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Hidenori Endo 

 

 

 

Abstract 

 

Resting-state brain activities have been extensively investigated to understand the 

macro-scale network architecture of the human brain using non-invasive imaging 

methods such as fMRI, EEG and MEG. Previous studies revealed a mechanistic origin 

of resting-state networks (RSNs) using the connectome dynamics modeling approach, 

where the neural mass dynamics model constrained by the structural connectivity is 

simulated to replicate the resting-state networks measured with fMRI and/or fast 

synchronization transitions with EEG/MEG. However, there is still little understanding 

of the relationship between the slow fluctuations measured with fMRI and the fast 

synchronization transitions with EEG/MEG. 

In this thesis, as a first step toward evaluating experimental evidence of resting state 

activity at two different time scales but in a unified way, we investigate connectome 

dynamics models that simultaneously explain resting-state functional connectivity 

(rsFC) and EEG microstates. Here, we introduce empirical rsFC and microstates as 

evaluation criteria of simulated neuronal dynamics obtained by the Larter-Breakspear 

model in one cortical region connected with those in other cortical regions based on 

structural connectivity. We optimized the global coupling strength and the local gain 

parameter (variance of the excitatory and inhibitory threshold) of the simulated neuronal 

dynamics by fitting both rsFC and microstate spatial patterns to those of experimental 

ones. As a result, we found that simulated neuronal dynamics in a narrow optimal 

parameter range simultaneously reproduced empirical rsFC and microstates. 

 

*Doctoral Dissertation, Graduate School of Information Science, Nara Institute of 

Science and Technology, December 7, 2019. 
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Two parameter groups had different inter-regional interdependence. One type of 

dynamics was synchronized across the whole brain region, and the other type was 

synchronized between brain regions with strong structural connectivity. In other words, 

both fast synchronization transitions and slow BOLD fluctuation changed based on 

structural connectivity in the two parameter groups. Empirical microstates were similar 

to simulated microstates in the two parameter groups. Thus, fast synchronization 

transitions correlated with slow BOLD fluctuation based on structural connectivity 

yielded characteristics of microstates. Our results demonstrate that a bottom-up 

approach, which extends the single neuronal dynamics model based on empirical 

observations into a neural mass dynamics model and integrates structural connectivity, 

effectively reveals both macroscopic fast and slow resting-state network dynamics. 

 

Keywords: 

Resting-state networks (RSNs), Resting-state Functional Connectivity (rsFC), EEG 

microstates, neural mass model, Cortico-cortical activity 
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1. Introduction 

1.1 Background 

Research on resting-state networks is attracting much attention in human 

neuroimaging. Resting-state functional connectivity (rsFC), i.e., coactivation patterns of 

slowly fluctuating BOLD signals measured with fMRI (on the order of seconds), has 

shown interesting empirical evidence on functional subnetworks and their relevance to 

individual differences (Smith et al., 2013). On the other hand, the microstates, i.e., 

fast-transient spatial patterns of human scalp potential measured with EEG (on the order 

of ten to hundreds milliseconds), have been regarded as the building blocks of human 

information processing, and four canonical microstates appear in resting-state 

consistently across subjects and studies (Koenig et al., 2002; Michel and Koenig, 2018a; 

Pascual-Marqui et al., 1995). In addition, simultaneous fMRI and EEG measurements 

have been used to reveal the relationship between the slow fluctuation related to rsFC 

and the fast synchronization transition related to microstates in terms of the 

spatiotemporal dynamics of the human brain’s information processing (Bréchet et al., 

2019; Britz et al., 2010; Schwab et al., 2015; Van de Ville et al., 2010; Yuan et al., 

2012). However, few mechanistic explanations of these two phenomena have been 

presented. 

Recently, the connectome dynamics models, based on models of neural dynamics 

constrained by the whole brain’s structural connectivity (called connectome), have been 

investigated to clarify the generative mechanism of functional brain activities and 

networks. Several computational studies have used simulated neuronal dynamics to 

understand the mechanistic origins of rsFC patterns (Breakspear et al., 2007; Deco et al., 

2013; Deco and Jirsa, 2012; Honey et al., 2009), dynamic rsFC patterns (Fukushima and 

Sporns, 2018; Hansen et al., 2015), and static FC related to fast synchronization 

measured by MEG (Abeysuriya et al., 2018; Deco et al., 2017; Nakagawa et al., 2014). 

Furthermore, recent studies have tried to uncover the relationships between fast 

synchronization transition and slow fluctuation by combining experimental fMRI with 

EEG or/and MEG data. Schirner et al. proposed a connectome dynamics model that has 

EEG source currents in the alpha band as input and demonstrated that the model 

replicated multiple experimental observations measured with fMRI (Schirner et al., 

2018). Demirtaş et al. proposed a locally heterogeneous connectome dynamics model 

that improved the replication performance of rsFC and MEG power spectrum spatial 

distribution  (Demirtaş et al., 2019). Roberts et al. showed that the Larter-Breakspear 
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model (Sanz-Leon et al., 2015) constrained by the connectome generated rich 

repertoires of rapidly changing spatiotemporal patterns that are in agreement with the 

temporal statistics of experimental data such as electrical waves in cortical tissue, 

sequential spatiotemporal patterns in the resting state MEG data, and large-scale waves 

in human electrocorticography as well as static rsFC (Roberts et al., 2019). However, 

similarities between experimental and simulated fast-transient spatial patterns have not 

yet been investigated.  

