NAIST-IS-DD1661004

Doctoral Dissertation

Construction and Analysis of Multiword

Expression-Aware Dependency Corpus

Akihiko Kato

December 13, 2019

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,
Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of
Doctor of ENGINEERING

Akihiko Kato

Thesis Committee:

Professor Yuji Matsumoto Supervisor)

Co-supervisor)

(

Professor Satoshi Nakamura (Co-supervisor)
Associate Professor Masashi Shimbo (
(

Assistant Professor Hiroyuki Shindo (Co-supervisor)

Construction and Analysis of Multiword

Expression-Aware Dependency Corpus*

Akihiko Kato

Abstract

Multiword expressions (MWESs) consist of multiple words with syntactic or
semantic non-compositionality. In downstream tasks exploiting syntactic depen-
dency information and requiring the understanding of the meaning of the texts,
MWE-aware dependency structures, where each MWE is a syntactic unit are
preferable to word-based dependency structures. An English dependency corpus
is often acquired with automatic conversion from a treebank of phrase structure
trees. However, most of existing English treebanks do not guarantee that an
MWE span corresponds to a phrase structure subtree. Hence, it is not straight-
forward to get MWE-aware dependency trees from these treebanks. To deal with
this problem, I formalize procedures to ensure that an MWE span corresponds to
a phrase structure subtree by modifying phrase structure trees, and I apply these
procedures to the Ontonotes corpus to develop a dependency corpus in which
an MWE is treated as a syntactic node. I focus on functional MWEs, adjective
MWESs, and named entities.

The above MWEs always have continuous occurrences. However, in down-
stream tasks, it is also important to recognize verbal MWEs (VMWESs) such as
phrasal verbs, which are likely to have discontinuous occurrences. Therefore, I
conduct VMWE annotations on Ontonotes with crowdsourcing. Finally, I ad-
dress the task to predict both continuous MWE-aware dependency trees and
VMWESs !. The reason I deal with these two sub-tasks simultaneously is that

*Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, December 13, 2019.
Here, I define continuous MWEs as MWEs that always have continuous occurrences.

I can expect dependency information to be used as effective features in VMWE
recognition. I perform experiments with continuous MWE-aware dependency cor-
pus and VMWE annotations on Ontonotes. Experimental results demonstrate
the effectiveness of a model based on the hierarchical multi-task learning of the
following three tasks: continuous MWE recognition, a prediction of a word-based

dependency tree that encodes MWE spans, and VMWE recognition.

Keywords:

Linguistic Resource, Corpus Construction, Syntactic Parsing, Dependency Pars-

ing, Multiword Expressions

i

BEERRZZR L CKERBEI —/NADREBE L @B

ik B

REEH

HHGERBL (Multiword Expression, MWE) (&, #ReEM F 72 1R 72 JERE
BMEEETA2EBOHENS KD FLEDTH L. HBNRMRAHEE DIFRZ R
U, DORRMENBER X AT T, HER—-ADKF#HEL DL, MWE
EHRE U IMRAAREE, HIS MWE 2 55BN AL & 3 DIRAFREE D £ L.

PEEEDKAFREE I — R A IEE I — N AR S OHBAEBIZ X > THEEI NS F
NEWD, 1T AEDAREE T — /S ATIE, MWE 23M)REEDERD RIZAR > TV
52 EIFREINTWARWZD, MWE 2ZE L ZIkFEE 2 B 5 12185 Z L&
TERWV., £ I TAMIETIE, MWE WaMEDEH D RIZL 2 KD ITKREMEIET
52FfE e EANML, HEWHEEE L BAH MWE £ 72 13E AR %2 Z M L 717
FEE 3 — /8 A% Ontonotes FIZHESE U 7z, F-ERMMADINELR R AT, B
BRERERE XA MWE O & 512, iz B oAz K> MWE GEfi MWE)
721 cie K, AEEG EOIEEG RN 2D 5 5 MWE (855 MWE) O
LEETHLD, 779KV =207 % HAWT Ontonotes I — 7N AZx U THE
MWE OIFER 21T o> 7-, mBIZ Bl a— 22 fH L, #E MWE 2&E L
T ARAFHEIE L B MWE OXUG %2 Tl 2 EICE D fA 72, 2k, HRFHhE
DIE WL B MWE 2 CAMZRHE L LT L WO EKIZE DSV T WS,
MR DAL R, it MWE #23%, 5t MWE O#ipH 2 MFRBR T XL & U TR
BAL U 7RG AT, B MWE SR OB BN~ IV F X A 7 2B I KO ET
VDEMED MRS Nz, T OFEEIZ, it MWE %2 58 U - AKIERE R gah3
A 7-HED, 5 MWE Rl CAEITHEHEEZRBLTWVWS.

F—m—f

ERR AR, O — N AR, RO, ARG AT, HHREERE
*RR IR RN R F B R AR AR RS, 2019 4F 12 4 13 H.

il

Contents

1 Introduction 1
2 Preliminaries 5
2.1 MWE recognition o 5)
2.1.1 Continuous MWE recognition 5)
2.1.2 Discontinuous MWE recognition 5
2.1.3 Evaluation Measure 5
2.2 Dependency Structure oL 6
2.2.1 Dependency schemes 6
2.2.2 Projectivity 7
2.3 Dependency Parsing 7
2.3.1 Graph-based Parsing 8
2.3.2 Transition-based Parsing 10
2.3.3 Evaluation Measure 11
2.4 Syntactic Corpora 12
24.1 Penn Treebank 12
2.4.2 Ontonotes 12

3 Construction and Analysis of Functional Multiword Expression-
Aware Dependency Corpus 14
3.1 Introduction 14
3.2 Related Work oo 15
3.3 Construction of Functional MWE-aware Dependency Corpus . . . 16
3.3.1 Multiple contiguous children 18
3.3.2 Crossing brackets 19
3.4 MWE-aware Dependency Parsing 21
3.4.1 Experimental Setting L. 21
3.4.2 Experimental Results 22
3.5 SUmMmMary . . oo 24

v

4 Construction and Analysis of Dependency Corpus that is aware

of Functional Multiword Expressions and Named Entities 25
4.1 Introduction 25
4.2 MWE-aware Dependency Corpus 27
4.3 Models for MWE identification and MWE-aware dependency parsing 28

4.3.1 Pipeline Model L. 28

4.3.2 Joint Model 29
4.4 Experimental Settingo 30
4.5 Experimental Results and Discussion 32
4.6 Related Work 33
4.7 Summary ... e 33

5 Construction of Verbal Multiword Expression Annotated Cor-

pus 35
5.1 Introduction 35
5.2 Corpus Construction 36
5.2.1 Candidate Extraction 36
5.2.2 Large-scale Annotations of VMWEs by Crowdsourcing . . 38
5.2.3 Resolution of Inclusions and Overlaps 39
5.2.4 Corpus Statistics 39
5.3 Related Work oo 40
5.4 Summary ... 41

6 Joint Analysis of Continuous Multiword Expression-Aware De-

pendency Parsing and Discontinuous Multiword Expression Recog-

nition 43

6.1 Introduction 43

6.2 Construction of Continuous Multiword Expression-Aware Depen-
dency Corpus 45
6.2.1 Annotations of Functional MWEs 45
6.2.2 Annotations of Adjective MWEs 46
6.2.3 Construction of MWE-aware Dependency Corpus 49

6.3 Models for Continuous MWE-aware Dependency Parsing and Ver-
bal MWE Recognition 52

6.3.1 Continuous MWE-aware Dependency Parsing 52

6.3.2 Verbal MWE Recognition 54
6.4 Experiments with Models for Continuous MW E-aware Dependency
Parsing and Verbal MWE Recognition 56
6.4.1 Experimental Setup and Implementation Details 56
6.4.2 Hyper-parameters and model selections 59
6.4.3 Evaluation measures 60
6.4.4 Experimental Results and Discussion 61
6.5 Related Work 64
6.6 Summary 66
7 Conclusion 67

vi

List of Figures

\)

o J O Ot = W

10

11
12
13
14
15

16

17
18
19
20

21

Word-based and MWE-aware dependency structures.
An example in which an MWE span does not correspond to a
phrase structure subtree. oL

An example of a head-initial dependency tree.

A sentence that includes both continuous and discontinuous MWEs.

An example of a dependency structure.
Content-head and function-head schemes.
An architecture of the biaffine parser.
A sequence of configurations of the transition-based dependency
PATSET. .« . o v o e e e e
An example in which a cycle and multi-heads occur if one could
combine nodes in the MWE into a single node.
Another example in which a cycle and multi-heads occur if one

could combine nodes in the MWE into a single node.

Conversion of an LCA-tree in a “Multiple contiguous children” case.

Replacement of a subtree in which the MWE is grouped.
Conversion of an LCA-tree in the “Regular” case.
Conversion of an LCA-tree in the “Irregular” case..
An instance for which the original dependency parser inferred an
incorrect output and the MWE-aware dependency parser inferred
a correct output. oL Lo
An instance for which the original dependency parser inferred a
correct output, but the MWE-aware dependency parser inferred
an incorrect output.o

An example of inconsistency between NE-spans and phrase struc-

The joint model predicts a head-initial dependency structure. . . .
Dependency trees with function-head and content-head schemes. .
A screenshot of a web interface for VMWE annotations on Crowd-

Flower.

A sentence that includes both continuous and discontinuous MWEs.

vil

© O e W

13

14

16
17
17
19
20

23

24

26
28
36

37
43

22

23

24

25

26

27

28
29

30

Examples in which an MWE span corresponds to a phrase struc-
ture subtree that has ADJP as a root node. 46
Examples in which an MWE span does not correspond to a phrase
structure subtree.o 47

A modification of a phrase structure in a case of “multiple con-

tiguous children”.o oo 50
A modification of a phrase structure in a case of “crossing brackets”. 51
A step of merging components of an MWE into a single node. . . 51
An architecture of the pipeline model. 53
An example of a head-initial dependency tree. 54

An architecture of the hierarchical multi-task learning (HMTL) of
continuous MWE recognition (CMWER) and dependency parsing
which predicts head-initial dependency trees (Single-task(parser)). 55
An architecture of HMTL of continuous MWE recognition (CMWER),
dependency parsing that predicts head-initial dependency trees
(Single-task(parser)), and Single-task (VMWE). 56

viil

List of Tables

Ot W~

12
13
14
15

16

Categories of MWEs. oo
Corpus statistics of an MWE-aware Dependency Corpus.
Experimental results for the original and MWE-aware dependency
PArSING. e e
Corpus statistics.
Histogram with respect to the consistency between MWE spans
and phrase structures. L.
Experimental results on the test set.
Breakdown of experimental results by type of MWE.
Main categories of Verbal MWEs.
The statistics of VMWE annotations.
A histogram of VMWE instances by the number of gaps.
Corpus statistics based on POS patterns (at least 50 occurrences
only). ...
The statistics of adjective MWE annotations.
Corpus statistics of functional and adjective MWE annotations.

Hyper-parameters used in the experiments.
Experimental results for the test set regarding continuous MWE-
aware dependency parsing (CMWE-DP) and VMWE recognition
(VMWER).

Experimental results for the test set regarding continuous MWE-

aware dependency parsing with respect to first words of gold MWEs.

X

21

22
26

26
30
31
36
40
40

42

48

49

59

61

62

Acknowledgement

ZUOIZ, BEHE THIMNARBEEITEHBLET. IBOE->THAD L, W
FDRERFMEZ PO BEE, EITRARLEEN SR T RANA ZAZTHNT W
EOTEVET. FEPHEMIZILT, HHIZPDEUATHEZITD 2L %254k
ARFEHINTE D, ZOREPHEZELRIZRVELEEZE-6 L TWVW5E LK
CTHOET.

RIZ, WEBEZ DR ARSI L £97. iR EM SN T WS DMLA
fhER AT, EITHEMEEN B AR TOHBRMEZR R ORI N TN HLL L,
MR ANDSNZE L THEDVIAND, S Z2EICHRD 2 L 0EREEZFER
TEMWMTERLLBUTCVWET. £/, WHHMATIED D LD, HAGET—X %
BT NMZEBIMEIETHEE £ L. BIEDOHRSEUM S OH%ET
X, ¥5 U CHHEFEDOT =Xy b2ES T LHEL, HRFETNLP X A7 %
RS 72DDTF =Rty MEFIZOWTI, ELREFLFPEEIERINTVWEI L 2HE
ETE- VWO EKRTHEEELRRTULU-.

RIZ, BIBDMERER 2 Je BB L £ 97, R il —5 1 >
T aATo CTIHE, WMEOED X CHEOHP VR EED, TERIRELH
TEUE. Tz, MEPRDPEIETT, TEFR=—VarvPBERSKRVWRKTS, Z
SWIHEHEHWNEY 79SS L, LVWolzBENMT2HEE, fbh/-FHE %o
=TT, 1 TH&ML ZEEESH (LREC (2016)) Tix, a4, 5% L THE,
HONLBEUTED £7.

T/, MEOIIMFX AR L 3. LIXAIZIE, FZERBMP RA D
WEBREOHBETHE CREBMETIZRD E L. TOFRNMEHOED I,
RSN TT.

WIZ, MREBOREFIEHBIUET. KNS APSIE, TOERRMELR
B, AVARY MIIREMZEZZITONTVWSTE, BEADHAERORI %
FRIECHE, RERIXNXF—2EZE LR, £/, OEIA, BSA, =
FeX A, EOE AL, DMLA IR0z T, BIRZEWIFFRRR IS/ %
fToThon, BERZFESDOPELUATUR. FHIBEL O, LFEICHEERY
THATHEHIEENEZL, LTHMDF L. HARKIA, KNZA, IS A
CIXCICP T —L AIDBFRZBELT, BLWRKREZ2IECHZE LA, FA
SAMOIE, R EOAXF N R 2R ETHEE LR, E55H00LES
TEWET.

72, AHOBEHLANSIE, Sivwa XAy M2FIZHNTE SV, BT
TIIVIMBARRE THEMIETELWVWE L. M1 OKHZ, e tieiid
HNRTET, TIPOHDOMBETEHE > TV oZEFZEATVWET. £5%
HONES., <AL, MWEMBRXTHEHZRIAY M2HEELZ. H
FOMBETHEHEOMELZY) Y —AZ2FAIETHH5->TVWT, E#HLTWET.
ZHL A, BVWEFAR—3 0T, BROFTIEOIHEIZI D A TWT, ZDN
TH—= VAT T4 TIRBBIZZIEINEENL) 572TF. Phi Van-Thuy
SALE, ML OEENR 720, HfkED ey =7 bThiiL7zb &
ha, RM|IETELWVWE L. DAUKHHIZ TN E T2, F—EEICHIETT
BENTE, LTHAIZES>TWET. EEBRESLSHEBIE 2572, Ander
A, An T A, BRI A, BIX A, Michael TA LB DIZfifid, Discussion X
MHEAEAIETESLVWE L., BHELED R21E Emotional 2EDTU 7. [F
DED, %@E%%m#bﬁubfwi?

BIBIZEREBEF R G404, HXAOMEEEZBL Chr, ZXETH
%ofbi?.§M<Atiﬁﬁ7m07\/7%ﬁéfv —HIETH L, TF
i< A LE, MWE XRis4), EmEfiric o nwtEmIE T ovnE L. #
E AR, EETHEMREBEIEIZOWTO CICP 7uyz 2 %47\, LREC
(2018) THZ—HELE L7z, BLIVRIAFRSABRAT—AVERANIIT-
720, HESADRENEEKIZ, KL ALZANTHEZ 3ARE-ZOE RWEWH
TY. Tran A, A%< A, HIHL A, EEL AL BHER, Discussion TETH
5o TWVWETY. BIKOHBE Y IR ETNTNELH>TVWEDT, §ELTWTH
HWTT.

¥/, KINZXA, S A, #ELA, FE#E AL ACL (2017) IZBINTE 72

DiF, ETERVRERIZARD F U, HARICHE T S TEBRMIZ, KKD NLP IZ
BT A2 THAI AL ERIRTELFIIEANCE o TKRERMELLEZTHE
. IR EL £

RRTHELEBRITTHT, HIEZONTEH, ZLDOHFIZHIITCHEHEE LA &
R KD David Sell 2641213, AR ORI IEZIT> CIHE L.
ZZITEEHELUE T, £/, MBOKADPEFHICEATESH, FFIZiihT,
BEEREFE->THEE U, EREHBL T

72, BlIF - TEOEIZASZ E o052 E> TSNz, HR - AREIZEE L
F9. TOHHEBREESHIX, SIESET, HOOWANLZIL—Y RoTWE
T, ARBIZHOAE D, Tz, BRSO BEBIZASN, AEHZENTLN

x1

2B DHZI, BAEHLET. HREDED, TNNoDHSOIEENI K-
T, AR Uh% ZoMFUZERT 2FH 2@ L T, BIRLTENIEEFEZATVET.

