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Neural decoding of sentences

using synchronization between

EEG and speech rhythm∗

Hiroki Watanabe

Abstract

Recent research has attempted to realize an electroencephalogram (EEG)-

based speech recognition (neural decoding of speech) during speech perception

or imagined speech for providing a means of communication for patients with

severe motor disabilities. The goal of the thesis is to propose novel features based

on knowledge of neurophysiology for the neural decoding because the previous

research is performance-oriented without the understanding of the underlying

neural mechanism. For the purpose, the thesis focused on neural phase syn-

chronization with speech. The previous magnetoencephalography research had

shown that synchronization during speech perception enables speech to be classi-

fied. The thesis investigated whether the synchronization enables both perceived

and imagined speech to be classified using EEG.

Experiment 1 investigated the performances in EEG-based decoding of three

Japanese spoken sentences using different classifiers from the previous research

(template matching: baseline, logistic regression, support vector machine (SVM),

and random forest) and using phase information in multiple frequency bands rel-

evant to linguistic processing. The trained models were evaluated by subject-

dependent, -inclusive, and -independent manners. Results showed the best ac-

curacies achieved 50.0% in SVM trained by theta, 51.9% in template match-

ing trained by multiple frequency band (delta, theta, alpha, beta, and gamma),
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and 50.5% in SVM trained by multiple frequency bands in subject-dependent,

-inclusive and -independent classification, respectively.

Experiment 2 investigated whether EEGs during imagined speech synchro-

nize with the rhythm of the imagery. Because of the unobservable nature of the

speech imagery, the imagined speech was replaced with the overt counterpart. I

regressed three types of overt nonsense speech envelopes from EEG during the

speech imagery and calculate the correlation between the regressed envelope and

the overt speech envelope. The template matching classified the speech to clar-

ify whether EEG phases during the imagined speech are modulated depending

on the speech imagery. The variability of the duration of the imagined speech

across trials was corrected using dynamic time warping (DTW). Results showed

a significant correlation between the EEG-based regressed envelope and the overt

speech one. The average classification accuracy achieved 38.5%, which signifi-

cantly outperformed a chance of rate (33.3%). In Experiment 3, the synchroniza-

tion during the imagined speech in the linguistic relevant frequency bands (from

delta to gamma) and classification performances was investigated using meaning-

ful sentences. As results, the theta band showed the marginally significant PLVs.

The DTW-based template matching trained by theta phase patterns achieved

marginally significant performances (43.1%) against the chance rate (33.3%) in

the subject-dependent classification.

The thesis succeeded in demonstrating the neural phase information induced

by neural phase synchronization is the effective feature for neural decoding of

speech by clarifying that EEG phases in both speech perception and imagined

speech task enabled speech to be classified. It was also shown that the neural

decoding models in speech perception are possible to be generalized to unknown

users and use of phase patterns in the multiple linguistic-relevant frequency bands

improve accuracies in the subject-independent classification.
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1. Overview of the Thesis

1.1 Brain-computer interface for communication aid

Recent technologies to measure electroencephalogram (EEG) enables users to

connect their brains and a computer directly to operate machines or computers

such as robot arms [36], wheelchairs [47], and spelling systems [24]. Such systems,

which are called brain-computer interface (BCI), are mainly motivated to com-

pensate for the lost physical functions of people [84]. A BCI system enables to

provide the patients with the locked-in syndrome, who cannot move their muscles

voluntarily with having a normal consciousness and perceptual abilities, means

of expressing their intentions without making body movements. One of the most

widespread BCI for communication aid is an EEG-based spelling system. The

spelling system enables the users to select letters or icons on a monitor using their

EEG responses, for example, a P300 event-related potential (ERP) [24].

On the other hand, for approximate the BCI-based speech communication to

daily life conversation (i.e., speech communication without a spelling system),

recent research has attempted brain-based speech recognition (neural decoding

of speech). This decoding is positioned on one of the BCI for communication aid

but aims to realize more natural communication using brain signals (Fig. 1).

Figure 1. A position of the neural decoding of speech among the existing BCI

systems for device control and communication aids. See also [53] and Chapter 2.

In the decoding, participants were required to listen to the speech (hereafter,
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speech perception task) and imagine the articulatory movements of speech with-

out any moving their articulators (hereafter, imagined speech task). The former

task aims to recognize what speech the participants heard and later one does to

recognize what speech the participants imagined. The first attempt of the decod-

ing was performed by Suppes et al. (1997) [74], demonstrating that English words

were discriminated using EEG in both speech perception and imagined speech

tasks. One of the most recent studies of neural decoding of speech reported the

imagined two words were classified with accuracy above 95% in the best case [59].

1.2 Focus of the thesis

Regardless of such successful mapping from EEG signals to speech with high ac-

curacy, one perspective is still missing: what are neurophysiological mechanisms

underpinning the neural decoding of speech? Recent performance-oriented clas-

sification algorithms (e.g., deep neural network) trained by a large dataset have

been updated classification performances from conventional shallow learning al-

gorithms in exchange for its interpretability of features contributed to classifica-

tion. Such state-of-the-art classifiers also prosper the performances of the neural

decoding of speech (see [48] for review of recent algorithms for BCI). However,

understanding the neural mechanisms (i.e., how neural systems are modulated

depending on speech stimuli) and extracting features based on the mechanism

is still of importance in the neural decoding of speech. This importance is em-

phasized especially in an EEG-based classification, which is the most suitable for

BCI systems in terms of compactness and running cost, in the following reasons.

First, EEG data acquisition has not been pervasive in our daily life so that we

collect EEG data to build a large dataset from scratch. Second, EEG data is

prone to be contaminated by many kinds of artifacts: external line noise, muscle

artifact, eye-movements, unrelated brain activities, which are greatly larger than

EEG signals in many cases. To deal with the above-mentioned situations, feature

engineering is considered as one of the solutions because it improves signal-to-

noise (S/N) ratio of EEG data and enables classifiers to work with the limited

amount of data.

Considering the above-mentioned things, the thesis aims to propose a novel

feature for EEG-based neural decoding of speech based on cognitive neurophysio-
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logical research. One suitable neurophysiological mechanism enabling the neural

decoding of speech is neural phase synchronization with speech acoustics [49]. The

neural oscillations in the auditory cortices match their phase to rhythms of speech

to extract language relevant units from speech acoustics during speech percep-

tion. This means that the synchronization induces stimulus-specific, replicable

EEG phase patterns leading to successful classification [49]. Luo and Poeppel

(2007) [49]’s magnetoencephalography (MEG) study demonstrated that neural

phase information in theta (4–8 Hz) frequency band discriminated speech utilizing

the neural synchronization between theta oscillations between syllabic rhythms

included in the speech. Besides, the neural phase matching to the external stimuli

shows less individual variability across the users [41]. The less individual differ-

ences can be an advantage for a practical application because pre-training is not

necessary for a new user once a classification model was constructed.

To utilize the neural phase synchronization for the neural decoding of speech,

several points need to be overcome. (1) It is necessary to investigate phase

synchronization-based classification performances using EEG, not MEG because

EEG has considered as the best choice for BCI applications thanks to its porta-

bility of measuring devices with a relatively low running cost. However, given

that EEG has worse S/N ratio and spatial resolution than MEG, it is still un-

clear whether the previous MEG-based neural decoding allows direct application

to the EEG-based classification. (2) It also remains unclear whether this classifi-

cation can be applied to the imagined speech task because modulations of neural

dynamics during imagined speech has not yet fully understood. While neural de-

coding of speech requires the two tasks (speech perception and imagined speech),

the decoding of imagined speech is practically utilized for the communication aid

BCI that a content of the imagined speech is outputted via a speaker. If a similar

neural modulation to speech perception is induced during the imagined speech,

it is suggested that phase patterns of neural oscillations during imagined speech

enables to discriminate the imagined speech.

Thus, the primary goal of the thesis is to reveal that the EEG phase infor-

mation induced by neural synchronization successfully classify speech. This goal

aims to fill a missing gap between neural engineering and cognitive neurophys-

iology field: The former is performance-oriented research and the latter aims

3



to understanding neural mechanisms in cognition. More specifically, to achieve

the goal of the thesis, totally three experiments were conducted: (Experiment

1) EEG-based neural decoding of perceived speech, (Experiment 2) investiga-

tion of EEG phase synchronization with imagined speech and (Experiment 3)

EEG-based neural decoding of imagined speech.

Experiment 1 investigated whether the previous MEG research [49] enables

to apply EEG-based neural decoding of speech. While the decoding of imag-

ined speech is required for the communication aid BCI, the decoding of perceived

speech was treated as a first step for demonstrating the effectiveness of neural

phase synchronization by extending the previous research. For the purpose, clas-

sification of three spoken sentences using EEG during a speech perception task

was adopted, which was the same task to the MEG research. Another purpose

of Experiment 1 is to obtain better classification results compared to the method

proposed in the previous research. To this end, several different classifiers were

constructed (logistic regression, support vector machine (SVM), random forest)

in addition to the previous classifier, template matching. Furthermore, models

were trained by other frequency bands relevant to linguistic processing (delta, al-

pha, beta, and gamma) in addition to theta (previous research) and combination

of these frequency bands for performance improvement. These frequency bands

were chosen because it has suggested that phases in these frequency bands also

synchronized with speech rhythms [54].

Experiment 2 investigated whether EEGs during imagined speech synchro-

nize with the rhythm of the imagery. This research question was set to apply the

classification method to the imagined speech classification. Because of the un-

observable nature of the speech imagery, the imagined speech was replaced with

the overt counterpart. I regressed three types of overt nonsense speech envelopes

from EEG during the speech imagery and calculate the correlation between the

regressed envelope and the overt speech envelope. The template matching clas-

sified the speech to clarify whether EEG phases during the imagined speech are

modulated depending on the speech imagery, which is further evidence for neural

phase synchronization. In Experiment 3, the synchronization during the imag-

ined speech in the linguistic relevant frequency bands (from delta to gamma) and

classification performances was investigated using meaningful sentences.
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1.3 Contributions of the thesis

The thesis contributes to a field of neural engineering by proposing novel features

based on neurophysiological mechanisms for neural decoding of speech. The neu-

rophysiological validity of features has received less attention in the previous

neural decoding of speech. Besides, investigation of neural phase synchronization

during the imagined speech contributes to cognitive neurophysiology. While the

neural correlates of the motor imagery [27] or a time course model of the speech

imagery [76] have investigated so far, the neural dynamics of speech imagery have

been less attended. Such insights lead to further understanding of brain dynamics

during linguistic processing. The contributions of the thesis are summarized as

follows.

Thesis contributions to neural engineering and neurophysiology

1. Proposing novel features for EEG-based neural decoding of speech based

on the neurophysiological mechanisms.

2. Investigating neural phase synchronization during the imagined speech for

further understanding of neural dynamics during linguistic processing.

1.4 Organization of the thesis

I briefly state the organization of the following sections in the thesis.

Chapter 2. An overview of BCI is introduced: a definition of BCI, its architec-

ture, brain signals used for it, and the introduction of BCI for communication aid

and its disadvantages. An introduction and a brief history of neural decoding of

speech are also stated.

Chapter 3. An introduction of neural phase synchronization with acoustic in-

formation is stated: general introduction of the synchronization, its neural gener-

ators, and quantification methods, methods to classify speech using the synchro-

nization.

Chapter 4. Experiment of EEG-based neural decoding of perveived speech is

reported and discussed.
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Chapter 5. Experiment of EEG phase synchronization with the imagined speech

are reported and discussed.

Chapter 6. Experiment of EEG-based neural decoding of imagined speech is

reported and discussed.

Chapter 7. The summary of the thesis and future directions toward practical

usage are discussed.

6



2. Overview of brain-computer interface

2.1 Definition and architecture of BCI

Since Hans Berger reported that electrical activity of the brain can be recorded

from the human scalp [8], many research has investigated the relationships be-

tween brain activity and our sensory, motor and cognitive process. In parallel,

the rapid development of brain measuring devices enables the recording of brain

activity outside of the experimental room [85]. A combination of such neuro-

physiological research and recent rapid advances in hardware for measuring brain

activity realized a direct connection between central nervous systems (CNS) such

as cerebral cortex activity and computer or machine to control electrical devices

in daily life. Such a brain-based system is called BCI, which can be defined as

“a system that measures CNS activity and converts it into the artificial output

that replaces, restores, enhances supplements or improves natural CNS output

and thereby changes the ongoing interactions between the CNS and its external

or internal environment (p.3)” [84]. So far, BCI applications have mainly uti-

lized in medical and welfare areas for helping people with motor diseases such

as amyotrophic lateral sclerosis (ALS) or physically handicapped people. BCI

provides means of replacing their lost function of motor movements, for example,

by controlling a wheelchair [47], moving a robot arm [36, 40] and moving a cursor

on the computer screen [2, 9] using the brain activity (see [56] for a review of the

BCIs for such an assistant technology).

An architecture of the traditional BCIs is divided into three components: data

acquisition, feature extraction, feature translation algorithm and device control

part [84, 82] (Fig. 2). In a data acquisition part, several types of brain activity

are used for the system. The measured data are translated into a signal process-

ing division. The division is composed of a feature extraction and translation

algorithm part: The former extracts feature relevant to the task or stimulus and

in the later part, the machine learning algorithm is trained beforehand and the

algorithm translates the current input into the prediction output. The prediction

output is converted into actual movement or control of devices such as moving a

wheelchair forward or opening a robot hand.
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data acquisition feature extraction translation 
algorithm

signal processing

• controlling a wheel chair
• moving a robot arm/ a cursor

Device control

Brain signals

Figure 2. A figure of a BCI architecture. This figure is modified from Wolpow

et al. (2002) [82], p.771. In the BCI system, features are extracted from the

measured brain signals. The features are translated into command to control

devices by the translation algorithm.

2.2 Brain activities for BCI

Several types of brain signals are widely used for BCI systems (Fig. 3). Each

brain signal has pros and cons. The signals used for the BCI are divided in terms

of types of neuronal activity (i.e., electrical activity and metabolic activity) and

whether a signal acquisition system requires to injure the user (e.g., surgical

operation).

The electrical activity of the brain is generated by a synaptic transmitter

connecting to a pyramidal neuron. The synaptic transmitter causes a flow of

an ion into a neuron (postsynaptic potential; PSP) and it creates an electrical

dipole. When an electrical field of the dipole is produced synchronously by a large

neuronal population heading in the same direction, these electrical activities are

measurable from electrodes attached on the human scalp. These electrical signals

are called EEG. In the case where the electrical field is measured from subdural

electrodes placed on a surface of the brain, the signal is called electrocorticog-

raphy (ECoG). While ECoG provides a good spatial (but not a whole brain,

though) and its temporal resolution that enables a BCI user to achieve better

performances than EEG-based one (for example, in a spelling system [15]), a

purpose of implanting electrodes is limited to a medical reason such as treatment
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Electrical activity Metabolic activity

invasive

non-invasive

Electrocorticography (ECoG)

Electroencephalography (EEG)
Magnetoencephalography (MEG)

functional magnetic resonance
imaging (fMRI)
functional near-infrared
spectroscopy (fNIRS)

Figure 3. Types of brain signals used in BCI. The signals are divided in terms

of types of brain activity (i.e., electrical activity and metabolic activity) and

invasiveness.

of epilepsy. MEG is a measured magnetic field generated by the electrical ac-

tivation of a neuronal population, which is captured by using superconducting

quantum interference devices (SQUIDs). MEG is also measurable from outside

of a human scalp non-invasively.

The metabolic activity does not measure neurons’ activity directly, but mea-

sures changes in an amount of hemoglobin, which functions to supply oxygen, in

the blood flow associated with the electrical activity by neurons (called blood-

oxygen-level-dependent; BOLD). Among methods to measure BOLD signals,

functional near-infrared spectroscopy (fNIRS) measures a ratio between oxyhe-

moglobin and deoxyhemoglobin. fNIRS relies on the differences in the wavelength

of lights that each hemoglobin absorbs to measure the ratio by using a pair of

sensors (source and detector sensors) placed on the scalp. One of the other

methods to measure the BOLD signals is functional magnetic resonance imaging

(fMRI). fMRI also measures a ratio of the two hemoglobins based on magneticity

of deoxyhemoglobin using a scanner.

One point of view to design the BCI application is compactness and running

cost of a measurement device. Among non-invasive methods, fMRI can provide a

good spatial resolution (i.e., the unit of a millimeter), but the running cost is too

high to retain it for personal use due to the expensiveness of helium gas which

is necessary to keep superconducting materials cool. The same thing can be said
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Figure 4. Each brain signal is summarized in terms of spatial and temporal

resolution, compactness of measuring device and invasiveness. Compactness is

expressed by a color of the box (orange: relatively large, blue: relatively compact).

to MEG. The SQUID sensors, which measure MEG signals, also need helium to

keep it cool. Besides, both measuring apparatus was too bulky to place them in

a user’s home.

