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Evaluation of resting spatio-temporal dynamics of
a neural mass model using resting fMRI connectivity

and EEG microstates*

Hidenori Endo

Abstract

Resting-state brain activities have been extensively investigated to understand the
macro-scale network architecture of the human brain using non-invasive imaging
methods such as fMRI, EEG and MEG. Previous studies revealed a mechanistic origin
of resting-state networks (RSNs) using the connectome dynamics modeling approach,
where the neural mass dynamics model constrained by the structural connectivity is
simulated to replicate the resting-state networks measured with fMRI and/or fast
synchronization transitions with EEG/MEG. However, there is still little understanding
of the relationship between the slow fluctuations measured with fMRI and the fast
synchronization transitions with EEG/MEG.

In this thesis, as a first step toward evaluating experimental evidence of resting state
activity at two different time scales but in a unified way, we investigate connectome
dynamics models that simultaneously explain resting-state functional connectivity
(rsFC) and EEG microstates. Here, we introduce empirical rsFC and microstates as
evaluation criteria of simulated neuronal dynamics obtained by the Larter-Breakspear
model in one cortical region connected with those in other cortical regions based on
structural connectivity. We optimized the global coupling strength and the local gain
parameter (variance of the excitatory and inhibitory threshold) of the simulated neuronal
dynamics by fitting both rsFC and microstate spatial patterns to those of experimental
ones. As a result, we found that simulated neuronal dynamics in a narrow optimal
parameter range simultaneously reproduced empirical rsFC and microstates.

*Doctoral Dissertation, Graduate School of Information Science, Nara Institute of

Science and Technology, December 7, 2019.
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Two parameter groups had different inter-regional interdependence. One type of
dynamics was synchronized across the whole brain region, and the other type was
synchronized between brain regions with strong structural connectivity. In other words,
both fast synchronization transitions and slow BOLD fluctuation changed based on
structural connectivity in the two parameter groups. Empirical microstates were similar
to simulated microstates in the two parameter groups. Thus, fast synchronization
transitions correlated with slow BOLD fluctuation based on structural connectivity
yielded characteristics of microstates. Our results demonstrate that a bottom-up
approach, which extends the single neuronal dynamics model based on empirical
observations into a neural mass dynamics model and integrates structural connectivity,
effectively reveals both macroscopic fast and slow resting-state network dynamics.

Keywords:

Resting-state networks (RSNs), Resting-state Functional Connectivity (rsFC), EEG
microstates, neural mass model, Cortico-cortical activity
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1. Introduction
1.1 Background

Research on resting-state networks is attracting much attention in human
neuroimaging. Resting-state functional connectivity (rsFC), i.e., coactivation patterns of
slowly fluctuating BOLD signals measured with fMRI (on the order of seconds), has
shown interesting empirical evidence on functional subnetworks and their relevance to
individual differences (Smith et al., 2013). On the other hand, the microstates, i.e.,
fast-transient spatial patterns of human scalp potential measured with EEG (on the order
of ten to hundreds milliseconds), have been regarded as the building blocks of human
information processing, and four canonical microstates appear in resting-state
consistently across subjects and studies (Koenig et al., 2002; Michel and Koenig, 2018a;
Pascual-Marqui et al., 1995). In addition, simultaneous fMRI and EEG measurements
have been used to reveal the relationship between the slow fluctuation related to rsFC
and the fast synchronization transition related to microstates in terms of the
spatiotemporal dynamics of the human brain’s information processing (Bréchet et al.,
2019; Britz et al., 2010; Schwab et al., 2015; Van de Ville et al., 2010; Yuan et al.,
2012). However, few mechanistic explanations of these two phenomena have been
presented.

Recently, the connectome dynamics models, based on models of neural dynamics
constrained by the whole brain’s structural connectivity (called connectome), have been
investigated to clarify the generative mechanism of functional brain activities and
networks. Several computational studies have used simulated neuronal dynamics to
understand the mechanistic origins of rsFC patterns (Breakspear et al., 2007; Deco et al.,
2013; Deco and Jirsa, 2012; Honey et al., 2009), dynamic rsFC patterns (Fukushima and
Sporns, 2018; Hansen et al., 2015), and static FC related to fast synchronization
measured by MEG (Abeysuriya et al., 2018; Deco et al., 2017; Nakagawa et al., 2014).
Furthermore, recent studies have tried to uncover the relationships between fast
synchronization transition and slow fluctuation by combining experimental fMRI with
EEG or/and MEG data. Schirner et al. proposed a connectome dynamics model that has
EEG source currents in the alpha band as input and demonstrated that the model
replicated multiple experimental observations measured with fMRI (Schirner et al.,
2018). Demirtas et al. proposed a locally heterogeneous connectome dynamics model
that improved the replication performance of rsFC and MEG power spectrum spatial
distribution (Demirtas et al., 2019). Roberts et al. showed that the Larter-Breakspear



model (Sanz-Leon et al.,, 2015) constrained by the connectome generated rich
repertoires of rapidly changing spatiotemporal patterns that are in agreement with the
temporal statistics of experimental data such as electrical waves in cortical tissue,
sequential spatiotemporal patterns in the resting state MEG data, and large-scale waves
in human electrocorticography as well as static rsFC (Roberts et al., 2019). However,
similarities between experimental and simulated fast-transient spatial patterns have not
yet been investigated.

