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Ady Wahyudi Paundu

Abstract

Even though the cloud technology shows the trend of rapid development and
decreasing cost, it still has not been fully embraced by organizations and in-
dustries around the world. This reluctance mostly stems from the cloud system
security issues. One of the main potential attack vectors in a cloud system is the
guest Virtual Machine (VM). Therefore, it is necessary to provide a system to
monitor the guest VM operations. In the public cloud model, there are several
operational requirements for the monitoring program. First, the monitoring sys-
tem must work separately outside of the guest VM. Separating the monitoring
process and the monitored system can deny any malicious processes in the moni-
tored system from compromising the monitoring agent. However, this separation
requirement could lead to the semantic gap problem. A good monitoring system
is expected to choose the observation data that preserve the semantic information
as much as it can. Second, the monitoring system must be able to work with-
out any cooperation from the guest VM. The guest VM should not even realize
the existence of the monitoring program. Therefore, for the third requirement,
the monitoring program should cost, in terms of computation resources usage, as
efficient as possible.
In this thesis, we investigate a guest VM monitoring method that can work

independently outside the monitored guest VM, without losing much of the se-
mantic information and without high computation cost for either the host and
∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, December 13, 2019.
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the guest VM. We propose a method that embeds multiple tracepoints inside the
source code of the hypervisor (Static Instrumentation). During the hypervisor
operation, we collect the tracepoints execution data to dynamically monitor the
operational flow of a guest VM (Dynamic Source Code Analysis). Since the in-
strumentation was carried out within the underlying process of the instances of
guest VM, we believe that the dynamic pattern of the tracepoints sequences can
indirectly describe the operations of the VM.
We first applied this dynamic source code analysis with a static instrumenta-

tion method to the user space of the Qemu-KVM hypervisor. We captured the
tracepoints from the Qemu operation and used it for an Anomaly Detection Sys-
tem. We emulated a web server VM and multiple attack scenarios, such as DDoS
for network-based attack and Flush-Reload attack for virtualization-based attack.
We factored in the mimicry attack scenario. We compared several machine learn-
ing algorithms for the monitoring data analysis process. Finally, we compared
our detection result with system-call data analysis. Our evaluation showed that
monitoring guest VM using dynamic source code analysis with the static instru-
mentation method gave better detection results compared to the system-call data,
with minimum computation cost. However, we had subpar results when trying
to detect malicious activities that work upon the host CPU. That is because, on
Qemu-KVM combination, CPU operations are performed natively through the
KVM kernel module.
We investigated further this dynamic source code analysis with the static in-

strumentation method at the kernel layer by instrumenting the KVM module.
We used this method to implement a signature-based intrusion detection system
and try to detect multiple variants of Cache-based Side-Channel Attack (CSCA)
including a new stealthier variant called Flush+Flush attack. In our evaluation
phase, we showed that our proposed approach is the first successful attempt to
detect this Flush+Flush attack in the virtualization environment.

Keywords:

virtualization technology, cloud security, hypervisor operation, machine learning,
program analysis, virtual machine monitoring
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1 Introduction

Cloud computing is a new paradigm in the IT industry that offers many advan-
tages over the conventional computing model. The advantages range from the
lower overall cost to the operational convenience and improvements. However,
aside from its rapid development and decreasing cost, the cloud computing system
has not been fully embraced by organizations and industries around the world. In
Europe, for example, only 26% of EU enterprises used cloud computing in 2018,
mostly for email hosting and file storage only [eur18]. In the case of public cloud
IaaS, only 18% of financial services firms in Europe broadly implementing IaaS
for production applications today [fin19].
This reluctance to the cloud computing adoption mostly stems from the cloud

security concerns [VB16, SN17,XX12,RANR15]. Most of the security concerns
are related to the loss of control to the data and the low of trust to the cloud
provider. In its recent report on cloud security [isc19], the International Infor-
mation Systems Security Certification Consortium ((ISC)2) disclose that 93% of
organizations are moderate to extremely concerned about cloud security. More-
over, they revealed that data security (29%) and general security risks (28%) are
the top two barriers holding back cloud adoption in organizations.
Overall, it is important to emphasize that the cloud security teams must re-

assess their security posture and strategies to address their shortcomings in pro-
tecting the evolving cloud computing environments.

1.1 The Rogue Tenant: A Problem in the Cloud

One of the main potential security threats in a cloud system is the guest Virtual
Machine (VM) [BFS+16, SL16,XX12]. An attack from the VM is considered as
a cloud-specific vulnerability since it is intrinsic to or prevalent in a core cloud
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computing technology [GWS11]. In their Special Publication series number 800-
125A, the National Institute of Standards and Technology (NIST) identifies the
threats emanating from rogue or compromised VMs as one of the primary sources
of threats to a hypervisor platform [Cha18]. These threats can arise through chan-
nels such as shared hypervisor memory and virtual network inside the hypervisor
host. The rogue VM threats can manifest through the breach of process isolation,
the breach of network isolation, or the denial of service attack. Ristenpart et al.
demonstrated a well known working example on how to use a guest VM to attack
the peer VM and the hypervisor [RTSS09]. The demonstration showed that key
risks could arise from sharing physical infrastructure between mutually distrustful
users, even when their actions are isolated through machine virtualization. Not
only for attacking their peers, but a malicious VM has also become an attractive
option for the criminals as a powerful low-cost tool for cybersecurity attacking
devices [HSJ,Kol15].
Since the guest VMs are one of the prime sources of threats to the hypervisor,

continuous monitoring of the state of VMs is necessary. In regards to VM moni-
toring, the NIST Special Publication: Security Recommendations for Hypervisor
Deployment on Servers gives two recommendations [Cha18].

Security Recommendation HY-SR-14 : There should be a mechanism for se-
curity monitoring, security policy enforcement of VM operations, and de-
tecting malicious processes running inside VMs and malicious traffic going
into and out of a VM.

Security Recommendation HY-SR-15 : Solutions for Security Monitoring and
security policy enforcement of VMs should be based outside of VMs and
leverage the virtual machine introspection capabilities of the hypervisor.

1.2 Motivation and Problem Statement

A common approach to monitoring a computation system is by planting a mon-
itoring agent (or process) inside the system, e.g., an antivirus program. All
methods that adopt similar approach are categorized as Host-based Intrusion
Detection System (HIDS). However, numerous past studies and experiences sug-
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gest that we should separate the monitoring agent and the observed objects on
different planes [GR03,MKA+13,Cha18, JWX07, SL16,PZH13]. The purpose is
to deny attempts from any malicious processes in the observed system to com-
promise the monitoring program. In the case of the cloud system, especially
in public IaaS, there is another requirement of non-intrusiveness. In this non-
intrusiveness requirement, the monitoring process, from outside of the monitored
guest VM, cannot depend on the guest VM to provide any monitoring data. The
host administrator cannot just ask the guest VM users to install some agent pro-
grams or send specific files to the host administrator. The monitoring process
should be invisible from the guest VM perspective. In both separation and non-
intrusiveness requirements cases, the implementation of traditional HIDS is not
feasible. Furthermore, both requirements will increase the logical distances be-
tween the observer and the observed object, thus reduce the information quality.
Such a problem is known as the semantic gap problem.

Another monitoring category called Network-based Intrusion Detection System
(NIDS) monitors network activities to detect any threats to the system. However,
the cloud system, with its virtualization technology, has many characteristics that
enable the offenders to use mediums other than the network to launch attacks.
Examples are the family of side-channel attacks that use cache access time to spy
peer VMs and the fuzzing attacks that try to probe the hypervisor weaknesses.
The NIDS approach is inadequate against these types of attacks.

Virtual Machine Monitor (VMM)-based IDS were introduced to tackle the lim-
itations of HIDS and NIDS in the virtualization environment. There are several
techniques that have been proposed to monitor the guest VM from the hypervi-
sor. In general, those proposed VM monitoring methods can be categorized into
three common techniques, which are computational metric monitoring, system-
call monitoring and Virtual Machine Introspection (VMI). Figure 1.1 shows the
variety of monitoring points of observation inside a Qemu-KVM hypervisor.

Computation metric monitoring analyzes the performance metric of the guest
VM. Examples of such metrics are CPU utilization, memory utilization, and the
volume of hard-drive read and write operation. The primary assumption of this
approach is that malicious activity will likely change a considerable amount of
computing resources. For example, a substantial amount of memory utilization

3



Figure 1.1: Multiple options for observation points inside Qemu-KVM

might indicate a memory leak incident while a sudden increase in network traffic
might indicate a network-based Denial of Service (DoS) attack. This monitoring
approach, however, can only be practical if implemented inside the observed
system. This is because most of the resources for guest VM are pre-allocated and
not allocated on an as-needed basis. The process of memory space allocation and
other processes inside the guest VM are hidden from the host system. To perform
an effective VM monitoring, the virtualization operator usually utilizes agents
inside the guest VM in order to collect the usage data. Ganglia∗ is an example
of the monitoring system that collects resource metrics from cloud infrastructure
at any scale.
Another standard VM-based monitoring utilized the System Call. System-call

is a set of interfaces that enable user processes to get access to services that
are provided by the Operating System (OS) kernel. Examples of the services
provided by the OS kernel are the I/O operations, such as reading from or writing
to the CPU, the main memory or any other computer devices. By observing the
system-calls invocation from user processes to the underlying kernel system, a
security agent can try to make conclusions whether the user processes constitute

∗http://ganglia.info
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a normal operation or not. In the context of the virtualization environment, the
process of system-call monitoring is not trivial. The hypervisor as an intermediate
system between the guest OS and the host OS adds another layer of system-call
simulation. Hence, the system-calls that are collected in the host are, for the
most part, not the direct representations of the internal guest OS system-calls.

The latest and more sophisticated approach to monitoring the guest VM oper-
ations is Virtual Machine Introspection (VMI). It works by capturing a snapshot
of the memory space used by the guest VM. With this snapshot, a monitor can
reconstruct an exact same picture of the situation inside the guest VM. This
technique of "inspect a VM from the outside to asses what is happening on the
inside" was first introduced by Garfinkel et al. (2003) [GR03]. Some examples of
information that can be captured by VMI are the list of running processes and
the status of the file system in the guest OS. The features of VMI shows that the
VMI approach is currently the best option to monitor the guest VM without hav-
ing any inside agents. For its clear visibility, VMI can be used by a host system
to detect malware and rootkit scanners, also to perform integrity checking and
forensic analysis in guest VMs. This capability is usually offered as an additional
service on demand by the cloud provider (Security as a Service). One minor lim-
itation of the current VMI implementations is their dependency on some specific
data from the guest OS to correctly reconstruct the raw memory snapshots into
useful information. As instances of such data, we can cite the debugging sym-
bols information files for Windows systems or memory offset information file for
Linux systems. Since these data are different for each OS type and OS version,
they should be copied from the guest OS to the monitoring program in the host
system. This requirement is easy to satisfy in a private environment. However,
in a particular arrangement such as public IaaS, this approach could be hard to
implement.

The explanation of three common VM-based monitoring above shows that there
are still room for improvements. The effectiveness of a monitoring process in a
public cloud is still limited due to the additional layer (virtualization layer) be-
tween the observer and the observation object [FL13]. Furthermore, requirements
in a public cloud limit the access of a cloud administrator to internal informa-
tion from the guest system. Therefore, the motivation of our work is to find
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a monitoring data source within a hypervisor system that can give high-quality
information for a Virtual Machine Monitor (VMM)-based monitoring system and
can be collected efficiently without any cooperation from the guest VM.

1.3 Contribution

In this work, we study a new method to monitor the operation of a guest VM
within a virtualization environment, especially to identify if that monitored VM
is operating normally or running some malicious operations. The challenge of this
work is to find a monitoring data source that can offer high-quality information for
a Virtual Machine Monitor (VMM)-based monitoring system and can be collected
efficiently without any cooperation from the guest VM.
We give two main contributions in this work.
First, we promote the use of KVM-Qemu static instrumentation tracepoints as

a novel way to monitor the operation of a guest VM. We performed this promotion
with empiric evaluations of multiple facets of the virtualization monitoring issue:

• Two Layer of Hypervisor Modules. In the KVM-Qemu combination hyper-
visor, each software serves a different purpose. Qemu works at userspace to
emulate the hardware while the KVM works at kernel space to enable Qemu
takes advantage of hardware virtualization extensions present in modern
Intel and AMD CPUs for safely executing guest code directly on the host
CPU. We study the dynamic analysis of the source code both at Qemu and
KVM level.

• Multiple Data Analysis Methods. The data that is collected in our monitor-
ing method is in the form of big text data. This data would be hard to be
processed manually by human operators. Therefore, we chose to implement
a Machine Learning approach to process the monitoring data. In this work,
we study three types of Machine Learning approach. First, we used the
Bag of Tracepoint approach, where we use the pattern of each tracepoint
quantities. Second, we used the Tracepoint sequence pattern. Third, we
used the combination of both the tracepoint sequence and the pattern of
its quantities. Since each of those Machine Learning approaches require a
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specific form of input, we also study the pre-processing method for each of
the Machine Learning approaches to maximize the quality of data analysis
results.

• Multiple Malicious and Anomaly Operations. Previous studies on anomaly
detection in the cloud mostly evaluated their work using anomaly or mali-
cious scheme that significantly change the pattern of computing resources
usages, such as high CPU operations or busy I/O transactions. These ap-
proaches are indeed useful for detecting volume-based attacks. However, in
reality, many attacks on the computer system do not change the patterns
of resource usage data and hence are harder to detect. Higher semantic
information is needed to detect those non-volume based attacks. To show
that our monitoring method gives a rich semantic data, we evaluate them
using multiple types of attacks, ranging from network-based attack and
host-based attacks to cloud-based (virtualization-specific) attacks. A vul-
nerability or an attack is cloud-specific if it is intrinsic to or prevalent in a
core cloud computing technology [GWS11].

Our second contribution is specifically aimed at Cache-based Side Channel attack
(CSCa) detection. While promoting the use of KVM-Qemu static instrumenta-
tion tracepoints as a novel way to detect an attempt of CSCa within a virtualiza-
tion environment, we introduce a first method to detect the Flush+Flush variant
of CSCa. As the most recent CSCa variant, Flush+Flush, showed that the previ-
ous CSCa detection methods, which heavily depend on Hardware Counter, could
be easily bypassed. Not only we were able to show a high degree of detection
accuracy using our method, we were also able to offer an insight into why our
classification works by extracting the set of most important features that sepa-
rate both CSCa classes and Normal class and further show that our monitoring
approach can work to detect CSCa in general.

1.4 Thesis Structure
The remainder of the thesis is structured as follows:

Chapter 2 : offers basic information on the Virtualization technology. First, we
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give some fundamental notions of the Cloud Computing system and how
it all related to Virtualization technology. Next, we dive into more detail
about the Hypervisor (or Virtual Machine Monitor), what is it and how it
works. Finally, we give an overview of the hypervisor we use in this thesis,
the Qemu-KVM hypervisor.

Chapter 3 : presents details about the program analysis technique. The chapter
first explains the classification of the program analysis technique. Using the
classification information, we continue to explain how the program analysis
method that we use in this thesis, the Dynamic Analysis with Static Source
Code Instrumentation, works. This chapter also gives background infor-
mation on how program analysis has been used in the field of Computer
Security.

Chapter 4: details the methodologies we propose to detect anomaly in guest
VM using the tracepoints we collected from the Qemu static instrumenta-
tion approach. We introduce three machine learning algorithms to analyze
the monitoring data for an Anomaly Detection System. For each machine
learning analysis, we give their detail works and their anomaly detection
results. Our test also includes the scalability of the monitoring system and
how much the monitoring affect the guest VM performance.

Chapter 5 : details the methodologies we propose to detect Cache-based Side
Channel attack (CSCa) operation inside a guest VM using the tracepoints
we collected from the KVM kernel module static instrumentation approach.
We give a detail explanation of how our CSCa detection system works, the
way we evaluate it and the results. This chapter also includes a preview of
what is Cache-based Side Channel attack and how it works.

Chapter 6 : The future work is detailed in this chapter. Besides extensions of
the work we accomplished in this dissertation, we propose different distinct
projects that can be good avenues towards the security of cloud computing
in particular and computer systems in general.

Chapter 7 : This chapter concludes the thesis.
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2 Virtualization: The Nuts and
Bolts

2.1 Cloud Computing and Virtualization
Technology

Once a simple iconic symbol to represent the internet and cyberspace, the cloud
has been transformed within the last decade into a more specific idea of Cloud
Computing. There are many definitions that have been given to the term Cloud
Computing; however the most cited one was coined by the U. S. National Institute
of Standards and Technology (NIST):

“Cloud computing is a model for enabling ubiquitous, convenient, on
demand network access to a shared pool of configurable computing
resources ( e.g. network, servers, storage, applications and services)
that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction.” [MG11], p.2.

