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Understanding and Recommending Key
Features to Improve Bug Management Process∗

Md. Rejaul Karim

Abstract

Bug reports are the primary means through which developers triage and fix bugs.
To achieve this effectively, bug reports need to be clearly described those features
that are important for the developers. However, previous studies have found that
reporters do not always provide such features that affect the different phases of
the bug fixing process. In this dissertation, we first perform two empirical studies
to investigate key features that reporters should provide in the description of
the bug report to improve the bug-fixing process. We observe that (1) Steps
to Reproduce, Test Case, Code Example, Stack Trace, and Expected Behavior
are the key features that reporters often miss in their initial bug reports and
developers require them for fixing bugs. (2) the degree of the key features varies
among the different types of high impact bug reports, and (3) the additional
requirement for the key features during bug fixing significantly affect the bug-
fixing process. Then, we propose two approaches in order to support reporters
to improve the bug fixing process. First, we develop classification models to
predict whether reporters should provide certain key features in the description of
bug reports by leveraging four popular machine-learning techniques. Then, we
develop a key features recommendation model by leveraging historical bug-fixing
knowledge and text mining techniques. We observe that (1) our models achieve
promising F1-scores to predict key features; (2) Naïve Bayes Multinomial (NBM)
outperforms other classification techniques to predict the key features based on
the summary text of the bug reports; (3) our best performing model can work
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successfully to predict key features in the cross-projects setting; and (4) our key
features recommendation model can successfully recommend key features that
reporters should provide in the description in bug reports. We believe that our
findings and proposed models make a valuable contribution to improve the bug
management process.
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1 Introduction

One of the key activities in the software development process is fixing bugs
reported by developers, testers, and end-users [1]. To fix these bugs, developers
rely on the contents of bug reports [2]. A typical bug report contains input fields
(e.g., a summary and description), which contain unstructured features such as
what the reporters saw happen (Observed Behavior), what they expected to see
happen (Expected Behavior), and a clear set of instructions that developers can
use to reproduce the bugs (Steps to Reproduce). These unstructured features are
crucial for the developers to triage and fix the bugs [3]. However, reporters often
omit these features in their bug reports [4–7]. In addition, 78.1 percent of bug
reports have a short description that contains fewer than 100 words [8]. Thus,
developers often receive bug reports with a short description such as “Various
minor edits”(Camel-4820) [9], “What is it” (Derby-893) [10], “See subject” (Wicket-
1159) [11], and “See title” (Ambari-9083) [12]. The lack of unstructured features
in bug reports is regarded as one of the key reasons for the amount of time taken
to triage and fix bugs [4, 13] because developers have to spend much time and
effort in order to understand the bugs based on features provided or need to ask
reporters to provide additional features [4, 14,15].
Well-described bug reports help in comprehending the problem, consequently

increasing the likelihood of a bug being fixed [3]. Precise, well-described bug
reports are more likely to gain the triager’s attention [13]. Existing studies have
proposed automated techniques to triage bugs, select appropriate developers, and
localize bugs based on bug reports [16–20]. However, incomplete bug reports
adversely affect the performance of these automated techniques [18]. Kim et.
al. [20] found that almost half of all bug reports are unusable in terms of building
a prediction model for localizing bugs. Hence, writing a well-described bug report
is crucial to improving the bug-fixing process.
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One of the main reasons for the lack of unstructured features in bug reports is
inadequate tool support [1, 4, 21, 22]. In order to support reporters, researchers
have focused on detecting the presence/absence of unstructured features in bug
reports [21, 23,24]. Zimmerman et al. [23] revealed 10 unstructured features that
are important for developers in general. However, there is currently no consensus
among software projects and bug reporting systems on the essential mandatory
or optional unstructured features that should be part of a bug report [7]. Not
all unstructured features are necessarily appropriate for all bug reports [5]. For
example, Stack Trace is not generated for all bug reports. Previous empirical
studies have found that bug reports contain only between two and six of the
top 10 unstructured features [5, 14]. This indicates that not all unstructured
features are equally important to fix all bugs. However, selecting those features
that should be provided in a bug report is not easy for reporters, especially for
novices and end-users. Thus, a tool that only detects the presence/absence of
unstructured features is insufficient. Therefore, this study attempts to build an
automated feature recommendation model to support reporters when writing new
bug reports.

Bug-tracking systems for large open-source software (OSS) projects have more
than 7,000 bug reports for each project. Thus, examining historical bug reports
can be a good way to understand which features developers require to fix bugs. To
better understand which features are important, we perform an exploratory study
on five OSS projects using qualitative and quantitative analyses. In particular,
we first perform a qualitative analysis to identify the key features by examining
those that are provided initially (i.e., features that reporters provide in the initial
bug reports), as well as additional required features (i.e., features that reporters
missed in their initial submission, but that were required by developers to fix bugs).
We manually investigate each bug report and identify the provided unstructured
features from the initial bug reports. Then, we identify the additional required
features that reporters provided in the comment sections after submitting the bug
reports. In our previous study, we conducted a kick-off qualitative analysis of the
Apache Camel project in order to better understand the key features of high-impact
bug reports [14]. To generalize our findings, for now, we conduct a qualitative
analysis of the Apache (Camel, Derby, and Wicket) and the Mozilla (Firefox and

3



Thunderbird) ecosystems’ projects. Through qualitative and quantitative analyses,
we identify five key features that reporters often miss in their initial bug reports
and developers require them for fixing bugs.
Different types of bugs (e.g. Performance and Security bugs) vary from each

other [25]. Therefore, our hypothesis is different types of high impact bug may
need different key features to fix. To the best of our knowledge, there is no case
study on revealing key features according to the high-impact bugs. Therefore, we
motivated to do an empirical study on high-impact bug reports and to reveal key
features so that we can improve the content of high impact bug reports. In order
to investigate key features in terms of high impact bugs, we perform an empirical
study on the Apache Camel project using qualitative and quantitative analyses.
We manually investigate each bug report for each high impact bug and identify
the provided unstructured features from the initial bug reports. Then, we identify
the additional required features that reporters provided in the comment sections
after submitting the bug reports. Through qualitative and quantitative analyses,
we observe that the degree of key features varies among the different types of high
impact bugs, however, four key features (Steps to Reproduce, Test Case, Code
Example, Stack Trace) are almost same.

The summary is a mandatory field when writing a bug report. Here, reporters
briefly describe the detected bug. The summary text has been used successfully
to detect similar and duplicate bugs [26, 27]. By examining the contents of
bug reports, we can determine which features are required to fix each bug. By
applying machine-learning techniques, reporters of new bug reports know which
key features need to provide based on the summary text by leveraging historical
bug-fixing activities. Thus, in order to help reporters, in our quantitative analysis,
we build prediction models using Naïve Bayes (NB), Naïve Bayes Multinomial
(NBM), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) text-
classification techniques, based on the summary text. Existing studies have found
that the performance of prediction models varies between the text-classification
techniques [28,29] depending on the context. Hence, we use the aforementioned
four popular text-classification techniques to build and compare prediction models.
We evaluate our models using the bug reports of Camel, Derby, Wicket, Firefox,
and Thunderbird projects. Our models achieve promising f1-scores when predicting

4



key features, except for Stack Trace of the Wicket project and Code Example of
Firefox project. Our comparative study of the classification techniques reveals
that NBM outperforms the other techniques in terms of predicting key features.
Finally, we build a key features recommendation model to suggest features that
reporters should provide in the description to make a good bug report by providing
the minimum number of features.

1.1 Thesis Contribution
We demonstrate that:

1. Steps to Reproduce, Test Case, Code Example, Stack Trace, and Expected
Behavior are the five key features that reporters often miss in their initial
bug reports and developers require them for fixing bugs. (Chapter 4)

2. The missing these key features in the initial bug reports significantly affect
the bug fixing process. (Chapter 4)

3. The degree of key features vary among the different types of high impact
bugs however, four key features (Steps to Reproduce, Test Case, Code
Example, Stack Trace) are almost same. (Chapter 5)

4. Our models achieve the best f1-scores for Code Example, Test Case, Steps
to Reproduce, Stack Trace, and Expected Behavior of 0.70 (Wicket), 0.70
(Derby), 0.70 (Firefox), 0.65 (Firefox), and 0.76 (Firefox), respectively, which
are promising. (Chapter 6)

5. The Naïve Bayes Multinomial (NBM) outperforms the other techniques in
terms of predicting key features. (Chapter 6)

6. Our best performing model can work for predicting the key features in the
cross-project setting. (Chapter 6)

7. Our key features recommendation model can accurately recommend features
by leveraging historical bug fixing knowledge. (Chapter 7)
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1.2 Thesis Overview
In this section, we provide a brief overview of the thesis.

Chapter 2: Background and Theory: In this chapter, we provide a broad
background and definitions of related terms and the steps of bug management
process.

Chapter 3: Related Work: We present a survey and in-depth discussion of
prior research that are related to this thesis.

Chapter 4: Understanding Key Features of a Bug Report: Prior research
shows that there is a clear mismatch between the features that developers
would wish to appear in a bug report, and the features that actually appear [3,
5] and bug reports are neither complete nor accurate, and often do not provide
all the features that developers find useful when fixing bugs [5]. Yet, little is
known about what features developers find useful during bug fixing. Hence,
we perform an exploratory study on five OSS projects using qualitative and
quantitative analyses. Through qualitative analysis, we identify five key
features (i.e., Steps to Reproduce, Test Case, Code Example, Stack Trace,
and Expected Behavior) that reporters often miss in their initial bug reports
and developers require them for fixing bugs.

Chapter 5: Investigating Key Features of High Impact Bugs (HIB) Re-
ports: Different types of bugs (e.g. Performance and Security bugs) vary
from each other [25]. Therefore, our hypothesis is different types of high
impact bug may need different key features to fix. However, there is no case
study on revealing key features according to the high-impact bugs. Thus, we
perform an empirical study on the high-impact bug reports of the Apache
Camel project to reveal key features according to the high impact bugs.

Chapter 6: Predicting Key Features: One of the main reasons for the lack of
unstructured features in bug reports is inadequate tool support [1, 4, 21, 22].
Thus, in order to help reporters, in our quantitative analysis, we build
classification models using Naïve Bayes (NB), Naïve Bayes Multinomial
(NBM), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)
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text-classification techniques, based on the summary text. We evaluate our
models using the bug reports of Camel, Derby, Wicket, Firefox, and Thun-
derbird projects. Our models achieve promising f1-scores when predicting
key features, except for the Stack Trace of the Wicket project and the Code
Example of Firefox project.

Chapter 7: Key Features Recommendation Model: By examining the ini-
tial bug reports and bug fixing activities, we can determine which features
are required to fix each bug. However, it is very difficult for reporters
to know which features are required based on bug reports of fixed bugs
from the repository without any automated techniques. Machine-learning
techniques may help reporters to know which key features need to provide
by leveraging historical bug-fixing activities. Hence, we propose a novel
approach called key features recommendation model to suggest features
that reporters should provide in the description of the bug reports. Our
model utilizes the description and comments of the bug reports to generate
a recommendation. We evaluate the accuracy of our recommendation model
using the bug reports of three projects (Camel, Derby, and Wicket) from
the Apache ecosystem and two projects (Firefox and Thunderbird) from
the Mozilla ecosystem. The experimental results show that our model can
accurately recommend key features.

1.3 Thesis Organization
The remainder of this thesis is organized as follows. Chapter 2 provides background
information, definition of key terms and techniques, and motivation of our study.
Chapter 3 presents research related to our studies. Chapter 4 presents the
findings of our qualitative and quantitative analyses to identify key features.
Chapter 5 presents the findings of our case study on high impact bug reports.
Chapters 6 presents and discusses the performance of our key features prediction
models. Chapters 7 demonstrates our proposed key features recommendation
model. Finally, Chapter 8 draws conclusion of our research.
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2 Background and Theory

Bug fixing is one of the major activities in software maintenance to solve unexpected
errors or crashes of software systems [30]. It is estimated that 80% of software
development effort is spent on software maintenance [31]. A bug report plays an
important role to triage and fix bugs. In this chapter, we explain a thorough detail
background of our study. First section explains bug reporting process. Then, we
discuss the different steps of bug fixing process and how a bug report helps to fix
a bug in the second section. Third section discusses the motivation of this study.

2.1 Bug Reporting Process
Software bugs are expensive. Moreover, the cost of finding and fixing bugs repre-
sents one of the most expensive software development activities. Well-structured
bug management process makes the life easy for the software practitioners to
deal better way with software bugs. The figure 2.1 shows the conventional bug
reporting process. In the conventional bug reporting process, a reporter creates
a bug report. Then, the reporter submits the bug report to the bug tracking
system. However, there is no intelligence checking system in the conventional bug
reporting system whether the content of the bug report is sufficient. As a result,
in many cases, reporters make insufficient bug reports.
In this section, first, we discuss what is a bug report and the content of a bug

report. Then, we discuss the bugs in the bug tracking system.