In this study, to evaluate experimental evidence of resting-state activity on two
different time scales but in a unified way, we investigated a connectome dynamics
model that explains both experimental rsFC and microstates. We used the
Larter-Breakspear model, in which the inhibitory and excitatory neurons in one region
are connected with those in other regions based on a connectome measured with
diffusion MRI. We optimized the global coupling strength and the local gain parameter
(variance of the excitatory and inhibitory threshold) of the simulated neuronal dynamics
by fitting both rsFC and microstate spatial patterns to those of the experimental ones. As
a result, we found that fast synchronization transitions correlated with slow BOLD
fluctuation based on structural connectivity vyielded characteristics of empirical
microstates. In detail, we found that the parameter sets with high fitting performance to
rsFC overlapped with those with high fitting performance to microstates and that the
optimal parameter range was greatly reduced by adding microstates as evaluation
criteria compared with not adding them as in a previous work (Honey et al., 2009). We
found two parameter regions where both rsFC and microstate spatial patterns were
reproduced with moderately high accuracy: One had a high local gain (high variance of
the excitatory and inhibitory threshold) and weak global coupling strength, while the
other had a low local gain (low variance of the excitatory and inhibitory threshold) and
strong global coupling strength. In investigating the neural mass dynamics generated
from these two parameter sets, the former showed highly periodic and synchronized
activation; the latter showed fewer synchronized and periodic activations. The temporal
transition of the simulated microstates for the former parameters persisted for about 200
milliseconds, and that for the latter parameters persisted for 150 milliseconds. Both
resulted in longer durations than the experimental data. Our results demonstrate that a
bottom-up approach, which extends microscopic models of single-neuron dynamics
based on empirical studies (Hodgkin and Huxley, 1952; Morris and Lecar, 1981) into a
mesoscopic neural mass dynamics model (Larter et al., 1999) and integrates
macroscopic structural connectivity, can effectively reveal both macroscopic fast and
slow resting-state network dynamics that are observed in human neuroimaging



measurements.

1.2 Organization of Dissertation

In chapter 2, data acquisition, data analysis, and evaluation procedures regarding rsFC
and microstates are detailed. Then, resting spatio-temporal dynamics using resting fMRI
connectivity and EEG microstates are demonstrated. Finally, the application and
limitations of the current simulation are discussed in chapter 4.



2. Materials and Methods

RSNs are characterized by an rsFC based on slow fluctuations observed by fMRI and
microstates based on fast synchronization transitions observed by EEG. Simulated
rsFCs and microstates, which were obtained by the Larter-Breakspear model that
integrated the empirical structural connectivity, were compared with the empirical rsFCs
and the microstates. Regarding slow fluctuation, the mean excitatory membrane
potentials were converted into blood-oxygen-level dependent (BOLD) signals by the
Balloon-Windkessel model. Next, after global fluctuations were regressed out of the
BOLD signals, simulated rsFCs were obtained by calculating the cross-correlation
coefficients among the BOLD signals. The empirical and simulated rsFCs were
evaluated for their spatial pattern similarity. Regarding the fast synchronization
transitions, a simulated EEG was obtained by multiplying the lead field and transformed
into microstates by applying modified k-means clustering. We evaluated the empirical
and simulated microstates for their spatial pattern similarity and non-stationary
switching of microstates (Figure 1).

Structural
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K BOLD signal

Simulated Empirical
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Figure 1. Evaluation procedures for rsFC and microstates. Mean excitatory membrane potentials
obtained by Larter-Breakspear model integrating structural connectivity were converted into
simulated rsFC and microstates by Balloon-Windkessel model and lead field and compared with
empirical rsFC and microstates.



2.1 Data acquisition

2.1.1 Structural and diffusion MRI data

To obtain a structural connectivity matrix using a fiber-tracking algorithm, we measured
the T1-weighted structural (TR: 2300 ms, TE: 2.98 ms, Flip angle: 9 degrees, TI: 900
ms, thickness: 1 mm, FOV: 256, matrix: 256 x 256, iso-voxel) and diffusion MRI
data (gradient directions: 64, b-value: 1000, thickness: 2 mm, iso-voxel) that were
acquired on a 3T Trio (Siemens, Erlangen, Germany) from 13 participants (11 males
and 2 females, aged 28.7 + 8.47 years). All of the 13 participants gave informed
written consent. All of the experiments in this study were conducted according to the
Declaration of Helsinki and were approved by the Ethics Committee of the Advanced
Telecommunications Research Institute International, Japan.

2.1.2 Resting-state functional MRI data

We recorded the resting-state brain activities for 10 min. The same 13 participants who
took part in the dMRI experiment fixated on a cross, let their mind wander, and avoided
focusing on any one thing. The resting-state functional imaging data (TR: 2500 ms, TE:
30 ms, FOV: 212 mm, flip angle: 80 degrees, matrix: 64 x 64, thickness: 3.2 mm, gap:
0.8 mm, 40 slices x 244 volumes) were acquired on a 3T Trio (Siemens, Erlangen,
Germany).

