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Construction and Analysis of Multiword

Expression-Aware Dependency Corpus∗

Akihiko Kato

Abstract

Multiword expressions (MWEs) consist of multiple words with syntactic or

semantic non-compositionality. In downstream tasks exploiting syntactic depen-

dency information and requiring the understanding of the meaning of the texts,

MWE-aware dependency structures, where each MWE is a syntactic unit are

preferable to word-based dependency structures. An English dependency corpus

is often acquired with automatic conversion from a treebank of phrase structure

trees. However, most of existing English treebanks do not guarantee that an

MWE span corresponds to a phrase structure subtree. Hence, it is not straight-

forward to get MWE-aware dependency trees from these treebanks. To deal with

this problem, I formalize procedures to ensure that an MWE span corresponds to

a phrase structure subtree by modifying phrase structure trees, and I apply these

procedures to the Ontonotes corpus to develop a dependency corpus in which

an MWE is treated as a syntactic node. I focus on functional MWEs, adjective

MWEs, and named entities.

The above MWEs always have continuous occurrences. However, in down-

stream tasks, it is also important to recognize verbal MWEs (VMWEs) such as

phrasal verbs, which are likely to have discontinuous occurrences. Therefore, I

conduct VMWE annotations on Ontonotes with crowdsourcing. Finally, I ad-

dress the task to predict both continuous MWE-aware dependency trees and

VMWEs 1. The reason I deal with these two sub-tasks simultaneously is that

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, December 13, 2019.
1Here, I define continuous MWEs as MWEs that always have continuous occurrences.
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I can expect dependency information to be used as effective features in VMWE

recognition. I perform experiments with continuous MWE-aware dependency cor-

pus and VMWE annotations on Ontonotes. Experimental results demonstrate

the effectiveness of a model based on the hierarchical multi-task learning of the

following three tasks: continuous MWE recognition, a prediction of a word-based

dependency tree that encodes MWE spans, and VMWE recognition.

Keywords:

Linguistic Resource, Corpus Construction, Syntactic Parsing, Dependency Pars-

ing, Multiword Expressions

ii



複単語表現を考慮した依存構造コーパスの構築と解析∗

加藤 明彦

内容梗概

複単語表現（Multiword Expression, MWE）は，統語的または意味的な非構

成性を有する複数の単語からなるまとまりである．統語的な依存構造の情報を利

用し，かつ意味理解が必要なタスクでは，単語ベースの依存構造よりも，MWE

を考慮した依存構造，即ちMWEを統語的な単位とする依存構造の方が好ましい．

英語の依存構造コーパスは句構造コーパスからの自動変換によって構築される事

が多いが，ほとんどの句構造コーパスでは，MWEが句構造の部分木になってい

ることは保証されていないため，MWEを考慮した依存構造を容易に得ることは

できない．そこで本研究では，MWEが句構造の部分木になるように木を修正す

る手続きを定式化し，複合機能語と形容詞MWEまたは固有表現を考慮した依存

構造コーパスをOntonotes上に構築した．また意味理解が必要なタスクでは，複

合機能語や形容詞MWEのように，連続な出現のみを持つMWE（連続MWE）

だけでなく，句動詞などの非連続な出現を持ちうるMWE（動詞MWE）の認識

も重要であるため，クラウドソーシングを用いてOntonotesコーパスに対して動

詞MWEの注釈を行なった．最後に上記コーパスを利用し，連続MWEを考慮し

た依存構造と動詞MWEの双方を予測する問題に取り組んだ．これは，依存構造

の情報は動詞MWE認識で有効な特徴量として働くという直感に基づいている．

評価実験の結果，連続MWE認識，連続MWEの範囲を依存関係ラベルとして符

号化した依存構造解析，動詞MWE認識の階層的マルチタスク学習に基づくモデ

ルの有効性が確認された．この結果は，連続MWEを考慮した依存構造解析器が

捉えた特徴量が，動詞MWE認識で有効である事を示唆している．

キーワード

言語資源, コーパス構築, 構文解析, 依存構造解析, 複単語表現
∗奈良先端科学技術大学院大学 情報科学研究科 博士論文, 2019年 12月 13日.
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1 Introduction

Multiword expressions (MWEs) consist of multiple words with syntactic or se-

mantic non-compositionality. MWEs could be classified into the following four

categories based on their grammatical roles (Table 1): (1) functional MWEs 2

(a number of, even though), (2) adjective MWEs (dead on one ’s feet, out of

business), (3) verbal MWEs (pick up, make a decision), and (4) compound nouns

(traffic light). Hereafter, a grammatical role of an MWE is referred to as an

MWE-level part-of-speech tag (MWE-POS tag).

In downstream tasks exploiting syntactic dependency information and requir-

ing the understanding of the meaning of the texts, MWE-aware dependency struc-

tures (Figure 1b) are preferable to word-based dependency structures (Figure 1a).

While each MWE is a syntactic unit in MWE-aware dependency structures, word-

based dependency structures do not represent MWE spans.

As an example of downstream tasks that could enjoy the advantages of MWE-

aware dependency structures, I can mention event extraction, which involves

event trigger detection and event arguments identification (Björne et al., 2017).

Both of event triggers and arguments could be MWEs. Besides, the shortest

dependency path connecting a trigger and an argument is often used as features

of argument identification systems (Li et al., 2013).

Traditionally, an English dependency corpus has been acquired with auto-

matic conversion from a treebank of phrase structure trees, such as Penn Tree-

Categories Examples

Functional MWEs a number of, even though, after all

Adjective MWEs dead on one’s feet, out of business

Verbal MWEs pick up, look for, make a decision

Compound nouns customer service, traffic light

Table 1: Categories of MWEs.

2I define functional MWEs as MWEs that function either as prepositions, conjunctions,

determiners, pronouns, adverbs, auxiliary verbs, to-infinitives, or interjections.
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(a) A word-based dependency structure (b) An MWE-aware dependency structure

Figure 1: Word-based and MWE-aware dependency structures. The former does

not represent an MWE span (“a number of”). In the latter, the MWE is repre-

sented as a single node.

Figure 2: An example in which an MWE span does not correspond to a phrase

structure subtree.

bank (Marcus et al., 1994). However, most of existing English treebanks do not

guarantee that an MWE span corresponds to a phrase structure subtree (Fig-

ure 2). Hence, one could not acquire MWE-aware dependency trees by simply

merging component words of each MWE in dependency trees converted from

phrase structure trees.

To deal with this problem, I formalize procedures to ensure that an MWE

span corresponds to a phrase structure subtree by modifying phrase structure

trees (Chapter 3), and I develop a dependency corpus that is aware of functional

MWEs (Chapter 3) and either adjective MWEs (Chapter 6) or named entities

(Chapter 4) in Ontonotes 5.0 (Pradhan et al., 2007).

MWE-aware dependency parsing is different from word-based dependency

parsing in that the former includes MWE recognition because an MWE-aware

dependency tree treats an MWE as a syntactic unit. To explore models that

are suitable for MWE-aware dependency parsing, I compare performances of the

following two models (Chapter 4): (1) a pipeline model of MWE recognition with
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Figure 3: An example of a head-initial dependency tree, in which a span of

an MWE (“a number of”) and an MWE-level POS-tag (“DT”) are encoded as

dependency labels (“mwe DT”).

the sequential labeler and MWE-aware dependency parsing, and (2) a word-based

dependency parsing to predict a tree that encodes MWE spans as dependency

labels (head-initial dependency parsing)(Figure 3). I evaluate the above two

models by using a dependency corpus that is aware of named entities (NEs) and

functional MWEs 3 as a dataset. Experimental results show that the head-initial

dependency parser improves MWE recognition compared to the pipeline model,

with the help of features captured by the sequential labeler for MWE recognition.

Functional MWEs, adjective MWEs, and named entities always have contin-

uous occurrences. However, in downstream tasks, it is important to recognize not

only continuous MWEs 4 but also verbal MWEs (VMWEs) such as phrasal verbs,

which are likely to have discontinuous occurrences (e.g., take .. off). Therefore,

I conduct VMWE annotations on Ontonotes 5.0 with crowdsourcing (Chapter 5).

To exploit crowdsourcing, I formalize VMWE annotations as a multiword-sense

disambiguation problem.

Finally, I address the task to predict both continuous MWE-aware dependency

trees and VMWEs (Figure 4) (Chapter 6). The reason I deal with these two sub-

tasks simultaneously is that I can expect dependency information to be used as

effective features in VMWE recognition. I perform experiments with a continu-

ous MWE-aware dependency corpus and VMWE annotations on Ontonotes 5.0.

Experimental results demonstrate the effectiveness of a model based on the hierar-

chical multi-task learning (HMTL) (Sanh et al., 2018) of the following three tasks:

continuous MWE recognition, a prediction of head-initial dependency trees, and

3This corpus is available at: https://catalog.ldc.upenn.edu/LDC2017T16.
4Here, I define continuous MWEs as MWEs that always have continuous occurrences.
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Figure 4: A sentence that includes both continuous (“a few”) and discontinuous

MWEs (“made .. decisions”). For this sentence, a model predicts both continuous

MWE-aware dependency trees (shown in the upper half of this figure) and verbal

MWEs (VMWEs). In the bottom half of this figure, I show a sequence of extended

BIO tags (Schneider et al., 2014), which can represent gaps between components

of a VMWE with “o” (small-o).

VMWE recognition.
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2 Preliminaries

2.1 MWE recognition

2.1.1 Continuous MWE recognition

Continuous MWE recognition (CMWER) is a task to predict spans of CMWEs

in a given sentence 5. CMWER is typically formalized as a sequence labeling

task by using BIO or BIOUL tagging schemes. Similar to other sequence labeling

problems, recent models for CMWER adopt the bi-LSTM-CNNs-CRF model (Ma

and Hovy, 2016).

2.1.2 Discontinuous MWE recognition

Discontinuous MWE recognition is a task to predict discontinuous MWE occur-

rences in a sentence. Each discontinuous MWE is represented as a set of token

indices, which could have a gap. Hereafter, “a group” is used to mean a set of

token indices that belong to the same discontinuous MWE. Because components

of a discontinuous MWE could have a gap between them, the recognition of pos-

sibly discontinuous MWEs, such as verbal MWEs (VMWEs) is not able to be

formalized with BIO or BIOUL tagging schemes. However, if a gap between com-

ponents of a discontinuous MWE is not nested 6, one can encode an occurrence

of the MWE as a sequence of extended BIO tags (Schneider et al., 2014). These

tags can represent gaps between components of an MWE with “o” (small-o).

2.1.3 Evaluation Measure

An evaluation of CMWER is based on the exact span matching, which is measured

with span-level F1-scores. In contrast, VMWERmodels are evaluated with group-

level F1-scores. Here, “a group” means a set of token indices that belong to the

same discontinuous MWE ( 2.1.2).

5Here, I define continuous MWEs (CMWEs) as MWEs that always have continuous occur-

rences.
6In other words, if a gap is filled by another MWE, this nested MWE itself does not contain

a gap.
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2.2 Dependency Structure

Figure 5: An example of a dependency structure.

In the dependency grammar, a syntactic structure of a sentence is a set of

binary, asymmetrical, and labeled relations between two lexical items (words),

which is often called a head and a dependent because a head syntactically governs

a dependent (Kubler et al., 2009). These relations are often called dependencies.

A grammatical relation (e.g., subject and object) between the head and dependent

is represented by a dependency label, which is also called a dependency relation.

For instance, in Figure 5, “Alice” depends on “likes”. Therefore, a dependency

relation “nsubj” holds between the head (“likes”) and the dependent (“Alice”).

Because each dependent generally has a unique head, the set of dependencies

in a sentence constitute a tree, often called a dependency tree. As shown in

Figure 5, the artificial “ROOT” is added before the first word of a sentence. In

this example, the dependent of “ROOT” is “likes”, which is a real syntactic root

of this dependency tree. This addition of “ROOT” leads to make every word

have a syntactic head and to make it easy for a parser to handle each dependency

tree.

2.2.1 Dependency schemes

A dependency treebank usually follows either content-head or function-head schemes.

In the content-head scheme (Figure 6a), content words are directly connected with

a dependency edge. Universal Dependencies (McDonald et al., 2013) and versions

after ver.3.5.2 of Stanford Dependency (de Marneffe and Manning, 2008) adopt

the content-head scheme. In contrast, in the function-head scheme (Figure 6b),

a preposition works as an intermediate node between a modified word and an
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(a) In the content-head scheme, content words (“look” and “possi-

bility”) are directly linked with each other.

(b) In the function-head scheme, a preposition (“at”) works as an

intermediate node between a modified word (“look”) and an object

of the preposition (“possibility”).

Figure 6: Content-head and function-head schemes.

object of the preposition. Stanford basic dependency (de Marneffe and Manning,

2008) follows the function-head scheme.

2.2.2 Projectivity

A dependency arc (wi, r, wj) is projective if there is a directed path from wi to

every node between wi and wj. A dependency tree is projective if every edge is

projective. Otherwise, the tree is non-projective. A projective dependency tree

has no crossing edge.

2.3 Dependency Parsing

Dependency parsing is a task to predict a dependency tree for a given sentence. In

a supervised setting, a dependency parser is trained on a set of pairs of a sentence
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and a gold dependency tree. Dependency parsers are classified into graph-based

and transition-based parsers.

2.3.1 Graph-based Parsing

In a graph-based parser, a dependency tree is factored into a set of subgraphs. In

testing, the parser predicts a dependency tree based on a score calculated from

scores of subgraphs. In most of the graph-based dependency parsing models, a

score of a dependency tree is defined as a summation over scores of subgraphs.