BRBEIZHRD EFUED, e, WObZRETHXZATINTWVWEE - FXFIT
L £97. ZFRNCHEBZBICBRE» kTN, tax, RELRFELH -7
NELNZWITE, DUTOEEVRHIEIZR > TSR eEUTWET. 5F
ThHhohreS., LTI LAl

xil

1 Introduction

Multiword expressions (MWESs) consist of multiple words with syntactic or se-
mantic non-compositionality. MWEs could be classified into the following four
categories based on their grammatical roles (Table 1): (1) functional MWEs 2
(a number of, even though), (2) adjective MWEs (dead on one’ s feet, out of
business), (3) verbal MWEs (pick up, make a decision), and (4) compound nouns
(traffic light). Hereafter, a grammatical role of an MWE is referred to as an
MWE-level part-of-speech tag (MWE-POS tag).

In downstream tasks exploiting syntactic dependency information and requir-
ing the understanding of the meaning of the texts, MWE-aware dependency struc-
tures (Figure 1b) are preferable to word-based dependency structures (Figure 1a).
While each MWE is a syntactic unit in MWE-aware dependency structures, word-
based dependency structures do not represent MWE spans.

As an example of downstream tasks that could enjoy the advantages of MWE-
aware dependency structures, I can mention event extraction, which involves
event trigger detection and event arguments identification (Bjorne et al., 2017).
Both of event triggers and arguments could be MWEs. Besides, the shortest
dependency path connecting a trigger and an argument is often used as features
of argument identification systems (Li et al., 2013).

Traditionally, an English dependency corpus has been acquired with auto-

matic conversion from a treebank of phrase structure trees, such as Penn Tree-

Categories Examples

Functional MWEs a number of, even though, after all
Adjective MWEs dead on one’s feet, out of business
Verbal MWEs pick up, look for, make a decision

Compound nouns customer service, traffic light

Table 1: Categories of MWEs.

2T define functional MWEs as MWEs that function either as prepositions, conjunctions,

determiners, pronouns, adverbs, auxiliary verbs, to-infinitives, or interjections.

nsubj

nmod

det m det nsubj

a number of cities have a_number_of cities have

(a) A word-based dependency structure (b) An MWE-aware dependency structure

Figure 1: Word-based and MWE-aware dependency structures. The former does
not represent an MWE span (“a number of”). In the latter, the MWE is repre-

sented as a single node.

NP

ﬂ\

FW FW | NNS

de facto|changes

Figure 2: An example in which an MWE span does not correspond to a phrase

structure subtree.

bank (Marcus et al., 1994). However, most of existing English treebanks do not
guarantee that an MWE span corresponds to a phrase structure subtree (Fig-
ure 2). Hence, one could not acquire MWE-aware dependency trees by simply
merging component words of each MWE in dependency trees converted from
phrase structure trees.

To deal with this problem, I formalize procedures to ensure that an MWE
span corresponds to a phrase structure subtree by modifying phrase structure
trees (Chapter 3), and I develop a dependency corpus that is aware of functional
MWEs (Chapter 3) and either adjective MWEs (Chapter 6) or named entities
(Chapter 4) in Ontonotes 5.0 (Pradhan et al., 2007).

MWE-aware dependency parsing is different from word-based dependency
parsing in that the former includes MWE recognition because an MWHE-aware
dependency tree treats an MWE as a syntactic unit. To explore models that
are suitable for MWE-aware dependency parsing, I compare performances of the

following two models (Chapter 4): (1) a pipeline model of MWE recognition with

det
mwe_DT
mwe_DT nsubj

A number of cities have

Figure 3: An example of a head-initial dependency tree, in which a span of
an MWE (“a number of”) and an MWE-level POS-tag (“DT”) are encoded as
dependency labels (“mwe_DT”).

the sequential labeler and MWE-aware dependency parsing, and (2) a word-based
dependency parsing to predict a tree that encodes MWE spans as dependency
labels (head-initial dependency parsing)(Figure 3). I evaluate the above two
models by using a dependency corpus that is aware of named entities (NEs) and
functional MWEs 3 as a dataset. Experimental results show that the head-initial
dependency parser improves MWE recognition compared to the pipeline model,
with the help of features captured by the sequential labeler for MWE recognition.

Functional MWESs, adjective MWEs, and named entities always have contin-
uous occurrences. However, in downstream tasks, it is important to recognize not
only continuous MWEs 4 but also verbal MWEs (VMWESs) such as phrasal verbs,
which are likely to have discontinuous occurrences (e.g., take .. off). Therefore,
I conduct VMWE annotations on Ontonotes 5.0 with crowdsourcing (Chapter 5).
To exploit crowdsourcing, I formalize VMWE annotations as a multiword-sense
disambiguation problem.

Finally, I address the task to predict both continuous MW E-aware dependency
trees and VMWESs (Figure 4) (Chapter 6). The reason I deal with these two sub-
tasks simultaneously is that I can expect dependency information to be used as
effective features in VMWE recognition. I perform experiments with a continu-
ous MWE-aware dependency corpus and VMWE annotations on Ontonotes 5.0.
Experimental results demonstrate the effectiveness of a model based on the hierar-
chical multi-task learning (HMTL) (Sanh et al., 2018) of the following three tasks:

continuous MWE recognition, a prediction of head-initial dependency trees, and

3This corpus is available at: https://catalog.ldc.upenn.edu/LDC2017T16.
4Here, I define continuous MWEs as MWEs that always have continuous occurrences.

Figure 4: A sentence that includes both continuous (“a few”) and discontinuous
MWEs (“made .. decisions”). For this sentence, a model predicts both continuous
MWE-aware dependency trees (shown in the upper half of this figure) and verbal
MWEs (VMWESs). In the bottom half of this figure, I show a sequence of extended
BIO tags (Schneider et al., 2014), which can represent gaps between components
of a VMWE with “0” (small-o).

VMWE recognition.

2 Preliminaries

2.1 MWE recognition

2.1.1 Continuous MWE recognition

Continuous MWE recognition (CMWER) is a task to predict spans of CMWEs
in a given sentence °>. CMWER is typically formalized as a sequence labeling
task by using BIO or BIOUL tagging schemes. Similar to other sequence labeling
problems, recent models for CMWER adopt the bi-LSTM-CNNs-CRF model (Ma

and Hovy, 2016).

2.1.2 Discontinuous MWE recognition

Discontinuous MWE recognition is a task to predict discontinuous MWE occur-
rences in a sentence. Each discontinuous MWE is represented as a set of token
indices, which could have a gap. Hereafter, “a group” is used to mean a set of
token indices that belong to the same discontinuous MWE. Because components
of a discontinuous MWE could have a gap between them, the recognition of pos-
sibly discontinuous MWEs, such as verbal MWEs (VMWEs) is not able to be
formalized with BIO or BIOUL tagging schemes. However, if a gap between com-
ponents of a discontinuous MWE is not nested ¢, one can encode an occurrence
of the MWE as a sequence of extended BIO tags (Schneider et al., 2014). These

tags can represent gaps between components of an MWE with “0” (small-o).

2.1.3 Evaluation Measure

An evaluation of CMWER is based on the exact span matching, which is measured
with span-level F'1-scores. In contrast, VMWER models are evaluated with group-
level Fl-scores. Here, “a group” means a set of token indices that belong to the
same discontinuous MWE (2.1.2).

Here, 1 define continuous MWEs (CMWEs) as MWEs that always have continuous occur-

rences.
6In other words, if a gap is filled by another MWE, this nested MWE itself does not contain

a gap.

2.2 Dependency Structure

root

nsubj dobj

7N\

ROOT Alice likes Bob

Figure 5: An example of a dependency structure.

In the dependency grammar, a syntactic structure of a sentence is a set of
binary, asymmetrical, and labeled relations between two lexical items (words),
which is often called a head and a dependent because a head syntactically governs
a dependent (Kubler et al., 2009). These relations are often called dependencies.
A grammatical relation (e.g., subject and object) between the head and dependent
is represented by a dependency label, which is also called a dependency relation.
For instance, in Figure 5, “Alice” depends on “likes”. Therefore, a dependency
relation “nsubj” holds between the head (“likes”) and the dependent (“Alice”).
Because each dependent generally has a unique head, the set of dependencies
in a sentence constitute a tree, often called a dependency tree. As shown in
Figure 5, the artificial “ROOT” is added before the first word of a sentence. In
this example, the dependent of “ROOT” is “likes”, which is a real syntactic root
of this dependency tree. This addition of “ROOT” leads to make every word
have a syntactic head and to make it easy for a parser to handle each dependency

tree.

2.2.1 Dependency schemes

A dependency treebank usually follows either content-head or function-head schemes.
In the content-head scheme (Figure 6a), content words are directly connected with
a dependency edge. Universal Dependencies (McDonald et al., 2013) and versions
after ver.3.5.2 of Stanford Dependency (de Marneffe and Manning, 2008) adopt
the content-head scheme. In contrast, in the function-head scheme (Figure 6b),

a preposition works as an intermediate node between a modified word and an

nmod
case

nsubj det
I look at the possibility

(a) In the content-head scheme, content words (“look” and “possi-
bility”) are directly linked with each other.

pobj
nsubj Prep det

| look at the possibility

(b) In the function-head scheme, a preposition (“at”) works as an
intermediate node between a modified word (“look”) and an object
of the preposition (“possibility”).

Figure 6: Content-head and function-head schemes.

object of the preposition. Stanford basic dependency (de Marneffe and Manning,

2008) follows the function-head scheme.

2.2.2 Projectivity

A dependency arc (w;,r,w;) is projective if there is a directed path from w; to
every node between w; and w;. A dependency tree is projective if every edge is

projective. Otherwise, the tree is non-projective. A projective dependency tree

has no crossing edge.

2.3 Dependency Parsing

Dependency parsing is a task to predict a dependency tree for a given sentence. In

a supervised setting, a dependency parser is trained on a set of pairs of a sentence

7

and a gold dependency tree. Dependency parsers are classified into graph-based

and transition-based parsers.

2.3.1 Graph-based Parsing

In a graph-based parser, a dependency tree is factored into a set of subgraphs. In
testing, the parser predicts a dependency tree based on a score calculated from
scores of subgraphs. In most of the graph-based dependency parsing models, a
score of a dependency tree is defined as a summation over scores of subgraphs.

The simplest graph-based parser is the arc-factored model. In this model, a
subgraph described above is a single edge. The model parameters are defined for
each edge (w;,r,w;). Here, w; and w; are tokens, and r is a dependency label.

An inference of the arc-factored model equals to find a maximum spanning
tree (MST). The arc-factored model can be applied to both non-projective and
projective dependency trees.

If T focus on models for graph-based non-projective dependency parsing, the
most famous one is Chu-Liu-Edmonds Algorithm (McDonald et al., 2005). On
the other hand, Eisner’s algorithm (Eisner, 1996) is known as a classical method
for a projective dependency parsing.

In an arc-factored model, one could use any features over each dependency
edge. Standard features are followings: (1) word forms and part of speech (POS)
tags of w; and w;, (2) the dependency label (r), (3) a distance between w; and w;,
(4) a direction of the dependency edge, (5) POS tags of words near w; or w; (w;_1,
Wit1, wi—1, and w;4q), (6) POS tags of words between w; and w;. For training
of non-neural network parsers, an inference-based training, such as a perceptron
algorithm (Collins and Roark, 2004) is often used.

Hereafter, I introduce recent neural graph-based dependency parsers.

2.3.1.1 Kiperwasser and Goldberg (2016)’s parser

Kiperwasser and Goldberg (2016) adopts an arc-factored model (McDonald et al.,
2005), however, they replace a linear scoring function for each dependency arc in
a candidate dependency tree with a neural network-based one. Concretely, for

a given sentence s and a given potential arc (h,m), they firstly encode s with a
bi-directional LSTM Hochreiter and Schmidhuber (1997) and get hidden vectors

8

for all tokens in s. After that, a score of (h,m) is calculated with an MLP which
takes as an input a concatenation of a pair of hidden vectors corresponding to h

and m.

2.3.1.2 Deep biaffine parser

Score (ﬁw} - w)

Biaffine
classifiers ha h%ﬂep
h n
MLPs {oo‘po] [oqoo] [Oooo QOOO] oooo] oooo
Bi-LSTMs (. loooo } .f’ (©000
@H—A—r{ [©000)
o, =
Input tokens I read it

Figure 7: An architecture of the biaffine parser. With respect to MLPs, for

hqrc—dep hqrc—head
i 7 :

brevity, I show only MLPs to calculate and

By extending Kiperwasser and Goldberg (2016), Dozat and Manning (2017)
proposes the deep biaffine parser, which consists of the following three compo-
nents: a bidirectional LSTM (bi-LSTM), Multi-layer perceptrons (MLPs), and
biaffine classifiers (Figure 7).

Given a sentence s, a bi-LSTM is used to get hidden states for all tokens in s,
similar to Kiperwasser and Goldberg (2016).

Second, they produce four different vectors: h; re—dep pgrehead h;d_dw , and
het=head from each hidden state h; using MLPs (Dozat et al., 2017).

Third, they predict a head of each token w; in s by using a biaffine classifier,
which takes h¥""%? and h?m’he“d as inputs. This classifier outputs a score for
each potential dependency arc from w; to w;. The model predicts a head word

wy for a dependent w; that have the highest score.

Finally, they predict a dependency label of a edge from a predicted head w;
to w; with another biaffine classifier, which takes h7*~ %" and h;;el_he“d as inputs.
An output of this classifier is a score for each potential dependency label.

They perform joint training of the above two biaffine classifiers with an objec-
tive which is the sum of their softmax cross-entropy losses. The decoding could

be done by finding a maximum spanning tree (MST) of tokens of a test sentence.

2.3.2 Transition-based Parsing

In a transition-based approach, dependency parsing is formalized as a sequence
of state-transitions. Each state of a transition system, which is often called a
configuration, is defined as the triple: ¢ = (0,0, A) where o is called “stack”,
[is called “buffer”, and A is a set of dependency arcs. A stack and a buffer
can contain tokens of a sentence. An initial state is ¢g = (wq, (wi,...,w,), @)
(Figure 8a). Here, wy is an artificial ROOT, (wy,...,w,) are tokens of a sentence.
On the other hand, a terminal state is ¢y = (o, ¢, A) (Figure 8d).

For each state, a transition system chooses one of the possible state-transitions,
also called “actions”. There are some variants for a set of actions. For brevity, 1
explain a basic shift-reduce transition system, which is known as Arc-Standard (Nivre,
2004). In this system, possible actions are Shift, Left-Arc, and Right-Arc. Shift
moves the first token in a buffer to the top of the stack (Figure 8b). Left-Arc
adds to A a dependency edge from by (the first token in a buffer) to sy (the top
of the stack), and remove s, from the stack (Figure 8c). Right-Arc adds to A a
dependency edge from sq to by, replaces by with sg, and remove sy from the stack.

In many parsing models, each configuration is mapped to a feature vector.
Standard features are word forms, lemmas, POS tags, dependency labels of vari-
ous positions in a transition system, that is, each position of a stack, a buffer and
leftmost /rightmost children of sy and by.

Based on a feature representation and model parameters, a parser predicts
the next action. In training, a parser optimizes model parameters based on the
training set: a set of pairs of a sentence and a gold state-transition sequence. In
testing, a parser predicts a state-transition sequence based on the trained parsing
model.

In recent years, many neural transition-based dependency parsers are pro-

10

posed. Chen and Manning (2014)’s work is the first attempt to use a neural
network for dependency parsing. They use a standard neural network with one
hidden layer to predict the next action for a given configuration. Input features
are a concatenation of word, POS, and dependency label embeddings from a set
of elements based on the stack and buffer positions for each type of information
(word, POS or dependency label). Second, Andor et al. (2016) proposes a glob-
ally normalized transition-based neural network model with a beam search and
a conditional random field (CRF) objective (Lafferty et al., 2001). Even though
they use a simple feed-forward neural network, performances of their model are
comparable or better than LSTMs because their network is globally normalized.
Finally, Ma et al. (2018) introduces stack-pointer networks, which consist of the
following two steps. First, their proposed model reads and encodes the whole sen-
tence with a bi-directional recurrent neural network (RNN) encoder. After that,
it builds the dependency tree in a top-down (from root-to-leaf) and depth-first
manner with a uni-directional RNN decoder with an internal stack. At each time
step t, the decoder chooses a specific position in an input sentence according to
attention scores that are calculated from encoder hidden states and a decoder
hidden state at the time step t. After that, the decoder generates an arc between
the head at the top of the internal stack and the selected token (dependent).
Their proposed model is more efficient than graph-based parsers because it is a

transition-based system, and it can have a global view of the whole sentence.

2.3.3 Evaluation Measure

Standard evaluation measures used in dependency parsing are unlabeled attach-
ment score (UAS) and labeled attachment score (LAS). UAS represents how accu-
rately the parser predicts a head for each token. In calculating UAS, whether the
predicted dependency label is right or not is not taken into account. In contrast,
LAS regards a predicted dependency edge for a given dependent to be correct
only if both the head and dependency label equal to those of the gold standard.