The NIST document defines five essential characteristics of Cloud Computing,
which are: on-demand self-service, broad network access, resource pooling, rapid
elasticity and measured service. In specific to resource pooling characteristics,
the Cloud Computing model requires the computing resources to be pooled to
serve multiple users in a multi-tenant model dynamically. This requirement is
accomplished using Virtualization technology.
Virtualization is a computation concept that provides a virtual version, instead

of the original physical version, of a device or resource, be it a server, a desktop,
a storage device, an operating system or network resources, to the users. Human
users, devices and applications can interact with the virtual resources as if it were
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a real single physical resource. This technique allows a single physical resource to
be pooled and accessed by multiple users and hence makes the computing system
more scalable, efficient and economical.
Virtualization is achieved through the use of a software called Hypervisor. A

Hypervisor connects directly to the system hardware. It allows splitting one sys-
tem into separate, distinct, and secure environments known as virtual machines
(VMs).

2.2 Hypervisor

A hypervisor is a computer function to create and manage virtual machines. It
provides an efficient, isolated duplicate of the physical machines for virtual ma-
chines. The hypervisor is also sometimes referred to as Virtual Machine Monitor
(VMM). A hypervisor can be implemented in software or hardware form. The
physical machines running the hypervisor are called the Host, while the virtual
machines running on top of the Host are usually called the guest VM.
There are several types of hypervisor. Based on how they provide the hardware

to their guests, the hypervisors can be categorized into three types:

• Binary Translation Based Hypervisors.

These hypervisors translate the binary code of the process inside the guest
OS to another binary to be processed by the hypervisor. This translation
means that the input contains a full instruction set, but the output is a
subset thereof and contains the innocuous instructions only [AA06]. These
hypervisors include the interpreter for the binary translation. The binary
interpretation function in this hypervisor type is similar to the emulation
techniques, where the hypervisor provides emulated hardware functions to
the guest OS. It relies on binary translation to trap and virtualize the
execution of sensitive, non-virtualizable instructions sets. The performance
of binary translation based hypervisors is dependent on the instructions to
be translated.

• Paravirtualized Hypervisors.
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These hypervisors accelerate the communication process between the guest
OS to the infrastructure layer by modifying the guest OS. The modified
guest OS uses a different set of APIs to communicate with the hypervisor
layer, henceforth removing the binary translation process and improve ac-
cess to the infrastructure layer. However, this efficiency does come at the
cost of flexibility and security. Since the operating system must be modified
to run with the paravirtualization, a particular OS or distribution may not
be readily available for the solution and reduce flexibility. Furthermore, as
the guest OS has much closer control of the underlying hardware, the risk of
impacting the lower hardware level is slightly increased, which could lead to
impacting all guest systems on the host. Since this modified OS can only be
used in the paravirtualization environment, therefore, the guest VM users
(or at least the system administrators) are aware that their environment
has been virtualized. Applications running atop the altered OS do not have
to be changed.

• Hardware Assisted Hypervisors.

These hypervisors accelerate the communication process between the guest
OS to the infrastructure layer, especially to the hardware layer, through ad-
ditional functionality included in the CPU. These additional functions work
in an execution mode called guest mode, which is dedicated to the virtual
instances [AA06,Dre08]. These hypervisors require specific hardware to op-
erate, such as the virtualization technology which has been integrated on
X86 processors (Intel VT-x and AMD-V) that allow the execution of priv-
ileged instructions directly on the processor, even though it is virtualized.
Besides the handful of new instructions, these processor level virtualization
functions also introduce a new privilege level. The hypervisor can now run
at "Ring -1"; so the guest operating systems can run in Ring 0. As the re-
sults, there is no need for paravirtualization, the hypervisor does less work,
and the performance hit is reduced.

Another popular classification classifies the hypervisors based on how the hyper-
visor connects to the hardware.

• Type 1 hypervisors.
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These hypervisors are usually called native or bare-metal hypervisors. They
are the hypervisors that are run directly above the physical hardware. These
hypervisors act as the operating system for the physical hardware. The
infrastructure is dedicated solely for the virtualization operations. Since
these hypervisors can interrupt and access the physical hardware directly,
their performance is much better than the Type 2 hypervisors.

• Type 2 hypervisors.

These hypervisors are usually called a hosted hypervisor. They are the hy-
pervisors that are run on top of a host operating system. These hypervisors
work in the userspace of the hosting OS. This virtualization mode adds an-
other abstraction layer for hardware access and hence penalize the guest OS
performance. However, this virtualization mode enables the infrastructure
(the physical hardware and the host OS) to serve other functions besides
the virtualization.

The distinction between type 1 and type 2 hypervisor do not always clear. Certain
solutions, such as the Qemu-KVM system, can be categorized in either type of
hypervisors. Qemu is run on top of the Linux system and works by emulating
the hardware to be used by its guest OSes and therefore is classified as type 2
hypervisor. However, the Qemu in its KVM accelerated mode can execute the
operation in the guest OS natively by leveraging the KVM module, which is an
integral component of the kernel of the host OS. Since the host OS kernel handles
the guest executions, this approach is qualified as a type 1 hypervisor.

Besides all the above types of hypervisor, there is also another type of vir-
tualization called Containerization. Containerization is OS-level virtualization.
Unlike the other virtualizations above, this virtualization mode emulates an op-
erating system rather than the underlying hardware. A container relies on virtual
isolation to deploy and run applications that access a shared operating system
(OS) kernel without the need for virtual machines (VMs). Figure 2.1 depict the
comparison between Type I Hypervisors and Containers.
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Figure 2.1: Diagram of comparison between the Type I hypervisor and the Con-
tainer

2.3 The Qemu-KVM Hypervisor

There are four hypervisors provide up to 93% of the commercial market, VMware,
Hyper-V, XEN, and KVM [PBSL13]. For the biggest IaaS providers, Xen and
KVM are the hypervisors being used the most. Xen offers several advantages
over KVM, such as the efficiency of paravirtualization, which exceeds what is
available in KVM due to the closer access Xen has to the physical hardware.
Xen has been used as the primary hypervisor by Amazon Web Service (AWS).
However, since 2017, AWS has announced its new instance package, coded C5,
uses a new KVM-based home-brewed hypervisor. Along with that, the AWS also
announced that their future development on their instances would be based on
the KVM [aws17]. KVM, on the other hand is the leading hypervisor used by
Google Cloud and Digital Ocean. Since the future of type I hypervisors is shifting
towards the Qemu-KVM, in this study, we use the Qemu-KVM hypervisor.

2.3.1 Qemu

Qemu is an open-source emulator to virtualize hardware in a computation sys-
tem. Qemu can emulate multiple computing architectures, such as x86, Pow-
erPC, SPARC (Scalable Processor Architecture) and ARM (Advanced Reduced
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Figure 2.2: Each VM is served using separate userspace process

instruction set computing Machine) architecture. On its own, Qemu is a Type 2
Hypervisor (hosted virtual machine monitor) since it runs on top of a conventional
operating system (OS). However, working in tandem with KVM, Qemu-KVM can
be considered as a Type 1 Hypervisor (bare metal virtual machine monitor). That
is because KVM is an internal part of Linux OS kernel, therefore the functions
of Qemu-KVM can be seen as an integral function of the OS.
The core of QEMU is based on event-driven architecture. Event-driven archi-

tecture means that Qemu reacts to events by running a main loop that dispatches
to event handlers. However, Qemu also combines the event-driven architecture
with threaded architecture to take advantage of the multi-core computer that is
common nowadays. Threaded (or parallel) architecture means that Qemu splits
work into processes or threads that can be executed simultaneously.
Qemu have two mechanisms to execute user code, which are Tiny Code Genera-

tor (TCG) and KVM. TCG emulates the guest using dynamic binary translation.
This technique is also known as Just-In-Time (JIT) compilation or the emulation
mode. TCG transforms target instructions to TCG operators which are then
transformed into host instructions. KVM or the acceleration mode, on the other
hand, takes advantage of hardware virtualization extensions present in modern
Intel and AMD CPUs for safely executing guest code directly on the host CPU.
In Qemu, each VM is served using a separate userspace process (see Figure

2.2.). When a guest shuts down, the Qemu process exits. Guest RAM is allocated
when the Qqemu starts up. The RAM is mapped into the Qemu processes address
space and acts as the physical memory for the guest. The host kernel schedules
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Figure 2.3: Guest VM execution loop

open ( "/ dev/kvm" )
i o c t l (KVM_CREATE_VM)
i o c t l (KVM_CREATE_VCPU) f o r ( ; ; ) {

i o c t l (KVM_RUN)
switch ( ex i t_reason ) {

case KVM_EXIT_IO: /∗ . . . ∗/
case KVM_EXIT_HLT: /∗ . . . ∗/

}
}

Algorithm 1: The pseudocode of basic KVM operation

Qemu like a regular process. Multiple guest VMs run alongside without the
knowledge of each other. Applications like Firefox or Apache also compete for
the same host resources as each guest VMs (i.e., Qemu process) although resource
control operations can be used to isolate and prioritize Qemu. Since Qemu system
emulation provides a full virtual machine inside the Qemu userspace process, the
details of what processes are running inside the guest are not directly visible from
the host.

2.3.2 KVM

A Kernel Virtual Machine (KVM) [KKL+07] is a virtualization solution that is
embedded as a kernel module inside the Linux Operating System. This module
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enables the Linux system to act as a bare metal Virtual Machine Monitor (VMM)
system (type-1 virtualization).
A KVM provides a set of Application Programming Interfaces (API) to utilize

the hardware-assisted virtualization functions from the latest CPU architectures,
such as Intel VT-x or AMD-V. Even though the hardware-assisted virtualization
extensions are not standardized (both Intel and AMD processors have different
instruction sets and capabilities), the basic operations are similar:

• the processors provide a new operating mode called Guest mode, in addition
to the previous two modes, the Userspace mode and the Kernel mode (the
basic scheme of guest system operation is given in Figure 2.3). The guest
mode enables the guest system to have all the regular privilege levels of
the normal operating modes of a single Operating System. The exceptions
of the privileges are several critical operating modes such as the control-
sensitive IO operations (operations that have to change the state of system
resources) and the handling of external interrupts, exception and time-outs
(scheduling operations are still performed by the host). These exceptions
need to be performed by the host.

• the operation switches between the Kernel mode and Guest mode, which
include control registers, segment registers and instruction pointers, are
performed by the hardware.

• the hardware reports every exit reason (changes from the Guest mode to
the Kernel mode), so the software can take proper action for the switch.

When it is time to run the guest system, the Qemu calls KVM_RUN ioctl() to
instruct the KVM module to start up the guest system. The KVM then performs
the VM entry and lets the guest system directly interact with the processor. If
later, the guest system is required to perform a critical instruction, it transfers
the control to the Kernel mode through VM exit (lightweight exit). If Qemu
intervention is required to execute an IO task, control is further transferred to the
Qemu userspace mode through KVM exit (heavyweight exit). On the completion
of the VM exit handling, control is then given back to the Guest mode through
the VM entry process. This basic flow of a guest CPU is given as pseudocode in
Algorithm 1.
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3 Program Analysis Techniques

Programming a software is not a simple thing to do. Many aspects need to be
considered to produce a good program, such as resource consumption efficiency,
error-free operation and operational security. The dynamic and diversity of pro-
gramming environments and programming tools exacerbate the complexity of
one control over the program. Therefore, any mean of monitoring over such a
program can be invaluable. One method to have a deeper understanding of a
computer program is called Program Analysis technique.
Program analysis is a process to analyze the behavior of a given computer

program. The result of the analysis process can be used to either improving the
program performance with efficient computing resources or to ensure that the
program does what it is supposed to do.
This dissertation is focused mainly on the aspect of program correctness, which

is to monitor and try to infer what is the program, in our case, the Virtual Machine
is currently doing. In this chapter, we will give further information on program
analysis and how it has been used in the computer security field.

3.1 Types of Program Analysis
There are several methods to perform program analysis. In this section, we cover
the common taxonomy of program analysis, which can be classified based on the
form or based on the state of the objects being analyzed.

3.1.1 Based on the Form of Objects

The form of the program can either be source code or a binary form. Source code
is a set of instructions and statements in plain text that is created by a program-
mer using a particular computer programming language. This code is later will
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be used to create the program. Since a computer cannot directly recognize the
source code, the code needs to be translated to a form known by the computer.
A binary is the form of the code after compilation or interpretation that can be
directly understood by a computer.

Source Code Analysis.

Source code analysis performs its operation over the source code objects. An
example of source code analysis is the way a compiler works. A compiler is a
program that translates the source code into a machine-readable format. The
analysis in this category is not only directed to the source code but also can
be performed to any program representations that are derived directly from the
source code, such as control-flow graphs. The features of these analyses are
commonly in the form of programming language constructs, such as functions,
statements, expressions, and variables.
These analyses are dependent on the chosen programming language. Even

though performing one similar function, multiple programs that were written
with different programming languages will require multiple program analyses.
However, these analyses is compiler, platform and operating system agnostic. An
advantage of source code analysis is that this analysis has access to high-level
information, and hence can be easily maintained and understood by unsophisti-
cated users.

Binary Analysis.

In a binary analysis, the objects are in the form of compiled code. Not only
works with raw binary machine code forms, but this category also includes the
executable intermediate representations, such as byte-codes, which run on a vir-
tual machine. The features of these analyses are commonly in the form of machine
entities, such as procedures, instructions, registers and memory locations.
In contrary to the source code analysis above, binary analyses are programming

language independent but platform-specific. Therefore, different machines or
different operating systems will require different analysis programs. The main
advantage of binary analysis is that one does not need to have the source code of
the program and all the third-party libraries to perform the analysis.

18



3.1.2 Based on the State of Objects

There are two states of the program where it can be analyzed, which are in a static
state or a dynamic state. A static state refers to the state where the program is
not running. The dynamic states refer to the state where the program is executed
and part or the whole of the programs are copied to the memory.

Static Analysis

In static analysis, the program is analyzed without running [Bin07]. This ap-
proach scans the application source code and examines all possible execution
paths without executing the application. Static analysis processes are fast, re-
peatable and not dependent on the fact whether the program can be executed or
not. A compiler is an example of the tool performing static analysis. Common
static analysis operations include analyses for correctness, such as type checking,
and analyses for optimization, which identify valid transformations to improve
performance. A static analysis tool can be used to debug the program’s source
code or can be used to help visualize the code. The static analysis tool only
needs the text of the source code to perform the program analysis. The main
advantage of static analysis is its ability to consider all execution paths in the
program. However, since the analysis works with simulated value, the validity of
analysis depends on the completeness of the testing scenario.

Dynamic Analysis

Dynamic analyses are performed during the program runtime [Bal99]. Examples
of classes that perform dynamic analysis are the profilers, checkers and execution
visualizers. Since the analysis processes are performed in real operation and
work with real values, the analysis results are considered more precise than the
static analysis [DMD+02]. The downside is, this analysis can only consider one
execution path at a time [Ern04].
Dynamic analyses work by instrumenting the program. Instrumentation means

the acts to add monitoring codes, called instrumentation codes or analysis code
or probes or tracepoints, into a program. The tracepoints can be embedded inline
of the program or it can include external routines that will be called when the
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tracepoints are fired. The tracepoints will not change the way program works
but may add extra work to the host. Every tracepoint contains information of
analysis state or metadata that heavily used in the analysis process.
There are two methods of instrumentation for the program’s dynamic analysis.

These methods are classified based on when the instrumentation takes place.

Static Instrumentation. This instrumentation occurs before the program is
run, either by modifying the source code or by modifying the binary code. The
modifications are saved to the disk. This approach does not need any additional
program at runtime and hence will not affect the main program performance.
This instrumentation can cover all paths of the program’s code without any de-
pendency on the program input. However, this approach requires the source code
or the binary code of the program, which are not always available. Moreover, since
this approach is performed during the static state of the program, this approach
cannot be applied to the system that is already deployed.

Dynamic Instrumentation. This instrumentation occurs during runtime. The
analysis codes or the tracepoints are injected either by a program grafted onto the
client process or by an external process. The main advantage of this instrumen-
tation approach is that we do not need to have the source code of the application
that we need to analyze. Moreover, the analysis can be performed even when the
application is already running. However, this instrumentation method is not able
to achieve full code coverage. Furthermore, the fact that there is a need to em-
bed an external process to instrument the original one will add the computation
requirement and make the monitored object run slower.

3.2 Program Analysis for Computer Security

One purpose of the program analysis process is to observe the behavior of a
program to ensure that the program works as it supposed to do. This function is
in line with the purpose of functions in the field of computer security. Therefore
it is common to find efforts in the field of computer security, either in the industry
or in academics, that use the program analysis approach. The research to utilize
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program analysis in the computer security field is categorized into two categories,
static analysis and dynamic analysis. Both static analysis and dynamic analysis
are complementary to their own merits and demerits [Ern04].

Static code analysis is performed on a model of the program to be analyzed.
There are various techniques and mechanisms developed to detect security vul-
nerabilities in a program model. For example, two approaches to assess access
control vulnerabilities, the Stack-based Access Control (SBAC) and Role-based
Access Control (RBAC). SBAC systems ensure that only programs that satisfy a
set of permission requirements gain access to restricted resources [BN05, LT13].
RBAC is an access control mechanism based on operations instead of resources.
Therefore, in order to restrict access to sensitive data all operations accessing
such data need to be identified [FK09,NBL+10]. To assess the information flow
of a program, static analyses perform static check to the flow of information be-
tween variables in a program to see whether they are consistent with the security
labeling of variables [PCFY07,SRK06]. Another use of static analysis is to assess
API conformance of a program by using trivial syntactic code scanning or some
more complex methods [PJAG12,SIH14].