2.1.1 Bug Report

A software bug is an error, flaw, failure or fault in a computer program or system
that causes it to produce an incorrect or unexpected result, or to behave in
unintended ways. Most bugs arise from mistakes and errors made by people in
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Figure 2.1: The conventional bug reporting process

either a program’s source code or its design, or in frameworks and operating
systems used by such programs, and a few are caused by compilers producing
incorrect code. For example, software practitioners and end users face with
different software problems like system crash, hang, produce an unexpected result,
slower processing than expectation, unauthorized access into the system. All sort
of problems are defined as software bug or defect. Software bugs are prevalent
in all stages of the software development and maintenance lifecycle. When a
bug identifies in a software project, the immediate next step is to create a good
bug report. A report details about the identified bug is commonly known as
bug reports or defect reports. The figure 2.2 depicts an example of a bug report
creation form in Jira. The figure 2.3 depicts an example of a bug report that
extracted from the Jira issue tracking system of the Apache camel project.

2.1.2 Content of a Bug report

The content of a bug report is a collection of structured and unstructured features.
A feature is a pieces of information that describes a bug. The structured features
usually represent the text defined by the project, such as the Component, Affected
Version, and Priority. The unstructured features represent the text not defined by
the project, such as Observed Behavior, Stack Trace, and Code Example.
Structured Features: A bug report contains many features. The structured

features are those features that take only a limited number of values. The table
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Figure 2.2: An example of bug report creation form from Jira

2.1 shows the list of the structured features of a bug report.
Unstructured Features: The unstructured features are those features that

describe using unstructured natural language text. The table 2.2 shows the list of
unstructured features of a bug report that play important role to localize and to
fix the bug.

10



Figure 2.3: An example of a typical bug report of the Apache Camel Project

2.1.3 Bug/Issue Tracking System

A bug tracking system or defect tracking system is a software application that
keeps track of a reported software bug. Bugzilla [32] and Jira [33], are commonly
use as a bug tracking systems to manage and facilitate the bug-fixing process
in software development. It may also known as issue tracking system. A major
component of a bug tracking system is a database that records meta data about
the bugs. It may include the bug report submission time, its severity, the erroneous
program behavior, and details on how to reproduce the bug; as well as the identity
of the person who reported it and any programmers who may be working on fixing
it.
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Table 2.1: The list of structured features in a bug report
Name of
Features Short Description
Priority The priority indicates how severe the bug is. Reporters

assign different types of priority in Jira for a bug report
such as major, minor, trivial. The general rule of thumb
is the bug report with major priority should be fixed first

Environment It indicates under which environment the bug is found
eg., Windows XP, Linux

Affects Version Name of version in which the bug is found
Component Name of the module or package in where the bug is

identified
Reporter The person who files the bug report in the BTS. Reporter

may be developer, tester, or end-user
Status It indicates the current state of the bug report in the

bug fixing process
Bug Resolver The person who fixes the bug

2.2 Bug Fixing Process
A report plays a key role in sharing information about the bugs and the bug-fixing
progress among developers. There are four basic steps in the bug-fixing process.

1. Bug report submission. A bug reporter describes an identified bug in
a bug report. This report includes fields for providing a short summary
and other features (e.g., Affected Version, Component, Observed Behavior,
Steps to Reproduce, and Test Case) in the bug report. Then, the report is
submitted to the BTS.

2. Triaging and assignment. A bug triager (e.g., project manager) decides
whether the project should fix the bug because it may already have been
submitted by other reporters (e.g., duplicate bug [34]). If the triager decides
to fix the reported bug, he or she assigns it to an appropriate developer.

12



Table 2.2: The list of unstructured features in a bug report

Name of Features Short Description
Summary Summary should be a short and precise description of

the bug. A good summary helps the developers to un-
derstand the bug quickly and uniquely. It should explain
the problem, not your suggested solution.

Steps to
Reproduce (STR)

A clear set of instructions that a developer can use to
reproduce the bug on their own machine

Stack traces (ST) A stack trace produced by the application, most often
when the bug is reporting a crash in the application

Test Cases (TC) One or more test cases that the developer can use to
determine when they have fixed the bug

Observed behaviour
(OB)

What the user saw happen in the application as a result
of the bug

Screenshots (SS) A screenshot of the application while the bug is occurring
Expected behaviour
(EB)

What the user expected to happen, usually contrasted
with Observed Behaviour

Code Examples (CE) An example of some code which can cause the bug
Summary (S) A short (usually one-sentence) summary of the bug
Version (V) What version of the application the user was using at

the time of the error
Error reports (ER) An error report produced by the application as the bug

occurred

3. Localizing and fixing. The assigned developer identifies the source code
files that contain the reported bug. Here, the developer may request addi-
tional features, if needed. Then, the developer fixes the code.

4. Verification. A different developer (e.g., tester) verifies whether the cor-
rected code now satisfies the reporter’s requirements. If it does, then the
developer closes the bug report. Otherwise, the bug report is reopened and
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Figure 2.4: Example of a bug report that required additional features to fix the
bug

the triager reassigns it to the developer for correction.

The bug report plays an important role in fixing a bug in all steps of the bug-fixing
process.

2.3 Motivation for Study
Existing studies [3, 5, 14] have shown that developers rely on bug reports when
fixing bugs. However, it is sometimes difficult to reproduce and localize these
bugs. For example, Figure 2.4 shows an example of a bug report [35] where the
developer was required additional features about the detected bug in the Camel
project. The reporter, David J.M. Karlsen, provided Observed Behavior and Stack
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Figure 2.5: Example of a bug report without a request for additional features

Trace as the unstructured features in the description of the bug report. When
the developer, Willem Jiang, received the assignment to fix the bug, he failed
to reproduce the bug and asked for a Test Case from the reporter one day later.
The reporter then responded 77 days later. Such delays can be costly in terms of
performance and may influence reports of new bugs. To avoid these kinds of delay,
we propose an approach that suggests which unstructured features developers
will require in order to fix the bugs. The approach will be especially helpful for
novices and end-users when writing a new bug report.

Figure 2.5 shows another example of a bug report [36] from the Apache Camel
project. This bug was reported and fixed one month earlier than that shown in
Fiqure 2.4. The reporter, Julien Graglia, provided the similar structured features
as the first example. However, he clearly mentioned Observed Behavior, Expected
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Behavior, Test Cases, and Stack Trace as unstructured features in the description
of the bug report. The developer, Christian Muller, found sufficient features in
the bug report to localize and fix the bug. Finally, the developer fixed the bug
within one day.

In both examples, the bug reports are for regression-related bugs and both
contain almost similar structured features except priority. Although the priority
of the bug report CAMEL-5860 was “Major”, the developer took a long time to
fix the bug. On the other hand, the priority of the bug report CAMEL-5782 was
“Minor”, the developer fixed within one day after the assignment. Usually, a bug
report with the higher priority gets more attention than the lower priority by
the developers because of its impact on the software project. After analyzing the
bug-fixing activities, we find that the Test Case is essential in both cases. However,
the reporter of the bug report CAMEL-5860 (see Fiqure 2.4) did not provide
this feature in the initial submission, which delayed fixing the bug, in contrast to
the bug report CAMEL-5782 (see Fiqure 2.5). The first report, CAMEL-5860,
was created one month after the bug in CAMEL-5782 was fixed. The reporter
of CAMEL-5860 might have known which features are essential to fixing the
bug because a similar type of bug in CAMEL-5782 was already fixed. Thus, the
reporter could have saved valuable time for the developers by providing these
features in the initial submission. However, it is very difficult for reporters to
know what features are required based on fixed bug reports from the repository
without any automated techniques. This motivates us to develop classification
models to predict the key features reporters should provide in initial bug reports
based on reports of bugs that have already been fixed.

2.4 Chapter Summary
This chapter provides a broad background of bug reporting and bug fixing process,
and describe different types of structured and unstructured features of a bug
report that helps to describe a software bug. Then, we describe our motivation
with two practical examples to conduct this research. In the next chapter, we
survey prior research on bug reporting in order to situate our studies with respect
to the literature.
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3 Related Work

In this chapter, we survey the related research on improving bug management
process. More specifically, we describe how the related work motivates our
empirical studies and building models to support bug reporting.

3.1 Contents of a Bug report
Many empirical studies have proposed ways in which to improve the contents of
bug reports. Bettenburg et al. [3] conducted a survey of 156 experienced developers
and reporters from three OSS projects to examine what features developers expect
to see in bug reports. As a result of their survey, they revealed 16 important
structured and unstructured features for fixing bugs. They also developed a
prototype tool called “CUEZILLA” to measure the quality of bug reports. To
validate their prototype tool, they randomly selected 289 bug reports and then
asked developers to assess their quality on a five-point Likert scale ranging from
very poor to very good [37]. Then, they used these 289 bug reports to train
and evaluate CUEZILLA by building supervised learning models. Their models
achieved 45% accuracy when measuring the quality of the bug reports. In contrast,
we build prediction models based on the titles/summaries of bug reports to notify
reporters on which features to provide in a new bug report.
Davies et al. [5] conducted a case study on four OSS projects based on the

top 10 important features (see Table 4.2) to understand which features reporters
provide in bug reports. They found that bug reports do not always provide all
important features. Furthermore, they found that 12% of all of features are
provided after the initial submissions of the bug reports. As a result, developers
spend valuable time collecting the required features. In order to inform the design
of new bug-reporting tools, Ko et al. [38] conducted a linguistic analysis of the
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titles of bug reports. They observed a large degree of regularity and a substantial
number of references to visible software entities, physical devices, or user actions.
Their results suggest that future BTSs should collect data in a more structured
way. Our study focuses on revealing the additional required features that reporters
often omit from bug reports. These additional requirements during bug fixing
might increase the time required to fix the bugs. Thus, to reduce the additional
requirements and to improve the contents of bug reports, we build prediction
models using popular text-mining techniques (i.e., NB, NBM, KNN, and SVM).
Chaparro et al. [21] conducted an empirical study to understand the extent

to which Observed Behavior, Steps to Reproduce, and Expected Behavior are
reported in bug reports and what discourse patterns (i.e., rules that capture the
syntax and semantics of the text e.g., "To reproduce" and "STR" are the discourse
patterns of Steps to Reproduce) reporters use to describe such information. Then,
they designed an automated approach to detect the absence or presence of Steps
to Reproduce and Expected Behavior in bug descriptions. Their approach intends
to warn reporters if they forget to provide these features in the descriptions. In
contrast, our approach helps reporters to understand which features should be
provided in the descriptions when writing bug reports. Thus, reporters can create
effective bug reports by providing the minimum number of features.
In addition, many existing studies use the features of bug reports to improve

the bug-fixing process. Hooimeijer et al. [39] presented a basic linear regression
model that predicts whether bug reports are resolved within a given period. Their
model is based on structured features (i.e., Daily Load, Submitter Reputation,
Readability, and Severity) that can be readily extracted from a bug report within
a day of its initial submission to the repository. In contrast, our models are
based on unstructured features (e.g., Summary, Steps to Reproduce, Test Case,
and Code Example). Another important difference is that our models intend to
recommend which features reporters should provide in the description to create
a good bug report. Several other studies have applied automated techniques
to select appropriate developers [16], localize bugs [18] and predict bug-fixing
effort [19].

These works motivate us to conduct an exploratory study to understand the key
features by examining the bug reports of OSS projects and developers’ activities
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during bug fixing. Then, we build prediction models by leveraging popular text-
mining techniques that enable reporters to know which key features are required
by developers during bug fixing.

3.2 High Impact Bug (HIB)
Although we did not find any studies that directly research the topic of key
features that play important role to fix high-impact bugs, we did find several
studies that are related to our works.
Existing studies defined six types of HIB and they found that HIB should be

fixed quicker than other bugs in software development [40] [41] [1] [42] [43] [44].
For example, security bug (one of the type of HIB) should be fixed faster than
other non-HIB because it allows unauthorized access to the system. However,
fixing a HIB sometimes become complicated because of the low-quality bug reports.
Davies et al. found that bug reports are neither complete nor accurate through a
case study on four big scale and successful open source projects (Eclipse, Firefox,
Apache HTTP, and Facebook API) [5]. Thus, an empirical study to identify key
features according to high-impact bugs is essential.
In a large and evolving software system, the large amount of bug reports

typically exceed the available project resources. Accordingly, some bugs might be
dealt with a long term delay or not at all [39]. Guo et al. [45] found that one of the
main reasons for the reassigned bug reports in multiple time because of insufficient
information in the description of bug reports. It is very difficult to understand and
assign appropriate developers if the bug reports are not well-written. Developers
also loose interest to fix bugs because of too long description of bugs [8,45]. Thus,
a bug report with necessary features are crucial for the developers to fix bugs
accurately.

Shahed Zaman et al. [25] conducted a case study on Firefox project and studied
how performance differ from security bugs in a software project. Authors found
that security bugs are fixed and triaged much faster, but are reopened and tossed
more frequently. Authors considered bug resolution time, triaging time, no. of
reopen bugs, developers experiences, no. of files changes etc. to make comparison
between performance and security bugs. Thus, our hypothesis is developers may
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need different features for fixing high impact bugs. In this research, we manually
investigate six types of high-impact bugs to identify key features by examining
bug fixing activities.
Several studies that applied automatic techniques to categorize and localize

high impact bug [28, 29, 41–43,46, 47]. All these approaches should benefit by our
case study because, the performance of their model affect on the quality of the
bug report. These works motivate us to conduct an empirical study to understand
the key features of each type of HIBs.

