calculated by r(ct, ¢,) = 74/nc,., where n., is the number of occurrences of ¢,
in the training data. We set the threshold v, ¢nres = 0.5, and (¢, ¢y)inres = 0.0001 in
this study. We also used r(¢, ¢,) as a feature of cost function in subsection. 3.4.2. When
calculating initial value, we set p(cy, ¢,) high if the character ¢; and ¢, are the same character
and the length of each character is 1. We also give the limitation that a Kanji character does
not change to a different character and is aligned with same character in the calculation step

of the character alignment.

17

Generation of Character-level Lattice Based on Transformation Table

N W

First, repetitions of more than one letter of “—7, , 7 and “ o7 are reduced back to
one letter (e.g., ® D D3& ———19 (arigatooooou, “Thank you”) is reduced to & D A3 & — 5
(arigatoou)) for the input text. In addition, repetitions of more than three letters other
than “—7 “~" “” and “ " are reduced back to three letters (e.g., D 20 L >INV
rules are inspired by Han and Baldwin (2011) and determined by taking the Japanese char-
acteristics into consideration. We also used these rules when we estimated the alignments
of the non-standard tokens and their standard forms. Next, we generate the character-level
normalization candidates if they match the key transformation table in the input text. For
example, if the transformation table contains (g, logp(q))= (“ & B (yoo), & 5 (you)”, -8.39),
(“# (0), B (0)”, -7.56), and the input text includes the character sequence “5 & 8” (tyoo),
we generate a new sequence “5 & 97 (tyou) and “H & B” (tyoo). In other words, we add
new nodes “ & 97 (you) and “5” (0) in the position of “ & B (yoo) and “ B” (0), respectively
(see Fig. 3.2).

3.3.3 Generation of Word-level Lattice

We generate the word lattice based on the generated character-level lattice using dictio-
nary lookup. We exploit dictionary lookup by using the possible character sequence of the
character-level lattice while the traditional approach exploits it by using only the input char-
acter sequence. For example, we exploit dictionary lookup for character sequences such as
HEB8AT 417 (tyoo kawaii) and “B & D HT 4 147 (tyou kawaii) and “H X B8AT 1 17
(chiyou kawait) and “B & 877 A 17 (tyoo kawaii) (see Fig. 3.2)

Furthermore, we use the phonetic information of the dictionary to generate the normal-
ization candidates for Hiragana and Katakana substitution. For example, assume “#8” (tyou,

“super”) and “2H VN (kawaii, “cute”) are the dictionary words. Then, if the input text

18

contains the character sequences “® & 97 (tyo) (which is written in Hiragana) and “ 77 77
A A7 (kawaii) (which is written in Katakana), we add “#” (tyo, “super”) and “A*#\ M\
(kawaii, “cute”) to the word lattice as the normalization candidates since the two charac-
ter sequences are pronounced identically. By using this two-step algorithm, we can handle
any combinational derivational patterns, such as Katakana substitutions or substitutions of
lowercases like “17 4 47 (kawaii) — “717 4 47 (kawait)— “ DD NN (kawaii, “cute”)
(see Fig. 3.2). Note that we filtered candidates on the basis of a predefined threshold to
prevent the generation of unnecessary candidates. The threshold was defined on the ba-
sis of the character sequence cost of normalization, which is described in subsection 3.4.2.

Furthermore, we limited the number of character transformations to two per word.

3.3.4 Decoder
Objective Function

The decoder selects the optimal sequence g from L(s) when given the candidate set L(s) for
sentence s. This is formulated as § =ycr) W - f(y) (W. Jiang, Mi, and Q. Liu, 2008; Kaji
and Kitsuregawa, 2013), where ¢ is the optimal path, L(s) is the lattice created for sentence
s, and w - f(y) is the dot product between weight vector w and feature vector f(y). The

optimal path is selected according to the w - f(y) value.

Features

The proposed lattice generation algorithm generates a lattice larger than that generated in
traditional dictionary-based lattice generation. Therefore, we need to introduce an appropri-
ate normalization cost into the objective function. We listed the features we used in Table
2. Let w; be the ith word candidate and p; be the POS tag of w;. p;_1 and w;_; are adjacent
POS tag and word respectively. We also used the word unigram cost f,,,,, the cost for a pair

of adjacent POS f,,_,, that are quoted from MeCab (T. Kudo, 2005), and five additional

19

Name Feature

Word unigram cost Jwip:
POS bi-gram cost Foiv i
Word-POS bi-gram cost —108Pw; 1ps_1wips
Character sequence cost log(ps/pt,)
where, pl, = pi/""), p, = TT0 ple|c)5), @ € {s,t:}
Character transformation cost ¢yans, - (—logr(c, ¢,))
Hiragana substitution cost On; fwips
Katakana substitution cost Pry * fuwips

Table 3.2 Feature list of the decoder. ¢ qans, is 1 if w; is generated by character
transformation, otherwise 0. ¢, is 1 if w; is generated by Hiragana substitution,
otherwise 0. ¢y, is 1 if w; is generated by Katakana substitution, otherwise 0.

types of costs. These are the word-pos bi-gram cost —logpy, ,p, ,.wip; Of @ blog corpus; the
character transformation cost ¢uans, - (—logr(c, ¢,)), which is calculated in Section3.3.2, for
nodes generated by character transformation; the Hiragana substitution cost ¢y, - fu,p, for
nodes generated by Hiragana substitution; the Katakana substitution cost ¢y, - fu,p, for nodes
generated by Katakana substitution; and the character sequence cost log(p,/p;,) for all the
normalized nodes. The character sequence cost reflects the character sequence probability
of the normalization candidates. Here, s and t; are input string and transformed string
respectively. (e.g., In Fig. 3, for the normalized node “72*H W\ (cute, adjective), s is “H
EBHT 447 and t; is “HB & 8D WY). Then p, and p;, are calculated by using the
character 5-gram of a blog corpus, which is formulated by ps = p(e1 - -+ ¢,) = [[}_; p(cj|c§:é),
where c; is the j th character of character sequence s. p;. and p{ are normalized by using the
length of each string s and ¢; as pj = ptl/ tength(t:) e set the threshold (p/./ i)ihres = 1.5 for
generating a Hiragana or Katakana normalization candidate in this study. Since all those

features can be factorized, the optimal path is searched for by using the Viterbi algorithm.

20

Training

We formulated the objective function for tuning weights w by using Eq. 3.2. The weights w
are trained by using the minimum error rate training (MERT) (Machery, Och, and Thayer,
2008). We defined the error function as the differences between the reference word segmen-
tations and the POS tags of the reference sequence ¥, and the system output yerw-f(y).

N

w —wew Z error(QrefayeL(s) W f(y)) (32)
=1

3.4 Experiments

3.4.1 Dataset and Estimated Transformation Table

We conducted experiments to confirm the effectiveness of the proposed method, in which
we annotated corpora of a Japanese blog and Twitter. The Twitter corpus was split into
three parts: the training, development, and test sets. The test data comprised 300 tweets,
development data comprised 500 sentences and the training data comprised 4208 tweets. We
randomly selected the test data which contained at least one non-standard token. The test
data comprised 4635 words, 403 words of them are non-standard token and are orthograph-
ically transformed into normalized form and POS tags. The blog corpus comprised 8023
sentences and all of them were used as training data. Training data was used for extracting
character transformation table and development data was used for estimating parameters
of discriminative model. We used the IPA dictionary provided by MeCab to generate the
word-level lattice and extracted the dictionary-based features. We itemized the estimated
character transformation patterns in Table 3. There were 5228 transformation patterns that
were learned from the training data and we used 3268 of them, which meets the predefined
condition. The learned patterns cover most of the previously proposed rules. In addition,

our method can learn more of the variational patterns that are difficult to create manually.

21

non-standard standard non-standard standard

character ¢, character ¢, logp(q) | character ¢, character ¢, logp(q)
— null -4.233 | >3 (ssu) T9 (desu) -5.999
X & (maa) X ®(maa) -5.059 | ¥ —(doo) £ (dou) -6.210
U & (syo) U & D(syou) -5.211 | #a—(nee) 72\ (nai) -6.232
72 5 (daro) 725 9 (darou) -5.570 | D % (rya) NiX(reha) -6.492
> (ttsu) null -5.648 | TA(ten) T4 (teru) -6.633
A & (nto) A& D (ntou) -5.769 | WD (yuu) WD (i -6.660
b (wa) 1 (wa) -5.924 | 72 A(nan) 72D (nano) -6.706

Table 3.3 Example of character-level transformation table

3.4.2 Baseline and Evaluation Metrics

We compared the five methods listed in Table 4 in our experiments. Traditional means that
which generates no normalization candidates and only uses the word cost and the cost for a
pair of adjacent POS, so we can consider it as a traditional Japanese morphological analysis.
We compared three baselines, Baselinel, Baseline2 and Baseline3. Baselinel is the conven-
tional rule-based method (considering insertion of long sound symbols and lowercases, and
substitution with long sound symbols and lowercases), which was proposed by Sasano, Kuro-
hashi, and Okumura (2013). In Baseline2, 3, and Proposed, we basically use the proposed
discriminative model and features, but there are several differences. Baseline2 only generates
character-level normalization candidates. Baseline3 uses our two-step normalization candi-
date generation algorithms, but the character transformation cost of all the normalization
candidates that are generated by character normalization is the same. Proposed generates
the character-level and Hiragana and Katakana normalization candidates and use all features
we proposed.

We evaluated each method on the basis of precision and recall and the F-value for the
overall system accuracy. Since Japanese morphological analysis simultaneously estimates
the word segmentation and POS tagging, we have to check whether or not our system is

negatively affected by anything other than the non-standard tokens. We also evaluated the

22

word segmentation word segmentation and POS tag
method precision recall F-value | precision recall F-value recall*
Traditional 0.716 0.826 0.767 0.683 0.788 0.732 -
Rule based (BL1**) 0.753 0.833 0.791 0.717 0794 0.754 0.092
Proposed 0.856 0.883 0.869 | 0.822 0.849 0.835 0.667
- without Hiragana and Katakana normalization (BL2) | 0.834 0.875 0.854 0.798 0.838 0.818 0.509
- character transformation cost is fixed (BL3) 0.838 0.865 0.851 0.807 0834 0821 0.533

* considering only normalized words, ** BL:baseline

Table 3.4 Results of precision and recall of test data

recall with considering only normalized words. That value directly reflects the performance
of our normalization method. We registered emoticons that occurred in the test data in the

dictionary so that they would not negatively affect the systems’ performance.

3.4.3 Results and Discussion

The results are classified in Table 4. As the table shows, the proposed methods performed
statistically significantly better than the baselines and the traditional method in both pre-
cision and recall (p < 0.01), where the precision was greatly improved. This indicates that
our method can not only correctly analyze the non-standard tokens, but can also reduce the
number of wrong words generated. Baselinel also improved the accuracy and recall com-
pared to the traditional method, but the effect was limited. When we compare Proposed
with Baseline2, we find the F-value is improved when we take the Hiragana and Katakana
substitution into consideration. Baseline3 also improved the F-value but its performance is
inferior to proposed method.This proves that even if we can generate sufficient normaliza-
tion candidates, the results worsen if the weight parameter of each normalization candidate
is not appropriately tuned. The column of “recall*” in Table 4 specifies the improvement
rates of the non-standard tokens. The proposed methods improve about seven times when
using Baselinel while preventing degradation. These results prove that we have to generate
appropriate and sufficient normalization candidates and appropriately tune the cost of each

candidate to improve both the precision and recall.

23

input traditional proposed gold standard

(1)® 5 — (adii) H(a)/B(di)/— &2\ atsui) & D\ (atsui, “hot”)

(2) TL(suqee) F1F (suge)/— T TN (sugoi) T 2 (sugoi, “great”)

(3) :3 — A(gommeen) Z(go)/> /B (me)/—/A(n)/ T8 A (gomen) Z® A(gomen, “I'm sorry”)

(4) 02 & S (hitsuyou) O (hitsu)/ & D (you) WE (hitsuyou) WL (hitsuyou, “necessary”)
(5)72\\B W F (daichuki) 72(da)/\NB (ichi)/ @ (yu)/ & (ki)) RIFE (daisuki) KRBT & (daisuki, “like very much”)
(6)BHEZ X X (osece) B (ose)/ Z Z(ee)/ Z(e) B (ose) B L\ 0soi, “slow”)

(NP ADNN kanwais) 2 A(kan) /D (wa) /DO (i) B i (kanwa) \ DO (6) - WV (kawaii, “cute”)

(8) W72\ (inai) W (4) /TR VN (naid) PAA (inai) W /720 3/ nai, “absent”)

Table 3.5 System output examples

We show examples of the system output in Table 5. In the table, slashes indicate the
position of the estimated word segmentations and the words that were correctly analyzed
are written in bold font. Examples (1) to (5) are examples improved by using the proposed
method. Examples (6) to (7) are examples that were not improved and example (8) is an
example that was degraded. Examples (1) to (3) include phonetic variations and example
(4) is a Hiragana substitution. Example (5) is a combinational transformation pattern of
a phonetic variation and Hiragana substitution. We can see our system can analyze such
variational non-standard tokens for all these examples. Two types of errors were identified.
The first occurred as the result of a lack of a character transformation pattern and the second
was search errors. Example (6) shows an example of a case in which our system couldn’t
generate correct normalization candidate because there was not corresponding character
transformation pattern, even though there was a similar phonetic transformation pattern.
To ensure there will be no lack of transformation patterns, we should either increase the
parallel corpus size to enable the learning of more patterns or derive new transformation
patterns from the learned patterns. Example (7) shows an example of a case in which a
normalized candidate was generated but a search failed to locate it. Example (8) shows an
example of a case in which the result was degraded. Our system can control the degradation
well, but there are several degradation caused by normalization. We will need to develop
a more complicated model or introduce other features into the current model to reduce the

number of search errors.

24

3.5 Conclusion and Future Work

We introduced a text normalization approach into joint Japanese morphological analysis and
showed that our two-step lattice generation algorithm and formulation using discriminative
methods outperforms the previous method. In future work, we plan to extend this approach
by introducing an unsupervised or semi-supervised parallel corpus extraction for learning
character alignments to generate more patterns at a reduced cost. We also plan to improve
our model’s structure and features and implement it with a decoding method to reduce the
number of search errors. In addition, we should consider adding other types of unknown
words (such as named entities) to the morphological analysis system to improve its overall

performance.