2.1.3 Resting-state EEG data

The resting-state EEGs were recorded for 5 min. The four participants who took part in
the fMRI experiment fixated on the cross, let their mind wander, and avoided focusing
on any one thing. All of the four participants gave informed written consent. Their
EEGs were recorded with a whole-head 63-channel system (BrainAmp; Brain Products
GmbH, Germany). The sampling frequency was 1 kHz. Electrooculogram (EOG)
signals were simultaneously recorded and then stored in the EEG.



2.2 Data analysis

2.2.1 Empirical structural connectivity

We computed the experimental structural connectivity matrix in accordance with a
previous work (Fukushima et al., 2015). Briefly, the seed and target ROIs used for
fiber-tracking were obtained by FreeSurfer. The participants’ motions were corrected by
the FMRIB Software Library (FSL). Fractional anisotropy images were then calculated
from the corrected images and used for registering the diffusion-space to the T1-space
by anon-linear registration tool (FNIRT) in FSL. The local model of the fiber
orientations was the fiber orientation distribution (FOD), reconstructed at each voxel by
constrained spherical deconvolution (Tournier et al., 2007) with six-dimensional
spherical harmonics for the response function. Based on the reconstructed FOD, fibers
were probabilistically tracked by MRtrix. The fiber tracks were generated 105 times
from each ROI. We calculated the structural connectivity strength as the number of
fibers within each ROI pair ft divided by the total number of fibers generated from
seed ROI fs with voxel size normalization: (ft/vt)/(fs/vs), where vt and vs are
the number of voxels in the target and the seed ROI. Since the direction of the structural
connectivity strength was not determined by a measurement principle, the structural
connectivity matrix was symmetrized by assigning the higher strength to both directions.
All parameters were determined as done in a previous work (Fukushima et al., 2015).
The representative structural connectivity matrix was obtained by averaging the
structural connectivity matrices of all participants with respect to the participants’
common cortical ROI (Table S1).

2.2.2 Empirical resting-state functional connectivity

The resting-state functional imaging was preprocessed with SPM8 software (Wellcome
Trust Centre for Neuroimaging, University College London, UK) in MATLAB (R2013a,
Mathworks, USA) as follows. First, the raw functional images were corrected for
slice-timing and realigned to the mean image of that sequence to compensate for the
head motion. Second, the structural images were co-registered to the mean functional
image and segmented into three tissue classes in the Montreal Neurological Institute
(MNI) space. The functional images were then normalized and resampled ina?2 x 2 x 2
mm grid and smoothed by a Gaussian of 8 mm full-width at half-maximum.

We computed the functional connectivity matrix using parcellation defined by



anatomical automatic labeling (AAL) for each participant. WWe extracted a representative
time course in each region by averaging the time courses of the voxels therein. A
band-pass filter (transmission range, 0.008-0.1 Hz) was applied to these sets of time
courses prior to the following regression procedure. The filtered time courses were
linearly regressed by the temporal fluctuations of the white matter, the cerebrospinal
fluid, and the entire brain. Here, the fluctuation in each tissue class was determined
from the average time course of the voxels within a mask created by the segmentation
procedure of the T1 image. These extracted time courses were bandpass-filtered
(transmission range, 0.008-0.1 Hz) before the linear regression, as was done for the
regional time courses. All parameters were determined as done in a previous work
(Yahata et al., 2016). Then a representative rsFC was obtained by calculating the
cross-correlation coefficients among the BOLD signals for each participant and
averaging the rsFC of each participant with respect to the common cortical ROI in all
participants.

2.2.3  Microstates

The EEG data were preprocessed with a low-pass FIR filter with a cutoff frequency of
50 Hz, downsampled at 100 Hz, and passed through a high-pass FIR filter with a cutoff
frequency of 0.5 Hz. After a common average reference, the EOG artifacts were
removed by generating a multiple linear regression model to predict the
eye-movement-related components in the EEG data using the EOG data. Cardiac
artifacts and sensor noise were removed by ICA. All of the EEG data were converted
into empirical microstates.

Since microstates are seen as building blocks of human information processing as
noted in a previous work (Koenig et al., 2002), they were introduced as the criteria to
compare the fast dynamics between empirical and simulated neuronal dynamics. First,
the standard deviation of all EEG signals, called the global field power (GFP), was
calculated as the criterion of the signal-to-noise ratio (SNR). Second, four microstates
were identified by the basic N-microstate algorithm applied to the normalized EEG at
the local maxima in the GFP curve. The optimal number of microstates was set to four
based on a large-scale study on microstates (Koenig et al., 2002), and probabilistically
discrete initial values for clustering were chosen based on the k-means++ algorithm
(Arthur and Vassilvitskii, 2007). If the spatial correlation value between one microstate
and another microstate was 0.9 or more, these two microstates were merged. Third, the
transition of the microstates was calculated by a segmentation-smoothing algorithm



(Figure 2). All parameters were determined as done in a previous work (Pascual-Marqui
et al, 1995). That is, convergence criterion parameter € = 107°, window size
parameter b = 3, and non-smoothness penalty parameter A = 5. The occupation ratio
is defined as the time allocated to a microstate divided by the total time.