From the explanation of static analysis above, it is clear that this approach
can be applied as early as the development phase, which can help programmers
to find and fix bugs and security lapses early. The main issue of the static
analysis approach for computer security is the fact that the observation surface,
i.e., all the possible scenario to be analyzed, is very vast, even in the face of
current computing capability [And12]. That leads to the facts that most of the
results of this approach still contain considerable high false positives and false
negatives [WD12].

Most current software architecture is constructed as a collection of dynamically
linked libraries. This architecture is making rendering static analysis imprecise.
Moreover, static analysis is found to be ineffective in a dynamic environment
that use features like dynamic binding, polymorphism and threads. On the other
hand, dynamic analysis has the benefit of examining the actual domain of pro-
gram execution [Bal99]. In general, dynamic analysis involves the recording of a
program’s dynamic state. Generally, a dynamic analysis technique involves these
three steps. First, program instrumentation, second, profile/trace generation,
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Figure 3.1: Program analysis taxonomy

and finally, analysis or monitoring. There are many study tools for an efficient
and accurate dynamic analysis. Valgrind [NS07] is an instrumentation framework
for building dynamic analysis tools. It can automatically detect many memory
management and threading bugs, and profile a program in detail. Pin [SDC+10]
is a tool for dynamic binary instrumentation of programs in the Microsoft Win-
dows environment. Diduce [HL02] is a popular tool for online invariant detec-
tion. It works by dynamically hypothesizes invariants at each program point
and only presents those invariants which have been found to satisfy a property.
Caffeine [GDJ02] helps a maintainer to check conjectures about Java programs,
and to understand the correspondence between the static code of the programs
and their behavior at runtime. Another popular dynamic program analysis tool
is Decaf [HPY+14]. Decaf provides a framework to introspect a virtual machine
using taint propagation rules over the QEMU Tiny Code Generator (TCG) in-
termediate representation.

Since static analysis and dynamic analysis are complementary, both approaches
can be combined into one framework [Che11,SA15]. The illustration of program
analysis taxonomy is given in Figure 3.1.
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3.3 Dynamic Analysis with Static Source Code
Instrumentation

In this section, we will explain the program analysis that we used in this disserta-
tion. In terms of the time of analysis, our work can be categorized as a dynamic
analysis method. The analysis (or the observation) of the program is performed
when the program is running. We intend to observe the dynamic behavior of the
Virtual Machine, which is hard to achieve in the static analysis method. Another
main consideration for choosing dynamic analysis is because we only want to ob-
serve the VM under a small set of well-defined scenarios and therefore, do not
have to consider all possible execution paths.
In terms of the analysis objects, our work can be categorized as a source code

analysis. It is because we used the tracepoints that were embedded at the source
code, instead of the byte code or the binary code. Our primary consideration
for choosing the source code analysis approach is the availability of the Qemu-
KVM source code. Having the source code, we should have the opportunities
to observe the detail operation of the Qemu-KVM hypervisor. However, the
dimension of the Qemu-KVM program is enormous. There are more than 6000
.c object file that each contains a various number of methods. Instrumenting
every function would be an arduous and inefficient process. An ideal approach
would be to select only a small set of functions to be instrumented, based on a
specific set of operations that need to be observed. That ideal requires a deep
understanding of how each component of Qemu work. However, even though the
Qemu-KVM system is among the most used open-source hypervisor for the public
cloud, its official documentation lacks any information on its inner operational
work. To resolve this issue, we applied a blind introspection approach by utilizing
all the default debugging tracepoints provided by Qemu. The other reason for
considering all default tracepoints is because we want to use the data for anomaly
detection and not some specific attack signatures.
An example of a tracepoint is shown at Algorithm 2. It shows a function called

bdrv_open_common that is part of the block.c class from Qemu. The block.c
class contains the library for accessing the emulated block drive that is created
by Qemu. The bdrv_open_common method describes the function to open a
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. . .
s t a t i c i n t bdrv_open_common( BlockDr iverState ∗bs , BlockDr iverState ∗ f i l e ,

QDict ∗ opt ions , i n t f l a g s , BlockDriver ∗drv , Error ∗∗ er rp )
{

. . .
trace_bdrv_open_common ( bs , f i l ename ? : " " , f l a g s , drv−>format_name ) ;
. . .

}

Algorithm 2: An example of static tracepoint implementation

Figure 3.2: An example of a Qemu tracepoints observation log content.

specific block for IO operation. Inside this function, there is a line that calls
another function named trace_bdrv_open_common(). This trace function, upon
being called, will write the name of its host function name to an output stream
(i.e., a log file) along with several other information about the host function.
An example of the content a log file is given in Figure 3.2. The log consists of
multiple metadata on multiple sequenced tracepoints within an execution flow
of a Qemu’s Virtual Machine (VM). The metadata not only includes the VM
level data, such as the function name and parameter, execution time and CPU
ID, it also gives the function level data, such as memory location, memory size,
execution flag and other function-specific data.
We used the static instrumentation method to reduce the complexity of in-

strumentation process and also to reduce the hefty computation overhead that is
common in the dynamic instrumentation approach.
This program analysis technique works by monitoring the patterns (either the

frequency or the sequence) of function calling and events within the hypervisor
during the Virtual Machine life operations. To identify each function and each
event, we utilize multiple tracepoints that were distributed across multiple po-
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sitions within the hypervisor source code. Therefore, every time a function is
called or an event is triggered, the ID of the function or event is recorded in a log
file. The information within the log file will be used as an input to a particular
machine learning procedure to classify the status of the Virtual Machine.
We believe that the log data of the called tracepoints during the VM opera-

tion contains rich semantic information and therefore is a good alternative for
observation data into a VM.
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4 Qemu Layer Introspection for
Anomaly Detection System

In the Qemu-KVM hypervisor combination, the Qemu part works in the userspace
of the host system. Consequently, the Qemu is the closest component of the
hypervisor to the guest VM and therefore, can provide better semantic data on
the guest VM operation. Moreover, instrumenting a userspace application will
not require us to make any modification to the host operating system. This
instrumentation method, in turn, will simplify the monitoring operation and do
not add additional cost to the host OS operation. It is, therefore, a logic action
to start this research at the Qemu layer.
In this chapter, we focus our work on monitoring guest VM to detect anomaly

operation using the operational pattern of tracepoints from Qemu source code.

4.1 Data Collection

We perform the guest VM operation by statically instrumenting Qemu source
code and then collecting the log data of Qemu runtime for analysis.
We performed the static instrumentation using ust (userspace tracer) back-

end from the LTTng userspace tracing (LTTng-UST) library ∗. We used the
trace-events file from the Qemu standard installation as our list of monitored
tracepoints. The list contain around 1200 tracepoints inside the Qemu. We
collected multiple observations for every scenario we used in the evaluation. We
defined an observation as a single data unit which contains a collection of all the
executed tracepoints in a VM in one second. An example of a monitoring data
is given in Figure 3.2. In the figure, each line is one data unit (one observation).
∗http://lttng.org
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The interval between each data unit is one second. Each file constitute a scenario
that compiles time-based sequence of an average 1000 data units.

4.2 Analysis of Qemu Introspection Data

The data that is collected in our monitoring method is in the form of big text
data. This data would be hard to be processed manually by human operators.
Therefore, we chose to implement Machine Learning approach to process the
monitoring data. Within this work, we study three type of Machine Learning
approach. First, we used the Bag of Tracepoint approach, where we use the
pattern of each tracepoint quantities. Second, we used the Tracepoint sequence
pattern. Since the core of QEMU is based on event-driven architecture, each
process by the qemu will leave a unique sequence footprints. Each of both previous
approach has its own advantage and drawbacks, so for our third attempt we used
the combination of both tracepoint sequence and the pattern of their quantities.

4.2.1 Bag of Tracepoints Approach

We started with one common feature extraction, the ’bag of’ approach. For
every observation dataset, we collect the occurrence frequency of each unique
tracepoints. Therefore, the form our next dataset is a vector D = |N | × |M |,
where N is the set of observations, M is the set of unique tracepoints and Dn,m

is the frequency of tracepoint Mm at observation Nn. A unique tracepoint is
represented only by its name.

Feature Reduction Process

Qemu comes with around 1200 default tracepoints. For a real-time anomaly
detection, this amount of tracepoints is still very big to observe. Furthermore,
from the machine learning point of view, not all of those tracepoints contain
significant information. Some of the tracepoints can even act as noises. Therefore,
we need to extract just small enough feature without compromising the final
anomaly prediction quality.
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Ideally, we can minimize the number of feature using a complete understanding
on how internal hypervisor works, which is usually called the white-box approach.
The clear picture of hypervisor inner works can enables us to identify what func-
tions are related to the processes we want to observe. However, in this preliminary
research, we do not assume any knowledge of hypervisor internal operation. As a
solution, we adopt the black-box approach, where we compare each input to its
output and tries to figure out their relation. In specific, we decided to use mem-
ory, I/O and network process signature as our basic profile. Many well-known and
common malicious activities can be directly related to abnormal system perfor-
mance [ATJ+10], for instance the Denial-of-Service, password dictionary attack
and fuzz testing.

The purpose of our feature reduction is to select a subset of variables that can
highly explain the change in memory usage, I/O read-write frequency or network
send-receive volume. Hence, we need to use dimension reduction technique that
considers class information. For that reason, we use Linear Discriminant Analysis
(LDA) technique. LDA seeks to reduce data dimensionality while preserving as
much of the class discriminatory information as possible, such that maximizing
between-class to within-class covariance. For two class analysis, linear discrimi-
nant is defined as the linear function y = wTx that maximizes criterion function

J(w) = |µ̃1 − µ̃2|2

s̃2
1 + s̃2

2

where µ̃i is mean value for class i and s̃2
i is class i’s scatter value along w projection.

The output of LDA is linear combinations of its variables input.

We collected five datasets, each with 100 unit data. Those datasets represented
the following scenarios: idle, stress-memory, stress-I/O, stress-disk and stress-
network. We used “stress” Linux application for generating memory, I/O and
disk data while for network we use ping with flood option. Next we paired the
idle dataset with each of stress dataset which resulted in four pair scenarios. For
each pair we applied Linear Discriminant Analysis to extract tracepoints that
best separate each scenario. Using R [R C14,ODCM14], Table 4.1 gives the best
tracepoint with its associative scenario and its LDA score.
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Table 4.1: List of selected tracepoints with its associative scenario and LDA score
idle vs TP name LDA score

stress network
tap_send

0.9913
qemu_deliver_packet

stress IO bdrv_aio_flush 0.9869
stress memory virtqueue_fill 0.5795
stress hd memory_region_ops_write 0.9992

Anomaly Prediction Process

In our anomaly prediction process we implemented a semi-supervised anomaly
detection system. This system introduces only one class model, which is the
normal profile. Any data input that does not conform to this model will be
considered as an anomaly. This approach is also known as one-class novelty
detection system as all the learning data to create the prediction model come
from one single class. We used this approach under the assumption that a VM in
the cloud works for one specific service, for example a web server, an application
server or a mail server. Since this kind of servers create almost homogenous
operation, it is easier to provide a sound training dataset.
We used the One-Class Support Vector Machine (OCSVM) as our prediction

engine. This predictor uses several advantageous properties of Support Vector
Machine (SVM) where it is more robusts to noise and can easily work with high
dimensional data while allowing smooth and flexible nonlinear mappings. Data
points that cannot be separated in their original space dimension are mapped to
another higher dimension feature space where there is a straight hyperplane that
separates one class to another. When the resulted hyperplane is projected back
into the original input dimension, it would form some non-linear curve.

Scenarios for Normal Class

We decided to use web scenario workloads under the assumption that web oper-
ations are being run the most in the public cloud system. Approximately 25%
of IP addresses in Amazon’s EC2 address space hosted a publicly accessible web
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server [RTSS09]. Web server operations also allowed us to experiment with mul-
tiple normal workload profiles for our evaluation purpose. We used RUBiS appli-
cation [CMZ02] to emulate this web application scenario. RUBiS is a prototype
of an auction site that was built to evaluate web application server scalability.
RUBiS allowed us to easily scale the workload and generate dynamic web traf-
fic. We used the workload_number_of_clients_per_node attribute to control the
application workload.

Scenarios for Anomaly Class

There were already many kinds of attacks that have happened in the cloud. How-
ever, one of our primary concern in this research is semantic gap information for
the non-intrusive VM monitoring. Therefore we tried to imitate multiple attack
scenarios that can represent either the processes that extensively use computer
resources and can be easily detected without semantic context or the processes
that in contrary happened in higher layer which makes it very hard to detect.
For that reason we utilized these four attacks:

1. Synchronous-packet flood attack. This scenario was emulated using “hping3”
tool and targeting port 80.

2. Password brute force attack. Using “ncrack” tool we try to crack an http
basic authentication procedure.

3. Slow HTTP attack. We emulated this scenario using “httpslowtest” tool
with attack in the body option.

4. Port scan attack. We emulated this attack using “nmap” tool and executed
vertical port-scan attack.

For each type of attacks above, we performed both ‘source attack’ where the
attack originates from the monitored VM and ‘target attack’ where monitored
VM is the intended target of the attack. It resulted in total of eight anomaly
type. We collected 500 unit data for each anomaly types. Just like normal data
collection, one unit data was the list of variable occurrence within two-seconds
of observation. We did the same amount of collection for the three data sources
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Figure 4.1: Prediction results for three monitoring approaches and eight anomaly
scenarios

(static probe instrumentation using all feature, static probe instrumentation using
selected feature and system-call) we want to compare. In total we evaluated 24
scenarios.

Evaluation of Detection Effectiveness

We emulated several attack scenarios as anomaly data and then observed if the
predictor was able to identify them as anomaly or not.
To measure effectiveness, we used F-measure metric. F-measure defined as the

harmonic-mean of sensitivity and precision.

Sensitivity = TP

P
;Precision = TP

TP + FP
;Fmeasure = 2

1
P recision

+ 1
Sensitivity

We divided 500 unit data for each scenario into five subsets. We then paired
each subset of normal and anomaly, and feed them into one-class SVM outlier
predictor. Over the five subsets, we calculated the averages of true-positives
(TP), false-positives (FP), true-negatives (TN) and false-negatives (FN). Using
these values, we calculated f-measure value of each scenario. We summarize the
results of this evaluation in Figure 4.1.a.
From Figure 4.1.a. we note that, aside from synflood scenario, our static-

probe instrumentation approach and system-call approach still give poor predic-
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tion values, which are below 90%. The median of all scenario f-measure value
for static-probe using all tracepoints, static-probe using selected tracepoints and
system-call monitoring is 73%, 62% and 50% respectively. It is also useful to look
in detail to sensitivity value. This metric measure how accurate the system is in
detecting real positive data (anomaly data) only. The sensitivity results of this
evaluation are given in Figure 4.1.b. The median of all scenario sensitivity value
for static-probe using all tracepoints, static-probe using selected tracepoints and
system-call monitoring is 61%, 46% and 40% respectively. Syn-flood scenario can
be easily recognized because it directly affects the volume of send and receive
data. However, since slowhttp scenario and portscan scenario do not change
transfer rate, prediction is proved more difficult. Due to the fact that our ap-
proach works only by monitoring frequency of function-call, it can only detect
changes in volume. It cannot however detect changes in sequence pattern for
example, which might help increase accuracy. This Figure 4.1.b also shows, that
in all of scenario test, system-call prediction value was lower than static probe
instrumentation prediction.

4.2.2 Sequence Analysis Approach

In terms of decision making, the bag of tracepoint features is similar to the more
conventional computation usage features. The anomaly decisions are being given
only by how ’noisy’ the monitoring objects are. The lack of semantic informa-
tion might leads to a high number of false alarms. Therefore we believe that we
can increase the detection quality if we put some effort to extract more seman-
tic information. One of the method to extract this information is by analysing
sequence.
The logical architecture of this sequence analysis is given in Figure 4.2. Fol-

lowing the approach of bag of tracepoints above, we use the semi-supervised one
class anomaly detection method. We used only normal class dataset for training
phase. First we randomly create a subset of normal class dataset using Hiddem
Markov Model (HMM) fitting method to create the model of normal class. Then,
we used the normal class HMM model and another random subset of normal class
dataset to create a Likelihood Score (LLS) of the normal class. We used the LLS
of the normal class as a reference in the evaluation phase or in the production
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Figure 4.2: Logical framework of the proposed Sequence-based Anomaly Detec-
tion System

phase to decide if the new incoming monitoring data units are coming from a
normal or from an anomaly operation in the guest VM. Detail explanation of this
framework are given in the following sections.