25

Chapter 4

Automatically Extracting
Variant-Normalization Pairs for

Japanese Text Normalization

4.1 Introduction

Social media texts contain many non-standard tokens (lexical variants), e.g., by lengthening
(“goooood" for “good") or abbreviating them (“tmrw" for “tomorrow"). Current language
processing systems often fail to analyze such non-standard tokens, so normalizing them into
standard tokens as a preprocess is promising for analyzing such noisy texts robustly (Cook
and Stevenson, 2009; Han, Cook, and Baldwin, 2012; Chen Li and Yang Liu, 2012; Chen Li
and Yang Liu, 2014). The normalization task mainly consists of two components. One is
detecting variant words and generating normalization candidates. The other is construct-
ing a word lattice from possible normalization candidates and decoding to select the best
normalized word sequences. Early work on normalization focused on supervised approaches
using labeled text, e.g., an approach based on a statistical machine translation (Aw et al.,

2006; Pennell and Yang Liu, n.d.). However, social network service (SNS) text has a dy-

26

namic nature, and large SNS text is costly to annotate. Recent work has been focused on
unsupervised approaches. For example, Han, Cook, and Baldwin (2012) proposed gener-
ating variant-normalization pairs automatically on the basis of distributional similarity and
string similarity. Hassan and Menezes (2013) developed the approach by using a graph-based
approach. Yang and Eisenstein (2013) introduced a highly accurate unsupervised normal-
ization model. As just described, unsupervised methods have been developed for English
normalization tasks.

Japanese SNS text also contains variant words, and several normalization methods have
been proposed (Sasano, Kurohashi, and Okumura, 2013; Kaji and Kitsuregawa, 2014; Saito
et al., 2014). The basic framework of Japanese normalization is quite similar to that of
English normalization. However, the problem is more complicated in Japanese normalization
because Japanese words are not segmented using explicit delimiters, so we have to estimate
word segmentation simultaneously in the decoding step. Variant words are also more difficult
to extract automatically in Japanese than in explicitly segmented languages such as English.
Unlike English normalization, the approaches for generating normalization candidates in
Japanese are based on manually created rules or supervised training using annotated text.
Japanese normalization contains problems to which the English unsupervised approach is
simply applied. Although the English unsupervised approach assumes that there are explicit
word segmentations, conventional analyzers often fail to segment non-standard words in
Japanese. Therefore, to extract variants in an unsupervised fashion, we have to introduce
an idea to generate correct word segmentation of variant words.

Our idea for this problem is to use short sentences and phrases in SNS text. SNS text,
like tweets from Twitter, contains many short sentences and phrases consisting of a single
word or several words. For Example, “& 5 (& & —A | (ohayon, Good Morning)" is a variant
form of “BlE & S | (ohayou)," and “H & — X A — (cho samii, It is very cold)" is a variant
form of “#8 (cho, very) /FE\N (samui, cold)." Since these short sentences often contain variant

words, they can be used as efficient cues for extracting a variant word. Our idea is to not

27

extract a variant-normalization pair in one step. Instead, we present a two-step normalization
approach. In the first step, we extract coarse candidates for variant-normalization pairs from
unlabeled text, and in the second step, we incorporate the extracted pairs into Japanese
morphological analysis and normalization. The appropriate normalization candidates are
selected in the second step. We use training data for morphological analysis in the second
step but do not use annotated data in the first step. Therefore, we can efficiently extract
many types of variant-normalization pairs that appear in real text.

The contributions of this study are summarized as follows.

e We developed a new method for extracting pairs of variant and normal forms from
tweets, which have no explicit delimiters, by focusing on short phrases and sentences

in Twitter.

e We incorporated the variant-normalization pairs extracted by our method from tweets
into a Japanese morphological analysis method and statistically significantly improved
the accuracy for variant words without degrading the overall accuracy for Japanese

morphological analysis.

4.2 Background

4.2.1 Japanese Morphological Analysis

As we mentioned above, we have to consider Japanese normalization tasks with Japanese
morphological analysis. In this section, we describe the basic idea of Japanese morphological
analysis. Japanese Morphological analysis can be interpreted as ranking while using a word
lattice and scores of each path (Kaji and Kitsuregawa, 2013). There are two points to
consider in the analysis procedure: how to generate the word lattice and how to formulate
the score of each path. In Japanese morphological analysis, the dictionary-based approach

has been widely used to generate word lattices (Kudo, Yamamoto, and Matsumoto, 2004;

28

input: E—THF=DLL (totemo tanoshii, “It is such fun”)

&— T] f=oL w
[interjection] [particle] [particle] [fun, adjective] [unk]
BOS r \ \) EOS
Ve ThETd) | f=OLn(fzdLLY)

! [such, adverb] 1 i [fun, adjective] 1

Figure 4.1 Example of Japanese morphological analysis and normalization

Proposed system

. . Input: Non-standard written text
Extracting pairs of

variants and their

[oiees oo |
normlization (3.1 X K
Large raw (31) andidates of variant
corpus normalization pairs word lattice generation (3.2.1)

features e —
Standard
dictionan

Discriminative ——
Training datal training (3.2) Model Selection of optimal path (3.2.2)
Parameters i

output: word segmentations, POS
tags, normal forms

Figure 4.2 Overview of proposed system

Kaji and Kitsuregawa, 2013). To calculate the score of each path, two main scores are
widely used: the score for a candidate word and the score for a pair of adjacent parts-of-
speech (POSs). We can consider other various scores by using discriminative model (Kudo,

Yamamoto, and Matsumoto, 2004; Kaji and Kitsuregawa, 2013).

4.2.2 Related Work

Several studies have been conducted on Japanese morphological analysis and normalization.
The approach proposed by Sasano, Kurohashi, and Okumura (2013) developed heuristics to
flexibly search by using a simple, manually created derivational rule. Their system gener-
ates a normalized character sequence based on derivational rules and adds new nodes when
generating the word lattice using dictionary lookup. Figure 4.1 presents an example of this
approach. If the non-standard written sentence “& —T®H 72D U \ (totemo tanoshii, It
is such fun)" is input, the traditional dictionary-based system generates nodes that are de-

scribed using solid lines, as shown in Figure 4.1. Since “& —T% (totemo, such)" and “7z D

29

U v (tanoshii, fun)" are Out Of Vocabulary (OOVs), the traditional system cannot generate
the correct word segments or POS tags. However, their system generates additional nodes
for the OOVs, shown as broken line rectangles in Figure 4.1. In this case, derivational rules
are used that substitute “—" with “null" and “ v (i)" with “\» (i)", and the system can
generate the standard forms “ & T% (totemo, such)" and “7z D U\ (tanoshii, fun)" and
their POS tags. If we can generate sufficiently appropriate rules, these approaches seem to be
effective. However, there are many types of derivational patterns in SNS text, and they are
difficult to all cover manually. Moreover, how to set the path score for appropriately ranking
the word lattice when the number of candidates increases becomes a serious problem.

Saito et al. (2014) proposed supervised extraction of derivational patterns (we call them
transformation patterns), incorporated these patterns into a word lattice, and formulated
morphological analysis and normalization using a discriminate model. Although this ap-
proach can generate broad-coverage normalization candidates, it needs a large amount of
annotation data of variant words and their normalization. Kaji and Kitsuregawa (2014)
also proposed morphological analysis and normalization based on a discriminative model
and created variant words on the basis of hand-made rules. As far as we know, automatic
extraction of variant-normalization pairs has not been researched. If we can extract variant-
normalization pairs automatically, we can decrease the annotation cost and possibly increase
accuracy by combining our method with other conventional methods.

Several studies have applied a character-based approach. For example, Sasaki et al.
(2013) proposed a character-level sequential labeling method for normalization. However, it
handles only one-to-one character transformations and does not take the word-level context
into account. The proposed method can handle many-to-many character transformations
and takes word-level context into account, so it has a wider scope for handling non-standard
tokens.

Many studies have been done on text normalization for English; for example, Han and

Baldwin (2011) classifies whether or not OOVs are non-standard tokens and estimates stan-

30

dard forms on the basis of contextual, string, and phonetic similarities. Han, Cook, and
Baldwin (2012) and Hassan and Menezes (2013) developed the method of extracting variant-
normalization pairs automatically for English. Yang and Eisenstein (2013) introduced a
highly accurate unsupervised normalization model using log-linear model. In these studies,
clear word segmentations were assumed to exist. However, since Japanese is unsegmented,
the normalization problem needs to be treated as a joint normalization, word segmentation,
and POS tagging problem.

Thus, we propose automatically extracting normalization candidates from unlabeled data
and present a method for incorporating these candidates into Japanese morphological anal-

ysis and normalization. Our method can extract new variant patterns from real text.

4.3 Proposed Method

Our method consists of two parts. The first involves extracting normalization candidates and
their normal forms from unlabeled data. The second involves a morphological analysis and
normalization using extracted variants. Basically, we use a previously proposed dictionary
based approach (Sasano, Kurohashi, and Okumura, 2013; Saito et al., 2014; Kaji and Kit-
suregawa, 2014), but the method for generating normalization candidates and some features
used in a discriminative model are new. The proposed system is illustrated in Figure 4.2.
In the first part, we generate a coarsely segmented corpus and calculate the pairwise
similarity of two arbitrary nodes that appear in the segmented corpus. In a previous study
(Han and Baldwin, 2011), the nodes were assumed to be single words. On the other hand,
our method assigns a node to not only single words but also short phrases (See. 4.3.1). To
calculate similarity between two nodes, we use semantic similarity and phonetic similarity.
After calculating similarity, we filter the pairs that do not exceed a similarity threshold. We
use word embeddings as a semantic similarity measure. We describe this more precisely in

4.3.1.

31

Extracting

short word (phrase)
sentences and segmentation coarsely
Twitter datal ,p aces @ s |segmented
Twitter dat
short phrase list

+

]

Standard dictionary

Figure 4.3 Flow of generating coarsely segmented corpus

In the second part, the problem is how to incorporate extracted variants into Japanese
morphological analysis. We use a discriminative model and Viterbi decoding for estimating
word segmentation, POS tagging, and normalization. To prevent degradation induced by
incorporating extracted variants, we introduce many types of features. We describe this

more precisely in 4.3.2.

4.3.1 Extracting Candidates of Variant-Normalization Pairs from

Twitter Texts

Preparation of Coarsely Segmented Corpus Using Short SNS Sentences and

Phrases

We have to prepare a segmented corpus for generating normalization candidates and calcu-
lating similarity. The flow of generating coarsely segmented corpus is shown in Figure 4.3.
As we mentioned above, we cannot determine the explicit word segmentation of unlabeled
data, especially for variant words. However, we can assume that there are some explicit
segmentations in text: the left and right ends of sentences and symbols such as punctua-
tion, brackets, pictographs, emoticons, linefeed characters, commas, and spaces. SNS text
contains many short sentences and phrases consisting of a word or several words. Our idea
is to use the units of short sentences and short phrases delimited in symbols in SNS text as
cues for extracting variant words.

More specifically, we first segment large Twitter text with several predefined symbols,

32

extract character sequences consisting of ten or fewer characters, and insert them into a
standard dictionary. Then we segment the large twitter corpus using an expanded dictio-
nary and conventional analyzer. An example of a segmented sentence using an expanded
dictionary is “ ¥ o1& & — 5 (ohhayou)/ ! (Good morning!)", whereas the result using a
standard dictionary is “& o (0)/l&(ha)/ & —(y0)/ D (u)/ ! " Since this segmented text con-
tains several segmentation errors and noise, we extract reliable candidates using a similarity

threshold described in the next subsection.

Similarity Measures

To calculate the similarity between two nodes w; and w; appearing in a segmented corpus

(4.3.1), we mainly use two similarity measures: semantic and phonetic.

Semantic Similarity We calculate semantic similarity between w; and w; by inducing
dense real-valued low-dimensional embeddings from large unlabeled text (Mikolov, Yih, and
Zweig, 2013). We use the tool word2vec ! to calculate embeddings of each node. Semantic

similarity is defined as

semsim(w;, w;) = cos(vec(w;), vec(w;)) (4.1)

This semantic similarity is used as a feature of a normalization and morphological analysis

model (4.3.2). We set the embedding size is 200.

Phonetic Similarity We first convert a surface string into pronunciations (Japanese Kanji
to Hiragana) and calculate the edit distance. We use two types of edit distance: standard
and modified. For calculating modified edit distance, we set the substitution cost of two

strings 0.5 when two strings have the same vowels, two strings have the same consonant

Thttp://code.google.com/p /word2vec/

33

or two strings are vowels. We also set insertion and deletion cost of vowels 0.5, while the
standard cost of substitution, insertion and deletion is 1.

We use standard edit distance and modified edit distance as a threshold of candidate
filtering (4.3.1) and modified edit distance as an element of a feature of a normalization
and morphological analysis model (4.3.2). For a feature and threshold, we set the phonetic

similarity psim(w;, w;) as follows:

psim(w;,w;) = [] p(mi,m;) (4.2)
p(m;,m;) =1— MED(m;,m;)/OC(m;, m;) (4.3)

Where OC(m;, m;) indicates the total number of operations for calculating edit distance of
m; and m; and M ED(m;, m;) indicates the modified edit distance. m; and m; indicate the
morphemes in w; and wj, respectively.

To calculate morphological-level features, we analyzed w; using conventional morpholog-
ical analyzer and make morphological-level alignment using character-level alignment of w;
and w; and morphological information of w;. Here, w; and w; are regarded as a normal form
and a variant form, respectively. Here is an example of w; = “7z A U & — U (birthday)"
and w; = “72 A U & 5 O (birthday)". In this case, morphological-level alignment is (7z A
Uk—/72A U &5, /1) since character-level alignment is (72 /7z, A /A, U/U, &/ &,
— /9, 0/T) and word segmentation of w; is (7zA U & 5, O).

Candidate Filtering using Similarity Measures

We calculate the pairwise similarity between two nodes appearing in a segmented corpus
(4.3.1) and their filter using a similarity measure we defined (4.3.1). The set of nodes N
consists of all tokens w that appear in the segmented corpus. Since there is a huge number of

node pairs and most are irrelevant, we have to filter the pairs that have low similarities. Here,

34

Input: BT=AL&—UVEH>E— (Happy Birthday)

s A Le— || T] ®H || »& |l —
[prefix] [adj] [adj] [adj] [prefix] || [noun] [unk] [unk]
f=AL&S/V B/HT/E EOS
[birth] [admire]
H/HEE/R B/HTES
[birthday] [congratulations]

Figure 4.4 Example of proposed lattice

we set the threshold of semsim to 0.4, and the threshold of standard phonetic edit distance
is 2. Moreover, we filter the pairs in which the consonants of the beginning phonetic symbols
of each morphemes are different or morphological-level phonetic similarity p(m;, m;) is lower
than 0.6. We also filtered the candidates when the number of consonants and all characters in
a variant form (except for “>" “A", and lower case letters) are larger than that of a normal
form at morphological level. If a variant word is already exists in a standard dictionary, we
filtered the candidate. Note that this filtering is not intended to exactly identify whether the
pair has the relationship of variant and normalization. Since we use only two similarities,
simple phonetic information and the coarsely segmented corpus in this phase, we only extract
candidates of variants and their normal forms coarsely in the first step. Then, we exactly

identify the word segmentation and normalization simultaneously in the second step (4.3.2).