The simplest graph-based parser is the arc-factored model. In this model, a

subgraph described above is a single edge. The model parameters are defined for

each edge (wi, r, wj). Here, wi and wj are tokens, and r is a dependency label.

An inference of the arc-factored model equals to find a maximum spanning

tree (MST). The arc-factored model can be applied to both non-projective and

projective dependency trees.

If I focus on models for graph-based non-projective dependency parsing, the

most famous one is Chu-Liu-Edmonds Algorithm (McDonald et al., 2005). On

the other hand, Eisner’s algorithm (Eisner, 1996) is known as a classical method

for a projective dependency parsing.

In an arc-factored model, one could use any features over each dependency

edge. Standard features are followings: (1) word forms and part of speech (POS)

tags of wi and wj, (2) the dependency label (r), (3) a distance between wi and wj,

(4) a direction of the dependency edge, (5) POS tags of words near wi or wj (wi−1,

wi+1, wj−1, and wj+1), (6) POS tags of words between wi and wj. For training

of non-neural network parsers, an inference-based training, such as a perceptron

algorithm (Collins and Roark, 2004) is often used.

Hereafter, I introduce recent neural graph-based dependency parsers.

2.3.1.1 Kiperwasser and Goldberg (2016)’s parser

Kiperwasser and Goldberg (2016) adopts an arc-factored model (McDonald et al.,

2005), however, they replace a linear scoring function for each dependency arc in

a candidate dependency tree with a neural network-based one. Concretely, for

a given sentence s and a given potential arc (h,m), they firstly encode s with a

bi-directional LSTM Hochreiter and Schmidhuber (1997) and get hidden vectors
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for all tokens in s. After that, a score of (h,m) is calculated with an MLP which

takes as an input a concatenation of a pair of hidden vectors corresponding to h

and m.

2.3.1.2 Deep biaffine parser

Figure 7: An architecture of the biaffine parser. With respect to MLPs, for

brevity, I show only MLPs to calculate harc−dep
i and harc−head

i .

By extending Kiperwasser and Goldberg (2016), Dozat and Manning (2017)

proposes the deep biaffine parser, which consists of the following three compo-

nents: a bidirectional LSTM (bi-LSTM), Multi-layer perceptrons (MLPs), and

biaffine classifiers ( Figure 7).

Given a sentence s, a bi-LSTM is used to get hidden states for all tokens in s,

similar to Kiperwasser and Goldberg (2016).

Second, they produce four different vectors: harc−dep
i , harc−head

i , hrel−dep
i , and

hrel−head
i from each hidden state hi using MLPs (Dozat et al., 2017).

Third, they predict a head of each token wi in s by using a biaffine classifier,

which takes harc−dep
i and harc−head

j as inputs. This classifier outputs a score for

each potential dependency arc from wj to wi. The model predicts a head word

wj′ for a dependent wi that have the highest score.
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Finally, they predict a dependency label of a edge from a predicted head wj′

to wi with another biaffine classifier, which takes hrel−dep
i and hrel−head

j′
as inputs.

An output of this classifier is a score for each potential dependency label.

They perform joint training of the above two biaffine classifiers with an objec-

tive which is the sum of their softmax cross-entropy losses. The decoding could

be done by finding a maximum spanning tree (MST) of tokens of a test sentence.

2.3.2 Transition-based Parsing

In a transition-based approach, dependency parsing is formalized as a sequence

of state-transitions. Each state of a transition system, which is often called a

configuration, is defined as the triple: c = (σ, β, A) where σ is called “stack”,

β is called “buffer”, and A is a set of dependency arcs. A stack and a buffer

can contain tokens of a sentence. An initial state is c0 = (w0, (w1,...,wn), ϕ)

( Figure 8a). Here, w0 is an artificial ROOT, (w1,...,wn) are tokens of a sentence.

On the other hand, a terminal state is cf = (σ, ϕ, A) ( Figure 8d).

For each state, a transition system chooses one of the possible state-transitions,

also called “actions”. There are some variants for a set of actions. For brevity, I

explain a basic shift-reduce transition system, which is known as Arc-Standard (Nivre,

2004). In this system, possible actions are Shift, Left-Arc, and Right-Arc. Shift

moves the first token in a buffer to the top of the stack (Figure 8b). Left-Arc

adds to A a dependency edge from b0 (the first token in a buffer) to s0 (the top

of the stack), and remove s0 from the stack (Figure 8c). Right-Arc adds to A a

dependency edge from s0 to b0, replaces b0 with s0, and remove s0 from the stack.

In many parsing models, each configuration is mapped to a feature vector.

Standard features are word forms, lemmas, POS tags, dependency labels of vari-

ous positions in a transition system, that is, each position of a stack, a buffer and

leftmost/rightmost children of s0 and b0.

Based on a feature representation and model parameters, a parser predicts

the next action. In training, a parser optimizes model parameters based on the

training set: a set of pairs of a sentence and a gold state-transition sequence. In

testing, a parser predicts a state-transition sequence based on the trained parsing

model.

In recent years, many neural transition-based dependency parsers are pro-
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posed. Chen and Manning (2014)’s work is the first attempt to use a neural

network for dependency parsing. They use a standard neural network with one

hidden layer to predict the next action for a given configuration. Input features

are a concatenation of word, POS, and dependency label embeddings from a set

of elements based on the stack and buffer positions for each type of information

(word, POS or dependency label). Second, Andor et al. (2016) proposes a glob-

ally normalized transition-based neural network model with a beam search and

a conditional random field (CRF) objective (Lafferty et al., 2001). Even though

they use a simple feed-forward neural network, performances of their model are

comparable or better than LSTMs because their network is globally normalized.

Finally, Ma et al. (2018) introduces stack-pointer networks, which consist of the

following two steps. First, their proposed model reads and encodes the whole sen-

tence with a bi-directional recurrent neural network (RNN) encoder. After that,

it builds the dependency tree in a top-down (from root-to-leaf) and depth-first

manner with a uni-directional RNN decoder with an internal stack. At each time

step t, the decoder chooses a specific position in an input sentence according to

attention scores that are calculated from encoder hidden states and a decoder

hidden state at the time step t. After that, the decoder generates an arc between

the head at the top of the internal stack and the selected token (dependent).

Their proposed model is more efficient than graph-based parsers because it is a

transition-based system, and it can have a global view of the whole sentence.

2.3.3 Evaluation Measure

Standard evaluation measures used in dependency parsing are unlabeled attach-

ment score (UAS) and labeled attachment score (LAS). UAS represents how accu-

rately the parser predicts a head for each token. In calculating UAS, whether the

predicted dependency label is right or not is not taken into account. In contrast,

LAS regards a predicted dependency edge for a given dependent to be correct

only if both the head and dependency label equal to those of the gold standard.
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2.4 Syntactic Corpora

2.4.1 Penn Treebank

In the research of syntactic parsing, a manually annotated treebank is important

as training, tuning, and testing data used by a syntactic parser. Penn Tree-

bank (Marcus et al., 1994) is one of the de facto standard English treebanks.

Sentences in this corpus originate from the Wall Street Journal (WSJ), Brown

corpus, Switchboard, and ATIS.

The POS tagset of Penn Treebank is more simplified than that of Brown

Corpus as some redundant tags have been merged. In Brown Corpus, for instance,

“did” is assigned a special POS tag: DOD. On the other hand, a POS tag of “did”

in Penn Treebank is the same as the past tense of other verbs: VBD.

In addition to the standard syntactic tagset (e.g., NP and VP), Penn Treebank

provides three kinds of functional tags: text categories (e.g., titles), grammatical

functions (e.g., logical subjects in passives), and semantic roles (e.g., temporal

phrase).

2.4.2 Ontonotes

Ontonotes (Pradhan et al., 2007) is a corpus that provides multiple levels of

annotations: syntax, propositions, word senses, named entities, and coreference.

Ontonotes contains newswire data of English and Chinese. In particular, the

English portion is a non-financial portion of WSJ. A syntactic layer is built on

Penn Treebank.
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(a) An initial configuration of shift-reduce parser.

(b) A configuration after shift action by which “Bob” moved from b0 to s0.

(c) A configuration after Left-Arc action by which “Bob” was removed from

s0 and governed by “saw” at b0.

(d) A terminal configuration. Full dependency tree is constructed.

Figure 8: A sequence of configurations of the transition-based dependency parser

for a sample sentence (“Bob saw Alice with a telescope”).
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3 Construction and Analysis of Functional Mul-

tiword Expression-Aware Dependency Corpus

3.1 Introduction

Figure 9: A cycle and multi-heads occur if one could combine nodes in the MWE

（“a number of”）into a single node.

As I describe in Chapter 1, given a phrase structure tree in which an MWE

span does not correspond to a subtree, if one converts this phrase structure tree

to a word-based dependency tree, it is not always possible to acquire an MWE-

aware dependency tree by directly combining nodes belonging to an MWE into

a single node in the word-based dependency tree.

The above method often leads to the following problems: a node derived from

an MWE could have multiple heads and the whole dependency structure including

an MWE might be cyclic 7(Figure 1a → Figure 9). This is mainly because Penn

Treebank style annotation does not give special treatment for MWEs. I discuss

this problem further in Chapter 3.3.

To tackle the above problems, in this chapter, I propose a three-step conversion

method to get MWE-aware dependency structures. First, I establish an MWE

as a subtree in a phrase structure (Figure 11a → Figure 11b). Second, I replace

the subtree corresponding to the MWE by a preterminal with its leaf node as a

child (Figure 12). The preterminal has an MWE-level POS tag. Its child node

is made by joining all components of the MWE with underscores. As a final

step, I convert the phrase structure to Stanford Dependency (de Marneffe and

7This problem often happens in the content-head scheme, such as Universal Dependen-

cies (McDonald et al., 2013).
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Manning, 2008). In this way, I can avoid an occurrence of multiple heads and/or

cycles in an MWE-aware dependency tree, because an MWE constitutes a single

node in this dependency tree. I apply this conversion method to the Ontonotes

corpus (Pradhan et al., 2007) to construct a dependency corpus that takes MWEs

into consideration. In this work, I focus on functional MWEs, which are one type

of MWE that serves as functional expressions. This is because functional MWEs

have a variety of functionalities that may affect language analyses such as parsing

and POS tagging. To reduce the cost of annotation in constituting each MWE

as a subtree, I classify patterns of MWEs as seen in phrase structures in terms

of ease of conversion. I manually annotate only instances that are difficult to

convert automatically.

Furthermore, I evaluate the performance of the first order MST Parser (Mc-

Donald et al., 2005) on the constructed MWE-aware dependency corpus. I get an

unlabeled attachment score (UAS) comparable to that obtained on the original

Ontonotes corpus. Moreover, I qualitatively analyze some test instances in which

MWE-aware and original dependency parsers predict different dependency heads

of an MWE (Chapter 3.4).

3.2 Related Work

Shigeto et al. (2013) creates a dictionary of English functional MWEs 8, and

annotates functional MWEs that appear in Penn Treebank. In their corpus, each

MWE occurrence has its MWE-level POS tag and a span of component tokens.

As an example of an MWE-aware dependency corpus, I introduce Universal

Dependency Treebank (McDonald et al., 2013). This project is developing a cross-

linguistically consistent treebank annotation for many languages. A functional

MWE is annotated in a flat and head-initial structure, in which second and later

words in an MWE modify the first word using a “fixed” label.

In MWE-aware syntactic parsing, an MWE is recognized before or at the

8Here, I refer to MWEs that function either as prepositions, conjunctions, determiners,

pronouns, adverbs, auxiliary verbs, to-infinitives, or interjections as functional MWEs. Because

the purpose of Shigeto et al. (2013) is to annotate fixed MWEs, their annotation does not

include auxiliary verbal MWEs (aux-VMWEs) (e.g., ”might have been”). I treat annotations

and the integration of aux-VMWEs into dependency structures as future work.
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time of syntactic parsing (Green et al., 2011; Candito and Constant, 2014). Nivre

and Nilsson (2004) conducts Swedish dependency parsing, in which they assume

perfect MWE recognition. They focus on multiword names (persons and places),

numerical expressions and functional MWEs.

3.3 Construction of Functional MWE-aware Dependency

Corpus

Figure 10: A cycle and multi-heads occur if one could combine nodes in the MWE

（“about to”）into a single node.

I build an MWE-aware dependency corpus based on the corpus by Shigeto

et al. (2013). In their corpus, an entire MWE is assigned an MWE-level POS tag.

In such a case, it is preferable that an MWE is a single node in a dependency

structure. On the other hand, each word is treated as a node in a word-based

dependency structure.

To directly convert word-based dependency to MWE-aware dependency, one

needs to combine nodes in an MWE into a single node. However, this naive ap-

proach often leads to the following problems: a node derived from an MWE

could have multiple heads and the whole dependency structure including an

MWE might be cyclic. For instance, in Figure 9, “a number of” has multiple

heads (“cities” and “have”), and a cycle occurs because of the following edges:

“a number of” → “cities” and “cities” → “a number of”. Therefore, one needs

to remove one of the edges to get a dependency tree. Another problem is the fol-

lowing: the syntactic head of “a number of cities” is “cities” in an MWE-aware

dependency structure ( Figure 1b ), because “a number of” is a determiner. Nev-

ertheless, one cannot get the correct dependent of “have” ( i.e., “cities”) by the

above naive method. Similarly, if one combines words of the MWE into a single
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node in Figure 10, “about to” has multiple heads (“is” and “slip”), and a cycle

occurs between “about to” and “slip”.