A Calculating GFP B Clustering

2 W/ L 4

) | LENO
C Allocating microstates to EEG D  Segmentation smoothing

T e - TRETTR ¥

Figure 2. Calculation procedures for empirical and simulated microstates. GFP was calculated
from EEG and EEG at the local maxima in the GFP curve was extracted to calculate four spatial
patterns of microstates (A). Four microstates were identified by the basic N-microstate algorithm
(B). Each color corresponds to each microstate. Four microstates were allocated to EEG at each
time point (C). Temporal transitions of microstates were smoothed by a segmentation-smoothing
algorithm (D).

2.3 Computational modeling

2.3.1 Larter-Breakspear model

The Larter-Breakspear model is a phenomenological scheme that describes the
electrophysiological neuronal dynamics in each region based on structural connectivity.
This model consists of the mean membrane potential of the excitatory neurons (V) and
the inhibitory neurons (Z), and the average number of open potassium ion channels (W).
The mean firing rate for excitatory and inhibitory populations are described by Q, and
Q. The voltage-dependent fractions of open ion channels are described by m,,,,. These
sigmoidal functions describe averaging over a population of ion channels and cell firing



rates under Gaussian distribution. Excitatory interactions between region i and j are
described by (Qy)‘. Simulations were performed using ode23, which automatically
chooses the step size, maintains a specified accuracy, and solves ordinary differential
equations in MATLAB. We repeated simulations for each parameter set 10 times with
different initial values to reduce the influence of initial values. The simulation length
was set to 10 min. We discarded the first two minutes to eliminate the influence of the
initial values. All simulation parameters in Table 1 were determined based on a previous
work (Roberts et al., 2019). In the parameter search, the balance of intra- and
inter-regional excitatory synaptic connection strength was changed by the global
coupling strength C, and the oscillation of the excitatory and inhibitory neural
populations was changed by the variance of the excitatory and inhibitory threshold. It
took about 2 days to complete 10 minutes of simulation for a particular parameter set
and an initial value using our high performance computer server.

Vi - Tion
Mipp, = 05( 1+ tanh| ——— | ), 1)
5ion
Vi—-V,
Qy =0.50Qy,, .| 1+tanh 5 , (2)
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Qz =0.5Qz . | 1+ tanh 5, , 3)

av _
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—(gca + (1 = OrympadeeQl +
CrNMDAaee<QV)i)mCa (Vi - VCa) - gKW(Vi - VK) - 4)
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Here, u;; is the structural connectivity strength between region i and region j.

Table 1. Parameter values for the Larter-Breakspear model.

Parameter Description Value
Tea Threshold value for Ca channels -0.01
Sca Variance of Ca channel threshold 0.15
gca Conductance of population of Ca channels 1
Vca Ca Nernst potential 1

Tk Threshold value for K channels 0.0
Sk Variance of K channel threshold 0.30
gx Conductance of population of K channels 2.0
Vi K Nernst potential -0.7
Tna Threshold value for Na channels 0.3
ONa Variance of Na channel threshold 0.15
gNa Conductance of population of Na channels 6.7
VNa Na Nernst potential 0.53
\3 Nernst potential leak channels -0.5
gL Conductance of population of leak channels 0.5
Vr Threshold potential for excitatory neurons 0.0
Zt Threshold potential for inhibitory neurons 0.0
Sy Variance of excitatory threshold Varied
8 Variance of inhibitory threshold Same value as &y
Qv,x Maximal firing rate for excitatory populations 1.0
Qzmin Maximal firing rate for inhibitory populations 1.0

I Subcortical input strength 0.30
Age Excitatory-to-excitatory synaptic strength 0.36
Agj Excitatory-to-inhibitory synaptic strength 2

aje Inhibitory-to-excitatory synaptic strength 2

ape Non-specific-to-excitatory synaptic strength 1

ap; Non-specific-to-inhibitory synaptic strength 0.4

b Time constant scaling factor 0.1
© Temperature scaling factor 0.7
Tk Time constant for K relaxation time 1
I'NMDA Ratio of NMDA to AMPA receptors 0.25
5 Random modulation of subcortical input 0
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2.3.2 Simulated BOLD

To calculate the simulated rsFC, the mean membrane potential of the excitatory neurons
was converted into simulated BOLD signals by the Balloon-Windkessel hemodynamic
model. In this paper, neuronal activity was given by the absolute value of the time
derivative of the mean excitatory membrane potential within each brain region. For the
ith region, neuronal activity z; increased vasodilatory signal s;, which is subject to
autoregulatory feedback. Inflow f; responds in proportion to this signal with
concomitant changes in blood volume v; and deoxyhemoglobin content q;. The
following are the related equations:
ds;

gr = AT KiSi T vilfi — D, (8)
df;
dv;
n—=fi-v’" (10)
_dai_fi=A-p") v’ 1)
bdt pi v

where k; = 0.65 is the rate of signal decay, @ = 0.32 is Grubb’s exponent, 7; = 0.98
is the hemodynamic transit time, and p = 0.34 is the resting oxygen extraction fraction.
The BOLD signal is a static nonlinear function of volume and deoxyhemoglobin
comprised of a volume-weighted sum of the extra- and intra-vascular signals:

yi=V (- +2(1-7)+ @a-0a-w) @

where V, = 0.02 is the resting-blood volume fraction (Figure 3). All of the simulation
parameters were determined as done in a previous work (Friston et al., 2003).
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2.3.3 Lead field