In this study, to evaluate experimental evidence of resting-state activity on two 

different time scales but in a unified way, we investigated a connectome dynamics 

model that explains both experimental rsFC and microstates. We used the 

Larter-Breakspear model, in which the inhibitory and excitatory neurons in one region 

are connected with those in other regions based on a connectome measured with 

diffusion MRI. We optimized the global coupling strength and the local gain parameter 

(variance of the excitatory and inhibitory threshold) of the simulated neuronal dynamics 

by fitting both rsFC and microstate spatial patterns to those of the experimental ones. As 

a result, we found that fast synchronization transitions correlated with slow BOLD 

fluctuation based on structural connectivity yielded characteristics of empirical 

microstates. In detail, we found that the parameter sets with high fitting performance to 

rsFC overlapped with those with high fitting performance to microstates and that the 

optimal parameter range was greatly reduced by adding microstates as evaluation 

criteria compared with not adding them as in a previous work (Honey et al., 2009). We 

found two parameter regions where both rsFC and microstate spatial patterns were 

reproduced with moderately high accuracy: One had a high local gain (high variance of 

the excitatory and inhibitory threshold) and weak global coupling strength, while the 

other had a low local gain (low variance of the excitatory and inhibitory threshold) and 

strong global coupling strength.  In investigating the neural mass dynamics generated 

from these two parameter sets, the former showed highly periodic and synchronized 

activation; the latter showed fewer synchronized and periodic activations. The temporal 

transition of the simulated microstates for the former parameters persisted for about 200 

milliseconds, and that for the latter parameters persisted for 150 milliseconds. Both 

resulted in longer durations than the experimental data. Our results demonstrate that a 

bottom-up approach, which extends microscopic models of single-neuron dynamics 

based on empirical studies (Hodgkin and Huxley, 1952; Morris and Lecar, 1981) into a 

mesoscopic neural mass dynamics model (Larter et al., 1999) and integrates 

macroscopic structural connectivity, can effectively reveal both macroscopic fast and 

slow resting-state network dynamics that are observed in human neuroimaging 
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measurements.  

 

1.2 Organization of Dissertation 

In chapter 2, data acquisition, data analysis, and evaluation procedures regarding rsFC 

and microstates are detailed. Then, resting spatio-temporal dynamics using resting fMRI 

connectivity and EEG microstates are demonstrated. Finally, the application and 

limitations of the current simulation are discussed in chapter 4. 
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2. Materials and Methods 
RSNs are characterized by an rsFC based on slow fluctuations observed by fMRI and 

microstates based on fast synchronization transitions observed by EEG. Simulated 

rsFCs and microstates, which were obtained by the Larter-Breakspear model that 

integrated the empirical structural connectivity, were compared with the empirical rsFCs 

and the microstates. Regarding slow fluctuation, the mean excitatory membrane 

potentials were converted into blood-oxygen-level dependent (BOLD) signals by the 

Balloon-Windkessel model. Next, after global fluctuations were regressed out of the 

BOLD signals, simulated rsFCs were obtained by calculating the cross-correlation 

coefficients among the BOLD signals. The empirical and simulated rsFCs were 

evaluated for their spatial pattern similarity. Regarding the fast synchronization 

transitions, a simulated EEG was obtained by multiplying the lead field and transformed 

into microstates by applying modified k-means clustering. We evaluated the empirical 

and simulated microstates for their spatial pattern similarity and non-stationary 

switching of microstates (Figure 1). 

 

 

Figure 1. Evaluation procedures for rsFC and microstates. Mean excitatory membrane potentials 

obtained by Larter-Breakspear model integrating structural connectivity were converted into 

simulated rsFC and microstates by Balloon-Windkessel model and lead field and compared with 

empirical rsFC and microstates. 
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2.1 Data acquisition 

2.1.1 Structural and diffusion MRI data 

To obtain a structural connectivity matrix using a fiber-tracking algorithm, we measured 

the T1-weighted structural (TR: 2300 ms, TE: 2.98 ms, Flip angle: 9 degrees, TI: 900 

ms, thickness: 1 mm, FOV: 256, matrix: 256 x 256, iso-voxel) and diffusion MRI 

data (gradient directions: 64, b-value: 1000, thickness: 2 mm, iso-voxel) that were 

acquired on a 3T Trio (Siemens, Erlangen, Germany) from 13 participants (11 males 

and 2 females, aged 28.7 ± 8.47 years). All of the 13 participants gave informed 

written consent. All of the experiments in this study were conducted according to the 

Declaration of Helsinki and were approved by the Ethics Committee of the Advanced 

Telecommunications Research Institute International, Japan.  

 

2.1.2 Resting-state functional MRI data 

We recorded the resting-state brain activities for 10 min. The same 13 participants who 

took part in the dMRI experiment fixated on a cross, let their mind wander, and avoided 

focusing on any one thing. The resting-state functional imaging data (TR: 2500 ms, TE: 

30 ms, FOV: 212 mm, flip angle: 80 degrees, matrix: 64 x 64, thickness: 3.2 mm, gap: 

0.8 mm, 40 slices x 244 volumes) were acquired on a 3T Trio (Siemens, Erlangen, 

Germany).  

 

2.1.3 Resting-state EEG data 

The resting-state EEGs were recorded for 5 min. The four participants who took part in 

the fMRI experiment fixated on the cross, let their mind wander, and avoided focusing 

on any one thing. All of the four participants gave informed written consent. Their 

EEGs were recorded with a whole-head 63-channel system (BrainAmp; Brain Products 

GmbH, Germany). The sampling frequency was 1 kHz. Electrooculogram (EOG) 

signals were simultaneously recorded and then stored in the EEG. 
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2.2 Data analysis 