To solve these problems, I adopt the following approach: first, I establish

an MWE in a phrase structure tree as a subtree. After that, I convert a phrase

structure to a dependency structure. With this method, I can avoid cycles and/or

multiple heads.

Concretely, I build a functional MWE-aware dependency corpus according to

the following method:

(a) An LCA-tree before conversion.

The square in this figure indicates the

span of the MWE.

(b) The LCA-tree after conversion.

Here, the MWE (“even though”) be-

comes a subtree.

Figure 11: Conversion of an LCA-tree in a “Multiple contiguous children” case.

Figure 12: Replacement of a subtree in which the MWE (“even though”) is

grouped.

(1) Find an MWE in a phrase structure tree in Ontonotes and establish it as a

subtree (Figure 11a → Figure 11b)9.

9I utilize MWE annotations provided by Shigeto et al. (2013).
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(2) Replace the above subtree by a preterminal with its leaf node as a child.

The preterminal has an MWE-level POS tag. Its child node is made by

joining all components of the MWE with underscores, as in Figure 12.

(3) Convert a phrase structure to Stanford Dependency (de Marneffe and Man-

ning, 2008)10.

In Step (1), I convert an MWE into a subtree in the phrase structure tree.

For example, “even though” in Figure 11a is annotated as an MWE in Shigeto

et al. (2013). I convert it as in Figure 11b. If I can convert the span of an

MWE into a subtree without changing other subtrees, I classify this instance as

“Multiple contiguous children”. Otherwise, the instance is treated as “Crossing

brackets”. When I group an MWE, I focus on the LCA-tree, which is the subtree

rooted in the Least Common Ancestor (LCA) of the components of the MWE.

In Figure 11a, the LCA-tree is rooted in SBAR, which is the LCA of “even” and

“though”.

The above method relates to Finkel and Manning (2009). For joint parsing

and named entity recognition, they classify named entities that do not correspond

to a phrase in the constituency tree to the following two categories. A named

entity belonging to the first category is contiguous multiple children of some non-

terminal. This category corresponds to the above “Multiple contiguous children”

case. On the other hand, a span of each named entity belonging to the second

category crosses brackets in the parse tree. It corresponds to the above “Crossing

brackets” case.

3.3.1 Multiple contiguous children

In the “Multiple contiguous children” case, I insert a new internal node under the

LCA (Figure 11a → Figure 11b). This internal node covers precisely the span of

the MWE.

10I designate “-conllx -basic -makeCopulaHead -keepPunct” as an option for the conversion

command.
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(a) An LCA-tree before conversion.

The span of the right subtree (from

“to” to “Wednesday”) partially over-

laps with the span of the MWE (“ac-

cording to”). The triangle in this fig-

ure indicates the subtree (Tpost) which

covers precisely the span excluding the

MWE.

(b) The LCA-tree after conversion.

Here, the MWE (“according to”) be-

comes a subtree. The triangle in the

figure indicates the subtree (Tpost).

Figure 13: Conversion of an LCA-tree in the “Regular” case.

3.3.2 Crossing brackets

In the “Crossing brackets” case, if I convert the MWE into a subtree (e.g. Fig-

ure 13a → Figure 13b), the structures of other subtrees need to be changed. For

example, it is reasonable to remove the right child of LCA (PP) in Figure 13a at

the time of the conversion as in Figure 13b.

Further, I classify “Crossing brackets” into “Regular” and “Irregular” cases

based on the extent to which the LCA-tree is changed by the conversion.

Regular Case

In this case, I can convert an MWE into a subtree without changing subtrees

which cover words outside the MWE. In Figure 13a, the span of the right sub-

tree (from “to” to “Wednesday”) partially overlaps with the span of the MWE

(“according to”), but there is an internal node which covers the entire span to

the right of the MWE (see the grandchild of the LCA (NP)).

I define the subtree covering the span to the left of the MWE, the subtree

covering the MWE, and the subtree covering the span to the right of the MWE

as Tpre, Tmwe, and Tpost, respectively. In Figure 13a, the subtree surrounded by a
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triangle is Tpost.

I convert the tree so that the LCA has Tpre, Tmwe, Tpost as children (Figure 13a

→ Figure 13b).

When both Tpre and Tpost are present, I manually determine which of the

following choices is preferable: LCA having Tpre, Tmwe, Tpost as flat children, or

LCA having a new internal node (covering Tmwe and Tpre or Tpost) as a child.

(a) An LCA-tree before conversion.

There is no internal node which covers

precisely the entire span to the right of

the MWE (“along with”).

(b) The LCA-tree after conversion.

Here, the MWE (“along with”) be-

comes a subtree.

Figure 14: Conversion of an LCA-tree in the “Irregular” case.

Irregular Case

In this case, I cannot avoid to change subtrees outside the MWE when converting

the MWE into a subtree (Figure 14a→ Figure 14b). The span of the right subtree

of LCA (from “with” to “Boat”) partially overlaps with the span of the MWE

(“along with”), and there is no internal node that covers precisely a span to the

left or right of the MWE. Hence, I manually determine how to combine a subtree

covering the MWE with subtrees covering spans excluding the MWE.

Regarding “Multiple contiguous children” and “Crossing brackets (Regular)”
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Case No. of instances

Multiple contiguous children 1,663

Crossing brackets (Regular) 1,742

Crossing brackets (Irregular) 57

Table 2: Corpus statistics of an MWE-aware Dependency Corpus.

cases, I decide a symbol of an LCA as follows 11:

arg max
XLCA

(Pr(A → B1..XLCA..Bm)× Pr(XLCA → C1..Cn)) (1)

With the method described above, I develop the MWE-aware dependency

corpus based on the Wall Street Journal (WSJ) portion of Ontonotes 5.0. I show

the corpus statistics in Table 2 12.

3.4 MWE-aware Dependency Parsing

In this chapter, I perform dependency parsing by using either the original Ontonotes

or the MWE-aware dependency corpus I build according to the method described

in Chapter 3.3.

3.4.1 Experimental Setting

I trained and tested original and MWE-aware dependency parsers independently.

The training and test data of the original dependency parser are from sections 02-

21 and 23 of the original Ontonotes corpus, respectively. In contrast, the training

and test data of the MWE-aware dependency parser are from sections 02-21 and

23 of the MWE-aware dependency corpus. In MWE-aware dependency parsing,

I assume perfect MWE recognition and treat each MWE as a single node in both

training and testing 13. As the evaluation measure, I adopted the UAS (unlabeled

attachment score). I used the first-order MST Parser (McDonald et al., 2005)

11These probabilities are calculated from Ontonotes.
12In Crossing brackets (Regular) case, 53 instances have both Tpre and Tpost.
13I investigate models to predict both MWE spans and MWE-aware dependency trees in

Chapter 4.
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UAS (total) UAS (sentences

including MWEs)

Original Ontonotes 89.99 87.77

MWE-aware dependency corpus 90.01 87.84

Table 3: Experimental results for the original and MWE-aware dependency pars-

ing.

and the standard split for the WSJ portion of Ontonotes 5.0: sections 02-21 for

training, 23 for testing. I also used gold POS tags both in training and testing.

3.4.2 Experimental Results

I show the experimental results in Table 3. Because the original and MWE-aware

dependency parsers use different test sets, I cannot directly compare the results of

these dependency parsers. However, I got comparable UAS for the two parsers on

both 1,640 sentences of the whole test set and 266 sentences including MWEs 14.

In the following, I describe the qualitative analysis. First, I show an instance

for which the original and MWE-aware dependency parsers inferred incorrect and

correct outputs, respectively. In Figure 15, the original dependency parser incor-

rectly infers “least”, which is a component of the MWE (“at least”), as the head

of “officials”. On the other hand, the MWE-aware dependency parser correctly

infers “questions” as the head of “officials” 15. In this instance, by recognizing

the MWE before parsing, the MWE-aware dependency parser achieves a correct

prediction without influenced by POS tags of components of the MWE. This

is consistent with the error analysis by Nivre and Nilsson (2004) for Swedish

dependency parsing involving functional MWEs.

14Because the number of tokens belonging to MWEs corresponds to about 1.9 % of that of

the whole test set, these two parsers could show similar performances for the whole test set,

even though these models perform differently in terms of UAS regarding dependency edges

which connect inside and outside of MWEs.
15The full sentence is “Mrs. Hills’ remarks did raise questions, at least among some U.S.

officials, about what exactly her stance is on U.S. access to the Japanese semiconductor market.”

22



(a) A dependency structure inferred by the original dependency parser.

(b) A dependency structure inferred by the MWE-aware dependency parser.

Figure 15: An instance for which the original dependency parser inferred an in-

correct output and the MWE-aware dependency parser inferred a correct output.

Next, I show an instance for which the original and MWE-aware dependency

parsers inferred correct and incorrect outputs, respectively. In Figure 16, the

original dependency parser correctly infers “costs” as the head of “because”.

However, the MWE-aware dependency parser infers “707s” as the head of the

MWE (“because of”) 16. This and almost all MWEs in the test set (286 out

of 289 MWEs) also appear in the training set. Therefore, to perform a correct

inference for the above instance, I need to explore MWE-specific features (the

word form and POS tag of each component of the MWE) and/or higher-order

features for the dependency parser rather than dealing with unseen MWEs.

16The full sentence is “Earlier the company announced it would sell its aging fleet of Boeing

Co. 707s because of increasing maintenance costs.”
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(a) A dependency structure inferred by the original dependency parser.

(b) A dependency structure inferred by the MWE-aware dependency parser.

Figure 16: An instance for which the original dependency parser inferred a correct

output, but the MWE-aware dependency parser inferred an incorrect output.

3.5 Summary

I created an English dependency corpus that is aware of functional MWEs and

conducted dependency parsing using the constructed corpus 17. As future work, I

plan the followings: (1) I will design features for MWE-aware dependency parsing

and address both of MWE recognition and dependency parsing, (2) I will explore

a linguistic analysis in which an MWE-aware dependency tree is preferable to a

word-based dependency tree, (3) Based on the fact that only 497 in 1,923 MWE

types appear in the Ontonotes corpus, it is worthwhile to match the MWE dictio-

nary with other large-scale corpus, such as Annotated English Gigaword (Napoles

et al., 2012) and calculate what percentage of the MWE dictionary appears in

the corpus at least once.

17This corpus is available at https://catalog.ldc.upenn.edu/LDC2017T01
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4 Construction and Analysis of Dependency Cor-

pus that is aware of Functional Multiword Ex-

pressions and Named Entities

4.1 Introduction

To solve complex natural language processing (NLP) tasks that require deep syn-

tactic analysis, various levels of annotation such as parse trees and named entities

(NEs) must be consistent with one another (Finkel and Manning, 2009). Other-

wise, it is usually impossible to combine these pieces of information effectively.

In Chapter 3, to develop an MWE-aware dependency corpus, I establish the

consistency between phrase structure trees and functional MWE spans. In other

words, I ensure that a span of a functional MWE corresponds to a subtree of a

phrase structure.

To pursue this direction further, in this chapter, I construct a corpus such

that dependency structures are consistent with MWEs and NEs (MWE-Aware

English Dependency Corpus 2.0 (MAED corpus ver.2.0) 18), by extending Kato

et al. (2016)’s corpus (MAED corpus ver.1.0 19), which I describe in Chapter 3.

As is the case with MAED ver.1.0, each MME is a syntactic unit in an MWE-

aware dependency structure in the MAED ver.2.0 (Figure 1b). Moreover, MAED

ver.2.0 includes not only functional MWEs but also NEs. Because NEs are highly

productive and occur more frequently than functional MWEs, they are difficult

to cover in a dictionary.

Consistency between NE-spans and phrase structures is not guaranteed be-

cause they are independently annotated in most syntactic corpora. For instance,

in Figure 17, a span of an NE, “Board of Investment” is inconsistent with the syn-

tactic tree. Therefore, I resolve this inconsistency by modifying phrase structures

locally and establishing each NE as a subtree.

Furthermore, to evaluate the constructed corpus, I explore pipeline and joint

models that predict both MWE spans and an MWE-aware dependency tree 20.

18This corpus is available at: https://catalog.ldc.upenn.edu/LDC2017T16.
19 https://catalog.ldc.upenn.edu/LDC2017T01
20In Chapter 3, I address MWE-aware dependency parsing based on gold MWE spans, which
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Figure 17: An example of inconsistency between NE-spans and phrase structures.

A rectangle shows an NE-span.

MWE-level POS tags NNP RB IN others

MWE Instances 20,992 3,796 2,424 737

MWE Types 11,875 377 92 52

Table 4: Corpus statistics.

Experimental results show that the proposed joint model with additional MWE

span features achieves an MWE recognition improvement of 1.35 points over the

pipeline model.

Type of MWEs Non-terminal Multiple contiguous Crossing brackets

children

Functional MWEs 3,466 1,663 1,799

NEs 18,625 2,252 144

Table 5: Histogram with respect to the consistency between MWE spans and

phrase structures.

is actually not a realistic scenario. By contrast, proposed models do not assume gold MWE

spans.
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4.2 MWE-aware Dependency Corpus

To ensure consistency between MWE annotations and dependency structures, I

first integrate NE annotations in Ontonotes 21 into phrase structures such that

functional MWEs are established as subtrees. Subsequently, I convert phrase

structures to dependency structures. I construct my corpus by extending Kato

et al. (2016)’s corpus (Chapter 3) 22, which is itself built on a corpus by Shigeto

et al. (2013). Regarding MWE annotations, Shigeto et al. (2013) first con-

structs an MWE dictionary by extracting functional MWEs from the English

Wiktionary 23, and classifies their occurrences in Ontonotes into either MWE or

literal usage. Kato et al. (2016) integrates these MWE annotations into phrase

structures and establishes functional MWEs as subtrees (Chapter 3).