EEG and fNIRS are more attractive as a daily use BCI. They are non-invasive,

compact and a relatively low running cost. However, there are pros and cons:

spatial and temporal resolution. EEG has a precise temporal resolution (i.e., a

unit of milliseconds) but it has a difficulty to identify neuronal sources of the

electrical activity because EEG signals propagate through resistances such as

skull and skin. In contrast, fNIRS has a better spatial resolution than EEG

(fMRI > fNIRS > EEG) because infrared light is unaffected by resistance such

skull. However, cerebral blood flows take several seconds to increase after the

event onset, thus, the temporal resolutioin is not good. Considering these things,

at present, EEG is the most widely used for a daily use BCI application. Types

of brain signals were summarized in terms of their spatial resolution, temporal

resolution, and invasiveness in Fig. 4.

2.3 Major brain responses used for a BCI application

Once brain signals are measured, features are extracted for decoding brain sig-

nals to operate a BCI application. Many existing EEG-based BCI relies on the
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Figure 5. (A) An example of the oddball paradigm. The participant counts a

number of occurrences of infrequent stimuli. (B) A schematic figure of P300. In-

frequent stimuli evokes larger amplitude (i.e., P300) compared to frequent stimuli

at around 300 ms from the onset (0 ms).

following brain responses: P300, steady-state visual evoked potential (SSVEP),

sensorimotor rhythm (SMR), and slow cortical potential (SCP) [84].

P300. A P300 is an event-related potential measured by M/EEG (in case

of MEG, referred as an event-related magnetic field; ERMF). It is elicited by

an attended (e.g. by counting a number of the occurrences) infrequent stimulus

among a sequence of frequent stimuli [75]. This paradigm is called an oddball

paradigm (Fig. 5). This component distributes over a centro-parietal region

on the scalp with a positive deflection after around 300 ms relative to stimulus

onset. Farwell and Donchin [24] first applied a P300 to spell letters displayed in

a monitor, which is called P300-speller.

Steady-state visual evoked potential (SSVEP). An SSVEP is a sequence

of evoked potentials to a visual stimulus such as a flush. When a visual stimulus

flushes repeatedly at a certain frequency, visual evoked responses are also gener-

ated at the same frequency to the visual stimuli. Utilizing this mechanism, an

SSVEP-based BCI differentiates which visual stimuli a user is attending among

11



multiple visual stimuli flushing at different frequencies. The user can execute the

function or select icons via SSVEP-based BCI because each visual stimulus is

linked to function or an icon. For example, a user can decide cursor direction on

a display by attending a visual stimulus linked to a direction [2].

Sensorimotor rhythm (SMR). An SMR is neural oscillations generated

from a sensorimotor cortex. This oscillatory rhythm is consist of two sub-frequency

bands: mu (around 8–12 Hz) and beta rhythm (around 18–30 Hz). Power of both

rhythms decreases (event-related desynchronization: ERD) before actual motor

movements or motor imagery with different topographical patterns depending on

the movement (e.g., a contralateral hand region for hand movements; left hemi-

sphere for right-hand movement) [58]. The differences in movement imagery can

be classified based on the EEG patterns [65]. The first BCI utilizing SMR is

constructed by Wolpow et al. (1991) to control a cursor based on EEG in the

upward and downward directions [83]. More recently, the SMR-based BCI have

achieved three-dimensional movements to control a cursor [52].

Slow cortical potential (SCP). An SCP is an event-related potential as-

sociated with motor movement and imagery. This potential lasts from several

hundred milliseconds to several seconds. After the user’s massive training to

self-regulate an SCP for several weeks or several months, a user can control, for

example, a spelling system based on SCP amplitudes [43, 44].

2.4 BCI for verbal communication

2.4.1 EEG-based spelling systems

Among the existing BCIs, verbal communication using BCI is mainly realized by

a spelling system which the user can select a letter on the display using their brain

activities. The first spelling system was developed by Farwell and Donchin in 1988

[24] based on P300. In the first P300-speller system, a 6 × 6 matrix is presented

in a monitor. By a column and row flushing randomly and a user attending one

letter in the matrix (participants counted the total number of the flush of the

target), the same situation to an oddball paradigm were created to elicit a P300

(Fig. 6): (1) flushing of the row/columns evokes P300 to the target row/columns,
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electrode
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Figure 6. A schematic figure of the P300 speller. The figure of the spelling matrix

is modified from [24]. The user attends one letter on the display. Each row and

column flush randomly (colored in yellow). After the P300 extracted by averaging

data across trials, a classifier detects the letter that the user attended.

(2) the algorithms (e.g., stepwise linear discriminant analysis; SWDA) calculates

scores for identifying which column and row evoked the P300, (3) the scores

of each row and column are summed to assign the scores in each letter and the

summed scores are further summed across trials, (4) the letter showing the highest

score is identified. In their first system, the user could produce 2.3 characters per

minute with 95% classification accuracy on average with the best cases. Since

then, many different types of EEG-based spelling system have proposed such as

SMR-based (e.g., Hex-o-Spell; [11, 57]) and SCP-based [10]. At present, a P300-

speller is the most widespread BCI spelling systems because the P300-speller took

several advantages compared to other EEG-based spelling systems: (1) relatively

speedy to select letters, (2) almost all people utilize a P300 speller (more than

98% among 100 people [34] and (3) a massive prior training is not necessary.

Recent EEG-based spelling system further improved speediness to select a

letter. In one of the state-of-the-art BCI spelling system [72], a combination of

predictive spelling, where the system shows the words candidates before selecting

all characters of words, and use of a language model achieved 12.72 characters per

minute. This improvement of selection speed is approximately six times faster
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than the first P300 spellers (2.3 characters per minute). The P300 speller has

already used for patients with ALS in their home [35].

2.4.2 Major limitations of an EEG-based speller

While the EEG-based spelling system is the representative case of BCI for com-

munication aid, there are some limitations.

Speed of communication. Even in the state-of-the-art P300 speller, the speed

of communication is still not fast compared to spontaneous speech. Whereas

2.0–3.6 words per second are produced in spontaneous speech [77], one of state-

of-the-art P300 speller [72] produces 2.53 words per minutes. That is, the speed

of communication is slower about 60 times than conversation in daily life. Thus,

even using the state-of-the-art P300 speller, it is difficult to realize speech com-

munication at the level of conversation speed.

Attention-based spelling. While procedures in speech conversation (e.g., mov-

ing articulators) and a skilled typing need not assign much attention on the task,

the EEG-based speller requires that the users direct their attention to a monitor

display. Such attention-based spelling might exhaust the user.

2.5 Neural decoding of speech

2.5.1 Toward EEG-based speech recognition

In order to overcome the above-mentioned limitations, recent research has focused

on brain-based speech recognition (neural decoding of speech; see Chapter 1)

using EEG during perception and imagined speech tasks: The former task is to

listen to speech and the latter is to imagine articulatory movements in the mind

without any actual movements (Fig. 7). Compared to one-by-one selection in the

EEG-based spelling system, a time lag until the users’ intention is conveyed is

expected to be shorter because the neural decoding predicts speech directly from

single-trial EEG. Besides, such decoding does not require users to keeping their

attention to the display monitor.

The first attempt of the decoding was performed by Suppes et al. (1997) [74].

They tried to classify seven words during both speech perception and imagined
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signal processing

I am sleepy now.

I am sleepy now.

speech imagination

speech perception I am sleepy now.
I am sleepy now.

brain signals

Figure 7. A schematic architecture of a speech neural decoding system. Brain

signals are acquired while the user is imaging or perceiving speech. The relevant

features to the linguistic processing are extracted from the signals and the decoder

predicts the content of the speech.

speech using EEG signals based on distances between a prototype data (an av-

eraged data across training set) and test data, achieving 39–46 % accuracies in

single-trial classification. Although the accuracies are not enough in single-trial

classification, their research, for the first time, demonstrated the feasibility of

EEG-based neural decoding of speech. In the next year, they extended their

method into the classification of simple sentences (subject-object-verb; e.g., John

loves Mary.) during a speech perception task. They achieved the best 46.5%

accuracy in EEG-based single-trial classification with the application of a 2.5–9

Hz bandpass filter.

In 2009, D’zmura and colleagues progressed the Suppes et al’s research to

classify imagined speech of 2 syllables with 3 different imagination timing (totally,

6 classes) [23]. Their classification relied on a distance between the matched filter,

which is pseudoinverse of an averaged envelope across training data belonging to

each class (i.e., 6 filters), and an envelope of test data. Their method provided

classification accuracy from 0.38 to 0.87 showing that the beta frequency band

is the most informative for classification. Since seminal works by Suppes et al.

and D’zmura, many researchers have attempted the EEG-based neural decoding
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of speech in both speech perception and imagined speech tasks for phoneme,

syllable, word and sentence level (Table 1).

Table 1. List of single-trial, EEG-based neural decoding of speech research

Authors Materials Task Accuracy

Suppes et al. (1998) [73] 12 sentences Perception 47%

Nguyen et al. (2018) [59] 2/3 words Imagined 70/97%

Correia et al. (2015) [19] 2 words Perception 53.7%

Chan et al. (2011) [16] 10 words Perception 70%

Suppes et al. (1997) [74] 7 words Perception 46%

Deng et al. (2010)[21] 2 syllable rhythms Imagined 72.7%

Brigham et al. (2010)[14] 2 syllables Imagined 88%

D’zmura et al. (2009) [23] 6 syllables Imagined 87%

Zhao and Rudzicz (2015)[87] 2 phonemes Imagined 77.5%

Chi et al. (2011)[17] 2 phonemes Imagined 75%

DaSalla et al. (2009) [20] 2 phonemes Imagined 72%

To my best knowledge, the best promising classification performances in

single-trial, EEG-based neural decoding of speech was achieved by Nguyen et al.

(2018) [59]. They demonstrated that using a relevance vector machine (RVM)

trained by tangent vectors on the Riemannian manifold, the two-word classifica-

tion achieved the maximumly 96.9% accuracy in the best case and the average

accuracy across 6 participants was 80.1%±8.0.

2.5.2 Limitations in neural decoding of speech

Realizing the neural decoding of speech as BCI application seems to be very

attractive for patients with severe motor disabilities because it enables the user

to communicate in a real-time without making body movements. To this end,

some limitations need to be solved. First, the number of classes for classification

is very limited. The average number of classes listed in Table 1 is only 4.33 and

the number of classes in imagined speech classification is fewer than perception

(Imagined: 3.17, Perception: 7.75), which it might be related to the fact that the

imagined speech varied across trials temporally causes more difficulty than the
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speech perception task. Second, classification performances in almost all research

do not match ones of the existing spelling system. Given that the P300-speller

achieved around 95% accuracy to select one character, it is considered that a

similar accuracy level is required to use the decoding as the substitute for the

speller.

Another limitation is that a neurophysiological mechanism underpinning the

decoding of speech is still not widely understood, especially in imagined speech.

Recent learning algorithms such as deep neural networks do not require feature

engineering because they can learn effective feature representation automatically.

However, EEG data is prone to noise contamination such as external electric-

ity (line noise), sweat, tiredness, unrelated brain activities (background EEG),

muscle artifact and so on. Besides, it is not easy to construct large dataset (i.e.,

hundreds or tens of thousands) for a neural decoding task. In such cases, extract-

ing relevant features to speech information and improve S/N ratio is still one of

the effective ways (see Chapter 1).

Thus, given that feature extraction is still of importance in EEG-based classi-

fication and it might lead to further improvement of classification performances,

the thesis focused on proposing a novel features for neural decoding of speech

based on cognitive neuroscience (see Chapter 1). One of the promising neural

mechanisms enabling neural decoding of speech is neural phase synchronization

with speech rhythm. In the previous research, the neurophysiological mechanism

enabling a sentence classification have already clarified, which is phase synchro-

nization between neural oscillations and speech envelopes. This is a phenomenon

that timing of phase in neural oscillation match synchronizes with the timing

of phase in speech envelopes during speech perception (see Chapter 3 for the

details). Given that the neural phase synchronization induces speech-specific

phase patterns in neural oscillations, phase information enables speech to be

classified[49, 38]. In the next chapter, I explain the details of neural phase syn-

chronization and decoding methods using the synchronization.

2.6 Summary of Chapter 2

In this chapter, a summary of the current BCIs is stated focusing mainly BCI for

communicatio aid and neural decoding of speech. In sum,
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• BCI applications have utilized to replace the lost function of physically

handicapped people.

• EEG is the best choice for BCI applications among brain activities because

it is measurable non-invasively with relatively low cost.

• One of the most spreading BCI for communication aid is the EEG-based

spelling such as P300-speller. These limitations are the slow speed of com-

munication rate and attention-based spelling where the users keep directing

their attention to the display during spelling.

• EEG-based neural decoding of speech aims to recognize speech directly from

EEG signals to overcome these limitations.

• The performances of EEG-based neural decoding does not achieve the level

of the existing speller. Besides, neural mechanisms underpinning the de-

coding is not fully understood.
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3. Neural Phase synchronization

3.1 Phase synchronization during acoustic processing

In this chapter, I describe details of phase synchronization phenomenon based

on neurophysiological research. Besides, phase synchronization-based method of

neural decoding is discussed.

Speech is consists of a spectral modulation (e.g., formant transition) and tem-

poral modulations. Among the temporal modulations, speech envelope (Fig. 8)

shows a quasi-periodic fluctuation at approximately from 4 to 8 Hz. The speech

envelope is mainly dominant in syllable information.
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Figure 8. An example of speech (Upper) and low frequency modulation, i.e.,

speech envelope (Bottom).

Recent studies have revealed a role of this slow temporal modulation on

speech comprehension. Ghitza and Greenberg (2009) [29] showed that the time-

compressed speech by a factor of 3 relative to the original speech decreased the

intelligibility, but the insertion of 80 ms silent intervals after 40 ms speech seg-

ments most improved intelligibility of the compressed speech. The key point of

this study lies on a point where regardless of that spectro-temporal information

of speech is the same between the time-compressed speech and the one with silent

insertion, insertion of the pauses constrains the timing of decoding speech in the

brain (i.e., decoding of speech at every 120 ms points; ∼ 8 Hz) and the timing
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affects the intelligibility of the compressed speech. Thus, this result suggests that

the brain prefers to a 4–8 Hz temporal window to decode speech information for

comprehension.

Neurophysiological research explained that this preferred temporal window

(∼4–8 Hz) is derived from endogenous neural oscillations in the auditory cor-

tex [30]: neural oscillations in the auditory cortex fluctuates endogenously at

theta frequency range, and have a functional role on the extraction of syllabic

information from continuous speech [66]. This extraction is performed via phase

synchronization between low-frequency modulation in speech (i.e. speech enve-

lope) and theta oscillations (see [63, 54] for review). Because the timing of neural

oscillations is associated with a change in excitability of neuronal populations

[46], phase-locking between acoustic information and neural oscillations enables

acoustic processing during the high excitability of neuronal populations and, thus,

leads to efficient processing of input speech [63].

Acoustic information in speech includes not only syllabic level slow fluctua-

tions but more rapid temporal information as segmental features (e.g., formant

transition, >30 Hz) and slower temporal information (<4 Hz) such as intonation

boundaries. For processing such rapid and slow information, parallel and concur-

rent information processing were postulated in the delta (0.5–4 Hz), theta and the

distinct higher frequency bands (>30 Hz) of neural oscillations. The low-gamma

oscillations track the rapid fluctuation and it is demonstrated that low-gamma

frequency band (38–42 Hz) shows phase synchronization with acoustic fluctuation

of the corresponding rhythm [50]. The delta oscillations track intonation bound-

aries [13]. The tracking in this slow oscillations is also observed to an abstract

syntactic knowledge such as phrasal or sentence boundaries [22, 55]. A schematic

figure of neural synchronization with a hierarchy of speech rhythm is described

in Fig. 9.

The Asymmetric Sampling in Time (AST) hypothesis [66] argued the hemi-

spheric lateralization in the neural oscillation tracking to acoustic information:

syllable tracking via theta oscillations is performed in the right hemisphere dom-

inantly and phoneme tracking via low-gamma oscillations dominantly in the left

hemisphere. The previous simultaneous recordings of EEG and fMRI [30] and

MEG research [50] supports the hemispheric lateralization proposed in the AST
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Figure 9. A schematic figure of phase synchronization with speech rhythms. The

speech is consists of multiple rhythms: intonations, syllables, and phonemes.

Neural oscillations in the corresponding frequency band tracks these rhythms for

efficient acoustic processing.

hypothesis. Besides, Kubanek et al. (2013) investigated more detail region in the

theta tracking using ECoG: the theta tracking is performed in a belt area which

is adjacent to the primary auditory cortex [42]. As for intonation tracking, source

localization by MEG signals revealed that the tracking in delta oscillations is ob-

served in the posterior superior temporal gyrus (STG) in the right hemisphere

[13].