4.3.2 Normalization and Morphological Analysis
Incorporating Normalization Candidates in Japanese Morphological Analysis

We generate the word lattice using extracted candidate for variant-normalization pairs and
dictionary lookup (See Figure 4.4). The broken line rectangles in Figure4.4 are nodes added
by the proposed method. We exploit dictionary lookup by using the possible character se-
quence of the extracted normalized character sequences when variant character sequences

match the input character sequences. For example, we exploit dictionary lookup for input

35

Name Feature

Word unigram score Jmips
POS bi-gram score Toioips
Character sequence score 1/log(pt, /1) if pt, > pl, otherwise 0.
where, pl, = pglg/length(ac% Dz = szl p(C]"C;:é), € (s,t)
Character similarity score log(psim)
Semantic similarity score log(semsim)
Character frequency score log(freq, +1)
Character and morph transformation score log(freqey + 1), log(fregm: + 1), dety Ome

Table 4.1 Feature list

character sequences such as “H72A U &k — 08 o & — (happy birthday)" and add the
possible normalized word sequences such as “3 /F4:/H (birthday) " and “¥/HT& 5
(congratulations)" which are from extracted variant-normalization candidates. The proposed
method is intended to generate normalized word sequences. In the first step, appropriate-
ness of word segmentation is not taken into account, but in this phase, we can exactly
evaluate whether the acquired pair is appropriate for normalization or not by considering

the morphological connectivity.

Objective Function

We used a discriminative model for incorporating many features. The decoder selects the
optimal sequence ¢y from L(s) when given the candidate set L(s) for sentence s. This is

formulated as follows (W. Jiang, Mi, and Q. Liu, 2008; Kaji and Kitsuregawa, 2013):

9 =yers W - £(y) (4.4)

Where ¢ is the optimal path, L(s) is the lattice created for s, w - f(y) is the dot product
between weight vector w and feature vector f(y). The optimal path is selected in accordance
with the w - f(y) value. For estimating parameters, we used the averaged perceptron, which

is widely used (Collins, 2002).

36

Features

The proposed lattice generation method generates a lattice larger than that generated in
traditional dictionary-based lattice generation. Therefore, we need to introduce appropriate
normalization scores into the objective function to prevent degradation. Table 4.1 lists the
features we used. Let m; be the ith word candidate and p; be the POS tag of m;. p;,_; and
m;_; are adjacent POS tag and word, respectively. We used the word unigram score f,,p,,
the cost for a pair of adjacent POSs f,,_, ,, that are estimated by MeCab 2, and additional
scores.

The character sequence score reflects the character sequence probability of the normaliza-
tion candidates (Saito et al., 2014). Here, s and ¢; are input string and transformed string,
respectively (e.g., in Figure 4.4, for the normalized node "&FEA H (birthday)", s is "$H 7z
AL E—UED> L —"andt; is "Bt/EHB® > & —". Then p, and p,, are calculated by
using the character 5-gram of a news corpus. c; is the jth character of character sequence.
We also used character sequence score as a candidate filter. We filtered the candidates that
did not satisfy the pre-defined condition that p{ < pj .

The character similarity score is calculated using psim (see 4.3.1). The semantic similarity
score is calculated using semsim (see 4.3.1). The Character frequency score is a frequency
of surface character sequences of variant nodes appeared in news data. Since variant words
rarely appear in the news data, we use this feature to identify variant words and standard
words. The character and morph transformation score is related to transformation patterns.
log(freq.+1) and log(freg,:+1) are the frequency of transformation patterns ct (character-
level) and mt (morphological-level) that are extracted from variant-normalization candidates,
respectively. ¢ and ¢,,; are 1 if a node contains transformation patterns ct and mt, otherwise
0, respectively. The scale of features were adjusted.

Since all those features can be factorized, the optimal path is searched by using the

Zhttp://taku910.github.io/mecab/ (in Japanese)

37

variant forms norm forms translation semsim

2L —\ (ureshiii) SN U (ureshii) happy 0.655
S0 U — (ureshii) SN U (ureshii) happy 0.684
SN U v (ureshii) SR U\ (ureshii) happy 0.575
ST (uresui) SN U (ureshii) happy 0.568
SNB N (uretii) SR U\ (ureshii) happy 0.649
SNUTS (ureshishu) 2L (ureshii) happy 0.715
oA A (kawaee) POV (kawaii) cute 0.744
MADW (kanwaii) MO (kawaii) cute 0.683
E R DLWV (kyawais) POV (kawaii) cute 0.770
B/RIF—/U/ET (o/negee/shi/masu) B /RHD\N/ U/ E T (o0/negai/shi/masu) please 0.657
B/ U/ ET (o/nagai/si/masu) B/ U/ E T (0/negai/shi/masu) please 0.590
B/ BN/ U/ ES (o/negai/shi/mahu) B/ /U/ET (0/negai/shi/masu) please 0.678
BP0/ 7z (tikare/ta) N/ T (tukare/ta) I'm tired 0.742
/DT E— (o/medeto) B/HTE D (o/medetou) congratulations 0.911
B/HTE B (o/medeto) B/HTED (o/medetou) congratulations 0.796
B/ > & — (o/metto) B/HTED (o/medetou) congratulations 0.753
B/OTE D (o/meteto) B/HTED (o/medetou) congratulations 0.665

Table 4.2 Example of extracted pair of variants-normalization candidates

Viterbi algorithm.

Candidate Expansion

Although our method can extract many variants, we expand the variants to achieve higher
recall. We use a simple rule for adding simple variation in the decoding step. For example,

" are reduced to one

first, repetitions of more than one character of “—" “~" and “ >
character and repetitions of more than three characters of Japanese Hiragana and Katakana
are reduced to three characters and one character. Moreover, we use the patterns of deletions

of “—=" “~""«“5"and lowercase characters (Saito et al., 2014).

b I

4.4 Experiments

4.4.1 Data and Settings

We prepared the Balanced Corpus of Contemporary Written Japanese (BCCWJ) (Maekawa

et al., 2014), which is a commonly used dataset in Japan and Twitter data. For unsupervised

38

variant extraction, we used about 70 million unlabeled Twitter corpora. We used 2,000
sentences of BCCWJ text for training the decoder and Twitter data for the test. Twitter data
contain manually annotated word segmentations, POS tags, and normal forms for variant
words and consist of 7,213 sentences and 995 variant words. We used Unidic (unidic-mecab)

3 as a standard dictionary.

4.4.2 Baselines and Evaluation Metrics

We compared the three methods listed in Table 4.3 in our experiments. Conventional means
a method that generates no normalization candidates and only uses the word cost and
the cost for a pair of adjacent POSs, so we can consider it as a conventional Japanese
morphological analysis. Rule-based means the conventional rule-based method proposed
by Sasano, Kurohashi, and Okumura (2013). The rule-based method considers insertion
of long sound symbols and lowercase characters and substitution with long sound symbols
and lowercase characters. We basically use the transformation rule of Sasano, Kurohashi,
and Okumura (2013) and use three features for the model of Rule-based method: the word
score, score for a pair of adjacent POSs, and character transformation score. The character
transformation score is constant for all transformation rules. Proposed is our method. We
used extracted variant-normalization pairs and all features described in 4.3.2.

We evaluated each method on the basis of precision, recall, and the F-value for the
overall system accuracy and the recall for normalization. Since Japanese morphological
analysis simultaneously estimates the word segmentation and POS tagging, we have to assess

whether or not adding the normalization candidates negatively affects a system.

39

word seg word seg and POS tag | normalization
method prec rec F prec rec F rec
Conventional | 0.865 0.949 0.905 | 0.837 0.919 0.876 -
Rule-based 0.879 0.952 0.914 | 0.848 0.918 0.881 0.294
Proposed 0.882 0.951 0.915 | 0.851 0.918 0.883 0.340

Table 4.3 Test data (Twitter) precision, recall, and F-value results

proposed conventional gold translation

(1) 8L (Bo) /& BbH7 b (Bo) /& I thought
omo (omott) /ta omota omo (omott) /ta

2) I XEDA (N1AV YY) X/ &0 /A EEDA (N1 AY V) violin
bayorin (baiorin) ba/yo/rin bayorin (baiorin)

(3) ALV (DDWVWY) DA/ DN DALV (DD WY) cute
kanwaii (kawaii) kan/wa /i kanwaii (kawaii)

(4) ToL (W) o/ I oL (W) It is cold
samu (samui) sa/mu samu (samu)

(5) DAZD (KAD) A/ Z B bAHZDB (KAD) It is funny
waroeru (waraerw) waro/ eru waroery (waraery)

6) B—/Z< HF—/ZK H—I< (EH) Kingdom
00/ koku 00/ koku ookoku (oukoku)

(7) D\ o7z (VA1 —h) D/ [Tz DWol (VA v X—) Twitter
tuitta (tuitta) tu/i/ta tuitta (tuitta)

“/" indicates the estimated word segmentation. Words in parentheses “()" are
estimated normal forms. Underlined words are variant words.

Table 4.4 Example of morphological analysis and normalization outputs

4.4.3 Results
Results of Extracted Variant-Normalization Candidates

Table 4.2 lists examples of the extracted variant-normalization candidates. Our method
automatically extracted well-known transformation patterns such as substitution of lowercase
characters, insertion of lowercase characters, and insertion of “—" and “->" such as “ 9
U—\ (ureshii)".

Our method also extracted more variant phonetic transformation patterns such as sub-

7y

stitution of “shi" with “pi," “ji," or “hi" and these combinations such as “ 2 #VH N (uretii)".

3http://osdn.jp/projects/unidic/ (in Japanese)

40

We also list examples of extracted multi-word variant-normalization pairs. The phrase
B/lF—/U /9 (o/nege/shi/masu)" is a variant pattern of the original phrase “3 /42
/U E T (o/negai/shi/masu)". Our method extracted these multi-word mappings.
Moreover, our method can extract typing errors such as “3 /& T& 5 (o/medetou)”
with “3 /T & 5 (o/meteto)" and slang such as “D AU 9 (ureshisu)” with “5 3L \»
(ureshii).” Such relatively less frequent patterns were often excluded from normalization
targets. Our method also extracts many paraphrases: semantically and phonetically similar
pairs that are not variant-normalization pairs. This often degrades the results of morpho-
logical analysis. We use a discriminative model to prevent such paraphrase pairs appearing

in the decoding step.

Morphological Analysis and Normalization Results

Tables 3 and 4 list the results for the Twitter text. The F-value of the proposed method
is significantly higher than those of the conventional method and rule-based method. Our
method was able to extract broad-coverage variant words, and these candidates also improve
the recall of normalization without degrading the overall accuracy of morphological analysis.

Table 4.4 show examples of the system output. In the table, slashes indicate the positions
of the estimated word segmentations, and the correctly analyzed words are written in bold.
Examples (1) to (5) are examples improved by using the proposed method. Examples (6)

and (7) are examples that were not improved.

Comparison with the Supervised Model In Chapter3, we proposed supervised model
for normalization and morphological analysis. When we train the model with supervised
learning, the recall of normalization was about 0.5. In this study, the recall of normalization
was about 0.34. Therefore, our unsupervised learning can acquire about 60% of normalization
patterns which can be obtained by supervised learning. Since variant-normalization patterns

changes day by day and varies depending on the domain, it is considered that the coverage of

41

variant-normalization patterns can be improved by applying this unsupervised technique to
the domain with no supervised data or the latest resources. Moreover, we used the acquired
phrase level pattern as it is in this study. However, we can increase the recall by acquiring

finer character-level patterns, as we did in Chapter3.

Error Analysis There were roughly two types of errors. The first occurred as a result of
a lack of variant-normalization candidates, and the second was search errors. Example (6)
shows an example of a case in which our method could not generate the correct normalized
form because we could not extract the correct normalized form. Because we extract normal-
ization candidates by phrase level, some patterns are difficult to extract as a word unit. To
increase recall, we need to extract character-level and morph-level transformation patterns
that occur frequently from phrase-level patterns and add them into morphological analysis
and normalization. Example (7) shows an example of a case in which a normalized candidate
was generated but a search failed. We will need to develop a more complicated model or
introduce other features into the current model to reduce the number of search errors.
Besides the above errors, there are some errors in which correct normalization candidates
were filtered. In this study, we filtered many candidates to eliminate noise. Some normaliza-
tion candidates are filtered, and the correct normalization candidates cannot be generated in
the word lattice. To increase recall further, we have to filter functions or calculate similarity
scores more precisely. Also, some errors are associated with unknown words. Twitter data
contain many unknown words such as names, and our system sometimes treats these names
as other nouns. Non-standard and standard words needs to be more precisely discriminated

between for higher accuracy.

42

4.5 Conclusion and Future Work

We introduced a new idea for extracting variant words from an unsegmented corpus and
incorporated it into morphological analysis. The proposed method can effectively analyze
noisy words without manual annotation. The limitation of this work is that this method
is based on phonetic similarity. Although our method can extract many variant patterns,
it cannot extract a pair of words that have quite low phonetic similarity. In addition, our
method is based on a heuristic segmentation method for extracting normalization candidates.
Though it works well in practice, we want to extend this idea for a more general framework.

In future work, we would like to increase the coverage of variant-normalization pairs. For
this, we have to extract the character- and morph-level transformation patterns from the

acquired phrase level variant-normalization pairs.

43

Chapter 5

Improving Neural Text Normalization
with Data Augmentation at Character-

and Morphological Levels

5.1 Introduction

Text normalization is an important fundamental technology in actual natural language pro-
cessing (NLP) systems to appropriately handle texts such as those for social media. This
is because social media texts contain non-standard texts, such as typos, dialects, chat ab-
breviations!, and emoticons; thus, current NLP systems often fail to correctly analyze such
texts (Huang, 2015; Sajjad, Darwish, and Belinkov, 2013; Han, Cook, and Baldwin, 2013).
Normalization can help correctly analyze and understand these texts.

One of the most promising conventional approaches for tackling text normalizing tasks
is using statistical machine translation (SMT) techniques (Junczys-Dowmunt and Grund-
kiewicz, 2016; Yuan and Briscoe, 2016), in particular, utilizing the Moses toolkit (Koehn et

al., 2007). In recent years, encoder-decoder models with an attention mechanism (Bahdanau,

!short forms of words or phrases such as “4u” to represent “for you”

44

Cho, and Bengio, 2014) have made great progress regarding many NLP tasks, including ma-
chine translation (Luong, Pham, and Manning, 2015; Sennrich, Haddow, and Birch, 2016),
text summarization (A. M. Rush, Chopra, and Weston, 2015) and text normalization (Xie
et al., 2016; Yuan and Briscoe, 2016; Ikeda, Shindo, and Matsumoto, 2017). We can also sim-
ply apply an encoder-decoder model to text normalization tasks. However, it is well-known
that encoder-decoder models often fail to perform better than conventional methods when
the availability of training data is insufficient. Unfortunately, the amount of training data
for text normalization tasks is generally relatively small to sufficiently train encoder-decoder
models. Therefore, data utilization and augmentation are important to take full advantage
of encoder-decoder models. Xie et al. (2016) and Ikeda, Shindo, and Matsumoto (2017) re-
ported on improvements of data augmentation in error correction and variant normalization
tasks, respectively.

Following these studies, we investigated data-augmentation methods for neural normal-
ization. The main difference between the previous studies and this study is the method of
generating augmentation data. Xie et al. (2016) and Ikeda, Shindo, and Matsumoto (2017)
used simple morphological-level or character-level hand-crafted rules to generate augmented
data. These predefined rules work well if we have sufficient prior knowledge about the tar-
get text-normalization task. However, it is difficult to cover all error patterns by simple
rules and predefine the error patterns with certain text normalization tasks, such as di-
alect normalization whose error pattern varies from region to region. We propose two-level
data-augmentation methods that do not use prior knowledge.