Next, I describe the establishment of each NE as a subtree. If an NE-span

does not correspond to any non-terminal in a phrase structure, there are two

possibilities: (A) the NE-span corresponds to multiple contiguous children of a

subtree, or (B) the NE-span has crossing brackets with the spans in the parse

tree (Finkel and Manning, 2009; Kato et al., 2016). In Case (A), I insert a

new non-terminal (“MWE NNP”) that governs the NE-span 24. In Case (B),

many instances correspond to a noun phrase (NP) comprised of a nested NP

and a prepositional phrase (Figure 17). In the main NP, a modifier, such as a

determiner, an adjective, or a possessive NP, precedes an NE. For these instances,

according to Finkel and Manning (2009), I reduce Case (B) to Case (A) by

moving the modifier from the nested NP to the main NP. Then, I establish each

NE as a subtree by inserting an MWE-specific non-terminal (“MWE NNP”).

Furthermore, in some instances, it is more reasonable to enlarge NE-spans than

to modify phrase structures. As a typical example, there is an NE annotation

that covers only part of a coordination structure, such as “Peter and Edward

Bronfman,” where “Edward Bronfman” is annotated as an NE. In this case, I

21I exploit NE annotations in Ontonotes Release 5.0 (LDC2013T19). I address traditional

NEs, such as persons, locations, and organizations, while omitting the following: DATE, TIME,

PERCENT, MONEY, QUANTITY, ORDINAL, and CARDINAL. Note that I only focus on

multiword NEs.
22https://catalog.ldc.upenn.edu/LDC2017T01
23https://en.wiktionary.org
24I do not require manual annotations for Case (A).
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extend an original NE-span to the whole coordination structure. I show the

statistics for the corpus in Table 9 25. This corpus has 27,949 MWE instances

in 37,015 sentences. A histogram regarding the consistency between MWE spans

and phrase structures is shown in Table 5. For tree-to-dependency conversion,

I first replace a subtree corresponding to an MWE by a preterminal node and

its child node. The preterminal node has an MWE-level POS tag (MWE POS

tags). The child node is generated by joining all components of the MWE with

underscores. Then, I convert a phrase structure into a Stanford-style dependency

structure (de Marneffe and Manning, 2008) (Figure 1b).

Figure 18: In the joint model, I directly infer an MWE-aware dependency tree

in which an MWE (“a number of”) is represented as a head-initial structure by

a dependency parser.

4.3 Models for MWE identification and MWE-aware de-

pendency parsing

In this chapter, I explore models that predict both MWE spans and an MWE-

aware dependency structure (Figure 1b).

4.3.1 Pipeline Model

The pipeline model involves the following three steps. First, BIO tags encoding

MWE spans and MWE POS tags, such as “B NNP” or “I DT” are predicted by

a sequential labeler based on conditional random fields (CRFs) (Lafferty et al.,

2001). Second, tokens belonging to each predicted MWE span are concatenated

into a single node. Finally, an MWE-based dependency structure (Figure 1b) is

25NEs have NNP as an MWE-level POS tag.
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predicted by an arc-eager transition-based parser (Nivre, 2003). For the CRFs,

in addition to word-form and character-based features, I use 1 to 3-gram features

based on dictionaries of functional MWEs and NEs within 5-word windows from a

target token. For a dictionary of functional MWEs, I use the dictionary by Shigeto

et al. (2013) (Chapter 4.2). Meanwhile, I create a dictionary of NEs from a title

list of English Wikipedia articles, except stop words, provided by UniNE 26.

Regarding parsing features, I use baseline features and rich non-local features

proposed by Zhang and Nivre (2011).

4.3.2 Joint Model

In the proposed joint model, MWE spans and MWE POS tags are encoded as

dependency labels (Figure 18), and conventional word-based dependency parsing

is performed by an arc-eager transition-based parser (Nivre, 2003). I use the

same parsing features used in the pipeline model. I convert MWEs in MWE-

aware dependency structures (Figure 1b) to head-initial structures (Figure 18)

that encode MWE spans and MWE POS tags. Note that this representation

is similar to Universal Dependencies (McDonald et al., 2013). When parsing, I

use constraints based on a history of transitions and the dictionary of functional

MWEs. This is done to avoid invalid dependency trees. Because NEs are highly

productive, I do not use a constraint regarding NEs.

Joint(+dict)

I design additional features based on matches with dictionaries of NEs and func-

tional MWEs. Hereafter, I refer to the joint model coupled with these additional

features as joint(+dict). For instance, given a sentence that starts with “a num-

ber of cities,” the additional features are as follows: a / B DT, number / I DT,

of / I DT, cities / O. Based on these additional features, I extend the baseline

features proposed by Zhang and Nivre (2011) to develop MWE-specific features

whose atomic features include not only words and word-level POS tags, but also

BIO tags encoding MWE spans and MWE POS tags.

26http://members.unine.ch/jacques.savoy/clef/englishST.txt
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Dependency Parsing MWE Recognition

All sentences First tokens

of MWEs

Model UAS LAS UAS LAS FUM FTM

Pipeline 91.39 89.42 84.06 78.22 91.40 91.32

Joint 91.15 89.18 81.93 77.74 89.03 88.79

Joint(+dict) 91.36 89.37 84.45 80.74 91.93 91.78

Joint(+pred span) 91.50 89.51 84.85 81.29 92.75 92.60

Table 6: Experimental results on the test set.

Joint(+pred span)

Because dictionary matching is not concerned with context, in this setting, I

use MWE spans and MWE POS tags predicted by CRF, rather than dictionary

matching. Hereafter, I refer to this as joint(+pred span). By using features

extracted from CRF predictions, I can mitigate error propagation from sequential

labeling and consider information from a full sentence. Moreover, I can alleviate

difficulties in predicting MWE spans and MWE POS tags encoded as head-initial

structures (Figure 18) by the parser.

4.4 Experimental Setting

I split the WSJ portion of Ontonotes, using sections 2-21 for training, and section

23 for testing. For all models, I used the POS tags predicted by the Stanford POS

tagger (Toutanova et al., 2003) 27. For the pipeline model and joint(+pred span),

I used MWE spans and MWE POS tags predicted by CRF 28. For dependency

parsing, I used Redshift (Honnibal et al., 2013) for all models, with a beam size

of 16 for decoding. For training, I removed non-projective dependency trees. For

testing, I parsed all sentences. To evaluate parsing, I used unlabeled and labeled

27I used 20-way jackknifing for the training split. The test split was automatically tagged by

the POS tagger trained on the training split.
28I used 20-way jackknifing for the training split. The test split was automatically tagged by

the sequential labeler trained on the training split.
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Dependency Parsing MWE Recognition

(First tokens of MWEs)

Functional NEs Functional NEs

MWEs MWEs

Model UAS LAS UAS LAS FUM FTM FUM

Pipeline 78.89 64.01 85.58 82.41 96.76 96.42 89.81

Joint 71.28 65.05 85.07 81.49 91.01 89.93 88.47

Joint(+dict) 79.93 73.70 85.79 82.82 97.94 97.25 90.16

Joint(+pred span) 81.31 74.74 85.89 83.23 97.59 96.91 91.32

Table 7: Breakdown of experimental results by type of MWE. Note that UAS /

LAS are calculated regarding the first tokens of MWEs. For NEs, the FTM is

the same as the FUM because each NE always takes NNP as an MWE-level POS

tag, and is not repeated.

attachment scores (UAS/LAS) 29. To focus on dependency edges that connect

inside and outside of MWEs, I measured UAS/LAS for not only the whole test set

but also first tokens of gold MWEs. For the pipeline model, a parser predicts an

MWE-aware dependency tree. To calculate UAS/LAS for each word belonging

to MWEs, I replaced each concatenated token corresponding to an MWE with

a subtree in which the first word of the MWE governs other words of the MWE

(the head-initial dependency subtree).

For the joint model, I directly compared a predicted tree with the gold tree. To

evaluate MWE recognition, I used the F-measure for untagged / tagged MWEs

(FUM/FTM) 30. For the pipeline model, I compared the gold MWEs with pre-

dictions by CRF. For the proposed joint model, I compared the gold MWEs with

predicted MWE spans and MWE POS tags represented as dependency labels.

29When calculating UAS/LAS, I removed punctuation.
30FUM only focuses on MWE spans, whereas FTM focuses on both MWE spans and

MWE POS tags.
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4.5 Experimental Results and Discussion

I present the experimental results in Table 6. Comparing the joint model with the

pipeline model, there is not much difference between these models regarding UAS

/ LAS for all sentences. However, the former is 2.13 / 0.48 points worse than the

latter in terms of UAS / LAS regarding the first tokens of MWEs (1,269 in 34,526

tokens), and 2.37 / 2.53 points worse than the latter regarding FUM / FTM.

These results suggest that the performance of the joint model with no additional

features at predicting dependencies inside and around MWEs is worse than the

pipeline model. One of the reasons for this is that the exploitation of head-initial

structures in the joint model (Figure 18) involves the addition of MWE-specific

labels. This results in an increase in the total number of dependency labels from

41 to 50. Because of this broader output space, more search errors can occur

in the joint model compared with the pipeline model. Moreover, a breakdown

by type of MWE (Table 7) shows that most differences in performance between

these two models are related to functional MWEs. These results suggest that

constraints regarding functional MWEs during parsing (4.3.2) are harmful to the

joint model with no additional features in terms of its performance concerning

functional MWEs.

By adding MWE-specific features to the joint model, however, I observe at

least a 2.52 / 3.00 point improvement in terms of UAS / LAS regarding the first

tokens of MWEs, and a 2.90 / 2.99 point improvement regarding FUM / FTM. As

a result, I obtain a 1.35 / 1.28 point improvement with joint(+pred span) com-

pared with the pipeline model in terms of FUM / FTM. A breakdown by type of

MWE shows that the addition of MWE-specific features leads to performance im-

provement, especially for functional MWEs (Table 7). These results suggest that

MWE-specific features are effective at both MWE recognition through depen-

dency parsing and the prediction of dependencies connecting inside and outside

of MWEs.

Comparing the joint(+pred span) with the joint(+dict), the former is 0.40

/ 0.55 points better than the latter in terms of UAS / LAS regarding the first

tokens of MWEs, and 0.82 / 0.82 points better than the latter regarding FUM /

FTM. I can attribute this gain in performance to the additional features extracted

from more accurate predictions of MWE spans and MWE POS tags by CRF than
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those by dictionary matching.

4.6 Related Work

Whereas French Treebank is available for French MWEs (Abeillé et al., 2003),

there have been only limited corpora for English MWE-aware dependency pars-

ing. Schneider et al. (2014) constructs an MWE-annotated corpus on English Web

Treebank (Bies et al., 2012). However, this corpus is relatively small as training

data for a parser, and its MWE annotations are not consistent with syntactic

trees. By contrast, my corpus covers the whole of the WSJ portion of Ontonotes

and ensures consistency between MWE annotations and parse trees.

Korkontzelos and Manandhar (2010) reports an improvement in base-phrase

chunking by pre-grouping MWEs as words-with-spaces. They focus on compound

nouns, adjective-noun constructions, and named entities. However, they use gold

MWE spans, and this is not a realistic setting. By contrast, I use predicted MWE

spans.

Three works concerned with a French MWE-aware syntactic parsing are rel-

evant. First, Green et al. (2013) proposes a method for recognizing contiguous

MWEs as a part of constituency parsing by using MWE-specific non-terminals.

They investigate a CFG-based model and a model based on tree-substitution

grammars. Second, Candito and Constant (2014) compares several architectures

for graph-based dependency parsing and MWE recognition, in which MWE recog-

nition is conducted before, during, and after parsing. Finally, Nasr et al. (2015)

explores a joint model of MWE recognition and dependency parsing. They fo-

cus on complex function words. In terms of data representation, they adopt one

similar to mine, insofar as the components of an MWE are linked by dependency

edges whose labels are MWE-specific.

4.7 Summary

I constructed a corpus that ensures consistency in Ontonotes between dependency

structures and English MWEs, including named entities. Furthermore, I explored

models that can predict both MWE spans and an MWE-aware dependency struc-

ture. Experimental results show that by using additional MWE span features,
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the joint model achieves an MWE recognition improvement of 1.35 points over

the pipeline model.
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5 Construction of Verbal Multiword Expression

Annotated Corpus

5.1 Introduction

In previous chapters, I deal with continuous MWEs, such as functional MWEs

and named entities. However, in downstream tasks, it is also important to recog-

nize verbal MWEs (VMWEs), whose accurate recognition is challenging because

VMWEs are likely to have discontinuous occurrences (e.g., take .. off). I show

the main categories of VMWEs in Table 8. Based on this, in this chapter, I

perform VMWE annotations on Ontonotes with crowdsourcing.

While dependency parsing and MWE recognition could be solved indepen-

dently, dependency structures where each MWE is a syntactic unit are prefer-

able to word-based dependency structures for downstream NLP tasks, such as

semantic parsing (Chapter 3). Because MWE recognition could help syntactic

parsing (Nivre and Nilsson, 2004; Eryiğit et al., 2011), several works tackle MWE-

aware dependency parsing in French (Candito and Constant, 2014; Nasr et al.,

2015). They use French Treebank (Abeillé et al., 2003) because of its explicit

MWE annotations.