The mean membrane potentials of the excitatory neurons were converted into simulated
EEGs by the lead field that represents the linear relation between the sources on the
cortical surface and the measurements on each EEG channel as a gain matrix. Polygon
models of the cortical surfaces (20,004 vertex points) were constructed from T1
structural images of the same four participants who took part in the EEG experiment
using FreeSurfer software (Dale et al., 1999). A single current dipole was assumed at
each vertex point to be perpendicular to the cortical surface. The brain structures were
approximated as a three-layer model by identifying three boundaries, i.e., for the
cerebrospinal fluid (CSF), the skull, and the scalp, assuming that the conductivities were
0.33, 0.0042, and 0.33, respectively (Waberski et al., 1998). These surfaces obtained by
FreeSurfer were slightly modified using gray/white/CSF segmentation by SPMS8
(Welcome Department of Cognitive Neurology, UK) and morphological operations. All
of the parameters were determined as done in a previous work (Aihara et al., 2012).

Singular value decomposition was applied to all points belonging to one ROI out of
20004 points. The singular values were arranged in descending order and the lead field
at 80% accumulation rate of singular values was averaged in one ROI. (That is, it has
almost the same effect as averaging the lead field within an ROI.) We calculated the
low-dimensional lead field (63 channels x 78 ROIs) of each participant by averaging the
components that contribute 80% for each ROI since the Later-Breakspear model has the
same number of neurons in each ROI. This way, we removed the influence of
heterogeneous ROI sizes in the empirical data. Then the low-dimensional lead field
matrices of all subjects were averaged.

2.3.4 Simulated microstates

To compare the empirical and simulated microstates, we converted the mean membrane
potential of the excitatory neurons into simulated EEG signals by the lead field. First,
the simulated EEG signals were calculated by multiplying the mean membrane potential
of the excitatory neurons by the lead field. Second, a common average reference was
applied for simulated EEG signals and the simulated EEG signals were
bandpass-filtered between 10 and 15 Hz. Third, the bandpass-filtered signals were
downsampled from 1000 to 100 Hz. Finally, the simulated microstates were acquired by
applying the basic N-microstate algorithm and the segmentation smoothing algorithm to
the obtained signals (Figure 4).
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Figure 4. Calculation procedures for simulated microstates. Simulated EEG was obtained by
multiplying the mean membrane potentials of the excitatory neuron and low dimensional lead
field. Simulated EEG was applied for a 10-15 Hz bandpass filter to mainly exclude high
-frequency components (20-120 Hz) and downsampled to 100 Hz. Simulated microstates were
calculated by applying signal processed simulated EEG for microstate analysis. Each color
corresponds to each microstate.

2.3.5 Quantitative evaluation of empirical and simulated

results

The spatial correlation between the empirical and simulated rsFCs was obtained by
averaging the cross-correlation coefficients of the lower triangular components between
the empirical and simulated rsFCs for each parameter set.

We evaluated the empirical and simulated microstates in terms of spatial similarity,
occupation ratio, mean transition time, and global explained variance (GEV). GEV
represents the goodness of fit between the microstates and the normalized EEG
weighted by GFP (Khanna et al., 2014). We obtained the spatial correlation between the
empirical and simulated microstates by the following procedures. For the 24
combinations between the empirical and simulated microstates, we calculated the
average cross-correlation coefficients of each combination and chose the one that
maximized it. In the simulation, two microstates that showed similar spatial patterns
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(similarity over 0.9) were merged. This happened for several parameter combinations. If
the number of simulated microstates was less than four, the cross-correlation
coefficients were set to O for the missing simulated microstates. The occupation ratio
was obtained by dividing the time allocated to each microstate by the total simulation
time. The mean transition time was obtained by averaging required time to transition
from one microstate to another.

2.3.6  Phase-locking matrix

The phase-locking matrix quantitatively visualizes the inter-regional interdependence of
the nonlinear simulated neuronal dynamics. First, the 10-15 Hz bandpass filter was
applied to the mean membrane potentials. Second, these signals were
Hilbert-transformed, extracting the phase 6. Finally, we calculated the phase-locking
values (PLVs) between regions p and q by the following formula:

irpt t
Nr i(04-65)

S (13)
PLVs T ,

where N; represents the sampling number.

Envelope
Mean membrane potential of Bandpass filtered mean membrane
the excitatory neurons V; potential of the excitatory neurons  guslip
I ™ Phase Phase-locking matrix
10-15 Hz —-

bandpass filter
Hilbert
transform

Figure 5. Calculation procedures for the phase-locking matrix. 10-15 Hz bandpass filter was
applied to the mean membrane potential of the excitatory neurons V;. Hilbert transform separated
from bandpass filtered signals to envelope and phase. The phase-locking matrix was calculated by
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Eqg. (13).
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3. Results

3.1 Spatial pattern similarity of rsFC and microstates
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Figure 6. Spatial pattern similarity of rsFC and microstates for each parameter combination.
Averaged cross-correlation coefficients between empirical and simulated rsFC (left) and
microstates (right) are obtained by varying global coupling strength € and variance of threshold
8y z. Color bars indicate strength of cross-correlation coefficients.