3.3 Tools to Support Bug Reporting
In OSS projects, most bug reporters work voluntarily. In many cases, reporters
submit incomplete or inaccurate bug reports that affect the bug fixing process.
Thus, tools support is essential to improve the bug fixing process. In an effort to
support bug reporting, Zimmermann et al. [1] and Chaparro et al. [21] develop
prototype tools. Their tools can detect missing features in the description of the
bug report and notify the reporters. However, not all unstructured features are
necessarily appropriate for all bug reports [5]. For example, Stack Trace is not
generated for all bug reports. Previous empirical studies have found that bug
reports contain only between two and six of the top 10 unstructured features [5,14].
This indicates that not all unstructured features are equally important to fix all
bugs. Thus, existing tools provide unnecessary notifications to the reporters that
might increase the complexity of bug reporting. Joel Spolsky noted that “I have
always felt that if you can make it 10 percent easier to fill in a bug report, you
will get twice as many bug reports” [48]. Thus, more appropriate tool support is
essential to improve the content of bug reports.
Bug-tracking systems for large open-source software (OSS) projects contain a

large number of bug reports of fixed bugs. For each bug, it contains initial bug
reports, developers and reporters activities during fixing, patches that fixed bugs,
etc. Thus, examining historical bug reports can be a good way to understand which
features developers require to fix bugs. However, it is very difficult for reporters
to know what features are required based on fixed bug reports from the repository
without any automated techniques. In recent years, information retrieval (IR) and
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machine learning based automatic techniques has gained popularity to identify
similar bugs [28, 49, 50] and duplicate bugs [34, 51, 52]. Rocha et al. [49] used
the summary text of the bug reports to train their model and perform well to
identify pending bug reports. Some other researchers also use IR based techniques
to recommend similar bug reports [53–55]. In our approach, we also used the
summary text of the bug reports to identify the bug reports of similar bugs. The
term frequency-inverse document frequency (tf-idf) and document similarity score
are widely used in software engineering to identify similar documents [56–61].
To build the vector space model, we use the tf-idf term weighting techniques so
that important terms get a higher weight than others. We apply cosine similarity
technique to calculate the similarity score of the new bug reports with the bug
reports of the fixed bugs. Prior researchers widely use TopN (N=1,2,3,......N,
means top N similar documents) similarity score [62–67] to recommend appropriate
developers and similar, duplicate bug reports. In our research, we also use similar
techniques to select the most similar bug reports.

3.4 Chapter Summary
In this chapter, we survey prior research along the features to write a bug report,
and existing tools to support reporters for making a good bug report. From the
survey, we find that (1) little is known about the key features that make a good
bug report (2) there is lack of tools support for the reporters to make a good bug
report.
Broadly speaking, the remainder of this thesis describes our empirical studies

that identify the key features, which developers find useful during bug fixing
(Chapters 4 and 5), and novel approaches to support bug reporting in order to
improve the contents of the bug reports (Chapters 6 and 7).
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4 Understanding Key Features of
a Bug Report

The goal of this chapter is to perform an exploratory study on bug reports
to understand key features to write a good bug report. To achieve this goal,
we perform a qualitative analysis to investigate the features of bug reports by
examining those that are provided initially (i.e., features that reporters provide in
the initial bug reports), as well as additional required features (i.e., features that
reporters missed in their initial submission, but that were required by developers
to fix bugs). Through a case study of three projects (Camel, Derby, and Wicket)
from Apache ecosystem and two projects (Firefox and Thunderbird) from Mozilla
ecosystem, we identify five key features that developers often request during bug
fixing. We also find that missing these key features in the initial bug reports
significantly affect the bug fixing process.

4.1 Introduction
One of the key activities in the software development process is fixing bugs reported
by developers, testers, and end-users [1]. To fix these bugs, developers rely on
the contents of bug reports [2]. A typical bug report contains input fields (e.g., a
summary and description), which contain unstructured features such as what the
reporters saw happen (Observed Behavior), what they expected to see happen
(Expected Behavior), and a clear set of instructions that developers can use to
reproduce the bugs (Steps to Reproduce). These unstructured features are crucial
for the developers to triage and fix the bugs [3]. However, reporters often omit
these features in their bug reports [4–7]. In addition, 78.1 percent of bug reports
have a short description that contains fewer than 100 words [8]. Thus, developers
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often receive bug reports with a short description such as “Various minor edits”
(Camel-4820), “What is it” (Derby-893), “See subject” (Wicket-1159), and “See
title” (Ambari-9083). The lack of unstructured features in bug reports is regarded
as one of the key reasons for the amount of time taken to triage and fix bugs [4,13]
because developers have to spend much time and effort in order to understand the
bugs based on features provided or need to ask reporters to provide additional
features [4,14,15]. Well-described bug reports help in comprehending the problem,
consequently increasing the likelihood of a bug being fixed [3]. Precise, well-
described bug reports are more likely to gain the triager’s attention [13]. Existing
studies have proposed automated techniques to triage bugs, select appropriate
developers, and localize bugs based on bug reports [16–20]. However, incomplete
bug reports adversely affect the performance of these automated techniques [18].
Kim et. al. [20] found that almost half of all bug reports are unusable in terms of
building a prediction model for localizing bugs. Hence, writing a well-described
bug report is crucial to improving the bug-fixing process.

Bug-tracking systems for large open-source software (OSS) projects have more
than 7,000 bug reports for each project. Thus, examining historical bug reports
can be a good way to understand which features developers require to fix bugs. To
better understand which features are important, we perform an exploratory study
on five OSS projects using qualitative and quantitative analyses. In particular,
we first perform a qualitative analysis to identify the key features by examining
those that are provided initially (i.e., features that reporters provide in the initial
bug reports), as well as additional required features (i.e., features that reporters
missed in their initial submission, but that were required by developers to fix bugs).
We manually investigate each bug report and identify the provided unstructured
features from the initial bug reports. Then, we identify the additional required
features that reporters provided in the comment sections after submitting the bug
reports. Through qualitative analysis, we identify five key features that reporters
often miss in their initial bug reports and developers require them for fixing bugs.
Our contributions are two-fold:

• We perform an exploratory study on five OSS projects to inves-
tigate the initially provided and additional required features. We
identify the initially provided features from the submitted bug reports and
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additional required features during bug-fixing. Through our qualitative
analysis, we identify three features of the nine important features (i.e., Ob-
served Behaviour, Expected Behaviour, and Code Example) that reporters
frequently provide (other than the summary). Then, the most common
additional features required during bug fixing are Steps to Reproduce, Test
Case, Code Example, Stack Trace, and Expected Behavior.

• We perform a quantitative analysis to understand the impact of
the additionally requested features on the bug fixing process. To
determine the impact, we divide the bug reports into two groups (i.e.,
bug reports with additional required features and those without additional
required features) for each project. Then, we analyze the bug-fixing time, the
number of comments made by developers during bug fixing, and the number
of commentators who participated in the bug-fixing process for each group.
Then, we perform some statistical analysis of both groups. Our findings
suggest that the additional required features have a significant impact on
the bug-fixing process.

4.2 Case Study Design
The lack of important features in bug reports is one of the main reasons for
non-reproduced bugs [15], unfixed bugs [1], and additional bug triage effort [4], as
developers have to spend more time and effort understanding bug descriptions or
asking for clarifications and additional features [4, 15]. Low-quality bug reports
are also likely to gain low attention by developers [13]. As indicated by developers,
absent and wrong features in bug reports is the predominant cause for delays on
bug fixing [1]. One of the reasons for submitting incomplete or less informative bug
reports is lack of proper knowledge gap about the key features that are important
for the developer to fix bugs.
In this research, we conduct an exploratory study on bug reports of OSS

projects to understand how to write a good bug report by analyzing historical
bug reports.We design our analysis to reduce the knowledge gap of the reporters
especially novice users and end-users. In our analysis, we consider bug reports of
fixed bugs. Usually, developers try to fix the bugs based on the initially provided
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features in the bug reports. If the develops require features that are missing in
the initial bug reports then they request to provide those features additionally
during bug fixing. Thus, our assumption is bug reports of fixed bugs contain
features that are important for the develops to fix the bugs. We can reveal the
key features to write a good bug report by analyzing the initial bug reports and
bug fixing activities. To do so, we extract fixed bug reports (i.e., marked as
FIXED) from JIRA (Camel, Derby, and Wicket projects ) and BugZilla (Firefox
and Thunderbird projects) repositories. We then conduct a qualitative analysis to
identify the key features to write a good bug report. We first manually examine
each bug report and identify the initially provided features. Then, we examine
bug-fixing activities, especially the comments section, and identify additional
required features. Finally, we conduct a statistical analysis to understand the
impact of the additional features on the bug-fixing process. Figure 4.1 provides an
overview of our study. Our study comprises two phases: P1: Data Set Preparation
(DP); P2: Qualitative and Quantitative Analysis (QQA). We describe each phase
below.

4.2.1 Datasets Preparation

In order to prepare data sets, we first set up three essential criteria for selecting
target projects. Then, we generate the sample size and randomly select bug
reports to prepare the sample data set for each of the selected projects.

• Criterion 1 - Projects have a large number of bug reports in the
issue-tracking system. A previous study [40] found that a data set
containing few bug reports is difficult to use when building data-mining or
machine-learning models. Thus, we target projects with a large number
of bug reports because this indicates that the project is more mature and
stable.

• Criterion 2 - Projects have well-structured bug-fixing histories.
This study analyzes the historical communication logs between developers
and reporters to understand what features were required to fix each bug.

• Criterion 3 - Projects differ in terms of their application domains.
The contents of bug reports may vary between different application domains.
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To increase the generalizability of our results, we need to select projects
from different application domains for our study.

We initially selected four projects from the Apache Software Foundation (ASF)1

and two projects from the Mozilla Foundation that met the above criteria. The
projects are Ambari2, Camel3, Derby4, Wicket5, Firefox6, and Thunderbird7.
However, we found that the majority of the bug reports in the Ambari project are
self-reported (i.e., reporters fix the detected bugs themselves). Self-reported bug
reports have an impact on the bug-fixing process [68]. Because we conjecture that
self-reported bug reports are likely to have incomplete descriptions, we exclude
the Ambari project from our case study. The following is the brief description of
each of the selected projects.
Apache Camel: An open source framework for message-oriented middleware

with a rule-based routing and mediation engine, written in Java.
Apache Derby: A relational database management system developed, written

in Java.
Apache Wicket: A component-based web application framework for

the Java programming language, written in Java.
Mozilla Firefox: A free and open-source web browser, written mainly in C++.
Mozilla Thunderbird: A free and open-source cross-platform email client,

written mainly in C++.
The JIRA and BugZilla contains a large number of bug reports for each of

the selected projects. To make our manual analysis simple and rational, we
generate a statistically representative sample size for each project. To obtain
proportion estimates that are within 5% bounds of the actual proportion, with a
95% confidence level, we randomly select a sample of size s = z2p(1−p)

0.052 , where p is
the proportion we want to estimate and z = 1.96. Because we do not know the
proportion in advance, we use p = 0.5. We further correct for the finite population

1https://www.apache.org/
2https://issues.apache.org/jira/projects/AMBARI
3https://issues.apache.org/jira/projects/CAMEL
4https://issues.apache.org/jira/projects/DERBY
5https://issues.apache.org/jira/projects/WICKET
6https://bugzilla.mozilla.org/buglist.cgi?quicksearch=Firefox
7https://bugzilla.mozilla.org/buglist.cgi?quicksearch=Thunderbird
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Table 4.1: Statistics of bug reports and the sample size for each target project.
Ecosystems Projects #Total

Issue
Reports

#Fixed
Bug Re-
ports

#Sample
Size

Apache Camel 11798 3964 350
Apache Derby 6955 4063 351
Apache Wicket 6466 3946 350
Mozilla Firefox (General) 10000 5353 358
Mozilla Thunderbird (General) 8693 1614 310

of bug reports P using ss = s
1+ s−1

P

to obtain the sample for our qualitative analysis.
Table 4.1 shows the statistics for the analyzed bug reports.

In order to prepare the data set for each target project according to the sample
size, we first filter out bug reports that satisfy criterion i, described below. Then,
we randomly select bug reports from the set of all reports according to the sample
size. In our analysis, we also exclude bug reports that satisfy criterion ii and
replace them with other, randomly selected bug reports.

• Criterion i - The bug reporter and the fixer is the same person.
If the bug reporter and the bug fixer is the same person, then the report
may not include all of the features required to fix the bugs. Therefore, we
exclude these bug reports.

• Criterion ii - The provided URL no longer exists. Some bug reporters
provide a URL of a website instead of writing features in the description. At
the time of our analysis, we could not access some of those URLs. Therefore,
we exclude these bug reports from our analysis.