3.2 Mathematical quantification of phase synchronization

Through the synchronization phenomenon, neural oscillations match their phases

to the timing of the speech envelope. There are several equations to quantify a

degree of this synchronization phenomenon. First, in many cases, phase-locking

value (PLV) was used as the index:

PLVch = |T−1ΣT
t=1e

i(φEEGt−φspeecht
)|. (1)

T is the number of time points, φEEGt is an instantaneous phase of bandpass-

filtered EEG data and φspeecht is an instantaneous phase of a speech envelope at

a time point t.
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Another equation is the inter-trial phase clustering (ITPC), which calculates

the consistency of phase patterns across trials:

ITPCtf = |N−1ΣN
trial=1e

iφtf
trial | (2)

where N is the number of trials, φtf
trial is a phase angle of a time-frequency point

tf . Poeppel and colleagues used a similar index to ITPC [49, 38], which is called

crosstrial phase coherence (Cphase):

Cphasekit =

[∑N
n=1 cos(θknit)

N

]2
+

[∑N
n=1 sin(θknit)

N

]2
(3)

where i is a frequency bin, t is a time bin, n is a trial, k is a type of speech stimuli.

More recently, mutual information (MI), which is a degree of the interdependency

of two probability distributions, have used:

MI(X, Y ) = H(X) +H(Y )−H(X, Y ), (4)

H(X) = −Σn
i=1p(xi)log2p(xi), (5)

H(X, Y ) = −Σm
j=1Σ

n
i=1p(xi, yj)log2p(xi, yj) (6)

where H(X) and H(Y ) is entropy of time series X and Y , respectively. H(X, Y )

is a joint entropy between both time series. For calculating entropy, after time

series data are divided into bins (a value of bin ith in X is expressed as xi),

the probability distribution is calculated. Mutual information can capture not

only a linear relationship between the two time-series signals but the non-linear

relationship.

3.3 Classification using neural phase synchronization

Previous research demonstrated that this phase synchronization phenomenon en-

ables to classify spoken sentences because phase-locked responses to speech sen-

tence induce a replicable and sentence specific phase patterns in neural oscillations

generated in the auditory cortex [49, 38]. Luo and Poeppel (2007) [49] used a

MEG-based template matching method to classify three spoken sentences during

speech perception. First, they calculated phase dissimilarity index (Dphase) to

identify discriminable MEG channels:

Dphasei =
ΣK

k=1(
ΣT

t=1Cphaseitk,within

T
− ΣT

t=1Cphaseitk,across
T

)

K
(7)
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Figure 10. An schematic figure of the previous classification method. First,

MEG phase patterns are extracted from selected 20 channels based on the phase

dissimilarity index. The class of the template showing a minimum distance to

test data is considered as a classification result.

where t is a temporal bin, i is a frequency bin, n is a trial and k is a type of

sentence. Cphaseitk,within is calculated by equation (3) using trials belonging to a

sentence type k. Cphaseitk,across is calculated using trials that is chose randomly

from MEGs during listening to each sentence (7 trials from each sentence). They

extracted a phase pattern of the 20 MEG responses showing the best Dphase

in theta frequency bin (3–7 Hz). The phase pattern is a vector of phase values

(phase patterns = [φ1...φt]; φt is calculated in each 500 ms time window with

100 ms shift). In the following study, Howard and Poeppel (2010) performed a

similar classification analysis of three spoken English sentences and reported that

accuracies in subject-dependent models were from 0.402 to 0.571 (chance rate:

0.33) [38]. Their classification method is summarized in Fig. 10.

Zhang et al. (2012) [86] classified two overtly spoken sentences from ECoG

signals of high gamma power. In their experiments, after the model speech was

played, participants read aloud the speech overtly. For classification, they used

a dynamic time warping (DTW) method, which is a non-linear manipulation to

find an optimal path minimizing the distance between two signals, in order to

correct a duration variability across trials. In the DTW, firstly, the distances

between every possible combination of data points in two signals X ∈ RN and

Y ∈ RM were calculated. This procedure constructs a distance matrix. When
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using the Euclidean distance, the distance matrix is as follows:

d(n,m) =
√
Σ(xn − ym)2, (8)

dφ(x, y) = ΣL
l=1

d(φx(k), φy(k))

Cφ

(9)

where φx(k) and φy(k) are warping functions. The optimal path was obtained by

minimizing:

D(X,T ) = min
φ

dφ(X, Y ). (10)

First, overt speech data were realigned to model speech using DTW, and

then, the realign matrix is used to realign ECoG data. The ECoG signal tem-

plate of each class was constructed by averaging the realigned ECoG signals per

class. The correlation coefficients between the realigned single-trial ECoG test

data and templates were used as features. Test data was classified by linear

discriminant analysis using the correlation coefficients as features. On average,

their classification accuracy achieved 77.5% (chance rate: 50 %). Considering

that the classification was performed by a template-based method of the speech

waveforms, they state that the classification was based on differences in tempo-

ral modulation included in the speech. Thus, this result suggests that neural

synchronization is also observed during generating overt speech and their classifi-

cation relied on this neural synchronization. To my best knowledge, there is still

no research investigating whether this neural phase synchronization can apply

to single-trial, EEG-based classification. Thus, in Experiment 1, I investigated

performances of EEG-based neural decoding of speech with single-trial data by

extending Luo and Poeppel’s research [49].

3.4 Summary of Chapter 3

In Chapter 3, the phase synchronization phenomenon between neural oscillations

and speech rhythms in delta, theta, and low-gamma frequency band is explained

including the neural source of this synchronization and how to quantify the syn-

chronization. Besides, the previous method of classifying speech basd on phase

synchronization are introduced. In sum,

• Speech consists of hierarchical speech rhythms: intonation (–4 Hz), syl-

lables (4–8 Hz), and phoneme level (>30 Hz). Neural oscillations in the

24



corresponding frequency bands during speech perception synchronize with

these rhythms to extract relevant linguistic information in parallel.

• Phase synchronization can be quantified in several methods: PLV, ITPC,

Cphase, mutual information.

• Some studies are demonstrating that neural phase synchronization can dis-

criminate speech using MEG or ECoG, but EEG-based classification using

phase synchronization have less investigated.
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4. EEG-based neural decoding of perceived speech

4.1 Purposes of Experiment 1

The purpose of Experiment 1 is to investigate whether neural phase synchro-

nization can classify speech using single-trial EEG signals. While the decoding

of imagined speech is required for the communication aid BCI, the decoding of

perceived speech was treated as a first step for demonstrating the effectiveness

of neural phase synchronization. This research is extended from the previous

MEG research [49, 38]. Thus, I utilized a similar method to the previous re-

search: classification of three spoken sentences using phase information of neural

responses. The reason why Experiment 1 focused on the sentence classification

is that the previous MEG research used sentences to induce the phase synchro-

nization [49, 38]. The sentences were arbitrarily chosen as well as the previous

MEG experiments in terms of not having the same words and having similar du-

ration across sentences. Except for the above-mentioned reasons, there were no

intentions in the sentence selection procedure.

The experiment also aims to obtain a better classification accuracy than a

method proposed in the previous research because better classification perfor-

mances are attractive for BCI and, it is expected that the EEG-based classifi-

cation performances are worse than MEG-based one due to poor S/N ratio and

spatial resolution [16]. First, I proposed a novel features from the previous re-

search utilizing only theta phase information. Specifically, phase information

in the lower and higher frequency bands than theta were extracted as features:

delta (–2 Hz), theta (4–8 Hz), alpha (10–14 Hz), beta (16–20 Hz), gamma (38–42

Hz) because these frequency bands also shows phase synchronization with speech

rhythms (As for the synchronization in the beta band, see [28]).

After classification performance of the single-frequency band was tested to

investigate whether each single frequency band includes discriminable information

for spoken sentence classification, features combined every frequency band was

used for classification for better classification performance. Additionally, to utilize

spatial information, I investigated the performances of features extracted by a

filter bank common spatial pattern (FBCSP) method [3, 18]. This method is

an extension of the common spatial pattern (CSP) [69], which is a method to
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construct the optimal spatial filter to classify EEG data with two classes, to

deal with multiple frequency bands. Second, I investigated the performances of

four types of classifiers: (a) template matching (baseline), (b) logistic regression,

(c) support vector machine (SVM), and (d) random forest because the previous

research used only one classifier, template matching. These models were chosen

because they can deal with small-scale and high-dimensional data such as EEGs.

Furthermore, I also tested the generalizability of the models to other unknown

users. Although the previous methods only performed subject-dependent clas-

sification, this indicates that it is necessary to build each model specifically for

each subject. This means that the number of models is equal to the number of

subjects, so collecting data for model training from all users is always necessary.

In contrast, when subject-independent models are trained, a model can deal with

all possible subjects. This way, a model can be used for a new user that has never

been seen in training data. This is crucial when constructing a BCI application

without the need to retrain a model with a new subject. Given that Kerlin

et al. (2010) [41] demonstrated that neural phase patterns induced by neural

synchronization are replicable across different listeners, the subject-independent

classification might be possible. Thus, to investigate the performances of the

subject-independent classification, I compared the performances with the ones of

the subject-dependent models. Besides, because of the large differences in the

number of data between subject-dependent and -independent models hinder the

direct comparisons of the performances, I also investigated the performances of

the subject-inclusive models. In the subject-inclusive models of the current ex-

periment, while classification accuracies of the participant data were evaluated

by leave-one-out cross-validation, the training data set includes data from both

the participant and other participants. By using the subject-inclusive models,

the classifiers learn the participants’ data with a similar number of the training

data to the subject-independent classification.

In summary, research questions in the experiment are as follows:

(1) How accurately do EEG-based neural decoding models utilizing neural phase

synchronization classify three Japanese spoken sentences in subject-dependent,

subject-inclusive, and subject-independent manners?

(2) Which of the three classifiers improved classification accuracy over template
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matching (the baseline classifier)?

(3) Do the proposed features including phase patterns in different frequency

bands contribute to improving classification accuracy?

4.2 Methods of Experiment 1

4.2.1 Participants

Seventeen right-handed L1 Japanese speakers participated in data recordings.

The average age (7 females, 10 males) was 24.3±1.9. All participants agreed to

participate and gave informed consent in writing. They all reported no history of

neurological illness and no hearing abnormalities. This experiment was approved

by the ethical review board of the Nara Institute of Science and Technology.

4.2.2 Experimental materials

I constructed three Japanese sentences for the classification task (Table 2). All

sentences had a similar duration and did not include the same word across sen-

tences. The sentences were recorded by a female L1 Japanese speaker (16-bit

and 44.1 kHz). She was instructed to utter these sentences at a normal speech

rate and without any pauses in the middle of the sentences. The recording was

conducted in a soundproof chamber. The duration range of the sentences was

from 2,925 to 3,278 ms (average: 3,146 ms). Fig. 11 shows the duration of the

moras, which is the rhythm unit of Japanese, in all of the spoken sentence stimuli.

The peak was obtained around 6–8 Hz, which corresponds to the theta frequency

range.

4.2.3 EEG recordings

EEG data were measured with an amplifier (BrainAmp DC, Brain Products

GmbH., Germany) from 32 Ag/AgCl electrodes. EEGs were referenced to a

right earlobe electrode. An additional AFz electrode was used as a ground. The

measurement and ground electrodes were mounted on an elastic cap (EASY-

CAP GmbH., Germany) according to the international 10% system. Electrode

impedance was kept below 10 kΩ before the recording. Raw EEG data were
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Table 2. Japanese sentences used in classification task

sentence 1

Anataga kinou muchuude yondeita honwa omoshirokatta.

(The book that you were absorbed in yesterday was interesting.)

sentence 2

Tsui sakki onnanokoga watashini ittakotowa hontouno hanashi.

(What the girl said to me just now is true.)

sentence 3

Mukou no kabeni kazatteirunowa kareno oniisanga kaita e.

(The picture on the other wall was drawn by his older brother.)

filtered with a 0.016-Hz high-pass filter and a 250-Hz low-pass filter during the

recording. The sampling rate was 1,000 Hz. Stimulus presentation was controlled

by the Presentation software (Neurobehavioral Systems, Inc., U.S.A). Speech

stimuli were presented via earphones (ER-1, Etymotic Research, Inc., U.S.A).

The sentences were presented to each participant aurally. A trial included one

behavioral task based on previous research [38] to keep participants’ attention on

the stimuli. The procedure of the sentences are as follows:

1. Participants sat on a comfortable chair in a dimly lit sound-attenuating

room. A monitor and keyboard were mounted on a desk in front of them.

2. They placed their right index finger on the J key and their left index finger

on the F key, and they maintained this position during the data recording.

The participants received instructions to remain motionless, to fixate their

eyes on a fixation mark on the monitor display, to not to blink as much as

possible during stimulus presentation, and to rest their eyes between trials

if necessary.

3. The pairs of different or the same sentences, e.g., different: sentence 1 -

sentence 2, same: sentence 1 - sentence 1, were constructed automatically.

The order of pairs was randomized.
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Figure 11. Histogram of average duration of moras (Left) and waveforms of

spoken sentences used in experiment (Right).

4. A sentence, “Are you ready?”, appeared on the display. After participants

started a trial by pushing the space key, a fixation mark (+) appeared at

the center of the display.

5. The first sentence in a pair was played at 1,500 ms from the trial onset,

followed by the playback of the second sentence at 7,500 ms and a short

tone sound at 12,000 ms.

6. Participants pushed the F key when both sentences were the same and

pushed the J key when they were different. Trials finished automatically at

14,500 ms. I summarized the procedure of one trial in Fig. 12.

A brief rest was inserted after all pairs (different pairs: 6, same pairs: 3)

were presented to participants. The next session was started by pushing the

space key. Participants had four sessions in total with the same procedure. Each

sentence was presented 24 times to each participant. The EEG data recording

lasted approximately 1 to 1.5 hours including preparation.
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Figure 12. Procedure of one trial. Two sentences were presented to participants

at a fixed timing. They judged whether the two sentence were same or not after

the beep at 12,000 ms from the task onset.

4.2.4 Preprocessing of EEG

The FieldTrip toolbox for MATLAB (The MathWorks, Inc., U.S.A) was used for

EEG data analysis [60]. First, one-pass zero-phase finite impulse response (FIR)

high-pass filter at 0.1 Hz (filter order: 4,562-th, a window type: hamming) was

applied to continuous EEG data. Line noise at 60 Hz and its second harmonics

(120 Hz) were attenuated by using a discrete Fourier transform filter. And then,

EEG data were re-referenced to average values of TP9 and TP10 electrodes. After

EEG data were epoched from −1,000 to 4,000 ms relative to the onset of speech

presentation, linear trends of EEG data were corrected.

Next, I rejected trials contaminated with large amplitude artifacts and muscle

artifacts. For large amplitude artifacts, trials exceeding ±200 μv were removed

from further analysis. This rejection procedure was not applied to data from

FP1 and FP2 electrodes because data from these electrodes were very often con-

taminated by eye movement-related artifact which was removed by independent

component analysis (ICA) later. Trials including muscle artifacts were detected

by a z-score-based method implemented in FieldTrip and by visual inspection.

To calculate the z-score, each trial was bandpass-filtered in the range [110 Hz,

140 Hz] that is generally considered to reflect muscle activities. The filtered trials

were converted to a Hilbert envelope per electrode. Data at each time point were

z-normalized, and z-values were then averaged across electrodes. If any z-value

in the time points in a trial exceeded a predefined threshold value, the trial was

judged as having an artifact. The predefined threshold was set to 10. After this
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automatic procedure, I judged whether a trial that was automatically judged as

having an artifact included muscle artifacts visually. In average, 15.4%±8.9 of

trials across all participants were removed.

EEG data were decomposed of independent components (ICs) by ICA. The

ICs reflecting blinks, eye movements, electrocardiograms, electromyograms, and

noise derived from electrodes were selected by inspecting the waveforms and to-

pographies of the ICs visually. The selected ICs were removed from the EEG

data. EEG data were low-pass filtered by a sixth-order two-pass infinite impulse

response (IIR) Butterworth filter (60 Hz) to improve the S/N ratio.

4.3 Quantification of neural phase synchronization

For the purpose of determining whether EEG phases synchronized with speech,

I quantified the degree of the synchronization in each frequency band (delta: 0–2

Hz, theta: 4–8 Hz, alpha: 10–14 Hz, beta: 16–20 Hz, low-gamma: 38–42 Hz) using

PLV (range = [0, 1], 0: no phase synchronization, 1: perfect synchronization,

see Equation (1) in Chapter 3) [45, 88]. PLV was calculated per electrode and

frequency band. To calculate PLV in each frequency band, eighth order IIR

Butterworth band-pass filter was applied to both EEG and speech stimuli (which

was already downsampled to 1,000 Hz) at ± 2Hz at each frequency band (half-

power frequency). In the case of the delta frequency band, eighth-order IIR

Butterworth low-pass filter was applied at 4Hz (half-power frequency). To take

consistency across trials and participants into accounts, before taking the norm

of averaged PLVs in the time domain, the values were averaged across trials and

participants in a complex domain. After the averaging, the norm of the values

was calculated [88].