Extracting the Sequences

One unit of monitoring data is the collection of caught tracepoints within a fixed
pre-defined period. However, even though the collection time for each data unit is
the same through out the monitoring process, the number of captured tracepoints
for each data unit might be different. On the other hand, the sequence inputs
for the modelling function had to have equal lengths. To accommodate this
requirement, we convert each observation data unit into lists of smaller sequence
of tracepoints using the sliding window approach. It is common practice to extract
smaller sequences out of longer test sequences and stated the outlier score of the
whole sequences as combination of its smaller sequences [Agg13]. We denote the
observation O by a series of elements {pi}m

i=1 where pi element [n] and m is the
number of trace-points within an observation. A sequence S(x, y) = {pi, iε[x, y]}
is the set of all observation elements between px and py, inclusively. A sliding
window is defined as W = {S(t, t + N − 1)|0 ≤ t ≤ m − N + 1}, where N is a
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Figure 4.3: An illustration of sliding window method

predefined parameter of the sliding window’s length.
An illustration of this partition method is given in Figure 4.3. This example

shows two observations, O1 and O2 with different length, a and b. The sliding
window’s length (w) is 3. The number of sequences in O1 is a − w + 1 = a − 2
sequences, while the number of sequences in O2 is b− w + 1 = b− 2 sequences.

Modelling the Sequences: Hidden Markov Model Method

In the training phase, we modeled our training dataset using the Hidden Markov
Model (HMM) method. A HMM is a statistical model where the system being
modeled is assumed to be a Markov process with unobserved, hidden states. This
HMM model consists of a list of hidden state transition probabilities A, a list of
observed variable emission probabilities B and a list of starting probabilities of
each state π that most likely create the training data. In a formal form, given
the observation sequence O, we try to adjust the model parameters λ = (A,B, π)
to maximize P (O|λ), where:

• A is a hidden state transition matrix with size N · N , row stochastic (the
sum of each row is equal to 1). In this work we also specifically use ergodic
probability chain (there is a positive probability to pass from any state to
any other state in one step). N is the number of hidden states.

• B is the output emission probability matrix N · M , and represents the
chance of each observable variable to occur from each hidden state. This
matrix is also row stochastic. M is the number of observable variables.
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Figure 4.4: AIC value for HMM model created using 5 - 50 hidden states

• π is the N -sized list of probabilites for each hidden state to become an
initial state.

The main issue for the model creation process in HMM is deciding the number
of hidden states. In many cases, this problem is not as straightforward as stating
the number of observable variables, especially if there are no physical attributes
that correlate to the hidden state parameters. Presenting a bigger number of
hidden states will create a fitter model. On the other hand, that big number of
hidden states will introduce an overfitting problem. There is still no definitive and
recognized solution to the problem of choosing the optimal number selection for
hidden states in HMM. Instead, researchers usually use some information-based
techniques, such as AIC (Akaike Information Criterion), BIC (Bayesian Informa-
tion Criterion) or LRT (Likelihood Ratio Test). These Information Criterions
(IC) are a measure of the relative quality of statistical models for a given set of
data and work by introducing a penalty for additional free parameters. Given a
collection of models for the data, IC estimates the quality of each model, rela-
tive to each of the other models. Hence, IC can be used to provide a means for
model selection. Within our work, we use Akaike Information Criterion (AIC) as
suggested in [CdA10].

AIC = −2 ln(p) + 2k

where p is the highest likelihood value from the model and k is the number of
free parameters. Varying the value of k as the number of hidden states, we select
one preferred model by choosing the lowest AIC score.
Results of AIC value for 0 < k ≤ 50, k%5 = 0 are given in Figure 4.4.
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Figure 4.5: LLS comparison between a reference and an unknown observation

Deciding Anomaly: Comparing Data Distributions

In the HMM evaluation phase, the output of the HMM scoring function for an
observation is a list of continuous values of likelihood score (LLS). Using the bin-
ning technique, we can visualize this LLS using a histogram. To decide whether
a new observation is an anomaly or not, we compare its LLS with an LLS from a
reference. This reference LLS is created from the normal scenario dataset during
the ADS training phase. An example of reference’s LLS and the LLS of a new
observation is given in Figure 4.5a.
There are many known measures to compare two sets of continuous values. In

general, these measures can be categorized into two main groups:

• Comparing location. Here comparison is based on the individual values
within the list. Hence, the term ’location’ here refers to its histogram
position along the X-axis. An example of this is the comparison of means,
medians, or tails.

• Comparing shape. In this method, instead of comparing individual values,
we compare the relation between values. This relationship can be repre-
sented by its probability density function (PDF), so the shape here refers
to the shape of its PDF. Some examples of this method are the Jansen-
Shannon Distance and the Bhattacharya Distance.
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In this work, we will compare three types of comparisons, namely the Mean
Comparison, the Jensen-Shannon Distance (JSD) and the 2-Sample Kolmogorov-
Smirnov Test (2S-KST).

1. Mean Comparison. Here we compare the absolute difference between the
LLS average of an observation with the LLS average of the reference.

M(P,Q) = |mean(P )−mean(Q)|

This method will represent methods that compare LLS locations.

2. Jensen-Shannon Distance (JSD) [OV03]. JSD is a metric commonly used
to measure the difference between two probabilty distributions. It uses the
Kulback-Leibler divergence formula that measures information difference,
gain or loss, when mapping one distribution function to another. JSD is
measured by:

JSd(P,Q) = 2

√
1
2(D(P ||R) +D(Q||R))

where R = 1
2(P +Q) is the mid-point measure and D(·||·) is the Kullback-

Leibler divergence. This method will represent methods that compare LLS
shape.

3. Two Sample Kolmogorov-Smirnov Test (2S-KST). 2S-KST quantifies the
distance between two empirical distributions using their Cumulative Dis-
tribution Function (CDF). It seeks the maximum vertical distance between
both CDFs. For two given CDFs F1(x) and F2(x), the 2S-KST statistic is
given by

D(F1, F2) = sup|F1(x)− F2(x)|

where sup is a supremum function. An example of two compared CDFs is
given in Figure 4.5b. It is one of the most useful methods to compare two
samples as it takes into account both their location and shape.

Evaluation Metric: Receiver Operating Characteristic (ROC) Curve

In most cases of binary classification systems such as ADS, the probability distri-
bution area of both classes are overlapped. In such cases, the quality of an ADS
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Figure 4.6: Steps taken to create ROC/AUC

predictor not only depends on an instance measure of sensitivity or accuracy, but
also depends on what constitutes a normal or anomalous instance in the dataset.
As the decision of classification is decided using a threshold value, it is preferrable
to see all possible outputs to be able to select optimal models and discard sub-
optimal ones. An ROC curve visualizes how well a system separated both classes
by evaluating all possible thresholds. It depicts relative trade-offs between true
positive (benefits) and false positive (costs). To quantify the system’s effective-
ness, we measure the size of Area Under the Curve (AUC), where 0 ≤ AUC ≤ 1.
An AUC value that close to 1.0 indicates a good model to distinguish classes.
Within this work we used ROC to evaluate models. For each ROC graph

we randomly selected 100 out of 1000 observations of normal scenarios and 100
observations from the dataset of each anomalous scenario. Next we compute List
of Likelihood Score (LLS) for every observation. Each LLS consists of the HMM
scores of all sub-sequences (sliding windows) within the observation. The LLS
is then converted into a distance value by calculating its separation to a certain
reference LLS. Finally, the list of distance values of each test scenario are paired
with the list of distance values of the normal scenario to create ROCs and their
respective AUC value. Graphical representation of of ROC’s calculation processes
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(a) AUC comparison of individual scenarios
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Figure 4.7: Comparison results of three statistical distance measures.

are given in figure 4.6.

Comparison Between Statistical Distance Measure Methods

In our framework, SDM is used to measure the similarity between our reference of
normal data and a new observation data. We chose three commonly used SDMs,
which are the Mean Comparison (MC), the Jensen-Shannon Distance (JSD) and
the 2-Sample Kolmogorov-Smirnov Test (2S-KST) and compared ADS prediction
results using each of the SDMs. The results are represented by the AUC value
given in figure 4.7. From this bar-chart, we can see that 2S-KST consistently
outperformed the other two methods, MC and JSD, by giving better separation
between LLS from normal dataset and LLS from the anomalous dataset.
We believe the explanation of this result lies in the relation between the charac-

teristic of the data and how each method computes the distance. First, Kolmogorov-
Smirnov (KS) is a statistical approach that converts both the to-be-compared
Probability Density Functions (PDF) A and B into Cumulative Distribution
Functions (CDF) and finds a point x where abs(CDFA(x) − CDFB(x)) is the
biggest. Therefore KS is a ‘local-maxima’, which means that it’s value is de-
cided by one specific value x. Kullback-Leibler family (KL) on the other hand
is an entropy-based approach. In general, it uses the sum of logarithmic differ-
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Figure 4.8: AUC results for different sequence lengths.

ence between two PDFs. Unlike KS test, the KL divergence is ’non-local’, which
means that its value is the result of processing all data in the problem domain.
Intuitively, the local-maxima distance (KS) will give a bigger distinction value
between two PDFs compared to the non-local distance (KL). To put this in the
context of an ADS, KS will give a better True Positive Rate value compared to
KL. In retrospection, KS is more susceptible to False Positive than KL. Secondly,
on the data part, since we use only one specific normal scenario data in the ex-
periment, the pattern of normal scenario is nearly homogenous. In other words,
we did not have much of a problem to find the True Negatives. The real problem
is to detect the True Positives. We assume that both the distance computation
method and data characteristic are the reason why KS works better than KL in
our case. Furthermore, if normal data scenario is more dispersed, KS will give
lesser performance. However, as we stated in the Discussion section, in the HMM
approach, multi normal scenarios will each require a different model.

Comparison Between Length of Sequence Windows

We wanted to see any relation between chosen sequence length and prediction
result for each anomaly scenario. We compared various HMM models based
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Table 4.2: Sequence patterns with support of 95% in normal scenario dataset
length pattern support
14 tap_send - qemu_send_packet_async_with_flags -

qemu_deliver_packet - virtio_net_receive - tap_send -
qemu_send_packet_async_with_flags - qemu_deliver_packet -
virtio_net_receive - virtqueue_pop - virtqueue_fill - virtqueue_flush
- virtio_notify - memory_region_ops_write - kvm_vm_ioctl

95%

43 cpu_set_apic_base - kvm_run_exit - memory_region_ops_read -
kvm_vcpu_ioctl - cpu_set_apic_base - kvm_run_exit -
memory_region_ops_read - kvm_vcpu_ioctl - cpu_set_apic_base -
kvm_run_exit - memory_region_ops_read - kvm_vcpu_ioctl -
cpu_set_apic_base - kvm_run_exit - memory_region_ops_read -
kvm_vm_ioctl - apic_report_irq_delivered - kvm_vm_ioctl -
apic_report_irq_delivered - memory_region_ops_read -
kvm_vcpu_ioctl - cpu_set_apic_base - kvm_run_exit -
memory_region_ops_read - kvm_vcpu_ioctl - cpu_set_apic_base -
kvm_run_exit - memory_region_ops_read - kvm_vcpu_ioctl -
cpu_set_apic_base - kvm_run_exit - kvm_vm_ioctl -
apic_report_irq_delivered - memory_region_ops_read -
kvm_vcpu_ioctl - cpu_set_apic_base - kvm_run_exit -
memory_region_ops_read - kvm_vcpu_ioctl - cpu_set_apic_base -
kvm_run_exit - memory_region_ops_write - kvm_vcpu_ioctl

95.1%

on sequence length for each anomalous scenario we prepare. We used a sliding
window of 5, 10, 15, 20, 25 and 30. Working with a longer sequence is not feasible
within our computing environment. All the other variables were set constant,
where the number of hidden states was 30, the modelling iteration was 10 and
number of training sequences was 20000. In this evaluation we used 2S-KST to
check observations similarity. The results are given in figure 4.8.

The pattern for sequence length results look random. However, we can see that
it formed two maxima at either side of length 20. To try to explain these results,
we applied a data mining approach from [FVWGT14] to find the longest pattern
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(a) AUC comparison of individual scenarios
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Figure 4.9: Detection results of OC-SVM (frequency-based) and HMM (sequence-
based).

to appear in normal dataset scenario. We looked within a 95% support value
(which means the pattern should at least appear in 95% of the observations).
The results were two sequence patterns with the length of 14 and 43. The details
of the sequence’s pattern are given in table 4.2. This finding in our normal dataset
might explain why the AUC results for several sequences length between 5 to 30
formed a graph with two peaks. Between these two sequence length values, 5 is
preferable as it requires lower computation resources.

Comparison to the Bag of Tracepoints Approach

Static probe instrumentation data inside hypervisor is mostly used for hypervi-
sor debugging purposes. To the best of our knowledge, [POKY16a] was the first
attempt to apply static instrumentation data for host-based anomaly detection
purposes. The authors attempted to use occurrence frequency of trace-points
(well known as the Bag of Trace-Point approach) as the basis for anomaly detec-
tion. Their results showed that their approach can only recognize attacks that
change computation volume (volume-attack), such as sync-packet flood attacks.
However, when dealing with non-volume-based attacks, their system still worked
poorly.
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As already described earlier, this work utilized sequence-based analysis using
HMM. We argued that this approach can give better prediction results, even for
some non-based volume attack. The basic intuitions of our arguments are:

• In our experiment we use static probe instrumentation data, which are
related to function call information. By the nature of this data, we be-
lieve that the relation between each data-point (the trace-points) is best
described by their sequence (the chain of function call). As a comparison,
in an NIDS experiment that uses, for example, ip-address or port number
(source/destination) as data-points, the relation between each data-points
would be better described by occurrence frequency.

• A change in data frequency will always (to some extent) change data se-
quence, and therefore can be detected by both frequency and sequence
analysis. On the other hand, a change in data sequence does not always
change frequency, and therefore can only be detected by sequence analysis.

• In the occurrence frequency analysis approach, each data point is composed
of multiple discrete data (frequency of each trace-point). In the sequence
analysis approach, each data point is composed of multiple continuous data
(likelihood of each sub-sequence). Therefore, inherently one data-point
in sequence analysis approach contains more information than one data-
point in occurrence frequency analysis approach. The compensation lies in
the computation requirement to collect and process the data-point. The
sequence-based approach requires much heavier computation compared to
the occurrence frequency approach.

To have empirical proof, we perform an experiment to compare detection quality
of both frequency-based analysis and sequence-based analysis. We emulated the
same set of attack dataset, which are sync-flood, port-scan, password brute force
and slow-http attacks, both as attack source and target. We then compared the
prediction results against each individual test attack scenario (figure 4.9a) and
prediction results against the whole test attack scenario (figure 4.9b).
Figure 4.9b shows that analyzing sequences of trace-points give 20% better

prediction results than frequency-based analysis. In figure 4.9a, aside from minor
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Table 4.3: Specific sequence we use to explain performance of HMM framework
in Section 4.3.

op. pattern
receive qemu_send_packet_async_with_flags -

qemu_deliver_packet - virtio_net_receive
send qemu_sendv_packet_async -

tap_receive_iov - tap_write_packet

lesser value in portscan (target) attack and equal results for sync flood attack,
all other results show improved performance, with a notable improvement for
slowhttp (target) attack. However, portscan attack still cannot be detected prop-
erly. The AUC values around 60 for portscan attack means that prediction results
are still random.

To explain these results, we ran one minor experiment. We focused on the
network operation for each of the scenarios to find their characteristics. We looked
for the sequences list in table 4.3 for send and receive operations. We counted
the average occurrence of these sequences in an observation, as we believe this
feature is related to HMM’s score Probability Density Function. For simplicity,
we just used anomalous scenario for attacked VM and the results are given in
table 4.4.

The ratio row in the table represents the proportion between the number of
receive-sequence to send-sequence. We can use this ratio to guess the probability
of two scenarios having the same sequence pattern. Two scenarios having a very
different ratio value will have a higher chance of having different combination
between their items. In contrast, two scenarios having almost similar ratio values
will have a higher chance of having similar combination between their items. The
difference in sequence patterns will lead to a difference in PDF and makes them
easy to distinguished each other. The same explanation applies for all other
scenarios. For example, to differentiate SyncFlood scenario from normal scenario
we can use the ratio of network sequences over non-network sequences. The
ratio between network-receive operations and read-block operations for normal,
portscan, password-bf and syncflood scenarios are 686, 1074, 2853 and 80965
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Table 4.4: Occurrence number of specific send and receive sequence in different
scenarios.

Normal SlowHTTP Portscan Pass.BF SyncFlood
Send 394.641 42.56 1198.46 4297.93 28138.42

Receive 318.277 234.26 1292.46 2711.18 31576.67
Ratio 0.806 5.504 1.078 0.631 1.122

respectively. Portscan scenario was hard to differentiate from the normal scenario
because the frequency ratio among any different operation from both datasets was
almost similar.
On the other hand, One-Class SVM only works by using trace-point frequency

to create a proximity model in a high dimensional space. This is however only
effective for anomalous scenarios that drastically change certain resource utiliza-
tion.
There were many other anomaly detection systems previously introduced. How-

ever, direct comparison is difficult to do as observation data and evaluation
scenario were different. For example, Sha et al. [SZCH15] applied Multi-order
Markov chain to detect anomalies in cloud server systems. For evaluation pur-
poses, they used system-call information from DARPA’s 1998 Intrusion Detection
Evaluation dataset. In their paper however, there was no specific information on
what the quantified results on their anomaly detection scheme were. Alarifi et
al. [AW13] implemented HMM for the same purpose with this paper. They col-
lected system-call in the host system to monitor guest VM. For anomaly scenario,
they used a non-malicious stress test in guest VM to emulate what they called
an “over-committed migration” attack, and reported a 100% detection rate with
a 5.66% false positive rate. Their malicious data type was similar to our syn-
chronous packet flood attack which are both volume-based attacks. However, we
do not know how their system fares with any non-volume-based attack.