11

2.4 Syntactic Corpora

2.4.1 Penn Treebank

In the research of syntactic parsing, a manually annotated treebank is important
as training, tuning, and testing data used by a syntactic parser. Penn Tree-
bank (Marcus et al., 1994) is one of the de facto standard English treebanks.
Sentences in this corpus originate from the Wall Street Journal (WSJ), Brown
corpus, Switchboard, and ATIS.

The POS tagset of Penn Treebank is more simplified than that of Brown
Corpus as some redundant tags have been merged. In Brown Corpus, for instance,
“did” is assigned a special POS tag: DOD. On the other hand, a POS tag of “did”
in Penn Treebank is the same as the past tense of other verbs: VBD.

In addition to the standard syntactic tagset (e.g., NP and VP), Penn Treebank
provides three kinds of functional tags: text categories (e.g., titles), grammatical
functions (e.g., logical subjects in passives), and semantic roles (e.g., temporal

phrase).

2.4.2 Ontonotes

Ontonotes (Pradhan et al., 2007) is a corpus that provides multiple levels of
annotations: syntax, propositions, word senses, named entities, and coreference.
Ontonotes contains newswire data of English and Chinese. In particular, the
English portion is a non-financial portion of WSJ. A syntactic layer is built on

Penn Treebank.

12

Stack Buffer

ROOT Bob saw Alice with a telescope

S0 bo I bz b3z bs bs

(a) An initial configuration of shift-reduce parser.

Stack Buffer
ROOT Bob saw Alice with a telescope
s1 S0 bo b1 bz bs ba

(b) A configuration after shift action by which “Bob” moved from by to sg.

Stack Buffer
ROOT jaw Alice with a telescope
s S0 / bo b1 bz bz ba
Bob

(¢c) A configuration after Left-Arc action by which “Bob” was removed from

sp and governed by “saw” at bg.

Stack Buffer
ROOT
|
root 1
saw
ns%bj{ nmo
Bob Alice telescope
d?/ca%\
a with

(d) A terminal configuration. Full dependency tree is constructed.

Figure 8: A sequence of configurations of the transition-based dependency parser

for a sample sentence (“Bob saw Alice with a telescope”).

13

3 Construction and Analysis of Functional Mul-

tiword Expression-Aware Dependency Corpus

3.1 Introduction

nsubj

nmod
case

a_number_of cities have

Figure 9: A cycle and multi-heads occur if one could combine nodes in the MWE

(“a number of”) into a single node.

As T describe in Chapter 1, given a phrase structure tree in which an MWE
span does not correspond to a subtree, if one converts this phrase structure tree
to a word-based dependency tree, it is not always possible to acquire an MWE-
aware dependency tree by directly combining nodes belonging to an MWE into
a single node in the word-based dependency tree.

The above method often leads to the following problems: a node derived from
an MWE could have multiple heads and the whole dependency structure including
an MWE might be cyclic "(Figure 1la — Figure 9). This is mainly because Penn
Treebank style annotation does not give special treatment for MWEs. T discuss
this problem further in Chapter 3.3.

To tackle the above problems, in this chapter, I propose a three-step conversion
method to get MWE-aware dependency structures. First, I establish an MWE
as a subtree in a phrase structure (Figure 11a — Figure 11b). Second, I replace
the subtree corresponding to the MWE by a preterminal with its leaf node as a
child (Figure 12). The preterminal has an MWE-level POS tag. Its child node
is made by joining all components of the MWE with underscores. As a final

step, I convert the phrase structure to Stanford Dependency (de Marneffe and

"This problem often happens in the content-head scheme, such as Universal Dependen-
cies (McDonald et al., 2013).

14

Manning, 2008). In this way, I can avoid an occurrence of multiple heads and/or
cycles in an MWE-aware dependency tree, because an MWE constitutes a single
node in this dependency tree. I apply this conversion method to the Ontonotes
corpus (Pradhan et al., 2007) to construct a dependency corpus that takes MWEs
into consideration. In this work, I focus on functional MWESs, which are one type
of MWE that serves as functional expressions. This is because functional MWEs
have a variety of functionalities that may affect language analyses such as parsing
and POS tagging. To reduce the cost of annotation in constituting each MWE
as a subtree, I classify patterns of MWESs as seen in phrase structures in terms
of ease of conversion. I manually annotate only instances that are difficult to
convert automatically.

Furthermore, I evaluate the performance of the first order MST Parser (Mc-
Donald et al., 2005) on the constructed MWE-aware dependency corpus. I get an
unlabeled attachment score (UAS) comparable to that obtained on the original
Ontonotes corpus. Moreover, I qualitatively analyze some test instances in which
MWE-aware and original dependency parsers predict different dependency heads
of an MWE (Chapter 3.4).

3.2 Related Work

Shigeto et al. (2013) creates a dictionary of English functional MWEs 8, and
annotates functional MWEs that appear in Penn Treebank. In their corpus, each
MWE occurrence has its MWE-level POS tag and a span of component tokens.

As an example of an MWE-aware dependency corpus, I introduce Universal
Dependency Treebank (McDonald et al., 2013). This project is developing a cross-
linguistically consistent treebank annotation for many languages. A functional
MWE is annotated in a flat and head-initial structure, in which second and later
words in an MWE modify the first word using a “fixed” label.

In MWE-aware syntactic parsing, an MWE is recognized before or at the

8Here, I refer to MWEs that function either as prepositions, conjunctions, determiners,
pronouns, adverbs, auxiliary verbs, to-infinitives, or interjections as functional MWEs. Because
the purpose of Shigeto et al. (2013) is to annotate fixed MWEs, their annotation does not
include auxiliary verbal MWEs (aux-VMWEs) (e.g., "might have been”). I treat annotations
and the integration of aux-VMWESs into dependency structures as future work.

15

time of syntactic parsing (Green et al., 2011; Candito and Constant, 2014). Nivre
and Nilsson (2004) conducts Swedish dependency parsing, in which they assume
perfect MWE recognition. They focus on multiword names (persons and places),

numerical expressions and functional MWEs.

3.3 Construction of Functional MWE-aware Dependency
Corpus

root

xcomp

det nsubj dep mark

TN T N)
ROOT the economy s slip

Figure 10: A cycle and multi-heads occur if one could combine nodes in the MWE

(“about to”) into a single node.

I build an MWE-aware dependency corpus based on the corpus by Shigeto
et al. (2013). In their corpus, an entire MWE is assigned an MWE-level POS tag.
In such a case, it is preferable that an MWE is a single node in a dependency
structure. On the other hand, each word is treated as a node in a word-based
dependency structure.

To directly convert word-based dependency to MWE-aware dependency, one
needs to combine nodes in an MWE into a single node. However, this naive ap-
proach often leads to the following problems: a node derived from an MWE
could have multiple heads and the whole dependency structure including an
MWE might be cyclic. For instance, in Figure 9, “a_ number_of” has multiple
heads (“cities” and “have”), and a cycle occurs because of the following edges:
“a_number_of” — “cities” and “cities” — “a_number_of”. Therefore, one needs
to remove one of the edges to get a dependency tree. Another problem is the fol-
lowing: the syntactic head of “a number of cities” is “cities” in an MWE-aware
dependency structure (Figure 1b), because “a_number_of” is a determiner. Nev-
ertheless, one cannot get the correct dependent of “have” (i.e., “cities”) by the

above naive method. Similarly, if one combines words of the MWE into a single

16

W »

node in Figure 10, “about to” has multiple heads (“is” and “slip”), and a cycle
occurs between “about to” and “slip”.

To solve these problems, I adopt the following approach: first, I establish
an MWE in a phrase structure tree as a subtree. After that, I convert a phrase
structure to a dependency structure. With this method, I can avoid cycles and/or
multiple heads.

Concretely, I build a functional MWE-aware dependency corpus according to

the following method:

SBAR SBAR
ADVP N S MWE_IN S
RB though NP VP ADVP IN NP VP
SN N NN
even NN NNS VBD NP RB though NN NNS VBD NP
N AN | I /N
exhaust fans ventilated D‘T N‘N even exhaust fans ventilated D‘T N|N
the area the area

(a) An LCA-tree before conversion. (b) The LCA-tree after conversion.
The square in this figure indicates the = Here, the MWE (“even though”) be-
span of the MWE. comes a subtree.

Figure 11: Conversion of an LCA-tree in a “Multiple contiguous children” case.

MWE_IN
ADVP IN IN
I
RB though even_though
even

Figure 12: Replacement of a subtree in which the MWE (“even though”) is
grouped.

(1) Find an MWE in a phrase structure tree in Ontonotes and establish it as a

subtree (Figure 11a — Figure 11b)°.

T utilize MWE annotations provided by Shigeto et al. (2013).

17

(2) Replace the above subtree by a preterminal with its leaf node as a child.
The preterminal has an MWE-level POS tag. Its child node is made by

joining all components of the MWE with underscores, as in Figure 12.

(3) Convert a phrase structure to Stanford Dependency (de Marneffe and Man-
ning, 2008)°.

In Step (1), I convert an MWE into a subtree in the phrase structure tree.
For example, “even though” in Figure 11a is annotated as an MWE in Shigeto
et al. (2013). I convert it as in Figure 11b. If I can convert the span of an
MWE into a subtree without changing other subtrees, I classify this instance as
“Multiple contiguous children”. Otherwise, the instance is treated as “Crossing
brackets”. When I group an MWE, I focus on the LCA-tree, which is the subtree
rooted in the Least Common Ancestor (LCA) of the components of the MWE.
In Figure 11a, the LCA-tree is rooted in SBAR, which is the LCA of “even” and
“though”.

The above method relates to Finkel and Manning (2009). For joint parsing
and named entity recognition, they classify named entities that do not correspond
to a phrase in the constituency tree to the following two categories. A named
entity belonging to the first category is contiguous multiple children of some non-
terminal. This category corresponds to the above “Multiple contiguous children”
case. On the other hand, a span of each named entity belonging to the second
category crosses brackets in the parse tree. It corresponds to the above “Crossing

brackets” case.

3.3.1 Multiple contiguous children

In the “Multiple contiguous children” case, I insert a new internal node under the
LCA (Figure 11a — Figure 11b). This internal node covers precisely the span of
the MWE.

3

10T designate “-conllx -basic -makeCopulaHead -keepPunct” as an option for the conversion

command.

18

w
| T PP
VBG PP T
| L T MWE_IN NP
according IN NP PN T
T T VBG N (3 VP
t NP P ‘ ‘
e according to NN NNS VBD NP
NN NNS VBD NP ‘ ‘ ‘
‘ ‘ g nment figure | d NNP
government figures released NNP ‘
Wednesday
Wednesday
(a) An LCA-tree before conversion. (b) The LCA-tree after conversion.
The span of the right subtree (from Here, the MWE (“according to”) be-
“to” to “Wednesday”) partially over- comes a subtree. The triangle in the

laps with the span of the MWE (“ac- figure indicates the subtree (Tpost)-
cording to”). The triangle in this fig-
ure indicates the subtree (Tpos¢) which

covers precisely the span excluding the
MWE.

Figure 13: Conversion of an LCA-tree in the “Regular” case.

3.3.2 Crossing brackets

In the “Crossing brackets” case, if I convert the MWE into a subtree (e.g. Fig-
ure 13a — Figure 13b), the structures of other subtrees need to be changed. For
example, it is reasonable to remove the right child of LCA (PP) in Figure 13a at
the time of the conversion as in Figure 13b.

Further, I classify “Crossing brackets” into “Regular” and “Irregular” cases

based on the extent to which the LCA-tree is changed by the conversion.

Regular Case

In this case, I can convert an MWE into a subtree without changing subtrees
which cover words outside the MWE. In Figure 13a, the span of the right sub-
tree (from “to” to “Wednesday”) partially overlaps with the span of the MWE
(“according to”), but there is an internal node which covers the entire span to
the right of the MWE (see the grandchild of the LCA (NP)).

I define the subtree covering the span to the left of the MWE, the subtree
covering the MWE, and the subtree covering the span to the right of the MWE

as Tyre;, Tnwe, and Thos, respectively. In Figure 13a, the subtree surrounded by a

19

triangle is Tpost-

I convert the tree so that the LCA has Tpre, Thwe, Tpost as children (Figure 13a
— Figure 13b).

When both T, and T, are present, I manually determine which of the
following choices is preferable: LCA having Tpe, Tinwe, Lpost as flat children, or

LCA having a new internal node (covering T},ye and Ty or Tppst) as a child.

ADVP ADVP

ﬂ\

IN PP MWE IN | NP
| T T N N
Along IN "7 NP IN IN |°° NNP NNP
[\ o |
with NNP NTP Along with Show Boat

Show Boat

(b) The LCA-tree after conversion.
Here, the MWE (“along with”) be-
comes a subtree.

(a) An LCA-tree before conversion.
There is no internal node which covers
precisely the entire span to the right of
the MWE (“along with”).

Figure 14: Conversion of an LCA-tree in the “Irregular” case.

Irregular Case

In this case, I cannot avoid to change subtrees outside the MWE when converting
the MWE into a subtree (Figure 14a — Figure 14b). The span of the right subtree
of LCA (from “with” to “Boat”) partially overlaps with the span of the MWE
(“along with”), and there is no internal node that covers precisely a span to the
left or right of the MWE. Hence, I manually determine how to combine a subtree
covering the MWE with subtrees covering spans excluding the MWE.
Regarding “Multiple contiguous children” and “Crossing brackets (Regular)”

20

Case No. of instances

Multiple contiguous children 1,663
Crossing brackets (Regular) 1,742
Crossing brackets (Irregular) 57

Table 2: Corpus statistics of an MWE-aware Dependency Corpus.

cases, I decide a symbol of an LCA as follows !

arg max(Pr(A — B1..Xrca..Bn) X Pr(Xpoa — C1..CY)) (1)

Xrca
With the method described above, 1 develop the MWE-aware dependency
corpus based on the Wall Street Journal (WSJ) portion of Ontonotes 5.0. I show

the corpus statistics in Table 2 2.

3.4 MWE-aware Dependency Parsing

In this chapter, I perform dependency parsing by using either the original Ontonotes
or the MWE-aware dependency corpus I build according to the method described
in Chapter 3.3.

3.4.1 Experimental Setting

I trained and tested original and MW E-aware dependency parsers independently.
The training and test data of the original dependency parser are from sections 02-
21 and 23 of the original Ontonotes corpus, respectively. In contrast, the training
and test data of the MWE-aware dependency parser are from sections 02-21 and
23 of the MWE-aware dependency corpus. In MWE-aware dependency parsing,
I assume perfect MWE recognition and treat each MWE as a single node in both
training and testing 3. As the evaluation measure, I adopted the UAS (unlabeled
attachment score). I used the first-order MST Parser (McDonald et al., 2005)

' These probabilities are calculated from Ontonotes.
12Tn Crossing brackets (Regular) case, 53 instances have both T, pre and Tpost.
13T investigate models to predict both MWE spans and MWE-aware dependency trees in

Chapter 4.

21

UAS (total) UAS (sentences

including MWEs)
Original Ontonotes 89.99 87.77
MWE-aware dependency corpus 90.01 87.84

Table 3: Experimental results for the original and MWHE-aware dependency pars-

ing.

and the standard split for the WSJ portion of Ontonotes 5.0: sections 02-21 for
training, 23 for testing. I also used gold POS tags both in training and testing.

3.4.2 Experimental Results

I show the experimental results in Table 3. Because the original and MWE-aware
dependency parsers use different test sets, I cannot directly compare the results of
these dependency parsers. However, I got comparable UAS for the two parsers on
both 1,640 sentences of the whole test set and 266 sentences including MWEs 4.

In the following, I describe the qualitative analysis. First, I show an instance
for which the original and MWE-aware dependency parsers inferred incorrect and
correct outputs, respectively. In Figure 15, the original dependency parser incor-
rectly infers “least”, which is a component of the MWE (“at least”), as the head
of “officials”. On the other hand, the MWE-aware dependency parser correctly
infers “questions” as the head of “officials” '°. In this instance, by recognizing
the MWE before parsing, the MWE-aware dependency parser achieves a correct
prediction without influenced by POS tags of components of the MWE. This
is consistent with the error analysis by Nivre and Nilsson (2004) for Swedish

dependency parsing involving functional MWEs.

14Because the number of tokens belonging to MWEs corresponds to about 1.9 % of that of
the whole test set, these two parsers could show similar performances for the whole test set,
even though these models perform differently in terms of UAS regarding dependency edges

which connect inside and outside of MWEs.
15The full sentence is “Mrs. Hills’ remarks did raise questions, at least among some U.S.
officials, about what exactly her stance is on U.S. access to the Japanese semiconductor market.”

22

N\ = =

det
(4]
questions at least among some U.S. officials
7 8 9 10 11 12 13 14
NNS , IN]IS IN DT NNP NNS

(a) A dependency structure inferred by the original dependency parser.

nmod
advmod
case
et
ﬁ [‘puncl} fmpoun'il
)

d
guestions , at_least among some U.S. officials
7 8 9 10 11 12 13

NNS , RB IN DT NNP NNS

(b) A dependency structure inferred by the MWE-aware dependency parser.

Figure 15: An instance for which the original dependency parser inferred an in-

correct output and the MWE-aware dependency parser inferred a correct output.