Regarding English MWEs, Schneider et al. (2014) constructs an MWE-annotated

corpus on English Web Treebank (Bies et al., 2012). However, the number of

VMWE occurrences (1,444) and types (1,155) in their corpus is relatively small-

scale. Therefore, in this work, I conduct full-scale VMWE annotations on the

Wall Street Journal (WSJ) portion of English Ontonotes (Pradhan et al., 2007),

which results in 7,833 VMWE occurrences and 1,608 types. This resource en-

ables to develop large-scale English MWE recognition and MWE-aware parsing

models.

Concretely, I construct a VMWE dictionary based on the English-language

Wiktionary 31. Based on this dictionary, I collect possible VMWE occurrences

on Ontonotes and filter candidates with a help of gold dependency trees. To

exploit crowdsourcing, I formalize VMWE annotations as a multiword-sense dis-

ambiguation problem. This resource is available at the following URL: https:

31https://en.wiktionary.org
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//github.com/naist-cl-parsing/Verbal-MWE-annotations.

5.2 Corpus Construction

5.2.1 Candidate Extraction

First, I construct a VMWE dictionary by extracting multiword verbs from an

English part of Wiktionary 32. I exclude auxiliary verbs and MWEs consisting of

be-verbs and non-verbal components (e.g., be above, be with). As a result, I get

8,369 VMWE types.

Figure 19: Dependency trees with function-head (above) and content-head

schemes (below). I omit edges common in both trees. A box corresponds to

a VMWE (“look at”). To filter a possible VMWE as a subtree of a dependency

tree, a function-head scheme is preferable to a content-head scheme.

Second, I extract possible VMWE occurrences in 37,015 sentences of the WSJ

portion of Ontonotes Release 5.0 (LDC2013T19) by using the above VMWE

dictionary. I allow each VMWE to include gaps (e.g., take .. off), consider

Categories Examples

Verb-particle constructions pick up, take over

Prepositional verbs look for, base on

Light verb constructions make a decision, take a look

Verb-noun(-preposition) take care (of)

Semi-fixed VMWEs make one’s way

Table 8: Main categories of Verbal MWEs.

32I select multiword entries that have “English verbs” as categories.
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Figure 20: A screenshot of a web interface for VMWE annotations on Crowd-

Flower.

inflections of verbs and a variability of placeholders in semi-fixed MWEs (e.g.,

someone, something, one’s and oneself). I exclude candidates that do not include

any verbs by using gold part-of-speech information. Also, I filter out candidates

that have other verbs or punctuation marks within the gaps.

Because most of the VMWEs are syntactically regular, I filter a VMWE whose

components form a subtree in a Stanford basic dependency tree (de Marneffe and

Manning, 2008) that is converted from a phrase structure tree given in Ontonotes.

I exploit Stanford basic dependency because its function-head scheme is suitable

for filtering positive occurrences of VMWEs that have a frequent POS pattern,

“V IN”. In many cases, a noun phrase follows this type of MWE. Therefore, in

the content-head scheme like Universal Dependencies (McDonald et al., 2013), a

verb of this MWE governs a head of the noun phrase, that is, such MWE does

not form a subtree (Figure 19). On the contrary, such MWE corresponds to a

subtree in a function-head scheme.

Regarding phrasal verbs (PVs), I perform additional filtering. In this work, I

construct a VMWE-annotated corpus by extending Komai et al. (2015)’s corpus,

because they have partially performed annotations of PVs on Ontonotes. For PVs

that are not covered by their dictionary, I adopt the following methods: (1) I clas-

sify PVs into verb-particle constructions (VPCs) or prepositional verbs (Baldwin
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et al., 2009), (2) I examine a label of a dependency edge from a verb to a particle.

For VPCs, I regard a candidate as a positive VMWE occurrence iff the depen-

dency label is “prt”. For prepositional verbs, if the dependency label is “prep”,

and there is no gap between the verb and the particle, I regard this candidate as

a positive VMWE occurrence. This is subject to rules proposed by Komai et al.

(2015). Otherwise, I conduct crowdsourced annotations.

5.2.2 Large-scale Annotations of VMWEs by Crowdsourcing

Based on the above filtering, I conduct large-scale VMWE annotations on the

WSJ portion of English Ontonotes by crowdsourcing whose web interface is shown

in Figure 20. To exploit crowdsourcing, I formalize VMWE annotations as a

multiword sense disambiguation problem. Annotators read a sentence in which

some possible components of a VMWE are highlighted. They are also given

possible definitions of the VMWE, extracted from an English part of Wiktionary.

For each VMWE, I provide one literal sense and idiomatic senses 33. Based

on this, they are asked to determine which definition most closely matches the

meaning of highlighted words in the sentence. During annotations, workers are

allowed to answer that the meaning of highlighted words is not in the given senses

(“None of the above”), or they are not certain of the multiword sense (“Hard to

judge”).

I collect crowdsourced annotations of VMWEs by using CrowdFlower 34. I

set the following requirements: (1) Annotators belong to Level 3 contributors,

who are regarded as the smallest group of most experienced, highest accuracy

contributors in CrowdFlower, (2) Annotators live in countries with English as an

official language, (3) Annotators accomplish a success rate higher than 70 % in

answering test questions for which I give gold answers. To facilitate annotations,

I provide workers with an interface to show multiple sentences (less than 6) that

include possible occurrences of the same VMWE. I collect three judgments for

each of 2,135 possible VMWE occurrences. Data collection costs $1,016 USD in

total.

To determine whether each VMWE candidate is positive or not, I adopt the

33I add a definition corresponding to a literal sense if it is omitted in Wiktionary.
34https://www.crowdflower.com
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following criteria:

1. If all judgments correspond to the same sense, I adopt it (67.1 %). If the

sense is idiomatic, I regard this candidate as a VMWE.

2. If any judgment does not correspond to a literal sense, I regard the candidate

as a positive occurrence of the VMWE (9.0 %).

3. Otherwise, I annotate the candidate manually (23.8 %).

5.2.3 Resolution of Inclusions and Overlaps

Finally, I check inclusions and overlaps between annotations by myself and those

by (Komai et al., 2015), which results in 159 inclusions and 40 overlaps. Regarding

inclusions, I adopt the broader MWE spans. For instance, given two MWE

occurrences corresponding to “come at” and “come at a price”, in which a span

of the latter includes a span of the former, I leave only the latter. Concerning

overlaps, I merge overlapped MWE spans if I can get a new VMWE that is

in both of the following dictionaries: Cambridge Dictionary 35 and The Free

Dictionary 36. For instance, I get an occurrence of “take over the reins” by

merging occurrences of “take the reins” and “take over”. Also, I resolve pseudo

overlaps originated from false annotations. As a result, I reduce the number of

overlaps to 11 instances, which correspond to essential overlaps, such as “look

back” and “look .. on .. as” in the following sentence: “He may be able to look

back on this election as the high-water mark of far-left opposition.”.

5.2.4 Corpus Statistics

As a result of annotations, I get 1,608 VMWE types and 7,833 instances on

Ontonotes. I show histograms by the number of constituent word tokens (Table 9)

and by the number of gaps (Table 10). Moreover, frequent POS patterns are

shown in Table 11, in which you can see various kinds of VMWE, such as phrasal

verbs (PVs), light verb constructions (LVCs), and semi-fixed MWEs. Top-3 POS

patterns (“V IN”, “V RP”, and “V RB”) correspond to PVs. Each of those

includes a fair amount of discontinuous instances.
35http://dictionary.cambridge.org
36http://idioms.thefreedictionary.com
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# of constituent tokens

2 3 4 ≥ 5 Total

VMWE instances 7,067 597 138 31 7,833

VMWE types 1,235 270 80 23 1,608

Table 9: Corpus statistics. I show VMWE types and instances by the number of

constituent word tokens.

# of gaps 0 1 2

VMWE instances 6,855 968 10

Table 10: A histogram of VMWE instances by the number of gaps.

5.3 Related Work

I introduce several MWE-annotated corpora. First, French Treebank (Abeillé

et al., 2003) is often used as a dataset for French MWE-aware dependency pars-

ing (Candito and Constant, 2014) because of its explicit MWE annotations. It

consists of phrase structure trees, augmented with morphological information

and functional annotations of verbal dependents. Second, Vincze (2012) pro-

vides English-Hungarian parallel corpus annotated for LVCs, which belong to

VMWEs. Their corpus contains 703 LVCs in Hungarian and 727 in English on

14,261 sentence alignment units, taken from economiclegal texts and literature.

Recently, PARSEME organizes a shared task on automatic identification of ver-

bal MWEs (Savary and Ramisch, 2017). They provide annotation guidelines and

annotated corpora of 5.5 million tokens and 60,000 VMWE annotations for 18

languages. Note that their corpora do not support English at edition 1.0.

Regarding English MWEs, Shigeto et al. (2013) first constructs an MWE dic-

tionary by extracting functional MWEs 37 from the English-language Wiktionary,

and classifies their occurrences in Ontonotes into either MWE or literal usage.

37Here, I refer to MWEs that function either as prepositions, conjunctions, determiners,

pronouns, adverbs, auxiliary verbs, to-infinitives, or interjections as functional MWEs.
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In Kato et al. (2017), I integrate annotations of these functional MWEs and

named entities (NEs) 38 into phrase structures by establishing MWEs as sub-

trees. After that, I exploit this dataset for experiments of English MWE-aware

dependency parsing (Chapter 4).

5.4 Summary

In this work, I conduct large-scale annotations of English VMWEs on the Wall

Street Journal portion of Ontonotes. Based on a VMWE dictionary extracted

from English Wiktionary, I collect possible VMWE occurrences on Ontonotes,

and filter candidates with a help of gold dependency trees. To take advantage of

crowdsourcing, I formalize annotations of VMWEs as a multiword-sense disam-

biguation problem. My future work could involve the followings:

1. I plan to integrate the above VMWE annotations into annotations for func-

tional MWEs and named entities on Ontonotes by Kato et al. (2016) and

Kato et al. (2017). This will help to develop models for MWE recognition

and dependency parsing that are aware of various kinds of English MWEs.

2. I get VMWE occurrences on Ontonotes for only 1,608 out of 8,369 types

in the VMWE dictionary. Therefore, I plan to explore VMWE occurrences

on the larger corpus, such as the Annotated English Gigaword treebank 39.

38The NE annotations are given by Ontonotes.
39http://catalog.ldc.upenn.edu/LDC2012T21
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POS patterns Continuous Discontinuous Frequent

VMWEs VMWEs VMWEs

V IN 3,071 260 base on : 142 look for : 86 focus on : 77

go to : 70 account for : 69

V RP 2,081 229 set up : 62 take over : 49 point out : 47

turn out : 43 pick up : 39

V RB 547 116 go back : 17 come back : 17 do well : 15

go down : 13 go ahead : 13

V NN 280 167 take place : 41 do business : 27

take effect : 26 take steps : 24 have time : 22

V DT NN 114 45 take a look : 13 make a decision : 8

pave the way : 5 lay the groundwork : 5

V RP IN 98 4 come up with : 20 make up for : 12

keep up with : 8 live up to : 7 add up to : 5

V JJ 77 11 make sure : 14 go wrong : 8 go public : 6

keep quiet : 5 make much : 4

V IN NN 56 26 have in mind : 8 take into account : 7

set in motion : 5 sign into law : 5

V V 47 32 be called : 34 be had : 5 have got : 4

make known : 4 let know : 4

V PRP 77 0 make it : 16 have it : 10 buy it : 9 move it : 5

V PRP$ NN 49 1 have one’s way : 5 run one’s course : 4

make one’s way : 3 read someone’s lips : 3

Table 11: Corpus statistics based on POS patterns (at least 50 occurrences only).
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6 Joint Analysis of Continuous Multiword Expression-

Aware Dependency Parsing and Discontinu-

ous Multiword Expression Recognition

6.1 Introduction

Figure 21: A sentence that includes both continuous (”a few”) and discontinuous

MWEs (”made .. decisions”). For this sentence, a model predicts both a contin-

uous MWE-aware dependency tree (shown in the upper half of this figure) and

a verbal MWE (VMWE). In the bottom half of this figure, I show a sequence of

extended BIO tags (Schneider et al., 2014), which can represent gaps between

components of a discontinuous MWE with ”o” (small-o).

In downstream tasks that require the automated understanding of the meaning

of the texts, it is important to recognize not only continuous MWEs 40 but also

VMWEs such as phrasal verbs, which are likely to have discontinuous occurrences.

Because dependency information, specifically, a dependency edge from a verb to a

particle or a direct object is expected to be effective in VMWE recognition, in this

chapter, I address the task to predict both continuous MWE-aware dependency

trees and VMWEs (Figure 21) (Chapter 6.3).

Regarding continuous MWE-aware dependency parsing, I explore the follow-

ing three models:

40Here, I define continuous MWEs as MWEs that always have continuous occurrences, such

as functional and adjective MWEs.
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1. A pipeline model of continuous MWE recognition (CMWER) and MWE-

aware dependency parsing. In this model, I formalize CMWER as se-

quential labeling, merge a predicted MWE span to a single node and

perform dependency parsing.

2. Single-task(parser), which is a model to predict a word-based dependency

tree that encodes MWE spans and MWE-level POS-tags as dependency

labels.

3. The hierarchical multi-task learning (HMTL) (Sanh et al., 2018) of CMWER

and Single-task(parser).