4.2.3 Bag of Sequence Approach

Each of both previous approach, the Bag of Tracepoints and the Sequence of
Tracepoints has its own advantage and drawbacks. In short, the Sequence of
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Figure 4.10: Bag of Sequence data format

Tracepoints (SoT) gives better detection results compared to the Bag of Trace-
points (BoT) approach. However, the SoT analysis are more expensive (in term
of computation resources and computation time needed) compared to the BoT.
Therefore, for our third attempt we used the combination of both tracepoint se-
quence and the pattern of its quantities. Our intention is to acquire the accuracy
of SoT with the cost of BoT.
For further research on this topic, our dataset can be accessed at http://ip

lab.naist.jp/research/DCISION.

Feature Extraction

Just like the previous two approaches, we extract the tracepoint name from the
monitoring data. Then we split the tracepoint sequence of an observation into
multiple sequence windows with equal length (see Section 4.2.2). Then we listed
every unique sequence and count their appearance frequency. This data will be
used for our chosen machine learning algorithm.

Feature Reduction

As we will use One Class Classification technique for our ADS, we need to keep all
the features (e.g. all sequences) in our datasets. Feature reduction will decrease
the ADS ability to recognize any new sequence patterns. Yet, a sliding window
with a length of w and p unique tracepoints will create a possibility to have
up to pw unique sequences, which can create a very big dimension of data. To
minimize the problem dimension, instead of removing the ’weak’ features from
the learning class, we opt to merge all the weak features into one single feature.
The weak features are all the sequences that have lower appearance frequency
than a threshold t in the training dataset. Lowering the t will increase the data
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Figure 4.11: Attack vectors of our threat model.

dimension while a higher t will decrease the data dimension.

The advantage of this approach is two folds. First, we will have a more com-
pact datasets without removing any features. This can leads to a better com-
putation performance with a minimum cost of information lost. Second, it will
give more weights to the sequences that appear more regularly in the normal
scenario dataset and hence will increase the discrimination factor between the
normal scenario dataset and the other class datasets.

The format for our dataset is given in Figure 4.10. The first attribute is reserved
for all the sequences that were never appeared in the training dataset. Therefore,
in the normal class dataset, this column values should be an integer close or equal
to zero. The second attribute recorded the sum of appearance number of all the
’weak’ sequences. Finally, all the remaining attributes represent each individual
’strong’ sequence’s appearance frequency. As opposed to the weak sequences,
the strong sequences are those that have higher occurrence frequency than the
threshold t in the training dataset. By using this format, we can use the first
column to observe any change in the sequence pattern while the other columns
are used to observe the change of intensity.
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(a) without noise

(b) with noise

Figure 4.12: The ROC graph for Qemu dataset and system-call dataset.

Threat Model

We slightly changed the threat model of this evaluation. Instead of using network
attack scenario, we evaluate this bag of sequence approach using several cloud
environment based attacks. We are not considering the attacks from guest VM to
other systems outside the host (Figure 4.11 point 3), or vice-versa. Those attacks
will require a certain network connection and thus can be handled by the vast
array of contemporary Network Intrusion Detection Systems (NIDS). We also
exclude the scenarios where a certain guest VM user wants to attack his/her own
VM (Figure 4.11 point 4). We believe that this type of attacks should be handled
internally inside the VM using Host Intrusion Detection System (HIDS).

Evaluation of Detection Quality

We evaluated two environment scenarios, noiseless and noisy environment.
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Table 4.5: The statistical comparison between the regular workload dataset and
each real attack scenario dataset.

(a) (b) (c) Additional note

Noiseless
scenario

Flush-Reload 0.3 0.4 0.43

in Flush-Reload
strong sequences: all
values are very small
and almost all of
them are zero

Driver- Fuzzing 12.6 3.5 0.28

Rowhammer 971.8 267.9 0.43

in Rowhammer strong
sequences: all values
are very small and
almost all of them are
zero

Noisy
scenario

Flush-Reload 0.9 1.2 0.02
Driver-Fuzzing 39.1 28.3 0.53
Rowhammer 1431.5 214.5 0.19

note: (a) Average of the previously unseen sequences; (b) Ratio of the weak
sequences; (c) Difference of strong feature vectors

Noiseless Environment Results of the Qemu Bag of Tracepoint Sequence
based ADS against real attack are given in Figure 4.12. In the scenario where
the attack is the sole main workload within the VM (noiseless scenario, Fig-
ure 4.12.a.), all three attack scenarios, the rowhammer, flush-reload side-channel
and driver fuzzing attack have the AUROC value of 0.99. That means that the
anomalies can be fully distinguished and identified as anomalies.

The flush-reload attack result is easy to explain. Since it only affects the CPU
cache, its operations cannot be detected by this Qemu Bag of Tracepoint Sequence
based ADS. Therefore, its intensities are roughly counted as zero. A near zero
change of intensity is easily distinguished from the intensities of regular workload
scenario. However, to explain the other two attacks, we have to dig into the raw
data.
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Table 4.5 shows some statistics of comparison between each anomaly dataset
and the regular workload dataset for Qemu Bag of Tracepoint Sequence analysis.

• The Average of unseen sequence column lists the average of the first column
values in the anomaly dataset. It gives the average number of sequences
from the anomaly scenario observations that never appear in the regular
workload scenario. The average value for this column in the normal dataset
is 0.

• The ratio of the weak sequences column values come from the average of
the second column values of the anomaly dataset divided by the average of
the second column values of the normal dataset. This will show how much
the frequency of weak sequences changes in the anomaly dataset.

• The strong features are all the sequences that appeared frequently in the
normal scenario dataset (see Section 4.2.3). The difference of the strong
feature vector column is meant to quantify the difference between the in-
tensities of the strong sequences (in respect of normal scenario dataset) in
normal scenario dataset and the anomaly scenario dataset. The procedure
to calculate this value is given in Equation (1).

Let us define normal dataset as ND and abnormal dataset as NA. Next we define
maxx = max(NDx, NAx) as a maximum value of feature x from both ND and
NA. We can then calculate diff as the difference value between ND and NA:

diff =

n∑
x=3

abs(

a∑
y=1

NDx,y
maxx

a
−

b∑
y=1

NAx,y
maxx

b
)

n
(4.1)

where n is the number of features, a is the number of observations in ND, and b is
the number of observations in NA. We remove the first two element of x because
both features, the average of unseen sequence and the ratio of weak sequences,
were evaluated separately.
Looking at the Rowhammer scenario raw data, we saw a high number of un-

seen sequences (an average of 972). The value of infrequent sequence (in the
second column) of the Rowhammer dataset is also 270 times higher than the
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regular workload dataset. The other important fact is in the other features of
Rowhammer data, all values are very small, where most of them are zero. All
of this gives strong indication that the Rowhammer scenario produces a different
sequence pattern of tracepoints compared to the regular workload scenario. The
Driver-Fuzzing scenario gives almost similar results as the Rowhammer scenario,
but with a smaller intensity.

Noisy Environment In the noisy scenarios, the attack operations were exe-
cuted while the normal web application was also running with regular workload.
Our results showed that the detection quality did not decreased significantly, ex-
cept for the noisy Flush-Reload attack (Figure 4.12.b.). In the noisy Flush-Reload
attack, the detection score was significantly reduced where the quality dropped
to the level of random detection (0.63 for Qemu tracepoint data and 0.59 for
System-Call data). This can be explained by the fact that in monitoring guest
VM, Qemu tracepoints data cannot be used to detect any changes in CPU op-
eration. Therefore, comparing between regular scenario workload and the noisy
flush-reload workload is like comparing two similar objects. As a hindsight on
the Flush-Reload attack, the adversaries are unlikely to perform their attack in
a noisy environment since it will also decrease the effectivity of the attack.

Comparison of Anomaly Detection Results: Software
Instrumentation Data Vs System Call Data

Our results in Figure 4.12 shows that even though the Qemu Bag of Tracepoints
Sequence approach consistently gave better results compared to the System-Call
data, the difference is not significant. Therefore, in terms of the detection of
Rowhammer, Flush-Reload and Driver-Fuzzing attacks, we can conclude that
Qemu ttracepoint data and System-Call data gives similar results.

4.2.4 Computation Cost of the Monitoring Process

Cost to the Host: Efficiency and Scalability

We used the Linux’s perf tool to measure CPU usage and the time needed to
capture one unit data for certain number of VMs. For scalability evaluation
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Figure 4.13: Performance value when capturing one unit data as the number of
monitored VM was increased.

purpose, we used one until ten VMs. All multiple data collections were executed
concurrently. The average results of twenty measurements for Qemu tracepoints
and system-calls data collection are given in Figure 4.13.
Figure 4.13.a shows that the tasks of collecting system-call data required longer

CPU time than the tasks to collect Qemu tracepoints data. As the number of
monitored VMs were increased, the additional rate of task clocks consumed by
system-call data collection was also became higher. Meanwhile, the required task
clocks for Qemu tracepoints data collection in all VM number scenarios were
almost remaining constant.
On the other hand, the results of measuring total execution time show that

Qemu tracepoints data collection took longer to finish compared to the system-call
data collection. As the number of monitored VMs were increased, the additional
time required for collecting Qemu tracepoints data was increased at a much higher
rate than system-call data collection. We believe that this is due to the different
way each tool, the LTTng for Qemu tracepoints data collection and the strace for
system-call data collection, process the collected data and writes the results to
the disk.

Impact to the Guest VM

We compared the CPU and database performance of a guest VM when it is being
monitored from the host. For the measurement process, we used the sysbench
tool. In the CPU benchmark (Figure 4.14.a.), we recorded the total execution
time of one thread to calculate the first 10 million prime numbers. In the database
benchmark (Figure 4.14.b.), we counted how many database transactions can be
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Figure 4.14: The impact of VM monitoring to the guest VM’s CPU performance
and database operation.

processed every second. Again, in both of these evaluations, we compared the
performances of Qemu tracepoints data collection and system-call data collection.
Figure 4.14 presents the averages from twenty benchmarking results.
Both boxplots in Figure 4.14 show that the system-call data collection process

gave the bigger negative impact to the monitored VM than the Qemu tracepoints
data collection process. In the CPU benchmark, system-call data collection pro-
cess increased the benchmark time of no-monitoring scenario by 0.3%, while Qemu
tracepoints data collection process only increased it by 0.007%. Similarly, in the
database benchmark, the number of database transaction per second in the guest
VM were decreased more by the system-call data collection process compared
with the Qemu tracepoints data collection process. system-call data collection
process and Qemu tracepoints data collection process reduced the number of
database transaction per second by 15% and 2.9% respectively. Both results
show that system-call data collection decreases the guest VM performance, more
than Qemu tracepoints data collection.

4.3 Previous Works on Anomaly Detection
System in Virtualization Environment

The previous methods for monitoring guest Virtual Machine (VM) are basically
can be categorized into three classes, the computation metric monitoring system,
the system call monitoring system and the Virtual Machine Introspection (VMI)
method.
Several previous research on computation metrics monitoring method for the
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virtualization system are summarized in the first five rows of table 4.6. The
main assumption of this approach is that a malicious activity will likely change a
considerable amount of computing resources usage. However, the usage data do
not contain any semantic information. Both benign and malicious processes may
have similar computing usage pattern, and therefore hard to be distinguished
from one to the other. Furthermore, monitoring computer metric data can only
be effective if it is implemented inside the observed system because most of the
resources for guest VM are pre-allocated and not allocated on an as-needed basis.

The second VM monitoring method uses the system-call data. In the context of
virtualization operation, the process of system-call monitoring is not trivial. The
hypervisor as an intermediate system between the guest OS and the host OS adds
another layer of system-call simulation. Hence, the system-calls that are collected
in the host are mostly not the direct representations of the internal guest OS
system-calls and therefore generate low quality semantic data. We summarized
several previous studies on system-call monitoring for the virtualization system
in the last three rows of table 4.6.

All the works mentioned above evaluate their work using anomaly scheme that
significantly change the pattern of computing resources usage, such as CPU,
memory or I/O. These approaches are indeed useful for detecting volume based
attacks. In reality however, many attacks on computer system do not change
these resources data, hence are harder to detect. To detect those non-volume
based attacks, higher semantic information is needed and for that researchers
usually monitor internal operation of observed VMs. Our work were focused
on trying to extract clearer semantic information without requiring to interrupt
guest VM operation. That is why we choose to evaluate our framework using
varied anomaly scenarios, from volume based attack scenarios such as Syncflood
attack to non volume based attack such as Slow HTTP attack.

The latest and more sophisticated approach to monitor guest VM operations
is Virtual Machine Introspection (VMI). It works by capturing a snapshot of
the memory space used by the guest VM. With this snapshot, a monitor can
reconstruct an exact same picture of the situation inside the guest VM. This
technique was first introduced by Garfinkel et al. (2003) [GR03]. Several notable
VMI frameworks are Virtuoso [DGLZ+11], VM Space Traveller (VMST) [FL13],

55



LibVMI † and Volatility‡. One minor limitation of the current VMI implemen-
tations is their dependency to a certain data from the guest OS. This data is
needed to correctly reconstruct the raw memory snapshots into a useful infor-
mation. Examples of such data are the debugging symbols information file for
the Windows systems and memory offset information file for the Linux systems.
This requirement is easy to satisfy in a private environment. However, in a cer-
tain arrangement such as public IaaS, the VMI approach could be hard to be
implemented.

4.4 Summary and Outlook

We introduced Qemu tracepoints as a new data source for a nonintrusive mon-
itoring process to the guest Virtual Machine (VM) operation. This monitor-
ing process leverages static probe data within the Qemu Virtual Machine Mon-
itor software. Next, we used the Qemu tracepoints data to investigate three
Anomaly Detection Systems (ADS) for predicting the status of guest VM op-
erations. Each of the ADS uses different Machine Learning approaches, which
are: Bag of Tracepoints approach, Sequence of Tracepoints approach and Bag
of Sequence approach. Finally, we successfully investigated the strength and
weaknesses of our Qemu tracepoint monitoring method and each of the ADS ap-
proaches through several empirical evaluations. We evaluated the effectiveness
of the ADS’es against multiple virtualization anomaly scenarios, includes host-
based and network-based anomalies. We investigated its computational cost to
the host and its impact on the guest VM’s computational load. We also compared
the results of those evaluations to the same ADS using system-call data.
Our observation at anomaly detection results shows that Qemu tracepoints data

gives an excellent overall performance on detection anomaly events, be it the host-
based or the network-based anomaly. In comparison with the system call-based
monitoring data, our Qemu monitoring method gives better anomaly detection
results, scaled better and gives a lesser impact to the guest VM operation.
Our Machine Learning comparison shows that analyzing the sequence of tra-

†http://libvmi.com
‡http://www.volatilityfoundation.org
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cepoints gives better anomaly detection compared to simply count the number of
each the tracepoints. However, the sequence analysis approach is more expensive
in terms of computation time and resources needed. Our third approach, the bag
of sequence pattern gives better overall results for both the anomaly detection
process and the computation cost.
Despite the sound overall detection results, we found that not all anomaly sce-

nario that we tested can be detected satisfyingly. The most notable case was de-
tection against processor-based anomalies, such as the Flush-Reload cache-based
side-channel attack scenario. Against such a scenario, our Qemu tracepoint-based
ADS gave close to random results. This result shows that QEMU instrumenta-
tion works poorly against CPU-based anomaly. Further studies are needed to
overcome this shortcoming.
As the attacks that come from internal tenant VMs are becoming more com-

plex, Virtual Machine Monitor (VMM)-based IDS will be needed more than the
traditional Host-based IDS and Network-based IDS. Furthermore, several stud-
ies have shown that VMM-based can even detect host-based and network-based
attacks in the virtualization environment [HZZ+13, SSKK14, ACL15, LTXZ14].
Our study using this hypervisor source-code tracepoints can detect SlowDoS at-
tack [POKY16b], a case that is considered difficult in the NIDS domain. Therefore
we argue that VMM-based IDS will have an important part in the future of virtu-
alization security. Moving forward, we want to study the possibility to implement
a hybrid monitoring for Qemu and KVM. Our Qemu monitoring implementation
only works within Qemu, hence it cannot collect the CPU information. By con-
currently instrumenting KVM operation, we might have better information about
guest VM operation.
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Table 4.6: Summary of several studies that use computation usage metric and
system-call data for ADS in cloud system

Author Data type Normal scenario Anomaly
scenario

Results

Dean et al.
(2012)
[DNG12]

computation
usage metric

RUBiS, IBM
system S,
Hadoop

Memleak,
CPUleakNethog

up to TPR: 97%
FPR: 2%

Huang et al.
(2013)
[HZZ+13]

computation
usage metric

web service malicious port
scan

up to TPR: 70%,
FPR: .4%

Doelitzscher
et al. (2013)
[DKRC13]

computation
usage metric

simulation data simulation data Detection error rate
0.01375%

Silvestre et
al. (2014)
[SSKK14]

computation
usage metric

Mongo DB
operation

packet loss,
network latency,
misuse of
memory

98% accuracy for
supervised, 75%
accuracy for
unsupervised

Vallis et al.
(2014)
[VHK14]

computation
usage metric

Twitter
production data

injected
anomaly

Precision 100%,
Recall and F-Measure
99%

Alarifi et al.
(2012)
[AW12]

system-call ERP system ’over-committed
migration’
attack

up to TPR: 100%
FPR: 0%

Sha et al.
(2015)
[SZCH15]

system-call DARPA dataset DDoS DARPA
dataset

average one step
transition probability
10−5

Abed et al.
(2015)
[ACL15]

system-call Java application SQL Injection
attack

up to TPR: 100%
FPR: .58%
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5 KVM Layer Introspection:
Detecting Cache-based Side
Channel Attack

When the Qemu works with KVM mode, its CPU operations are not simulated.
The CPU operation are runs natively on top of physical processors with the help
of the KVM kernel module. As a consequence, we cannot monitor the CPU
operation from the Qemu instrumentation. We need to find other data sources
to detect any CPU-based anomaly operation inside the guest VM.
In this chapter, we introduce a new class of virtualization-based attack called

Cache-based Side-Channel attack (CSCa) and propose a method to distinguish it
from the normal operation using KVM-based tracepoint data. One of the CSCA
scenarios we were able to detect was the Flush+Flush, a new, more stealthy
CSCA.