Next, I show an instance for which the original and MW E-aware dependency
parsers inferred correct and incorrect outputs, respectively. In Figure 16, the
original dependency parser correctly infers “costs” as the head of “because”.
However, the MWE-aware dependency parser infers “707s” as the head of the
MWE (“because of”) 6. This and almost all MWEs in the test set (286 out
of 289 MWEs) also appear in the training set. Therefore, to perform a correct
inference for the above instance, I need to explore MWE-specific features (the
word form and POS tag of each component of the MWE) and/or higher-order

features for the dependency parser rather than dealing with unseen MWEs.

16The full sentence is “Earlier the company announced it would sell its aging fleet of Boeing

Co. 707s because of increasing maintenance costs.”

23

nmod case
case amod
Ecompouna‘ cEmpouqd r mwe] [compound H

Boeing Co. 707s because of increasing maintenance costs
15 16 17 18 19
NNP NNP NNPS IN IN VBG NN NNS

(a) A dependency structure inferred by the original dependency parser.

compound dobj
fmpouﬂ:l (case 1 [compound ‘

Boeing Co. 707s because_of increasing maintenance costs
12 13 14 15 16 17 18
NNP NNP NNPS IN VBG NN NNS

(b) A dependency structure inferred by the MWE-aware dependency parser.

Figure 16: An instance for which the original dependency parser inferred a correct

output, but the MWE-aware dependency parser inferred an incorrect output.

3.5 Summary

I created an English dependency corpus that is aware of functional MWEs and
conducted dependency parsing using the constructed corpus 7. As future work, I
plan the followings: (1) I will design features for MWE-aware dependency parsing
and address both of MWE recognition and dependency parsing, (2) I will explore
a linguistic analysis in which an MWE-aware dependency tree is preferable to a
word-based dependency tree, (3) Based on the fact that only 497 in 1,923 MWE
types appear in the Ontonotes corpus, it is worthwhile to match the MWE dictio-
nary with other large-scale corpus, such as Annotated English Gigaword (Napoles
et al., 2012) and calculate what percentage of the MWE dictionary appears in

the corpus at least once.

17This corpus is available at https://catalog.ldc.upenn.edu/LDC2017T01

24

4 Construction and Analysis of Dependency Cor-
pus that is aware of Functional Multiword Ex-

pressions and Named Entities

4.1 Introduction

To solve complex natural language processing (NLP) tasks that require deep syn-
tactic analysis, various levels of annotation such as parse trees and named entities
(NEs) must be consistent with one another (Finkel and Manning, 2009). Other-
wise, it is usually impossible to combine these pieces of information effectively.

In Chapter 3, to develop an MWE-aware dependency corpus, I establish the
consistency between phrase structure trees and functional MWE spans. In other
words, I ensure that a span of a functional MWE corresponds to a subtree of a
phrase structure.

To pursue this direction further, in this chapter, I construct a corpus such
that dependency structures are consistent with MWEs and NEs (MWE-Aware
English Dependency Corpus 2.0 (MAED corpus ver.2.0) '8), by extending Kato
et al. (2016)’s corpus (MAED corpus ver.1.0 '), which T describe in Chapter 3.
As is the case with MAED ver.1.0, each MME is a syntactic unit in an MWE-
aware dependency structure in the MAED ver.2.0 (Figure 1b). Moreover, MAED
ver.2.0 includes not only functional MWEs but also NEs. Because NEs are highly
productive and occur more frequently than functional MWEs, they are difficult
to cover in a dictionary.

Consistency between NE-spans and phrase structures is not guaranteed be-
cause they are independently annotated in most syntactic corpora. For instance,
in Figure 17, a span of an NE, “Board of Investment” is inconsistent with the syn-
tactic tree. Therefore, I resolve this inconsistency by modifying phrase structures
locally and establishing each NE as a subtree.

Furthermore, to evaluate the constructed corpus, I explore pipeline and joint
models that predict both MWE spans and an MWE-aware dependency tree 2°.

18This corpus is available at: https://catalog.ldc.upenn.edu/LDC2017T16.
19 https://catalog.ldc.upenn.edu/LDC2017T01
20In Chapter 3, I address MWE-aware dependency parsing based on gold MWE spans, which

25

NP-SBJ

/\

NP PP
NP NNP IN NP
%\
DT NN POS Boe‘ird (lf NI|\IP
tie goven|1ment |s Investment

Figure 17: An example of inconsistency between NE-spans and phrase structures.

A rectangle shows an NE-span.

MWE-level POS tags NNP RB IN others
MWE Instances 20,992 3,796 2,424 737
MWE Types 11,875 377 92 52

Table 4: Corpus statistics.

Experimental results show that the proposed joint model with additional MWE
span features achieves an MWE recognition improvement of 1.35 points over the

pipeline model.

Type of MWEs Non-terminal Multiple contiguous Crossing brackets

children
Functional MWEs 3,466 1,663 1,799
NEs 18,625 2,252 144

Table 5: Histogram with respect to the consistency between MWE spans and

phrase structures.

is actually not a realistic scenario. By contrast, proposed models do not assume gold MWE

spans.

26

4.2 MWE-aware Dependency Corpus

To ensure consistency between MWE annotations and dependency structures, 1
first integrate NE annotations in Ontonotes 2! into phrase structures such that
functional MWEs are established as subtrees. Subsequently, I convert phrase
structures to dependency structures. I construct my corpus by extending Kato
et al. (2016)’s corpus (Chapter 3) 22, which is itself built on a corpus by Shigeto
et al. (2013). Regarding MWE annotations, Shigeto et al. (2013) first con-
structs an MWE dictionary by extracting functional MWEs from the English
Wiktionary 23, and classifies their occurrences in Ontonotes into either MWE or
literal usage. Kato et al. (2016) integrates these MWE annotations into phrase
structures and establishes functional MWESs as subtrees (Chapter 3).

Next, I describe the establishment of each NE as a subtree. If an NE-span
does not correspond to any non-terminal in a phrase structure, there are two
possibilities: (A) the NE-span corresponds to multiple contiguous children of a
subtree, or (B) the NE-span has crossing brackets with the spans in the parse
tree (Finkel and Manning, 2009; Kato et al., 2016). In Case (A), I insert a
new non-terminal (“MWE_NNP”) that governs the NE-span ?*. In Case (B),
many instances correspond to a noun phrase (NP) comprised of a nested NP
and a prepositional phrase (Figure 17). In the main NP, a modifier, such as a
determiner, an adjective, or a possessive NP, precedes an NE. For these instances,
according to Finkel and Manning (2009), I reduce Case (B) to Case (A) by
moving the modifier from the nested NP to the main NP. Then, I establish each
NE as a subtree by inserting an MWE-specific non-terminal (“MWE_NNP”).
Furthermore, in some instances, it is more reasonable to enlarge NE-spans than
to modify phrase structures. As a typical example, there is an NE annotation
that covers only part of a coordination structure, such as “Peter and Edward

Bronfman,” where “Edward Bronfman” is annotated as an NE. In this case, 1

21T exploit NE annotations in Ontonotes Release 5.0 (LDC2013T19). I address traditional
NEs, such as persons, locations, and organizations, while omitting the following: DATE, TIME,
PERCENT, MONEY, QUANTITY, ORDINAL, and CARDINAL. Note that I only focus on

multiword NEs.
22nttps://catalog.ldc.upenn.edu/LDC2017TO1
2https://en.wiktionary.org
24T do not require manual annotations for Case (A).

27

extend an original NE-span to the whole coordination structure. I show the
statistics for the corpus in Table 9 5. This corpus has 27,949 MWE instances
in 37,015 sentences. A histogram regarding the consistency between MWE spans
and phrase structures is shown in Table 5. For tree-to-dependency conversion,
I first replace a subtree corresponding to an MWE by a preterminal node and
its child node. The preterminal node has an MWE-level POS tag (MWE_POS
tags). The child node is generated by joining all components of the MWE with
underscores. Then, I convert a phrase structure into a Stanford-style dependency
structure (de Marneffe and Manning, 2008) (Figure 1b).

det

mwe_DT
nsubj

mwe_DT /—\

a number of cities have

Figure 18: In the joint model, I directly infer an MWE-aware dependency tree
in which an MWE (“a number of”) is represented as a head-initial structure by

a dependency parser.

4.3 Models for MWE identification and MWE-aware de-
pendency parsing

In this chapter, I explore models that predict both MWE spans and an MWE-

aware dependency structure (Figure 1b).

4.3.1 Pipeline Model

The pipeline model involves the following three steps. First, BIO tags encoding
MWE spans and MWE_POS tags, such as “B_.NNP” or “I_DT” are predicted by
a sequential labeler based on conditional random fields (CRFs) (Lafferty et al.,
2001). Second, tokens belonging to each predicted MWE span are concatenated
into a single node. Finally, an MWE-based dependency structure (Figure 1b) is

25NEs have NNP as an MWE-level POS tag.

28

predicted by an arc-eager transition-based parser (Nivre, 2003). For the CRFs,
in addition to word-form and character-based features, I use 1 to 3-gram features
based on dictionaries of functional MWEs and NEs within 5-word windows from a
target token. For a dictionary of functional MWES; I use the dictionary by Shigeto
et al. (2013) (Chapter 4.2). Meanwhile, I create a dictionary of NEs from a title
list of English Wikipedia articles, except stop words, provided by UniNE 26.
Regarding parsing features, I use baseline features and rich non-local features

proposed by Zhang and Nivre (2011).

4.3.2 Joint Model

In the proposed joint model, MWE spans and MWE_POS tags are encoded as
dependency labels (Figure 18), and conventional word-based dependency parsing
is performed by an arc-eager transition-based parser (Nivre, 2003). I use the
same parsing features used in the pipeline model. I convert MWEs in MWE-
aware dependency structures (Figure 1b) to head-initial structures (Figure 18)
that encode MWE spans and MWE_POS tags. Note that this representation
is similar to Universal Dependencies (McDonald et al., 2013). When parsing, I
use constraints based on a history of transitions and the dictionary of functional
MWEs. This is done to avoid invalid dependency trees. Because NEs are highly

productive, I do not use a constraint regarding NEs.

Joint(+dict)

I design additional features based on matches with dictionaries of NEs and func-
tional MWESs. Hereafter, I refer to the joint model coupled with these additional
features as joint(+dict). For instance, given a sentence that starts with “a num-
ber of cities,” the additional features are as follows: a / B.DT, number / I.DT,
of / I.DT, cities / O. Based on these additional features, I extend the baseline
features proposed by Zhang and Nivre (2011) to develop MWE-specific features
whose atomic features include not only words and word-level POS tags, but also
BIO tags encoding MWE spans and MWE_POS tags.

26http://members.unine.ch/jacques.savoy/clef/englishST.txt

29

Dependency Parsing MWE Recognition
All sentences First tokens

of MWEs
Model UAS LAS UAS LAS |FUM FTM
Pipeline 91.39 89.42 84.06 78.22 |91.40 91.32
Joint 91.15 &89.18 81.93 77.74 | 89.03 88.79
Joint(+dict) 91.36 89.37 84.45 80.74 | 91.93 91.78

Joint(+pred_span) 91.50 89.51 84.85 81.29 | 92.75 92.60

Table 6: Experimental results on the test set.

Joint(+4pred_span)

Because dictionary matching is not concerned with context, in this setting, I
use MWE spans and MWE_POS tags predicted by CRF, rather than dictionary
matching. Hereafter, I refer to this as joint(+4pred_span). By using features
extracted from CRF predictions, I can mitigate error propagation from sequential
labeling and consider information from a full sentence. Moreover, I can alleviate
difficulties in predicting MWE spans and MWE_POS tags encoded as head-initial
structures (Figure 18) by the parser.

4.4 Experimental Setting

I split the WSJ portion of Ontonotes, using sections 2-21 for training, and section
23 for testing. For all models, I used the POS tags predicted by the Stanford POS
tagger (Toutanova et al., 2003) 27. For the pipeline model and joint(+pred_span),
I used MWE spans and MWE_POS tags predicted by CRF 28, For dependency
parsing, I used Redshift (Honnibal et al., 2013) for all models, with a beam size
of 16 for decoding. For training, I removed non-projective dependency trees. For

testing, I parsed all sentences. To evaluate parsing, I used unlabeled and labeled

27T used 20-way jackknifing for the training split. The test split was automatically tagged by
the POS tagger trained on the training split.

28] used 20-way jackknifing for the training split. The test split was automatically tagged by
the sequential labeler trained on the training split.

30

Dependency Parsing MWE Recognition
(First tokens of MWEs)
Functional NEs Functional NEs
MWEs MWEs
Model UAS LAS UAS LAS |FUM FTM FUM
Pipeline 78.89 64.01 85.58 8241 | 96.76 96.42 89.81
Joint 71.28 65.05 85.07 81.49 | 91.01 89.93 88.47
Joint(+dict) 79.93 73.70 85.79 82.82 | 97.94 97.25 90.16
Joint(+pred_span) 81.31 74.74 85.89 83.23 | 97.59 96.91 91.32

Table 7: Breakdown of experimental results by type of MWE. Note that UAS /
LAS are calculated regarding the first tokens of MWEs. For NEs, the FTM is
the same as the FUM because each NE always takes NNP as an MWE-level POS

tag, and is not repeated.

attachment scores (UAS/LAS) ?. To focus on dependency edges that connect
inside and outside of MWEs, I measured UAS/LAS for not only the whole test set
but also first tokens of gold MWESs. For the pipeline model, a parser predicts an
MWE-aware dependency tree. To calculate UAS/LAS for each word belonging
to MWEs, I replaced each concatenated token corresponding to an MWE with
a subtree in which the first word of the MWE governs other words of the MWE
(the head-initial dependency subtree).

For the joint model, I directly compared a predicted tree with the gold tree. To
evaluate MWE recognition, I used the F-measure for untagged / tagged MWESs
(FUM/FTM) 3°. For the pipeline model, I compared the gold MWEs with pre-
dictions by CRF. For the proposed joint model, I compared the gold MWEs with
predicted MWE spans and MWE_POS tags represented as dependency labels.

2%When calculating UAS/LAS, I removed punctuation.
30FUM only focuses on MWE spans, whereas FTM focuses on both MWE spans and
MWE_POS tags.

31

4.5 Experimental Results and Discussion

I present the experimental results in Table 6. Comparing the joint model with the
pipeline model, there is not much difference between these models regarding UAS
/ LAS for all sentences. However, the former is 2.13 / 0.48 points worse than the
latter in terms of UAS / LAS regarding the first tokens of MWEs (1,269 in 34,526
tokens), and 2.37 / 2.53 points worse than the latter regarding FUM / FTM.
These results suggest that the performance of the joint model with no additional
features at predicting dependencies inside and around MWEs is worse than the
pipeline model. One of the reasons for this is that the exploitation of head-initial
structures in the joint model (Figure 18) involves the addition of MWE-specific
labels. This results in an increase in the total number of dependency labels from
41 to 50. Because of this broader output space, more search errors can occur
in the joint model compared with the pipeline model. Moreover, a breakdown
by type of MWE (Table 7) shows that most differences in performance between
these two models are related to functional MWHEs. These results suggest that
constraints regarding functional MWEs during parsing (4.3.2) are harmful to the
joint model with no additional features in terms of its performance concerning
functional MWEs.

By adding MWE-specific features to the joint model, however, I observe at
least a 2.52 / 3.00 point improvement in terms of UAS / LAS regarding the first
tokens of MWESs, and a 2.90 / 2.99 point improvement regarding FUM / FTM. As
a result, I obtain a 1.35 / 1.28 point improvement with joint(-+pred_span) com-
pared with the pipeline model in terms of FUM / FTM. A breakdown by type of
MWE shows that the addition of MWE-specific features leads to performance im-
provement, especially for functional MWEs (Table 7). These results suggest that
MWE-specific features are effective at both MWE recognition through depen-
dency parsing and the prediction of dependencies connecting inside and outside
of MWEs.

Comparing the joint(+pred_span) with the joint(+dict), the former is 0.40
/ 0.55 points better than the latter in terms of UAS / LAS regarding the first
tokens of MWESs, and 0.82 / 0.82 points better than the latter regarding FUM /
FTM. I can attribute this gain in performance to the additional features extracted
from more accurate predictions of MWE spans and MWE_POS tags by CRF than

32

those by dictionary matching.

4.6 Related Work

Whereas French Treebank is available for French MWEs (Abeillé et al., 2003),
there have been only limited corpora for English MWE-aware dependency pars-
ing. Schneider et al. (2014) constructs an MWE-annotated corpus on English Web
Treebank (Bies et al., 2012). However, this corpus is relatively small as training
data for a parser, and its MWE annotations are not consistent with syntactic
trees. By contrast, my corpus covers the whole of the WSJ portion of Ontonotes
and ensures consistency between MWE annotations and parse trees.

Korkontzelos and Manandhar (2010) reports an improvement in base-phrase
chunking by pre-grouping MWEs as words-with-spaces. They focus on compound
nouns, adjective-noun constructions, and named entities. However, they use gold
MWE spans, and this is not a realistic setting. By contrast, I use predicted MWE
spans.