2.2.1 Empirical structural connectivity 

We computed the experimental structural connectivity matrix in accordance with a 

previous work (Fukushima et al., 2015). Briefly, the seed and target ROIs used for 

fiber-tracking were obtained by FreeSurfer. The participants’ motions were corrected by 

the FMRIB Software Library (FSL). Fractional anisotropy images were then calculated 

from the corrected images and used for registering the diffusion-space to the T1-space 

by a non-linear registration tool (FNIRT) in FSL. The local model of the fiber 

orientations was the fiber orientation distribution (FOD), reconstructed at each voxel by 

constrained spherical deconvolution (Tournier et al., 2007) with six-dimensional 

spherical harmonics for the response function. Based on the reconstructed FOD, fibers 

were probabilistically tracked by MRtrix. The fiber tracks were generated 105 times 

from each ROI. We calculated the structural connectivity strength as the number of 

fibers within each ROI pair 𝑓𝑡 divided by the total number of fibers generated from 

seed ROI 𝑓𝑠 with voxel size normalization: (𝑓𝑡/𝑣𝑡)/(𝑓𝑠/𝑣𝑠), where 𝑣𝑡 and 𝑣𝑠 are 

the number of voxels in the target and the seed ROI. Since the direction of the structural 

connectivity strength was not determined by a measurement principle, the structural 

connectivity matrix was symmetrized by assigning the higher strength to both directions. 

All parameters were determined as done in a previous work (Fukushima et al., 2015). 

The representative structural connectivity matrix was obtained by averaging the 

structural connectivity matrices of all participants with respect to the participants’ 

common cortical ROI (Table S1).  

 

2.2.2 Empirical resting-state functional connectivity 

The resting-state functional imaging was preprocessed with SPM8 software (Wellcome 

Trust Centre for Neuroimaging, University College London, UK) in MATLAB (R2013a, 

Mathworks, USA) as follows. First, the raw functional images were corrected for 

slice-timing and realigned to the mean image of that sequence to compensate for the 

head motion. Second, the structural images were co-registered to the mean functional 

image and segmented into three tissue classes in the Montreal Neurological Institute 

(MNI) space. The functional images were then normalized and resampled in a 2 x 2 x 2 

mm grid and smoothed by a Gaussian of 8 mm full-width at half-maximum. 

We computed the functional connectivity matrix using parcellation defined by 
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anatomical automatic labeling (AAL) for each participant. We extracted a representative 

time course in each region by averaging the time courses of the voxels therein. A 

band-pass filter (transmission range, 0.008–0.1 Hz) was applied to these sets of time 

courses prior to the following regression procedure. The filtered time courses were 

linearly regressed by the temporal fluctuations of the white matter, the cerebrospinal 

fluid, and the entire brain. Here, the fluctuation in each tissue class was determined 

from the average time course of the voxels within a mask created by the segmentation 

procedure of the T1 image. These extracted time courses were bandpass-filtered 

(transmission range, 0.008–0.1 Hz) before the linear regression, as was done for the 

regional time courses. All parameters were determined as done in a previous work 

(Yahata et al., 2016). Then a representative rsFC was obtained by calculating the 

cross-correlation coefficients among the BOLD signals for each participant and 

averaging the rsFC of each participant with respect to the common cortical ROI in all 

participants. 

 

2.2.3 Microstates 

The EEG data were preprocessed with a low-pass FIR filter with a cutoff frequency of 

50 Hz, downsampled at 100 Hz, and passed through a high-pass FIR filter with a cutoff 

frequency of 0.5 Hz. After a common average reference, the EOG artifacts were 

removed by generating a multiple linear regression model to predict the 

eye-movement-related components in the EEG data using the EOG data. Cardiac 

artifacts and sensor noise were removed by ICA. All of the EEG data were converted 

into empirical microstates. 

Since microstates are seen as building blocks of human information processing as 

noted in a previous work (Koenig et al., 2002), they were introduced as the criteria to 

compare the fast dynamics between empirical and simulated neuronal dynamics. First, 

the standard deviation of all EEG signals, called the global field power (GFP), was 

calculated as the criterion of the signal-to-noise ratio (SNR). Second, four microstates 

were identified by the basic N-microstate algorithm applied to the normalized EEG at 

the local maxima in the GFP curve. The optimal number of microstates was set to four 

based on a large-scale study on microstates (Koenig et al., 2002), and probabilistically 

discrete initial values for clustering were chosen based on the k-means++ algorithm 

(Arthur and Vassilvitskii, 2007). If the spatial correlation value between one microstate 

and another microstate was 0.9 or more, these two microstates were merged. Third, the 

transition of the microstates was calculated by a segmentation-smoothing algorithm 
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(Figure 2). All parameters were determined as done in a previous work (Pascual-Marqui 

et al., 1995). That is, convergence criterion parameter ϵ = 10−6 , window size 

parameter b = 3, and non-smoothness penalty parameter λ = 5. The occupation ratio 

is defined as the time allocated to a microstate divided by the total time. 

 

Figure 2. Calculation procedures for empirical and simulated microstates. GFP was calculated 

from EEG and EEG at the local maxima in the GFP curve was extracted to calculate four spatial 

patterns of microstates (A). Four microstates were identified by the basic N-microstate algorithm 

(B). Each color corresponds to each microstate. Four microstates were allocated to EEG at each 

time point (C). Temporal transitions of microstates were smoothed by a segmentation-smoothing 

algorithm (D). 

 

2.3 Computational modeling 

2.3.1 Larter-Breakspear model 

The Larter-Breakspear model is a phenomenological scheme that describes the 

electrophysiological neuronal dynamics in each region based on structural connectivity. 

This model consists of the mean membrane potential of the excitatory neurons (V) and 

the inhibitory neurons (Z), and the average number of open potassium ion channels (W). 