The contributions of this study are summarized as follows: (1) We propose two data-
augmentation methods that generate synthetic data at character and morphological levels.
(2) The experimental results with Japanese dialect text normalization demonstrate that our
methods enable an encoder-decoder model, which performs poorly without data augmenta-
tion, to perform better than Moses, which is a strong baseline method when there is a small

number of training examples.

45

5.2 Text Normalization using Encoder-Decoder Model

In this study, we focus on the dialect-normalization task as a text-normalization task. The
input of this task is a dialect sentence, and the output is a “standard sentence” that cor-
responds to the given input dialect sentence. A “standard sentence" is written in normal
form.

We model our dialect-normalization task by using a character-based attentional encoder-
decoder model. More precisely, we use a single layer long short-term memory (LSTM)
for both the encoder and decoder, where the encoder is bi-directional LSTM. Let s =
(s1,82,...,8,) be the character sequence of the (input) dialect sentence. Similarly, let
t = (t1,ta,...,t,) be the character sequence of the (output) standard sentence. The nota-
tions n and m are the total lengths of the characters in s and ¢, respectively. Then, the

(normalization) probability of ¢ given dialect sentence s can be written as
p(tls,0) = [[p(t;lt<;,), (5.1)

j=1

where 6 represents a set of all model parameters in the encoder-decoder model, which are
determined by the parameter-estimation process of a standard softmax cross-entropy loss
minimization using training data. Therefore, given # and s, our dialect normalization task

is defined as finding ¢ with maximum probability:
t = argmax,{p(t|s,0)}, (5.2)

where t represents the solution.

46

5.3 Proposed Methods

This section describes our proposed methods for generating augmented-data. The goal with
augmented data generation is to generate a large amount of corresponding standard and
dialect sentence pairs, which are then used as additional training data of encoder-decoder
models. To generate augmented data, we construct a model that converts standard sentences
to dialect sentences since we can easily get a lot of standard sentences. Our methods are

designed based on different perspectives, namely, morphological- and character-levels.

5.3.1 Generating Augmented Data using Morphological-level Con-

version

Suppose we have a small set of standard and dialect sentence pairs and a large standard
sentences. First, we extract morphological conversion patterns from a (small) set of stan-
dard and dialect sentence pairs. Second, we generate the augmented data using extracted

conversion patterns.

Extracting Morphological Conversion Patterns For this step, both standard and
dialect sentences, which are basically identical to the training data, are parsed using a pre-
trained morphological analyzer. Then, the longest difference subsequences are extracted
using dynamic programming (DP) matching. We also calculate the conditional genera-
tive probabilities p(ms|m;) for all extracted morphological conversion patterns, where my
is a dialect morphological sequence and m; is a standard morphological sequence. We set
p(ms|me) = Foym,/Fm,, where Fy, .. is the joint frequency of (mg,m;) and F,,, is the fre-
quency of m; in the extracted morphological conversion patterns of training data. Table 5.1
gives examples of extracted patterns from Japanese standard and dialect sentence pairs,

which we discuss in the experimental section.

47

standard morphs (m;) dialect morphs (my) p(ms|my)

U /72 (shinaz) T A (sen) 0.767
D/ TY /D (nodesuga) A/ U % /T E (njyakedo) 0.553
722\ (kudasar) DN/ H /I (tukasai) 0517

Table 5.1 Examples of extracted morphological conversion patterns

Algorithm 1 Generating Augmented Data using Morphological Conversion Patterns

morphlist <~ MorphAnalyse(standardsent)

newmorphlist < ||

for i =0 ...len(morphlist) do
sent <— CONCAT (mrphlist|::])
MatchedList - CommonPrefixSearch(PatternDict, sent)
ms; < SAMPLE(MatchedList, P(mg|m;))
newmorphlist < APPEND (newmorphlist, m;)

end for

synthesizedsent «+— CONCAT (newmrphlist)

return synthesizedsent

Generating Augmented Data using Extracted Morphological Conversion Pat-
terns After we obtain morphological conversion patterns, we generate a corresponding
synthesized dialect sentence of each given standard sentence by using the extracted mor-
phological conversion patterns. Algorithm 1 shows the detailed procedure of generating
augmented data.

More precisely, we first analyze the standard sentences with the morphological analyzer.
We then look up the extracted patterns for the segmented corpus from left to right and replace
the characters according to probability p(ms|m;). Table 5.2 shows an example of generated
augmentation data. When we sample dialect pattern m, from MatchedList, we use two types
of p(ms|lmy). The first type is fixed probability. We set p(ms|m;) = 1/len(MatchedList)
for all matched patterns. The second type is generative probability, which is calculated
from the training data (see the previous subsection). The comparison of these two types of

probabilities is discussed in the experimental section.

48

input (standard sentence): T YA b —J)LLRMPo>7
morph sequence: - A h—)V/U /7%r> [T/

matched conversion pattern:

(me,ms) = (U /72 [Tz, BA /D32 T2)

replaced morph sequence: ¥ A b —J)V/FA /Mo
output (augmented sentence): T VA b —J)LEAN ST

Table 5.2 Example of generated augmentation data using morphological conversion
patterns

5.3.2 Generating Augmented Data using Character-level Conver-
sion

For our character-level method, we take advantage of the phrase-based SMT toolkit Moses
for generating augmented data. The idea is simple and straightforward; we train a ‘standard-
to-dialect” sentence SMT model at a character-level and apply it to a large non-annotated
standard sentences. This model converts the sentence by using character phrase units. Thus,

we call this method “character-level conversion".

5.3.3 Training Procedure

We use the following two-step training procedure. (1) We train model parameters by using
both human-annotated and augmented data. (2) We then retrain the model parameters only
with the human-annotated data, while the model parameters obtained in the first step are
used as initial values of the model parameters in this (second) step. We refer to these first
and second steps as “pre-training” and “fine-tuning”, respectively. Obviously, the augmented
data are less reliable than human-annotated data. Thus, we can expect to improve the
performance of the normalization model by ignoring the less reliable augmented data in the

last-mile decision of model parameter training.

49

method BLEU

NAG HIR SEN
No-transformation 72.4 63.9 57.3
Moses (train) 80.1 72.3 67.1
Moses (train + mr:R) 75.4 71.0 64.9
Moses (train + mr:W) 80.0 73.7 67.7
Moses (train + mo) 79.9 74.3 66.9
Moses (train + mo + mr:W) 80.0 73.3 67.8
EncDec (train) 43.3 33.9 27.6
EncDec (train + mr:R) 75.3 / 63.5 69.0 / 67.3 64.2 / 58.8
EncDec (train 4+ mr:W) 786 /782 749 /735 68.0/67.6
EncDec (train + mo) 791 /791 742 /729 669/ 65.6

EncDec (train + mo+mr:W) 80.1 /79.5 75.5 /746 68.2 /68.1

Table 5.3 BLEU scores of normalization. “/" indicates with (left) and without
(right) fine tuning. 200,000 pairs of augmented data were used.

method BLEU

NAG HIR SEN
Moses (oracle) 80.2 75.7 68.3
Moses (best) 80.1 743 67.8
EncDec (oracle) 84.8 81.6 73.1
EncDec (best) 80.1 75.5 68.2

Table 5.4 Evaluation of oracle sentences

5.4 Experiments

5.4.1 Data

The dialect data we used were crowdsourced data. We first prepared the standard seed
sentences, and crowd workers (dialect natives) rewrote the seed sentences as dialects. The
target areas of the dialects were Nagoya (NAG), Hiroshima (HIR), and Sendai (SEN), which
are major cities in Japan. KEach region’s data consists of 22,020 sentence pairs, and we
randomly split the data into training (80%), development (10%), and test (10%). For aug-
mented data, we used the data of Yahoo chiebukuro, which contains community QA data.
Since the human-annotated data are spoken language text, we used the community QA data

as close-domain data.

20

85

80
f—_
2
o 75
d
2]
= 70
@m P
60 T T T T]
1 5 10 15 20
size of augmented data (10/4)
e SEN (EncDeC) ===NAG (EncDec) HIR (EncDec)

Figure 5.1 The effect of augmentation data

5.4.2 Settings

For the baseline model other than encoder-decoder models, we used Moses. Moses is a tool
of training statistical machine translation and a strong baseline for the text-normalization
task (Junczys-Dowmunt and Grundkiewicz, 2016). For such a task, we can ignore the word
reordering; therefore, we set the distortion limit to 0. We used MERT on the development
set for tuning. We confirmed that using both manually annotated and augmented data for
building LM greatly degraded its final BLEU score in our preliminary experiments and used
only manually annotated data as the training data of LM.

We used beam search for the encoder-decoder model (EncDec) and set the beam size
to 10. When in the n beam search step, we used length normalized score S(t,s), where
S(t,s) =log(p(t|s,0))/|t]. We maximize S(¢,s) to find normalized sentence. We set the
embedding size of the character and hidden layer to 300 and 256, respectively. We used
"mrphaug (mr)" as the augmented data generated from morphological-level conversion and
"mosesaug (mo)" as augmented data generated from character-level conversion (Moses). The
“mr:R" and “mr:W" represent the difference in generative probability p(ms|m;), which is used

when generating augmented data; “mr:R" indicates fixed generative probability and “mr:W"

o1

indicates weighted generative probability. For the evaluation, we used BLEU (Papineni et

al., 2002), which is widely used for machine translation.

5.4.3 Results

Table 5.3 lists the normalization results. No-transformation indicates the result of evaluating
input sentences without transformation. Moses achieved a reasonable BLEU score with a
small amount of human-annotated data. However, the improvement of adding augmented
data was limited. On the other hand, the encoder-decoder model showed a very low BLEU
score with a small amount of human-annotated data. With this amount of data, the encoder-
decoder model generated a sentence that was quite different from the reference. When adding
augmented data, the BLEU score improved, and fine tuning was effective for all cases.

When comparing our augmented-data-generation methods, generating data according to
fixed probability (mr:R) degraded the BLEU score both for Moses and the encoder-decoder
model. When generating data with fixed probability, the quality of augmented data becomes
quite low. However, by generating data according to generative probability (mr:W), which is
estimated with training data, the BLEU score improved. This indicates that when generating
data using morphological-level Conversion, it is important to take into account the generative
probability. Combining “mr:W" and “mo" (train+mo-+mr:W) achieves higher BLEU scores
than that of other methods. This suggests that combining different types of data will have
a positive effect on normalization accuracy.

When comparing three difference regions, the BLEU scores of Moses (train) and EncDec
(train+mo-+mr:W) for NAG (Nagoya) were the same score, while there were improvements
for HIR (Hiroshima) and SEN (Sendai). It is inferred that the effect of the proposed methods
for NAG were limited because the difference between input (dialect) sentences and correct

(standard) sentences was small.

02

5.5 Discussion

The Effect of Augmented Data We examined the effect of augmented data by changing
the number of augmented data. The results is shown in figure 5.1. We found that the
accuracy was greatly improved by 10,000 data, and almost converged when we added about
200,000 data. To further improve the accuracy, it is necessary to create higher quality

augmented data.

Oracle Analysis To investigate the further improvement on normalization accuracy, we
analyzed oracle performance. We enumerated the top 10 candidates of normalized sentences
from Moses and proposed method, extracted the candidates that were the most similar to the
reference, and calculated the BLEU scores. Table 5.4 shows the results of oracle performance.
Interestingly, the oracle performances of the encoder-decoder model with augmented data
was quite high, while that of Moses was almost the same as the best score. This implies
that there is room for improvement for the encoder-decoder model by just improving the

decoding or ranking function.

Other text normalization task In this study, we evaluated our methods with Japanese
dialect data. However, these methods are not limited to Japanese dialects because they do
not use dialog-specific information. If there is prior knowledge, the combination of them
will be more promising for improve normalization performance. We will investigate the

effectiveness of our methods for other normalization tasks for future work.

Limitation Since our data-augmentation methods are based on human-annotated training
data, the variations in the generated data depend on the amount of training data. The varia-
tions in augmented data generated with our data-augmentation methods are strictly limited
within those appearing in the human-annotated training data. This essentially means that

the quality of augmented data deeply relies on the amount of (human-annotated) training

23

data. We plan to develop more general methods that do not deeply depend on the amount

of training data.

Relationship with the method of Japanese Morphological Analysis and Normal-
ization We proposed the method of Japanese morphological analysis and normalization in
Chapter3. In Chapter3, the system outputs are word segmentation, POS and normalized
form. On the other hand, In this Chapter, the system output is only normalized form and it
is a simpler setting. To apply the encoder-decoder model to the former setting, we need more
training data. In addition, we have to consider how to handle word-level and character-level

information efficiently in the encoder-decoder model.

5.6 Conclusion

We investigated the effectiveness of our augmented-data-generation methods for neural text
normalization. From the experiments, the quality of augmented data greatly affected the
BLEU score. Moreover, a two-step training strategy and fine tuning with human-annotated
data improved this score. From these results, there is possibility to improve the accuracy
of normalization if we can generate higher quality data. For future work, we will explore a

more advanced method for generating augmented data.

o4

Chapter 6

Length-controllable Abstractive
Summarization by Guiding with

Summary Prototype

6.1 Introduction

Neural summarization has made great progress in recent years. It has two main approaches:
extractive and abstractive. Extractive methods generate summaries by selecting important
sentences (Zhang, Lapata, et al., 2018; Q. Zhou et al., 2018). They produce grammatically
correct summaries; however, they do not give much flexibility to the summarization because
they only extract sentences from the source text. By contrast, abstractive summarization en-
ables a more flexible summarization, and it is expected to generate more fluent and readable
summaries than extractive models. The most commonly used abstractive summarization
model is the pointer-generator (See, P. J. Liu, and Manning, 2017), which generates a sum-
mary word-by-word while copying words from the source text and generating words from a
pre-defined vocabulary set. This model can generate an accurate summary by combining

word-level extraction and generation.

25

Source Text

various types of renewable energy such as solar and wind are often touted as
being the solution to the world ’s growing energy crisis . but one researcher
has come up with a novel idea that could trump them all - a biological solar
panel that works around the clock . by harnessing the electrons generated
by plants such as moss , he said he can create useful energy that could be
used at home or elsewhere . a university of cambridge scientist has revealed
his green source of energy . by using just moss he is able to generate enough
power to run a clock -Irb- shown -rrb- . he said panels of plant material
could power appliances in our homes . and the technology could help
farmers grow crops where electricity is scarce . (...)

Reference Summary

university of cambridge scientist has revealed his green source of energy .
by using just moss he is able to generate enough power to run a clock . he
said panels of plant material could power appliances in our homes . and
the tech could help farmers grow crops where electricity is scarce .

Outputs (K=10)

|Extracted prototype| he said panels of plant material could power in
our
|Abstractive summary| panels of plant material could power appliances

Outputs (K=30)

|Extracted Prototype| university of cambridge scientist has revealed his
he said panels of plant material could power appliances in our homes and
the technology could help farmers grow crops where is scarce
[Abstractive summary| university of cambridge scientist has revealed
his green source of energy . he said panels of plant material could power
appliances in our homes .