4.2.2 Study Design of Qualitative and Quantitative
Analysis

Motivation: A typical bug report contains 16 structured and unstructured
features [23]. The reporters need to report the features that are suitable for
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Figure 4.1: An overview of our study design

localizing bugs. However, the reporters often omit unstructured features needed
by the developers when fixing the bugs. Consequently, the developers need to
additionally collect these features, as shown the motivating example in section
2.4. Thus, to understand key features to write a good bug report in this chapter,
we conduct a qualitative and quantitative analyses with five OSS projects from
the Apache (Camel, Derby, and Wicket projects) and the Mozilla (Firefox, and
Thunderbird projects) ecosystems. In particular, we investigate: (1) the features
reporters frequently provide in an initial bug report. (2) the features reporters
frequently omit, but that developers require after the initial submission; and (3)
the impact of the additional required features on bug-fixing process.
Approach: Our qualitative analysis focuses on 10 unstructured features (see

Table 4.2) for the sampled bug reports described in Section 3.1. These unstructured
features are crucial to developers when fixing bugs [23]. Figure 4.1 provides an
overview of our qualitative analysis process (QQA1, QQA2, and QQA3). In QQA1
and QQA2, we identify the initially provided and additional required unstructured
features. Then, we divide the bug reports into two groups, namely those without
and those with additional required features. Finally, we investigate the differences
in bug-fixing time, the number of comments (i.e., comments made by developers
and reporters during bug fixing), and the number of commentators (i.e., developers
and reporters who participated in discussions during the bug fixing) between the
two groups in order to understand the impact of the additional required features
on the bug-fixing process.

(QQA1) Identify the unstructured features in the initial submission.
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Table 4.2: The top 10 most important features of a bug report
Feature Description

Steps to Reproduce
(STR)

A clear set of instructions that the developer can use
to reproduce the bug

Stack Trace (ST) A stack trace produced by the application, most often
when the bug reports a crash in the application

Test Case (TC) One or more test cases that developers can use to
determine whether they have fixed the bug

Observed Behavior
(OB)

What the user saw happen in the application as a
result of the bug

Screenshot (SS) A screenshot of the application while the bug is oc-
curring

Expected Behavior
(EB)

What the user expected to happen, usually contrasted
with Observed Behavior

Code Example
(CE)

An example of code that can cause the bug

Summary (S) A short (usually one sentence) summary of the bug
Environment (EN) The operating system and version the user was using

at the time of the error
Error Report (ER) An error report produced by the application as the

bug occurred

We manually identify the unstructured features in the initial bug reports
because these features are provided using natural language text in the de-
scription. The figure 4.2 shows an example of the description of a bug report.
The reporter provided “Observed Behavior”, “Expected Behavior”, and
“Steps to Reproduce” in the description of the bug report. We double-check
the identified features for all sampled bug reports to check the correctness
of our manual analysis. If there are differences in the identified features for
the same bug report, we attempt to reach a consensus on the features.

(QQA2) Identify the additional required features: We manually examine
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Figure 4.2: An example of the description of a bug report

bug fixing activities and identify the additional unstructured features that
developers requested during bug fixing after the initial submission. The
figure 4.3 shows an example of the comments of a bug report. We carefully
examine each comment and identify additionally required features. Then,
we double-check the identified features and reach a consensus on the features
if there are differences for the same bug report.

(QQA3) Perform Analysis To understand the impact of additionally required
features on bug fixing process, we divide the bug reports into two groups (i.e.,
bug reports with additional required features and those without additional
required features) for each project. First, we calculate the bug-fixing time
for each bug report to understand the difference of bug fixing between these
groups. The difference of bug-fixing time between these groups would give us
an indication of whether there is any impact of additional required features
on the bug fixing process. Then, we calculate the number of comments
made by developers during bug fixing and the number of commentators who
participated in the bug-fixing process for each group. These two metrics
would help us to understand whether the lack of required features in the
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Figure 4.3: An overview of our study design

initial bug reports tend to involve more developers in the bug fixing process.
Finally, we perform the Mann-Whitney U-test to know the impact of the
additional required features during bug fixing. We also calculate Cliff’s delta
value to know the effect size.

4.3 Analysis Result
This section presents and discusses the results of our qualitative analysis to
identify the features provided in the initial submission of the bug reports, as
well as those provided later through discussions between the reporters and the
developers during bug fixing. In the qualitative analysis QQA1, we focus on the
features that are frequently provided in initial bug reports. Figure 4.4 shows the
percentages of each of these features provided in the initial bug reports for the
Camel, Derby, Wicket, Firefox, and Thunderbird projects. The red line shows the
average percentages of the provided features. They are 35%, 41%, 36%, 44%, and
42% in each project respectively. We found that Observed Behavior frequently
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Figure 4.4: The percentages of initially provided features across different projects

exists in the bug reports of the projects. On the other hand, Screenshot and Error
Report rarely exist in the bug reports. The rankings of the other features vary
across the projects. In these five projects, the most frequently provided features
are Observed Behavior, Expected Behavior, Code Example, Steps to Reproduce,
Test Case, and Environment. These findings are almost similar to those of existing
studies [5, 14].
In the qualitative analysis QQA2, we focus on the additional unstructured

features that developers require during bug fixing. Figure 4.5 shows the percentages
of these features for each project. The percentages are calculated as follows:
xi = #additional requirements for xi

#bug reports that were required additional features
∗ 100. In Figure 4.5, we find that

Steps to Reproduce is the additional feature most often required in the Derby,
Wicket, and Firefox projects, whereas Test Case is in the Camel and Stack Trace
is in Thunderbird projects are most often required features. For all of the projects,
Steps to Reproduce and Test Case are the most additional required features
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Figure 4.5: The percentages of additional required features during bug fixing
across different projects

during bug fixing. We find that Code Example is less often requested in the Derby
project compared with other projects. Stack Trace and Expect Behavior are often
requested in all five projects. For the other features, we find developers make
a very few additional requests during bug-fixing, except Screenshot and Error
Report for the Thunderbird project. This suggests that Steps to Reproduce, Test
Case, Code Example, Stack Trace, and Expect Behavior are the features requested
most often after the initial submission.
It is obvious that requests for additional features tend to increase bug-fixing

time. However, we do not know how the additional features impact the bug-fixing
process. To determine this effect, we divide the bug reports into two groups
(i.e., bug reports with additional required features and those without additional
required features) for each project. Then, we analyze the bug-fixing time, the
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Figure 4.6: Impact of additional required features on bug-fixing process

number of comments made by developers during bug fixing, and the number of
commentators who participated in the bug-fixing process for each group.
Figure 4.6 (A) shows the distribution of the bug-fixing time using bean plots.

The distributions shown in gray and black are those of the bug-fixing times without
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additional required features and with additional required features, respectively.
We find that the median bug-fixing time with the additional required features
is much higher than that without additional features across all projects. We
observe a significantly different (p << 0.05) bug-fixing time between these two
groups using the Mann-Whitney U-test with a large (e.g., Derby and Wicket
projects) and a medium (e.g., Camel, Firefox, and Thunderbird projects) effect
size (see Table 4.3). Figure 4.6(B) shows that the median value of the number
of comments (i.e., the number of comments made by developers and reporters
during bug fixing) with additional required features is higher than that without
additional features. We observe a significant difference in the comment count with
a large effect size for the Camel and Wicket projects, a medium effect size for the
Derby project, and a small effect size for the Firefox and Thunderbird projects.
This indicates that the additional features needed to fix bugs tend to increase the
number of comments. In the Figure 4.6 (C), we observe a significant difference
in the number of commentators (i.e., the number of developers and reporters
who participated in discussions during bug fixing) between the two groups. This
indicates that the additional features needed to fix bugs tend to increase the
number of developers required to fix the bugs. These findings suggest that the
additional required features have a significant impact on the bug-fixing process.
Therefore, the features requested most often, such as Steps to Reproduce, Test
Case, Code Example, Stack Trace, and Expected Behavior, might be key features
in writing a bug report.
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4.4 Discussion

4.4.1 Analysis Result

The purpose of our qualitative analysis is to understand the key features needed
to write a good bug report. In QQA1, we identify the frequently provided
unstructured features based on initial bug reports. However, we do not yet know
whether these features are key features. Reporters might frequently provide
unstructured features that are easy to produce. For example, the most frequently
reported unstructured feature is Observed Behavior. Sasso et al. [7] found that this
feature is easy for reporters to provide. Thus, to obtain a deeper understanding
of the key features, we analyze the discussions between the developers and the
reporters during bug fixing in QQA2. We find that the reporters often omit five
unstructured features (i.e., Steps to Reproduce, Test Case, Code Example, Stack
Trace, and Expected Behavior) from their initial submissions. Thus, the developers
requested that the reporters provide these features during bug-fixing. We note
that Steps to Reproduce and Test Case are requested most often. In reality, Steps
to Reproduce is useful because it enables developers to reproduce [15, 23] and
understand the bugs. Sometimes, the developers cannot fix a bug without Steps
to Reproduce [15]. Test Case is also useful to developers when checking whether
the fixed patches are working as expected [1]. A previous survey revealed that
83% and 51%, respectively, of developers consider these two features as helpful
when fixing bugs [23]. This suggests that the additional features are particularly
important to developers when fixing bugs.
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Table 4.4: The Code Example reporting statistics for each project based on the
bug reporting experiences of the reporters

Projects Reporter Type Code Example
(Provided/not
provided)

# Bug
Reports

Percentages

Camel
Experienced

No 88 43%
Yes 118 57%

Non-Experienced
No 63 44%
Yes 81 56%

Derby
Experienced

No 186 63%
Yes 109 37%

Non-Experienced
No 21 38%
Yes 35 63%

Wicket
Experienced

No 74 38%
Yes 123 62%

Non-Experienced
No 51 34%
Yes 101 66%

Firefox
Experienced

No 131 86%
Yes 21 14%

Non-Experienced
No 192 83%
Yes 14 7%

Thunderbird
Experienced

No 138 81%
Yes 33 19%

Non-Experienced
No 123 90%
Yes 13 10%
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Table 4.5: The Code Example reporting statistics for each project based on the
bug fixing experiences of the reporters

Projects Reporter Type Code Example
(Provided/not
provided)

# Bug
Reports

Percentages

Camel
Contributor

No 60 44%
Yes 77 56%

End-user
No 95 46%
Yes 112 54%

Derby
Contributor

No 132 56%
Yes 104 44%

End-user
No 75 40%
Yes 40 35%

Wicket
Contributor

No 46 48%
Yes 50 52%

End-user
No 108 43%
Yes 145 57%

Firefox
Contributor

No 184 88%
Yes 26 12%

End-user
No 139 94%
Yes 9 6%

Thunderbird
Contributor

No 132 77%
Yes 39 23%

End-user
No 129 95%
Yes 7 5%
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To generalize our findings, we set up our case study on the bug reports of
different application domains projects from two ecosystems. In our QQA1, we
notice that reporters provided Code Example less often in the Mozilla projects
compared with the Apache projects. After a closer look, we see that reporters of
the selected Apache projects are mostly developers. They sometimes encounter
problems during writing codes e.g., bug reports-Wicket-5220 8 and Wicket-5237 9.
Thus, they could easily include Code Example in the description of the bug
reports. On the other hand, the selected Mozilla projects are client applications
and reporters are mostly end-users. They frequently use application and encounter
problems e.g., bug reports-bug#216608 10, bug#220181 11, and bug#247128 12.
Thus, they could capture Screenshot and error message (Error Report) and include
in the bug reports. However, Code Example is difficult for them to provide in
the bug reports [23]. In our QQA2, we see that Screenshot and Error Report
requested more often requested in the Mozilla projects compared with the Apache
projects. The conversation between the developers (i.e., bug fixers) and the
reporters of the bug report-bug#522459 13 and bug#370401 14 in Thunderbird
project show that these two features help the developers to understand and fix
the bugs. Interestingly, Steps to Reproduce and Test Case are the most often
additional required features for both ecosystems except the Thunderbird project.
We also notice that the top five additional required features slightly vary in the
Thunderbird project compared with the other four projects. However, Steps to
Reproduce, Test Case, Code Example, Stack Trace, and Expected Behavior are
the additional required features requested most in these five projects.
A recent study found the textual difference between the bug reports written

by an expert (i.e., anyone who has contributed in the source code of a project)
and a non-expert reporter (i.e., anyone who has not contributed in the source
code of a project) [69]. Thus, our primary assumption is that the key features
such as Code Example, Test Case reporting might also depend on the reporter’s

8https://issues.apache.org/jira/browse/WICKET-5220
9https://issues.apache.org/jira/browse/WICKET-5237