The mean firing rate for excitatory and inhibitory populations are described by 𝑄𝑉 and 

𝑄𝑍. The voltage-dependent fractions of open ion channels are described by 𝑚𝑖𝑜𝑛. These 

sigmoidal functions describe averaging over a population of ion channels and cell firing 
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rates under Gaussian distribution. Excitatory interactions between region i and j are 

described by 〈𝑄𝑉〉𝑖. Simulations were performed using ode23, which automatically 

chooses the step size, maintains a specified accuracy, and solves ordinary differential 

equations in MATLAB. We repeated simulations for each parameter set 10 times with 

different initial values to reduce the influence of initial values. The simulation length 

was set to 10 min. We discarded the first two minutes to eliminate the influence of the 

initial values. All simulation parameters in Table 1 were determined based on a previous 

work (Roberts et al., 2019). In the parameter search, the balance of intra- and 

inter-regional excitatory synaptic connection strength was changed by the global 

coupling strength C, and the oscillation of the excitatory and inhibitory neural 

populations was changed by the variance of the excitatory and inhibitory threshold. It 

took about 2 days to complete 10 minutes of simulation for a particular parameter set 

and an initial value using our high performance computer server. 

 

 𝑚𝑖𝑜𝑛 = 0.5 (1 + 𝑡𝑎𝑛ℎ (
𝑉𝑖 − 𝑇𝑖𝑜𝑛

𝛿𝑖𝑜𝑛
 )), (1)  

 𝑄𝑉 = 0.5𝑄𝑉𝑚𝑎𝑥
(1 + 𝑡𝑎𝑛ℎ (

𝑉𝑖 − 𝑉𝑇

𝛿𝑉
)), (2)  

 𝑄𝑍 = 0.5Q𝑍𝑚𝑎𝑥
(1 + 𝑡𝑎𝑛ℎ (

𝑍𝑖 − 𝑍𝑇

𝛿𝑍
)), (3)  

 

𝑑𝑉𝑖

𝑑𝑡
=

−(𝑔𝐶𝑎 + (1 − 𝐶)𝑟𝑁𝑀𝐷𝐴𝑎𝑒𝑒𝑄𝑉
𝑖 +

𝐶𝑟𝑁𝑀𝐷𝐴𝑎𝑒𝑒〈𝑄𝑉〉𝑖)𝑚𝐶𝑎(𝑉𝑖 − 𝑉𝐶𝑎) − gK𝑊(𝑉𝑖 − 𝑉𝐾) −

𝑔𝐿(𝑉𝑖 − 𝑉𝐿) −

(𝑔𝑁𝑎𝑚𝑁𝑎 + (1 − 𝐶)𝑎𝑒𝑒𝑄𝑉
𝑖 + 𝐶𝑎𝑒𝑒〈𝑄𝑉〉𝑖)(𝑉𝑖 − 𝑉𝑁𝑎) −

𝑎𝑖𝑒𝑍𝑄𝑍
𝑖 + 𝑎𝑛𝑒𝐼,, 

(4)  

 
𝑑𝑍𝑖

𝑑𝑡
= 𝑏(𝑎𝑛𝑖𝐼 + 𝑎𝑒𝑖𝑉

𝑖𝑄𝑉
𝑖 ), (5)  

 
𝑑𝑊𝑖

𝑑𝑡
= 𝜙

𝑚𝐾 − 𝑊𝑖

𝜏𝐾
, (6)  

 〈𝑄𝑉〉𝑖 =
∑ 𝑢𝑖𝑗𝑄𝑉

𝑗
𝑗

∑ 𝑢𝑖𝑗𝑗
. (7)  
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Here, 𝑢𝑖𝑗 is the structural connectivity strength between region i and region j. 

 

Table 1. Parameter values for the Larter-Breakspear model. 

Parameter Description Value 

TCa Threshold value for Ca channels -0.01 

δCa Variance of Ca channel threshold 0.15 

gCa Conductance of population of Ca channels 1 

VCa Ca Nernst potential 1 

TK Threshold value for K channels 0.0 

δK Variance of K channel threshold 0.30 

gK Conductance of population of K channels 2.0 

VK K Nernst potential -0.7 

TNa Threshold value for Na channels 0.3 

δNa Variance of Na channel threshold 0.15 

gNa Conductance of population of Na channels 6.7 

VNa Na Nernst potential 0.53 

VL Nernst potential leak channels -0.5 

gL Conductance of population of leak channels 0.5 

VT Threshold potential for excitatory neurons 0.0 

ZT Threshold potential for inhibitory neurons 0.0 

δV Variance of excitatory threshold Varied 

δZ Variance of inhibitory threshold Same value as δV 

QV𝑚𝑎𝑥
 Maximal firing rate for excitatory populations 1.0 

QZ𝑚𝑖𝑛
 Maximal firing rate for inhibitory populations 1.0 

I Subcortical input strength 0.30 

aee Excitatory-to-excitatory synaptic strength 0.36 

aei Excitatory-to-inhibitory synaptic strength 2 

aie Inhibitory-to-excitatory synaptic strength 2 

ane Non-specific-to-excitatory synaptic strength 1 

ani Non-specific-to-inhibitory synaptic strength 0.4 

b Time constant scaling factor 0.1 

φ Temperature scaling factor 0.7 

τK Time constant for K relaxation time 1 

rNMDA Ratio of NMDA to AMPA receptors 0.25 

δ Random modulation of subcortical input 0 
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2.3.2 Simulated BOLD 

To calculate the simulated rsFC, the mean membrane potential of the excitatory neurons 

was converted into simulated BOLD signals by the Balloon-Windkessel hemodynamic 

model. In this paper, neuronal activity was given by the absolute value of the time 

derivative of the mean excitatory membrane potential within each brain region. For the 

𝑖th region, neuronal activity 𝑧𝑖 increased vasodilatory signal 𝑠𝑖, which is subject to 

autoregulatory feedback. Inflow 𝑓𝑖  responds in proportion to this signal with 

concomitant changes in blood volume 𝑣𝑖  and deoxyhemoglobin content 𝑞𝑖 . The 

following are the related equations: 

 
𝑑𝑠𝑖

𝑑𝑡
= 𝑧𝑖 − 𝜅𝑖𝑠𝑖 − 𝛾𝑖(𝑓𝑖 − 1), (8)  