Figure 6.1 Output examples of our model. Our model extracts the top-K impor-
tant words, which are colored red (K = 10) and blue (K = 30), as a prototype from
the source text. It generates an abstractive summary based on the prototype and
source texts. The length of the generated summary is controlled in accordance with
the length of the prototype text.

Although the idea of controlling the length of the summary was mostly neglected in the
past, it was recently pointed out that it is actually an important aspect of abstractive sum-

marization (Yizhu Liu, Luo, and Zhu, 2018; Fan, Grangier, and Auli, 2018). In practical

o6

applications, the summary length should be controllable in order for it to fit the device that
displays it. However, there have only been a few studies on controlling the summary length.
Kikuchi et al. (2016) proposed the length-controllable model that uses length embeddings.
In the length embedding approach, the summary length is encoded either as an embedding
that represents the remaining length at each decoding step or as an initial embedding to the
decoder that represents the desired length. Yizhu Liu, Luo, and Zhu (2018) proposed a
model that uses the desired length as an input to the initial state of the decoder. These pre-
vious models control the length in the decoding module using length embeddings. However,
length embeddings only add length information on the decoder side. Consequently, they
may miss important information because it is difficult to take into account which contents
should be included in the summary for certain length constraints.

We propose a new length-controllable abstractive summarization by guiding with the
prototype text. Figure 6.1 shows output examples generated by our model. Our idea is to
introduce a word-level extractive module instead of length embeddings to control the sum-
mary length. Figure 6.2 compares the previous length-controllable models and the proposed
model. The Yellow blocks are the modules responsible for length control. Since the word-
level extractor controls which contents are to be included in the summary when a length
constraint is given, it is possible to generate a summary including the important contents.
Our model consists of two steps. First, the word-level extractor predicts the word-level im-
portance of the source text and extracts important words according to the importance scores
and the desired length. The extracted word sequence is used as a “prototype" of the sum-
mary; we call it the “prototype” text. Second, we use the prototype text as an additional
input of the encoder-decoder model. The length of the summary is kept close to the length
of the prototype text because the summary is generated by referring to the prototype text.

Another idea to improve summarization accuracy is to devise a new method of extractive-
and-abstractive summarization. Extractive-and-abstractive summarization incorporates an

extractive model in an abstractive model, and has achieved state-of-the-art accuracy in

57

Previous length-controllable models Proposed model

source en%—ec summary| | source

enc-aec
mode

summary

\ 4
length | extractive— Prototype
embeddings " model (K words)
* '
desired i desired
length K length K

Figure 6.2 Comparison of previous length-controllable models and proposed model.
Our model controls the summary length in accordance with the length of the pro-
totype text.

Previous extractive-and-abstractive models: Proposed model
D 5 >
source summary | source summary
mode ' mode

K words

biased souce

H
Y [extracted sents J N
extractive ! exiractive
or H mode
ode :
H
H

desired
length K

Figure 6.3 Comparison of previous extractive-and-abstractive models and proposed
model. Our model jointly encodes the source and prototype texts and copies words
from both texts.

abstractive summarization (Gehrmann, Deng, and A. Rush, 2018; Chen and Bansal, 2018).
Since the extractive model identifies important contents to be included in the summary, the
abstractive model can generate a more accurate summary by incorporating the extractive
result. However, the previous methods only consider the extracted result when generating a
summary and the extractive results often drop important information in the source text. On
the other hand, our model generates a summary by jointly encoding the source and prototype
texts and copying words from both texts. Figure 6.3 compares the previous models and the
proposed model. Since the prototype text guides the summary while considering the source
text, our model can generate an informative summary.

Ours is the first method that controls the summary length using an extractive module

and achieves both high accuracy and length controllability in abstractive summarization.

o8

Our contributions are summarized as follows:

e We propose a new length-controllable prototype-guided abstractive summarization
model, called LPAS. Our model effectively guides the abstractive summarization us-
ing a summary prototype. Our model controls the summary length by controlling the

number of words in the prototype text.

e Our model achieved state-of-the-art ROUGE scores in standard and length-controlled

abstractive summarization settings on the CNN/DM and NEWSROOM datasets.

e We verified the effectiveness of BERT (Devlin et al., 2018) as a prototype extractor.
This is the first study to incorporate BERT in extractive-and-abstractive summariza-

tion.

6.2 Task Definition

Our study defines length-controllable abstractive summarization as two pipelined tasks: pro-
totype extraction and prototype-guided abstractive summarization. The problem formula-

tions of each task are described below.

Task 1 (Prototype Extraction). Given a source text X with L words X¢= (2{,... 2%)
and desired summary length K, the model estimates importance scores P = (p$*...p$)
and extracts the top-K important words Xt = (' ... 2¥) as a prototype text on the basis of

Pt The desired summary length K can be set to an arbitrary value. Note that the original
word order is preserved in XT (XT is not bag-of-words). This is because the expressions in
the original text are often used as they are in the generated summaries, and it is considered
that the expressions in the original document can be reused more efficiently by maintaining

the original word order.

Task 2 (Prototype-guided Abstractive Summarization). Given the source text and the ex-

tracted prototype text XT', the model generates a length-controlled abstractive summary Y =

29

Summary

(Pointer-Generator)

«] MLM

dual encoder dual encoder decoder block
Prototype text block (source) block (prototype) (source)
(Top-K words)
wh Tt I
shared encoder shared encoder decoder block
block block (prototype)

positional ositional ¢ posmo_nal
encoding pncoding > encoding

Source text prototype text

Source text

prototype extractor Joint encoder summaization decoder
(Sec.3.2) (Sec. 3.3) (Sec. 3.4)

Figure 6.4 Architecture of proposed model

(Y1, ---,yr). The length of summary T is controlled in accordance with the prototype length

6.3 Proposed Model

6.3.1 Overview

Our model consists of three modules: the prototype extractor, joint encoder, and summary
decoder (Figure 6.4). The last two modules comprise Task 2, the prototype-guided ab-
stractive summarization. The prototype extractor uses BERT, and the joint encoder, and

summary decoder uses the Transformer architecture (Vaswani et al., 2017).

Prototype extractor (§6.3.2)

The prototype extractor extracts the top-K important words from the source text.

Joint encoder (§6.3.3)

The joint encoder encodes both the source text and the prototype text.

60

Summary decoder (§6.3.4)

The summary decoder is based on the pointer-generator model and generates an abstractive

summary by using the output of the joint encoder.

6.3.2 Prototype Extractor

Since our model extracts the prototype at the word level, the prototype extractor estimates
the importance score pi** of each word xf € X¢. BERT has achieved SOTA on many
classification tasks, so it is a natural choice for the prototype extractor. Our model uses
BERT and a task-specific feed-forward network on top of BERT. We tokenize the source
text using the BERT tokenizer! and fine-tune the BERT model. The importance score pf**

is defined as

Pt = o(W,'BERT(X); + by) (6.1)

where BERT() is the last hidden state of the pre-trained BERT. W; € R%et and by are
learnable parameters. o is a sigmoid function. dp,.,; is the dimension of the last hidden state
of the pre-trained BERT.

To extract a more fluent prototype than when using only the word-level importance, we
define a new weighted importance score p;™** that incorporates a sentence-level importance

score as a weight for the word-level importance score:

extqy, ext ext ext

b =P "Ps;» Ps; = N b (6.2)

where Ng; is the number of words in the j-th sentence S; € X ¢, Our model extracts the

eXtqy

top-K important words as a prototype from the source text on the basis of p;**. It controls

the length of the summary in accordance with the number of words in the prototype text,

K.
thttps://github.com/google-research /bert/

61

https://github.com/google-research/bert/

6.3.3 Joint Encoder

Embedding layer

First, this layer projects each of the one-hot vectors of words a:lc (of size V) into a dyera-
dimensional vector space with a pre-trained weight matrix W¢ € Rwerd*V such as GloVe (Pen-
nington, Socher, and Manning, 2014). Then, the word embeddings are mapped to d;,ode1-
dimensional vectors by using the fully connected layer, and the mapped embeddings are
passed to a ReLU function. This layer also adds positional encoding to the word embed-

ding (Vaswani et al., 2017).

Transformer encoder blocks

The encoder encodes the embedded source and prototype texts with a stack of Transformer
blocks (Vaswani et al., 2017). Our model encodes the two texts with the encoder stack in-

dependently. We denote these outputs as ES € RémodetxL and EF € Rimedet*K regpectively.

Transformer dual encoder blocks

This block calculates the interactive alignment between the encoded source and prototype
texts. Specifically, it first encodes the source and prototype texts and performs multi-head
attention on the other output of the encoder stack (i.e., E and E¥’). This component is quite
similar to a decoder block. The difference between an original Transformer decoder block
and this block is that this component does not use the subsequent mask for self-attention
since, unlike decoder, a source text and a prototype text are given in advance.

We denote the outputs of the dual encoder stack of the source text and prototype text

by MC € RémoderxL and MT € RImoderxK regpectively.

62

6.3.4 Summary Decoder
Embedding layer

The decoder receives a sequence of words in an abstractive summary Y, which is generated
through an auto-regressive process. At each decoding step t, this layer projects each of the

one-hot vectors of the words ¥, in the same way as the embedding layer in the joint encoder.

Transformer decoder blocks

The decoder uses a stack of decoder Transformer blocks (Vaswani et al., 2017) that perform
the multi-head attention on the encoded representations of the prototype, M*. It uses
another stack of decoder Transformer blocks that perform the multi-head attention on those
of the source text, M, on top of the first stack. The first one rewrites the prototype text, and
the second one complements the rewritten prototype with the original source information.
The subsequent mask is used in the stacks since this component is used in a step-by-step

manner at test time. The output of the stacks is M*° € RImoderxT

Copying mechanism

Our pointer-generator model copies the words from the source and prototype texts on the
basis of the copy distributions, for efficient reuse.

Copy distributions

The copy distributions of the source and prototype words are described as follows:

Z O‘tka pe(r) Z atl

kxk =Yt lIl =Yt

where af; and af are respectively the first attention heads of the last block in the first and

second stacks of the decoder.

63

Final vocabulary distribution

The final vocabulary distribution is described as follows:

P(ye) = Agpg (W) + AeDe(e) + Appp(ye)
Ags Aes Ap = softmax(WO[M?; ¢ el + b*)
o => agM, of = afMf

! k

Py () = softmax(W9(M?) + b7)

where W0 € R3*3dmodet pv ¢ R3 W9 € RImedetxV and b9 € RV are learnable parameters.

6.4 Training

Our model is not trained in an end-to-end manner: the prototype extractor is trained first

and then the encoder and decoder are trained.

6.4.1 Generating Training Data
Prototype extractor

Since there are no supervised data for the prototype extractor, we created pseudo training
data like in (Gehrmann, Deng, and A. Rush, 2018). The training data consists of word
and label 7; pairs, (z&, r;) for all z¥ € X, 7y is 1 if 27 is included in the summary; otherwise
it is 0. To construct the paired data automatically, we first extract oracle source sentences
Soracle that maximize the ROUGE-R score in the same way as in (Hsu et al., 2018). Then,
we calculate the word-by-word alignment between the reference summary and S°7%¢ using
a dynamic programming algorithm to consider the word order. Finally, we label all aligned

words with 1 and other words, including the words that are not in the oracle sentence, with

0.

64

Joint encoder and summary decoder

We have to create triple data of (X, X¥Y), consisting of the source text, the gold prototype
text, and the target text, for training our encoder and decoder. We use the top-K words (in
terms of p;™**; Eq. 6.2) in the oracle sentences S as the gold prototype text to extract a
prototype closer to the reference summary and improve the quality of the encoder-decoder

training.

How to determine the K value? K is determined using the reference summary length
T. To obtain a natural summary close to the desired length, we quantize the length 7" into
discrete bins, where each bin represents a size range. We set the size range to 5 in this study.
That is, the value nearest to the summary length 7" among multiples of 5 is selected for K.
At the time of training, by associating the length of the reference summary with the length
of the prototype, the length of the prototype and that of the generated summary become
close. As a result, the length of the summary can be controlled by selecting arbitrary K
during the test. It is the main point of this study to select the important word according to

the summary length to generate the length-controlled summary.

6.4.2 Loss Function
Prototype extractor

We use the binary cross-entropy loss, because the extractor estimates the importance score

of each word (Eq. 6.1), which is a binary classification task.

where N is the number of training examples.

65

Joint encoder and summary decoder

The main loss for the encoder-decoder is the cross-entropy loss:

N
; 1 Z Z
Lg;a{lln = _NT logp(yt|y1t—17 XO?‘XP)
n=1 t=1

Moreover, we add the attention guide loss of the summary decoder. This loss is designed to

guide the estimated attention distribution to the reference attention.

1 N T
L = =57 2_ D_logaiiy
n=1 t=1
1 N T
proto __ proto
Lattn - _ﬁ 2; ; log at,l(t)

proto

@ py 18 the first attention head of the last block in the joint encoder stack for the prototype.
[(t) denotes the absolute position in the source text corresponding to the ¢-th word in the
sequence of summary words. The overall loss of the generation model is a linear combination
of these three losses.

Lgen — Lmain + >\1Lsum 4)\2Lpr0to

gen attn attn

A1 and Ay were set to 0.5 in the experiments.

6.5 Inference

During the inference period, we use a beam search and re-ranking (Chen and Bansal, 2018).
We keep all Npeam summary candidates provided by the beam search, where Nyeam is the size
of the beam, and generate the Npeam-best summaries. The summaries are then re-ranked
by the number of repeated N-grams, the smaller the better. The beam search and this re-

ranking improve the ROUGE score of the output, as they eliminate candidates that contain

66

repetitions. For the length-controlled setting, we set the value of K to the desired length.
For the standard setting, we set it to the average length of the reference summary in the

validation data.

6.6 Experiments

6.6.1 Datasets and settings
Dataset

We used the CNN/DM dataset (Hermann et al., 2015), a standard corpus for news summa-
rization. The summaries are bullet points for the articles shown on their respective websites.
Following See, P. J. Liu, and Manning (2017), we used the non-anonymized version of the
corpus and truncated the source documents to 400 tokens and the target summaries to 120
tokens. The dataset includes 286,817 training pairs, 13,368 validation pairs, and 11,487 test
pairs. We also used the NEWSROOM dataset (Grusky, Naaman, and Artzi, 2018). NEWS-
ROOM contains various news sources (38 different news sites). We used 973,042 pairs of
data for training. We sampled 30,000 pairs for validation data, and the number of the test
pairs was 106,349. To evaluate the length-controlled settings for NEWSROOM dataset, we

randomly sampled 10,000 samples from the test set.