In the two parameter groups of strong global coupling strength and small variance of threshold or
weak global coupling strength and large variance of threshold, the simulated rsFC and microstates
indicated a high spatial similarity to the empirical rsFCs and microstates (Figure 6). We selected
the optimal parameter groups by considering both the spatial similarities of rsFC, which were
moderately high over a broad range, and the spatial similarities of the microstates, which were
high in a narrow range. The spatial similarities in the optimal parameter groups obtained with
structural connectivity based on diffusion MRI were significantly higher than those obtained with
shuffled structural connectivity (Figure S1).

The spatial pattern similarity between empirical and simulated microstates in the (C, 8v,z) =
(0.35,0.61) condition is high but the occupation ratio and the mean transition time are greatly
different from empirical microstates (Figure 6B, Figure S2). The occupation ratio and the mean
transition time inthe (C, 8y z) = (0.30,0.61) and (0.25,0.61) are almost the same as in
the (C,8yz) = (0.35,0.61) condition.
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3.2 Comparison of spatiotemporal patterns between

empirical and simulated microstates

Empirical microstates Simulated microstates

A B (C, 6y2)=(0.25,0.70) C (G 6y2)=(0.50,0.63)
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Figure 7. Occupation ratio and mean transition time of empirical and simulated microstates.
Global explained variance (GEV) was 59, 66, and 69% for the empirical, simulated weak global
coupling strength, and simulated strong global coupling strength microstates, respectively. Each
simulated microstate is indicated with the same color as the empirical microstate with which it is
most highly correlated. Interchanging red and blue would correspond to the identical pattern.

Empirical and simulated microstates were obtained by applying the basic N-microstate
algorithm and the segmentation smoothing algorithm for EEG time-series. Roughly, one
microstate probabilistically transitions to another microstate when GFP is at a local
minimum (Figure S3).

Concerning the empirical microstates, MS2 accounted for the highest proportion, and
their mean transition times were about 100 milliseconds, as in the previous research
(Figure 7A).

In the (C,8yz) = (0.25,0.70) condition, the simulated microstates were sustained
about twice as long compared with the empirical microstates. In contrast to the
empirical microstates, MS6 and MS7 accounted for a higher proportion than MS5.
Furthermore, MS8’s temporal transition was also intermediate between MS2 and MS4
because MS8 accounted for the lowest proportion, even though it was sustained for the
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longest time (Figure 7B).

In the (C,8yz) = (0.50,0.63) condition, the simulated microstates were sustained
about 1.5 times longer than the empirical microstates. Unlike the (C,8yz) =
(0.25,0.70) condition, the occupation ratio of MS10 was about 5% higher than that of
MS11. Moreover, the spatial pattern of MS12 was biased to the left hemisphere (Figure
7C).

3.3 Comparison of neuronal dynamics and phase-locking
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Figure 8. Excitatory mean membrane potentials for one second and averaged phase-locking
matrix. In the (C, 5v,z) = (0.25,0.70) condition, excitatory mean membrane potentials
fluctuated in a regular manner and were synchronized across the whole brain region. In the
(C, 5v,z) = (0.50,0.63) condition, excitatory mean membrane potentials fluctuated
irregularly and were synchronized between brain regions with strong structural connectivity.

There were two parameter groups of strong global coupling strength and small variance
of threshold or weak global coupling strength and large variance of threshold in terms of
phase-locking matrices (Figure S7). In the case of the spatial pattern of the
phase-locking matrix being similar to the spatial pattern of the structural connectivity
matrix, spatial patterns of the empirical microstates were similar to spatial patterns of
the simulated microstates.

In the (C, 5v,z) = (0.25,0.70) condition, the excitatory mean membrane potentials
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were synchronized across the whole brain region with weak global coupling strength
because the self-recurrent excitation was higher than the low variance of the threshold.
In the (C,8yz) = (0.50,0.63) condition, the excitatory mean membrane potentials
were synchronized between the brain regions with strong structural connectivity and
were not synchronized between the brain regions with weak or no structural
connectivity (Figure 8B bottom, Figure S1A). Strong global coupling strength and
structural connectivity are required for excitatory mean membrane potentials to exceed
the excitatory threshold due to weak self-recurrenct excitation. Due to the synchronized
excitatory mean membrane potentials across the whole brain region, the mean transition
time in the (C,8yz) = (0.25,0.70) condition is 1.3 times longer than the mean
transition time in the (C, 8y ;) = (0.50,0.63) condition (Figure 7).
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4. Discussion