5.1 Cache-based Side-Channel Attack

One of the advantage that is offerred by virtualization technology over the tra-
ditional computation method is the Isolation property. This isolation property
is supposed to be one of the security properties of cloud computing systems.
However, within the last decade, academicians and practitioners have discovered
that this isolation is not impenetrable [GYCH16,Sze18,BGN17,eni17]. One well-
known technique to break this isolation feature is a Cache-based Side-Channel
attack (CSCa). This attack takes advantage of a main characteristic of the vir-
tualization technique which shares physical hardware resources among multiple
guest systems to improve server utilization. CSCa is known to be able to gather
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information such as cryptographic keys, keystroke sequences, co-residency and
website access across multiple CPUs, CPU cores, even across VMs. To help pro-
tect security in cloud computing systems, CSCa detection methods have become
important.

A side-channel attack try to gain information from a victim by eavesdropping
through a non-conventional channel. An analogy would be that it is like trying
to count the number of people in another room by hearing footsteps on the floor.
In the case of a cache-based side-channel attack, the floor is analogous to the
CPU cache. An attacker measures the time to access a certain memory address
to find out if those locations have been accessed (and henceforth cached) by the
victim. The access information can then be translated into information about
whether a certain operation has been executed or not by the victim. Since all
the VMs inside a host share the same set of CPU caches, this technique can be
used in the virtualization environment by an adversary to spy on its peer VM.
For example, an attacker can spy on his neighbor VMs to detect if a certain
user exists [RTSS09], or the attacker can spy any key-press on his peer tenant
applications [Hor16].

The idea of observing the cache access time as a side-channel medium to spy
on the victim process has been around since the early 2000s [Hu92,Ber05]. The
first application of this cache-based timing attack was demonstrated by Osvik et
al. in 2006 [OST06]. The authors introduced two methods called Evict+Time
and Prime+Probe. Both methods observe the state of the CPU’s memory cache
to reveal memory access patterns that later can be used in a cryptoanalysis pro-
cess. The Flush+Reload attack was introduced by Yarom et al. in 2013 [?].
This method took advantage of a memory deduplication technique [SIYA11] and
improved the previous CSCa methods by increasing the speed and granularity
of the attack to the cache-line level using the clflush function in the microar-
chitecture API. The CSCa has been proven to work not only for cryptoanalysis
purposes, but also can be used to spy on many other daily applications, such as
a javascript browser [OKSK15], user interface [Hor16] and even a mobile appli-
cation [LGS+16].

In particular in the virtualization environment, an attack on a co-resident VM
was demonstrated by Ristenpart et al. in 2009 by recovering the keystrokes from
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a co-resident VM in commercial clouds [RTSS09]. In 2012, Zhang et al. showed
how to recover an El-Gamal decryption key from a co-resident VM [ZJRR12].
Later, the same authors presented ways to use CSCa to attack a peer VM within
a Platform using a Service (PaaS) cloud model [ZJRR14]. Inci et al. in 2016 pre-
sented a cache attack to enable bulk key recovery in a commercial cloud [İGI+16].
There are three common methods being used for cache-based side-channel at-

tacks, Prime+Probe, Flush+Reload and Flush+Flush attack.

5.1.1 Prime+Probe

1 : procedure PrimeProbe ( addr , thr )
2 : acce s s ed =[ ]
3 : a c c e s s ( addr )
4 : whi l e ( t rue ) do
5 : wait ( )
6 : t0=time ( )
7 : a c c e s s ( addr )
8 : tx=time()− t0
9 : i f tx > thr then

10 : acce s s ed . append (1 )
11 : e l s e
12 : acce s s ed . append (0 )
13 : end i f
14 : end whi l e
15 : r e turn acce s s ed
16 : end procedure

Algorithm 3: Prime+Probe

As the name suggests, this technique is comprised of two stages. In the Prime
stage, the attacker evicts all the victim’s data from the targeted cache set by
allocating an array of memory blocks into that set. The attacker then waits for
an interval before performing the next step. In the Probe stage, the attacker
again reads the memory array and measures the access time. If the access time
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took longer than a certain time threshold, the attacker assumes that the cache set
has been accessed by the victim during the interval. The attacker keeps repeating
these Prime and Probe actions to collect the pattern of cache access by the victim
which can be used later to extract information about the victim’s operation. The
method’s operation is depicted as pseudo-code in Algorithm 3.

5.1.2 Flush+Reload

1 : procedure FlushReload ( addr , thr )
2 : acce s s ed =[ ]
3 : whi l e ( t rue ) do
4 : f l u s h ( addr )
5 : wait ( )
6 : t0=time ( )
7 : a c c e s s ( addr )
8 : tx=time()− t0
9 : i f tx < thr then

10 : acce s s ed . append (1 )
11 : e l s e
12 : acce s s ed . append (0 )
13 : end i f
14 : end whi l e
15 : r e turn acce s s ed
16 : end procedure

Algorithm 4: Flush+Reload

This method requires that multiple identical processes using different virtual
addresses be mapped into the same physical addresses. This mapping mechanism
is intended to augment memory density. Two well-known implementations of this
mechanism are Kernel Same-page Merging (KSM) [AEW09] and Transparent
Page Sharing (TPS) [VC09].
The attacker first runs the process he wants to spy for so the process occupies

the physical memory and the cache. Henceforth, anytime the victim runs the
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same process, the Operating System will map the process to the same location
used by the attacker. The attacker then selects some specific cache line from
the shared pages to be monitored. In the Flush stage, the attacker flushes his
targeted cache lines. The attacker then waits for an interval before performing
the Reload stage. In the Reload stage, the attacker reloads the memory blocks
into the cache and measures the access time. If the access time is shorter than a
pre-defined time threshold, it indicates a cache hit and the attacker will assume
that the victim has performed the same instruction during the waiting time. As
with the Prime+Probe, the attacker keeps repeating the Flush+Reload stages to
collect the victim’s instruction execution patterns.
Flush+Reload utilizes the assembly mnemonic clflush() that enables the cache

flush to operate at the granularity of cache lines. To perform time measurement,
this method uses the processor’s hardware API, the rdtsc(). This Flush+Reload
method has higher granularity information compared to the Prime+Probe since
the Flush+Reload works at the level of cache lines. This method’s operation is
depicted as pseudo-code in Algorithm 4.

5.1.3 Cache-based Side-Channel Attack Detection

Both Prime+Probe and Flush+Reload measure the access time of the cache. The
access time of the cache is highly affected by the existence of the accessed data in
the cache. The access time will be shorter if the data already exists in the cache.
This is usually called a cache hit situation. In comparison, a cache miss means
that the data being accessed is currently not in the cache and need to be copied
from memory, hence the longer access time. Fortunately, both events, the cache-
hit and cache-miss are observable from the processor. Modern microprocessors
are equipped with a set of special purpose registers called Hardware Performance
Counters (HPC). The HPCs are used to count all the CPU processing events and
activities inside the computer system. Therefore, based on the HPC readings,
previous CSCa detection methods can spot any CSCa attempts if they read an
unusual number of cache-hits or cache-misses. As an example, a Flush+Reload
probing process will create a constant high number of cache-miss that can easily
be spotted.
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5.1.4 Flush+Flush

The Flush+Flush method [GMWM16] is the latest variation of the Flush+Reload
attack. It enhances the attack by removing the Reload stage of the spy process.
Instead of measuring the time needed for the Reload stage, this method simply
measures the time needed to execute the clflush(). The idea is that a flushing
process will require less time if the address that needs to be flushed is not in the
cache. Since there is no memory access in this attack, there is no cache miss which
makes the previous detection technique almost impossible. Another advantage
of Flush+Flush is that it gives higher resolution information because it works
faster than the Flush+Reload attack. The Flush+Flush operation is depicted as
pseudo-code in Algorithm 5.

1 : procedure FlushFlush ( addr , thr )
2 : acce s s ed =[ ]
3 : whi l e ( t rue ) do
4 : t0=time ( )
5 : f l u s h ( addr )
6 : tx=time()− t0
7 : i f tx > thr then
8 : acce s s ed . append (1)
9 : e l s e

10 : acce s s ed . append (0 )
11 : end i f
12 : wait ( )
13 : end whi l e
14 : r e turn acce s s ed
15 : end procedure

Algorithm 5: Flush+Flush

We performed a simple test using perf tool (’perf kvm stat -e cache-misses,cache-
references -p PID’) on a VM running each of Prime+Probe, Flush+Reload,
Flush+Flush and a VM running web application. The average ratio of cache
misses over cache references were 94%, 97%, 12% and 18% for Prime+Probe,
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Flush+Reload, Flush+Flush and web application respectively.

5.1.5 Defence Methods

Many research studies have been conducted on defense against CSCa attacks.
One defense idea is to make the attack measurement process more difficult by
introducing random variables. Such random variables include random memory-
cache mapping, the use of prefetches, random timers and random cache states
[WL08,WL07,LL14,ZR13]. Other proposals aimed to strengthen the victim ap-
plication code to make it less vulnerable to CSCa attacks. This technique can be
applied at the Operating System (OS) level [LGY+16,ZRZ16] or at the application
level using sanity verification frameworks [IES16, DFK+13]. Other approaches
prevented cache sharing by distributing the VMs to different partitions in the
cache, either using hardware [DJL+12,LGY+16] or software [KPMR12,SSCZ11].
For CSCa in the cloud, the common protection idea is to change the new VM
placement policies to reduce the probability of having the attacker VM and the
victim VM stay in the same physical host [HACL13, MSR15, ZLB+12]. How-
ever, cloud providers might find all these approaches less attractive because they
require significant modifications to the cloud infrastructure.
In contrary to the many prevention techniques for CSCa attacks, detection

methods have not been as widely studied. CSCa techniques are well known to be
very noisy and therefore can be easily detected using the Hardware Performance
Counter (HPC). Chiapetta et al. used the HPC data and coupled it with a neural
network method to detect CSCa in real time [CSY16]. Zhang et al. went further
by implementing CSCa detection in a virtualization environment [ZZL16]. They
created a handshake system that correlates the signature-based detection of the
cryptographic application in the victim VM with the anomaly detection system
in the attacker’s VM. This method requires cooperation from the victim VM
to provide signatures of their cryptographic operation. Other detection methods
were presented by Payer [Pay16] and Herath et al. [HF15]. The latest development
in CSCa introduced a new stealthier variant called Flush+Flush [GMWM16].
Since this method does not try to read the memory, no hit and miss events will
happen, thus its existence cannot be detected using the HPC.
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5.2 Threat Model

The focus of our effort is detecting the Cache-based Side-Channel attack. We
narrow this down to the three most well-known attack types, Prime+Probe,
Flush+Reload and Flush+Flush attack. We focus further on attacks inside the
virtualization environment. Further threat model are similar to the threat model
we describe in Section 4.2.3.
Moreover, we set our defensive effort on a detection method. We base this

choice on the assumption that the attackers do not know when the victim process
will be executed, therefore the attackers have to put a constant probe on the
cache before gathering any data from the victim. Furthermore, common CSCa
techniques require many repeated bits of data from a victim to be able to extract
any useful information. Hence, a CSCa spends most of its time in a loop observing
the cache. We propose a detection method for this CSCa probing phase, which
can then stop the attack from actually gathering its target information.

5.3 KVM Introspection Data Collection

In computing world terms, an event can be defined as “a change of state”. The
same definition will be used in this paper, where KVM events are the changes of
states inside the KVM module during Kernel mode operation (see Figure 2.3).
In our implementation, we introspected the KVM events that are instrumented
by a standard Linux kernel tracing utility called ftrace [Ros14]. Ftrace was built
directly into the Linux kernel, thus brings the ability to see what is happening
inside the kernel. We have three reasons to utilize this default Linux KVM in-
strumentation instead of creating our own user defined instrumentation. First, it
allows us to target the generic hardware environment. Microarchitecture attacks
depend on the type of hardware being used. To add a new probe, we would
have to consider every possible hardware combination, which would increase the
complexity of our study. Therefore we decided to utilize the default set of probes
that are provided by Linux and use a machine learning process to decide which
events should be used for the classification process. Second, by not changing the
default set of tracepoints, we wanted to ensure ease of implementation and make
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Figure 5.1: A snapshot example of trace-cmd output for KVM events.

it applicable in a production environment. Finally, by using the built-in Linux
function, we expected a lesser cost in computation. To ease the ftrace tracing pro-
cess, we used the trace-cmd tool. Trace-cmd is a user-space front-end for ftrace
that automates the process of accessing multiple files when directly working with
ftrace itself.

The basic trace-cmd command that we used to capture KVM events from the
host is ’trace-cmd record -e kvm -P xxx ’ (where xxx is the process/thread ID
of the guest KVM VCPU). This command pins data collection to one specific
process/thread that represents the VCPU of the VM, thus enabling us to specify
which guest VM to observe. An example of the output of this tool is given in
Figure 5.1. It gives us the list of KVM events sequences that occurred during
kernel mode operation (Section IV.A). The information gathered from this tool
are the process name, process or thread ID, CPU ID, time information, KVM
event name, KVM event information and the sequence of the events. Figure 5.1.g
shows an example of one KVM_exit event and its exit reason. In this case we
log the reason attribute. Figure 5.1.h shows an example of one KVM exit session
that we used as one data (sequence) type. Figure 5.1.i shows an example of two
sequences that belong to one sequence type. The pre-processing procedure to
transform the text format into a vector input is explained in the next section.

Previous attempts and studies to monitor guest VM was described in Section
4.3.
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5.4 Data Presentation

The raw data format is a text file that contains a list of KVM operation events
in a chronological order. This raw data also gives additional information such as
the name and parameters of each event. Figure 5.1 shows an example of the raw
data.
We defined our data unit as the number of KVM event sequences within one

monitoring time unit (e.g. 1 second). A KVM event sequence is a list of ordered
KVM events that occurred between one VM exit to the next VM entry (one
kernel mode session). For each KVM event, we only captured its name, with
an exception for VM exit events where we captured its exit reason information.
Having more features from the KVM events might increase the detection results,
however, to minimize complexity, we decided to start simple and only increase
the information level if it is deemed as necessary.
We formalize a data unit X = {Y1, Y2, Y3, ..., Yn}, where Yi is the number of

i-th KVM event sequence in observation X and n is the total number of unique
KVM event sequences in the dataset.
For an illustration, the observation example in Figure 5.1 contains five KVM

event sequences:

1. MSR_WRITE - kvm_eoi - kvm_pv_eoi - kvm_apic - kvm_msr

2. MSR_WRITE - kvm_apic - kvm_msr

3. MSR_WRITE - kvm_apic - kvm_msr

4. CR_ACCESS - kvm_cr

5. CR_ACCESS - kvm_cr - kvm_fpu

We simplified the data presentation by converting them into sequence IDs. The
observation example in Figure 5.1 gives four sequence IDs (note that sequences
which are pointed to by (i) belong to the same ID)

• ID1: MSR_WRITE - kvm_eoi - kvm_pv_eoi - kvm_apic - kvm_msr

• ID2: MSR_WRITE - kvm_apic - kvm_msr
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Table 5.1: List of all collected scenarios for evaluation

Positive class
Negative class

Standard Op. CPU Intensive Op.
Prime+Probe (Gruss) idle Stress CPU
Flush+Reload (Gruss) RUBiS 20 clients Stress Memory
Flush+Flush (Gruss) RUBiS 200 clients Binary-Tree
Flush+Reload (Yarom) RUBiS 2000 clients Lucas-Lehmer
Flush+Reload (Hornby) Mail server Urandom generator

• ID3: CR_ACCESS - kvm_cr

• ID4: CR_ACCESS - kvm_cr - kvm_fpu

After having transformed all the sequences into ID’s, we then counted how many
times each ID showed up in an observation. Again, for illustration, having an
input of Figure 5.1, the output would be: freq(X) = freq(ID1,ID2,ID3,ID4) =
(1,2,1,1). We use this bag of KVM event sequence data as the input for the
machine learning process to detect a CSCa attack.