 
𝑑𝑓𝑖

𝑑𝑡
= 𝑠𝑖 , (9)  

 𝜏𝑖

𝑑𝑣𝑖

𝑑𝑡
= 𝑓𝑖 − 𝑣𝑖

1/𝛼
, (10)  

 𝜏𝑖

𝑑𝑞𝑖

𝑑𝑡
=

𝑓𝑖(1 − (1 − 𝜌𝑖
1/𝑓𝑖))

𝜌𝑖
−

vi
1/𝛼

𝑞𝑖

𝑣𝑖
, (11)  

where 𝜅𝑖 = 0.65 is the rate of signal decay, 𝛼 = 0.32 is Grubb’s exponent, 𝜏𝑖 = 0.98 

is the hemodynamic transit time, and 𝜌 = 0.34 is the resting oxygen extraction fraction. 

The BOLD signal is a static nonlinear function of volume and deoxyhemoglobin 

comprised of a volume-weighted sum of the extra- and intra-vascular signals: 

 𝑦𝑖 = 𝑉0 (7𝜌𝑖(1 − 𝑞𝑖) + 2 (1 −
𝑞𝑖

𝑣𝑖
) + (2𝜌𝑖 − 0.2)(1 − 𝑣𝑖)), (12)  

where 𝑉0 = 0.02 is the resting-blood volume fraction (Figure 3). All of the simulation 

parameters were determined as done in a previous work (Friston et al., 2003). 
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2.3.3 Lead field 

The mean membrane potentials of the excitatory neurons were converted into simulated 

EEGs by the lead field that represents the linear relation between the sources on the 

cortical surface and the measurements on each EEG channel as a gain matrix. Polygon 

models of the cortical surfaces (20,004 vertex points) were constructed from T1 

structural images of the same four participants who took part in the EEG experiment 

using FreeSurfer software (Dale et al., 1999). A single current dipole was assumed at 

each vertex point to be perpendicular to the cortical surface. The brain structures were 

approximated as a three-layer model by identifying three boundaries, i.e., for the 

cerebrospinal fluid (CSF), the skull, and the scalp, assuming that the conductivities were 

0.33, 0.0042, and 0.33, respectively (Waberski et al., 1998). These surfaces obtained by 

FreeSurfer were slightly modified using gray/white/CSF segmentation by SPM8 

(Welcome Department of Cognitive Neurology, UK) and morphological operations. All 

of the parameters were determined as done in a previous work (Aihara et al., 2012). 

Singular value decomposition was applied to all points belonging to one ROI out of 

20004 points. The singular values were arranged in descending order and the lead field 

at 80% accumulation rate of singular values was averaged in one ROI. (That is, it has 

almost the same effect as averaging the lead field within an ROI.) We calculated the 

low-dimensional lead field (63 channels x 78 ROIs) of each participant by averaging the 

components that contribute 80% for each ROI since the Later-Breakspear model has the 

same number of neurons in each ROI. This way, we removed the influence of 

heterogeneous ROI sizes in the empirical data. Then the low-dimensional lead field 

matrices of all subjects were averaged. 

 

2.3.4 Simulated microstates 

To compare the empirical and simulated microstates, we converted the mean membrane 

potential of the excitatory neurons into simulated EEG signals by the lead field. First, 

the simulated EEG signals were calculated by multiplying the mean membrane potential 

of the excitatory neurons by the lead field. Second, a common average reference was 

applied for simulated EEG signals and the simulated EEG signals were 

bandpass-filtered between 10 and 15 Hz. Third, the bandpass-filtered signals were 

downsampled from 1000 to 100 Hz. Finally, the simulated microstates were acquired by 

applying the basic N-microstate algorithm and the segmentation smoothing algorithm to 

the obtained signals (Figure 4). 
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Figure 4. Calculation procedures for simulated microstates. Simulated EEG was obtained by 

multiplying the mean membrane potentials of the excitatory neuron and low dimensional lead 

field. Simulated EEG was applied for a 10-15 Hz bandpass filter to mainly exclude high 

-frequency components (20-120 Hz) and downsampled to 100 Hz. Simulated microstates were 

calculated by applying signal processed simulated EEG for microstate analysis. Each color 

corresponds to each microstate. 

 

2.3.5 Quantitative evaluation of empirical and simulated 

results 

The spatial correlation between the empirical and simulated rsFCs was obtained by 

averaging the cross-correlation coefficients of the lower triangular components between 

the empirical and simulated rsFCs for each parameter set.  

We evaluated the empirical and simulated microstates in terms of spatial similarity, 

occupation ratio, mean transition time, and global explained variance (GEV). GEV 

represents the goodness of fit between the microstates and the normalized EEG 

weighted by GFP (Khanna et al., 2014). We obtained the spatial correlation between the 

empirical and simulated microstates by the following procedures. For the 24 

combinations between the empirical and simulated microstates, we calculated the 

average cross-correlation coefficients of each combination and chose the one that 

maximized it. In the simulation, two microstates that showed similar spatial patterns 
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(similarity over 0.9) were merged. This happened for several parameter combinations. If 

the number of simulated microstates was less than four, the cross-correlation 

coefficients were set to 0 for the missing simulated microstates. The occupation ratio 

was obtained by dividing the time allocated to each microstate by the total simulation 

time. The mean transition time was obtained by averaging required time to transition 

from one microstate to another. 

 

2.3.6 Phase-locking matrix 

The phase-locking matrix quantitatively visualizes the inter-regional interdependence of 

the nonlinear simulated neuronal dynamics. First, the 10-15 Hz bandpass filter was 

applied to the mean membrane potentials. Second, these signals were 

Hilbert-transformed, extracting the phase 𝜃. Finally, we calculated the phase-locking 

values (PLVs) between regions p and q by the following formula: 

 

 PLVs =
|∑ 𝑒𝑖(𝜃𝑞

𝑡 −𝜃𝑝
𝑡 )𝑁𝑇

𝑡=1 |

𝑁𝑇
, (13)  

where 𝑁𝑇 represents the sampling number. 