10https://bugzilla.mozilla.org/show_bug.cgi?id=216608
11https://bugzilla.mozilla.org/show_bug.cgi?id=220181
12https://bugzilla.mozilla.org/show_bug.cgi?id=247128
13https://bugzilla.mozilla.org/show_bug.cgi?id=522459
14https://bugzilla.mozilla.org/show_bug.cgi?id=370401
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experiences. In order to understand whether the key features reporting depends
on the type of bug reporters, we perform a simple qualitative analysis from the two
perspectives of bug reporters such as bug reporting experiences and the bug-fixing
experiences. To perform our analysis, we classify the reporters of our target
sampled bug reports as an experienced reporter if they have submitted at least one
bug report before otherwise a non-experienced. Indeed, for each reporter of our
target sampled bug reports, we look for his/her past submitted bug reports. If the
reporter submitted at least one bug report in the past, we classify the reporter as
an experienced reporter. Otherwise, we classify the reporter as a non-experienced
reporter. Similarly, we classify the reporters of our target sampled bug reports
as a contributor if they have fixed at least one bug report before otherwise an
end-user. We take the feature “Code Example” as an example for this analysis
because it is one of the difficult features for the reporter [23]. We first investigate
whether the bug reporting experiences (experienced vs non-experienced) of bug
reporters affects the key features reporting. Table 4.4 shows that the experienced
reporter tends to report comparatively higher percentages of Code Example in
both ecosystem projects than the non-experienced reporter do. For example,
in the case of the Camel project, the experienced reporter provided 46% more
Code Example than the non-experienced reporter. In the case of the Thunderbird
project, the experienced reporter provided 153% more Code Example that the
non-experienced reporter. Then, we investigate whether the bug fixing experiences
(contributor vs end-user) of the bug reporters affects the key features reporting.
From the Table 4.5, we do not find any relationship, which ascertains that the Code
Example reporting depends on the type of bug reporters for the Apache projects.
However, we find that the Code Example provided mostly by the contributor in
the Mozilla projects. For example, the contributor provided 85% of the total Code
Example in the Thunderbird project whereas, the end-user provided only 15%.
From this analysis, we see that both bug reporting and bug fixing experiences of
bug reporters may affect the key features reporting. Zaman et. al. [25] conducted
a case study on security and performance related bugs of the Mozilla Firefox
project and observed different characteristics between them. This indicates that
the different type of bugs may require different key features to fix. This remains
as our future work.
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We found that the bug-fixing time with additional required features increases
significantly. In reality, the bug-fixing time depends on many factors, such as the
complexity of a bug and the developer’s expertise. We find that the additional
features also affected the bug-fixing time. In the case of the bug report CAMEL-
5860 15, explained in section 2.4, the developer had to wait many days to get the
requested feature to reproduce the bug. In another case, when the bug report 16

was assigned, the developer tried to reproduce the bug in different ways using the
provided features. However, after failing to do so, the developer had to ask for
Steps to Reproduce in order to reproduce the bug. In both cases, the bug-fixing
time might have been reduced by providing the feature as part of the initial
submission. Zimmerman et. al. [23] also claim that missing features are one of
the biggest causes of delays in fixing bugs.

Based on these findings, we conclude that the additional features requested most
often, such as Steps to Reproduce, Test Case, Code Example, Stack Trace, and
Expected Behavior, might be key features when writing a bug report. Therefore,
developing an automated approach to predict and suggest these key features
to reporters may improve the bug-fixing process. That leads us to develop an
approach to predict such features.

4.4.2 Implications

For Reporters:
Through a case study of three projects (Camel, Derby and Wicket) from the

Apache ecosystem and two projects (Firefox and Thunderbird) from the Mozilla
ecosystem, we identify five key features that developers often request during bug
fixing. Bug reporters can get a good understanding of key features that are
important for developers to fix bugs from these findings. Reporters should pay
attention to submit the initial bug reports because missing these key feature
significantly affect the bug fixing process.
For Researchers:
Recently, IR (Information Retrieval) based automated techniques have gained

popularity to select appropriate developers [16], localize bugs [18] and predict bug-

15https://issues.apache.org/jira/browse/CAMEL-5860
16https://issues.apache.org/jira/browse/CAMEL-1199
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fixing effort [19]. However, the performance of these techniques largely depends on
the good quality bug reports. Our analysis reveals that the average percentages of
provided features in the initial bug reports are 35%, 41%, 36%, 44%, and 42% in
Camel, Derby, Wicket, Firefox, and Thunderbird, respectively. Developers were
requested for the additional features on average 20% bug reports. Developers are
suffering from collecting features during bug fixing. Thus, researchers also need
to focus on developing tools/techniques to support reporters to make good bug
reports for making the existing tools/techniques effective and actionable.

4.5 Threats to Validity
We now discuss the threats to the validity of our study.

4.5.1 External validity

Threats to external validity relate to the generalizability of our results. We
have studied five OSS projects from two ecosystems. Thus, our results may not
generalizable to all software systems especially proprietary systems. To combat
the potential bias, we first followed strong selection criteria (see Section 3) to
select the studied projects from two ecosystems such as Apache and Mozilla. This
ensured that our case study included projects from different application domains.
Second, we follow specific criteria (see Section 3) to select bug reports from each
project in order to design data sets that exclude noisy and biased bug reports.
The contents of bug reports might depend on the types of bug reporters (e.g.,
experienced, non-experienced reporters, contributor, and end-user). Our datasets
include a rational proportion of bug reports for each type of bug reporters, which
might mitigate such a threat. Third, we use the standard sampling technique
with a 95 percent confidence level to calculate the sample size. This ensured a
rational subset for each studied project.

4.5.2 Internal validity

Our concerns related to internal threats are the correctness of our manual analysis
results and errors. We manually analyzed the bug reports of five projects and
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identified frequently provided and additional required features for fixing bugs.
Like any human activity, the features identification may be prone to human error
or bias. To alleviate this threat, we double-check the identified features for all
sampled bug reports. If there are differences in the identified features for the same
bug report, we attempt to reach a consensus on the features. We also computed
Cohen’s Kappa value to evaluate the inter-rater agreement. The Cohen’s Kappa
values are 82%, 80%, 79%, 80%, and 87% for Camel, Derby, Wicket, Firefox, and
Thunderbird, respectively, which showed excellent inter-rater agreement. However,
there could still be errors that we may not notice.

4.6 Chapter Summary
Our goal of this chapter is to understand the key features that reporters should
provide in the description to make a good bug report. To achieve this goal, we
first perform a qualitative and quantitative analysis of five OSS projects from two
ecosystems to investigate the key features of a bug report by examining bug-fixing
activities. Our analysis reveals that Steps to Reproduce, Test Case, Code Example,
Stack Trace, and Expected Behavior are the additional required features that
reporters most often omit from their initial submissions. Our statistical analysis
suggest that the additional required features have a significant impact on the
bug-fixing process. Therefore, developing an automated approach to predict and
suggest these key features to reporters may improve the bug-fixing process. That
leads us to develop an approach to predict (see chapter 6) and recommend key
features (see chapter 7) that reporters should provide in the description of the
bug reports. Performing qualitative and quantitative analysis on the bug reports
of other ecosystems’ projects would increase generalization our findings.
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5 Investigating Key Features of
High Impact Bugs (HIB)
Report1

The goal of this chapter is to conduct an empirical study to investigate key features
according to high impact bugs. To achieve the goal, we manually examine the
HIB reports and perform both qualitative and quantitative analysis in the Apache
Camel project. Our main findings include: (1) we find four types of features
are the most requested information from developers when they fix HIB; (2) the
requested additional information significantly influences bug fixing time.

5.1 Introduction
Bug reports are the primary means through which developers triage and fix bugs.
Nowadays, software projects are receiving bug reports on a daily basis. In a large
and evolving software system, the large number of bug reports typically exceed
the available project resources. Accordingly, some bugs might be dealt with a
long term delay or not at all [39]. To avoid unnecessary delay to fix bugs, which
impact to product and development process, we focus on High Impact Bug (HIB).
Existing studies defined six types of HIB and they found that HIB should be fixed
quicker than other bugs in software development [40] [41] [1] [42] [43] [44]. For
example, a security bug (one of the types of HIB) should be fixed faster than other
non-HIB because it allows unauthorized access to the system. Davies et al. found
that bug reports are neither complete nor accurate through a case study on four

1This chapter based on my master thesis work. We include this work with the dissertation for
the readers’ better understanding of our research
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big scale and successful open source projects (Eclipse, Firefox, Apache HTTP, and
Facebook API) [5]. Thus, fixing a HIB sometimes become complicated because of
the low-quality bug reports.
Different types of bugs (e.g. Performance and Security bugs) vary from each

other [2]. Therefore, our hypothesis is features that developers may find different
features useful in different types of high impact bugs. If we can find out the most
useful features in each type of high impact bug then we can suggest reporters
provide at least the most useful features in the bug reports.

To the best of our knowledge, there is no case study on revealing useful features
set for each type of high-impact bugs. Therefore, we motivated to do an empirical
case study on high-impact bug reports to improve the content of bug reports. As
the first step of our research, we try to reveal useful features for each type of high
impact bug by analyzing historical bug reports.
Our intuition is that we may discover insightful information to improve bug

report quality by analysis historical bug reports and developers activities during
the bug fixing process. In this study, we focus on HIB reports and conduct an
empirical study to understand how we can make a good HIB report by providing
the minimum number of features. We manually analyzed six types of HIB reports
of the Apache Camel project and checked the contents of each bug report. We
also analyzed the conversations between developers and reporters to understand
the features that have been requested when the developers fix bugs. We address
the following three research questions:
RQ1: What are the features that reporters provide in each type of
high-impact bug?
The previous research revealed useful 10 features for developers to fix a common
bug [3] based on a survey of experienced developers. Another case study found
that different types of bugs (e.g. Performance and Security bugs) differ from each
other [25]. Our hypothesis is that key features may also differ among HIB to fix.
RQ2: Which features did reporters often miss to submit in each type
of high-impact bugs at initial submission?
Reporters do not know which features are useful when fix HIB. Hence, developers
often ask for the additional features with the initial bug reports to the reporters.
We address this research question to understand what features developers often
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request in each type of HIB reports.
RQ3: Does asking additional features influence to bug fixing time?
High-quality bug reports would be crucial to fix HIB in time. Developers’ re-
quests for additional features may increase bug-fixing time. We explore that how
significantly developers’ requested additional features affect bug-fixing time.
Our findings show that Test Cases, Code Examples, Steps to Reproduce, and

Stack Traces are the most additionally requested features and the developers’
requests significantly increase bug fixing time.

5.2 Background and Definition
In this section, we first briefly introduce high impact bugs. Then, we describe our
motivation for this research.

5.2.1 High-impact Bug (HIB)

A bug is considered as a high-impact bug (HIB) if it highly impact on software
processes, product, or end-users. Software engineering researchers have introduced
different HIB based on their impact [40] [41] [1] [42] [43] [44]. We list the different
types of HIB as follows:

1. Surprise bug: A surprise bug [41] is a new concept on software bugs .
It can disturb the workflow and/or task scheduling of developers, since
it appears in unexpected timing (e.g., bugs detected in post-release) and
locations (e.g., bugs found in files that are rarely changed in pre-release).

2. Dormant bug: A dormant bug [42] is also a new concept on software bugs
and defined as “a bug that was introduced in one version (e.g., Version 1.1)
of a system, yet it is Not reported until after the next immediate version (i.e.,
a bug is reported against Version 1.2 or later). Another research fournd that
33% of the reported bugs in Apache Software Foundation (ASF) projects
were dormant bugs [34].

3. Blocker bug: A blocking bug is a bug that blocks other bugs from being
fixed [46]. It often happens if a dependency relationship exists among
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software components. Since a blocking bug inhibit developers from fixing
other dependent bugs, it has a high impact on developers’ task scheduling.

4. Security bug: A security bug [70] can raise a serious problem which
often impacts on uses of software products directly. It exploits to gain
unauthorized access or privileges in the systems. In general, security bugs
are supposed to be fixed as soon as possible. Some of the terms and phrases
such as “Attack”, “Vulnerability”, “Hack”, “Unauthorized Access”, “Security
Break”, “Crash”, “Data loss”, “Violate” that bug reporters use to describe
security related bugs.

5. Performance bug: A performance bug [71] is defined as “programming
defects that cause significant performance degradation.” The “performance
degradation” contains poor user experience, lazy application responsiveness,
lower system throughput, and needles waste of computational resources.
Some of the terms and phrases such as “Performance”, “Slow”, “Hang”,
“Memory leak”, “Energy Leak”, “Destroying my battery”, “Application Not
Responding”, “Memory Overflow”, “Buffer Overflow” that bug reporters
use to describe performance related bugs.

6. Breakage bug: A breakage bug [41] is “a functional bug which is introduced
into a product because the source code is modified to add new features or to
fix existing bugs”. A breakage bug can cause usable functions in old versions
unusable after releasing new versions.

5.2.2 Motivation of this research

Developers depend on the content of bug reports to localize and fix the bugs.
Incomplete or Inaccurate bug reports are difficult for developers to understand the
bugs. As a result, sometimes, bugs do not get fix, take longer time than expected
to fix, fix incorrectly and reopen it later. In some cases, developers make a request
to reporters to provide more information. It also increases the bug-fixing time. In
case of high impact bugs, these types of unexpected activities are more expensive
because high impact bugs have a higher impact than others have. Therefore,
bug reports with useful information play a vital role to fix high impact bugs.
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For example, the figure 5.1 shows a bug report Camel-3540 that extracted from
Apache Camel. It is a performance bug. This bug report is detailed and contains

Figure 5.1: The description of the bug report Camel-3540 of the Apache Camel
project

clear information about the bug. The reporter provided code snippets to describe
where the exact problem that happened. The reporter also attached a test case in
the description of the report that the developer to test after fixed the bug. This
type of bug report is easy to understand for developers. The developer fixed the
bug on the same day of reporting.