In the HMTL-based model, an output from a low-level task encoder is fed into

a high-level task encoder. The motivation to use this model is the following: con-

tinuous MWE-aware dependency parsing could be decomposed to CMWER and

dependency parsing in which a CMWE is treated as a syntactic unit. Therefore,

in the HMTL-based model, the high-level task, that is, Single-task(parser) is able

to utilize features captured by the low-level task (CMWER). These features are

expected to improve the performances of Single-task(parser).

Another contribution in this chapter is the development of a continuous MWE-

aware dependency corpus. In Chapter 3, I developed a dependency corpus that

is aware of functional MWEs. However, there are other kinds of continuous

MWEs, such as adjective MWEs and compound nouns. Because compound nouns

are syntactically compositional and highly productive, annotations of compound

nouns are much more expensive than those of adjective MWEs. Therefore, in

this chapter, I conduct adjective MWE annotations on Ontonotes to broaden the

coverage of continuous MWEs. After that, I modify phrase structure trees in

Ontonotes so that a span of a functional or adjective MWE comprises a subtree

in a phrase structure tree. Finally, I perform tree-to-dependency conversion and

develop a large-scale dependency corpus that is aware of both functional and

adjective MWEs (Chapter 6.2).

Experiments in continuous MWE-aware dependency corpus built on Ontonotes

5.0 (Chapter 6.2) show that the pipeline and HMTL-based models are 1.7 points

better than Single-task(parser) in terms of F1 in CMWER. Concerning MWE-

aware dependency parsing, all models lead to comparable UAS in the whole test
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set and sentences including MWEs. If I focus on the first tokens of gold MWEs,

Single-task(parser) and the HMTL-based model perform at least 1.4 points better

than the pipeline model in terms of UAS.

Concerning VMWE recognition (VMWER), I formalize this task as sequential

labeling by using extended BIO tagging scheme (Schneider et al., 2014), which is

able to treat gaps between components of a VMWE (e.g., pick .. up). I explore

the following two models:

1. Single-task (VMWE), which is the sequential labeler for VMWE recog-

nition.

2. The HMTL of CMWER, Single-task(parser), and Single-task (VMWE).

I investigate the above HMTL-based model because dependency information,

specifically, a dependency edge from a verb to a particle or a direct object is

expected to be effective in VMWE recognition.

As a dataset, I use VMWE annotations (Kato et al., 2018) on Ontonotes 5.0,

which I described in Chapter 5. Experimental results show that the above HMTL-

based model performs 1.3 points better than Single-task (VMWE) in terms of F1.

6.2 Construction of Continuous Multiword Expression-

Aware Dependency Corpus

Here, I describe the construction of an English dependency corpus that is aware

of both adjective and functional MWEs. This corpus is based on an English

treebank and MWE annotations. Regarding the English treebank, I use the Wall

Street Journal (WSJ) portion of Ontonotes 5.0 (Pradhan et al., 2007). Concerning

MWE annotations, I perform annotations of adjective MWEs and merge them

with annotations of functional MWEs by Shigeto et al. (2013).

6.2.1 Annotations of Functional MWEs

Regarding functional MWEs, I adopt annotations by Shigeto et al. (2013). Note

that their target of functional MWE annotations, Penn Treebank (Marcus et al.,

1994) includes my target of adjective MWE annotations, the WSJ portion of

Ontonotes 5.0. They perform MWE annotations in the following four steps.
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First, they construct an MWE dictionary by extracting functional MWEs from

English Wiktionary 41. Second, they collect MWE candidates on Penn Treebank

with a dictionary matching. Third, for each type of functional MWEs, they

cluster its candidate occurrences according to their phrase structures. Finally,

they classify each cluster into MWE or literal usages.

6.2.2 Annotations of Adjective MWEs

(a) An example

of an MWE us-

age.

(b) An exam-

ple of a literal

usage.

(c) Another ex-

ample of a lit-

eral usage.

Figure 22: Examples in which an MWE span corresponds to a phrase structure

subtree that has ADJP as a root node. Based on PCFG rule probabilities, (a) is

annotated as an MWE usage, and (b) and (c) are classified into literal usages.

I perform annotations of adjective MWEs in the following three steps.

First, I extract adjective MWEs from English Wiktionary and construct an

MWE dictionary, which has 2,869 MWE types.

Second, I conduct a dictionary matching in the WSJ portion of Ontonotes 5.0.

As a result, 304 types of adjective MWEs appear in this corpus at least once.

Third, according to whether each MWE has at least one semantic non-compositional

sense, I divide the above 304 types of adjective MWEs into two groups, which I

describe below. I consider a sense of an MWE is semantic non-compositional if

Wiktionary treats the sense as idiomatic or figurative.

1. Concerning an adjective MWE that has at least one idiomatic or figurative

sense (69 types, 380 candidate occurrences), I classify each candidate into

41https://en.wiktionary.org
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(a) An example

of an MWE us-

age.

(b) An example of a literal usage.

Figure 23: Examples in which an MWE span does not correspond to a phrase

structure subtree. Based on PCFG rule probabilities, (a) and (b) are annotated

as MWE and literal usages, respectively.

MWE or literal usages with word sense disambiguation (WSD). I perform

WSD in the following procedures. If a characteristic syntactic pattern ac-

companies an idiomatic or figurative sense, I perform WSD based on phrase

structures and POS tags of components of a candidate MWE 42. Other-

wise, I perform WSD manually by myself. Based on the results of WSD,

I treat each candidate as an MWE usage if the meaning of the candidate

corresponds to an idiomatic or figurative sense. Otherwise, I classify the

candidate into a literal usage.

2. Regarding an adjective MWE that does not have any idiomatic or figura-

tive senses (235 types, 1,034 candidate occurrences), I conduct annotations

in the following two steps. First, I classify candidates into two groups

(case(A) and (B) to be described) based on whether a candidate MWE

span comprises a subtree in a phrase structure tree. Second, I classify can-

didates in each group into MWE or literal usages according to syntactic

non-compositionality. Concretely, for a given candidate MWE, if a PCFG

rule suffices the following condition, I classify a candidate into an MWE

usage.

Pr(ADJP → t1..tn) < 0.0008 (2)

42For instance, in the most of adjective MWE usages of ”to go”, only these two tokens (”to

go”) form a verb phrase (e.g., I have three more years to go). Hence, if a phrase subtree that

minimally covers ”to go” includes other tokens, I treat this instance as a literal usage.
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Here, t1..tn is a POS tag sequence of components of a candidate MWE.

Hereafter, I call the above condition CondPCFG. I induce PCFG rules from

the training split (sections 02-21) of the WSJ portion of Ontonotes 5.0.

Case (A): If there is a non-terminal symbol (hereafter X) that corresponds

to a candidate MWE span (457 candidate occurrences), I perform

MWE annotations in the following way.

i). If X is ADJP (adjective phrase) (Figure 22), I classify a can-

didate into MWE (Figure 22) or literal usages (Figure 22 (b)

and (c)) based on a probability of a PCFG rule, as I describe

above.

ii). If X is PP (prepositional phrase), I classify a candidate into

an MWE usage if the PP functions as an adjective phrase and

CondPCFG holds for it.

iii). If X is neither ADJP nor PP, I treat MWE candidates as literal

usages.

Case (B): If a candidate MWE span does not correspond to any sub-

tree in a phrase structure (577 candidates), I classify a candidate into

an MWE usage if it functions as an adjective phrase and it suffices

CondPCFG (Figure 23).

POS tag sequences No. of instances Examples

RB JJ 44 dead last, legally binding

IN IN NN 19 up to date, out of business

FW FW 17 de facto, ad hoc

IN JJ 13 on alert, as much

IN NN 11 in place, in question

Table 12: The statistics of adjective MWE annotations. I show POS tag sequences

that appear more than 10 times.

As a result, I acquire 83 types, 198 occurrences of adjective MWEs in the
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MWE-level POS tags RB IN JJ others

MWE Instances 3,794 2,409 198 655

MWE Types 377 91 83 31

Table 13: Corpus statistics of functional and adjective MWE annotations.

WSJ portion of Ontonotes 5.0. I show the corpus statistics regarding POS tag

sequences of components of adjective MWEs in Table 12.

6.2.3 Construction of MWE-aware Dependency Corpus

I construct a dependency corpus that is aware of functional and adjective MWEs

in the following three steps.

(A) A resolution of conflicts between functional and adjective MWE annotations.

(B) A resolution of conflicts between MWE annotations and phrase structures.

(C) A conversion from phrase structures to dependency trees.

6.2.3.1 A resolution of conflicts between functional and adjective MWE

annotations

First, I explore conflicts between functional and adjective MWE annotations. As

a result, I find that some adjective MWE spans include functional MWE spans.

For instance, an adjective MWE span, “out of business” includes a functional

MWE span, “out of” in the following sentence:

.. and putting unprofitable state-owned companies out of business.

In such instance, I resolve a conflict between these two annotations by leaving

the broader MWE span. I show the corpus statistics of functional and adjective

MWE annotations after this resolution in Table 13.
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6.2.3.2 A resolution of conflicts between MWE annotations and phrase

structures

Next, I resolve conflicts between MWE annotations and phrase structures. When

some annotated MWE span does not correspond to a phrase structure subtree, I

call this situation a conflict between an MWE annotation and a phrase structure.

Because conflicts between functional MWE annotations and phrase structures

have already been resolved in the corpus by Kato et al. (2016), I extend it by

dealing with conflicts between phrase structures and adjective MWE annotations,

which I perform additionally in this work.

Based on methods I described in Chapter 3, I classify adjective MWE spans

into the following three patterns according to consistency between an MWE span

and a phrase structure (Finkel and Manning, 2009; Kato et al., 2016).

(a) A phrase struc-

ture before a mod-

ification. A rectan-

gle shows an MWE

span.

(b) A phrase struc-

ture after a modifica-

tion. An MWE (“de

facto”) is grouped as

a subtree.

Figure 24: A modification of a phrase structure in a case of “multiple contiguous

children”.

(1) A phrase structure subtree (Figure 22a)

If an MWE span corresponds to a phrase structure subtree, I need not

modify this constituency tree.

(2) Multiple contiguous children (Figure 24)

If an MWE span corresponds to multiple contiguous children of a sub-

tree (Finkel and Manning, 2009; Kato et al., 2016), I insert an MWE-specific
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(a) A phrase structure before a modi-

fication. A rectangle shows an MWE

span.

(b) A phrase structure after a modifi-

cation. An MWE (“in line”) is grouped

as a subtree.

Figure 25: A modification of a phrase structure in a case of “crossing brackets”.

(a) Before a merge (b) After a merge

Figure 26: A step of merging components of an MWE into a single node.

non-terminal 43 that governs the MWE span. Note that I do not require

manual annotations for this case.

(3) Crossing brackets (Figure 25)

If MWE spans have crossing brackets with the spans in the parse tree,

I establish each MWE as a subtree by the following way. As a typical

example, a subtree that includes an adjective MWE span could be a PP

comprised of a preposition (IN) and a noun phrase (NP). This NP consists

of a nested NP and a nested PP (Figure 25a). In such instances, an adjective

MWE span precedes a nested PP. In this case, I insert an MWE-specific

non-terminal that governs an adjective MWE span and move the nested PP

43Format of the MWE-specific non-terminal is “MWE <MWE-level POS-tag>” (e.g.,

“MWE JJ”).
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to the main PP (Figure 25b).

6.2.3.3 A conversion from phrase structures to dependency trees

Finally, I perform tree-to-dependency conversion. As a preprocessing step, I

first replace a subtree corresponding to an MWE by a preterminal node and its

child node (Figure 26). The preterminal node has an MWE-level POS tag. The

child node is created by joining all components of the MWE with underscores

(words-with-spaces). After that, I convert phrase structures to Stanford basic

dependency trees (de Marneffe and Manning, 2008) 44.

6.3 Models for Continuous MWE-aware Dependency Pars-

ing and Verbal MWE Recognition

Here, I describe the models for continuous MWE-aware dependency parsing and

verbal MWE recognition.

6.3.1 Continuous MWE-aware Dependency Parsing

For continuous MWE-aware dependency parsing, I investigate the following three

models:

1. A pipeline model of continuous MWE recognition (CMWER) with the

sequential labeler, and MWE-aware dependency parsing, which treats an

MWE as a syntactic unit (Figure 27).

2. Single-task(parser), which is a model to predict a word-based dependency

tree that encodes MWE spans and MWE-level POS-tags as dependency

labels (a head-initial dependency tree) (Figure 28).

3. The hierarchical multi-task learning (HMTL) (Sanh et al., 2018) of CMWER

and Single-task(parser) (Figure 29).

44I use Stanford CoreNLP Ver.3.9.1. As a command-line option, I use the following: -basic

-keepPunct -conllx -originalDependencies. Details are described in the following site:https:

//nlp.stanford.edu/software/stanford-dependencies.html.
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Figure 27: An architecture of the pipeline model. In this model, I get an average

of hidden states corresponding to an MWE span predicted with the sequential

labeler, and use it as an input to MLPs whose outputs are fed into biaffine

classifiers.

Input features for the above models are concatenations of word embeddings,

ELMo embeddings (Peters et al., 2018), and character-level word representa-

tions (Kim et al., 2016).