 

Figure 5. Calculation procedures for the phase-locking matrix. 10-15 Hz bandpass filter was 

applied to the mean membrane potential of the excitatory neurons 𝑽𝒊. Hilbert transform separated 

from bandpass filtered signals to envelope and phase. The phase-locking matrix was calculated by 
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Eq. (13). 
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3. Results 

3.1 Spatial pattern similarity of rsFC and microstates 

 

Figure 6. Spatial pattern similarity of rsFC and microstates for each parameter combination. 

Averaged cross-correlation coefficients between empirical and simulated rsFC (left) and 

microstates (right) are obtained by varying global coupling strength 𝑪 and variance of threshold 

𝜹𝑽,𝒁. Color bars indicate strength of cross-correlation coefficients. 

 

In the two parameter groups of strong global coupling strength and small variance of threshold or 

weak global coupling strength and large variance of threshold, the simulated rsFC and microstates 

indicated a high spatial similarity to the empirical rsFCs and microstates (Figure 6). We selected 

the optimal parameter groups by considering both the spatial similarities of rsFC, which were 

moderately high over a broad range, and the spatial similarities of the microstates, which were 

high in a narrow range. The spatial similarities in the optimal parameter groups obtained with 

structural connectivity based on diffusion MRI were significantly higher than those obtained with 

shuffled structural connectivity (Figure S1).  

The spatial pattern similarity between empirical and simulated microstates in the (𝐂, 𝛅𝐕,𝐙) =

(𝟎. 𝟑𝟓, 𝟎. 𝟔𝟏) condition is high but the occupation ratio and the mean transition time are greatly 

different from empirical microstates (Figure 6B, Figure S2). The occupation ratio and the mean 

transition time in the (𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟑𝟎, 𝟎. 𝟔𝟏) and (𝟎. 𝟐𝟓, 𝟎. 𝟔𝟏) are almost the same as in 

the (𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟑𝟓, 𝟎. 𝟔𝟏) condition. 
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3.2 Comparison of spatiotemporal patterns between 

empirical and simulated microstates 

 

Figure 7. Occupation ratio and mean transition time of empirical and simulated microstates. 

Global explained variance (GEV) was 59, 66, and 69% for the empirical, simulated weak global 

coupling strength, and simulated strong global coupling strength microstates, respectively. Each 

simulated microstate is indicated with the same color as the empirical microstate with which it is 

most highly correlated. Interchanging red and blue would correspond to the identical pattern. 

 

Empirical and simulated microstates were obtained by applying the basic N-microstate 

algorithm and the segmentation smoothing algorithm for EEG time-series. Roughly, one 

microstate probabilistically transitions to another microstate when GFP is at a local 

minimum (Figure S3). 

Concerning the empirical microstates, MS2 accounted for the highest proportion, and 

their mean transition times were about 100 milliseconds, as in the previous research 

(Figure 7A). 

In the (C, δV,Z) = (0.25, 0.70) condition, the simulated microstates were sustained 

about twice as long compared with the empirical microstates. In contrast to the 

empirical microstates, MS6 and MS7 accounted for a higher proportion than MS5. 

Furthermore, MS8’s temporal transition was also intermediate between MS2 and MS4 

because MS8 accounted for the lowest proportion, even though it was sustained for the 
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longest time (Figure 7B). 

In the (C, δV,Z) = (0.50, 0.63) condition, the simulated microstates were sustained 

about 1.5 times longer than the empirical microstates. Unlike the (C, δV,Z ) =

(0.25, 0.70) condition, the occupation ratio of MS10 was about 5% higher than that of 

MS11. Moreover, the spatial pattern of MS12 was biased to the left hemisphere (Figure 

7C). 

 

3.3 Comparison of neuronal dynamics and phase-locking 

 

Figure 8. Excitatory mean membrane potentials for one second and averaged phase-locking 

matrix. In the (𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟐𝟓, 𝟎. 𝟕𝟎) condition, excitatory mean membrane potentials 

fluctuated in a regular manner and were synchronized across the whole brain region. In the 

(𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟓𝟎, 𝟎. 𝟔𝟑)  condition, excitatory mean membrane potentials fluctuated 

irregularly and were synchronized between brain regions with strong structural connectivity. 

 

There were two parameter groups of strong global coupling strength and small variance 

of threshold or weak global coupling strength and large variance of threshold in terms of 

phase-locking matrices (Figure S7). In the case of the spatial pattern of the 

phase-locking matrix being similar to the spatial pattern of the structural connectivity 

matrix, spatial patterns of the empirical microstates were similar to spatial patterns of 

the simulated microstates. 

In the (C, δV,Z) = (0.25, 0.70) condition, the excitatory mean membrane potentials 
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were synchronized across the whole brain region with weak global coupling strength 

because the self-recurrent excitation was higher than the low variance of the threshold.  