6.7 Model Configurations

We used the same configurations for the two datasets. The prototype extractor used the
pre-trained BERT large model (Devlin et al., 2018). We fine-tuned BERT for two epochs.
The default settings were used for the other parameters for fine-tuning.?2. The joint encoder

and summarization decoder model used pre-trained 300-dimensional GloVe embeddings. The

Zhttps://github.com /google-research /bert /

67

https://github.com/google-research/bert/

model size of the Transformer d,,,q; was set to 512; the Transformer had four transformer
blocks for the joint encoder and summarization decoder. The number of heads was 8, and
the number of dimensions of the feed-forward network was 2048. We set the dropout rate to
0.2. For optimization, we used the Adam optimizer (Kingma and Ba, 2015) with g; = 0.9,
B2 = 0.98 and € = e~?. We varied the learning rate over the training, according to Vaswani
et al. (2017). We set the warm-up steps to 8000. We set the size of the input vocabulary to

100,000 and the output vocabulary to 1,000.

6.7.1 Evaluation Metrics

We used the ROUGE scores (F1), including ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-
L (R-L), as the evaluation metrics (Lin, 2004). We used the files2rouge toolkit for calculating

the ROUGE scores®.

6.7.2 Results

Does our model outperform previous models in the standard setting?

Table 6.1 shows the results of our model and the other models that do not consider the
length constraint. Models 2-7 are previous models based on the extractive-and-abstractive
approach. Model 8 is the latest model that is based on a pre-trained sequence-to-sequence
model. From these results, our models outperformed the models in terms of ROUGE-1,
2 and L. Although the simple Transformer-based model (LPAS w/o Prototype) had high
ROUGE scores, our model improved on it by about 1.5 points.

We also examined the results of generating a summary from only the prototype (LPAS
w/o Source). Here, using only the prototype, turned out to have the same accuracy as using
only the source, but the model using the source and the prototype simultaneously had higher

accuracy. These results indicate that our prototype extraction and joint encoder effectively

3https://github.com/pltrdy /files2rouge

68

https://github.com/pltrdy/files2rouge

Model R-1 R-2 R-L
Pointer-Generator? 36.44 | 15.66 | 33.42
Pointer-Generator + Coverage! | 39.53 | 17.28 | 36.38
Key information guide network? | 38.95 | 17.12 | 35.68
Unified summarization® 40.68 | 17.97 | 37.13
Sentence-rewriting? 40.88 | 17.80 | 38.54
Bottom-Up? 4122 | 18.68 | 38.34
EXCONSUMM Compressive® 409 | 18.0 | 374
ETADS * 41.75 | 19.01 | 38.89
PoDA# 41.87 | 19.27 | 38.54
LPAS 42.55 | 20.09 | 39.36
w/o Prototype 40.71 | 18.43 | 37.32
w/0 Source 40.08 | 18.32 | 37.08

Table 6.1 ROUGE scores (F1) of abstractive summarization models on CNN/DM.
1(See, P. J. Liu, and Manning, 2017); %(Chenliang Li et al., 2018); 3(Hsu et al.,
2018); 4(Chen and Bansal, 2018); 5(Gehrmann, Deng, and A. Rush, 2018); ¢(Mendes
et al., 2019);"(You et al., 2019); (L. Wang et al., 2019). LPAS w/o Prototype
denotes a simple Transformer-based pointer-generator, which is our model without
the prototype extractor and the joint encoder. LPAS w/o Source denotes a model
that generates a summary only from the prototype text.

Model R-1 | R-2 | R-L
w/ dual encoder block | 41.90 | 19.61 | 38.85
w/o dual encoder block | 41.46 | 19.24 | 38.30

Table 6.2 Comparison between with and without dual encoder block

incorporated the source text and prototype information and contributed to improving the
accuracy.

We compare the result with and without the dual encoder block in table 6.2. Note that
this result is the preliminary experiment and the details of parameter settings differ from
those in Table 6.1. This result indicates that the dual encoder block contributed to improving

the accuracy of summarization.

69

Length | Model R-1 R-2 R-L

LC! 19.03 | 845 | 16.47
10 LenEmb | 18.19 | 8.96 | 17.44
LPAS 17.43 | 887 | 16.78
LC 32.26 | 13.60 | 24.64
30 LenEmb | 34.01 | 15.51 | 31.43
LPAS 35.11 | 17.21 | 32.83
LC 34.71 | 14.24 | 25.62
50 LenEmb | 38.66 | 17.17 | 35.49
LPAS 41.47 | 19.70 | 38.46
LC 33.83 | 13.67 | 24.67
70 LenEmb | 39.57 | 17.38 | 36.22
LPAS 42.48 | 19.97 | 39.25
LC 32.17 | 13.00 | 23.28
90 LenEmb | 38.51 | 16.79 | 35.24
LPAS 41.54 | 19.43 | 38.30

LC 30.40 | 12.59 | 22.94

AVG | LenEmb | 33.79 | 15.16 | 31.16
LPAS 35.60 | 17.04 | 33.12

Table 6.3 ROUGE scores (F1) of abstractive summarization models with different
lengths on the CNN/DM dataset (10, 30, 50, 70, 90 words). AVG indicates the
average ROUGE score for the five different lengths. !(Yizhu Liu, Luo, and Zhu,
2018)

Does our model improve the ROUGE score in the length-controlled setting?

We used two types of length-controllable models as baselines. The first one is a CNN-based
length-controllable model (LC) that uses the desired length as an input to the initial state
of the CNN-based decoder. (Yizhu Liu, Luo, and Zhu, 2018). The second one (LenEmb)
embeds the remaining length and adds them to each decoder step (Kikuchi et al., 2016).
Since there are no previous results on applying LenEmb to the CNN /DM dataset, we imple-
mented it as a Transformer-based encoder-decoder model. Specifically, we simply added the
embeddings of the remaining length to the word embeddings at each decoding step. Table 6.3
shows that our model achieved high ROUGE scores for different lengths and outperformed

the previous length-controllable models in most cases. Our model was about 2 points more

70

—— ——
ROUGE-R ROUGE-P ROUGE-F

60 i
801

G 40 S 601 "

3 - T

T 2401

20 5 a7
°20{ 7
10 30 50 70 90 *

10 30 50 70 90

desired length desired length

Figure 6.5 Results in the length-controlled setting on CNN/DM. a): ROUGE-L
recall, precision and F scores for different lengths (left). b): Output length distri-
bution (right).
accurate on average than LenEmb. Our model selects the most important words from the
source text in accordance with the desired length. It is thus effective at keeping the im-
portant information even in the length-controlled setting. Figure 6.5a shows the precision,
recall, and F score of ROUGE for different lengths. Our model maintains a high F-score
around the average length (around 60 words); this indicates that it can select important

information and generate stable results with different lengths.

Does our model generate a summary with the desired length?

Figure 6.5b shows the relationship between the desired length and the output length. The
x-axis indicates the desired length, and the y-axis indicates the average length and standard
deviation of the length-controlled output summary. The results show that our model properly
controls the summary length. This controllable nature comes from the training procedure.
When training our encoder-decoder, we set the number of words K in the prototype text
according to the length of the reference summary; therefore, the model learns to generate a

summary that has a similar length to the prototype text.

71

R-1 R-2 R-L
Lead3 40.3 17.7 | 36.6
Bottom-Up (top-3 sents)! | 40.7 | 18.0 | 37.0
Bottom-Up (word)* 42.0 | 159 | 373
NeuSum? 41.6 19.0 38.0
BertSum? 43.25 | 20.24 | 39.63
HIBERT* 42.37 | 19.95 | 38.83
LPAS-ext
- top-3 sents 41.48 | 19.23 | 37.76
- Top-K words 44.79 | 20.59 | 38.12

Table 6.4 ROUGE scores (F1) of our prototype extractor (LPAS-ext) on CNN/DM.
!(Gehrmann, Deng, and A. Rush, 2018); 2(Q. Zhou et al., 2018); 3(Yang Liu, 2019);
4(Zhang, Wei, and M. Zhou, 2019)

How good is the quality of the prototype text?

To evaluate the quality of the prototype, we evaluated the ROUGE scores of the extracted
prototype text. Table 6.4 shows the results. In the table, LPAS-ext (top-3 sents) means
the top-three sentences were extracted using pg’;t. Interestingly, ROUGE-1 and ROUGE-2
scores of the LPAS-ext (Top-K words) were higher than those of the sentence-level extractive
models. It indicates that word-level LPAS-ext is effective at finding not only important words
(ROUGE-1), but also important phrases (ROUGE-2). Also, we can see from Table 6.1
that whole LPAS improved the ROUGE-L score of LPAS-ext. This indicates that our joint
encoder and summary decoder generate more fluent summaries with the help of the prototype

text.

Does our abstractive model improve if the quality of the prototype is improved?

We evaluated our model in the following two settings in order to analyze the relationship
between the quality of the abstractive summary and that of the prototype. In the gold-
length setting, we only gave the gold length K to the prototype extractor. In the gold
sentences + the gold-length setting, we gave the gold sentences S°"%“¢ and gold length (see

6.4.1). Table 6.5 shows the results. These results indicate that selecting the correct number

72

R-1 | R-2 | R-L
Average length 42.55 | 20.09 | 39.36
Gold length 43.23 | 20.46 | 40.00
Gold sentences + Gold length | 46.68 | 23.52 | 43.41

Table 6.5 ROUGE scores (F1) of abstractive summarization models with gold
settings on the CNN/DM dataset.

R-1 R-2 R-L

Lead3 ! 32.02 | 21.08 | 29.59
pointer-generator * 27.54 | 13.32 | 23.50
LPAS

K = average length 39.24 | 27.20 | 35.84
K = domain length 39.79 | 27.85 | 36.48
LPAS (w/o Prototype) | 38.48 | 26.99 | 35.30

Table 6.6 ROUGE scores (F1) of proposed models on NEWSROOM dataset.
!(Grusky, Naaman, and Artzi, 2018)

of words in the prototype improves the ROUGE scores. In this study, we simply selected
the average length when extracting the prototype for all examples in the standard setting;
however, there will be an improvement if we adaptively select the number of words in the
prototype for each source text. Moreover, the ROUGE score largely improved in the gold
sentence and gold-length settings. This indicates that the quality of the generated summary

will significantly improve by increasing the accuracy of the extractive model.

Is our model effective on other datasets?

To verify the effectiveness of our model on various other summary styles, we evaluated it on
a large and varied news summary dataset, NEWSROOM. The results of the NEWSROOM
dataset at standard settings are shown in Table 6.6. To consider differences in summary
length between news domains, we evaluated our model in the average length and domain-
level average length (denoted as domain length) settings. We used the validation dataset to

calculate the average length. The results indicate that our model had significantly higher

73

Length | Model R-1 R-2 R-L

10 LenEmb | 22.99 | 13.42 | 21.45
LPAS 22.80 | 13.91 | 21.59

30 LenEmb | 37.49 | 25.67 | 34.26
LPAS 39.22 | 27.33 | 35.95

50 LenEmb | 36.91 | 25.50 | 33.86
LPAS 38.57 | 27.07 | 35.44

70 LenEmb | 33.52 | 23.02 | 30.90
LPAS 35.29 | 24.72 | 32.62

90 LenEmb | 30.04 | 20.49 | 27.80
LPAS 31.53 | 22.03 | 29.30

AVG | LenEmb | 32.19 | 21.62 | 29.66
LPAS 33.48 | 23.01 | 30.98

Table 6.7 ROUGE scores (F1) of abstractive summarization models with different

lengths on the NEWSROOM dataset.

ROUGE scores compared with the official baselines and outperformed our baseline (LPAS
w/o Prototype). They also indicate that our model is effective on datasets containing text
in various styles. Moreover, we found that considering the domain length has positive effects
on the ROUGE scores. This indicates that our model can easily reflect the differences in
summary length among various styles. Table 6.7 and Figure 6.6 show the results in the
length-controlled setting for NEWSROOM. Our model achieved higher ROUGE scores than
those of LenEmb. From Figure 6.6a, we can see that the F-value of the ROUGE score
was highest around 30 words. It is because the average word number is about 30 words.

Moreover, Figure 6.6b shows that our model also acquired the length control capability for

the dataset with various styles.

74

. _._
ROUGE-R ROUGE-P ROUGE-F

60 i

50 £ 80
& £ 60 A
s 40 K}
o = F
T 30 340

5 +
20 ©50
10 30 50 70 90 bl

10 30 50 70 90

desired length desired length

Figure 6.6 Results in the length-controlled setting on NEWSROOM. a): ROUGE-L
recall, precision and F scores for different lengths (left). b): Output length distri-
bution (right).

6.8 Examples of the Prototype text and Generated Sum-
mary

Table 6.8 and Table 6.9 list some summary examples. We can see that our prototype extrac-
tor picks up the important words and our encoder-decoder outputs fluent sentences by using
the Prototype text. Moreover, from these results, we can see that the output of the prototype
extractor contains many ungrammatical phrases whereas the outputs of our encoder-decoder

are relatively grammatical.

6.9 Related Work and Discussion

Length control for summarization

Kikuchi et al. (2016) were the first to propose using length embedding for length-controlled
abstractive summarization. Fan, Grangier, and Auli (2018) also used length embeddings at
the beginning of the decoder module for length control. Yizhu Liu, Luo, and Zhu (2018)
proposed a CNN-based length-controllable summarization model that uses the desired length
as an input to the initial state of the decoder. Takase and Okazaki (2019) introduced

positional encoding that represents the remaining length at each decoder step of Transformer-

5

Source text (truncated)

a florida community has voiced objection to plans of a forensic research ¢ body farm ’ in
which human bodies will be left in florida elements for extended periods of time . the
body farm , which would be located in lithia , is a joint project between the university
of south florida institute of anthropology and the hillsborough county sheriff ’s office

it has the potential to offer forensic scientists and law-enforcement investigators a
chance to see what happens to the bodies when they are left in florida elements . five
to ten bodies from usf ’s after life body donation program would be buried or placed
on two acres of the walter c¢. heinrich practical training center in lithia , which is a
230-acre plot of land bordered by a landfill and county property . scroll down for video .
university of south florida , in a joint project with the hillsborough county sheriff ’s office
, have proposed building a ‘ body farm ’ in lithia for research into how florida elements
affect cadavers . if the research is approved by the hillsborough county commission ,
the information gathered at the site could help investigators solve crimes and cold cases
. hillsborough county commissioner stacy white has taken a stand against the facility ,
while state attorney general pam bondi and hillsborough county sheriff david gee have
supported the project .

Reference summary

the body farm would be located in lithia in hillshorough county . it is a joint project
between the university of south florida institute of anthropology and the hillsborough
county sheriff ’s office . residents fear it will bring unwanted predators and a strong odor
to area . usf associate professor erin kimmerle said the project could help investigators
solve cold cases and other crimes . there are more than 500 cold cases in hillsborough |,
pasco and pinellas counties - areas close to the research facility .’

Prototype text (10 words)
Generated summary

farm university of south five bodies would be of south
body farm would be located in lithia .

Prototype text (30 words)

Generated summary

the body farm is project university of south florida of and five to ten bodies would be
buried on training center in lithia university of south florida body farm elements

the body farm is a joint project between the university of south florida institute of
anthropology and the hillsborough county sheriff ’s office .

Prototype text (50 words)

Generated summary

the body farm would be is a joint project the university of south florida institute of
anthropology and the hillsborough county ’s five to ten bodies from would be buried
or on two acres training center in lithia university of south florida ’s ¢ body farm ’ in
florida elements

the body farm is a joint project between the university of south florida institute of
anthropology and the hillsborough county sheriff ’s office . five to ten bodies would be

buried or placed on two acres of the walter c. heinrich practical training center in lithia

Table 6.8 Example of prototype texts and generated summaries in CNN/DM

dataset.