4.1 Summary

In this thesis, we investigated whether there is a model that simultaneously explains two
experimentally observed phenomena in the resting state: slow fluctuation manifested by
resting-state functional connectivity (rsFC) and fast transient dynamics manifested by
EEG microstates. We simulated a neural mass model using the Larter-Breakspear model
constrained by the structural connectivity and optimized the model parameters (the
global coupling parameter and the local gain parameter (variance of excitatory and
inhibitory threshold)) by fitting the simulated rsFC to the experimental rsFC and the
simulated microstates to the experimental microstates. As a result, we obtained three
key findings: first, the parameter sets with high fitting performance to rsFC overlapped
with those with high fitting performance to the microstate; second, two distinct
parameter sets were identified within the overlapped parameter region; third, the
overlapped parameter sets are much narrower than the parameter sets obtained by fitting
only rsFC. In other words, based on these three findings, both fast synchronization
transitions and slow BOLD fluctuation changed based on structural connectivity in the
overlapped parameter regions. Empirical microstates were similar to simulated
microstates in these regions. Thus, fast synchronization transitions correlated with slow
BOLD fluctuation based on structural connectivity yielded microstates. These results
suggest that adding the microstates as fitting criteria is important for significantly
reducing the uncertainty of good model parameters. The maximal cross-correlation
coefficient of the rsFC was about 0.45, which is almost the same value as that in
previous research (Honey et al., 2009). The maximal cross-correlation coefficient of the
microstates was about 0.7, and the mean transition times of the simulated microstates
were about 1.5 or 2.0 times longer than those of the empirical microstates.

4.2 Comparison with previous research

Since the structural connectivity in this study had stronger interhemispheric
connectivity (Figure S1A) than in the previous research, the cross-correlation
coefficients of rsFC were about 0.05 higher than in the previous research (Deco et al.,
2013; Honey et al., 2009).

In the (C, 5v,z) = (0.50,0.63) condition, the dynamics of the excitatory mean membrane
potentials resembled the dynamics of previous research in terms of irregular firing (Roberts et al.,
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2019). The simulated microstates using shuffled structural connectivity did not reproduce either a
spatial pattern or a temporal transition (Figure S4). In the (C, 8‘,1) = (0.25,0.70) condition,
the dynamics of the excitatory mean membrane potentials resembled the dynamics of the previous
research in terms of regular firing (Honey et al., 2009).

Simulated microstates using shuffled structural connectivity reproduced a spatial pattern but not a
temporal transition (Figure S4B, Figure S5). In the case of strong global coupling strength
parameter combinations, simulated microstates were merged because all of the cortical regions
were synchronized constantly. In the case of weak global coupling strength parameter
combinations, simulated microstates were not merged because synchronizations between cortical
regions were disturbed occasionally (Figure S4B, Figure S8). Furthermore, the transition
probability matrix of empirical microstates is more similar to the simulated one in the
(C,8yz) = (0.50,0.63) condition than in the (C,8yz) = (0.25,0.70) condition
(Figure S6). Therefore, the dynamics of the excitatory mean membrane potentials in the
(C,8yz) = (0.50,0.63) condition resembled the empirical resting-state activity of the human
brain. The dynamics of the excitatory mean membrane potentials in the
(C, 5v,z) = (0.25,0.70) condition were comparatively unconstrained by the structural
connectivity (Figure S4B, top). Although these were bandpass-filtered dynamics, perhaps they are
related to the phenomena in which the activity spreads to most of the cortex when the cortex is
stimulated with transcranial magnetic stimulation (TMS) during sleep (Alkire et al., 2008).

4.3 Simulated microstates

The MS7 and MS11 in each simulated case have a larger occupation ratio than the MS3
in the experiment (Figure 7) because the structural connectivity strength between the
occipital regions is weak (Figure S1A). We assume that the interhemispheric structural
connectivity was important for reproducing MS4, considering that MS4 has an equal
distribution for the distant interhemispheric positions. Thus, the constraints based on
structural connectivity are more important than the signal noise and the conduction
delay proportional to the inter-regional distance. Signal noise probably affects temporal
transition and the conduction delay proportional to the inter-regional distance probably
results in ROIs close to each other being synchronized.

4.4 Clinical application for cognitive neuroscience

The development of biomarkers for psychiatric disorders using microstates and rsFC
has been investigated (D’Croz-Baron et al., 2019; Yamada et al., 2017). One example is
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autism spectrum disorder (ASD). ASD patient’s rsSFC and microstates have different
spatial and temporal characteristics compared to healthy individuals. Our results could
not reproduce enough spatiotemporal characteristics of rsFC and microstates to compare
ASD patients and healthy individuals. However, our results will give hints to solve these
problems and enable making hypotheses about the dependence of slow and fast
resting-state brain activity on neuronal network parameters.

4.5 Effects of averaging lead field

In the Larter-Breakspear model, the numbers of excitatory and inhibitory neurons are
the same in each ROI, and only the structural connectivity differs between the ROIs. For
this reason, the high-dimensional lead field was averaged in each ROI to remove the
area’s influence in each ROI. If the ROIs were divided into smaller sections and the lead
field was not averaged for each ROI, the simulated microstates might differ. We note
that the contribution rate of the singular value decomposition did not affect the
simulated microstates because the cross-correlation coefficient was 0.9995 between the
lead fields by singular value decomposition and the mean value.