In the (C, δV,Z) = (0.50, 0.63) condition, the excitatory mean membrane potentials 

were synchronized between the brain regions with strong structural connectivity and 

were not synchronized between the brain regions with weak or no structural 

connectivity (Figure 8B bottom, Figure S1A). Strong global coupling strength and 

structural connectivity are required for excitatory mean membrane potentials to exceed 

the excitatory threshold due to weak self-recurrenct excitation. Due to the synchronized 

excitatory mean membrane potentials across the whole brain region, the mean transition 

time in the (C, δV,Z) = (0.25, 0.70) condition is 1.3 times longer than the mean 

transition time in the (C, δV,Z) = (0.50, 0.63) condition (Figure 7). 
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4. Discussion 

4.1 Summary 

In this thesis, we investigated whether there is a model that simultaneously explains two 

experimentally observed phenomena in the resting state: slow fluctuation manifested by 

resting-state functional connectivity (rsFC) and fast transient dynamics manifested by 

EEG microstates. We simulated a neural mass model using the Larter-Breakspear model 

constrained by the structural connectivity and optimized the model parameters (the 

global coupling parameter and the local gain parameter (variance of excitatory and 

inhibitory threshold)) by fitting the simulated rsFC to the experimental rsFC and the 

simulated microstates to the experimental microstates. As a result, we obtained three 

key findings: first, the parameter sets with high fitting performance to rsFC overlapped 

with those with high fitting performance to the microstate; second, two distinct 

parameter sets were identified within the overlapped parameter region; third, the 

overlapped parameter sets are much narrower than the parameter sets obtained by fitting 

only rsFC. In other words, based on these three findings, both fast synchronization 

transitions and slow BOLD fluctuation changed based on structural connectivity in the 

overlapped parameter regions. Empirical microstates were similar to simulated 

microstates in these regions. Thus, fast synchronization transitions correlated with slow 

BOLD fluctuation based on structural connectivity yielded microstates. These results 

suggest that adding the microstates as fitting criteria is important for significantly 

reducing the uncertainty of good model parameters. The maximal cross-correlation 

coefficient of the rsFC was about 0.45, which is almost the same value as that in 

previous research (Honey et al., 2009). The maximal cross-correlation coefficient of the 

microstates was about 0.7, and the mean transition times of the simulated microstates 

were about 1.5 or 2.0 times longer than those of the empirical microstates. 

 

4.2 Comparison with previous research 

Since the structural connectivity in this study had stronger interhemispheric 

connectivity (Figure S1A) than in the previous research, the cross-correlation 

coefficients of rsFC were about 0.05 higher than in the previous research (Deco et al., 

2013; Honey et al., 2009). 

In the (𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟓𝟎, 𝟎. 𝟔𝟑) condition, the dynamics of the excitatory mean membrane 

potentials resembled the dynamics of previous research in terms of irregular firing (Roberts et al., 
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2019). The simulated microstates using shuffled structural connectivity did not reproduce either a 

spatial pattern or a temporal transition (Figure S4). In the (𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟐𝟓, 𝟎. 𝟕𝟎) condition, 

the dynamics of the excitatory mean membrane potentials resembled the dynamics of the previous 

research in terms of regular firing (Honey et al., 2009). 

Simulated microstates using shuffled structural connectivity reproduced a spatial pattern but not a 

temporal transition (Figure S4B, Figure S5). In the case of strong global coupling strength 

parameter combinations, simulated microstates were merged because all of the cortical regions 

were synchronized constantly. In the case of weak global coupling strength parameter 

combinations, simulated microstates were not merged because synchronizations between cortical 

regions were disturbed occasionally (Figure S4B, Figure S8). Furthermore, the transition 

probability matrix of empirical microstates is more similar to the simulated one in the 

(𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟓𝟎, 𝟎. 𝟔𝟑)  condition than in the (𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟐𝟓, 𝟎. 𝟕𝟎)  condition 

(Figure S6). Therefore, the dynamics of the excitatory mean membrane potentials in the 

(𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟓𝟎, 𝟎. 𝟔𝟑) condition resembled the empirical resting-state activity of the human 

brain. The dynamics of the excitatory mean membrane potentials in the 

(𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟐𝟓, 𝟎. 𝟕𝟎)  condition were comparatively unconstrained by the structural 

connectivity (Figure S4B, top). Although these were bandpass-filtered dynamics, perhaps they are 

related to the phenomena in which the activity spreads to most of the cortex when the cortex is 

stimulated with transcranial magnetic stimulation (TMS) during sleep (Alkire et al., 2008). 

 

4.3 Simulated microstates 

The MS7 and MS11 in each simulated case have a larger occupation ratio than the MS3 

in the experiment (Figure 7) because the structural connectivity strength between the 

occipital regions is weak (Figure S1A). We assume that the interhemispheric structural 

connectivity was important for reproducing MS4, considering that MS4 has an equal 

distribution for the distant interhemispheric positions. Thus, the constraints based on 

structural connectivity are more important than the signal noise and the conduction 

delay proportional to the inter-regional distance. Signal noise probably affects temporal 

transition and the conduction delay proportional to the inter-regional distance probably 

results in ROIs close to each other being synchronized. 

 

4.4 Clinical application for cognitive neuroscience 

The development of biomarkers for psychiatric disorders using microstates and rsFC 

has been investigated (D’Croz-Baron et al., 2019; Yamada et al., 2017). One example is 
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autism spectrum disorder (ASD). ASD patient’s rsFC and microstates have different 

spatial and temporal characteristics compared to healthy individuals. Our results could 

not reproduce enough spatiotemporal characteristics of rsFC and microstates to compare 

ASD patients and healthy individuals. However, our results will give hints to solve these 

problems and enable making hypotheses about the dependence of slow and fast 

resting-state brain activity on neuronal network parameters. 

 

4.5 Effects of averaging lead field 

In the Larter-Breakspear model, the numbers of excitatory and inhibitory neurons are 

the same in each ROI, and only the structural connectivity differs between the ROIs. For 

this reason, the high-dimensional lead field was averaged in each ROI to remove the 

area’s influence in each ROI. If the ROIs were divided into smaller sections and the lead 

field was not averaged for each ROI, the simulated microstates might differ. We note 

that the contribution rate of the singular value decomposition did not affect the 

simulated microstates because the cross-correlation coefficient was 0.9995 between the 

lead fields by singular value decomposition and the mean value. 