76

Source text

a man sought on a felony arrest warrant unsuccessfully used a motorhome to escape
alaska state troopers in a high speed chase caught on video . troopers say 49-year-
old eligah christian was taken into custody friday after mashing the bulky vehicle into
several patrol cars . earlier friday , an officer spotted christian driving a 2014 motorhome
near wasilla . he was being sought on a $ 100,000 warrant on charges of scheming to
defraud , 15 counts of theft and 21 counts of issuing bad checks . high speed chase :
the driver of this motorhome took alaska state troopers on a high speed chase outside
sarah palin ’s home of wasilla on friday . fugitive : eligah christian , 49 , took off when
police tried to pull him over . he was being sought on a $ 100,000 warrant on charges
of scheming to defraud , 15 counts of theft and 21 counts of issuing bad checks . the
officer turned on the patrol car lights and siren , but christian failed to stop and started
driving recklessly , reports ktuu . christian failed to yield to emergency lights and siren
and began to recklessly travel south on church road towards the parks highway where
he turned northbound , ’ a trooper wrote . troopers deployed spike strips to stop the
motorhome , but the vehicle struck patrol cars as the suspect tried turning around . °
he began to turn the motorhome around striking several patrol vehicles , > a trooper
continued . ¢ christian was stopped at a residence off pittman road and was placed into
custody . 7 christian was charged with felony reckless driving and criminal mischief . he
remained jailed sunday . brought to a halt : troopers deployed spike strips to stop the
motorhome , but the vehicle struck patrol cars as the suspect tried turning around .

Reference Summary

eligah christian , 49 , was taken into custody friday after his unsuccessful bid to elude
capture near sarah palin ’s home of wasilla . christian was being sought on a $ 100,000
warrant on charges of scheming to defraud , 15 counts of theft and 21 counts of issuing
bad checks .

Prototype text (10 words)
Generated summary

eligah christian was the into patrol to defraud 15 theft
eligah christian was taken into custody friday .

Prototype text (30 words)

Generated summary

49-year-old eligah christian was taken into custody friday after the vehicle into several
patrol cars $ 100,000 scheming to defraud , 15 counts of theft and 21 issuing bad checks
eligah christian , 49 , sought on $ 100,000 warrant on charges of scheming to defraud ,
15 counts of theft and 21 counts of issuing bad checks .

Prototype text (50 words)

Generated summary

troopers 49-year-old eligah christian was taken into custody friday after mashing the
bulky vehicle into several patrol cars driving a wasilla on a $ 100,000 warrant on charges
of scheming to defraud , 15 counts of theft and 21 counts of issuing bad checks felony
reckless driving and criminal mischief

eligah christian , 49 , was being sought on a $ 100,000 warrant on charges of scheming to
defraud , 15 counts of theft and 21 counts of issuing bad checks . christian was charged
with felony reckless driving and criminal mischief . he remained jailed sunday .

Table 6.9 Example of prototype texts and generated summaries in CNN/DM

dataset.

7

based encoder-decoder model. It is almost equivalent to the model LenEmb we implemented.
These previous models use length embeddings for controlling the length in the decoding
module, whereas we use the prototype extractor for controlling the summary length and to

include important information in the summary.

Neural extractive-and-abstractive summarization

Hsu et al. (2018), Gehrmann, Deng, and A. Rush (2018) and You et al. (2019) incorporated
a sentence- and word-level extractive model in the pointer-generator model. Their models
weight the copy probability for the source text by using an extractive model and guide
the pointer-generator model to copy important words. Chenliang Li et al. (2018) proposed
a keyword guided abstractive summarization model. Chen and Bansal (2018) proposed
a sentence extraction and re-writing model that trains in an end-to-end manner by using
reinforcement learning. Cao et al. (2018) proposed a search and rewrite model. Mendes et
al. (2019) proposed a combination of sentence-level extraction and compression model. The
idea behind these models is word-level weighting for the entire source text or sentence-level
re-writing. On the other hand, our model guides the summarization with length-controllable
prototype text by using the prototype extractor and joint encoder. Utilizing extractive

results to control the length of the summary is a new idea.

Large-scale pre-trained language model

BERT (Devlin et al., 2018) is a new pre-trained language model that uses bidirectional
encoder representations from Transformer. BERT has performed well in many natural lan-
guage understanding tasks such as the GLUE benchmarks (A. Wang et al., 2018) and natural
language inference (Williams, Nangia, and Bowman, 2018). Yang Liu (2019) used BERT for
sentence-level extractive summarization model. Zhang, Wei, and M. Zhou (2019) trained a
new pre-trained model that considers document-level information for sentence-level extrac-

tive summarization. L. Wang et al. (2019) proposed sequence-to-sequence based pre-trained

78

model and incorporated it in an abstractive summarization model. We used BERT for the
word-level prototype extractor and verified the effectiveness of using a BERT in the word-

level extractive module.

Reinforcement learning for summarization

Reinforcement learning (RL) is a key summarization technique. RL can be used to opti-
mize non-differential metrics or multiple non-differential networks. Narayan, Cohen, and
Lapata (2018) and Dong et al. (2018) used RL for extractive summarization. For abstrac-
tive summarization, Paulus, Xiong, and Socher (2017) used RL to mitigate the exposure
bias of abstractive summarization. Chen and Bansal (2018) used RL to combine sentence-
extraction and pointer-generator models. Our model achieved high ROUGE scores without

RL. In future, we may incorporate RL in our models to get a further improvement.

6.10 Conclusion

We proposed a new length-controllable abstractive summarization model. Our model consists
of a word-level prototype extractor and a prototype-guided abstractive summarization model.
The prototype extractor identifies the important part of the source text within the length
constraint, and the abstractive model is guided with the prototype text. This characteristic
enabled it to achieve a high ROUGE score in standard summarization tasks. Moreover, our
prototype extractor ensures the summary will have the desired length. Experiments with
the CNN/DM dataset and the NEWSROOM dataset show that our model outperformed
previous models in standard and length-controlled settings. In future, we would like to
incorporate a pre-trained language model in the abstractive model to build a higher quality

summarization model.

79

Chapter 7

Conclusion

7.1 Summary

In this dissertation, we focused on three problems of converting sentences to readable sen-
tences: word-level normalization and morphological analysis, sentence-level normalization,
document-level summarization.

For the first problem, word-level normalization morphological analysis, we proposed a
novel joint estimation method of word normalization and morphological analysis in Chapter
3. We automatically generate both character-level and word-level normalization candidates
to expand the word lattice and use discriminative methods to formulate a cost function.
Experimental results show that the proposed method achieved higher accuracy and recall
for word segmentation, POS tagging and normalization than those of conventional systems.

In addition, in Chapter 4, we proposed a novel method for automatically extracting pairs
of a variant word and its normal form from unannotated text on the basis of a pair-wise
similarity approach. We incorporated the acquired variant-normalization pairs into Japanese
morphological analysis. The experimental results show that our method can extract widely
covered variants from large Twitter data and improve the recall of normalization without

degrading the overall accuracy of Japanese morphological analysis.

80

For the second problem, sentence-level normalization, we proposed simple but effective
methods of data augmentation for encoder-decoder-based neural normalization models in
Chapter 5. In this study, we propose two methods for generating augmented data. The
experimental results with Japanese dialect normalization indicate that our methods are ef-
fective for an encoder-decoder model and achieve higher BLEU score than that of baselines.
We also investigated the oracle performance and revealed that there is sufficient room for
improving an encoder-decoder model.

For the third problem, document-level summarization, propose a new prototype-guided
length-controllable abstractive summarization model in Chapter 6. We incorporate a word-
level extractive module in the encoder-decoder model instead of length embeddings. Our
model first extracts a prototype text and generates a summary by jointly encoding and
copying words from both the prototype text and source text. Since the prototype text is a
guide to both the contents and length of the summary, our model can generate an informative
and length-controlled summary. Experiments with the CNN/Daily Mail dataset and the
NEWSROOM dataset show that our model outperformed previous models in standard and

length-controlled settings.

7.2 Future Directions

7.2.1 An Unified Model of Normalization and Summarization Tasks

This dissertation deals with the normalization of noisy words and sentences and summariza-
tion of long sentences. In the future, the combined task of normalization and summarization,
such as summarizing long texts that contain noisy expressions, is also an essential topic for
practical application. For example, there is a need for meeting summarization. In this task,
input texts contain a lot of spoken language and automatic speech recognition errors, and it

is a challenging task than previous tasks.

81

7.2.2 Integration with Unsupervised Language Models

BERT (Devlin et al., 2018) is a pre-trained language model that uses bidirectional encoder
representations of the transformer model. BERT has performed well in many natural lan-
guage understanding tasks such as the GLUE benchmarks (A. Wang et al., 2018) and natural
language inference (Williams, Nangia, and Bowman, 2018). Recently, an encoder-decoder
based pre-learning model has appeared, such as BART (Lewis et al., 2019) and T5 (Raffel
et al., 2019). These models also use the transformer structure, and they extend the idea of
BERT to the encoder-decoder model. Several studies showed that a simple fine-tuned model
of these pre-trained models improves the accuracy of many language generation tasks. We

can also improve the accuracy of our models by incorporating these pre-trained models.

82

REFERENCES

Aw, AiTi et al. (2006). “A Phrase-based Statistical Model for SMS Text Normalization”. In:
COLING/ACL, pp. 33-40.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural Machine Trans-
lation by Jointly Learning to Align and Translate”. In: CoRR.

— (2015). “Neural Machine Translation by Jointly Learning to Align and Translate”. In:
ICLR.

Bisani, Maximilian and Hermann Ney (2008). “Joint-sequence Models for Grapheme-to-
phoneme Conversion”. In: Speech Commun. Pp. 434-451.

Cao, Ziqiang et al. (2018). “Retrieve, Rerank and Rewrite: Soft Template Based Neural
Summarization”. In: ACL, pp. 152-161.

Chen, Yen-Chun and Mohit Bansal (2018). “Fast Abstractive Summarization with Reinforce-
Selected Sentence Rewriting”. In: ACL, pp. 675-686.

Cho, Kyunghyun et al. (2014). “Learning Phrase Representations using RNN Encoder—
Decoder for Statistical Machine Translation”. In: EMNLP, pp. 1724-1734.

Collins, Michael (2002). “Discriminative Training Methods for Hidden Markov Models: The-
ory and Experiments with Perceptron Algorithms”. In: IJCNLP, pp. 1-8.

Cook, Paul and Suzanne Stevenson (2009). “An Unsupervised Model for Text Message Nor-
malization”. In: the Workshop on Computational Approaches to Linguistic Creativity,
pp. 71-78.

Devlin, Jacob et al. (2018). “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: CoRR.

Dong, Yue et al. (2018). “BanditSum: Extractive Summarization as a Contextual Bandit”.
In: EMNLP, pp. 3739-3748.

Fan, Angela, David Grangier, and Michael Auli (2018). “Controllable Abstractive Summa-
rization”. In: NMT@ACL, pp. 45-54.

83

Gehrmann, Sebastian, Yuntian Deng, and Alexander Rush (2018). “Bottom-Up Abstractive
Summarization”. In: EMNLP, pp. 4098-4109.

Grusky, Max, Mor Naaman, and Yoav Artzi (2018). “Newsroom: A Dataset of 1.3 Million
Summaries with Diverse Extractive Strategies”. In: ACL, pp. 708-719.

Han, Bo and Timothy Baldwin (2011). “Lexical Normalisation of Short Text Messages: Makn
Sens a #Twitter”. In: ACL:HLT, pp. 368-378.

Han, Bo, Paul Cook, and Timothy Baldwin (2012). “Automatically Constructing a Normal-
isation Dictionary for Microblogs”. In: EMNLP-CoNLL, pp. 421-432.

— (2013). “Lexical Normalization for Social Media Text”. In: ACM Trans. Intell. Syst. Tech-
nol. 5:1-5:27.

Hassan, Hany and Arul Menezes (2013). “Social Text Normalization using Contextual Graph
Random Walks”. In: ACL, pp. 1577-1586.

Hermann, Karl Moritz et al. (2015). “Teaching Machines to Read and Comprehend”. In:
NIPS, pp. 1693-1701.

Hsu, Wan-Ting et al. (2018). “A Unified Model for Extractive and Abstractive Summariza-
tion using Inconsistency Loss”. In: ACL, pp. 132-141.

Huang, Fei (2015). “Improved Arabic Dialect Classification with Social Media Data”. In:
EMNLP, pp. 2118 2126.

Ikeda, Taishi, Hiroyuki Shindo, and Yuji Matsumoto (2017). “Japanese Text Normaliza-
tion with Encoder-Decoder Model”. In: Proceedings of the 2nd Workshop on Noisy User-
generated Text (WNUT).

Jiang, Wenbin, Haitao Mi, and Qun Liu (2008). “Word Lattice Reranking for Chinese Word
Segmentation and Part-of-speech Tagging”. In: ICCL, pp. 385-392.

Junczys-Dowmunt, Marcin and Roman Grundkiewicz (2016). “Phrase-based Machine Trans-
lation is State-of-the-Art for Automatic Grammatical Error Correction”. In: EMNLP.

Kayji, Nobuhiro and Masaru Kitsuregawa (2013). “Efficient Word Lattice Generation for Joint
Word Segmentation and POS Tagging in Japanese”. In: IJCNLP, pp. 153-161.

— (2014). “Accurate Word Segmentation and POS Tagging for Japanese Microblogs: Corpus
Annotation and Joint Modeling with Lexical Normalization”. In: EMNLP, pp. 99-109.

Kikuchi, Yuta et al. (2016). “Controlling Output Length in Neural Encoder-Decoders”. In:
EMNLP, pp. 1328-1338.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization”.
In: ICLR.

84

Koehn, Philipp et al. (2007). “Moses: Open Source Toolkit for Statistical Machine Transla-
tion”. In: ACL on Interactive Poster and Demonstration Sessions.

Kudo, T. (2005). “MeCab : Yet Another Part-of-Speech and Morphological Analyzer”. In:
hitp://mecab.sourceforge.net/.

Kudo, Kaoru Yamamoto, and Yuji Matsumoto (2004). “Applying conditional random fields
to Japanese morphological analysis”. In: EMNLP, pp. 230-237.

Kurohashi, Sadao et al. (1994). “Improvements of Japanese morphological analyzer JUMAN”.
In: The International Workshop on Sharable Natural Language Resources, pp. 22—38.

Lewis, Mike et al. (2019). “BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension”. In: arXiv e-prints. arXiv: 1910.
13461.

Li, Chen and Yang Liu (2012). “Improving Text Normalization using Character-Blocks Based
Models and System Combination”. In: COLING, pp. 1587-1602.

— (2014). “Improving Text Normalization via Unsupervised Model and Discriminative Rerank-
ing”. In: ACL 201/ Student Research Workshop, pp. 86-93.