Three works concerned with a French MWE-aware syntactic parsing are rel-
evant. First, Green et al. (2013) proposes a method for recognizing contiguous
MWEs as a part of constituency parsing by using MW E-specific non-terminals.
They investigate a CFG-based model and a model based on tree-substitution
grammars. Second, Candito and Constant (2014) compares several architectures
for graph-based dependency parsing and MWE recognition, in which MWE recog-
nition is conducted before, during, and after parsing. Finally, Nasr et al. (2015)
explores a joint model of MWE recognition and dependency parsing. They fo-
cus on complex function words. In terms of data representation, they adopt one
similar to mine, insofar as the components of an MWE are linked by dependency

edges whose labels are MWE-specific.

4.7 Summary

I constructed a corpus that ensures consistency in Ontonotes between dependency
structures and English MWESs, including named entities. Furthermore, I explored
models that can predict both MWE spans and an MW E-aware dependency struc-

ture. Experimental results show that by using additional MWE span features,

33

the joint model achieves an MWE recognition improvement of 1.35 points over

the pipeline model.

34

5 Construction of Verbal Multiword Expression

Annotated Corpus

5.1 Introduction

In previous chapters, I deal with continuous MWEs, such as functional MWEs
and named entities. However, in downstream tasks, it is also important to recog-
nize verbal MWEs (VMWEs), whose accurate recognition is challenging because
VMWES are likely to have discontinuous occurrences (e.g., take .. off). I show
the main categories of VMWESs in Table 8. Based on this, in this chapter, I
perform VMWE annotations on Ontonotes with crowdsourcing.

While dependency parsing and MWE recognition could be solved indepen-
dently, dependency structures where each MWE is a syntactic unit are prefer-
able to word-based dependency structures for downstream NLP tasks, such as
semantic parsing (Chapter 3). Because MWE recognition could help syntactic
parsing (Nivre and Nilsson, 2004; Eryigit et al., 2011), several works tackle MWE-
aware dependency parsing in French (Candito and Constant, 2014; Nasr et al.,
2015). They use French Treebank (Abeillé et al., 2003) because of its explicit
MWE annotations.

Regarding English MWEs, Schneider et al. (2014) constructs an MWE-annotated
corpus on English Web Treebank (Bies et al., 2012). However, the number of
VMWE occurrences (1,444) and types (1,155) in their corpus is relatively small-
scale. Therefore, in this work, I conduct full-scale VMWE annotations on the
Wall Street Journal (WSJ) portion of English Ontonotes (Pradhan et al., 2007),
which results in 7,833 VMWE occurrences and 1,608 types. This resource en-
ables to develop large-scale English MWE recognition and MWE-aware parsing
models.

Concretely, I construct a VMWE dictionary based on the English-language

31 Based on this dictionary, I collect possible VMWE occurrences

Wiktionary
on Ontonotes and filter candidates with a help of gold dependency trees. To
exploit crowdsourcing, I formalize VMWE annotations as a multiword-sense dis-

ambiguation problem. This resource is available at the following URL: https:

3lhttps://en.wiktionary.org

35

//github.com/naist-cl-parsing/Verbal-MWE-annotations.

5.2 Corpus Construction

5.2.1 Candidate Extraction

First, I construct a VMWE dictionary by extracting multiword verbs from an
English part of Wiktionary 32. I exclude auxiliary verbs and MWESs consisting of
be-verbs and non-verbal components (e.g., be above, be with). As a result, I get
8,369 VMWE types.

"
| the possibility.

~
Figure 19: Dependency trees with function-head (above) and content-head
schemes (below). T omit edges common in both trees. A box corresponds to

a VMWE (“look at”). To filter a possible VMWE as a subtree of a dependency

tree, a function-head scheme is preferable to a content-head scheme.

Second, I extract possible VMWE occurrences in 37,015 sentences of the WSJ
portion of Ontonotes Release 5.0 (LDC2013T19) by using the above VMWE
dictionary. I allow each VMWE to include gaps (e.g., take .. off), consider

Categories Examples

Verb-particle constructions pick up, take over

Prepositional verbs look for, base on

Light verb constructions make a decision, take a look
Verb-noun(-preposition) take care (of)

Semi-fixed VMWEs make one’s way

Table 8: Main categories of Verbal MWEs.

32 select multiword entries that have “English_verbs” as categories.

36

Which definition below most closely matches the
meaning of highlighted words in each sentence?

Definition of " mark time"
1. Used other than as an idiom.
2. (idiomatic, marching) To march in place, while still in step with the

beat.

3. (fhiguratively) To stop making progress temporarily.

(A)]tthe ﬁrsta US. official was impeached

on charges of which a jury had acquitted him.

1 2 3 None of the above Hard to judge

Figure 20: A screenshot of a web interface for VMWE annotations on Crowd-
Flower.

inflections of verbs and a variability of placeholders in semi-fixed MWEs (e.g.,
someone, something, one’s and oneself). I exclude candidates that do not include
any verbs by using gold part-of-speech information. Also, I filter out candidates
that have other verbs or punctuation marks within the gaps.

Because most of the VMWESs are syntactically regular, I filter a VMWE whose
components form a subtree in a Stanford basic dependency tree (de Marneffe and
Manning, 2008) that is converted from a phrase structure tree given in Ontonotes.
I exploit Stanford basic dependency because its function-head scheme is suitable
for filtering positive occurrences of VMWEs that have a frequent POS pattern,
“V IN”. In many cases, a noun phrase follows this type of MWE. Therefore, in
the content-head scheme like Universal Dependencies (McDonald et al., 2013), a
verb of this MWE governs a head of the noun phrase, that is, such MWE does
not form a subtree (Figure 19). On the contrary, such MWE corresponds to a
subtree in a function-head scheme.

Regarding phrasal verbs (PVs), I perform additional filtering. In this work, I
construct a VMWE-annotated corpus by extending Komai et al. (2015)’s corpus,
because they have partially performed annotations of PVss on Ontonotes. For PVs
that are not covered by their dictionary, I adopt the following methods: (1) I clas-

sify PVs into verb-particle constructions (VPCs) or prepositional verbs (Baldwin

37

et al., 2009), (2) I examine a label of a dependency edge from a verb to a particle.
For VPCs, I regard a candidate as a positive VMWE occurrence iff the depen-
dency label is “prt”. For prepositional verbs, if the dependency label is “prep”,
and there is no gap between the verb and the particle, I regard this candidate as
a positive VMWE occurrence. This is subject to rules proposed by Komai et al.

(2015). Otherwise, I conduct crowdsourced annotations.

5.2.2 Large-scale Annotations of VMWEs by Crowdsourcing

Based on the above filtering, I conduct large-scale VMWE annotations on the
WSJ portion of English Ontonotes by crowdsourcing whose web interface is shown
in Figure 20. To exploit crowdsourcing, I formalize VMWE annotations as a
multiword sense disambiguation problem. Annotators read a sentence in which
some possible components of a VMWE are highlighted. They are also given
possible definitions of the VMWE, extracted from an English part of Wiktionary.
For each VMWE, I provide one literal sense and idiomatic senses 3. Based
on this, they are asked to determine which definition most closely matches the
meaning of highlighted words in the sentence. During annotations, workers are
allowed to answer that the meaning of highlighted words is not in the given senses
(“None of the above”), or they are not certain of the multiword sense (“Hard to
judge”).

I collect crowdsourced annotations of VMWEs by using CrowdFlower 3%, 1
set the following requirements: (1) Annotators belong to Level & contributors,
who are regarded as the smallest group of most experienced, highest accuracy
contributors in CrowdFlower, (2) Annotators live in countries with English as an
official language, (3) Annotators accomplish a success rate higher than 70 % in
answering test questions for which I give gold answers. To facilitate annotations,
[provide workers with an interface to show multiple sentences (less than 6) that
include possible occurrences of the same VMWE. I collect three judgments for
each of 2,135 possible VMWE occurrences. Data collection costs $1,016 USD in
total.

To determine whether each VMWE candidate is positive or not, I adopt the

331 add a definition corresponding to a literal sense if it is omitted in Wiktionary.
3nttps://www.crowdflower.com

38

following criteria:

1. If all judgments correspond to the same sense, I adopt it (67.1 %). If the
sense is idiomatic, I regard this candidate as a VMWE.

2. If any judgment does not correspond to a literal sense, I regard the candidate
as a positive occurrence of the VMWE (9.0 %).

3. Otherwise, I annotate the candidate manually (23.8 %).

5.2.3 Resolution of Inclusions and Overlaps

Finally, I check inclusions and overlaps between annotations by myself and those
by (Komai et al., 2015), which results in 159 inclusions and 40 overlaps. Regarding
inclusions, 1 adopt the broader MWE spans. For instance, given two MWE
occurrences corresponding to “come at” and “come at a price”, in which a span
of the latter includes a span of the former, I leave only the latter. Concerning
overlaps, I merge overlapped MWE spans if I can get a new VMWE that is
in both of the following dictionaries: Cambridge Dictionary 3° and The Free
Dictionary 3. For instance, I get an occurrence of “take over the reins” by
merging occurrences of “take the reins” and “take over”. Also, I resolve pseudo
overlaps originated from false annotations. As a result, I reduce the number of
overlaps to 11 instances, which correspond to essential overlaps, such as “look
back” and “look .. on .. as” in the following sentence: “He may be able to look

back on this election as the high-water mark of far-left opposition.”.

5.2.4 Corpus Statistics

As a result of annotations, I get 1,608 VMWE types and 7,833 instances on
Ontonotes. I show histograms by the number of constituent word tokens (Table 9)
and by the number of gaps (Table 10). Moreover, frequent POS patterns are
shown in Table 11, in which you can see various kinds of VMWE, such as phrasal
verbs (PVs), light verb constructions (LVCs), and semi-fixed MWEs. Top-3 POS
patterns (“V IN”, “V RP”, and “V RB”) correspond to PVs. Each of those

includes a fair amount of discontinuous instances.

3%http://dictionary.cambridge.org
3http://idioms.thefreedictionary.com

39

of constituent tokens
2 3 4 > 5 Total
VMWE instances 7,067 597 138 31 7,833
VMWE types 1,235 270 80 23 1,608

Table 9: Corpus statistics. I show VMWE types and instances by the number of

constituent word tokens.

of gaps 0 1 2
VMWE instances 6,855 968 10

Table 10: A histogram of VMWE instances by the number of gaps.

5.3 Related Work

[introduce several MWE-annotated corpora. First, French Treebank (Abeillé
et al., 2003) is often used as a dataset for French MWE-aware dependency pars-
ing (Candito and Constant, 2014) because of its explicit MWE annotations. It
consists of phrase structure trees, augmented with morphological information
and functional annotations of verbal dependents. Second, Vincze (2012) pro-
vides English-Hungarian parallel corpus annotated for LVCs, which belong to
VMWESs. Their corpus contains 703 LVCs in Hungarian and 727 in English on
14,261 sentence alignment units, taken from economiclegal texts and literature.
Recently, PARSEME organizes a shared task on automatic identification of ver-
bal MWEs (Savary and Ramisch, 2017). They provide annotation guidelines and
annotated corpora of 5.5 million tokens and 60,000 VMWE annotations for 18
languages. Note that their corpora do not support English at edition 1.0.
Regarding English MWEs, Shigeto et al. (2013) first constructs an MWE dic-
tionary by extracting functional MWEs 37 from the English-language Wiktionary,
and classifies their occurrences in Ontonotes into either MWE or literal usage.

3THere, I refer to MWEs that function either as prepositions, conjunctions, determiners,

pronouns, adverbs, auxiliary verbs, to-infinitives, or interjections as functional MWEs.

40

In Kato et al. (2017), I integrate annotations of these functional MWEs and
named entities (NEs) # into phrase structures by establishing MWEs as sub-
trees. After that, I exploit this dataset for experiments of English MWE-aware
dependency parsing (Chapter 4).

5.4 Summary

In this work, I conduct large-scale annotations of English VMWEs on the Wall
Street Journal portion of Ontonotes. Based on a VMWE dictionary extracted
from English Wiktionary, I collect possible VMWE occurrences on Ontonotes,
and filter candidates with a help of gold dependency trees. To take advantage of
crowdsourcing, I formalize annotations of VMWEs as a multiword-sense disam-

biguation problem. My future work could involve the followings:

1. I plan to integrate the above VMWE annotations into annotations for func-
tional MWEs and named entities on Ontonotes by Kato et al. (2016) and
Kato et al. (2017). This will help to develop models for MWE recognition
and dependency parsing that are aware of various kinds of English MWEs.

2. T get VMWE occurrences on Ontonotes for only 1,608 out of 8,369 types
in the VMWE dictionary. Therefore, I plan to explore VMWE occurrences

on the larger corpus, such as the Annotated English Gigaword treebank 3°.

38The NE annotations are given by Ontonotes.
3%http://catalog.ldc.upenn.edu/LDC2012T21

41

POS patterns Continuous Discontinuous Frequent

VMWEs VMWEs VMWEs
V IN 3,071 260 base on : 142 look for : 86 focus on : 77
go to : 70 account for : 69
V RP 2,081 229 set up : 62 take over : 49 point out : 47
turn out : 43 pick up : 39
V RB 547 116 go back : 17 come back : 17 do well : 15
go down : 13 go ahead : 13
V NN 280 167 take place : 41 do business : 27
take effect : 26 take steps : 24 have time : 22
V DT NN 114 45 take a look : 13 make a decision : 8
pave the way : 5 lay the groundwork : 5
V RP IN 98 4 come up with : 20 make up for : 12
keep up with : 8 liveup to: 7 add up to: 5
vV JJ 7 11 make sure : 14 go wrong : 8 go public : 6
keep quiet : 5 make much : 4
V IN NN 56 26 have in mind : 8 take into account : 7
set in motion : 5 sign into law : 5
A 47 32 be called : 34 be had : 5 have got : 4
make known : 4 let know : 4
V PRP 7 0 make it : 16 have it : 10 buy it : 9 move it : 5
V PRP$ NN 49 1 have one’s way : 5 run one’s course : 4

make one’s way : 3 read someone’s lips : 3

Table 11: Corpus statistics based on POS patterns (at least 50 occurrences only).

42

6 Joint Analysis of Continuous Multiword Expression-
Aware Dependency Parsing and Discontinu-

ous Multiword Expression Recognition

6.1 Introduction

Figure 21: A sentence that includes both continuous (”a few”) and discontinuous
MWEs ("made .. decisions”). For this sentence, a model predicts both a contin-
uous MWE-aware dependency tree (shown in the upper half of this figure) and
a verbal MWE (VMWE). In the bottom half of this figure, I show a sequence of
extended BIO tags (Schneider et al., 2014), which can represent gaps between

components of a discontinuous MWE with "0” (small-o).

In downstream tasks that require the automated understanding of the meaning
of the texts, it is important to recognize not only continuous MWEs “° but also
VMWESs such as phrasal verbs, which are likely to have discontinuous occurrences.
Because dependency information, specifically, a dependency edge from a verb to a
particle or a direct object is expected to be effective in VMWE recognition, in this
chapter, I address the task to predict both continuous MWE-aware dependency
trees and VMWEs (Figure 21) (Chapter 6.3).

Regarding continuous MWE-aware dependency parsing, I explore the follow-

ing three models:

40Here, I define continuous MWEs as MWEs that always have continuous occurrences, such

as functional and adjective MWEs.

43

1. A pipeline model of continuous MWE recognition (CMWER) and MWE-
aware dependency parsing. In this model, I formalize CMWER as se-
quential labeling, merge a predicted MWE span to a single node and

perform dependency parsing.

2. Single-task(parser), which is a model to predict a word-based dependency
tree that encodes MWE spans and MWE-level POS-tags as dependency
labels.

3. The hierarchical multi-task learning (HMTL) (Sanh et al., 2018) of CMWER
and Single-task(parser).

In the HMTL-based model, an output from a low-level task encoder is fed into
a high-level task encoder. The motivation to use this model is the following: con-
tinuous MWE-aware dependency parsing could be decomposed to CMWER and
dependency parsing in which a CMWE is treated as a syntactic unit. Therefore,
in the HMTL-based model, the high-level task, that is, Single-task(parser) is able
to utilize features captured by the low-level task (CMWER). These features are
expected to improve the performances of Single-task(parser).

Another contribution in this chapter is the development of a continuous MWE-
aware dependency corpus. In Chapter 3, I developed a dependency corpus that
is aware of functional MWEs. However, there are other kinds of continuous
MWEs, such as adjective MWEs and compound nouns. Because compound nouns
are syntactically compositional and highly productive, annotations of compound
nouns are much more expensive than those of adjective MWEs. Therefore, in
this chapter, I conduct adjective MWE annotations on Ontonotes to broaden the
coverage of continuous MWEs. After that, I modify phrase structure trees in
Ontonotes so that a span of a functional or adjective MWE comprises a subtree
in a phrase structure tree. Finally, I perform tree-to-dependency conversion and
develop a large-scale dependency corpus that is aware of both functional and
adjective MWEs (Chapter 6.2).