In the pipeline model, I use the bi-LSTM-CNNs-CRF model (Ma and Hovy,

2016) for CMWER and Deep biaffine parser (Dozat and Manning, 2017) for

MWE-aware dependency parsing. To calculate a hidden state of an MWE span,

I average output vectors that correspond to tokens belonging to an MWE span

predicted by the sequential labeler, from a bi-LSTM network (Figure 27). This

hidden vector of an MWE is fed into MLPs in Deep biaffine parser. Hence, an

output from the parser is a dependency tree in which a predicted MWE is treated

as a syntactic unit. Note that I utilize gold MWE spans in training to make it

possible for the parser to predict a gold dependency tree. At inference time, I
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Figure 28: An example of a head-initial dependency tree, in which a span of an

MWE (”a number of”) and an MWE-level POS-tag are encoded as dependency

labels (mwe DT).

exploit MWE spans predicted by the sequential labeler.

In Single-task(parser), I utilize Deep biaffine parser to predict a head-initial

dependency tree. Because this model predicts a head-initial dependency tree,

in which MWE spans and MWE-level POS-tags are represented as dependency

labels, this model could mitigate error propagation, which the pipeline model

could suffer from.

Finally, I describe the motivation to use the HMTL-based model. Because

continuous MWE-aware dependency parsing could be decomposed to CMWER

and dependency parsing in which a CMWE is treated as a syntactic unit, fea-

tures captured by the sequential labeler for CMWER are expected to improve

performances of Single-task(parser). Therefore, I adopt the HMTL-based model

in which CMWER and Single-task(parser) are treated as low and high-level tasks,

respectively. In the HMTL-based model, inputs to the high-level task encoder

are both outputs from the low-level task encoder and token representations of an

input sentence (shortcut connections (Sanh et al., 2018)).

6.3.2 Verbal MWE Recognition

With respect to VMWE recognition (VMWER), I formalize this task as sequential

labeling by using extended BIO tagging scheme (Schneider et al., 2014), which is

able to treat gaps between components of a VMWE (e.g., pick .. up). I explore

the following two models:

1. Single-task (VMWE), which is the sequential labeler for VMWE recog-

nition. Concretely, I use the bi-LSTM-CNNs-CRF model (Ma and Hovy,
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Figure 29: An architecture of the hierarchical multi-task learning (HMTL) of

continuous MWE recognition (CMWER) and dependency parsing which predicts

head-initial dependency trees (Single-task(parser)).

2016).

2. The HMTL of CMWER, Single-task(parser), and Single-task (VMWE).

I investigate the above HMTL-based model because dependency information,

specifically, a dependency edge from a verb to a particle or a direct object is

expected to be effective in VMWE recognition. In this HMTL-based model, the

encoder of Single-task (VMWE) can utilize features captured by the encoder of

Single-task(parser). For comparison, I explore the following two HMTL-based

models:

1. the HMTL of CMWER and Single-task (VMWE).

2. the HMTL of Single-task(parser) and Single-task (VMWE).
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Figure 30: An architecture of HMTL of continuous MWE recognition

(CMWER), dependency parsing that predicts head-initial dependency trees

(Single-task(parser)), and Single-task (VMWE).

6.4 Experiments with Models for Continuous MWE-aware

Dependency Parsing and Verbal MWE Recognition

Here, I describe experiments of models for continuous MWE-aware dependency

parsing and verbal MWE recognition.

6.4.1 Experimental Setup and Implementation Details

As a dataset, I use a continuous MWE-aware dependency corpus (Chapter 6.2)

and VMWE annotations (Chapter 5) (Kato et al., 2018) on Ontonotes 5.0. I

split the WSJ portion of Ontonotes 5.0, using sections 2-21 for training, section

22 for development, and section 23 for testing, respectively.
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Within the above VMWE annotations, I find a small number of sentences in

which multiple VMWE annotations partially overlap with each other. Because

it is difficult to formalize VMWE recognition in these sentences as sequential

labeling, I perform experiments after removing 13 and 2 sentences with overlapped

VMWE annotations from the training and test splits, respectively.

During the training of an HMTL-based model, a task is randomly sampled

and a minibatch of a dataset attached to the task is also randomly sampled. The

sampling probability for a task is proportional to the relative size of a dataset for

the task (proportional sampling) 45. As a criterion of convergence, I adopt Early

stopping (Prechelt, 1998), in which training would be stopped if the validation

metrics do not improve within the fixed number of epochs, which is a hyper-

parameter.

As base implementations of bi-LSTM-CNNs-CRF and Deep biaffine parser, I

use the AllenNLP library (Gardner et al., 2018). I initialize word embeddings with

Glove (Pennington et al., 2014). Concerning ELMo representations, I utilize the

bi-LSTM network pre-trained with One Billon Word Benchmark corpus (Chelba

et al., 2013). In the bi-LSTM-CNNs-CRF models used in CMWER and VMWER,

I apply dropout to inputs and outputs of the bi-LSTM networks. In Deep biaffine

parser, I use dropout in inputs and outputs of the bi-LSTM networks and outputs

from Multi-Layer Perceptrons (MLPs) for dependency heads and dependency

labels.

Downsampling of negative instances in the sequential labeling

In continuous MWE-aware dependency corpus, many sentences have no MWEs

(e.g., 1370 in 1640 sentences in the test set), which corresponds to sequences made

of only ”O” (outside) tags. Hereafter, I define negative and positive instances as a

sentence having no MWEs and a sentence having at least one MWE, respectively.

To mitigate class imbalance (Leevy et al., 2018), in training of the sequential la-

beler for recognition of CMWEs or VMWEs, I perform downsampling of negative

45In my experiments, the sizes of datasets for tasks in HMTL are almost the same with

each other, however, the VMWE recognition task has less training instances than those of the

other two tasks (CMWER and continuos MWE-aware dependency parsing) because I remove

sentences that have partially overlapped VMWEs, as I described above.
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instances if number of negative instances are more than positive instances in a

mini-batch. The purpose of this downsampling is to make the number of negative

instances that contribute to the loss function, same as those of positive instances.
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6.4.2 Hyper-parameters and model selections

Hyper-parameter Value

[Input features]

Word embeddings Glove 6B (100 dimensions)

Character-based representations 16 dimensions

Window size 3

No. of filters 64

[Training]

Optimizer Adam

Learning rate 0.001

Epochs 50

Patience (used in early stopping) 10

[Continuous MWE recognition]

Hidden Units of LSTMs 64

No. of LSTM Layers 2

Dropout ratio 0.2

Mini-batch Size 32

[Continuous MWE-aware dependency parsing]

Hidden Units of LSTMs 256

No. of LSTM Layers 3

Dropout ratio 0.33

Hidden Units of MLPs (for dependency arcs) 500

Hidden Units of MLPs (for dependency labels) 100

Mini-batch Size 100

[VMWE recognition]

Hidden Units of LSTMs 64

No. of LSTM Layers 2

Dropout ratio 0.2

Mini-batch Size 32

Table 14: Hyper-parameters used in the experiments.
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I show hyper-parameters used in experiments in Table 14. Regarding CMWER, I

select a model based on F1-scores of the development set. Concerning VMWER,

and HMTL-based models that include VMWER, I perform a model selection

based on F1-scores for VMWEs of the development set. With respect to CMWE-

aware dependency parsing and other HMTL-based models, I select a model based

on labeled attachment scores (LAS) of the development set.

6.4.3 Evaluation measures

To evaluate continuous MWE recognition, I use the F-measure for untagged /

tagged MWEs (FUM / FTM) 46. Regarding models that predict head-initial

dependency trees, I calculate FUM / FTM by using predicted MWE spans and

MWE-level POS tags represented in head-initial dependency trees.

Concerning an evaluation measure of VMWE recognition, I use FUM. Each

predicted VMWE is represented as token indices because a VMWE could have a

gap between its elements.

Regarding continuous MWE-aware dependency parsing (CMWE-DP), I use

unlabeled and labeled attachment scores (UAS / LAS) 47. For the pipeline model

of CMWER and CMWE-DP, each MWE span predicted by CMWER is merged

into a single token in the first stage. After that, the parser predicts an CMWE-

aware dependency tree in the second stage. Hence, in evaluation, I convert each

merged token into a head-initial subtree and calculate UAS and LAS.

46FUM only focuses on MWE spans, whereas FTM focuses on both MWE spans and MWE-

level POS tags.
47When calculating UAS / LAS, I remove punctuation.

60



6.4.4 Experimental Results and Discussion

CMWE-DP CMWE VMWE

All Sentences First words

sentences including of gold

MWEs MWEs

Model UAS LAS UAS LAS UAS LAS FUM FTM FUM

Single task 95.78 94.23 95.03 92.83 85.85 77.21 93.25 92.56

(parser)

Pipeline (CMWE 95.76 94.26 94.83 92.82 84.21 76.19 95.01 94.80

+ parser)

HMTL (CMWE 95.69 94.20 94.89 92.86 85.64 77.75 95.00 94.38

+ parser)

Single-task 84.28

(VMWE)

HMTL (CMWE 94.99 94.58 83.12

+ VMWE)

HMTL (parser 95.19 93.45 94.12 91.63 82.24 73.20 91.11 89.72 84.57

+ VMWE)

HMTL (CMWE 95.02 93.31 94.09 91.87 83.26 75.24 94.35 93.74 85.62

+ parser

+ VMWE)

Table 15: Experimental results for the test set regarding continuous MWE-aware

dependency parsing (CMWE-DP) and VMWE recognition (VMWER). The re-

sult is an average of five independent trials.

I show experimental results for the test set in Table 15. First, regarding CMWER,

Pipeline(CMWE + parser), HMTL (CMWE + parser), and HMTL (CMWE +

VMWE) show similar FUMs, which are 1.7 points better than an FUM of Single-

task (parser). These results suggest that sequential labeling or the HMTL-based

models are more suitable to recognize CMWEs than CMWER through CMWE-

aware dependency parsing.
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MWE-level POS tags IN RB DT JJ

# of MWE instances 93 167 18 11

Model UAS LAS UAS LAS UAS LAS UAS LAS

Single task (parser) 79.79 70.11 87.19 79.16 100.00 93.33 87.27 70.91

Pipeline (continuous MWE 77.42 68.60 85.99 78.68 98.89 90.00 83.64 69.09

+ parser)

HMTL (continuous MWE 80.43 69.89 86.83 80.60 100.00 94.44 81.82 63.64

+ parser)

HMTL (parser + VMWE) 78.92 71.40 81.79 72.22 100.00 92.22 80.00 60.00

HMTL (continuous MWE 80.86 73.12 82.39 74.49 100.00 92.22 81.82 65.46

+ parser + VMWE)

Table 16: Experimental results for the test set regarding continuous MWE-aware

dependency parsing with respect to first words of gold MWEs. I omit results for

MWEs that have PRP as MWE-level POS tags, which occur 5 times in the test

set, because UAS and LAS of these MWEs are 100% for all models.

Second, I describe the results of CMWE-aware dependency parsing. For the

whole test set and sentences including MWEs (270 in 1640 sentences), all models

show similar unlabeled attachment scores (UASs). Because the number of tokens

belonging to MWEs corresponds to about 1.9 % of that of the whole test set, mul-

tiple models could show similar performances for the whole test set, even though

these models perform differently in terms of UAS regarding dependency edges

that are inside of CMWEs or that connect inside and outside of CMWEs. Actu-

ally, if I focus on UAS of first words of gold MWEs, HMTL (CMWE + parser)

performs 1.4 points better than Pipeline(CMWE + parser). HMTL (CMWE

+ parser) exploits outputs from the encoder of the CMWE recognizer as input

features for the encoder of the dependency parser, instead of using predictions

of CMWER deterministically. Hence, HMTL (CMWE + parser) mitigates error

propagation from the CMWE recognizer, which is consistent with the above re-

sults. Besides, HMTL (CMWE + parser) and Single-task (parser) show similar

UASs. Considering the former is better than the latter in terms of CMWER,

the HMTL of CMWER and the head-initial dependency parser operates success-
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fully. To compare performances of models in more detail, I show experimental

results of continuous MWE-aware dependency parsing concerning first words of

gold MWEs in Table 16. These results suggest that HMTL-based models includ-

ing CMWER are effective to predict dependency heads of first words of MWEs

that have IN (prepositions or subordinate conjunctions) as MWE-level POS tags.

Regarding the first words of adverbial MWEs, Single task (parser) performs the

best in terms of UAS and leads to at least 4.8 points better than HMTL-based

models including VMWER. Note that most of the gold MWEs in the test set

also appear in the training set (285 in 294 functional or adjective MWEs). Fur-

thermore, I find that PP-attachment often leads to parsing errors. For instance,

Single task (parser) incorrectly predicts “building” as a dependency head of the

first word of the gold MWE, “around the world” instead of the correct head,

“bureaus” in the following sentence: “It focused on building up its news bureaus

around the world, so as events took place it could go live quicker and longer

than other networks.”

Finally, concerning VMWE recognition, HMTL (CMWE + parser + VMWE)

performs 1.3 points better than Single-task (VMWE) in terms of FUM. Consider-

ing CMWE spans are represented in head-initial dependency trees, HMTL (parser

+ VMWE) and HMTL (CMWE + parser + VMWE) receive the same supervised

signals. In spite of this, the latter performs 1.0 points better than the former in

terms of FUM. This result suggests that it is more effective for VMWE recog-

nition models to exploit not only features captured by the dependency parser,

which predicts CMWE spans through parsing but also features acquired by the

sequential labeler for CMWE recognition. Besides, HMTL (CMWE + parser +

VMWE) is 2.5 points better than HMTL (CMWE + VMWE) in terms of FUM.