 

4.6 Limitation of current simulation 

The occupation ratio of the empirical and simulated microstates differed and the 

simulated microstate did not reproduce the specific spatial patterns of the empirical 

microstates. The resting-state alpha waves in the cerebral cortex are empirically affected 

by the thalamus (Sherman, 2016), and slow fluctuation is affected by the serotonin 

receptor density (Deco et al., 2018; Shine et al., 2019). However, the Larter-Breakspear 

model in this study does not include thalamic dynamics, conduction delay proportional 

to inter-regional distance, signal noise, or serotonin receptor density. Therefore, 

incorporating these effects in this model might more fully reveal how well the simulated 

rsFC and microstates reflect the empirical rsFC and microstates in realistic conditions. 

 

4.7 Numbers of participants 

Since empirical EEG and rsFC were obtained by two studies aiming at different 

purposes, the number of participants of EEG and rsFC differ. Empirical rsFC was 

obtained from 13 participants, sufficient for statistical purposes. Empirical EEG was 

obtained from only 4 participants. However, the 4 microstates identified from this 
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empirical EEG are similar to the 4 microstates identified by other studies (Michel and 

Koenig, 2018b). We presume the 4 microstates will be similar to the microstates 

identified from 13 participants.  
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Appendix 

Structural connectivity and shuffled structural connectivity 

matrices 

 

Figure S1. Structural connectivity matrix and shuffled structural connectivity matrix. Structural 

connectivity matrix obtained by averaging across 12 human participants, and shuffled structural 

connectivity matrix calculated by randomio_und_connected function of Brain Connectivity 

Toolbox while preserving distribution of degree of structural connectivity matrix. 

 

Table S1. ROIs corresponding to region number in left hemisphere (ROI in right hemisphere 

arranged opposite to left hemisphere). As the Larter-Breakspear model is a cortical model, 

non-cortical regions were excluded from AAL. Furthermore, only cortical regions that were 

common to all subjects were chosen since our study focuses on common structure across all 

subjects. 

Region number ROI 

1 Olfactory 

2 Cingulum Mid 

3 ParaHippocampal 

4 Temporal Pole Mid 

5 Precentral 
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6 Frontal Sup 

7 Frontal Sup Orb 

8 Frontal Sup Medial 

9 Frontal Med Orb 

10 Rectus 

11 Cingulum Ant 

12 Cingulum Post 

13 Precuneus 

14 Temporal Mid 

15 Frontal Mid 

16 Frontal Mid Orb 

17 Frontal Inf Oper 

18 Frontal Inf Tri 

19 Frontal Inf Orb 

20 Supp Motor Area 

21 Parietal Inf 

22 Angular 

23 Temporal Pole Sup 

24 Temporal Inf 

25 Calcarine 

26 Cuneus 

27 Lingual 

28 Occipital Sup 

29 Occipital Mid 

30 Occipital Inf 

31 Fusiform 

32 Rolandic Oper 

33 Insula 

34 Postcentral 

35 Parietal Sup 

36 SupraMarginal 

37 Paracentral Lobule 

38 Heschl 

39 Temporal Sup 
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Spatiotemporal patterns of simulated microstates in 

(𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟑𝟓, 𝟎. 𝟔𝟏) condition 

 

Figure S2. Occupation ratio and mean transition time of simulated microstates in (𝐂, 𝛅𝐕,𝐙) =

(𝟎. 𝟑𝟓, 𝟎. 𝟔𝟏) condition. Only 1 microstate accounts for simulated EEG and rarely transit to 

other microstates. 
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Empirical and simulated EEG, GFP and microstate 

segmentation 

 

Figure S3. EEG, GFP and microstates segmentation in experiment (A) and in the simulated 

(𝐂, 𝛅𝐕,𝐙) = (𝟎. 𝟓𝟎, 𝟎. 𝟔𝟑) condition (B). Each color corresponds to each microstate. 
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Spatial pattern similarity of rsFC and microstates for shuffled 

structural connectivity 

 

Figure S4. Cross-correlation coefficients between empirical and simulated spatial patterns (left 

rsFC, right microstates) based on shuffled structural connectivity matrix for combination of each 

parameter (𝑪, 𝜹𝑽,𝒁). Simulation performed ten times for each parameter. rsFC’s spatial similarity 

was very low. Microstates’ spatial similarity was subequal as with non-shuffled structural 

connectivity matrix because simulated EEG was strongly constrained by lead field. 
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Figure S5. Occupation ratio and mean transition time in both conditions 

(𝑪, 𝜹𝑽,𝒁) = (𝟎. 𝟏𝟎, 𝟎. 𝟔𝟔) and (𝟎. 𝟐𝟓, 𝟎. 𝟕𝟎). Structural connectivity matrix was shuffled 

for each trial. Microstates were simulated 100 times. In both conditions, potentially reversed 

microstates along longitudinal fissures of cerebrum like MS 13 and MS 20 accounted for a high 

percentage as opposed to interhemispheric equally potential microstate that accounted for a high 

percentage in empirical microstates. Mean transition time in condition 

(𝑪, 𝜹𝑽,𝒁) = (𝟎. 𝟏𝟎, 𝟎. 𝟔𝟔) was much longer than mean transition time of empirical microstates. 
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Transition probabilities of empirical and simulated 

microstates 

 

Figure S6. Transition probability matrices of empirical microstates (A), simulated microstates in 

the (𝑪, 𝜹𝑽,𝒁) = (𝟎. 𝟐𝟓, 𝟎. 𝟕𝟎) condition (B), and simulated microstates in the (𝑪, 𝜹𝑽,𝒁) =

(𝟎. 𝟓𝟎, 𝟎. 𝟔𝟑)  condition (C) per 10 msec. Transition probability matrices represent the 

probability that a microstate at time t will transit to another microstate at time t + 1. 
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Phase-locking matrix for each parameter combination in the 

case of structural connectivity and shuffled structural 

connectivity 
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