Experiments in continuous MW E-aware dependency corpus built on Ontonotes
5.0 (Chapter 6.2) show that the pipeline and HMTL-based models are 1.7 points
better than Single-task(parser) in terms of F1 in CMWER. Concerning MWE-

aware dependency parsing, all models lead to comparable UAS in the whole test

44

set and sentences including MWEs. If I focus on the first tokens of gold MWEs,
Single-task(parser) and the HMTL-based model perform at least 1.4 points better
than the pipeline model in terms of UAS.

Concerning VMWE recognition (VMWER), I formalize this task as sequential
labeling by using extended BIO tagging scheme (Schneider et al., 2014), which is
able to treat gaps between components of a VMWE (e.g., pick .. up). 1 explore

the following two models:

1. Single-task (VMWE), which is the sequential labeler for VMWE recog-

nition.
2. The HMTL of CMWER, Single-task(parser), and Single-task (VMWE).

I investigate the above HMTL-based model because dependency information,
specifically, a dependency edge from a verb to a particle or a direct object is
expected to be effective in VMWE recognition.

As a dataset, I use VMWE annotations (Kato et al., 2018) on Ontonotes 5.0,
which I described in Chapter 5. Experimental results show that the above HMTL-
based model performs 1.3 points better than Single-task (VMWE) in terms of F1.

6.2 Construction of Continuous Multiword Expression-

Aware Dependency Corpus

Here, I describe the construction of an English dependency corpus that is aware
of both adjective and functional MWHEs. This corpus is based on an English
treebank and MWE annotations. Regarding the English treebank, I use the Wall
Street Journal (WSJ) portion of Ontonotes 5.0 (Pradhan et al., 2007). Concerning
MWE annotations, I perform annotations of adjective MWEs and merge them
with annotations of functional MWEs by Shigeto et al. (2013).

6.2.1 Annotations of Functional MWEs

Regarding functional MWEs, I adopt annotations by Shigeto et al. (2013). Note
that their target of functional MWE annotations, Penn Treebank (Marcus et al.,
1994) includes my target of adjective MWE annotations, the WSJ portion of
Ontonotes 5.0. They perform MWE annotations in the following four steps.

45

First, they construct an MWE dictionary by extracting functional MWEs from
English Wiktionary #!. Second, they collect MWE candidates on Penn Treebank
with a dictionary matching. Third, for each type of functional MWEs, they
cluster its candidate occurrences according to their phrase structures. Finally,

they classify each cluster into MWE or literal usages.

6.2.2 Annotations of Adjective MWEs

ADJP
b NP ADJP ADJP
worth PRP RB/\JJ RBAVBN
|
it not guilty closely held

(a) An example (b) An exam- (c) Another ex-
of an MWE us- ple of a literal ample of a lit-
age. usage. eral usage.

Figure 22: Examples in which an MWE span corresponds to a phrase structure
subtree that has ADJP as a root node. Based on PCFG rule probabilities, (a) is

annotated as an MWE usage, and (b) and (c) are classified into literal usages.

I perform annotations of adjective MWEs in the following three steps.

First, I extract adjective MWEs from English Wiktionary and construct an
MWE dictionary, which has 2,869 MWE types.

Second, I conduct a dictionary matching in the WSJ portion of Ontonotes 5.0.
As a result, 304 types of adjective MWESs appear in this corpus at least once.

Third, according to whether each MWE has at least one semantic non-compositional
sense, [divide the above 304 types of adjective MWEs into two groups, which I
describe below. I consider a sense of an MWE is semantic non-compositional if

Wiktionary treats the sense as idiomatic or figurative.

1. Concerning an adjective MWE that has at least one idiomatic or figurative

sense (69 types, 380 candidate occurrences), I classify each candidate into

“https://en.wiktionary.org

46

ADJP

RB b RB PP

o

relatively | close together| IN NP

NP for NP PP-LOC
PDT DT NN IN NP
FW FW | NNS I N EZaN
such a settlement in DT NNS
de facto |changes these parts
(a) An example (b) An example of a literal usage.
of an MWE us-
age.

Figure 23: Examples in which an MWE span does not correspond to a phrase
structure subtree. Based on PCFG rule probabilities, (a) and (b) are annotated
as MWE and literal usages, respectively.

MWE or literal usages with word sense disambiguation (WSD). I perform
WSD in the following procedures. If a characteristic syntactic pattern ac-
companies an idiomatic or figurative sense, I perform WSD based on phrase
structures and POS tags of components of a candidate MWE 42, Other-
wise, I perform WSD manually by myself. Based on the results of WSD,
I treat each candidate as an MWE usage if the meaning of the candidate
corresponds to an idiomatic or figurative sense. Otherwise, I classify the

candidate into a literal usage.

2. Regarding an adjective MWE that does not have any idiomatic or figura-
tive senses (235 types, 1,034 candidate occurrences), I conduct annotations
in the following two steps. First, I classify candidates into two groups
(case(A) and (B) to be described) based on whether a candidate MWE
span comprises a subtree in a phrase structure tree. Second, I classify can-
didates in each group into MWE or literal usages according to syntactic
non-compositionality. Concretely, for a given candidate MWE, if a PCFG
rule suffices the following condition, I classify a candidate into an MWE

usage.
Pr(ADJP — t,..t,) < 0.0008 (2)

42For instance, in the most of adjective MWE usages of "to go”, only these two tokens (”to
go”) form a verb phrase (e.g., I have three more years to go). Hence, if a phrase subtree that
minimally covers ”to go” includes other tokens, I treat this instance as a literal usage.

47

Here, t..t, is a POS tag sequence of components of a candidate MWE.
Hereafter, I call the above condition C'ondpcrg. I induce PCFG rules from
the training split (sections 02-21) of the WSJ portion of Ontonotes 5.0.

Case (A): If there is a non-terminal symbol (hereafter X) that corresponds
to a candidate MWE span (457 candidate occurrences), I perform

MWE annotations in the following way.

i). If X is ADJP (adjective phrase) (Figure 22), I classify a can-
didate into MWE (Figure 22) or literal usages (Figure 22 (b)
and (c)) based on a probability of a PCFG rule, as I describe

above.

ii). If X is PP (prepositional phrase), I classify a candidate into
an MWE usage if the PP functions as an adjective phrase and

Condpcrg holds for it.
iii). If X is neither ADJP nor PP, I treat MWE candidates as literal

usages.

Case (B): If a candidate MWE span does not correspond to any sub-
tree in a phrase structure (577 candidates), I classify a candidate into
an MWE usage if it functions as an adjective phrase and it suffices

Condpcrg (Figure 23).

POS tag sequences No. of instances Examples

RB JJ 44 dead last, legally binding
IN IN NN 19 up to date, out of business
FW FW 17 de facto, ad hoc

IN JJ 13 on alert, as much

IN NN 11 in place, in question

Table 12: The statistics of adjective MWE annotations. I show POS tag sequences

that appear more than 10 times.
As a result, I acquire 83 types, 198 occurrences of adjective MWEs in the

48

MWE-level POS tags RB IN JJ others
MWE Instances 3,794 2,409 198 655
MWE Types 377 91 83 31

Table 13: Corpus statistics of functional and adjective MWE annotations.

WSJ portion of Ontonotes 5.0. I show the corpus statistics regarding POS tag
sequences of components of adjective MWESs in Table 12.
6.2.3 Construction of MWE-aware Dependency Corpus

I construct a dependency corpus that is aware of functional and adjective MWEs

in the following three steps.
(A) A resolution of conflicts between functional and adjective MWE annotations.
(B) A resolution of conflicts between MWE annotations and phrase structures.

(C) A conversion from phrase structures to dependency trees.

6.2.3.1 A resolution of conflicts between functional and adjective MWE

annotations

First, I explore conflicts between functional and adjective MWE annotations. As
a result, I find that some adjective MWE spans include functional MWE spans.
For instance, an adjective MWE span, “out of business” includes a functional

MWE span, “out of” in the following sentence:

. and putting unprofitable state-owned companies out of business.

In such instance, I resolve a conflict between these two annotations by leaving
the broader MWE span. I show the corpus statistics of functional and adjective
MWE annotations after this resolution in Table 13.

49

6.2.3.2 A resolution of conflicts between MWE annotations and phrase

structures

Next, I resolve conflicts between MWE annotations and phrase structures. When
some annotated MWE span does not correspond to a phrase structure subtree, I
call this situation a conflict between an MWE annotation and a phrase structure.
Because conflicts between functional MWE annotations and phrase structures
have already been resolved in the corpus by Kato et al. (2016), I extend it by
dealing with conflicts between phrase structures and adjective MWE annotations,
which I perform additionally in this work.

Based on methods I described in Chapter 3, I classify adjective MWE spans
into the following three patterns according to consistency between an MWE span
and a phrase structure (Finkel and Manning, 2009; Kato et al., 2016).

NP

MWE_JJ NNS

NP /\ ‘

W FW NNS FW F\‘N changes

de facto |changes de facto
(a) A phrase struc- (b) A phrase struc-
ture before a mod- ture after a modifica-
ification. A rectan- tion. An MWE (“de
gle shows an MWE facto”) is grouped as
span. a subtree.

Figure 24: A modification of a phrase structure in a case of “multiple contiguous
children”.

(1) A phrase structure subtree (Figure 22a)
If an MWE span corresponds to a phrase structure subtree, I need not

modify this constituency tree.

(2) Multiple contiguous children (Figure 24)
If an MWE span corresponds to multiple contiguous children of a sub-
tree (Finkel and Manning, 2009; Kato et al., 2016), I insert an MWE-specific

50

PP-PRD

IN NP
| PP-PRD
in NP PP
o Mysjj PP
T
N‘N IT /N‘P\ |r‘\1 N‘P n‘v NP
line Jwith /NP\ N‘N N"“S in NN [with NP NN NNS
NTS PC‘)S weekend predictions line NNS POS weekend predictions
analysts ' analysts '
(a) A phrase structure before a modi- (b) A phrase structure after a modifi-
fication. A rectangle shows an MWE cation. An MWE (“in line”) is grouped
span. as a subtree.

Figure 25: A modification of a phrase structure in a case of “crossing brackets”.

NP
MWE_JJ NNS NP
FW/\FW changes J) NNS
d‘e falto de_facto| changes
(a) Before a merge (b) After a merge

Figure 26: A step of merging components of an MWE into a single node.

non-terminal 3 that governs the MWE span. Note that I do not require

manual annotations for this case.

(3) Crossing brackets (Figure 25)
If MWE spans have crossing brackets with the spans in the parse tree,
I establish each MWE as a subtree by the following way. As a typical
example, a subtree that includes an adjective MWE span could be a PP
comprised of a preposition (IN) and a noun phrase (NP). This NP consists
of anested NP and a nested PP (Figure 25a). In such instances, an adjective
MWE span precedes a nested PP. In this case, I insert an MWE-specific

non-terminal that governs an adjective MWE span and move the nested PP

BFormat of the MWE-specific non-terminal is “MWE_<MWE-level POS-tag>" (e.g.,
“MWE_JJ").

o1

to the main PP (Figure 25b).

6.2.3.3 A conversion from phrase structures to dependency trees

Finally, I perform tree-to-dependency conversion. As a preprocessing step, I
first replace a subtree corresponding to an MWE by a preterminal node and its
child node (Figure 26). The preterminal node has an MWE-level POS tag. The
child node is created by joining all components of the MWE with underscores
(words-with-spaces). After that, I convert phrase structures to Stanford basic

dependency trees (de Marneffe and Manning, 2008) 44,

6.3 Models for Continuous MW E-aware Dependency Pars-
ing and Verbal MWE Recognition

Here, I describe the models for continuous MWE-aware dependency parsing and

verbal MWE recognition.

6.3.1 Continuous MWE-aware Dependency Parsing

For continuous MWE-aware dependency parsing, I investigate the following three

models:

1. A pipeline model of continuous MWE recognition (CMWER) with the
sequential labeler, and MWE-aware dependency parsing, which treats an
MWE as a syntactic unit (Figure 27).

2. Single-task(parser), which is a model to predict a word-based dependency
tree that encodes MWE spans and MWE-level POS-tags as dependency
labels (a head-initial dependency tree) (Figure 28).

3. The hierarchical multi-task learning (HMTL) (Sanh et al., 2018) of CMWER
and Single-task(parser) (Figure 29).

441 use Stanford CoreNLP Ver.3.9.1. As a command-line option, I use the following: -basic
-keepPunct -conllx -originalDependencies. Details are described in the following site:https:
//nlp.stanford.edu/software/stanford-dependencies.html.

52

Biaffine

classifiers
MLPs (6600 (©550) (6500} (600
Bi-LSTMs
emtlar;%lgings 0000
Input tokens According to its
Elfgc_’tig‘gesd B-IN E-IN 0

Figure 27: An architecture of the pipeline model. In this model, I get an average
of hidden states corresponding to an MWE span predicted with the sequential
labeler, and use it as an input to MLPs whose outputs are fed into biaffine

classifiers.

Input features for the above models are concatenations of word embeddings,
ELMo embeddings (Peters et al., 2018), and character-level word representa-
tions (Kim et al., 2016).

In the pipeline model, I use the bi-LSTM-CNNs-CRF model (Ma and Hovy,
2016) for CMWER and Deep biaffine parser (Dozat and Manning, 2017) for
MWE-aware dependency parsing. To calculate a hidden state of an MWE span,
I average output vectors that correspond to tokens belonging to an MWE span
predicted by the sequential labeler, from a bi-LSTM network (Figure 27). This
hidden vector of an MWE is fed into MLPs in Deep biaffine parser. Hence, an
output from the parser is a dependency tree in which a predicted MWE is treated
as a syntactic unit. Note that I utilize gold MWE spans in training to make it

possible for the parser to predict a gold dependency tree. At inference time, I

33

det
mwe_DT
mwe_DT nsubj

A number of cities have

Figure 28: An example of a head-initial dependency tree, in which a span of an
MWE (”a number of”) and an MWE-level POS-tag are encoded as dependency
labels (mwe_DT).

exploit MWE spans predicted by the sequential labeler.

In Single-task(parser), I utilize Deep biaffine parser to predict a head-initial
dependency tree. Because this model predicts a head-initial dependency tree,
in which MWE spans and MWE-level POS-tags are represented as dependency
labels, this model could mitigate error propagation, which the pipeline model
could suffer from.

Finally, I describe the motivation to use the HMTL-based model. Because
continuous MWE-aware dependency parsing could be decomposed to CMWER
and dependency parsing in which a CMWE is treated as a syntactic unit, fea-
tures captured by the sequential labeler for CMWER are expected to improve
performances of Single-task(parser). Therefore, I adopt the HMTL-based model
in which CMWER and Single-task(parser) are treated as low and high-level tasks,
respectively. In the HMTL-based model, inputs to the high-level task encoder
are both outputs from the low-level task encoder and token representations of an

input sentence (shortcut connections (Sanh et al., 2018)).

6.3.2 Verbal MWE Recognition

With respect to VMWE recognition (VMWER), I formalize this task as sequential
labeling by using extended BIO tagging scheme (Schneider et al., 2014), which is
able to treat gaps between components of a VMWE (e.g., pick .. up). 1 explore

the following two models:

1. Single-task (VMWE), which is the sequential labeler for VMWE recog-
nition. Concretely, I use the bi-LSTM-CNNs-CRF model (Ma and Hovy,

o4

Input Sentence

v

Word Representation

(CO00] (C000] (O0O0)

Word CNN-extracted
embedding ELMo Char Features
' “Continuous MWE
Encoder recognition
Multi-layer Bi-LSTM . _
+ Conditional Random Field

Encoder W
Multi-layer Bi-LSTM

Continuous MWE-aware
Dependency Parsing

Biaffine classifiers on MLPs

Figure 29: An architecture of the hierarchical multi-task learning (HMTL) of
continuous MWE recognition (CMWER) and dependency parsing which predicts
head-initial dependency trees (Single-task(parser)).

2016).
2. The HMTL of CMWER, Single-task(parser), and Single-task (VMWE).

I investigate the above HMTL-based model because dependency information,
specifically, a dependency edge from a verb to a particle or a direct object is
expected to be effective in VMWE recognition. In this HMTL-based model, the
encoder of Single-task (VMWE) can utilize features captured by the encoder of
Single-task(parser). For comparison, I explore the following two HMTL-based

models:

1. the HMTL of CMWER and Single-task (VMWE).

2. the HMTL of Single-task(parser) and Single-task (VMWE).

35

Input Sentence

v

Word Representation

(OCO0]) (OCO0] (OC0O)

Word ELMo CNN-extracted
embedding Char Features

v

Encoder
Multi-layer Bi-LSTM

Conditional Random Field

\J

Continuous MWE recognition }

Encoder
Multi-laye_r Bi-LSTM

—

Continuous MWE-aware
I > Dependency Parsing
Biaffine classifiers on MLPs

Encoder
Multi-layer Bi-LSTM

J

[VMWE recognition

Conditional Random Field

Figure 30: An architecture of HMTL of continuous MWE recognition
(CMWER), dependency parsing that predicts head-initial dependency trees
(Single-task(parser)), and Single-task (VMWE).