To determine whether the calculated PLV in each electrode and each frequency

band was random or not, a permutation test was performed by constructing a

null-hypothesis distribution. To construct the distribution, PLVs were calculated

for the dataset that the correspondences between speech and EEG were randomly

shuffled. The maximum and minimum null-hypothesis PLVs among electrodes

and frequency bands were selected to construct the distribution to correct multiple

comparisons [51]. The alpha level was set to 0.05. The number of iterations

was 2,500. I counted the number of values of the null-hypothesis distribution
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exceeding the observed PLVs for each electrode and each frequency band. The

number was divided by the number of iterations for calculating p values.

4.4 Spoken sentence classification

4.4.1 Feature extraction

I extracted phase information from EEG trials by using short-time Fourier trans-

form (STFT; FFT points: 500, shift points: 100, Hanning window tapering, 30

windows in total; duration of EEG trials: 0–2,900 ms). Here, i, j, k, and n repre-

sent a frequency bin (2–50 Hz; 2-Hz interval), a shifting window in STFT, a sen-

tence type, and a trial. The phase angle vectors in a single-trial were concatenated

across channels, thus, the phase angles in one trial had a vector φfk ∈ R1×(Nw×Nc)

where Nc is a number of electrodes (i.e., 30), Nw is a number of time windows

(i.e., 30) in a fth frequency bin at a kth trial . To construct features correspond-

ing to each frequency band, I further concatenated the phase angle vector φfk

across frequency bins (2 Hz for delta, 4–8 Hz for theta, 10–14 Hz for alpha, 16–20

Hz, and 38–42 Hz for gamma). The number of feature dimensions was 900 and

2,700 for delta and other frequency bands, respectively.

Besides, features were extracted using FBCSP method to utilize both spatial

information and multiple frequency bands [3, 18]. In this method, a CSP method

[69] is applied to band-pass filtered EEG signals in multiple frequency bands.

The CSP is a spatial filter to maximize the difference in the variance across EEG

signals in the two-class classification. These CSP-filtered features from multiple

frequency bands were concatenated and utilized as an input of classifiers.

The CSP algorithm is as follows. First, EEG data matrix is represented by

EN×T where N is the number of channels and T is the number of time samples.

The covariance of EEG data is calculated:

C =
EET

trace(EET )
(11)

where T represents tranpose of a matrix. The values of the covariance matrix

were averaged across trials belonging to a class. Composite covariance matrix is

obtained by

Cc = C1 + C2. (12)
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C1 and C2 represets the averaged covariance matrix from trials belonging to class

1 and class 2, respectively. Cc is factored by eigenvalue decomposition:

Cc = VcλcV
T
c (13)

where Vc is a matrix of eigenvectors and λc is the matrix including eigenvalues in

a diagonal elements. For the purpose of equalizing the variances in the Vc space,

the whitening matrix is construted by

P =
√
λ−1
c V T

c . (14)

And, then a spatial filter is constructed by

W = (V T
c P )T . (15)

Finally, EEG data E was projected by the spatial filter W :

Z = WE. (16)

Generally, in the CSP method, only first and last mth rows were used as features

for classification. In the current experiment, m = 2 was used. The procedure of

FBCSP used in the current experiment is summarized in Fig. 13. For classifica-

tion, a classifier was trained using these concatenated signals. I used a one-vs-one

strategy for three-class classification in the current experiment because the CSP

method can deal with the two-class classification.

4.4.2 Classifiers and evaluation method

Template matching, logistic regression, SVM, and random forest were trained for

classification. The task was to predict a sentence by using phase angle features

in a single-trial EEG. The classifiers were trained by using phase angle features

in each single frequency band and ones combined across all frequency bands

(multiple frequency bands feature). I used a Python library, Scikit-learn [62], and

custom Python scripts for training and evaluating classifiers.

The models were trained in subject-dependent, -inclusive and subject-independent

manner, which were evaluated using leave-one-out cross-validation (LOO cv)

and leave-one-subject-out cross-validation (LOSO cv). In LOO cv, classification
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Figure 13. Feature extraction by FBCSP [3]. A CSP method is applied to band-

pass filtering data in each frequnecy band. The spatial filtered data in each

frequnecy band are concatenated as feaures.

models were constructed using single-participant data. In case of the subject-

dependent model, one sample among trials in the dataset is used for test data,

another sample is used for validation data to decide the optimal hyperparam-

eters of models and the remaining data were used for model training. This

procedure was repeated for all samples to be used as test data. In the case

of subject-inclusive classification, data from other subjects were used for training

data. Other procedures were the same as the subject-dependent classification. In

LOSO cv, I used the data of one subject as a test set and the data of the next

subject as a validation set for hyperparameter tuning. The remaining data were

used for training. A validation dataset was not constructed in template matching

because the model did not have a hyper-parameter.

Because EEG data were easily contaminated by artifact, there is a possibility

that the classifier relied on information unrelated to phase synchronization. To

confirm the possibility, feature importance of trained classifier was calculated per

classifier and the topographical patterns of the feature importances were plotted.

If an obvious mismatch between PLV topographies and feature importance to-

pographies was observed, the classifier was expected not to rely on phase synchro-

nization information. The descriptions of the classifiers used in the experiment

are as follows.
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(1) Template matching

I created a vector of the averaged features per class; each element of feature

vectors was averaged across trials in a training dataset. The vector of the

averaged features was considered as a template of each class. The Euclidean

distance between the test data and each template was calculated. The class

with the minimum distance was considered as a prediction result:

Ŝ = arg min
S

ΣT
t=1(ΦSt − Φxit)

2 (17)

where Ŝ is an estimated sentence, ΦSt is a phase value of the template at

time t and Φxit is a phase value of test data i at time t. T is the total

number of time points. The variance of each feature among templates was

utilized as the feature importance because a larger variance indicates that

the distances among the templates in the feature are far apart from each

other.

(2) Logistic regression

Logistic regression is a method to can be expressed as follows:

p(Sc = 1|Φxi) =
1

1 + e−(wTΦxi+b)
(18)

where Sc is a class of sentence, Φxi is a phase pattern of test data i, w

is weights of features. Classifiers were trained by using L2 regularization.

I used a one-vs-the-rest multiclass strategy. The best cost parameter was

searched for in the range [−4, 4] in log space. I used the average weight

assigned to each feature among one-vs-the-rest classifiers as feature impor-

tance.

(3) SVM

A formula of SVM can be expressed as follows :

g(Φx) =

⎧⎨
⎩

1 wTΦxi + b ≥ 0

−1 wTΦxi + b < 0.
(19)

SVM can decide a class boundary to maximize a margin by solving the

following optimization problem:

min
w,b,x

1

2
‖w‖2 + C

N∑
i=1

ξi s.t. yi(w
TΦxi

+ b) ≥ 1− ξi, ξi ≥ 0 (20)
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where yi is a class label, w is a weight vector, Φxi
is a phase pattern in

trial i, C is a cost parameter. I used a linear kernel and the one-vs-the-rest

multiclass strategy for classification. The tuning of a cost parameter, type

of regularization, and procedure for calculating feature importance was the

same as logistic regression.

(4) Random forest

Random forest is one of ensemble learning algorithms: performing random

sampling, constructing decision trees and predict labels by voting among

the decision trees. In a decision tree algorithm, each split at a node is

performed to maximize information gain (IG):

IG(T ) = I(S)−
m∑
j=1

|Sj|
|S| I(Sj) (21)

where I(S) and I(Sj) are impurity of a whole data set and a subset, respec-

tively. |S| and |Sj| represents a length of the two sets. In this classification,

the impurity is defined by entropy:

Entropy = −
K∑
i=1

pmk log2 pmk (2)

where pmk is a proportion of the number of k-th class data. K denotes

a total number of classes. The best number of trees and maximum tree

depth were searched for in the ranges [10, 50, 100, 150] and [5, 10, 15],

respectively.

4.5 Results of Experiment 1

4.5.1 EEG phase synchronization with speech

To determine whether phase synchronization to speech stimuli was observed, I

plotted PLV topographies per frequency band (Fig. 14). The electrodes shown by

stars represent that the PLVs of the electrodes statistically significantly differed

from the null-distribution. As results, fronto-central electrodes in theta showed

significant phase synchronization with speech (C3, C4, F7, T7, Fz, Cz, FC2, FC5,

FC6, and CP5). While there were no other significant electrodes, a fronto-central
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region in alpha, beta, and gamma showed a tendency of phase synchronization:

the similar topographical patterns to significant electrodes in theta. Taking these

results into accounts, these frequency bands also might contribute to the neural

synchronization-based classification of spoken sentences.

 delta         theta         alpha          beta         gamma

Figure 14. Topographies of PLV for each frequency band. Electrodes shown by

stars represents statistically significant differences from the null-distribution.

4.5.2 Topographies of feature importance

I plotted topographies of feature importance per frequency band and classifier in

subject-dependent (Fig. 15), subject-inclusive (Fig. 16) and subject-independent

classification (Fig. 17). An overall visual inspection suggests that in the subject-

dependent classification, all classifiers assigned the importance on the fronto-

central region in the theta frequency band with a tendency of the right lateraliza-

tion, but ones in SVM and logistic regression seems to be more local at a single

electrode. Such local response at a single electrode is unlikely to be observed in

EEG topographies because EEG tends to spread over the scalp due to volume

conduction. Other fronto-central responses are observed in beta in SVM and

logistic regression, but these are also local responses.

In the subject-inclusive and independent classification, fronto-central responses

of theta in SVM and logistic regression diminished. The template matching and

random forest showed similar topographical patterns to PLV.

4.5.3 Classification performances

Subject-dependent classification

The subject-dependent classification accuracy from each participant was summa-
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Figure 15. Feature importance topographies for each frequency band and each

classifier. The feature importance was obtained from classifiers trained in a

subject-dependent manner.

rized in Fig. 18 per combination of classifiers and features. The best mean accu-

racy across participants was 50.0% from SVM trained by theta features (Table

3). To judge whether performances from each model is random, I performed one-

sample t-test on accuracy from each participant against a 33.3% chance level. As

a result, SVM trained by delta, theta, alpha and multiple frequency bands, logistic

regression trained by delta, theta, alpha and multiple frequency bands, random

forest trained by theta, beta and multiple frequency bands, template matching

trained by theta and multiple frequency bands achieved significant performances.

However, the performance of random forest trained by beta was significantly
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Figure 16. Feature importance topographies for each frequency band and each

classifier. The feature importance was obtained from classifiers trained in a

subject-inclusive manner.

worse than the chance rate. The classification accuracies which were significantly

above the chance rate (33.3%) were marked with asterisks (*) in Table 3.

To evaluate the effect of classifiers and features on the accuracy, I constructed

a generalized linear mixed model (GLMM) by using the number of correct classi-

fications as response variables. I used R [68] and an lme4 package [6] for model

construction. The response variables were postulated to follow a binomial distri-

bution because the variables can take only two values for each piece of test data:

correct or not in N trials (N depends on each participant). A logit link function

was used for the model. Types of classifiers and features were incorporated into
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Figure 17. Feature importance topographies for each frequency band and each

classifier. The feature importance was obtained from classifiers trained in a

subject-independent manner.

a GLMM as fixed effects. The model had intercepts for each fold as random

effects. The statistical significances of fixed effects were tested by using Type II

Wald chi-square tests with a car R package [26]. As a result, I found a statistically

significant effect of features [χ2(5) = 265.4, p<0.01] and classifiers[χ2(3) = 44.1,

p<0.01].

I performed multiple comparisons for each fixed effect by using a multcomp

package [37]. P-values were adjusted for multiple comparisons by using the

Tukey-Kramer method. Multiple comparisons among classifier types revealed

that random forest lowered accuracy compared with the other classifiers signifi-
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Figure 18. Classification accuracies per classifier and feature in subject-dependent

classification. Each box represents accuracies from all folds. Horizontal line is

33.3% chance level.

cantly (Table 4). Besides, SVM outperformed marginally significantly template

matching (p=0.09). The other classifiers did not differ from each other. The

results of multiple comparisons among feature types were summarized in Table 5.

More importantly, theta features marginally significantly outperformed multiple

frequency bands feature.

To further explore the effects of classifiers on the accuracies, I performed multi-

ple comparisons of classification accuracies of classifiers trained by features from

which the best performance was obtained (i.e, theta) using the Tukey-Kramer

method. As results, all comparisons did not show any statistically significant

differences (p>0.5).

Subject-inclusive classification

The subject-inclusive classification accuracy from each participant was summa-

rized in Fig. 19 per combination of classifiers and features. The best mean

accuracy across participants achieved 51.9% from template matching trained by

the multiple frequency bands feature (Table 6). To judge whether performances

from each model is random, I performed one-sample t-test on accuracy from each
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Table 3. Mean accuracies across participant per classifier and feature type in

subject-dependent classification. Sample standard deviations are given in paren-

theses. Best accuracy is shown in bold.

Delta Theta Alpha Beta Gamma Multi

SVM 38.4* (8.7) 50.0* (10.6) 39.1* (8.5) 36.9 (9.1) 34.5 (9.1) 47.2* (8.4)

LR 37.9* (7.6) 49.6* (10.8) 38.6* (7.5) 36.7 (9.3) 34.4 (9.0) 47.5* (8.4)

RF 34.9 (7.8) 41.6* (12.0) 35.0 (5.4) 29.8 (6.2) 32.9 (6.9) 40.4* (10.3)

TM 37.9 (9.2) 49.1* (11.6) 36.3 (6.6) 34.1 (10.2) 33.1 (9.1) 43.2* (7.2)

Multi: Multiple frequency band feature, LR: Logistic regression, RF: Random

forest, TM: Template matching, * p<0.05

Table 4. Multiple comparisons for classifier types in subject-dependent models

Estimate (S.E) p-value

Logistic regression -vs- Template matching 0.076 (0.376e-01) 0.18

SVM -vs- Template matching -0.088 (0.381e-01). 0.09

Random forest -vs- Template matching -0.136 (0.375e-01)** <0.01

SVM -vs- Logistic regression 0.012 (0.375e-01) 0.99

Random forest -vs- Logistic regression -0.212 (0.379e-01)** <0.01

Random forest -vs- SVM -0.224 (0.379e-01)** <0.01

** p<0.01, . p<0.1. S.E denotes standard error.

participant against a 33.3% chance level. As a result, almost all models achieved

significant performances above the chance level, except for template matching

trained by beta. The classification accuracies which were significantly above the

chance rate (33.3%) were marked with asterisks (*) in Table 6.

To evaluate the effect of classifiers and features on the accuracy, I constructed

GLMMs again by using the number of correct classifications as response variables.

As a result, while I found a statistically significant effect of features [χ2(5) =

247.61, p<0.01], there was no main effect of classifiers [χ2(3) = 3.00, p=0.39].

Multiple comparisons among classifiers and features were summarized in Table

7 and Table 8, respectively. The models trained by multiple frequency bands

features did not show a significant difference from the performances than models
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Table 5. Multiple comparisons for feature types in subject-dependent models

Estimate (S.E) p-value

Theta -vs- Delta 0.423 (0.457e-01)** <0.01

Alpha -vs- Delta 0.014 (0.464e-01)** 0.99

Alpha -vs- Theta -0.410 (0.457e-01)** <0.01

Beta -vs- Delta -0.132 (0.469e-01). 0.06

Beta -vs- Theta -0.555 (0.461e-01)** <0.01

Beta -vs- Alpha -0.146 (0.468e-01)* <0.01

Gamma -vs- Delta -0.153 (0.469e-01)* <0.05

Gamma -vs- Theta -0.577 (0.462e-01)** <0.01

Gamma -vs- Alpha -0.167 (0.469e-01)** <0.05

Gamma -vs- Beta -0.021 (0.474e-01) 0.99

Multi -vs- Delta 0.307 (0.458e-01)** <0.01

Multi -vs- Theta -0.117 (0.451e-01). <0.1

Multi -vs- Alpha 0.293 (0.458e-01)** <0.01

Multi -vs- Beta 0.439 (0.462e-01)** <0.01

Multi -vs- Gamma 0.460 (0.463e-01)** <0.01

S.E denotes standard error. ** p<0.01, * p<0.05, . p<0.1.

Multi: Multiple frequency bands feature

trained by theta.

To further explore the effects of classifiers on the accuracies, I performed

multiple comparisons of classification accuracies obtained from classifiers trained

by features from which the best performance was obtained (i.e, multiple frequency

bands feature) using the Tukey-Kramer method. As results, all comparisons did

not show any statistically significant differences (p>0.5).

Subject-independent classification

Fig. 20 summarizes the classification accuracies from folds per combination of

classifiers and features in subject-independent classification. The best mean ac-

curacy across folds was 50.5% from SVM trained by multiple frequency bands

feature (Table 9). To judge whether performances from each model is random
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Figure 19. Classification accuracies per classifier and feature in subject-inclusive

classification. Each box represents accuracies from all folds. Horizontal line is

33.3% chance level.

(i.e., chance level: 33.3), I performed one-sample t-test on accuracy from each

participant. As a result, all models achieved significant results except for logistic

regression trained by beta and template matching trained by gamma. The clas-

sification accuracies which were significantly above the chance rate (33.3%) were

marked with asterisks (*) in Table 9.