The figure 5.2 shows an example of bug report Camel-5860 extracted from the
Jira of the Apache Camel project. It is a Breakage as well as a Surprise bug.

This bug report was created on December 10, 2012. The reporter provided
Stack Traces and very minimal information about the bug. The developer could
not understand the exact problem clearly. He also could not understand how
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Figure 5.2: The description of the bug report Camel-5860 of the Apache Camel
project

to reproduce the bug. So, one day later, the developer requested to provide
additional information (Can you submit a small test case for us the reproduce
the error?) about the bug. Two months 17 days (on February 27, 2013) later,
the reporter responded and provided Steps to Reproduce. Finally, the developer
fixed the bug after 8 days. Actually, bug fixing time depends on many factors
such as complexities of bug, the severity of bugs, and the developer’s experience.
However, It also depends on the quality of bug reports.
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In the current bug reporting process, there is no intelligence recommendation
system to evaluate the content of bug reports and to notify the missing features
at the time of submission. Consequently, in many cases, reporters submit less
informative bug reports. To overcome the problem, developing intelligence recom-
mendation is crucial to support reporters to let them know the missing features in
the bug reports at the time of submission. To develop a recommendation system,
first, we need to know the useful features according to high impact bugs to train
the system. However, the problem is we do not know which features are useful for
which categories of high impact bugs.

The previous research revealed the top 10 features that developers find useful
during bug fixing [1]. It is difficult for reporters to provide each of the top 10
features in each bug report in the context of open source projects because most
of the reporters are doing a voluntary job. Bug reporting should be as simple
as much as possible. Therefore, previous research is not enough to develop a
recommendation system.

Therefore, our hypothesis is features that developers find useful may vary among
different types of high impact bugs. If we can find out the most useful features in
each type of high impact bug then we can suggest reporters provide at least the
most useful features in the bug reports. To the best of our knowledge, there is
no case study on revealing useful features set for each type of high-impact bug.
Therefore, we motivated to do an empirical case study on high impact bug reports
to reveal information how bug report should be filed in the BTS and how less
informative bug reports affect on bug fixing process by analyzing historical bug
reports and developers activities during bug fixing. As a result, reporters can
improve the quality of bug report by providing the minimum number of features.

5.3 Case Study Design
This section describes how we conducted the case study. First, we describe target
dataset. Then, we describe the analysis procedure to address research question
mentioned earlier.
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Table 5.1: No.of bug reports in terms of high-impact bugs
High-impact bug No. of bug reports
Surprise 128
Dormant 69
Blocker 7
Security 14
Performance 51
Breakage 39
Total 308
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Figure 5.3: An overall analysis procedure of HIB reports

5.3.1 Target Dataset

We conduct a case study on the high impact bug reports of the Apache Camel
that is shared by Ohira et al. [44]. The dataset was created by manually reviewing
four thousand bug reports for four open source projects (Ambari, Camel, Derby,
and Wicket). As kick-off study, we focus on the Camel project to understand key
features to report HIB. Table 5.1 shows the statistics of analyzed bug reports.
To address our three research questions, we first filtered out HIB reporters from
Jira bug tracking system based on [44] for the Apache Camel project. Then, we
performed qualitative and quantitative analysis to address our research questions.
The figure 5.3 describes overall analysis procedure.
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5.3.2 Qualitative Analysis

In our case study, we manually analyzed HIB reports. Typically, a bug report
contains a combination of structured (e.g., version, severity, environment, reporter)
and unstructured information (e.g., summary, Steps to Reproduce, Observed
Behavior). Software engineering researchers have defined this structured and
unstructured information as features. Bettenburg et al. [3] surveyed among 156
experienced developers of Apache project, Eclipse project and Mozilla project to
examine what features developers expect in a bug report. Based on the feedback
from the developers, they revealed the top 10 most important features that
developers found useful for bug fixing. Table 2.2 shows the top 10 most important
features to fix a bug. Among these 10 features, summary and version are equally
important for all kind of HIB reports. So, we excluded these two features and
included one feature named Environment (EN) in our study.
However, we believe that all features are not equally important for all kind of

HIB report. That means features that developers find useful on bug fixing may
vary among different type of HIB. In addition, bug reporters face complexities
to provide some features in each HIB report. For instance, bug reporters are
not able to provide Stack Traces in each HIB report because it does not always
produce especially for the performance bug. Therefore, we need to understand
the key features for each type of HIB so that reporters can make good quality
bugs by providing the minimum number of features. In order to reveal the key
features for each type of HIB report, we have conducted a qualitative analysis.
Our qualitative analysis is comprised mainly of two phases.
In the first phase for RQ1, we manually examine each HIB report and extract

the reported features from the bug reports. Actually, the structured features are
easy to extract automatically. On the other hand, the unstructured 10 features are
not so easy to extract because those features are provided with natural language
text in the description field. Hence, we conduct a manual examination and observe
each reported feature. In detail, we observed what features the developer provided
and how they provided and what was the missing features for each HIB report.

In the second phase for RQ2, we mainly examined developers activities on bug
fixing. During bug fixing, developers and reporters communicate with each other
for various purposes such as clarification, gather missing features, status inquiry.
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Usually, when a bug report is assigned to a developer to fix the bug, the developer
start work. If the bug report is not well-written and does not contain sufficient
information to localize and to fix the bug, developer pause his work and request
to provide the missing features. Then, the reporter provides the requested feature.
This type of communication kills developer’s valuable time. The idea behind
analyzing additional request is to understand developer need to fix each type of
HIB. Mining frequently developers request habit for additional features can be an
important factor to understand key features for each type of HIB.

5.3.3 Quantitative Analysis

During our qualitative analysis for RQ1 and RQ2, we found that sometimes
reporters did not provide some features at initial bug report submission. In order
to collect the missing features, developers make an additional request to the
reporters to provide them. We believe that it affects overall bug fixing. Every bug
reporter and project manager assume some level of delay for the bug fix. However,
the excessive delay is not tolerable to fix a bug, especially for HIB.
For this reason, we conduct a quantitative analysis to understand whether

the request for additional features significantly affects on bug fixing. In detail,
we compare the bug fixing time difference between HIB reports with additional
feature request (With Request) and HIB reports with no additional feature request
(Without Request). The idea behind doing this is to make sense reporters about
the aftermath of submitting informative or less informative HIB report. If it
significantly affects on bug fixing then reporters will be more careful to file HIB
report as well as researchers will be encouraged to do research on how to mitigate
the effect.

5.4 Results
RQ1: What are the features that reporters provide in each type of
high-impact bug?
To answer RQ1, we carefully examined features in bug reports by reading

manually. Figure 5.4 shows how often HIB reports contains each key features. We
found average percentages of reported features in Performance, security, Breakage,
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Figure 5.4: Observed reported features in bug reports in terms of HIB
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Surprise, Dormant, and Blocker bug reports are 33%, 33%, 32%, 29%, 27%, and
31% respectively (red line). In particular, Observation behaviour is the most
frequent features in HIB reports. Also, Expected behaviour and Code example are
the next frequent features in HIB reports. On the other hand, Screenshot and
Error report are the least frequent features in HIB reports. The other features
are different ranking depends on the type of HIB. For example, while Test code is
often submitted for only Blocker bug, it is often not submitted for the other type
of bug.

RQ2: Which features did reporters often miss to submit in each type
of high-impact bugs at initial submission?

To answer RQ2, we examined additional features which developers often asked
a reporter to submit. We found that developers made additional request for
around 19% HIB reports. Table 5.2 shows the percentage of additionally requested
features in each type of HIB. The percentage of additional request for the feature,
xi = #Request for xi∑i=n

i=1 (#Request for xi)
×100% where n is the total number of features. We found

that developers often asked to Steps to reproduce, Test case and Code example for
any types of HIB. For Steps to reproduce, 50% security bug report was asked. For
Test case, approximately 50% of Performance, Breakage, Surprise and Dormant
bugs reports were asked. For Code example, 50% security bug reports was asked.
In our examination, we found that developers did not make any request to provide
additional feature for the Blocker bug reports. Blocker bug might be required less
features to fix than other HIB.

RQ3: Does asking additional features influence to bug fixing time?
To answer RQ3, we analyze the impact of bug fix due to the additional request

for HIB reports. First, we classified HIB reports into two groups; for additional
features request (With Request) and no additional features request (Without
Request). Then, we measured bug-fixing time which is the bug report created
date to fixed date. Figure 8.1 shows the distribution of bug fixing time among the
additional requested group and no requested group. We found that the additional
requested group is significantly longer bug fixing time than the no requested group
(p << 0.05).

56



Table 5.2: Additionally requested features during bug fixing in the high-impact
bug reports

Features
High-impact bugs

Performance Security Breakage Surprise Dormant Blocker
STR 15% 50% 9% 14% 0% 0%
OB 0% 0% 0% 0% 0% 0%
EB 0% 0% 0% 0% 0% 0%
ST 8% 0% 0% 14% 13% 0%
TC 54% 0% 55% 52% 50% 0%
CE 23% 50% 27% 19% 38% 0%
EN 0% 0% 0% 0% 0% 0%
SH 0% 0% 0% 0% 0% 0%
ER 0% 0% 0% 0% 0% 0%

5.5 Discussion
This section discusses some of our major findings from our case study.

In RQ1, we found out the frequently reported features across all types of HIB.
Here, we did not consider the features that reporters provided after the initial
submission. We have analyzed bug reports of fixed bugs in this case study. So,
we may consider the most frequently reported features are more useful to fix HIB.
However, at this stage, it is not clear whether they are really useful. This has lead
to doing the second analysis.
In RQ2, we carefully examined developers and reporters each activity during

bug fixing. Usually, developers request only for those features during bug fixing
that are really helpful. Sometimes, they can not work without them. In this point
of view, we can consider that additionally requested features are more useful to
developers and have a higher impact on bug fixing. We found that developers
made an additional request for Test Cases, Code Examples, Steps to Reproduce,
and Stack Traces are higher than others. Therefore, we can consider these four
are key features for fixing HIB.
In RQ3, we tried to understand whether the request for additional features

significantly affects on bug fixing time. Our significant test results suggest that
the request for additional features significantly affects on bug fixing time. We
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Figure 5.5: Distribution of bug fixing time between additional features request
and no-request groups

tried to find out the reasons by analyzing each additionally requested features,
requested time, and response time. We found that developers start working to
fix the bug and find missing features in the bug reports that are essential to fix
the bugs. Then, developers make the request for additional features to reporters
and pause the bug fixing activities until the response of reporters. In many cases,
reporters take a long time to response the request. This is the reason to affect
the request for additional features significantly on bug fixing. Our case study
findings will help to reduce the additional request during bug fixing. Findings
from the case study will also help to develop automatic tools. If the reporters
do not provide key features in the bug report then the tool may generate an
automatic suggestion report to notify what additional features should be included
in the bug reports. It also helps to write standard guideline on how to fill-up HIB
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report so that reporters can submit more accurate bug reports in the bug tracking
system (BTS).

5.6 Threats to Validity
For our case study we identified the following threats to validity.

5.6.1 External validity

We examined HIB reports of the Apache Camel Project from Jira in our case
study. There are some other BTSs such as Bugzilla. Every BTS follows their own
convention and style to create and store bug reports. So, our findings may vary
for the projects of other BTS.
We conducted a case study on HIB report based on MSR 2015 data showcase

paper dataset. The data set contains a limited number of HIB reports for each
type. So, our result may not be fully representative of their perspective.

5.6.2 Internal validity

We have analyzed HIB reports of open source projects. Sometimes, proprietary
software differs from an open source project. In this regard, our findings from
this case study might not be applicable to the proprietary projects. We need to
analyze more OSS projects as well as corporate projects to verify the generality of
our findings.

5.7 Chapter Summary
In this chapter, we conducted a case study on HIB reports of the Apache Camel
project to mine insightful information by analyzing reporters and developers
activities. We manually analyzed each HIB report and identified the reported
features. Then, we examined developers and reporters each activity during bug
fixing. From our investigation, it is clear that in many cases, bug reports are not
complete or accurate, and often do not provide features that developers find useful
to fix the HIB. We found that for around 19% HIB reports, developers collect
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useful features by making an additional request that causes significant delay on
bug fixing. We also found that Test Cases, Code Examples, Steps to Reproduce,
and Stack Traces are the most additionally requested features. Our case study
findings suggest that reporters should submit the HIB report more accurately in
order to promote the bug-fixing process. Our findings will be helpful to develop
automatic tools recommending the bug reporters about the additional features
that should be included in the HIB report. It will also help to formulate guidelines
for reporters how to fill up bug report form more accurately. Conducting a more
comprehensive qualitative and quantitative study on different dimensional projects
would increase generalization our case study findings.
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6 Predicting Key Features

The goal of this chapter is to build an accurate model to predict whether reporters
should provide certain key features in the bug reports by leveraging historical bug
fixing knowledge. To achieve the goal, first, we build classification models using
four popular text classifications techniques and perform a comparative analysis
to reveal the best performing technique in our context based on the prediction
performance. In this chapter, we also report the prediction results of our best
performing model in the cross-project setting.