6.4 Experiments with Models for Continuous MWE-aware

Dependency Parsing and Verbal MWE Recognition

Here, 1 describe experiments of models for continuous MWE-aware dependency

parsing and verbal MWE recognition.

6.4.1 Experimental Setup and Implementation Details

As a dataset, I use a continuous MWE-aware dependency corpus (Chapter 6.2)
and VMWE annotations (Chapter 5) (Kato et al., 2018) on Ontonotes 5.0. I
split the WSJ portion of Ontonotes 5.0, using sections 2-21 for training, section

22 for development, and section 23 for testing, respectively.

Within the above VMWE annotations, I find a small number of sentences in
which multiple VMWE annotations partially overlap with each other. Because
it is difficult to formalize VMWE recognition in these sentences as sequential
labeling, I perform experiments after removing 13 and 2 sentences with overlapped
VMWE annotations from the training and test splits, respectively.

During the training of an HMTL-based model, a task is randomly sampled
and a minibatch of a dataset attached to the task is also randomly sampled. The
sampling probability for a task is proportional to the relative size of a dataset for
the task (proportional sampling) %°. As a criterion of convergence, I adopt Early
stopping (Prechelt, 1998), in which training would be stopped if the validation
metrics do not improve within the fixed number of epochs, which is a hyper-
parameter.

As base implementations of bi-LSTM-CNNs-CRF and Deep biaffine parser, I
use the AllenNLP library (Gardner et al., 2018). I initialize word embeddings with
Glove (Pennington et al., 2014). Concerning ELMo representations, I utilize the
bi-LSTM network pre-trained with One Billon Word Benchmark corpus (Chelba
et al., 2013). In the bi-LSTM-CNNs-CRF models used in CMWER and VMWER,
I apply dropout to inputs and outputs of the bi-LSTM networks. In Deep biaffine
parser, I use dropout in inputs and outputs of the bi-LSTM networks and outputs
from Multi-Layer Perceptrons (MLPs) for dependency heads and dependency
labels.

Downsampling of negative instances in the sequential labeling

In continuous MWE-aware dependency corpus, many sentences have no MWEs
(e.g., 1370 in 1640 sentences in the test set), which corresponds to sequences made
of only 7O” (outside) tags. Hereafter, I define negative and positive instances as a
sentence having no MWEs and a sentence having at least one MWE, respectively.
To mitigate class imbalance (Leevy et al., 2018), in training of the sequential la-

beler for recognition of CMWEs or VMWEs, I perform downsampling of negative

45Tn my experiments, the sizes of datasets for tasks in HMTL are almost the same with
each other, however, the VMWE recognition task has less training instances than those of the
other two tasks (CMWER and continuos MWE-aware dependency parsing) because I remove
sentences that have partially overlapped VMWESs, as I described above.

o7

instances if number of negative instances are more than positive instances in a
mini-batch. The purpose of this downsampling is to make the number of negative

instances that contribute to the loss function, same as those of positive instances.

o8

6.4.2 Hyper-parameters and model selections

Hyper-parameter Value

[Input features]

Word embeddings Glove 6B (100 dimensions)

Character-based representations 16 dimensions

Window size 3

No. of filters 64
[Training]

Optimizer Adam

Learning rate 0.001

Epochs 50

Patience (used in early stopping) 10
[Continuous MWE recognition]

Hidden Units of LSTMs 64

No. of LSTM Layers 2

Dropout ratio 0.2

Mini-batch Size 32
[Continuous MWE-aware dependency parsing]

Hidden Units of LSTMs 256

No. of LSTM Layers 3

Dropout ratio 0.33

Hidden Units of MLPs (for dependency arcs) 500
Hidden Units of MLPs (for dependency labels) 100

Mini-batch Size 100
[VMWE recognition]

Hidden Units of LSTMs 64

No. of LSTM Layers 2

Dropout ratio 0.2

Mini-batch Size 32

Table 14: Hyper-parameters used in the experiments.

99

I show hyper-parameters used in experiments in Table 14. Regarding CMWER, I
select a model based on F1-scores of the development set. Concerning VMWER,
and HMTL-based models that include VMWER, I perform a model selection
based on F1-scores for VMWZEs of the development set. With respect to CMWE-
aware dependency parsing and other HMTL-based models, I select a model based

on labeled attachment scores (LAS) of the development set.

6.4.3 Evaluation measures

To evaluate continuous MWE recognition, I use the F-measure for untagged /
tagged MWEs (FUM / FTM) “6. Regarding models that predict head-initial
dependency trees, I calculate FUM / FTM by using predicted MWE spans and
MWE-level POS tags represented in head-initial dependency trees.

Concerning an evaluation measure of VMWE recognition, I use FUM. Each
predicted VMWE is represented as token indices because a VMWE could have a
gap between its elements.

Regarding continuous MWE-aware dependency parsing (CMWE-DP), I use
unlabeled and labeled attachment scores (UAS / LAS) 7. For the pipeline model
of CMWER and CMWE-DP, each MWE span predicted by CMWER is merged
into a single token in the first stage. After that, the parser predicts an CMWE-
aware dependency tree in the second stage. Hence, in evaluation, I convert each

merged token into a head-initial subtree and calculate UAS and LAS.

46FUM only focuses on MWE spans, whereas FTM focuses on both MWE spans and MWE-

level POS tags.
4TWhen calculating UAS / LAS, I remove punctuation.

60

6.4.4 Experimental Results and Discussion

CMWE-DP CMWE VMWE
All Sentences First words
sentences including of gold
MWEs MWEs
Model UAS LAS UAS LAS UAS LAS |FUM FTM | FUM
Single task 95.78 94.23 95.03 92.83 85.85 77.21 |93.25 92.56
(parser)
Pipeline (CMWE | 95.76 94.26 94.83 92.82 84.21 76.19 | 95.01 94.80
+ parser)
HMTL (CMWE | 95.69 94.20 94.89 92.86 &85.64 77.75|95.00 94.38
+ parser)
Single-task 84.28
(VMWE)
HMTL (CMWE 94.99 9458 | 83.12
+ VMWE)
HMTL (parser 95.19 9345 94.12 91.63 82.24 73.20 |91.11 89.72 | 84.57
+ VMWE)
HMTL (CMWE | 95.02 93.31 94.09 91.87 8326 75.24 |94.35 93.74 | 85.62
+ parser
+ VMWE)

Table 15: Experimental results for the test set regarding continuous MWE-aware
dependency parsing (CMWE-DP) and VMWE recognition (VMWER). The re-

sult is an average of five independent trials.

I show experimental results for the test set in Table 15. First, regarding CMWER,
Pipeline(CMWE + parser), HMTL (CMWE + parser), and HMTL (CMWE +
VMWE) show similar FUMs, which are 1.7 points better than an FUM of Single-
task (parser). These results suggest that sequential labeling or the HMTL-based
models are more suitable to recognize CMWEs than CMWER through CMWE-

aware dependency parsing.

61

MWE-level POS tags IN RB DT JJ

of MWE instances 93 167 18 11

Model UAS LAS UAS LAS UAS LAS UAS LAS

Single task (parser) 79.79 70.11 87.19 79.16 100.00 93.33 87.27 70.91

Pipeline (continuous MWE | 77.42 68.60 85.99 78.68 98.89 90.00 83.64 69.09
+ parser)

HMTL (continuous MWE | 80.43 69.89 86.83 80.60 100.00 94.44 81.82 63.64
+ parser)

HMTL (parser + VMWE) | 78.92 7140 81.79 72.22 100.00 92.22 80.00 60.00

HMTL (continuous MWE | 80.86 73.12 8239 74.49 100.00 92.22 81.82 65.46
+ parser + VMWE)

Table 16: Experimental results for the test set regarding continuous MWE-aware
dependency parsing with respect to first words of gold MWEs. T omit results for
MWEs that have PRP as MWE-level POS tags, which occur 5 times in the test
set, because UAS and LAS of these MWESs are 100% for all models.

Second, I describe the results of CMWE-aware dependency parsing. For the
whole test set and sentences including MWEs (270 in 1640 sentences), all models
show similar unlabeled attachment scores (UASs). Because the number of tokens
belonging to MWESs corresponds to about 1.9 % of that of the whole test set, mul-
tiple models could show similar performances for the whole test set, even though
these models perform differently in terms of UAS regarding dependency edges
that are inside of CMWESs or that connect inside and outside of CMWEs. Actu-
ally, if I focus on UAS of first words of gold MWEs, HMTL (CMWE + parser)
performs 1.4 points better than Pipeline(CMWE + parser). HMTL (CMWE
+ parser) exploits outputs from the encoder of the CMWE recognizer as input
features for the encoder of the dependency parser, instead of using predictions
of CMWER deterministically. Hence, HMTL (CMWE + parser) mitigates error
propagation from the CMWE recognizer, which is consistent with the above re-
sults. Besides, HMTL (CMWE + parser) and Single-task (parser) show similar
UASs. Considering the former is better than the latter in terms of CMWER,
the HMTL of CMWER and the head-initial dependency parser operates success-

62

fully. To compare performances of models in more detail, I show experimental
results of continuous MWE-aware dependency parsing concerning first words of
gold MWEs in Table 16. These results suggest that HMTL-based models includ-
ing CMWER are effective to predict dependency heads of first words of MWEs
that have IN (prepositions or subordinate conjunctions) as MWE-level POS tags.
Regarding the first words of adverbial MWESs, Single task (parser) performs the
best in terms of UAS and leads to at least 4.8 points better than HMTL-based
models including VMWER. Note that most of the gold MWEs in the test set
also appear in the training set (285 in 294 functional or adjective MWEs). Fur-
thermore, I find that PP-attachment often leads to parsing errors. For instance,
Single task (parser) incorrectly predicts “building” as a dependency head of the
first word of the gold MWE, “around the world” instead of the correct head,
“bureaus” in the following sentence: “It focused on building up its news bureaus
around the world, so as events took place it could go live quicker and longer
than other networks.”

Finally, concerning VMWE recognition, HMTL (CMWE + parser + VMWE)
performs 1.3 points better than Single-task (VMWE) in terms of FUM. Consider-
ing CMWE spans are represented in head-initial dependency trees, HMTL (parser
+ VMWE) and HMTL (CMWE + parser + VMWE) receive the same supervised
signals. In spite of this, the latter performs 1.0 points better than the former in
terms of FUM. This result suggests that it is more effective for VMWE recog-
nition models to exploit not only features captured by the dependency parser,
which predicts CMWE spans through parsing but also features acquired by the
sequential labeler for CMWE recognition. Besides, HMTL (CMWE + parser +
VMWE) is 2.5 points better than HMTL (CMWE + VMWE) in terms of FUM.
This result infers that the syntactic information captured by the CMWE-aware
dependency parser is effective for VMWE recognition. Furthermore, I investigate
the performances of HMTL (CMWE + parser + VMWE) in terms of unknown
VMWE recognition. Among 278 types of VMWEs that appear in the test set,
76 types of VMWESs do not appear in the training set, which I call unknown
VMWESs. The detailed analysis shows that recalls of HMTL(CMWE + parser
+ VMWE) regarding unknown and known VMWEs are 56.25 and 91.87, respec-

63

tively 8. Hence, it is worthwhile to investigate the effects of additional features
based on a VMWE dictionary that I develop in Chapter 5.2.1.

6.5 Related Work

First, I describe MWE-aware syntactic corpora. Whereas French Treebank (Abeillé
et al., 2003) is often used as a dataset for French MWE-aware dependency pars-
ing (Candito and Constant, 2014) because of its explicit MWE annotations,
there have been only limited corpora for English MWE-aware dependency pars-
ing. Schneider et al. (2014) performs MWE annotations on English Web Tree-
bank (Bies et al., 2012). However, their MWE annotations do not guarantee that
an MWE span corresponds to a phrase structure subtree. Besides, their corpus
consists of about 3,800 sentences, which is relatively small as the training data for
a dependency parser. By contrast, my corpus ensures that an MWE span com-
prises a subtree in a phrase structure tree (section 6.2.3), and it covers the whole
of the WSJ portion of Ontonotes 5.0, which consists of about 37,000 sentences.
Next, I introduce several works concerned with an MWE-aware syntactic
parsing. First, Green (2013) (Green et al., 2013) introduces MWE-specific non-
terminals and proposes a method to recognize contiguous MWEs as a part of
constituency parsing. They explore two models based on context-free grammars
and tree substitution grammars, respectively. Second, Candito and Constant
(2014) addresses joint dependency parsing and French MWE recognition. For
MWEs that do not have syntactic non-compositionality, they adopt alternative
representations instead of head-initial dependency trees (Figure 28). Their moti-
vation is to represent a syntactic structure within a syntactically regular MWE.
Their models focus on not only dependency parsing and MWE identification,
but also predictions of internal structures of syntactically regular MWEs. In
their models, MWE recognition is conducted before, during, or after parsing.
Third, Constant and Nivre (2016) addresses a joint prediction of the following
two structures: a dependency tree and a forest of lexical units including MWEs.
These two structures share lexical elements, that is, both tokens and syntactically
non-compositional MWESs. In the latter structure, each MWE is represented by

a constituency-like tree, which is able to consider nested or discontinuous MWEs.

48This is the average of five independent experiments.

64

They use a transition-based system that is an extension of a standard dependency
parser. They adopt classical transition-based parsing features, i.e., combinations
of linguistic attributes of nodes on the stacks and the buffer, processed subtrees,
and transition history. While their model predicts both lexical units and a de-
pendency tree that is aware of syntactically non-compositional MWEs, this work
tackles both VMWE recognition and continuous MWE-aware dependency pars-
ing. Because my motivation is to develop an MWE-aware dependency corpus that
is easy to use in downstream tasks that require an automated understanding of
the meaning of the texts, I integrate various continuous MWEs into dependency
structures, which are not limited to syntactically non-compositional MWEs. Fi-
nally, Kato et al. (2017, 2016) ensures that a span of a functional MWE or a
named entity (NE) comprises a subtree in a phrase structure tree in Ontonotes.
Based on this dataset, I perform tree-to-dependency conversion to get an English
dependency corpus that is aware of both NEs and functional MWEs (Chapter 4).
As is the case with the work in this chapter, I explore the following two models in
Chapter 4: (1) a pipeline model of the recognizer of NEs and functional MWEs,
and the dependency parser that treats an NE or an MWE as a unit, (2) a joint
model that performs word-based dependency parsing to predict a head-initial de-
pendency tree. I use Conditional Random Fields (CRF) (Lafferty et al., 2001)
as the sequential labeler and an arc-eager transition system (Nivre, 2003) as the
dependency parser in Chapter 4. This work is based on Kato et al. (2017), and
perform additional annotations for adjective MWEs to cover broader categories
of MWEs. Moreover, I address not only continuous MWE-aware dependency
parsing but also discontinuous MWE recognition.

Regarding VMWE-annotated corpora, PARSEME organizes shared tasks on
automatic identification of VMWEs (Ramisch and Cordeiro, 2018; Savary and
Ramisch, 2017). They provide annotation guidelines and annotated corpora of
79,326 VMWE annotations for 20 languages. Several works tackle this shared task
with neural network-based approaches. Klyueva et al. (2017) formalizes VMWE
identification as sequential labeling and use a bi-directional recurrent neural net-
work with gated-recurrent units (GRUs) (Cho et al., 2014). Berk et al. (2018)
utilizes the bi-LSTM-CRF model for VMWE recognition.

65

6.6 Summary

In this chapter, [address continuous MW E-aware dependency parsing and VMWE
recognition. My contribution is two folds. First, I construct a dependency corpus
that is aware of both functional and adjective MWEs. Second, I design several
models and compare their performances in terms of continuous MWE (CMWE)-
aware dependency parsing and MWE recognition. Experimental results show that
the hierarchical multi-task learning (HMTL)-based model of the CMWE recog-
nizer, the head-initial dependency parser, and the VMWE recognizer is effective
in VMWE recognition.

66

7 Conclusion

In this thesis, I develop continuous MWE-aware dependency corpora and VMWE
annotations. Furthermore, I address the following two tasks: continuous MWE-
aware dependency parsing and discontinuous MWE recognition.

My contribution is the followings:

(1) A formalization to develop MWE-aware dependency corpus
The main motivation for MWE-aware dependency trees comes from the fact
that most of existing English treebanks do not guarantee that an MWE span
corresponds to a phrase structure subtree. Hence, one could not acquire
MWE-aware dependency trees by simply merging components of each MWE

in dependency trees converted from phrase structure trees.

To deal with this problem, given a phrase structure tree and MWE anno-
tations, I formalized procedures to ensure that an MWE span corresponds
to a phrase structure subtree by modifying phrase structure trees (Chapter

3).

(2) Development of continuous MWE-aware dependency corpora
Based on the above procedures, I developed MWE-aware dependency cor-
pus ver.1.0 (LDC2017T01) and 2.0 (LDC2017T16) in Ontonotes 5.0 (Prad-
han et al., 2007). The former is aware of functional MWEs (Chapter 3),
and the latter is aware of NEs and functional MWEs (Chapter 4).