To evaluate the effect of classifiers and features on the accuracy, I constructed

GLMMs again by using the number of correct classifications as response variables.

As a result, while I found a statistically significant effect of features [χ2(5) = 265.4,

p<0.01], there was no main effect of classifiers [χ2(3) = 44.1, p<0.01] . Multiple

comparisons among classifiers and features were summarized in Table 10 and

Table 11, respectively. More importantly, models trained by multiple frequency

bands feature showed better performances than models trained by theta.

To further explore the effects of classifiers on the accuracies, I performed

multiple comparisons of classification accuracies obtained from classifiers trained

by features from which the best performance was obtained (i.e, multiple frequency

bands feature) using the Tukey-Kramer method. As results, all comparisons did

not show any statistically significant differences (p>0.5).

45



Table 6. Mean accuracies across participant per classifier and feature type in

subject-inclusive classification. Sample standard deviations are given in paren-

theses. Best accuracy is shown in bold.

Delta Theta Alpha Beta Gamma Multi

SVM 40.8* (8.0) 49.2* (9.7) 42.7* (5.2) 37.6* (5.9) 37.4* (6.2) 51.7* (7.1)

LR 41.8* (6.8) 50.6* (8.3) 44.3* (5.2) 38.7* (6.7) 37.6* (5.8) 50.6* (6.4)

RF 40.8* (7.4) 49.3* (8.4) 42.0* (6.2) 39.0* (6.0) 37.2* (6.1) 46.3* (11.0)

TM 41.5* (7.2) 48.0* (10.0) 42.5* (4.8) 37.8* (7.8) 37.0 (7.7) 51.9* (7.5)

Multi: Multiple frequency bands feature, LR: Logistic regression, RF: Random

forest, TM: Template matching, * p<0.05

Table 7. Multiple comparisons for classifier types in subject-inclusive models

Estimate (S.E) p-value

Logistic regression -vs- Template matching 0.033 (0.037) 0.81

SVM -vs- Template matching 0.005 (0.037) 0.99

Random forest -vs- Template matching -0.031 (0.037) 0.84

SVM -vs- Logistic regression -0.028 (0.037) 0.87

Random forest -vs- Logistic regression -0.064 (0.037) 0.31

Random forest -vs- SVM -0.036 (0.037) 0.77

S.E denotes standard error.

Effect of use of spatial filter: FBCSP

To investigate the effects of FBCSP on accuracy improvement, SVM was trained

using features extracted by the FBCSP procedure. As results, the average classifi-

cation accuracies of the model were 25.8±15.1, 51.1±7.4, and 49.0±4.8 in subject-

dependent, -inclusive, and -independent classification, respectively. Whereas the

subject-dependent model did not reach the chance level in the mode trained by

FBCSP features, the subject-inclusive and independent model significantly out-

performed the chance rate (t(16)=9.67, p<0.01, t(16)=13.02, p<0.01; one-sample

t-test against the chance rate).

In order to confirm whether use of spatial filter leads to performance gain in

the classification task, I compared the classification accuracy to the best model
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Table 8. Multiple comparisons for feature types in subject-inclusive models

Estimate (S.E) p-value

Theta -vs- Delta 0.338 (0.452e-01)** <0.01

Alpha -vs- Delta 0.075 (0.454e-01) 0.56

Alpha -vs- Theta -0.263 (0.450e-01)** <0.01

Beta -vs- Delta -0.125 (0.458e-01). 0.07

Beta -vs- Theta -0.463 (0.455e-01)** <0.01

Beta -vs- Alpha -0.200 (0.457e-01)** <0.01

Gamma -vs- Delta -0.154 (0.459e-01)* 0.01

Gamma -vs- Theta -0.492 (0.456e-01)** <0.01

Gamma -vs- Alpha -0.229 (0.458e-01)** <0.01

Gamma -vs- Beta -0.029 (0.462e-01) 0.99

Mult -vs- Delta 0.372 (0.452e-01)** <0.01

Mult -vs- Theta 0.034 (0.448e-01) 0.97

Mult -vs- Alpha 0.297 (0.450e-01)** <0.01

Mult -vs- Beta 0.497 (0.455e-01)** <0.01

Mult -vs- Gamma 0.526 (0.456e-01)** <0.01

S.E denotes standard error. ** p<0.01, * p<0.05, . p<0.1.

Multi: Multiple frequency bands feature

in subject-dependent, -inclusive, and -independent models (i.e., SVM trained by

theta, template matching trained by multiple frequency bands, SVM trained by

multiple frequency bands, respectively). Fig. 21 summaries the classification

accuracies of the best models and models trained by FBCSP features in subject-

dependent, -inclusive, and -independent models. As results of two-sample t-tests,

in case of the subject-dependent model, the FBCSP showed significant worse

performances (t(16)=-5.23, p<0.01) because the FBCSP model did not reach the

chance rate. In the cases of the subject-inclusive and -independent model, the

statistically significant difference was not found (t(16)=-0.30, p=0.77 and t(16)=-

0.80, p=0.43, respectively).

Comparisons among subject-dependent, -inclusive, and -independent
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Figure 20. Classification accuracies per classifier and feature in subject-

independent classification. Each box represents accuracies from all folds. Hori-

zontal line is 33.3% chance level.

models

To investigate the effect of subject-dependency on classification performances, I

performed multiple comparisons of classification accuracies obtained from subject-

dependent, -inclusive, and -independent classification using the Tukey-Kramer

method. As results, both subject-inclusive and -independent outperformed the

performances of subject-dependent models (p<0.01). Besides, subject-inclusive

models showed significantly better performances than the subject-independent

models (p<0.05).

Next, I compared the best classification performances between subject-dependent,

-inclusive and -independent models (SVM trained by theta, template matching

trained by multiple frequency bands, and SVM trained by multiple frequency

bands). As a result of multiple comparisons using the Tukey-Kramer method, a

statistically significant difference was not found (p>0.05).

4.6 Discussion of Experiment 1

In Research 1, I investigated the performances of sentence classification based on

single-trial EEG phase patterns during speech processing. The research aimed to
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Table 9. Mean accuracies across folds per classifier and feature type in subject-

independent classification. Sample standard deviations are given in parentheses.

Best accuracy is shown in bold.

Delta Theta Alpha Beta Gamma Multi

SVM 38.8* (6.7) 46.0* (9.1) 41.2* (5.1) 38.3* (6.8) 36.7* (6.2) 50.5* (6.1)

LR 37.1* (6.7) 47.9* (7.9) 39.5* (6.2) 36.4 (6.5) 38.6* (8.2) 49.8* (7.5)

RF 37.1* (5.2) 44.5* (8.1) 39.9* (4.7) 36.8* (4.9) 37.4* (6.9) 47.8* (9.8)

TM 40.3* (6.7) 46.0* (8.5) 42.3* (5.0) 38.5* (6.5) 36.7 (6.6) 50.4* (6.8)

Multi: Multiple frequency bands feature, LR: Logistic regression, RF: Random

forest, TM: Template matching, * p<0.05

Table 10. Multiple comparisons for classifier types in subject-independent models

Estimate (S.E) p-value

Logistic regression -vs- Template matching -0.034 (0.372e-01) 0.798

SVM -vs- Template matching -0.019 (0.372e-01) 0.959

Random forest -vs- Template matching -0.074 (0.373e-01) 0.197

SVM -vs- Logistic regression 0.015 (0.373e-01) 0.977

Random forest -vs- Logistic regression -0.040 (0.374e-01) 0.711

Random forest -vs- SVM -0.055 (0.373e-01) 0.453

S.E denotes standard error.

answer three research questions: (1) How accurately do EEG-based neural decod-

ing models utilizing neural phase synchronization classify three Japanese spoken

sentences in subject-dependent, subject-inclusive, and subject-independent man-

ners?, (2) Which of the three classifiers improved classification accuracy over

template matching (the baseline classifier)?, and (3) Do the proposed features

including phase patterns in different frequency bands contribute to improve clas-

sification accuracy?

Before answering the research questions, I discuss the results of phase syn-

chronization with speech. In the current experiment, PLVs between band-pass

filtered EEG data and speech were calculated in multiple frequency bands: delta,

theta, alpha, beta, and gamma. The PLV results showed significant phase syn-
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Table 11. Multiple comparisons for feature types in subject-independent models

Estimate (S.E) p-value

Theta -vs- Delta 0.332 (0.455e-01)** <0.01

Alpha -vs- Delta 0.106 (0.458e-01) 0.188

Alpha -vs- Theta -0.226 (0.453e-01)** <0.01

Beta -vs- Delta -0.034 (0.462e-01) 0.977

Beta -vs- Theta -0.366 (0.456e-01)** <0.01

Beta -vs- Alpha -0.140 (0.460e-01)* <0.05

Gamma -vs- Delta -0.035 (0.462e-01) 0.974

Gamma -vs- Theta -0.367 (0.456e-01)** <0.01

Gamma -vs- Alpha -0.141 (0.460e-01)* <0.05

Gamma -vs- Beta -0.001 (0.463e-01) 1.000

Multi -vs- Delta 0.475 (0.455e-01)** <0.01

Multi -vs- Theta 0.143 (0.449e-01)* <0.05

Multi -vs- Alpha 0.369 (0.452e-01)** <0.01

Multi -vs- Beta 0.509 (0.456e-01)** <0.01

Multi -vs- Gamma 0.510 (0.456e-01)** <0.01

S.E denotes standard error. Multi: Multiple frequency bands.

** p<0.01, * p<0.05.

chronization in fronto-central regions in the theta frequency band. This coincides

with previous phase synchronization research, which has been reported in many

research (see [54, 63] for reviews). However, in the current research, right hemi-

sphere lateralization was not observed as the AST theory proposed [66]. This

null effect of the right lateralization might be due to the worse spatial resolution

of EEG, which signals from several brain regions were overlapped each other on

the scalp. If such lateralization is observed, a spatial restriction (i.e., using only

signals from the right hemisphere electrodes) might work successfully as feature

selection.

The PLVs in alpha, beta and gamma showed similar patterns to theta PLV

topographies while they were no significant effects. PLVs in the alpha might be

derived from the speech used in the current experiment because the duration of
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Figure 21. Boxplots of classification accuracies of the best model in subject-

dependent and subject-independent model and FBCSP classification. Horizontal

line is 33.3% chance level.

mora included in the speech stimuli was extended over alpha frequency bands

(see Fig. 11). The PLVs in gamma coincide with Luo and Poeppel (2012) [50]

showing that phase synchronization between low-gamma neural oscillations and

acoustics. Some neurophysiological models postulate the nested phase synchro-

nization across theta, beta and gamma oscillations (e.g., Ghitza (2011) [28]).

Although so far, less evidence of neural phase synchronization in beta oscillations

have obtained, this result might partially support such speech perception models.

Contrary to the previous phase synchronization research, there was no ten-

dency of phase synchronization in the delta. The delta synchronization with

speech intonation has been observed [13, 22]. Besides, it was reported that the

delta oscillation phases are modulated by the existence of syntactic boundaries

[22, 55]. The fact that the delta phase synchronization was not observed in the

current experiment might be related to nature of the speech stimuli used in the

current experiment because the speech stimuli did not include any explicit into-

nation boundary. Besides, while the speech stimuli includes several subordinate

clauses, which might induce phase synchronization at the syntactic boundary (e.g,

Anataga kinou muchuude yondeita hon in stimulus 1; The book that you were ab-
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sorbed in yesterday), the number of the phrase boundaries might not be enough

to induce the significant PLV effects. Regardless of that, classifiers showed a sig-

nificant classification accuracies compared to chance level when using delta phase

patterns (see Table 3 and Table 9). Thus, it is considered that phases in the delta

oscillations have enough amount of information to discriminate spoken sentences.

As for research question (1), the best performance in subject-dependent mod-

els was obtained from SVM trained by theta phase patterns, achieving 50.0%

accuracy. The result coincides with the previous MEG classification research

[49, 38] showing similar classification performances (around 50% accuracy) using

theta oscillations. The best performances of subject-independent models, which

was obtained from SVM trained by multiple frequency bands feature, achieved

a significant above-chance rate accuracy (50.5%). Thus, the current experiment

demonstrated that the following things:

• EEG phase information induced by neural phase synchronization can clas-

sify speech significantly with around 50% accuracy.

• This phase-based classification model has generalizability to other different

users.

In the comparisons of classification performances across subject-dependent, -

inclusive, and -independent classifications, the subject-dependent models showed

significantly worse accuracies compared to subject-independent models. As a rea-

son, it is considered that the number of training data in the subjet-dependent

classification fewer than -independent. On the other hand, the subject-inclusive

models significantly outperformed the subject-independent classifications. Be-

sides, the best classification performances of the experiment were obtained from

the subject-inclusive models. Thus, while the phase patterns induced by phase

synchronization enable the speech to be classified in subject-independent man-

ners, the classification performances can be improved when the classifier learns

the subject-specific EEG patterns.

The current classification performances showed similar performances in the

previous MEG-based classification (0.40 – 0.57; [38]). This result was a pleasant

surprise because given that the previous neural decoding of the speech showed
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that the performances of the EEG-based decoding were worse than the MEG-

based one [16], I had expected that the classification performances did not reach

such similar performances to MEG-based classification. On the other hand, con-

sidering that phase synchronization has been observed in EEG experiments (e.g.,

[88]), it might be a reasonable result to achieve similar performances to MEG. Of

course, it is impossible to compare directly the previous MEG-based classification

and the current EEG-based one because of several differences due to differences

of language (Japanese vs English) and contents of spoken sentences.

The current research also demonstrated that this decoding method could apply

to unknown users. Such subject-independency had predicted because less inter-

subject variability had already been demonstrated by Kerlin et al (2010). [41].

As stated in Chapter 4.1, such subject-independency has advantages in terms

of BCI application. Thus, this subject-independency emphasizes merit of using

phase synchronization as features for neural decoding of speech.

As for the research question (2), the best classification performances were

obtained from SVM in both subject-dependent and -independent classification

and template matching in subject-inclusive model. While SVM marginally sig-

nificantly outperformed template matching (baseline) in subject-dependent clas-

sification, an effect of classifiers was disappeared in the subject-inclusive and

-independent classification. Besides, the significant performance difference across

classifiers trained by the best features was not found in any subject-dependent,

-inclusive, and independent classification. Thus, it seems to be difficult to insist

that SVM is superior to template matching. Rather, taking the results of feature

importance topographies in the subject-independent classification into account,

template matching is more suitable to capture phase synchronization. One ques-

tion is: why did template matching succeed in capturing the synchronization?

This might be because phase patterns of EEG and speech come to be closer to

each other during neural synchronization with speech, thus, the distance-based

classification is easier to capture this phenomenon. One clear difference of perfor-

mances among classifiers is that random forest showed worse performances than

other classifiers in the subject-dependent classification. However, the effect was

not observed in the subject-independent classification. Given that amount of data

in the subject-dependent classification is fewer than the subject-independent one,
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random forest in subject-dependent classification fell into overfitting.

Thus, the answer to the research question 2 is:

• There is no significant classifier effect on classification accuracy improve-

ment among the classifiers used in the current experiment.

As for the research question (3), while subject-dependent and -inclusive mod-

els did not show the performance improvements by use of multiple frequency

bands feature compared to theta features, the subject-independent classification

showed a significant accuracy improvement in the multiple frequency bands fea-

ture compared to only theta feature. This disagreement is difficult to interpret,

however, at least, given that the subject-independent classification showed ev-

ery frequency bands showed significant classification performances compared to

chance rate, phase information in the frequency bands relevant to phase synchro-

nization might contribute to the improvement of classification accuracy under the

situation where enough training samples are available.

• Use of phase patterns in the multiple frequency bands relevant to phase

synchronization improves classification accuracy in the subject-independent

models

However, as the frequency band is higher, the S/N ratio tends to get worse and

worse. Thus, whether the phase information in the higher frequency band is

discriminative for decoding in the real-life situation need to be investigated.

Finally, to utilize spatial information, features of multiple frequency bands

were extracted using FBCSP. However, the features did not show improvement of

classification accuracy in both subject-dependent and subject-independent clas-

sification. The CSP method is mainly utilized in the EEG-based classification

of motor imagery tasks such as imaginary of the left hand, right hand, and foot

movements. A CSP method shows effectiveness in such tasks because the motor

imagery induces differences of topographical patterns depending on the parts of

the body. On the other hand, it is expected that the topographical pattern is

similar across speech types because a neural source of phase synchronization does

not differ depending on the contents of the speech. This similar topographical

patterns across stimulus might hinder the effect of the spatial filter on accuracy.
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4.7 Summary of Chapter 4

In Experiment 1, I investigated classification performances of EEG-based neural

decoding of speech using phase synchronization during speech perception. Be-

sides, for performance improvement, I tested the effects of different classifiers

and features in the multiple frequency bands relevant to phase synchronization.

I obtained the following results from the experiment.

• EEG phase information induced by neural phase synchronization can clas-

sify three types of speech with around 50% accuracy.

• This phase-based classification model has generalizability to other different

users.