6.1 Introduction
The unstructured features are crucial for the developers to triage and fix the
bugs [3]. However, reporters often omit these features in their bug reports [4–7].
Thus, developers have to face a number of challeges to triage and fix bugs
effectively [4, 13] because developers have to spend much time and effort in order
to understand the bugs based on features provided or need to ask reporters to
provide additional features [4, 14,15].

One of the main reasons for the lack of unstructured features in bug reports is
inadequate tool support [1, 4, 21, 22]. In order to support reporters, researchers
have focused on detecting the presence/absence of unstructured features in bug
reports [21, 23,24]. Zimmerman et al. [23] revealed 10 unstructured features that
are important for developers in general. However, there is currently no consensus
among software projects and bug reporting systems on the essential mandatory
or optional unstructured features that should be part of a bug report [7]. Not
all unstructured features are necessarily appropriate for all bug reports [5]. For
example, Stack Trace is not generated for all bug reports. Previous empirical
studies have found that bug reports contain only between two and six of the top
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10 unstructured features [5, 14]. This indicates that not all unstructured features
are equally important to fix all bugs. However, selecting those features that should
be provided in a bug report is not easy for reporters, especially for novices and
end-users. Thus, a tool that only detects the presence/absence of unstructured
features is insufficient.

Bug-tracking systems contain historical bug reports, reporters and developer’s
comments, actions, bug fixing commit records etc [2, 5]. Examining historical
bug reports can be a good way to understand which features developers require
to fix bugs. However, it is very difficult for reporters to know what features are
required based on fixed bug reports from the repository without any automated
techniques [21,23]. This motivates us to develop classification models to predict
the key features reporters should provide in initial bug reports based on reports
of bugs that have already been fixed.
The summary text has been used successfully to detect similar and duplicate

bugs [26, 27]. By examining the contents of bug reports, we can determine which
features are required to fix each bug. By applying machine-learning techniques,
reporters of new bug reports know which key features need to provide based on
the summary text by leveraging historical bug-fixing activities. Thus, in order to
help reporters, we build prediction models using Naïve Bayes (NB), Naïve Bayes
Multinomial (NBM), K-Nearest Neighbors (KNN), and Support Vector Machine
(SVM) text-classification techniques, based on the summary text. Existing studies
have found that the performance of prediction models varies between the text-
classification techniques [28, 29] depending on the context. Hence, we use the
aforementioned four popular text-classification techniques to build and compare
prediction models. We evaluate our models using the bug reports of Camel, Derby,
Wicket, Firefox, and Thunderbird projects. The main contributions of this chapter
are as follows:

1. We build classification models using popular text-classification
techniques to predict key features based on the summary text in
bug reports. We use four popular classifiers to predict whether a reporter
should provide certain features based on the summary text in the bug reports.
Our models achieve the best f1-scores for Code Example, Test Case, Steps
to Reproduce, Stack Trace, and Expected Behavior of 0.70 (Wicket), 0.70
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(Derby), 0.70 (Firefox), 0.65 (Firefox), and 0.76 (Firefox), respectively, which
are promising.

2. We conduct a comparative study among different text classifica-
tion techniques to investigate the best performing text-classification
technique to build the key features prediction model. we identify
the best-performing technique of each feature for each project. Thus, for five
features, we identify 25 best-performing cases (see column 3 of Table 6.7).
Of these, we find that NBM appears in 12 cases as the best-performing
technique and 4 cases as no significant difference with the best-performing
technique (see the highlighted cells in Table 6.7). Considering all cases,
NBM outperforms the other techniques when predicting the key features.

3. We conduct an experiment to further investigate whether our
models can work for predicting the key features in the cross-
project setting. To build prediction models in cross-project setting, we
use one projects’ dataset for the training the model and another projects’
dataset for the testing the performance of the model. Results shows that our
best performing model can work successfully for predicting the key features
in the cross-project setting.

6.2 Background and Definition
This section, first, describes different types of classification techniques that we
use to build prediction models. Then, describes a class imbalance technique that
we use to handle class imbalance datasets.

6.2.1 Classification Techniques

We investigate four popular classification algorithms, i.e., naive Bayes (NB),
naive Bayes multinominal (NBM), support vector machine (SVM) and K nearest
neighbors (KNN).
Naive Bayes (NB): NB is a probabilistic model based on Bayes theorem

for conditional probabilities [72, 73]. Naive Bayes assumes that features are
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independent from one another. Also, all the features are binominal. That is, each
feature only has two values of 0 and 1 (in our case, representing whether a word
exists in a bug report or not). Based on the above assumptions, given a bug
report BR = (t1, t2, ..., tn) (ti represents a term in the bug report) and a label cj

(in our case: particular key feature present or not), the probability of BR given
the label cj is:
p(BR/C = cj) =

n∏
i=1

p(ti|C) = cj).
With Bayes theorem, we can compute the probability of a label cj given BR as

follows:

p(C = cj|BR) =
p(C=cj)×

n∏
i=1

p(ti|C)=cj)

p(BR
.

Assuming that the probabilities of different labels and the probabilities of
different bug reports are uniform, the above equation can be simplified as:
p(C = cj|BR) =

n∏
i=1

p(ti|C) = cj).
The probability of word ti given class cj(i.e., p(ti|C = cj)) in the above equation

can be estimated based on the training data. Next, based on the above equation,
we can compute the probability for every label given a new bug report BR, and
assign the label with the highest probability to it.
Naive Bayes Multinomial (NBM): NBM is a very similar to NB [72, 73].

However, in NBM the value of each feature is not restricted to 0 or 1, and it can
be any non-negative number (in our case, representing the frequency of a word in
a bug report). Since NBM can capture more information, it often outperforms
NB.
Support Vector Machine(SVM): Given training bug reports, SVM [72,73]

first maps each bug report to a point in a high-dimensional space, in which each
feature (in our case: a pre-processed word) represents a dimension. Then, SVM
selects the points which have big impact for classification as support vectors.
Next, it creates a separating hyperplane as a decision boundary to classify two
classes. The separating hyperplane created by SVM has a maximum margin, i.e.,
it separates the support vectors belonging to the two classes as far as possible.
When an unlabeled data instance (in our case: a bug report) needs to be classified,
SVM can assign it a label according to the decision boundary.
K-Nearest Neighbors: K-nearest neighbors (KNN) is an instance-based
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classifier [72, 73]. Its principle is intuitive: similar instances have similar class
labels. In our setting, KNN mainly contains three steps. First, similar to SVM,
KNN maps all the training bug reports to points in a high-dimensional space.
Then, for an unlabeled bug report BR, we find K nearest points to it based on
a specific distance metric. In this paper, we use the Euclidean distance as the
metric. Euclidean distance between two points is the length of the line segment
connecting them. Finally, we determine the label of the key feature of BR by the
labels of the majority of its K nearest neighbors.

6.2.2 Imbalance Learning Technique

We notice that our datasets have a class imbalance problem. In order to miti-
gate the class imbalance problem, we use the following class imbalance learning
technique.
SMOTE: SMOTE is a more sophisticated over-sampling method, whose full

name is Synthetic Minority Over-sampling Technique [74,75]. For simplicity, the
subsets of data belonging to the minority class and the majority class are denoted
by Smin and Smaj, respectively. Traditional over-sampling methods duplicate
data belonging to Smin, while SMOTE creates some artificial data which can be
assumed to belong to Smin based on a specific strategy. Specifically, for each
data point x in Smin, SMOTE first finds its k-nearest neighbours (data points)
belonging to Smin and link x with each of these k points to form k line segments
(in a multidimensional feature space). Then, SMOTE randomly picks a data point
on each line segment. The k new data points can be assumed as belonging to
the minority class and be added into Smin. Therefore, if there are initially n data
points in Smin, SMOTE will create k × n artificial data points and add them to
Smin. By default, k is set as 5.

6.3 Case Study Design
In this section, we outline our motivation and approach of this study.
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Figure 6.1: An overview of our study design

6.3.1 Motivation of the study:

Developers expect reporters to provide useful unstructured features in their bug
reports in order to localize and fix bugs. However, reporters, especially novices
and end-users, sometimes find it difficult to do so, because they might not know
which features will help developers to fix the bugs [23]. An automated technique
that recommeds which features to include in bug reports can reduce the number
of missing features [5, 13,21–23]. Thus, we propose a model that predicts which
key features reporters should provide in bug reports that help developers to fix
the bugs.

6.3.2 Approach

To predict these key features, we build classification models using four popular
text-classification techniques. These models are trained using the “summary,”
which is one of the unstructured features reporters often use to include key
instructions on the detected bugs. Figure 6.1 provides an overview of our study
design.

1. Generate features datasets: In chapter 4, we manually identify the
unstructured features provided in the initial bug reports and comments
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section during bug fixing. In this analysis, we build classification models to
predict key features that reporters should provide in the description of the
initial bug reports. To train our prediction models, we construct a database
based on the summaries and the identified unstructured features of the bug
reports.

2. Traning and 3. Testing Corpus To train and validate our classification
models, we use 10-fold cross-validation. First, we split the key features
database into 10 equal parts to create a training corpus and a testing corpus.
Then, we use nine parts for the training corpus to construct the prediction
models in the first round, setting aside one part for the testing corpus. We
continue this process until we complete 10 rounds to ensure that each part of
the database is used for training and testing corpus. We repeat the whole 10
rounds process of generating training and testing corpus 10 times to ensure
the robustness of our approach.

4. Build Models: The performance of the prediction models varies between the
different text-classification techniques [28, 29,76] depending on the context.
Hence, this study uses four popular text-classification techniques, namely
NB [77], NBM [77], KNN [78], and SVM [78] to build models. The reason
to choose these techniques is they are classic and diverse algorithms. They
represent features in different ways from each other. Existing studies show
that they perform well in many text-classification tasks [28,29,47,79]. In
addition, the learning strategies of these techniques are different from each
other. Although both NB and NBM are based on the Bayes theorem, they
represent features in different ways. SVM is a supervised learning model
based on the structural risk-minimization principle. Unlike NB or NBM,
SVM is a non-probabilistic binary linear classifier. KNN is a distance-
based classification algorithm, and differs from NB and NBM. For these
reasons, we build prediction models using these techniques and conduct
a comparative study to understand which technique performs well in our
context. Class imbalance is always a problem in machine learning and
can lead to a classifier exhibiting poor performance. Imbalanced learning
strategies can be employed to balance an initially imbalanced data set and
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help a trained classifier not to be biased to the majority class. Thus, in
most cases, they improve the performance of the classifier [50, 80]. There
are many imbalanced learning strategies. In our study, we use the synthetic
minority over-sampling technique (SMOTE). SMOTE is a more sophisticated
over-sampling technique.

5. Performance Evaluation: To evaluate the performance of our prediction
models, we use traditional evaluation metrics, namely precision, recall, and
the f1-score. These metrics are commonly used to evaluate classification
performance [72] and can be derived from a confusion matrix. A confusion
matrix lists all four possible classification results. If a feature of a bug report
predicts correctly, it is a true positive (Tp). If it predicts incorrectly, then
it is a false positive (Fp). Similarly, there is a false negative (Fn) and a
false positive (Fp) outcome. Based on Tp, Fp, Fn, and Tn, we calculate
the precision, recall, and f1-score. Precision is the proportion of correctly
predicted features for all bug reports that predicted the feature. Mathe-
matically, precision P is defined as: P = T p

T p+F p
. Recall is the proportion

correctly predicted features in bug reports to the actual number of features
in the bug reports. Mathematically, recall R is defined as: R = T p

T p+F n
. The

f1-score is a summary measure that combines the precision and recall. It
evaluates whether an increase in precision (recall) outweighs a reduction in
recall (precision). Mathematically, the f1-score F is defined as: F = 2∗P∗R

P +R
.

Baseline model: Software engineering researchers use random predictors
to compare the performance of their prediction models [41,47,81]. Since our
model is the first to predict key features, we also use a random predictor as
a baseline model to evaluate the prediction performance of our model. The
precision of a particular feature for random prediction is the percentage of
the feature present in the data set. Since the random prediction is a random
classifier with two possible outcomes (e.g., feature provided or not provided),
its recall is 0.5.

6. Identify key terms: To identify the key or best discriminator terms, we
extract all the terms from the summary of bug reports and then exclude
stop words. After performing pre-processing and stemming terms into
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root forms, we found 963, 1024, 931, 825, and 847 unique terms for Camel,
Derby, Wicket, Firefox, and Thunderbird projects, respectively. The primary
assumption is among these terms some are highly discriminatory for each
key feature than others. The most discriminator terms could provide a
deep insight into each feature. Recently, a large-scale study [82] conducted
on 30 feature selection techniques and apply on 18 datasets. They found
that correlation based ranking search technique perform well to select the
important features. We also use a correlation based ranking search technique
with 10-fold cross-validation to identify the top 10 discriminator terms for
each key feature.