5.5 Evaluation

We evaluate several aspects of Cache-based Side-Channel attack (CSCa) detec-
tion in this section, such as the effectiveness of trained scenario detection, the
effectiveness of zero days scenario detection, the comparison of different microar-
chitecture data, the effect of noisy environment and mimicry attack and the effect
of monitoring process to the host and the guest VM.

5.5.1 Evaluation Setup

Scenarios

We collected data from multiple scenarios that represent the Cache-based Side-
Channel attacks and common operations in the public cloud. We categorized the
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scenarios into two main classes, a Positive class which contains all CSCa scenarios
and a Negative class which contains all non-CSCa scenarios (Table 5.1).
For the Positive class, we collected five datasets of CSCa attacks:

1. Three CSCa implementations from Gruss [GMWM16]. These are Prime+Probe,
Flush+Reload and Flush+Flush attacks to eavesdrop for function calls of
key-press on a Linux User Interface that utilized the libgdk library.

2. The original Flush+Reload implementation from Yarom that spies on GnuPG’s
RSA implementation [YF14].

3. Another Flush+Reload implementation from Hornby that spies on the vic-
tim’s browsing destinations [Hor16].

For the Negative class, we collected ten datasets of non-CSCa operation:

1. Idle scenario. In this scenario, the VM just did nothing (with the exception
of standard Linux daemons in the background). This scenario is needed
since every guest VM would go through this scenario at some time in its
life-cycle.

2. Web application scenario. We used RUBiS the same way described in Sec-
tion 4.2.1. We collected the KVM events for three workload scenarios, which
are 20, 200 and 2000 clients.

3. Mail server scenario. We set up a Postfix mail server system in a VM with
100 dummy users.

4. CPU and Memory stress test scenario. Our decision to include this scenario
class was intended to possibly maximize the number of false positives that
our test scenarios can generate. We collected five datasets for this scenario:

a) Linux CPU and memory stress test. We used the standard stress tool
from the Linux.

b) Standard Linux random number generator. We chose the urandom
device from Linux that use ’unlimited’ non-blocking random source.
We performed: cat /dev/urandom > /dev/null. This operation is
another well-known stress test for CPU.
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Figure 5.2: (a) Dataset distribution using the k-fold cross-validation technique.
(b) An example of a 5-fold Cross Validation ROC graph

c) Another two mathematical operations.

i. A python operation to solve Lucas-Lehmer prime test equation.
This problem is used by many benchmark tools for stressing the
CPU operation.

ii. A binary tree operation to fully create perfect binary trees. This
program stretched memory utilization by allocating, walking, then
deallocating nodes of a big binary tree.

For further research on this topic, our dataset can be accessed at http://ipla
b.naist.jp/research/CSCaD.

Machine learning setup

In the evaluation phase we used the Support Vector Machine method [BGV92]
with a Radial-based Function (RBF) to perform binary classification (CSCa or
non-CSCa).
We conducted a small scale Grid Search experiment to find the best γ value

for our SVM function. We found the value of 0.0003 for γ and used this value
throughout this evaluation process.
For preprocessing the data, we first applied a standardization process that

converted the data into standard normally distributed data: Gaussian with zero
mean and unit variance. The second preprocessing step was simple removal of all
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Table 5.2: The arrangement of scenario datasets for the binary SVM evaluation
Trained Class Untrained Class

Positive Class Negative Class Positive Class Negative Class

Prime+Probe (Gruss)
and Flush+Reload
(Gruss) and
Flush+Reload
(Yarom) scenarios are
combined into one
dataset

idle and RUBiS 20
clients and RUBiS
200 clients and Stress
CPU and stress
Memory scenarios are
combined into one
dataset

Flush+Flush
(Gruss)

RUBiS 2000
clients

Flush+Reload
(Hornby)

Mail Server

Urandom
generator

Lucas-Lehmer
Binary Tree

the features with low variance. This second step was needed because there were
a lot of sequences that appear only rarely (most of its occurrence value was 0)
and can be seen as exceptions. The initial number of features (unique sequences
of events) in the raw data was 271. After the pre-processing stage, the number
of features was reduced to 69.
To make sure that the evaluation results are not dependent on one particular

random choice of learning datasets, we applied a k-fold cross validation. In this
study, as we have 500 data units for each dataset, we applied a 5-fold cross
validation. In our evaluation, we calculated the average score of the 5-fold results
as the final detection score.
The scheme for dataset treatment and an illustration of its outputs are shown

in Figure 5.2.

5.5.2 The Binary Class Classification for the CSCa
Detection

A server in the cloud is most likely performing only a small set of tasks, such
as a web server, file server or mail server. This means that having training data
samples for the Negative class (non-CSCa scenario) in real life is not difficult.
However, this assumption is not always the case in the real life operation. New
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Figure 5.3: ROC of the trained CSCa scenario Vs the trained non-CSCa scenario

scenarios, or the zero days scenarios might still have chances to pop-up sometime.
To factor in these zero days scenarios in our evaluation, we created two superset
classes called the Trained class and the Untrained class. The Trained class was
the set of scenarios that were already known by the system and would be used
for the training phase. The Untrained class was the collection of scenarios that
were not known previously by the system (the zero days scenario), therefore it
was not used in the training process and would only be used in the test phase.
The arrangement of all collected scenarios for use in this evaluation process is
given in Table 5.2.

Evaluation of the Trained Scenario

Our first test deals with the data that belong to the Trained scenario class but
not included in the training process. The aim is to see if the trained model was
able to represent the Trained scenario class in general. The procedure of the test
is given in Figure 5.2.(a). In this test, we do not yet use the Untrained Class
scenarios of Table 5.2. The results of this test are given in Figure 5.3.

The results show that the detection system can successfully classify the data
from all the scenarios that have been trained into CSCa and non-CSCa classes
(0.99 AUC). This further shows that there are differentiable patterns of KVM
event sequences between the trained CSCa scenarios and non-CSCa scenarios.
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Figure 5.4: The evaluation scheme for each of the untrained scenario

Evaluation of the Untrained Scenario

In this second test, we wanted to see if the trained model was able to represent
both classes, the Positive class and Negative class, in general (i.e. not only the
trained scenario class). Therefore, we used the scenarios from the Untrained
class for the test phase. To achieve the concept of a signature-based detection
system, in the test phase, the Untrained class scenarios were compared against
the Trained-Positive class dataset. The procedure of this test is given in Figure
5.4. The expected results should give a low AUC value (around 0.50 AUC) for
the Untrained-Positive class scenarios and high AUC value (around 0.99 AUC)
for the Untrained-Negative class scenarios. The actual results are given in Figure
5.5.
Figure 5.5.a. shows near to 0.50 AUC score for Flush+Flush scenario data (=

0.49) and Flush+Reload Hornby scenario data (= 0.57). This shows that the
machine learning trained model cannot differentiate between the Known CSCa
scenario dataset and the Unknown CSCa scenario dataset. This is the expected
result as it means that the model created by the SVM training process was able
to capture the common features of all CSCa and therefore will have low false
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Figure 5.5: (a) Trained Positive Class Vs Un-trained Positive Class (CSC). (b)
Trained Positive Class Vs Un-trained Negative Class (non-CSC).

negative rate detections.
On the other hand, Figure 5.5.b. shows near to 0.99 AUC score for the peak

web workload scenario data (= 0.99), mail server operation scenario data (=
0.99), Lucas-Lehmer Test scenario data (= 0.99), Binary Tree Operation scenario
data (= 0.82) and urandom generator scenario data (= 0.97). This shows that
the detection system was able to differentiate between the Known CSCa scenar-
ios and the Unknown non-CSCa scenarios. This further means that the KVM
event sequence training model was able to capture the generic differentiable fea-
tures between CSCa operation and non-CSCa operation, which leads to low false
positive rate detection.
In our test case, the Binary-Tree scenario gave a smaller separation score in

comparison to the other non-CSCa scenarios. We believe the reason for this score
is the lesser number of arithmetic operations within the Binary-Tree program. An
in-depth explanation of the generic differentiable features between CSCa opera-
tion and non-CSCa operation is given in the next section.

5.5.3 Generalizing the Classification Results

In the previous sections, we showed that our monitoring system worked success-
fully against the scenarios that we prepared. Even though we showed that our
system also works for the scenarios that were not yet trained, we still need to
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show that our solution can work in general for all other possible scenarios. To
explain the separation between the CSCa class scenarios and the non-CSCa class
scenarios, we made the effort to identify the exact KVM event sequences that
separate CSCa operation and non-CSCa operation. First, we divided the non-
CSCa scenarios into three different operation types: regular operations, CPU
intensive operations and Memory intensive operations. Then, we used the Fisher
Score [Fis36] approach to look for the most important features that separated each
non-CSCa operation type dataset from the CSCa dataset. Fisher score compar-
ison is a well-known method to find the optimal features, so that the distances
between data points in the same class is minimized and the distances between
data points of different classes are maximized. Even though the discrimination
process between the SVM method and the Fisher score are not the same, we
believe the results of this Fisher Score evaluation can give basic insight on the
class discriminatory features. The results of this evaluation are given in Table
5.3.
Table 5.3 lists only three of the highest Fisher score features for each non-CSCa

operation type dataset when compared to the CSCa dataset. Besides the Fisher
scores, we also listed the median, average and standard deviation value of each
feature to give a basic statistical perspective of the separation.

Regular Workload

In the case of a regular workload, such as web server operation and mail server
operation, Table 5.3 shows there were a high number of VM exits on the Model
Specific Register (MSR) writing operation to access the Advanced Programmable
Interrupt Controller (APIC) chip in the non-CSCa scenario. This shows that in
comparison with the CSCa operation, the regular workload scenario operation
produced more software and hardware interrupts. Another important VM exit
shown in the table is HLT. hlt is an instruction to halt the CPU until it receives
the next external interrupt requesting its service. The table shows that the regular
scenario operations in the guest were not using the CPU intensively and therefore
fired more hlt instructions to save the CPU power usage and heat output. The
CSCa, on the other hand, were using the CPU extensively, hence the rare hlt
calls.
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Table 5.3: Three features for each non-CSCa scenario with the highest Fisher
score when compared to the CSCa scenarios.

Vs
CSCa

KVM event Sequence FS
Non-CSCa Seq. Stat. CSCa Seq. Stat.
Md Mn SD Md Mn SD

RO

MSR_WRITE:
kvm_apic: kvm_msr:

28.4 132 133.5 20.7 1 1.3 4.5

HLT:kvm_eoi:
kvm_pv_eoi:
kvm_apic_accept_irq:
kvm_inj_virq:

26.7 45 45.1 8.6 0 0 0

HLT:kvm_inj_virq: 23.8 87 87.3 16.1 0 0 0

CPU

EXCEPTION_NMI:
kvm_fpu:

9.3 9 9.2 2.2 0 0.5 0.6

EXTERNAL
_INTERRUPT:
kvm_fpu:

4.7 7 7.7 3.1 2 1.6 0.9

CR_ACCESS:kvm_cr:
kvm_fpu:

0.8 0 0.4 2.4 3 2.6 0.9

Mem

EXCEPTION_NMI:
kvm_page_fault:
kvm_emulate_insn:

434.9 1004 1002.1 15.7 0 0.7 18.3

EXCEPTION_NMI:
kvm_page_fault:
kvm_inj_exception:

87.1 5058 4949.2 233.6 0 5 189.8

EXCEPTION_NMI:
kvm_page_fault:
kvm_apic_accept_irq:
kvm_inj_virq:

22.9 22 22.2 4.2 0 0 0.4

RO: Regular Operation, CPU: CPU Intensive Operation, Mem: Memory In-
tensive Operation, FS: Fisher Score, Md: Median, Mn: Mean, SD: Standard
Deviation
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However, a quick look at the entire raw data of the regular workload operation
scenario is enough to easily discriminate the CSCa and non-CSCa data. There
are several other features (KVM event sequences) besides the three listed in Table
5.3 that can be used to differentiate CSCa and non-CSCa operation. We believe
this is because the regular non-CSCa operation works with diverse workload types
and resources, and therefore creates many different KVM event sequences, while
the CSCa operations work uniformly with only a small set of sub-operations
(timing operation, read or write specific memory addresses and cache flushing).
With knowledge of the difference in patterns of KVM event sequences between
our regular operation scenario and the CSCa, we can safely extrapolate that the
classification results would be the same for other regular operations within the
public guest VM.

CPU Intensive Workload

Manual observation of the raw data shows an almost similar pattern between
the CSCa scenarios and the CPU intensive non-CSCa scenarios. Table 5.3 for
CPU-intensive operation shows that only two of the three features listed (EX-
CEPTION_NMI - kvm_fpu and EXTERNAL_INTERRUPT - kvm_fpu) can
actually be useful for classification (the Fisher Scores are higher than 1). Both of
these sequences are related to the use of the Floating Point Unit (FPU). In com-
parison to the CSCa attack, common CPU intensive non-CSCa operations are
usually related to complex mathematical-related operations. On the other hand,
CSCa does not need any complex mathematical operations and therefore can be
discriminated from the CPU intensive non-CSCa operation using the sequence of
FPU utilization. Examples of CPU intensive workload are cryptography opera-
tions.

Memory Intensive Workload

We also checked the discriminatory features between the CSCa scenarios and the
memory intensive non-CSCa scenarios. All the features in Table 5.3 on Memory-
intensive operation show high Fisher-scores, which means that the CSCa oper-
ations can easily be separated from the non-CSCa memory-intensive operation.
The table shows that the memory intensive non-CSCa scenarios create a lot more
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Table 5.4: Fisher Score for the Evaluation on Nehalem Microarchitecture
Sequence Fisher

Score

Regular Load

HLT:kvm_inj_virq: 26.74
EXCEPTION_NMI:kvm_page_fault: kvm_inj_exception: 26.18
MSR_WRITE:kvm_apic:kvm_msr: kvm_apic_accept_irq: 24.43
HLT:kvm_eoi:kvm_pv_eoi:kvm_inj_virq: 20.65
CR_ACCESS:kvm_cr: 18.79

CPU Intensive
Load

EXCEPTION_NMI:kvm_fpu: 9.13
EXTERNAL_INTERRUPT:kvm_fpu: 6.76
EXTERNAL_INTERRUPT: kvm_apic_accept_irq:
kvm_inj_virq:

0.52

EXTERNAL_INTERRUPT: kvm_apic_accept_irq: 0.51
PENDING_INTERRUPT:kvm_inj_virq: 0.29

Memory
Intensive Load

EXCEPTION_NMI:kvm_page_fault: kvm_inj_exception: 91.42
EXCEPTION_NMI:kvm_page_fault: kvm_emulate_insn: 75.46
EXCEPTION_NMI:kvm_page_fault: 43.69
EXCEPTION_NMI:kvm_page_fault:
kvm_inj_exception:kvm_apic_accept_irq:
kvm_inj_exception:

15.31

EXCEPTION_NMI:kvm_page_fault:
kvm_apic_accept_irq:kvm_inj_virq:

12.84

page fault exceptions than the CSCa operations. Page fault exceptions may hap-
pen for two reasons, either because there is no translation for the memory address
or because there is no access right for the specified address. In short, the high
number of page fault exceptions in the memory intensive non-CSCa scenarios
points to diverse memory address access, in contrast to the CSCa scenarios that
focused on accessing only a small set of memory addresses.
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5.5.4 Evaluation on Different Microarchitecture

As a part of the microarchitecture attack class, CSCa are characterized by the
type of the CPU architecture of the physical host. To check the impact of different
types of CPU architecture on the results of our monitoring method, we compared
the Fisher score of two hosts with different microarchitecture. For our default
setup above, we used Intel Xeon Dual core 3040 1.86 GHz (Conroe), 64KB L1
(32KB L1d + 32KB L1i), 2MB L2 and 8GB system memory. For comparison, we
set up the host on a Dell Poweredge R910 machine which is equipped with two
Intel Xeon Quad-Core E7520 1.86 GHz (Nehalem), 36MB L3 cache and 32GB
system memory. We choose this specification as it has a different Last Level Cache
(LLC) layer and different chipset architecture compared to our main evaluation
setup (Section VI.A.1). Table 5.4 lists the five highest Fisher score features from
each of the non-CSCa operation type datasets compared to the CSCa dataset on
the Nehalem-based host.

Table 5.3 (Conroe setup) and Table 5.4 (Nehalem setup) show that the two
highest Fisher score features that differentiate the CSCa scenario dataset and
non-CSCa CPU intensive scenario dataset in the Conroe setup and Nehalem setup
are the same. The similarity of the higher Fisher score set also happened in the
case of the non-CSCa memory intensive dataset differentiation (4 out of 5 similar
features). This shows that the operational characteristics of the non-CSCa CPU-
intensive scenario and memory intensive scenario on both microarchitectures are
similar and thus can be captured through KVM-events observation.

On the other hand, for the regular operation datasets in the Conroe and the
Nehalem setups, there were four out of five different features in the set of the five
highest Fisher score features that differentiated between the CSCa scenario and
the non-SCSa regular operation datasets. We believe this result could be expected
since there are many features that can be used to differentiate these operations
and their Fisher scores might change slightly with each evaluation, thus changing
the Fisher score ranking. However, the high Fisher-scores show that even though
the order of ranking is different, the regular non-CSCa operation scenario and
the CSCa scenario can still be easily differentiated.
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Figure 5.6: (a) A mimicry attempt by reducing the spy frequency (b) A mimicry
attempt by introducing a diversion function.
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Figure 5.7: ROC of several mimicry attack and noisy case scenario.