• There were no classifier effects on improvement of classification perfor-

mances, but taking into account of feature importance topographies, tem-

plate matching might be more suitable classifiers to capture phase synchro-

nization.

• Use of phase patterns in the multiple frequency bands relevant to phase

synchronization improves classification accuracy in the subject-independent

models
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5. EEG phase synchronization with imagined speech

5.1 Purposes of Experiment 2

Experiment 1 had demonstrated the effectiveness of EEG phase patterns for dis-

criminating speech. The next step of the thesis is to apply this phase-based

classification to the imagined speech. If phase patterns are modulated depending

on a rhythm of the imagined speech, EEG phase patterns also should discrimi-

nate the imagined speech. However, as mentioned previously, the modulation of

neural oscillations during performing the imagined speech task has not clarified

well yet. Thus, the purpose of Experiment 2 is to investigate whether phase syn-

chronization with EEG during the imagined speech and rhythm of the imagined

speech.

Recent studies have revealed neural correlations of imagined speech genera-

tion: namely, a similar network as the speech production including the left inferior

frontal region and the left premotor cortex [67]. Tian and Poeppel (2010) [76]

proposed an internal forward model during the imagined speech, where a mo-

tor efference copy is sent from the motor planning region to the parietal cortex

and a further efference copy is sent from the parietal cortex to the temporal cor-

tex. These parietal/temporal areas activated by the two types of efference copy

generate a kinesthetic feeling and auditory perceptual feelings, respectively.

In contrast to such research on neural correlations of imagined speech, the

modulation of neural oscillations during imagined speech has not received much

attention. Rather than imagined speech, so far, intensive research on neural

dynamics has been conducted in the neurophysiological speech perception field.

Many studies have shown that theta oscillations (4–8 Hz) in the auditory cortex

match their phases to the amplitude envelope of speech during speech processing

(see Chapter 3). It has been suggested that this synchronization is based on en-

dogenous theta oscillations in Heschl’s gyrus in the right hemisphere dominantly

[30].

A similar endogenous fluctuation in theta has also been observed in the part

of the ventral premotor cortex related to control of the mouth [30]. Given that

the amplitude envelope of speech is mainly derived from vowels voiced by the

mouth opening, the speech envelope could conceivably be related to an oscillatory
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rhythm in the mouth premotor cortex in a similar way to synchronization in

speech processing during perception. Thus, by considering this together with the

fact that motor-related regions such as the premotor cortex can be activated by

motor imagery [27], it can be hypothesized that neural oscillations during speech

imagery synchronize with speech rhythms generated by the imagery. Although it

is difficult to observe imagined speech directly, overt speech can be regarded as a

counterpart of imagined speech because the phonetic features of imagined speech

are similar to those of overt speech [25].

In addition to phase synchronization analysis, I also focused on whether EEG

during imagined speech can classify speech stimuli with different speech envelopes

as well as Experiment 1. It has demonstrated that neural oscillation phases dur-

ing synchronization with perceived speech enable speech stimuli to be classified

because the neural synchronization induces replicable and stimulus-specific phase

patterns of oscillations across trials. Conversely, reliable EEG-based classification

of speech stimuli with different speech envelopes suggests that a replicable and

stimulus-specific neural phase pattern is induced by imagining the articulatory

movements of the speech. Thus, classification accuracy with above-chance level

supports evidence for EEG synchronization during the imagined speech.

In sum, Experiment 2 aimed to answer the following research questions:

1. whether do EEG oscillations during imagined speech synchronize with the

speech envelope of the overt counterpart?

2. whether can EEG oscillations during imagined speech classify speech stimuli

with different amplitude envelopes?

To this end, I regressed the overt speech envelope using EEG and calculated

correlation coefficients between the EEG-based regressed envelope and the overt

speech envelope. The classification was based on the template matching method

which calculates the distance between a test data and a template waveform of

each class because Experiment 1 suggests that this method is suitable to capture

phase synchronization. Since the duration of the imagined speech was expected

to vary across trials, I used a DTW method to correct the durational variability

for the classification analysis. To the best of my knowledge, this is the first
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Figure 22. An overview of Experiment 2. I hypothesized that the rhythm of

imagined speech and EEG oscillations in the corresponding frequency band during

the imagination are synchronized each other. If this hypothesis is true, a similar

classification method to Experiment 1 can be applied to an imagined speech

classification task.

study to investigate synchronization between the overt speech envelope and EEG

oscillations during the imagined speech.

5.2 Methods of Experiment 2

5.2.1 Participants

Eighteen right-handed L1 Japanese speakers participated in the experiment (6

female, 12 male, mean age: 23.8±1.7). They all gave written informed consent

to their participation. No participants reported a history of hearing impairment

or neurological disorders. The experiment was approved by the ethical review

board of the Nara Institute of Science and Technology.

5.2.2 Experimental materials

I recorded three speech stimuli from a female L1 Japanese speaker in a sound-

attenuated chamber (44.1 kHz/16 bit). All speech stimuli were nonsense sounds

because I wanted to avoid the effect of semantic processing of speech on the

synchronization analysis. All stimuli consisted of three [ba] and two [ba:] with a

prolonged vowel at different positions to differentiate speech envelopes (stimulus
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[ba]  [ba]   [ba]         [ba:]                   [ba:]

0 ms 1,800 ms

[ba:]               [ba:]         [ba]    [ba]    [ba]

0 ms 1,800 ms

[ba:]           [ba]  [ba]  [ba]          [ba:]

0 ms 1,800 ms

stimulus 1

stimulus 2

stimulus 3

Figure 23. (Left) Waveforms and spectrogram of speech stimuli. (Right) Ampli-

tude spectrum of speech stimuli.

1: [ba] [ba] [ba] [ba:] [ba:], stimulus 2: [ba:] [ba:] [ba] [ba] [ba], stimulus 3: [ba:]

[ba] [ba] [ba] [ba:], Fig. 23). The duration of each stimulus was adjusted to 1,800

ms and the volume was normalized. The pitch height was adjusted to 200 Hz by

using Praat [12].

5.2.3 EEG recordings

EEGs were recorded with an amplifier (BrainAmp DC, Brain Products GmbH.,

Germany) from 32 Ag/AgCl electrodes (actiCAP, Brain Products GmbH., Ger-

many). The impedance of the electrodes was kept below 10 kΩ. The EEGs

were online-filtered with a 0.016-Hz high-pass and 250-Hz low-pass filter. The

sampling rate was 1,000 Hz. An FCz electrode and FPz electrode were used

for the reference and ground, respectively. The experiment was controlled using

Presentation software (Neurobehavioral Systems, Inc., U.S.A).

Participants sat on a comfortable chair in a dimly lit sound-attenuated cham-

ber. A display monitor, keyboard, and microphone were placed on a desk in

front of the chair. Participants were instructed to familiarize themselves with the
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speech stimuli and memorize them before the EEG recording. One trial consisted

of three tasks: listening, speaking, and imagining speech. During the trial, they

were instructed to stay as still as possible. In the imagined speech task, partic-

ipants were forbidden to move any articulators such as their mouth or lips and

were instructed to imagine the articulatory movements of the speech stimulus

without actually making those movements.

The experiments consisted of practice and three main blocks, where each block

consisted of 21 and 20 trials. Each stimulus was presented to each participant

20 times in a randomized order in the main blocks. The procedure of a trial did

not vary between the practice and the main blocks. Each trial started from the

appearance of Ready? on the display. A procedure of one trial was as follows.

1. Participants initiated a trial by pushing the space key on the keyboard.

2. LISTEN was displayed for indicating the task type for 2,000 ms.

3. After a countdown (from 3 to 1) to the start of task execution, a fixation

mark (+) appeared, and at the same time, a speech stimulus was played

via headphones.

4. In the speaking task, the task indication (SPEAK) was followed by a count-

down to task execution.

5. After the countdown, participants uttered the speech stimulus that was pre-

sented in the listening task at the same speech rate. Participants’ utterances

were recorded using a microphone.

6. To reduce variation in the duration of uttered speech across trials, I con-

trolled the timing of the start and the end using a progress bar. The progress

bar appeared on the display immediately after the countdown, gradually ex-

tended horizontally during the imagination task, and stopped at 1,800 ms,

which was the same duration as the speech stimuli, relative to the appear-

ance of the progress bar. By having the participants initiate and finish their

utterances at the same time as the appearance and stop of the progress bar,

respectively, I was able to mitigate duration variabilities across trials.
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Figure 24. Procedure of an experimental trial. In the listening task, the stimulus

was played after the task indication followed by a countdown to task execution.

In the speaking task, participants uttered the speech stimuli into a microphone.

In the imagined speech task, they imagined the articulatory movement of speech

stimuli without making movements. After the imagined speech task, participants

reported whether they had successfully imagined the speech by pressing a button.

7. In the imagined speech task, after the task indication (IMAGINE), the pro-

cedure was the same as the speaking task except that participants imagined

articulatory movements of the speech stimulus. Variabilities of the duration

of the imagined speech were also adjusted by using the progress bar.

8. After every imagination task, the participants were asked to press a button

to indicate whether they had been able to imagine the speech (success: F

key, failure: J key).

The procedure of one trial is summarized in Fig. 24. The experiment contin-

ued for about 45 minutes.

5.2.4 Preprocessing of EEG data

We analyzed synchronization and its topographical patterns in both perceived

speech and imagined speech: synchronization (1) between the amplitude envelope

of the speech the participants listened to and EEGs during the time they perceived

it and (2) between the amplitude envelope of the speech the participants uttered

and the EEGs during the imagined speech.

We used the FieldTrip toolbox [60] for MATLAB (The MathWorks, Inc.,

U.S.A) for the EEG data analysis. To remove slow drift artifacts, a 4096th order
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FIR one-pass zero phase high-pass filter at 0.5 Hz (Hamming window) was applied

to the continuous data. EEGs were re-referenced to an average of both mastoids

and epoched from –1,000 ms to 3,000 ms relative to the task onset. The task

onset was set to the appearance of the fixation mark (in the listening task) and

the progress bar (in the imagined speech task). Epochs with large amplitudes

exceeding 200μv were rejected. Data from FP1 and FP2 were exempted from

this rejection because they included large eye-related artifacts that were later

removed during the ICA. Epochs contaminated by large muscle artifacts were

identified using an automatic detection method based on z-value of the data

distribution (cutoff = 15) and visual inspection (see Chapter 4.2.4). ICA was used

to correct the eye-related artifacts and remaining muscle artifacts. Candidates of

eye-related ICs were searched based on the average Pearson correlation coefficients

between the FP1/FP2 data and ICs. ICs to be removed were identified by visually

inspecting their waveforms and spatial distributions.

We separated the EEG datasets on a per condition basis. In the imagined

speech dataset, I excluded trials in which participants reported that they had

not successfully imagined the speech and trials in which participants uttered the

speech incorrectly, such as through a slip of the tongue in the preceding speaking

task. The incorrect utterances were annotated manually. One participant was

removed from the analysis because of a large total number of rejected trials across

conditions (above 30%). As a result, the average total of rejected trials across

conditions was 8.7%±5.0. A one-way repeated analysis of variance (ANOVA) test

showed no significant differences in the number of rejected trials between speech

stimuli (F (2, 32)=1.47, p=0.25).

5.2.5 Analysis pipeline

I analyzed synchronization and its topographical patterns in both perceived speech

and imagined speech: synchronization (1) between the envelope of the speech the

participants listened to and EEGs during the time they perceived it and (2) be-

tween the overt speech envelope uttered by participants and the EEGs during the

imagined speech. An analysis pipeline is described in Fig. 25.
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Figure 25. Analysis pipeline for calculating synchronization between speech and

EEG.

5.2.6 Speech envelope extraction and band-pass filtering

The amplitude envelope of the speech was extracted using a Hilbert transfor-

mation. A two-pass IIR Butterworth band-pass filter of the 8th order (1–7 Hz)

was applied to both the speech envelope and the preprocessed EEG, which was

further extracted from 0 to 3,000 ms. The frequency ranges of the band-pass

filter were decided to extract the low-frequency modulation (see Fig. 23; peaks

in the frequency domain were observed around 2 and 5 Hz). To avoid filter ar-

tifacts, the flipped data were concatenated to the beginning and the end of the

data and were removed after the filtering procedure. The speech envelope was

downsampled with the same sampling rate as EEG (i.e., 1,000 Hz).

5.2.7 Optimizing the delay in synchronization

We corrected the delay in synchronization between the EEGs and the speech en-

velope because a certain delay can be expected (e.g., milliseconds for participants

to recognize the appearance of the progress bar and begin imagining the speech).

The cross-correlation coefficients between all concatenated trials of the band-pass
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filtered EEG and speech envelope were calculated per EEG electrode and then

averaged across electrodes. Before calculating the coefficients, both data were

demeaned. I searched for the peak showing the highest coefficients within the

lag range [10, 200 ms] for perception data and [180, 500 ms] for imagined speech

data. A narrower lag range was adopted for perception data because less vari-

ability in the delay was expected than for the imagined data, where participants

needed to respond to the appearance of the progress bar to initiate the imagined

speech. In contrast, the relatively wide range of the lag in the imagined speech

was set because larger variability of the reaction times across participants was

expected in the imagined speech. The lag range of the imagined speech was cho-

sen with consideration of the fact that human simple reaction time is generally

around 200 ms [78]. After each EEG trial was shifted in the time domain by this

delay per participant data, EEG data from the new onset time point to 1,800

ms, which was the same duration as the speech stimulus, were used for further

analysis of the perceived data. In the case of the imagined speech data, data from

the new onset time point to the duration of the corresponding overt speech (i.e.,

overt speech data in the speaking task immediately before the imagined speech)

were extracted under the assumption that the duration of the overt speech and

imagined speech were similar.

5.2.8 Synchronization analysis

Amultiple linear regression method [7] was used for analyzing the synchronization

between the EEG and the speech envelope. Specifically, I used a concatenated,

delay-optimized, band-pass filtered EEG matrix Mn×m across trials, where n

is the total number of data points and m is the number of electrodes. Each

electrode data was demeaned by subtracting the electrode average value. First,

the number of dimensions was reduced using principle component analysis (PCA)

to avoid collinearity. M was projected into space spanned by eigenvectors of the

covariance matrix of M covering 99% of the variance. The projected M and

space spanned by eigenvectors were expressed by Mk and Pk, respectively. After

the concatenated speech envelope across trials, denoted by, was demeaned, the

envelope was modeled by a linear combination of the columns of Mk and noise ε:
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s = Mkb+ ε. (22)

The optimal coefficients b were estimated using the least-squares method. The

regressed speech envelope s is expressed by

s = Mkb. (23)

The spatial pattern of b on the topography (Peeg) was calculated on the basis of

[7] and [61]. First, the pattern Ppca was calculated as

Ppca =
MT

k ŝ

ŝT ŝ
. (24)

From Eq. 24, Ppca can be regarded as the coupling between the regressed speech

envelope s and the projected EEG data Mk [7]. Finally, Peeg was calculated using

the previous PCA space Pk:

Peeg = PkPpca. (25)

In terms of visualizing the topography, the absolute value of each participant’s

Peeg was normalized to have a certain range [0, 1] (1 represents the maximum

coefficients of the synchronization). I calculated the coefficients of the Spearman

rank correlation (Spearman’s rho) between the EEG-based regressed envelope (ŝ)

and speech envelope (s) as an index of the synchronization. Spearman’s rho was

converted using the Fisher-Z transform to approximate a normal distribution.

5.2.9 Classification analysis

We performed a classification analysis to investigate whether EEG during speech

perception and speech imagery included a signature of the envelope of the per-

ceived speech and the overt speech, respectively. Classifiers were trained using the

delay-optimized, band-pass filtered EEG data in speech perception and imagined

speech task. The classification method was similar to Zhang et al s ECoG-based

classification of overt speech [86]. Since I expected the duration of the imag-

ined speech to vary across trials regardless of the duration variability mitigation

afforded by the progress bar, each EEG data in the imagined speech task was

65



realigned using the DTW method, which is an algorithm to find a path that min-

imizes the distance between two signals. The performance of the classifier was

evaluated by leave-one-out cross-validation.

The classification was based on the Euclidean distance between a test data

and a template waveform of each class. The templates were constructed by using

the training data. To this end, first, training data were separated based on the

class labels. In the imagined speech data, each training data was realigned to

the envelope of the speech stimulus corresponding to the class label using the

DTW to correct duration variability. In the perception data, realignment was

not performed because less durational variability was expected. EEG data and

the envelope of the speech stimulus data were standardized by using z-score for

all data to take values in a similar scale. Each template waveform of the class

label was constructed by averaging the training data belonging to the class in

the time domain. The class label of the template waveform showing the least

square Euclidean distance to a test data was considered the prediction result. In

the case of the imagined data, each test data was also realigned to each template

using the DTW before the classification and the distance between the realigned

test data and the template were calculated because the duration of the test data

also differed across trials.