(3) VMWE annotations on Ontonotes
In downstream tasks, it is important to recognize not only continuous
MWEs but also verbal MWEs (VMWESs), which is likely to have discon-
tinuous occurrences (e.g., take .. off). Therefore, I performed VMWE
annotations on Ontonotes 5.0 with crowdsourcing (Chapter 5). To exploit
crowdsourcing, I formalized VMWE annotations as a multiword-sense dis-
ambiguation problem. My VMWE annotations on Ontonotes 5.0 are pub-

licly available 9.

“Ohttps://github.com/naist-cl-parsing/Verbal-MWE-annotations

67

(4) Continuous MWE-aware dependency parsing and VMWE recognition

Based on the intuition that dependency information is expected to be ef-
fective in VMWE recognition, I tackled the task to predict both continuous
MWE-aware dependency trees and VMWEs (Chapter 6). By experiments
with continuous MWE-aware dependency corpus and VMWE annotations
on Ontonotes 5.0, I demonstrated that the effectiveness of a model based
on the hierarchical multi-task learning (HMTL) (Sanh et al., 2018) of the
following three tasks: continuous MWE recognition, a prediction of head-
initial dependency trees, and VMWE recognition. Besides, I perform ad-
jective MWE annotations to broaden the coverage of continuous MWEs in

Ontonotes.
As future work, I plan the followings:

(1) The extension of coverage of MWEs
Even though I integrate functional and adjective MWEs into dependency
structures, several kinds of MWEs are not covered. Hence, I plan to in-
tegrate VMWEs, auxiliary verbal MWEs (aux-VMWEs), and semi-fixed
MWEs (Constant and Nivre, 2016; Morimoto et al., 2016) into dependency

trees.

(2) Use of pre-trained language models for MWE recognition
Very recently, it is demonstrated that contextualized token representations
acquired with pre-trained neural language models (NLMs) boost perfor-
mances of various downstream tasks (Peters et al., 2018; Devlin et al.,
2018). However, it is still unclear whether pre-trained LMs are useful in
MWE recognition. Specifically, I would like to explore a capacity of NLMs
to recognize syntactic and/or semantic non-compositionality of MWEs in
an unsupervised or weakly supervised way, under task settings in which an

MWE dictionary is given while MWE annotations are not available.

(3) Cross-lingual transfer learning of VMWE classification
In recent years, PARSEME organizes shared tasks on automatic identifica-
tion of VMWESs (Ramisch and Cordeiro, 2018; Savary and Ramisch, 2017).
Datasets of these tasks consist of VMWE annotations for 20 languages.

68

Based on the above datasets, I plan to design models for cross-lingual trans-
fer learning of VMWE classification (Taslimipoor et al., 2019). Concretely,
I assume the followings: (1) VMWE dictionaries and annotations for two
similar languages, such as English and German are given, (2) The scale of
VMWE annotations for a source language is larger than that for a tar-
get language, (3) I can train cross-lingual word representations (Ruder
et al., 2017; Eriguchi et al., 2018) of these two languages with word-level or
sentence-level alignments. The former could be obtained with a bilingual

dictionary, while the latter could be acquired with parallel translation data.

Given the above assumptions, I plan to perform cross-lingual transfer learn-
ing of VMWE classification in the following procedures: (1) I extract can-
didates of VMWE instances in each language by matching sentences with
a VMWE dictionary considering inflections and gaps between components
of a potential VMWE, (2) I train a model that performs a binary classifica-
tion of potential VMWE instances into MWE or literal usages in a source
language, (3) I additionally train this model with the training data from a
target language. This model is expected to mitigate limited training data

for the target language.

69

References

Anne Abeillé, Lionel Clément, and Francois Toussenel. 2003. Building a Treebank
for French, pages 165-187. Springer Netherlands, Dordrecht.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,
Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normalized
transition-based neural networks. ArXiv, abs/1603.06042.

Timothy Baldwin, Valia Kordoni, and Aline Villavicencio. 2009. Prepositions in
applications: A survey and introduction to the special issue. Computational
Linguistics, 35:119-149.

Gozde Berk, Berna Erden, and Tunga Gilingor. 2018. Deep-BGT at PARSEME
shared task 2018: Bidirectional LSTM-CRF model for verbal multiword ex-
pression identification. In Proceedings of the Joint Workshop on Linguistic An-
notation, Multiword Ezpressions and Constructions (LAW-MWE-CxG-2018),
pages 248-253, Santa Fe, New Mexico, USA. Association for Computational
Linguistics.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick. 2012. English web tree-
bank. Technical Report LDC2012T13, Linguistic Data Consortium, Philadel-
phia, Pennsylvania, USA.

Jari Bjorne, Filip Ginter, and Tapio Salakoski. 2017. Epe 2017: The biomedical
event extraction downstream application. In Proceedings of the 2017 Shared
Task on Eztrinsic Parser Evaluation (EPE 2017) at the Fourth International
Conference on Dependency Linguistics (Depling 2017) and the 15th Interna-
tional Conference on Parsing Technologies (IWTP 2017), pages 17-24. Asso-

ciation for Computational Linguistics.

Marie Candito and Matthieu Constant. 2014. Strategies for contiguous multiword
expression analysis and dependency parsing. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 743-753. Association for Computational Linguistics.

70

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and
Phillipp Koehn. 2013. One billion word benchmark for measuring progress in
statistical language modeling. In INTERSPEECH.

Danqgi Chen and Christopher Manning. 2014. A fast and accurate dependency
parser using neural networks. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pages 740-750, Doha,

Qatar. Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the properties of neural machine translation: Encoder-decoder
approaches. In SSST@QEMNLP.

Michael Collins and Brian Roark. 2004. Incremental parsing with the perceptron
algorithm. In ACL.

Matthieu Constant and Joakim Nivre. 2016. A transition-based system for joint
lexical and syntactic analysis. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages

161-171. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
CoRR, abs/1810.04805.

Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for
neural dependency parsing. ArXiv, abs/1611.01734.

Timothy Dozat, Peng Qi, and Christopher D. Manning. 2017. Stanford’s graph-
based neural dependency parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 20-30, Vancouver, Canada. Association for

Computational Linguistics.

Jason M. Eisner. 1996. Three new probabilistic models for dependency pars-
ing: An exploration. In Proceedings of the 16th Conference on Computational
Linguistics - Volume 1, COLING 96, pages 340-345, Stroudsburg, PA, USA.

Association for Computational Linguistics.

71

Akiko Eriguchi, Melvin Johnson, Orhan Firat, Hideto Kazawa, and Wolfgang
Macherey. 2018. Zero-shot cross-lingual classification using multilingual neural

machine translation. ArXiv.

Giilsen Eryigit, Tugay Ilbay, and Ozan Arkan Can. 2011. Multiword expressions
in statistical dependency parsing. In Proceedings of the Second Workshop on
Statistical Parsing of Morphologically Rich Languages, pages 45-55, Dublin,

Ireland. Association for Computational Linguistics.

Jenny Rose Finkel and Christopher D. Manning. 2009. Joint parsing and named
entity recognition. In Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics, pages 326—-334, Boulder, Colorado. Association for Com-

putational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nel-
son F. Liu, Matthew E. Peters, Michael Schmitz, and Luke S. Zettlemoyer.

2018. Allennlp: A deep semantic natural language processing platform. ArXiv,
abs/1803.07640.

Spence Green, Marie-Catherine de Marneffe, John Bauer, and Christopher D.
Manning. 2011. Multiword expression identification with tree substitution

grammars: A parsing tour de force with french. In EMNLP.

Spence Green, Marie-Catherine de Marneffe, and Christopher D Manning. 2013.
Parsing models for identifying multiword expressions. Computational Linguis-
tics, 39(1):195-227.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
Comput., 9(8):1735-1780.

Matthew Honnibal, Yoav Goldberg, and Mark Johnson. 2013. Proceedings of the
Seventeenth Conference on Computational Natural Language Learning, chap-
ter A Non-Monotonic Arc-Eager Transition System for Dependency Parsing.

Association for Computational Linguistics.

72

Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto. 2016. Construction of
an English dependency corpus incorporating compound function words. In
Proceedings of the Tenth International Conference on Language Resources and
Fvaluation (LREC’16), pages 1667-1671, Portoroz, Slovenia. European Lan-
guage Resources Association (ELRA).

Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto. 2017. English multiword
expression-aware dependency parsing including named entities. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 427-432, Vancouver, Canada. Association for

Computational Linguistics.

Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto. 2018. Construction of large-
scale English verbal multiword expression annotated corpus. In Proceedings of
the Eleventh International Conference on Language Resources and Evaluation

(LREC 2018), Miyazaki, Japan. European Languages Resources Association
(ELRA).

Yoon Kim, Yacine Jernite, David A Sontag, and Alexander M. Rush. 2016.

Character-aware neural language models. In AAAL

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency
parsing using bidirectional Istm feature representations. Transactions of the

Association for Computational Linguistics, 4:313-327.

Natalia Klyueva, Antoine Doucet, and Milan Straka. 2017. Neural networks
for multi-word expression detection. In Proceedings of the 15th Workshop on
Multiword Ezpressions (MWE 2017), pages 60-65, Valencia, Spain. Association

for Computational Linguistics.

Masayuki Komai, Hiroyuki Shindo, and Yuji Matsumoto. 2015. An efficient an-
notation for phrasal verbs using dependency information. In Proceedings of
the 29th Pacific Asia Conference on Language, Information and Computation:
Posters, pages 125-131.

loannis Korkontzelos and Suresh Manandhar. 2010. Can recognising multiword

expressions improve shallow parsing? In Human Language Technologies: The

73

2010 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 636—644, Los Angeles, California. Association

for Computational Linguistics.

Sandra Kubler, Ryan McDonald, Joakim Nivre, and Graeme Hirst. 2009. Depen-
dency Parsing. Morgan and Claypool Publishers.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Condi-
tional random fields: Probabilistic models for segmenting and labeling sequence
data. In Proceedings of the Eighteenth International Conference on Machine
Learning, ICML '01, pages 282-289, San Francisco, CA, USA. Morgan Kauf-

mann Publishers Inc.

Joffrey L. Leevy, Taghi M. Khoshgoftaar, Richard A. Bauder, and Naeem Seliya.
2018. A survey on addressing high-class imbalance in big data. Journal of Big
Data, 5:1-30.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured

prediction with global features. In ACL.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end sequence labeling via bi-
directional Istm-cnns-crf. ArXiv, abs/1603.01354.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Ed-
uard H. Hovy. 2018. Stack-pointer networks for dependency parsing. In ACL.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann
Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The penn
treebank: Annotating predicate argument structure. In Proceedings of the
Workshop on Human Language Technology, HLT ’94, pages 114-119, Strouds-
burg, PA, USA. Association for Computational Linguistics.

Marie-Catherine de Marneffe and Christopher D. Manning. 2008. The stanford
typed dependencies representation. In CFCFPE at COLING.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg,
Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar

74

Tackstrom, Claudia Bedini, Niria Bertomeu Castelld, and Jungmee Lee. 2013.
Universal dependency annotation for multilingual parsing. In Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics (Volume

2: Short Papers), pages 92-97. Association for Computational Linguistics.

Ryan T. McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. 2005.
Non-projective dependency parsing using spanning tree algorithms. In
HLT/EMNLP.

Ayaka Morimoto, Akifumi Yoshimoto, Akihiko Kato, Hiroyuki Shindo, and Yuji
Matsumoto. 2016. Identification of flexible multiword expressions with the
help of dependency structure annotation. In Proceedings of the Workshop on

Grammar and Lezicon: interactions and interfaces (GramLez), pages 102-109,
Osaka, Japan. The COLING 2016 Organizing Committee.

Courtney Napoles, Matthew R. Gormley, and Benjamin Van Durme. 2012. An-
notated gigaword. In AKBC-WEKEX@NAACL-HLT.

Alexis Nasr, Carlos Ramisch, José Deulofeu, and André Valli. 2015. Joint de-
pendency parsing and multiword expression tokenization. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 1116-1126, Beijing, China. Association for Computational

Linguistics.

Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In
Proceedings of the 8th International Workshop on Parsing Technologies (IWPT,
pages 149-160.

Joakim Nivre. 2004. Incrementality in deterministic dependency parsing.

Joakim Nivre and Jens Nilsson. 2004. Multiword units in syntactic parsing. In
Workshop on Methodologies and Evaluation of Multiword Units in Real-World
Applications, pages 3946, Lisbon, Portugal.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:

Global vectors for word representation. In Proceedings of the 2014 Conference

75

on Empirical Methods in Natural Language Processing (EMNLP), pages 1532

1543, Doha, Qatar. Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke S. Zettlemoyer. 2018. Deep contextualized word
representations. In NAACL-HLT.

Sameer S. Pradhan, Eduard Hovy, Mitch Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2007. Ontonotes: A unified relational seman-
tic representation. In Proceedings of the International Conference on Semantic
Computing, ICSC ’07, pages 517-526, Washington, DC, USA. IEEE Computer
Society.

Lutz Prechelt. 1998. Early stopping-but when? In Neural Networks: Tricks of
the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop, pages 55—69,
London, UK, UK. Springer-Verlag.

Carlos Ramisch and Silvio Ricardo Cordeiro. 2018. Edition 1.1 of the parseme
shared task on automatic identification of verbal multiword expressions. In
Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Ex-
pressions and Constructions, pages 222-240, Santa Fe, New Mexico, USA.

Association for Computational Linguistics.

Sebastian Ruder, Ivan Vuli’c, and Anders Sogaard. 2017. A survey of cross-lingual

word embedding models.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2018. A hierarchical multi-
task approach for learning embeddings from semantic tasks. arXiv preprint
arXw:1811.06051.

Agata Savary and Carlos Ramisch. 2017. The PARSEME shared task on au-
tomatic identification of verbal multiword expressions. In Proceedings of the
18th Workshop on Multiword Expressions (MWE 2017), pages 31-47, Valencia,

Spain. Association for Computational Linguistics.

Nathan Schneider, Spencer Onuffer, Nora Kazour, Emily Danchik, Michael T.
Mordowanec, Henrietta Conrad, and Noah A. Smith. 2014. Comprehensive

76

annotation of multiword expressions in a social web corpus. In Proceedings
of the Ninth International Conference on Language Resources and Fvaluation
(LREC’14), pages 455-461, Reykjavik, Iceland. European Language Resources
Association (ELRA). ACL Anthology Identifier: 1.14-1433.

Yutaro Shigeto, Ai Azuma, Sorami Hisamoto, Shuhei Kondo, Tomoya Kouse,
Keisuke Sakaguchi, Akifumi Yoshimoto, Frances Yung, and Yuji Matsumoto.
2013. Proceedings of the 9th Workshop on Multiword FExpressions, chapter
Construction of English MWE Dictionary and its Application to POS Tagging.

Association for Computational Linguistics.

Shiva Taslimipoor, Omid Rohanian, and Le An Ha. 2019. Cross-lingual trans-
fer learning and multitask learning for capturing multiword expressions. In
Proceedings of the Joint Workshop on Multiword Fxpressions and WordNet
(MWE-WN 2019), pages 155-161, Florence, Italy. Association for Computa-

tional Linguistics.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer.
2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In
Proceedings of the 2003 Human Language Technology Conference of the North

American Chapter of the Association for Computational Linguistics.

Veronika Vincze. 2012. Light verb constructions in the szegedparalellfx english-
hungarian parallel corpus. In LREC.

Yue Zhang and Joakim Nivre. 2011. Transition-based dependency parsing with
rich non-local features. In Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages

188-193. Association for Computational Linguistics.

IiE B, R B2, AR TG, 2019. EHHGEREZ ZRE U K FHE o — 3
A DR L . BREENIE, 26(4):663-688.

77

List of Major Publications

Journal Paper

1. g B, HEEE B2, A iR 2019. EHGERBZF R L 2 REHE
3 — NADHEEE L fphr. BASFENIE, 26(4):663-688

Conference Paper (referred)

1. Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto. 2016. Construction of
an English dependency corpus incorporating compound function words. In
Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC’16), pages 16671671, Portoroz, Slovenia. European
Language Resources Association (ELRA)

2. Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto. 2017. English mul-
tiword expression-aware dependency parsing including named entities. In
Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 427-432, Vancouver,

Canada. Association for Computational Linguistics

3. Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto. 2018. Construction of
large-scale English verbal multiword expression annotated corpus. In Pro-
ceedings of the Eleventh International Conference on Language Resources
and Evaluation (LREC 2018), Miyazaki, Japan. European Languages Re-
sources Association (ELRA)

78

List of Linguistic Resources

MWE-Aware English Dependency Corpus

This dependency corpus (https://catalog.ldc.upenn.edu/LDC2017T01) is aware
of functional MWEs (Chapter 3).

MWE-Aware English Dependency Corpus 2.0

This dependency corpus (https://catalog.ldc.upenn.edu/LDC2017T16) is aware
of named entities and functional MWEs (Chapter 4).

An English verbal MWE annotations on Ontonotes 5.0

These verbal MWE annotations (Chapter 5) are available at: https://github.

com/naist-cl-parsing/Verbal-MWE-annotations.

79