5.5.5 On the Case of Noisy Environments and Mimicry
Attempts

In this evaluation part, we examine the performance of our approach against two
types of attack evasion scenarios. First is having to detect CSCa within a noisy
environment. In this scenario, the adversaries try to run their CSCa attack, while
either intentionally or unintentionally, there are other benign operations running
in the VM (e.g.: web server transactions). Second is having to detect a modified
CSCa process that tries to mimic benign operation to evade any detection process.

1. Noisy environment. We collected another dataset of the Positive class
(CSCa class). This time, we ran the CSCa in the guest VM while at same
time processing a significant web application workload.

2. Mimicry attempt. We collected several new datasets from a modified CSCa
that slightly altered its behavior to obfuscate its signature characteristics.

81



a) We reduced the spy frequency by increasing the waiting interval be-
tween cache access timing. We modified the Gruss’s Flush+Reload
implementation by increasing the number of yield operations between
each timing process (Figure 5.6.a.). We tried 100 and 1000 yield rep-
etition values.

b) We added a diversion function inside the real CSCa code. We added a
read and write file operation between cache access timing operations
in the Gruss’s Flush+Reload implementation (Figure 5.6.b.).

Using the previous SVM Binary Class Classification, the results are given in
Figure 5.7. We can see that in both cases, the noisy environment and mimicry
attempts, the AUC values are high (0.79 and 0.81 for frequency alteration and
0.99 for both noisy environment and R/W mimicry attempt). These results point
to high false negative detections. This shows that our detection method is still
vulnerable to the scenarios of a noisy environment or mimicry attack. The poor
results on detecting the mimicry CSCa is actually a common consequence for any
indirect observation. Since we are not directly observing the target, the adversary
can always create a diversion to hide their true acts.
However, looking from a different perspective, we believe that working in a

noisy environment will also significantly decrease the CSCa effectiveness, making
it impractical and therefore would be avoided by the attacker. The same thing
would happen in the mimicry attack. CSCa is actually a highly focused operation
and requires a high level of information granularity. An attempt to obfuscate its
procedure will highly reduce the granularity of the collected information. This
is especially true for the Flush+Flush attack where the timing differences of
clflush() hits and misses are very small. These requirements will limit the type
and amount of obfuscation an adversary can use [IIES15,Fog16, IIES14, IES15].
The results of our own attempt to show the effect of the noisy environment and
mimicry attempts on the CSCa output are given in Figure 5.7 and Table 5.5.
Figure 5.8 shows the comparison of the cache lines visible pattern in the case

of k0 = 0xf_ between a clean Flush+Reload implementation and a frequency-
reduced Flush+Reload implementation. We highlighted all cache line entries
that were hit at least 99% times the number of encryptions. The number of
encryptions that were required to produce less than 2% pattern errors are given
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Figure 5.8: Cache line pattern of k0 = 0xf_ (a) in clean CSCa implementation
(b) in the CSCa with a reduced probe frequency.

in Table 5.5.
Table 5.5 shows that a noisy environment, R/W mimicry attempt, or reduced

probing frequency will decrease the effectiveness of the CSCa attacks. In our
case, the noisy environment and mimicry attack scenarios reduced the accuracy
to 25% and 20% respectively. In the case of reduced probing frequency, we could
not capture the cache-line pattern with less than 2% error after up to 10000
trial encryptions. The high standard deviation for the Noisy scenario shows that
the load fluctuation in the background will affect detection accuracy. Finally,
the mimicry attack will add to the computational load of the spy process, lead
to some additional processing time, reducing the CSCa resolution timers and
increasing the probability of missing the real encryption events from the victim.
In short, while noisy environments and mimicry may obfuscate the CSCa sig-

natures, these also make the CSCa less effective.

5.5.6 Performance Impact of the Monitoring Process to
the Host and Guest VM

We also tested the scalability of our monitoring approach by increasing the num-
ber of monitored VMs from 1 up to 8 guest VMs and measured the time needed
to collect 1 unit of observation data. We used Linux’s perf tool and collected the
task-clock data (the CPU time). We found out that the trace-cmd KVM tracing
process did not increase CPU utilization even if the number of monitored VMs
was increased (at least up to 8 guest VMs in our experiment). The task clock for
collecting data remained constant with an average of 0.0443 msec and standard
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Table 5.5: Comparison Between Clean, Noisy, Mimicry and Reduced Probe Fre-
quency Scenarios

Scenario (a) (b) (c)
Clean 44 7.8 75.93
Noisy (200 CU) 178 82.3 78.86
Mimicry R/W 209 10.5 134.22
Reduced Probing Freq. NA NA 761.83

(a) Number of encryptions needed to create a cache line pattern of the upper 4
bits of k0 with less than 2% error (average of 10 attempts).
(b) Standard deviation of (a)
(c) CPU task-clock needed to find the pattern for 100 encryptions (average of 10
attempts)

deviation of 0.00176 msec.
Next, we compared the CPU performance of a guest VM with no monitoring

and when it is being monitored by the host. For this measurement process, we
used the sysbench tool. For this benchmark, we recorded the total execution time
of one thread to calculate the first 10000 prime numbers. Figure 5.9 presents the
averages from twenty benchmarking results.
The boxplot shows that the monitoring process in the host had a small impact

on the computation performance of the guest VM. In this experiment, there was
an increase of 0.7% in the time to complete the task in the guest system when it
was monitored from the host using our approach (KVM event observation).

5.6 Summary and Outlook

This work is a feasibility study of using KVM events information to detect the
Cache-based Side-Channel attacks (CSCa). Within this paper, we have shown
that CSCa creates several unique patterns of KVM event sequences. These pat-
terns can be used to detect the existence of any CSCa variants, including the
Flush+Flush attack, within a guest VM. The monitoring system which collected
the KVM events does not need any host or guest VM modification. It can work
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Figure 5.9: Comparison of performance impact in guest VM when the KVM
events at the host was monitored and when it was not monitored.

inside the host without guest participation. Furthermore, it only has a small im-
pact on the guest performance and almost zero impact on the host performance
which can lead to a highly scalable monitoring system.
We showed that by using the KVM event sequences for the Support Vector Ma-

chine classification method, the separation score of our trained CSCa scenarios
and trained non-CSCa scenarios were 0.99 AUC (Area Under the Curve of Re-
ceiver Operating Characteristic). The separation score between the trained CSCa
scenarios and the untrained CSCa scenarios, which includes the Flush+Flush at-
tack, was close to 0.50 AUC , while the separation score between the trained
CSCa scenarios and the untrained non-CSCa scenarios was close to 0.99 AUC.
These results show that the KVM events monitoring method can provide low false
negatives and low false positives for a CSCa detection system. To strengthen our
claim, we performed a Fisher score evaluation and successfully identified the
KVM event sequences that generalize the separation of the CSCa and non-CSCa
operation dataset.
Our further investigation on false negatives showed that our detection method

still did not address evasion techniques such as the noisy environment and mimicry
attack scenarios. However, we also showed that both scenarios negatively affected
the CSCa effectiveness, thus limiting these options for the adversary.
Finally, we evaluated the computation overhead impact of our CSCa monitoring

approach and showed that it has a negligible overhead on the host and the guest
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VM operations.
We believe the results of these experiments are useful to broaden the under-

standing of CSCa in particular and the operation of CPU caches in general. Our
findings can benefit future research in this field to help identify ways to detect
CSCa.
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6 Discussions, Recommendations
and Future Work

During our work, we encountered several interesting topic to be discussed or to
be given as recommendation for current virtualization operational and the future
works.

6.1 The Approach for the Other Hypervisors

The static instrumentation method we promote in this thesis requires two things.
First, the hypervisor has to be an open source one, so that the administrator
can modify to add tracepoints. Most of the well-known hypervisors come with
default tracepoints for performance and debugging tracing. However, for the VM
monitoring purpose, the administrator usually needs to add their own tracepoints.
For example in Qemu, there are no default tracepoints for network operations.
To add a network monitoring capability into the Qemu framework, we have to
add several new user-defined tracepoints in the source code. This requirement
will be hard to satisfy by the proprietary hypervisor, such as Microsoft Azure.
Since a hypervisor is used to host multiple guest VMs, the second requirement

is the ability of the hypervisor to isolate one guest VM information from the
other. In Qemu and Xen, each vCPU thread is represented by one user process
and can be identified by its Process ID (illustration is given in Figure 2.2).
Another useful requirement is the availability of an efficient data collection

framework. The monitoring process will consume an additional portion of host
system computation process. Therefore, we need a data collection tool that is able
to collect enough information by using the least resources from the host. In this
approach, we use LTTng tool. In Xen system, the user can use the combination
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of Xentrace and Xenalyze tools.

6.2 Development of an Operational Monitoring
System

As the works in this thesis is still in an experimental phase, a direct future
direction for this work is a development of an operational monitoring system to
be deployed in a production environment. There are several discussion points that
we found during our experimental phase that might be useful in the development
phase.

6.2.1 Going deep into the tracepoints data.

In all our experimental work, we only utilise the tracepoint name as our data.
On the other hand, a tracepoint actually can consists of multiple information (for
examples, see Algorithm 2 and Figure 3.2). Additional information from each
tracepoints to be used as features in this VM monitoring system can reduce the
sematic gap issue and increase detection accuracy.

6.2.2 Utilising the Decision Confidence

Most of the machine learning implementation applies scoring detection output
instead of just giving a binary decision. The detection scores usually depict
the distance of data to the classifier border. This feature can be beneficial to
introduce decision confidence for the output status from the ADS. For instance,
an administrator can setup a high level alarm that can only be triggered if the
decision confidence is raised or lowered to a certain threshold.
In our proposed method, the confidence score should be given in three layer.

Tracepoints Sequence Layer

The decision making in this layer should decide based on its detection score
whether a sequence of tracepoints is in positive class or in negative class. In
our work, we did not choose a specific threshold but instead used all possible
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threshold to draw the Receiver Operating Characteristic (ROC) curve. However,
in operational mode, we have to pick a certain threshold that maximise the trade-
offs between true positive (benefits) and false positive (costs).
One possible option is the Youden’s Index [You50]. Youden Index J is formu-

lated as:

J = Sensitivity + Specificity − 1

where Sensitivity refers to the True-Positive rate, and Specificity refers to the
True-Negative rate. Graphically, the index can be explained as a single operating
point of ROC with the maximum distance to the chance (diagonal) line.
However, in practice, this approach is rarely used. First, in a real life operation,

an administrator will not likely have the luxury of having enough data to create
an ROC diagram. To create an ROC we need to have an anomaly dataset, which
is a rare commodity in reality. Second, an administrator will most likely put more
emphasis to minimize false alarms, and therefore prefers to use a maximum value
of accepted false positives.

Observation Layer

The decision making in this layer should decide based on the number of detected
positive and negative sequence in an observation, whether the observation is in
positive observation class or in negative observation class. A simple example
would be to set a 10% threshold, where an observation will be deemed as an
anomaly if the number of positive sequences exceeds a tenth of the total se-
quences inside the observation. Another approach would be utilizing the time
series of the sequence class in the observation.

Final Decision Layer

We argue that we should not only use a single observation status to make the
decision, such as whether to raise the alarm or not. Therefore we should add
another final decision making layer. The decision making in this layer should
decide whether the monitoring system should raise the alarm or not based either
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on the number of detected positive and negative sequence in a series of observation
or based on the time series of the observation class.

The size of the observation series to use for an Anomaly Detection System
(ADS) had been proposed by several previous studies, such as length of 6 in
[HFS98] and length of 10 in [AW12]. We argue that these values are unique to
each case, so further studies could be taken to decide a proper window size to
improve the anomaly detection results.

6.3 A Repository of VM Image Dataset

There are many previous works that studied and tried to improve the security
aspects of cloud system. Some of the topic for detection methods have been de-
scribed in Section 4.3 and Table 4.6. However, the research variables are highly
varied from one research to the other. That makes it hard to measure the ad-
vancement of research in this field, as there is no standard for comparison. In
their paper, Litchfield and Shahzad argued that the lack of dataset leads to lack
of consistent risk assessment process and mitigation [LS17]. Indeed, it is hard
to suggest one standard research environment considering the vast landscape
of cloud computing system. A simple solution would be in a form of an open
repository of standardised Virtual Machine (VM) dataset. The purpose of this
repository are to allow validation of results and make the peer review-easier, also
to ensure the continuation of any research work in this field.

Within this work, we have shared three datasets for each of our experiments.
However, those are not raw datasets, as they are already a results of a specific
data collection and pre-processing. For a similar VM operation scenario, other
researcher might want to propose a different data collection method. Therefore,
in the future, we would like to see a repository of VM scenario datasets in the
form of VM image. By using the VM image format, the dataset can retain
the syntactical integrity of both the VM structure and any individual individual
values within, so that automated analysis is possible.
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6.4 A Further Research In the Side Channel
Attack Detection

The duel between the attacker and the defender team in cybersecurity field can
often seen as a race to the lowest layer of computation. From the apps to the
API to the OS userspace to the kernel space and now to the hardware. Whoever
command the lowest layer holds the ground.
The strongest case to the race analogy above is the rise of processor and cache-

based vulnerability within the last five years. It started with the emergence
of Cache-based Side Channel attack and many of its variants at the start of
2000s. This phenomena is starting to gain recognition in early 2018 when two
vulnerabilty, the Spectre (CVE-2017-5753 and CVE-2017-5715) and the Melt-
down (CVE-2017-5754) were introduced to the public.
In short, both Spectre and Meltdown vulnerability leverage the main feature of

modern CPU to speed up operation, such as instruction pipelining and speculative
execution. The features may leave residual effect that can be observed to reveal
patterns of private data to the attackers. For example, the attacker can use these
vulnerabilities to read the privilige domains of the memory that can lead to the
attack such as cross-VM side channel and hypervisor escape.
Since the vulnerabilities are based on hardware (processor and cache) operation,

there is not much all security mechanism in application and OS layer (include
the separation methods in virtualization environment) can do to prevent it. This
problem can lead to an interesting research topic, such as to detect if a VM is
hosting a processor vulnerability-based attack against its peer VM or against its
host system.

6.5 Program Analysis Approach for Software
Defined Networking Security

Software defined networking (SDN) has established a new method for creating and
administering networks, but has also changed the attack surface that is presented
by networks. SDN adds a software-based control and management layer above
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the hardware layer (data layer) to simplify the network operations. As the side
effect, SDN introduces new vulnerabilities, especially software-based threats, such
as software virusses and malwares that are not present in traditional networks.
The controller in the control plane is the fundamental element used for all oper-

ations of SDN data plane management. This controller is a software applications
that usually implemented as a dedicated server or a VM in the cloud. Since the
controller can acts as a single point of failure on the network, it is necessary to
defend the controller against all the possible attacks. The attacks may varied,
that includes the network-based attack such as network DDoS attack, the host-
based or VM-based attack such as the malwares and SDN-specific attack such as
the state manipulation attack [XHH+17] and the crosspath attack [CLX+19].
The detection for attacks against SDN controller can be a usefull feature. It

is an interesting topic to study how to leverage the program analysis techniqueto
be used to detect any attack against the SDN controller.

92



7 Conclusion

In this thesis, we investigate a guest VM monitoring method that can work inde-
pendently outside the monitored guest VM, without losing much of the semantic
information and without high computation cost for either the host and the guest
VM. We propose a method that embeds multiple tracepoints inside the source
code of the hypervisor or the Virtual Machine Monitor (VMM) (Static Instru-
mentation). During the hypervisor operation we collect the tracepoints execution
data to dynamically monitor the operational flow of a guest VM (Dynamic Source
Code Analysis). Since the instrumentation was carried out within the underlying
process of the guest VM’s instances, we believe that the dynamic pattern of the
tracepoints sequences can indirectly describe the operations of the VM.
We first applied this dynamic source code analysis with a static instrumenta-

tion method to the user space of the Qemu-KVM hypervisor. We captured the
tracepoints from the Qemu operation and used it for an Anomaly Detection Sys-
tem. We emulated a web server VM and multiple attack scenarios, such as DDoS
for network-based attack and Flush-Reload attack for virtualization-based attack.
We factored in the mimicry attack scenario. We compared several machine learn-
ing algorithms for the monitoring data analysis process. Finally, we compared
our detection result with system-call data analysis. Our evaluation showed that
monitoring guest VM using dynamic source code analysis with a static instru-
mentation method gave better detection results compared to the system-call data,
with minimum computation cost. However, we had subpar results when trying
to detect malicious activities that work upon the host CPU. That is because, on
Qemu-KVM combination, CPU operations are performed natively through the
KVM kernel module.
We investigated further this dynamic source code analysis with a static in-

strumentation method at the kernel layer by instrumenting the KVM module.
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We used this method to implement a signature-based intrusion detection system
and try to detect multiple variants of Cache-based Side Channel Attack (CSCA)
including a new stealthier variant called Flush+Flush attack. In our evaluation
phase, we showed that our proposed approach could give good classification re-
sults for the Cache-based Side Channel attack. Our attempt is the first successful
attempt to detect this Flush+Flush attack in the virtualization environment.
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