For classification, I used the five electrodes showing the highest absolute values

of the coefficients of the EEG pattern among electrodes positioned in the frontal

and central region (i.e., Fz, F3, F4, F7, F8, FC5, FC6, FCz, FC1, FC2, Cz, C3,

C4, CP5, CP6, CP1, and CP2), as the synchronization was mainly observed in

these regions (see Chapter 5.3 Results of Experiment 2). The final prediction of

the speech stimuli was decided by a voting system across the results of the five

electrodes.

There is a possibility that the classification was performed only based on

event-related responses to the perceived speech or the task onset, not based on

the neural synchronization with the slow modulations of the perceived speech

and imagined speech. To exclude this possibility, I performed an additional clas-

sification using data in which the first part of the waveform was excluded. In

this classification, when calculating the distances between the test data and each

template, the first 150 ms of data in the waveform were ignored.
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Figure 26. Histograms of estimated delays in perceived and imagined speech.

Filled curves represent the densities of the distributions.

5.3 Results of Experiment 2

First, I plotted the histograms of all participants’ estimated delays of perceived

and imagined speech EEG data (Fig. 26). The average delays across partici-

pants were 126 ms (SD=49) and 364 ms (SD=77) for the perceived and imagined

speech, respectively. As for the synchronization analysis, the Spearman’s rho

averaged across participants was 0.15 (SD=0.04) and 0.10 (SD=0.03) for per-

ceived and imagined speech, respectively. One sample t-test revealed that both

Spearman’s rhos significantly differed from zero (perceived: t(16)=14.3, p<0.01,

imagined: t(16)=15.0, p<0.01). Box plots of the Spearman’s rho in the perceived

and imagined speech are provided in Fig. 27A. I also plotted an example of

synchronization between the EEG-based regressed envelope and a corresponding

speech envelope (Fig. 27B). Both envelopes were standardized using z-score for

visualization. The grand averages of EEG patterns across participants are shown

in Fig. 28A. The EEG pattern of the perceived data showed the synchronization

at the electrodes in a central region. In contrast, the pattern of imagined data

was distributed in a more frontal region. This indicates that the neural gener-

ator differs across perceived and imagined speech. In the classification analysis,

mean accuracies across participants were 54.7% (SD=10.8) for perceived speech

and 38.5% (SD=5.3) for imagined speech (Fig. 28B). One sample t-test revealed
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Figure 27. (A) Box plots of Spearman’s rho between EEG-based regressed speech
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regressed envelope and the corresponding speech envelope from subject 03 in

perceived and imagined speech.
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Figure 28. (A) Grand averaged synchronization patterns across participants in

perceived and imagined speech. (B) Box plots of accuracies in EEG-based classifi-

cation of speech stimuli with different amplitude envelopes in perceived and imag-

ined speech. The dotted horizontal line represents the level of chance (33.3%).

that the accuracies were significantly above the 33.3% chance rate (perceived:

t(16)=7.9, p<0.01, imagined: t(16)=3.9, p<0.01). The accuracies of the clas-

sification based on perceived data significantly outperformed the ones based on

imagined speech (paired sample t-test: t(16)=5.2, p<0.01). As for the classifica-

tion using the data from which the first 150 ms were excluded, data in both the

perceived and imagined speech showed similar results to the previous classifica-

tions: 53.8% (SD=9.3) for perceived speech and 37.9% (SD=6.0) for imagined

speech. Both accuracies significantly outperformed the chance rate (one-sample

t-test, perceived: t(16)=8.8, p<0.01, imagined: t(16)=3.0, p<0.01).

5.4 Discussion of Experiment 2

The purpose of this research was to investigate the synchronization of imagined

speech and neural oscillations during the generated speech imagination. To this

end, I substituted participants’ overt speech for imagined speech because it is im-
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possible to observe imagined speech physically. Multiple regression-based analysis

[7] revealed a significant correlation between the EEG-based regressed speech en-

velope and the overt speech envelope as well as the perceived data. Besides, the

classification performances of speech stimuli with different envelopes achieved the

accuracy of 38.5% using the EEG during the imagined speech. These results in-

dicate that EEG oscillations during the imagined speech contain the signature

of the speech envelope of the overt counterpart of the imagined speech. Thus, I

obtained a positive answer to my two research questions.

The EEG patterns of synchronization in the perceived and imagined data were

differently distributed over the scalp: to the central region and the frontal region,

respectively. Although it is difficult to identify the generator by using EEG

due to the low signal-to-noise ratio and volume conduction, the difference in the

topographies, at least, indicates that the neural generators of the synchronization

differ from each other. In the case of speech perception, the neural source of

the synchronization is the auditory cortex [31, 42], while the generator of the

synchronization during the imagined speech seems to be in the more frontal parts,

for example, in the frontal lobe including the motor-related area.

As mentioned in Chapter 5.1, one candidate of the generator of the imagined

speech synchronization is the ventral premotor cortex, as Giraud et al. (2007)

[30] revealed the endogenous fluctuation at the theta frequency band in the ven-

tral premotor cortex of the mouth. Considering that the waveform of the speech

envelope is formed based on the cycling of the mouth opening, conceivably the en-

dogenous theta oscillations in the region are modulated depending on the timing

of the cycling of the mouth opening during the imagined speech.

Assuming that the generator is the ventral premotor cortex, one question is

raised: what is the functional role of the phase synchronization in the premotor

cortex during the imagined speech? I know that during the periodical auditory

stimulus process in the brain, neural oscillations show phase-locked responses

to the periodicity of the stimulus [81]. The functional role of the phase-locked

responses to the external periodicity is to enable the brain to predict the timing of

future input stimuli and process them at the state of high excitability (see [5] for

a review) because the neural oscillation phases are related to neuronal excitability

[46] and the state of the ongoing oscillatory activity in the pre-stimulus period
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affects the processing of sensory stimuli [4, 70]. This phase-locked response is also

widely observed during speech perception: synchronization between the speech

amplitude envelope, which features pseudo-periodical fluctuations around 4–8 Hz,

and the neural oscillation phase in the theta frequency band [1, 49, 38, 50, 64].

Because syllabic information is dominant in the amplitude envelope of speech, it

has been suggested that the syllabic information is sampled and segmented via

this neural phase synchronization (see [54] for a review). As evidence to support

this notation, Hyafil et al. (2015)’s computational model [39] demonstrated that

the syllable boundaries can be reliably predicted from neural oscillations during

speech perception.

Considering that the phase synchronization during speech perception may be

related to the syllable duration, phase synchronization during imagined speech

might be also related. The Directions Into Velocities of Articulators (DIVA)

model [32, 33] defines the role of the ventral premotor cortex during speech pro-

duction as a speech sound map that stores a repository of the motor programs of

frequently observed production units such as syllables. Together with the DIVA

model and the current result, I speculate that during syllable production, a motor

program of the syllable is read from the ventral premotor region and the syllable

duration (i.e., how long the syllable is pronounced) is encoded in the timing of

the neural oscillation phases in the region. Alternatively, Zhang et al (2012) [86]

revealed that the ECoG-based classification of overt sentences, which features a

classification method similar to the current research, was successful at an elec-

trode corresponding to the Broca area. This result suggests that the Broca region

also might show synchronization with the imagined or overt speech envelope. To

further investigate the neural source and the functional role of the neural syn-

chronization during the imagined speech, I aim to localize the neuronal source

using other brain imaging techniques such as fMRI in the future.

In this study, I used only two types of the syllable ([ba] and [ba:]) to control

the segmental information across speech stimuli. However, even if I used different

syllables such as [ku] and [ku:] or [de] and [de:] with the same sequence as the

current research, I expect a similar result would be observed. This is because I

analyzed the similarity between the band-pass filtered EEG and the envelope pat-

tern of overt speech in both synchronization and classification analysis (synchro-
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nization analysis: correlation, classification analysis: Euclidean distances) and

did not use the information related to the segmental information itself. Thus, if I

had used different syllables from [ba] and [ba:], the synchronization would prob-

ably be observed as long as the stimuli include a rhythm of the speech envelope.

Supporting this, Deng et al. (2010) performed EEG-based classification of tri-

als with different timings of syllable imagination (3 different timings 2 syllables:

[ba] and [ku]) [21], showing significant accuracies of three-class of the syllable

imagination timing using EEG data of both [ba] and [ku].

Another question is whether the observed synchronization in the current re-

search is specific to language processing or not. It is possible that the synchro-

nization and reliable classification performances were obtained when the partic-

ipants imagined the rhythms of non-linguistic content, such as beating a drum

or blowing a whistle. I have stated that the syllable duration information might

be encoded in the low-frequency oscillations in the ventral premotor cortex re-

lated to mouth control. If so, it is predicted that the synchronization would

not be observed when non-linguistic content, which is not related to controlling

mouth movements, is imagined. Alternatively, it might be possible that the syn-

chronization to non-linguistic rhythms might be observed in other motor-related

brain regions. Comparing the results of tasks where participants imagine the

rhythm of producing syllables and non-linguistic rhythms such as the rhythm of

a beat will lead to further understanding of the functional role of synchronization

during the imagined speech.

We obtained classification accuracies (38.5%) significantly above the level of

chance in classifying speech stimuli with different envelopes using EEG during

the imagined speech. This result partially supports the neural synchronization

with the overt speech envelope because it indicates that EEG oscillations during

imagined speech induce a stimulus-specific, replicable oscillation pattern. While

the neural synchronization with speech envelope during speech perception has

been applied to M/EEG-based sentence classification [49, 38, 80] , Experiment

2 applied it to the classification of imagined speech. So far, there have been

many studies on non-invasive neural decoding of imagined speech performed on

the classification of vowels [20], syllables [23], and words [71] (see Chapter 3). As

mentioned in Chapter 1, so far, the neurophysiological mechanisms enabling the
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neural decoding of imagined speech have not been sufficiently investigated. Ex-

periment 2 successfully provides a novel, neurophysiologically motivated feature

for neural decoding of imagined speech.

One of the difficulties in the neural decoding of imagined speech stems from

the variable duration of imagined speech, which cannot be observable directly. I

demonstrated that duration control using a progress bar and the DTW-based cor-

rection inhibited this variability across trials and enabled a reliable classification

performance, at least, above the chance level. However, because the classification

performances based on the EEG during the imagined speech were significantly

lower than those during the perceived data, further considerations to improve

the classification accuracy, at least, to achieve a similar performance level to the

perceived data, are required.

As an alternative possible explanation of the above-chance level classification

performances, one might argue that the trained classifier relied on the speech

onset, as opposed to the dynamics of the low-frequency modulation of the speech

stimuli or imagined speech, because there is a possibility that the difference in

the segmental information of the onset of the speech stimuli (e.g., [ba] and [ba:])

evoked different responses to the event onset. However, when I performed clas-

sification using the EEG data with the first 150 ms omitted, the classification

performances remained significantly above the level of chance. Thus, in the cur-

rent classification, I tend to conclude that the whole waveform pattern of EEG,

not the onset information, contributed to the classification of speech stimuli with

different envelope patterns.

5.5 Summary of Chapter 5

To reveal the effectiveness of neural phase synchronization for neural decoding

of the imagined speech, Experiment 2 investigated whether EEG phase patterns

during the imagined speech synchronize with a rhythm of the imagined speech,

which was replaced by the overt counterpart. I obtained the following results

from Experiment 2.

• EEG oscillations during imagined speech synchronize with the speech en-

velope of the overt counterpart.
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• Based on this phenomenon, EEG oscillations during imagined speech can

classify speech stimuli with different amplitude envelopes.

• The DTW method is successful to correct the durational variability of the

imagined speech.
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6. EEG-based neural decoding of imagined speech

6.1 Purposes of Experiment 3

In the previous Experiment, I demonstrated that EEG during imagined speech

synchronizes with a rhythm of imagined speech (which was replaced by overt

counterpart). As well as neural phase synchronization during speech perception,

the imagined speech with different amplitude rhythm can be discriminated using

EEG phase patterns because the phase synchronization induces stimuli-specific

phase patterns. However, the effectiveness of neural phase synchronization for

neural decoding of speech is not fully clear because it is unknown if the synchro-

nization is observed when using meaningful sentences. Thus, Experiment 3 aims

to replicate Experiment 2 using meaningful sentences.

Another purpose is to investigate whether the synchronization during the

imagined speech is observed in different frequency bands relevant to linguistic

processing (i.e., delta, theta, alpha, beta, and gamma) as well as Experiment

1. In Experiment 2, the analysis of phase synchronization was focused on the

lower frequency band (delta and theta). However, considering the existence of

neural synchronization in other frequency bands during speech perception, it is

expected that the imagined EEG phases synchronize with the speech imagery in

other frequency bands.

In sum, research questions of Experiment 3 are:

1. Whether does EEG phase synchronization during the imagined speech is

observed in multiple frequency bands (i.e., delta, theta, alpha, beta, and

gamma) using meaningful sentences?

2. Whether do EEG phase patterns during the imagined speech discriminate

three types of meaningful sentences?

To this end, I used the same sentences to Experiment 1 because it had already

demonstrated that these sentences could be classified using phase synchronization

with perceived speech. The analysis method of PLV was also quite similar to

Experiment 1. I used SVM trained by features which were extracted by the CSP

method (Experiment 1) and a template matching method used in Experiment 2

for classification. To mitigate a variance of the duration of the imagined speech,
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the EEG data were realigned to the model speech using DTW, which was the same

method to Experiment 2. Furthermore, as well as Experiment 1, the classifiers

were trained by subject-dependent, subject-inclusive, and subject-independent

manner.

6.2 Methods of Experiment 3

6.2.1 Participants

Six right-handed L1 Japanese speakers participated in data recordings (1 female,

5 males). The average age was 24.7±2.7 across participants. All participants

agreed to participate and gave informed consent in writing. They all reported

no history of neurological illness and no hearing abnormalities. This experiment

was approved by the ethical review board of the Nara Institute of Science and

Technology.

6.2.2 Experimental materials

The same speech materials to Experiment 1 was used in the current experiment

(see Chapter 4.2.2).

6.2.3 EEG recordings

EEGs were recorded with the same apparatus and settings to Experiment 2. The

recording procedure was also similar to Experiment 2. Participants sat on a

comfortable chair in a dimly lit sound-attenuated chamber. A display monitor,

keyboard, and microphone were placed on a desk in front of the chair. Par-

ticipants were instructed to familiarize themselves with the speech stimuli and

memorize them before the EEG recording. One trial consisted of three tasks:

listening, speaking, and imagining speech. During the trial, they were instructed

to stay as still as possible. In the imagined speech task, participants were for-

bidden to move any articulators such as their mouth or lips and were instructed

to imagine the articulatory movements of the speech stimulus without actually

making those movements.

The experiments consisted of practice and three main blocks. Both blocks

consisted of 16 trials. Each stimulus was presented to each participant 16 times
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in a randomized order in the main blocks. The procedure of a trial did not vary

between the practice and the main blocks. A procedure of one trial is as follows.

1. Each trial started from the appearance of Ready? on the display. Partici-

pants initiated a trial by pushing the space key on the keyboard.

2. A letter LISTEN was displayed for indicating the task type for 2,000 ms.

3. A fixation mark (+) appeared for 2,500 ms, the color of the fixation mark

was changed from white to blue. At the same time, a speech stimulus was

played via headphones.

4. After 5,500 ms, the color was changed to white again to indicate the end of

the task.

5. In the speaking task, the task indication (SPEAK; 2,000 ms) was followed

by the appearance of a fixation mark for 2,500 ms.

6. After the color of the fixation mark changed from white to blue, participants

uttered the speech stimulus that was presented in the listening task at the

same speech rate.

7. In the imagined speech task, after the task indication (IMAGINE; 2,000

ms), the procedure was the same as the speaking task except that partici-

pants imagined articulatory movements of the speech stimulus.

The procedure of one trial is summarized in Fig. 29. The experiment contin-

ued for about 40 minutes.

6.2.4 Preprocessing of EEG

Data from one participant was removed due to the recording error. For EEG data

analysis, the FieldTrip toolbox for MATLAB (The MathWorks, Inc., U.S.A) was

used [60]. First, one-pass zero-phase FIR high-pass filter at 0.5 Hz (filter order:

4,096th, a window type: hamming) was applied to continuous EEG data. After

EEG data were re-referenced to average values of TP9 and TP10 electrodes, EEG

data belonging to the imagined speech task were epoched from −1,000 to 3,500

ms relative to the onset of the task.
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Figure 29. Procedure of an experimental trial in Experiment 3. In the listening

task, the stimulus was played at the same time to the color change of the fixation

mark. In the speaking task, participants uttered the speech stimuli into a micro-

phone. In the imagined speech task, they imagined the articulatory movement of

speech stimuli without making movements.

Next, I rejected trials contaminated with large amplitude artifacts and muscle

artifacts. For large amplitude artifacts, trials exceeding ±200 μv were removed

from further analysis. This rejection procedure was not applied to data from FP1

and FP2 electrodes because data from these electrodes were very often contami-

nated by eye movement-related artifact which was removed by ICA later. Trials

including muscle artifacts were detected by a z-score-based method and by visual

inspection (see Chapter 4.2.4). In average, 5.0±3.2 of trials across all participants

were removed.