This result infers that the syntactic information captured by the CMWE-aware

dependency parser is effective for VMWE recognition. Furthermore, I investigate

the performances of HMTL (CMWE + parser + VMWE) in terms of unknown

VMWE recognition. Among 278 types of VMWEs that appear in the test set,

76 types of VMWEs do not appear in the training set, which I call unknown

VMWEs. The detailed analysis shows that recalls of HMTL(CMWE + parser

+ VMWE) regarding unknown and known VMWEs are 56.25 and 91.87, respec-
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tively 48. Hence, it is worthwhile to investigate the effects of additional features

based on a VMWE dictionary that I develop in Chapter 5.2.1.

6.5 Related Work

First, I describe MWE-aware syntactic corpora. Whereas French Treebank (Abeillé

et al., 2003) is often used as a dataset for French MWE-aware dependency pars-

ing (Candito and Constant, 2014) because of its explicit MWE annotations,

there have been only limited corpora for English MWE-aware dependency pars-

ing. Schneider et al. (2014) performs MWE annotations on English Web Tree-

bank (Bies et al., 2012). However, their MWE annotations do not guarantee that

an MWE span corresponds to a phrase structure subtree. Besides, their corpus

consists of about 3,800 sentences, which is relatively small as the training data for

a dependency parser. By contrast, my corpus ensures that an MWE span com-

prises a subtree in a phrase structure tree (section 6.2.3), and it covers the whole

of the WSJ portion of Ontonotes 5.0, which consists of about 37,000 sentences.

Next, I introduce several works concerned with an MWE-aware syntactic

parsing. First, Green (2013) (Green et al., 2013) introduces MWE-specific non-

terminals and proposes a method to recognize contiguous MWEs as a part of

constituency parsing. They explore two models based on context-free grammars

and tree substitution grammars, respectively. Second, Candito and Constant

(2014) addresses joint dependency parsing and French MWE recognition. For

MWEs that do not have syntactic non-compositionality, they adopt alternative

representations instead of head-initial dependency trees (Figure 28). Their moti-

vation is to represent a syntactic structure within a syntactically regular MWE.

Their models focus on not only dependency parsing and MWE identification,

but also predictions of internal structures of syntactically regular MWEs. In

their models, MWE recognition is conducted before, during, or after parsing.

Third, Constant and Nivre (2016) addresses a joint prediction of the following

two structures: a dependency tree and a forest of lexical units including MWEs.

These two structures share lexical elements, that is, both tokens and syntactically

non-compositional MWEs. In the latter structure, each MWE is represented by

a constituency-like tree, which is able to consider nested or discontinuous MWEs.

48This is the average of five independent experiments.
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They use a transition-based system that is an extension of a standard dependency

parser. They adopt classical transition-based parsing features, i.e., combinations

of linguistic attributes of nodes on the stacks and the buffer, processed subtrees,

and transition history. While their model predicts both lexical units and a de-

pendency tree that is aware of syntactically non-compositional MWEs, this work

tackles both VMWE recognition and continuous MWE-aware dependency pars-

ing. Because my motivation is to develop an MWE-aware dependency corpus that

is easy to use in downstream tasks that require an automated understanding of

the meaning of the texts, I integrate various continuous MWEs into dependency

structures, which are not limited to syntactically non-compositional MWEs. Fi-

nally, Kato et al. (2017, 2016) ensures that a span of a functional MWE or a

named entity (NE) comprises a subtree in a phrase structure tree in Ontonotes.

Based on this dataset, I perform tree-to-dependency conversion to get an English

dependency corpus that is aware of both NEs and functional MWEs (Chapter 4).

As is the case with the work in this chapter, I explore the following two models in

Chapter 4: (1) a pipeline model of the recognizer of NEs and functional MWEs,

and the dependency parser that treats an NE or an MWE as a unit, (2) a joint

model that performs word-based dependency parsing to predict a head-initial de-

pendency tree. I use Conditional Random Fields (CRF) (Lafferty et al., 2001)

as the sequential labeler and an arc-eager transition system (Nivre, 2003) as the

dependency parser in Chapter 4. This work is based on Kato et al. (2017), and

perform additional annotations for adjective MWEs to cover broader categories

of MWEs. Moreover, I address not only continuous MWE-aware dependency

parsing but also discontinuous MWE recognition.

Regarding VMWE-annotated corpora, PARSEME organizes shared tasks on

automatic identification of VMWEs (Ramisch and Cordeiro, 2018; Savary and

Ramisch, 2017). They provide annotation guidelines and annotated corpora of

79,326 VMWE annotations for 20 languages. Several works tackle this shared task

with neural network-based approaches. Klyueva et al. (2017) formalizes VMWE

identification as sequential labeling and use a bi-directional recurrent neural net-

work with gated-recurrent units (GRUs) (Cho et al., 2014). Berk et al. (2018)

utilizes the bi-LSTM-CRF model for VMWE recognition.
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6.6 Summary

In this chapter, I address continuous MWE-aware dependency parsing and VMWE

recognition. My contribution is two folds. First, I construct a dependency corpus

that is aware of both functional and adjective MWEs. Second, I design several

models and compare their performances in terms of continuous MWE (CMWE)-

aware dependency parsing and MWE recognition. Experimental results show that

the hierarchical multi-task learning (HMTL)–based model of the CMWE recog-

nizer, the head-initial dependency parser, and the VMWE recognizer is effective

in VMWE recognition.
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7 Conclusion

In this thesis, I develop continuous MWE-aware dependency corpora and VMWE

annotations. Furthermore, I address the following two tasks: continuous MWE-

aware dependency parsing and discontinuous MWE recognition.

My contribution is the followings:

(1) A formalization to develop MWE-aware dependency corpus

The main motivation for MWE-aware dependency trees comes from the fact

that most of existing English treebanks do not guarantee that an MWE span

corresponds to a phrase structure subtree. Hence, one could not acquire

MWE-aware dependency trees by simply merging components of each MWE

in dependency trees converted from phrase structure trees.

To deal with this problem, given a phrase structure tree and MWE anno-

tations, I formalized procedures to ensure that an MWE span corresponds

to a phrase structure subtree by modifying phrase structure trees (Chapter

3).

(2) Development of continuous MWE-aware dependency corpora

Based on the above procedures, I developed MWE-aware dependency cor-

pus ver.1.0 (LDC2017T01) and 2.0 (LDC2017T16) in Ontonotes 5.0 (Prad-

han et al., 2007). The former is aware of functional MWEs (Chapter 3),

and the latter is aware of NEs and functional MWEs (Chapter 4).

(3) VMWE annotations on Ontonotes

In downstream tasks, it is important to recognize not only continuous

MWEs but also verbal MWEs (VMWEs), which is likely to have discon-

tinuous occurrences (e.g., take .. off). Therefore, I performed VMWE

annotations on Ontonotes 5.0 with crowdsourcing (Chapter 5). To exploit

crowdsourcing, I formalized VMWE annotations as a multiword-sense dis-

ambiguation problem. My VMWE annotations on Ontonotes 5.0 are pub-

licly available 49.

49https://github.com/naist-cl-parsing/Verbal-MWE-annotations
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(4) Continuous MWE-aware dependency parsing and VMWE recognition

Based on the intuition that dependency information is expected to be ef-

fective in VMWE recognition, I tackled the task to predict both continuous

MWE-aware dependency trees and VMWEs (Chapter 6). By experiments

with continuous MWE-aware dependency corpus and VMWE annotations

on Ontonotes 5.0, I demonstrated that the effectiveness of a model based

on the hierarchical multi-task learning (HMTL) (Sanh et al., 2018) of the

following three tasks: continuous MWE recognition, a prediction of head-

initial dependency trees, and VMWE recognition. Besides, I perform ad-

jective MWE annotations to broaden the coverage of continuous MWEs in

Ontonotes.

As future work, I plan the followings:

(1) The extension of coverage of MWEs

Even though I integrate functional and adjective MWEs into dependency

structures, several kinds of MWEs are not covered. Hence, I plan to in-

tegrate VMWEs, auxiliary verbal MWEs (aux-VMWEs), and semi-fixed

MWEs (Constant and Nivre, 2016; Morimoto et al., 2016) into dependency

trees.

(2) Use of pre-trained language models for MWE recognition

Very recently, it is demonstrated that contextualized token representations

acquired with pre-trained neural language models (NLMs) boost perfor-

mances of various downstream tasks (Peters et al., 2018; Devlin et al.,

2018). However, it is still unclear whether pre-trained LMs are useful in

MWE recognition. Specifically, I would like to explore a capacity of NLMs

to recognize syntactic and/or semantic non-compositionality of MWEs in

an unsupervised or weakly supervised way, under task settings in which an

MWE dictionary is given while MWE annotations are not available.

(3) Cross-lingual transfer learning of VMWE classification

In recent years, PARSEME organizes shared tasks on automatic identifica-

tion of VMWEs (Ramisch and Cordeiro, 2018; Savary and Ramisch, 2017).

Datasets of these tasks consist of VMWE annotations for 20 languages.
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Based on the above datasets, I plan to design models for cross-lingual trans-

fer learning of VMWE classification (Taslimipoor et al., 2019). Concretely,

I assume the followings: (1) VMWE dictionaries and annotations for two

similar languages, such as English and German are given, (2) The scale of

VMWE annotations for a source language is larger than that for a tar-

get language, (3) I can train cross-lingual word representations (Ruder

et al., 2017; Eriguchi et al., 2018) of these two languages with word-level or

sentence-level alignments. The former could be obtained with a bilingual

dictionary, while the latter could be acquired with parallel translation data.

Given the above assumptions, I plan to perform cross-lingual transfer learn-

ing of VMWE classification in the following procedures: (1) I extract can-

didates of VMWE instances in each language by matching sentences with

a VMWE dictionary considering inflections and gaps between components

of a potential VMWE, (2) I train a model that performs a binary classifica-

tion of potential VMWE instances into MWE or literal usages in a source

language, (3) I additionally train this model with the training data from a

target language. This model is expected to mitigate limited training data

for the target language.
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Anne Abeillé, Lionel Clément, and François Toussenel. 2003. Building a Treebank

for French, pages 165–187. Springer Netherlands, Dordrecht.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,

Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normalized

transition-based neural networks. ArXiv, abs/1603.06042.

Timothy Baldwin, Valia Kordoni, and Aline Villavicencio. 2009. Prepositions in

applications: A survey and introduction to the special issue. Computational

Linguistics, 35:119–149.

Gözde Berk, Berna Erden, and Tunga Güngör. 2018. Deep-BGT at PARSEME

shared task 2018: Bidirectional LSTM-CRF model for verbal multiword ex-

pression identification. In Proceedings of the Joint Workshop on Linguistic An-

notation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018),

pages 248–253, Santa Fe, New Mexico, USA. Association for Computational

Linguistics.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick. 2012. English web tree-

bank. Technical Report LDC2012T13, Linguistic Data Consortium, Philadel-

phia, Pennsylvania, USA.

Jari Björne, Filip Ginter, and Tapio Salakoski. 2017. Epe 2017: The biomedical

event extraction downstream application. In Proceedings of the 2017 Shared

Task on Extrinsic Parser Evaluation (EPE 2017) at the Fourth International

Conference on Dependency Linguistics (Depling 2017) and the 15th Interna-

tional Conference on Parsing Technologies (IWTP 2017), pages 17–24. Asso-

ciation for Computational Linguistics.

Marie Candito and Matthieu Constant. 2014. Strategies for contiguous multiword

expression analysis and dependency parsing. In Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 743–753. Association for Computational Linguistics.

70



Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and

Phillipp Koehn. 2013. One billion word benchmark for measuring progress in

statistical language modeling. In INTERSPEECH.

Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency

parser using neural networks. In Proceedings of the 2014 Conference on Empir-

ical Methods in Natural Language Processing (EMNLP), pages 740–750, Doha,

Qatar. Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. 2014. On the properties of neural machine translation: Encoder-decoder

approaches. In SSST@EMNLP.

Michael Collins and Brian Roark. 2004. Incremental parsing with the perceptron

algorithm. In ACL.

Matthieu Constant and Joakim Nivre. 2016. A transition-based system for joint

lexical and syntactic analysis. In Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pages

161–171. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding.

CoRR, abs/1810.04805.

Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for

neural dependency parsing. ArXiv, abs/1611.01734.

Timothy Dozat, Peng Qi, and Christopher D. Manning. 2017. Stanford’s graph-

based neural dependency parser at the CoNLL 2017 shared task. In Proceed-

ings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text

to Universal Dependencies, pages 20–30, Vancouver, Canada. Association for

Computational Linguistics.

Jason M. Eisner. 1996. Three new probabilistic models for dependency pars-

ing: An exploration. In Proceedings of the 16th Conference on Computational

Linguistics - Volume 1, COLING ’96, pages 340–345, Stroudsburg, PA, USA.

Association for Computational Linguistics.

71



Akiko Eriguchi, Melvin Johnson, Orhan Firat, Hideto Kazawa, and Wolfgang

Macherey. 2018. Zero-shot cross-lingual classification using multilingual neural

machine translation. ArXiv.
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Language Resources Association (ELRA)

2. Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto. 2017. English mul-

tiword expression-aware dependency parsing including named entities. In

Proceedings of the 55th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 2: Short Papers), pages 427–432, Vancouver,

Canada. Association for Computational Linguistics

3. Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto. 2018. Construction of

large-scale English verbal multiword expression annotated corpus. In Pro-

ceedings of the Eleventh International Conference on Language Resources

and Evaluation (LREC 2018), Miyazaki, Japan. European Languages Re-

sources Association (ELRA)

78



List of Linguistic Resources

MWE-Aware English Dependency Corpus
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