Li, Chenliang et al. (2018). “Guiding Generation for Abstractive Text Summarization Based
on Key Information Guide Network”. In: ACL, pp. 55-60.

Lin, Chin-Yew (2004). “ROUGE: A Package for Automatic Evaluation of summaries”. In:
ACL.

Ling, Wang et al. (2013). “Paraphrasing 4 Microblog Normalization”. In: EMNLP, pp. 73-84.

Liu, Fei, Fuliang Weng, and Xiao Jiang (2012). “A Broad-Coverage Normalization System
for Social Media Language”. In: ACL, pp. 1035-1044.

Liu, Fei, Fuliang Weng, Bingqing Wang, et al. (2011). “Insertion, Deletion, or Substitution?
Normalizing Text Messages without Pre-categorization nor Supervision”. In: ACL, pp. 71—
76.

Liu, Yang (2019). “Fine-tune BERT for Extractive Summarization”. In: CoRR abs/1903.10318.
arXiv: 1903.10318.

Liu, Yizhu, Zhiyi Luo, and Kenny Zhu (2018). “Controlling Length in Abstractive Summa-
rization Using a Convolutional Neural Network”. In: EMNLP, pp. 4110-4119.

Luong, Thang, Hieu Pham, and Christopher D. Manning (2015). “Effective Approaches to
Attention-based Neural Machine Translation”. In: EMNLP.

Machery, W, F J Och, and I Uszkoreit J Thayer (2008). “Lattice-based Minimum Error Rate
Training for statistical Machine Translation”. In: EMNLP, pp. 725-734.

85

http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1903.10318

Maekawa, Kikuo et al. (2014). “Balanced corpus of contemporary written Japanese”. In:
Language Resources and FEvaluation, pp. 345-371.

Mendes, Afonso et al. (2019). “Jointly Extracting and Compressing Documents with Sum-
mary State Representations”. In: NAACL, pp. 3955-3966.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig (2013). “Linguistic Regularities in Con-
tinuous Space Word Representations”. In: NAACL, pp. 746-751.

Mohri, Mehryar, Fernando Pereira, and Michael Riley (2002). “Weighted Finite-State Trans-
ducers in Speech Recognition”. In: Computer Speech Language, pp. 69-88.

Narayan, Shashi, Shay B. Cohen, and Mirella Lapata (2018). “Ranking Sentences for Ex-
tractive Summarization with Reinforcement Learning”. In: NAACL, pp. 1747-1759.

Oka, Teruaki et al. (2011). “Handling Orthographic Variations in Morphological Analysis for
Near-Modern Japanese (in Japanese)”. In: JSAL

Papineni, Kishore et al. (2002). “BLEU: A Method for Automatic Evaluation of Machine
Translation”. In: ACL.

Paulus, Romain, Caiming Xiong, and Richard Socher (2017). “A Deep Reinforced Model for
Abstractive Summarization”. In: CoRR abs/1705.04304. arXiv: 1705.04304.

Pennell, Deana and Yang Liu. “A Character-Level Machine Translation Approach for Nor-
malization of SMS Abbreviations”. In: IJCNLP, pp. 974-982.

— (2011). “A Character-Level Machine Translation Approach for Normalization of SMS
Abbreviations”. In: IJCNLP, pp. 974-982.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “Glove: Global
vectors for word representation”. In: EMNLP.

Raffel, Colin et al. (2019). “Exploring the Limits of Transfer Learning with a Unified Text-
to-Text Transformer”. In: arXiv e-prints. arXiv: 1910.10683.

Rush, Alexander M., Sumit Chopra, and Jason Weston (2015). “A Neural Attention Model
for Abstractive Sentence Summarization”. In: EMNLP.

Saito, Itsumi et al. (2014). “Morphological Analysis for Japanese Noisy Text based on
Character-level and Word-level Normalization”. In: COLING, pp. 1773-1782.

Sajjad, Hassan, Kareem Darwish, and Yonatan Belinkov (2013). “Translating Dialectal Ara-
bic to English”. In: ACL, pp. 1-6.

Sasaki, Akira et al. (2013). “Normalization of Text in Microblogging Based on Machine
Learning (in Japanese)”. In: JSAL

86

http://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1910.10683

Sasano, Ryohei, Sadao Kurohashi, and Manabu Okumura (2013). “A Simple Approach to
Unknown Word Processing in Japanese Morphological Analysis”. In: IJCNLP, pp. 162—
170.

See, Abigail, Peter J. Liu, and Christopher D. Manning (2017). “Get To The Point: Summa-
rization with Pointer-Generator Networks”. In: ACL, pp. 1073-1083.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016). “Improving Neural Machine
Translation Models with Monolingual Data”. In: ACL.

Sittichai, Jiampojamarn, Kondrak Grzegorz, and Sherif Tarek (2007). “Applying Many-to-
Many Alignments and Hidden Markov Models to Letter-to-Phoneme Conversion”. In:
NAACL, pp. 372-379.

Takase, Sho and Naoaki Okazaki (2019). “Positional Encoding to Control Output Sequence
Length”. In: NAACL, pp. 3999-4004.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: NIPS, pp. 5998-6008.

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly (2015). “Pointer Networks”. In: NIPS,
pp- 2692-2700.

Wang, Alex et al. (2018). “GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding”. In: BlackboxNLP@EMNLP, pp. 353-355.

Wang, Liang et al. (2019). “Denosing based Sequence-toSequence Pre-training for Text Gen-
eration”. In: EMNLP.

Williams, Adina, Nikita Nangia, and Samuel R. Bowman (2018). “A Broad-Coverage Chal-
lenge Corpus for Sentence Understanding through Inference”. In: NAACL-HLT, pp. 1112—
1122.

Xie, Ziang et al. (2016). “Neural Language Correction with Character-Based Attention”. In:
CoRR.

Yang, Yi and Jacob Eisenstein (2013). “A Log-Linear Model for Unsupervised Text Normal-
ization”. In: EMNLP, pp. 61-72.

You, Yongjian et al. (2019). “Improving Abstractive Document Summarization with Salient
Information Modeling”. In: ACL, pp. 2132-2141.

Yuan, Zheng and Ted Briscoe (2016). “Grammatical error correction using neural machine
translation”. In: NAACL.

Zhang, Xingxing, Mirella Lapata, et al. (2018). “Neural Latent Extractive Document Sum-
marization”. In: EMNLP. Association for Computational Linguistics, pp. 779-784.

87

Zhang, Xingxing, Furu Wei, and Ming Zhou (2019). “HIBERT: Document Level Pre-training
of Hierarchical Bidirectional Transformers for Document Summarization”. In: ACL, pp. 5059~
5069.

Zhou, Qingyu et al. (2018). “Neural Document Summarization by Jointly Learning to Score
and Select Sentences”. In: ACL, pp. 654-663.

88

List of Publications

Journals

1. Itsumi Saito, Kugatsu Sadamitsu, Hisako Asano, Yoshihiro Matsuo, Morphological
Analysis for Japanese Noisy Text based on Extraction of Character Transformation

Patterns and Lexical Normalization, H4X S saLH, pp. 297-314, 2017.

International Conferences (Refereed)

1. Itsumi Saito, Kugatsu Sadamitsu, Hisako Asano, Yoshihiro Matsuo, Morphological
Analysis for Japanese Noisy Text Based on Character-level and Word-level Normaliza-

tion, in Proceedings of COLING, pp.1773-1782, 2014.

2. Itsumi Saito, Kyosuke Nishida, Kugatsu Sadamitsu, Kuniko Saito, Junji Tomita, Au-
tomatically Extracting Variant-Normalization Pairs for Japanese Text Normalization,

in Proceedings of IJCNLP, pp.937-946, 2017.

3. Itsumi Saito, Jun Suzuki, Kyosuke Nishida, Kugatsu Sadamitsu, Satoshi Kobashikawa,
Ryo Masumura, Yuji Matsumoto, Junji Tomita, Improving Neural Text Normalization
with Data Augmentation at Character- and Morphological Levels, in Proceedings of

IJCNLP, pp.257-262, 2017.

89

Other Publications (Refereed)

1. Itsumi Saito, Kyosuke Nishida, Hisako Asano, Junji Tomita, Commonsense Knowledge

Base Completion and Generation, in Proceedings of CoNLL, pp.141-150, 2018.

2. Kyosuke Nishida, Itsumi Saito, Atsushi Otsuka, Hisako Asano, and Junji Tomita,
Retrieve-and-Read: Multi-task Learning of Information Retrieval and Reading Com-

prehension, in Proceedings of CIKM, pp. 647-65, 2018.

3. Atsushi Otsuka, Kyosuke Nishida, [tsumi Saito, Hisako Asano and Junji Tomita, Spe-
cific Question Generation for Reading Comprehension, in Proceedings of RCQAQ@QAAAI,
2019.

4. Kyosuke Nishida, Itsumi Saito, Kosuke Nishida, Kazutoshi Shinoda, Atsushi Otsuka,
Hisako Asano and Junji Tomita, Multi-style Generative Reading Comprehension, in

Proceedings of ACL, pp.2273-2284, 2019.

5. Kosuke Nishida, Kyosuke Nishida, Masaaki Nagata, [tsumi Saito, Atushi Otuka, Hisako
Asano and Junji Tomita, Answering while Summarizing: Multi-task Learning for

Multi-hop QA with Evidence Extraction, in Proceedings of ACL, pp.2335-2345, 2019.

6. Yasuhito Ohsugi, Itsumi Saito, Kyosuke Nishida, Hisako Asano, and Junji Tomita,
A Simple but Effective Method to Incorporate Multi-turn Context with BERT for

Conversational Machine Comprehension, in Proceedings of NLP4ConvAIQACL, 2019.

Other Publications (Non-Refereed)

1. Itsumi Saito, Kyosuke Nishida, Kosuke Nishida, Atsushi Otsuka, Hisako Asano, Junji
Tomita, Hiroyuki Shindo, Yuji Matsumoto, Length-controllable Abstractive Summa-

rization by Guiding with Summary Prototype, arXiv:2001.07331.

90

Domestic Conferences (Non-Refereed)

1.

10.

11.

FREND A, HOEIH, IR AT, IMERM, ERH-HNFHT T4 A2 b &P

2% F W72 AR e ERBIZFE D < HARGE L REZEMMNT, pp.777-780, NLP2014.

L FHEV DA, HOGILH, IREFA T, B, BN RECEE O 4 iR 2 F W 7o RELIE

itk & L REZEMEMNT, pp.51-54, NLP2015.

CBEREWOA, BXIA, B A T, IMEEM, web LD T F A MDA 5 DOREFENGENE

2, pp.55-58, NLP2016.

. FEW DO A, SR, XU, RS, TR T, BRI, BT — X OHETF

25D < encoder-decoder! H AFE A 11X G (E# AL, pp.585-588, NLP2017.

CFBENOA, THESN, BEA T EHET, 7 L — XHIERM5E & LK D R E,

pp.951-954, NLP2018.

KFES, HHEST, BV A REFAT, SHEZ BHOBKEZRET =2
— I VERMAERE TV, DEIM2018. [BHERXE|, [BFA V977714 TE]

PHH Y, BBV DA, KEFER, IR A T, SH%E] %A XA)L %] §e 2
B RIS AR, pp.963-966, NLP2018 [REBFHHR X E|

L AN DA, PSS, RIRTES, WRDEH, REA T, EH%E=, 71V - HHhR%

R RE 2 SCE TR E TV, pp.585-588, NLP2019. [XBEF KRR Y —E]

PHH AT, BBV DA, PHHYGH, BH IR, KIFES, AT, SHEZ HEA
R A)V % AT e 75 A2 i AU BB %, pp.17-20, NLP2019 [BF R E]

PEEHYEHT, PR SY, KHEH, KEEES, FEOOA, REFA T, SHEE HiiHE
FH) & DRIRFF T & 5 BRI % 55 T e 7 B e iR, pp.25-28, NLP2019

RIFEES, P, FBEN D A&, THHESEH, AT, SHE" MWE LU TaEzE
PGS « Fiff & B4R O RS € TV, DEIM2019. [BEA V9595 1 TE]

91

	Title Page
	Title Page
	ACKNOWLEDGMENT
	Acknowledgments

	ABSTRACT
	Abstract

	ABSTRACT
	Abstract

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Motivation
	1.2 Task Settings
	1.3 Thesis outline

	2 Preliminaries
	2.1 Japanese Morphological Analysis and Normalization
	2.2 Neural Sequence to Sequence Models
	2.2.1 Attention based Encoder-Decoder model
	2.2.2 Pointer-Generator based Encoder-Decoder Model
	2.2.3 Introducing Controllability to An Encoder-Decoder Model

	3 Morphological Analysis for Japanese Noisy Text Based on Character-level and Word-level Normalization
	3.1 Introduction
	3.2 Background
	3.2.1 Related Work
	3.2.2 Data Collection and Analysis of Non-standard Tokens

	3.3 Proposed Method
	3.3.1 Overview of Proposed System
	3.3.2 Character-level Lattice
	3.3.3 Generation of Word-level Lattice
	3.3.4 Decoder

	3.4 Experiments
	3.4.1 Dataset and Estimated Transformation Table
	3.4.2 Baseline and Evaluation Metrics
	3.4.3 Results and Discussion

	3.5 Conclusion and Future Work

	4 Automatically Extracting Variant-Normalization Pairs for Japanese Text Normalization
	4.1 Introduction
	4.2 Background
	4.2.1 Japanese Morphological Analysis
	4.2.2 Related Work

	4.3 Proposed Method
	4.3.1 Extracting Candidates of Variant-Normalization Pairs from Twitter Texts
	4.3.2 Normalization and Morphological Analysis

	4.4 Experiments
	4.4.1 Data and Settings
	4.4.2 Baselines and Evaluation Metrics
	4.4.3 Results

	4.5 Conclusion and Future Work

	5 Improving Neural Text Normalization with Data Augmentation at Character- and Morphological Levels
	5.1 Introduction
	5.2 Text Normalization using Encoder-Decoder Model
	5.3 Proposed Methods
	5.3.1 Generating Augmented Data using Morphological-level Conversion
	5.3.2 Generating Augmented Data using Character-level Conversion
	5.3.3 Training Procedure

	5.4 Experiments
	5.4.1 Data
	5.4.2 Settings
	5.4.3 Results

	5.5 Discussion
	5.6 Conclusion

	6 Length-controllable Abstractive Summarization by Guiding with Summary Prototype
	6.1 Introduction
	6.2 Task Definition
	6.3 Proposed Model
	6.3.1 Overview
	6.3.2 Prototype Extractor
	6.3.3 Joint Encoder
	6.3.4 Summary Decoder

	6.4 Training
	6.4.1 Generating Training Data
	6.4.2 Loss Function

	6.5 Inference
	6.6 Experiments
	6.6.1 Datasets and settings

	6.7 Model Configurations
	6.7.1 Evaluation Metrics
	6.7.2 Results

	6.8 Examples of the Prototype text and Generated Summary
	6.9 Related Work and Discussion
	6.10 Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Future Directions
	7.2.1 An Unified Model of Normalization and Summarization Tasks
	7.2.2 Integration with Unsupervised Language Models

	REFERENCES