EEG data were decomposed of ICs by ICA. The ICs reflecting blinks, eye

movements, electrocardiograms, electromyograms, and noise derived from elec-

trodes were selected by inspecting the waveforms and topographies of the ICs

visually. The selected ICs were removed from the EEG data.

Finally, I excluded trials in which participants uttered the speech incorrectly,

such as through a slip of the tongue in the preceding speaking task. The incorrect

utterances were annotated manually. The number of average percents judged as

the incorrect speech was 0.6±0.89 across participants.
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6.3 Quantification of neural phase synchronization

To quantify a degree of phase synchronization, I calculated PLV in each frequency

band using the same method to Experiment 1. A different point from Experi-

ment 1 is to apply a delay optimization to EEG data as well as Experiment 2

because lags between the trial onset and the initiation of the imagined speech are

expected. The same delay optimization procedure to Experiment 2 was adopted

(see Chapter 5.2.7).

6.4 Imagined speech classification

I used both the template matching classification which was the same method to

Experiment 2 and SVM trained by features extracted using CSP. Before model

training, single-trial EEG data were realigned to the corresponding model speech

(see Chapter 5.2.9) to mitigate variations in duration of the imagined speech.

Each model was trained by phase patterns in a single frequency band. In the

template matching classification, classification was performed per electrode in

a fronto-central region (i.e., Fz, FC2, FCz, FC1, C3, Cz and C4 electrodes)

where phase synchronization tended to be observed in Experiment 2. The final

prediction result was decided based on a voting system across these electrodes.

In SVM trained by CSP-based features, the feature was extracted using a CSP

method from a single frequency band. The trained models were evaluated by

LOSO cv and LOO cv to confirm whether the models have generalizability to

unknown users (see Chapter 4.4.2).

6.5 Results of Experiment 3

6.5.1 EEG phase synchronization with meaningful imagined speech

The average delay in the delay optimization procedure was 293±74 ms, 323±33

ms, 358±88 ms, 419±48 ms and 386±127 ms for delta, theta, alpha, beta, and

gamma, respectively. I plotted the PLV topographies in each frequency band in

Fig. 30. Visual inspection suggests that the theta frequency band shows rela-

tively strong PLV responses in a fronto-central region. Given that this pattern is

consistent with the previous results, it can be considered as phase synchroniza-
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tion with speech rhythm. There is no clear tendency of phase synchronization in

other frequency bands.

 delta        theta        alpha        beta       gamma 

Figure 30. PLV topographies in each frequency band in Experiment 3.

The values of PLV across front-central regions (FCz, Cz, FC1, FC2, F3, and

F4) were plotted in Fig. 31 and the average values across the electrodes were

summarized in Table 12. In the average values, the PLV in the theta frequency

band was larger than the other frequency bands. As a result of multiple com-

parisons using Tukey-Kramer, the differences between PLVs in theta and other

frequency bands were statistically significant (p<0.01, respectively).

Figure 31. Boxplots of PLVs in the fronto-central regions per frequency band.

To decide whether this synchronization is larger than the null-hypothesis dis-

tribution, I performed a permutation test (see Chapter 4.3). To construct the
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Table 12. Average PLVs across the fronto-central electrodes per frequency band.

Delta Theta Alpha Beta Gamma

Mean 0.86e-2 1.97e-2 0.87e-2 0.57e-2 0.99e-2

SD 0.19e-2 0.20e-2 0.17e-2 0.35e-2 0.49e-2

null-hypothesis distribution, I calculated PLV values using data that a tempo-

ral relationship between EEG and speech was broken by splitting EEG data at

random time point and swapping the data before and after the split point. I

decided to test the significance only in the theta frequency band because there

was no tendency of phase synchronization in other frequency bands. The max-

imum PLV value among electrodes was used to construct the distribution to

correct multiple comparisons in statistical tests [51]. The number of iterations

was 1,000. The number of values exceeding the observed PLVs for each electrode

in the null-hypothesis distribution was divided by the number of iterations for

calculating p values. The one-sided test was used for determining the significance

because the purpose of the statistical test was to determine whether the observed

PLV exceeds the random distribution. As a result of the permutation test, FCz

and FP1 electrodes reached the marginally significant level (p=0.086, p=0.091,

respectively).

6.5.2 Classification performances

I calculated the classification performances in the theta frequency band because

the other frequency band did not show phase synchronization with speech. Clas-

sification accuracies were summarized in Fig. 32 and Table 13. The template

matching and CSP-based SVM in the subject-dependent model outperformed

the chance level (33.3%). The one-sample t-test revealed that the accuracies of

the template matching were marginally significant compared to the 33.3% chance

rate (t(4)=2.75, p=0.051). On the other hand, the CSP-based SVM did not reach

the significance (t(4)=0.99, p=0.38).

81



subject-dependent subject-inclusive subject-independent

Figure 32. Boxplots of classification accuracies in each model.

Table 13. Mean accuracies per classification model (SD).

subject-dependent subject-inclusive subject-independent

Template matching 43.1 (7.1) 31.8 (3.5) 30.2 (2.4)

CSP-based SVM 35.8 (5.0) 32.3 (4.6) 32.9 (3.2)

6.6 Discussion of Experiment 3

Experiment 3 aims to replicate the results of Experiment 2 using meaningful

sentences. Research questions were (1) Whether do EEG phase synchronization

during the imagined speech is observed in multiple frequency bands (i.e., delta,

theta, alpha, beta, and gamma) using meaningful sentences? and (2) Whether

do EEG phase patterns during the imagined speech discriminate the meaningful

sentences?

The answer to the research question (1) is positive in the theta frequency band.

Although the result of the statistical test was marginally significance against the

null-hypothesis distribution, considering that the topographical pattern is con-

sistent across previous results, it can be considered as an EEG phase synchro-

nization phenomenon. This result further reinforces the hypothesis that neural
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phases during the imagined speech synchronize with a rhythm of the imagined

speech.

One difference between the current result and Experiment 1 is that tenden-

cies of phase synchronization in other frequency bands (alpha, beta, and gamma)

were not observed. I expected phase synchronization in the low-gamma frequency

band because Giraud et al. (2007) [30] showed that EEGs in a premotor region

related to tongue movement fluctuates at a gamma frequency band endogenously.

Considering the facts that tongue movements are related to phoneme production

(e.g., velar stop: [k] or [g], alveolar fricative: [s] or [z]) and that the phase syn-

chronization in low-gamma band was observed in [50] during acoustic processing,

it is expected that this gamma fluctuation in the premotor cortex is related to

generation of phoneme level rhythm during the imagined speech. However, one

difficult point in PLV calculation is that an effect of phase lags gets more critical

in the higher frequency bands than the low-frequency band. Thus, the phase

patterns in the higher frequency bands are more prone to be affected by duration

variability of speech imagery across trials. Besides, the S/N ratio of EEG in the

higher frequency bands is worse than the lower one because of smaller amplitudes

EEG amplitudes in the higher bands.

The delta frequency band also did not show the synchronization, which co-

incides with the results of Experiment 1. As mentioned in Chapter 3.1, consid-

ering that delta oscillations are related to intonation [13] and syntactic bound-

ary [22, 55], I expected that internal syntactic or prosodic chunking during the

imagined speech might be related to delta oscillations. However, as discussed in

Chapter 4.6, it might be reasonable to investigate the delta effect using sentences

including explicit prosodic or syntactic boundaries.

The answer to the research question (2) is also positive, but it depends on the

settings. The template matching classification using the DTW, which was used in

Experiment 2, discriminated the imagined sentences successfully in the subject-

dependent classification, although the statistical test showed a marginal signif-

icance compared to the chance level. The classification performances (43.1%)

seem to be better than nonsense imagined speech classification in Experiment 2

(38.5%). Some research reported that intelligibility enhanced phase synchroniza-

tion during speech perception [64]. Thus, the meaningfulness of the imagined
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speech might enhance the synchronization and leads to more robust phase pat-

terns to obtain better classification accuracies. Alternatively, a longer duration

of speech stimuli than Experiment 2 affects the classification accuracies (around

3,000 ms vs 1,800 ms). To investigate the effect of meaningfulness of the imag-

ined speech, further control of the experimental condition is necessary. However,

if meaningfulness of the imagined speech affects the synchronization during the

imagined speech, it might be lead to further understanding of this phenomenon.

Contrary to the template matching, the performance of the any CSP-based

SVM classification did not outperform the chance rate significantly. As discussed

in Experiment 1, this might be because the neural source of the EEG synchro-

nization is considered to be common across sentence types. Although the neural

source of this synchronization is not revealed, at least, null-effect of the CSP

methods suggests the common neural sources across sentence types.

As for the effects of the subject-dependency on the classification accuracies, in

contrast to the subject-dependent model, any models did not achieve the chance

level in the subject-inclusive and subject-independent models. This result is

against Experiment 1 demonstrating that the increase in number of training data

in the subjet-independent and subject-adaptive classification improves classifica-

tion accuracy compared to subject-dependent classification. This opposite result

to Experiment 1 is might be due to the following two reasons. First, temporal du-

ration of imagined speech largely varied across participants because speech rate is

influenced by individual differences. Second, increase in number of training data

by subject-inclusive and independent was not large compared to Experiment 1

because the number of participants of Experiment 3 was fewer than Experiment

1 (Experiment 1: 17 participants, Experiment 3: 6 participants, one participant

was removed). However, the subject-independency is a merit of the BCI applica-

tion. Thus, in the future, it is required to correct such individual differences of

the imagined speech rhythm across participants.

6.7 Summary of Chapter 6

In Experiment 3, I obtained the following results:

• EEG theta phase synchronization during the imagined speech is observed

84



when using meaningful sentences.

• Three meaningful imagined sentences can be discriminated successfully in

subject-dependent classification using the DTW-based template matching

trained by phase patterns in the theta frequency band. To realize subject-

independent classification, a method to correct individual differences of the

imagined speech across participants is required.
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7. Summary and future directions

7.1 Summary and achievement

The purpose of the thesis is to reveal that the EEG phase information induced by

neural synchronization successfully classify speech information. This is motivated

from the fact that the underlying mechanisms remain unclear in neural decoding

of speech. In Experiment 1, I investigated classification performances using EEG

phases during speech perception. As the results of Experiment 1, I demonstrated

the effectiveness of EEG phase patterns for neural decoding of speech:

• EEG phase information can classify three types of speech with around 50%

accuracy. This phase-based classification model has generalizability to other

different users in the perceived speech classification.

• Template matching is a better method for phase synchronization-based clas-

sification in terms of accuracy and analysis of feature importance.

• Use of phase patterns in the multiple frequency bands relevant to phase

synchronization improves classification accuracy in the subject-independent

models.

Experiment 2, I investigated whether similar phase synchronization is induced

during the speech imagery: synchronization with EEGs during the imagined

speech and speech rhythms of the imagined speech, which was replaced with

the overt counterpart. The results showed that:

• EEG oscillations during imagined speech synchronize with the speech en-

velope of the overt counterpart.

• Based on this phenomenon, EEG oscillations during imagined speech can

classify speech stimuli with different amplitude envelopes.

Experiment 3 investigated whether phase synchronization during the imagined

speech can apply to meaningful sentences using the same sentence to Experiment

1. As results,
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• EEG theta phase synchronization during the imagined speech is observed

when using meaningful sentences.

• Three meaningful imagined sentences can be discriminated successfully in

subject-dependent classification using the DTW-based template matching

trained by the theta frequency band.

Over these experiments, I demonstrated that neural phase synchronization is

effective for neural decoding of speech in both speech perception and imagined

speech task. Thus, the main purpose of the thesis was successfully achieved.

7.2 Future directions: limitations and possible directions

However, much work for realizing neural decoding of speech as BCI application

are left. In this section, I discuss the future direction of the thesis: limitations

and possible solutions.

7.2.1 Classification accuracy

Limitation. The best classification accuracies were 50.5% (SVM trained by all

in subject-independent classification) in speech perception and 43.1% in imag-

ined speech (DTW-based template matching trained by theta phase patterns in

the subject-dependent model) in the three-class classification. This performance

seems not to be enough for practical application.

Possible solutions. A first possible approach is to test the performances of the

state-of-the-art algorithms using EEG phase patterns, which manages both the

performance-oriented classification and neurophysiological validness. Note that

the current classification has focused on the interpretability of the model and

there are more powerful algorithms have been developed in the machine learning

field. As introduced in Chapter 2.5.2, the state-of-the-art research of neural

decoding of imagined speech achieved the 97% in the best case in a binary words

classification task using a Riemannian manifold [59].

Another possible solution is to improve the S/N ratio of EEG signals to obtain

better accuracy. The one the methods is an averaging method. In the domain
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of ERP-based BCI such as the P300-speller, averaging several numbers of trials

achieves around 99% accuracy (see Chapter 2). Although it is unclear whether

such high accuracy is obtained in the neural decoding of speech, it is no doubt that

averaging multiple trials are the simplest method to improve the S/N ratio. On

the other hand, the disadvantages of the averaging process are that it requires

more time to classify speech compared to single-trial classification because it

requires more trials. Thus, the best balance between the S/N ratio and the

necessary time for it need to be investigated if there is need to use an averaging

method.

7.2.2 Number of classes

Limitation. Another major limitation of the current method is that a few num-

bers of classes. As summarized in Table 1, the almost previous research focused

on binary classification for neural decoding of imagined speech. Thus, at present,

given that the classification accuracies in the limited number of classes, it seems

to be difficult to increase the number largely in the neural decoding.

Possible direction. One possible solution to use the decoding as a BCI system

is to combine the existing EEG-based spelling system and the neural decoding of

speech. For example, while the conversation in daily life is performed using the

spelling system, greetings (e.g., good morning, have a nice day and how are you?)

was outputted via neural decoding of speech. The greetings are fixed phrases and

quick responses should be preferable. Compared to the one-by-one selection of

the characters in the spelling system, neural decoding of speech have the potential

to output speech more quickly (This is just in terms of that no trial averaging is

necessary in case of single-trial classification such as the current experiments).

One might argue that the above-mentioned things can be solved by putting

icons corresponding to the greetings on the speller. The statement is completely

true. However, icon selection (or spelling) is difficult to convey para-linguistic

information such as emotional intonation. Thus, I would like to propose par-

alinguistic estimation in the neural decoding of speech in parallel to the content

estimation. The neural decoding of speech might have the potential to discrimi-

nate paralinguistic information such an emotional intonation pattern because it
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is also related to linguistic rhythm. If the neural decoding of speech output the

fixed phrases with paralinguistic information and other conversation is performed

by the existing spelling system, neural decoding of the limited number of speech

might be useful.

7.2.3 Effectiveness in other speech stimuli

Limitations. The performances of other different three sentences remain unclear

because I investigated the classification of only three Japanese sentences. The

classification performance is expected to be worse if the speech rhythm which is

quite similar between the target speech is chosen.

Besides, it is not clear whether speech stimuli with a shorter duration than

the current speech stimuli can be classified successfully. Especially, the single

syllable or phoneme is too difficult to be classified using phase synchronization

because they do not have a speech rhythm.

Possible directions. The solution is to investigate the performances of other

different speech set from the current experiments. Given that the previous neu-

ral phase-based classification showed a similar classification performance (around

50%) when using different three sentences [49, 50], the expectation values of

single-trial classification accuracy might be around the accuracy in neural decod-

ing of perceived speech. To solve this problem, further research is necessary in

the future.

As stated above, if speech rhythms are similar to each other, classification is

difficult using phase synchronization. However, I do not particularly want to use

only phase synchronization for neural decoding of speech. Thus, another future

direction is to find a relationship between speech processing and neural oscillations

dynamics leading to better and more robust classification performances.

Besides, it is necessary to investigate the performances using stimuli with a

shorter duration than the current stimuli. Note that there is no need to persist

in sentence classification and the sentences were used as stimuli only for inducing

phase synchronization. Thus, it is also good to investigate classification perfor-

mances of a more shorter linguistic unit such as words. However, as mentioned

above, this classification method is not an optimal tool to classify single syllable
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and phoneme. To discriminate them, other features need to be investigated [79].

7.2.4 Performances by ALS patients

Limitation. While participants of the current experiments were healthy people,

it is assumed that patients with severe motor disabilities utilize this system.

Regardless of that, classification performances remain unclear in the decoding

by patients with severe motor disabilities such as ALS. Because the activity of

the motor-related region of such patients might be impaired, the classification

performances might be worse the current results.

Possible direction. It is necessary to investigate whether this classification

method is available when the patients use the system. To this end, one thing needs

to be solved: the timing of initiation of the imagined speech. In Experiments,

the timing of initiation of imagined speech was controlled by the experimenter.

However, when assuming that patients use the system, it is difficult to indicate

the initiation of the speech imagery. One possible solution is to utilize SSVEP:

A part of the display is flickering and the user starts to direct attention to the

flickering light at the timing when they want to convey something, which evokes

an SSVEP response. The system sends a signal to initiate the imagined speech

when it detects the SSVEP and the user start the imagined speech. This is just

one example. In the future, a system that ALS patients can use alone need to be

developed and need to investigate the performances by the patients.
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