4.6 Limitation of current simulation

The occupation ratio of the empirical and simulated microstates differed and the
simulated microstate did not reproduce the specific spatial patterns of the empirical
microstates. The resting-state alpha waves in the cerebral cortex are empirically affected
by the thalamus (Sherman, 2016), and slow fluctuation is affected by the serotonin
receptor density (Deco et al., 2018; Shine et al., 2019). However, the Larter-Breakspear
model in this study does not include thalamic dynamics, conduction delay proportional
to inter-regional distance, signal noise, or serotonin receptor density. Therefore,
incorporating these effects in this model might more fully reveal how well the simulated
rsFC and microstates reflect the empirical rsFC and microstates in realistic conditions.

4.7 Numbers of participants

Since empirical EEG and rsFC were obtained by two studies aiming at different
purposes, the number of participants of EEG and rsFC differ. Empirical rsFC was
obtained from 13 participants, sufficient for statistical purposes. Empirical EEG was
obtained from only 4 participants. However, the 4 microstates identified from this
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empirical EEG are similar to the 4 microstates identified by other studies (Michel and
Koenig, 2018b). We presume the 4 microstates will be similar to the microstates
identified from 13 participants.
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Appendix

Structural connectivity and shuffled structural connectivity

matrices

A Structural connectivity B Shuffled structural connectivity
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Figure S1. Structural connectivity matrix and shuffled structural connectivity matrix. Structural
connectivity matrix obtained by averaging across 12 human participants, and shuffled structural
connectivity matrix calculated by randomio_und_connected function of Brain Connectivity
Toolbox while preserving distribution of degree of structural connectivity matrix.

Table S1. ROIs corresponding to region number in left hemisphere (ROI in right hemisphere
arranged opposite to left hemisphere). As the Larter-Breakspear model is a cortical model,
non-cortical regions were excluded from AAL. Furthermore, only cortical regions that were
common to all subjects were chosen since our study focuses on common structure across all
subjects.

Region number ROI

1 Olfactory

2 Cingulum Mid

3 ParaHippocampal
4 Temporal Pole Mid
5 Precentral
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Frontal Sup
Frontal Sup Orb
Frontal Sup Medial
Frontal Med Orb
Rectus

Cingulum Ant
Cingulum Post
Precuneus
Temporal Mid
Frontal Mid
Frontal Mid Orb
Frontal Inf Oper
Frontal Inf Tri
Frontal Inf Orb
Supp Motor Area
Parietal Inf
Angular
Temporal Pole Sup
Temporal Inf
Calcarine
Cuneus

Lingual
Occipital Sup
Occipital Mid
Occipital Inf
Fusiform
Rolandic Oper
Insula
Postcentral
Parietal Sup
SupraMarginal
Paracentral Lobule
Heschl

Temporal Sup
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Spatiotemporal patterns of simulated microstates in

(C,8yz) = (0.35,0.61) condition

Simulated microstates
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Figure S2. Occupation ratio and mean transition time of simulated microstates in (C, SV,Z) =
(0.35,0.61) condition. Only 1 microstate accounts for simulated EEG and rarely transit to
other microstates.
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Empirical and simulated EEG, GFP and microstate

segmentation
. Simulated EEG and GFP
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Figure S3. EEG, GFP and microstates segmentation in experiment (A) and in the simulated
(C, 5v,z) = (0.50, 0.63) condition (B). Each color corresponds to each microstate.
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Spatial pattern similarity of rsFC and microstates for shuffled

structural connectivity

A Spatial correlation B Spatial correlation
between empirical and simulated rsFC between empirical and simulated MS
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Figure S4. Cross-correlation coefficients between empirical and simulated spatial patterns (left
rsFC, right microstates) based on shuffled structural connectivity matrix for combination of each
parameter (C, 8y 7). Simulation performed ten times for each parameter. rsFC’s spatial similarity
was very low. Microstates’ spatial similarity was subequal as with non-shuffled structural
connectivity matrix because simulated EEG was strongly constrained by lead field.
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A (C, 8y 2)=(0.10, 0.66) B (¢6y2)=(025,0.70)
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Figure Sb. Occupation ratio and mean transition time in both conditions
(¢, 8y 7) =(0.10,0.66) and (0.25,0.70). Structural connectivity matrix was shuffled
for each trial. Microstates were simulated 100 times. In both conditions, potentially reversed
microstates along longitudinal fissures of cerebrum like MS 13 and MS 20 accounted for a high
percentage as opposed to interhemispheric equally potential microstate that accounted for a high
percentage in  empirical  microstates. Mean  transition time in  condition
(C, 5V,z) = (0.10,0.66) was much longer than mean transition time of empirical microstates.
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Transition probabilities of empirical and simulated

microstates
Empirical microstates Simulated microstates
transition probabilities transition probabilities
A B (C 6,)=(0.25,0.70) C  (C6,)=(0.50,0.63)
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Figure S6. Transition probability matrices of empirical microstates (A), simulated microstates in
the (C,8y ) = (0.25,0.70) condition (B), and simulated microstates in the (C, 8y 7) =
(0.50,0.63) condition (C) per 10 msec. Transition probability matrices represent the
probability that a microstate at time t will transit to another microstate at time t + 1.
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Phase-locking matrix for each parameter combination in the
case of structural connectivity and shuffled structural

connectivity
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connectivity. There were two parameter groups of strong global coupling strength and small

Figure S7. Phase-locking matrix for each parameter combination in the case of structural
variance of threshold or weak global coupling strength and large variance of threshold.
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