6.4 Prediction Result
This section presents and discusses the results of our models in predicting the key
features that reporters should provide in their initial bug reports. To predict the
key features, we build classification models using four text-classification techniques.
Our models are trained based on the summary text of bug reports. Table 6.1
shows the total number of unique terms that extracted from the summary of
the bug reports (UT), % of initially provided features (IPF) in the description
of bug reports, and % of additionally provided features (APF) in the comment
section. We consider IPF+APF as the total required features for fixing a bug.
Table 6.2, 6.3, and 6.4 shows the median precision, recall, and f1-score of the key
feature prediction for the various text-classification techniques for each project.
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The f1-scores shown in bold represent the best f1-score among the various
techniques for each project and each feature. In the case of Code Example, our
models achieve the best f1-score of 0.70 with NB for the Wicket project. Comparing
this result with the baseline model (0.55), we observe that our prediction model
provides a 27% improvement. The best f1-scores for the Camel, Derby, Firefox, and
Thunderbird projects are 0.65, 0.66, 0.29, and 0.37 respectively, with NBM, whereas
the f1-scores of the baseline models are 0.53, 0.45, 0.19, and 0.24 respectively. Thus,
our models achieve a 23–51% improvement over the baseline models for predicting
Code Example. In the case of the Test Case prediction, our models achieve the
best f1-score of 0.41 and 0.51 with NBM for the Camel and Firefox projects, 0.70
with NB for the Derby project, and 0.53 and 0.47 with KNN for the Wicket and
Thunderbird projects. Comparing these results with those of the baseline models
(0.37, 0.45, 0.51,0.42, and 0.36), we observe that our models achieve a 12–36%
improvement over the baseline models. Similarly, our models achieve a 12–33%
improvement for Steps to Reproduce, a 36–115% improvement for Stack Trace,
and a 16–33% improvement in Expected Behavior over the baseline models in
terms of the f1-score. Thus, the improvement of our models over the baseline
models is substantial in terms of the f1-score.

74



Table 6.5: The Accuracy (ACC) and Area under the receiver operator characteris-
tic curve (AUC) of different classification techniques and projects for
the Code Example, Test Case, and Steps to Reproduce prediction

Code Example
Camel Derby Wicket Firefox Thunderbird

Classifiers ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC
NBM 0.68 0.68 0.78 0.85 0.64 0.66 0.80 0.75 0.77 0.80
KNN 0.57 0.61 0.61 0.66 0.56 0.63 0.55 0.71 0.78 0.71
NB 0.60 0.56 0.74 0.74 0.67 0.63 0.61 0.58 0.61 0.64
SVM 0.60 0.57 0.72 0.70 0.61 0.56 0.86 0.56 0.81 0.58
Mean 0.61 0.60 0.71 0.74 0.62 0.62 0.71 0.65 0.74 0.69

Baseline 0.51 0.50 0.52 0.50 0.53 0.50 0.79 0.50 0.73 0.50
Test Case

NBM 0.66 0.69 0.65 0.70 0.64 0.68 0.68 0.72 0.76 0.73
KNN 0.56 0.62 0.59 0.63 0.65 0.70 0.66 0.69 0.74 0.74
NB 0.61 0.62 0.66 0.65 0.67 0.66 0.72 0.61 0.64 0.63
SVM 0.62 0.61 0.65 0.64 0.69 0.66 0.67 0.65 0.76 0.65
Mean 0.61 0.63 0.64 0.65 0.66 0.68 0.68 0.67 0.73 0.69

Baseline 0.59 0.50 0.50 0.50 0.54 0.50 0.52 0.50 0.60 0.50
Steps to Reproduce

NBM 0.63 0.64 0.64 0.68 0.64 0.62 0.74 0.78 0.73 0.78
KNN 0.56 0.61 0.64 0.68 0.62 0.63 0.60 0.72 0.68 0.73
NB 0.66 0.62 0.65 0.61 0.61 0.52 0.68 0.69 0.72 0.69
SVM 0.61 0.59 0.57 0.55 0.68 0.59 0.70 0.68 0.70 0.70
Mean 0.62 0.61 0.62 0.63 0.64 0.59 0.68 0.72 0.71 0.73

Baseline 0.54 0.50 0.52 0.50 0.59 0.50 0.51 0.50 0.50 0.50
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Table 6.6: The Accuracy (ACC) and Area under the receiver operator characteris-
tic curve (AUC) of different classification techniques and projects for
the Stack Trace and Expected Behavior prediction

Stack Trace
Camel Derby Wicket Firefox Thunderbird

Classifiers ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC
NBM 0.74 0.79 0.74 0.80 0.80 0.82 0.86 0.84 0.82 0.86
KNN 0.63 0.68 0.56 0.66 0.74 0.73 0.93 0.91 0.64 0.76
NB 0.68 0.66 0.72 0.70 0.70 0.59 0.56 0.68 0.62 0.59
SVM 0.77 0.75 0.71 0.70 0.87 0.69 0.93 0.84 0.88 0.84
Mean 0.70 0.72 0.68 0.72 0.78 0.71 0.82 0.81 0.74 0.76

Baseline 0.65 0.50 0.54 0.50 0.82 0.50 0.73 0.50 0.68 0.50
Expected Behavior

NBM 0.64 0.69 0.63 0.67 0.65 0.65 0.76 0.77 0.73 0.71
KNN 0.54 0.59 0.56 0.60 0.52 0.64 0.63 0.63 0.55 0.67
NB 0.63 0.70 0.60 0.59 0.61 0.57 0.70 0.60 0.74 0.63
SVM 0.68 0.71 0.64 0.62 0.63 0.61 0.72 0.70 0.74 0.73
Mean 0.62 0.67 0.61 0.62 0.60 0.61 0.70 0.67 0.69 0.68

Baseline 0.51 0.50 0.50 0.50 0.52 0.50 0.56 0.50 0.59 0.50
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Our best performing model achieves the lowest precision of 0.30 with SVM
to predict the Stack Trace for the Wicket project. Comparing this result with
the baseline model (0.10), we observe that our prediction model provides a 200%
improvement. Similarly, NBM produces a 93% better precision than the baseline
model for the Stack Trace prediction for the Camel project. Thus, the improvement
of our models over the baseline models is substantial in terms of precision. In
some cases, we find that the recall values of our best predictor are lower than the
values of the baseline models. In practice, there is a trade-off between precision
and recall. We can increase precision by sacrificing recall. The trade-off causes
difficulties when comparing the performance of prediction models using precision
or recall alone [72]. Thus, the f1-score, which is a trade-off between precision and
recall, is used as the main metric to evaluate the performance of our prediction
model and a random prediction. In very few cases, the f1-scores of our models
are lower than those of the baseline models. For example, our model achieves
a lower f1-score with KNN when predicting Expected Behavior for the Wicket
project than that of the baseline model. This is because of low recall. However, in
most cases, our prediction models achieve a much better f1-score compared with
those of the baseline models. The f1-scores of our best-performing models range
from 0.29 to 0.70 for Code Example, 0.41 to 0.70 for Test Case, 0.38 to 0.70 for
Steps to Reproduce, 0.29 to 0.65 for Stack Trace, and 0.56 to 0.76 for Expected
Behavior across the projects.
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Figure 6.2: The Area under the receiver operator characteristic curve (ROC) for
Stack Trace of Wicket project

We notice that in some cases, our models achieve low f1-score to predict the
key features. To get a better understanding of the prediction performance of our
models, we calculate the prediction accuracy (ACC) and Area under the receiver
operator characteristic curve (AUC). Table 6.5 and 6.6 shows that our models
achieve promising ACC and AUC values of different classification techniques to
predict the key features for the different projects. For example, in the case of Code
Example for the Derby project, our best model (NBM) achieves 78% accuracy
score, which is 51% improvement over the baseline model. The AUC value is 0.85,
which is 70% improvement over the baseline model. Table 6.2, 6.3, and 6.4 shows
that our models achieve the lowest f1-score for the Stack Trace of Wicket project.
However, in this case, our models achieve better ACC and AUC values. The ROC
curve in Figure 6.2 also show that our models can predict the key features more
accurately than the baseline model.
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Figure 6.3: The difference in performance (f1-score) for predicting the key features
among the different text-mining techniques across the projects
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Table 6.7: Significant test result between the best classifier and other classifiers
for each key feature

.
Other Classifiers

Projects Features Best Classifier NBM KNN NB SVM Baseline
CE NBM – *** * *** ***
TC NBM – – ** ** ***

Camel STR KNN – – *** * ***
ST NBM – *** *** – ***
EB NB *** *** – *** ***
CE NBM – *** *** *** ***
TC NB *** *** – *** ***

Derby STR KNN *** – *** *** ***
ST NBM – – ** – ***
EB SVM *** – *** – ***
CE NB *** *** – *** ***
TC KNN *** – *** *** ***

Wicket STR NBM – – ** * ***
ST SVM – – *** – ***
EB NB – *** – ** ***
CE NBM – *** – – ***
TC NBM – – – – ***

Firefox STR NBM – *** * *** ***
ST KNN *** – *** – ***
EB NBM – *** *** *** ***
CE NBM – * *** *** ***
TC KNN * * – – ***

Thunderbird STR NBM – * *** ** ***
ST SVM *** *** *** – ***
EB NB – *** – – ***

Statistical significance: *p<0.05, **p<0.01, ***p<0.001
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In order to investigate the best performing text-classification technique to build
the key features prediction model, we conduct a comparative analysis of the four
text-classification techniques. Figure 6.3 shows the distribution of the f1-scores
among the different text-classification techniques across the projects. We see that
our best-performing classifiers significantly outperform over the baseline classifier.
However, there is no single best-performing classification technique for predicting
key features. For example, in the case of Code Example, NBM performs better
than other techniques for the Camel and Derby projects. NB performs better
than the other techniques for the Wicket project, but the f1-score of NBM is
very close to the f1-score of NB. In order to determine whether the difference
is statistically significant, we conduct a statistical significance test between the
different classification techniques. To perform this test, we first select the best-
performing technique for each feature of each project. Then, we calculate the
Mann–Whitney U–test (also called Wilcoxon rank sum test) result for the best-
performing technique compared with the others, one by one, to observe whether
the p-value is less than 0.05. Table 6.7 shows the significant test results between
the best classifier and other techniques for each key feature. We find that in some
cases there are no best performing techniques for identifying key features. For
example, there is no significant difference in performance between NBM and SVM
for the Camel and Derby projects to identify Stack Trace. This indicates that we
can choose either technique to build the prediction model. In some cases, we find
that the best-performing technique (e.g., NB for Test Case for the Derby project)
significantly outperform the other techniques. In these cases, the best-performing
technique is highly recommended for building the prediction model. For each
feature, we identify the best-performing technique for each project. Thus, for five
features, we identify 25 best-performing cases (see column 3 of Table 6.7). Of
these, we find that NBM appears in 12 cases as the best-performing technique
and 4 cases as no significant difference with the best-performing technique (see
the highlighted cells in Table 6.7). Considering all cases, NBM outperforms the
other techniques when predicting the key features.
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6.5 Discussion

6.5.1 Prediction Result

One of the purposes of our quantitative analysis is to build an accurate prediction
model to predict the key features based on the summary of the bug reports.
Table 6.2, 6.3, and 6.4 show that the performance of the prediction models varies
across the projects. For example, in the case of the Test Case prediction, our
best-performing model achieves f1-score of 0.41 for the Camel and f1-score of
0.70 for the Derby project. One of the reasons can be the terms present in the
description of the bug reports. To obtain deeper insight, we identify the top-10
discriminative terms for each key feature based on the correlation value. We
can see from Tables 6.8, 6.9, 6.10, 6.11, and 6.12 that the different application
domain projects share the set of discriminative terms for each key feature. The
correlation value of a particular term determines how much the summary of the
bug report correlates with the feature. We see that the term “failure” appears in
both the Camel and the Derby projects for the Test Case. We further perform a
simple qualitative analysis to investigate each of the top-10 terms and examine
how many bug reports (i.e., the summaries of the bug reports) contain each of
the top-10 discriminative terms in the training documents. We find that the term
“failure” appears in 99 bug reports, or 28% of all bug reports for the Derby project.
On average, 30 bug reports (the average is calculated as 1

10
∑i=10

i=1 xi, where xi is
the number of summaries that contain the ith term in the training documents)
contain the top-10 discriminative terms in the Derby project. On the other hand,
the term “failure” appears in only 24 bug reports, or 7% of all bug reports for
the Camel project. On average, 13 bug reports contain the top-10 discriminative
terms. We find a large difference between the average number of top-10 terms
contained in the Derby project and those in the Camel project. Closer inspection
reveals that the Derby project contains a large percentage of bug reports that
are related to testing failures. Thus, reporters included the terms “failure” (99
times) and “test”(95 times) more often. This might be why the Derby project
contains more of the top-10 discriminative terms, on average than the Camel
project does. We see in table 6.2 that the prediction performance of Test Case in
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terms of precision, recall, and f1-score is much better for the Derby project than
for the Camel project. This indicates that the terms contained in the summaries
of the bug reports might affect the performance of our prediction models.
In the case of Stack Trace, we find that the term “nullpointer” appears in 8%,

14%, and 5% of the summaries for the Camel, Derby, and Wicket projects, respec-
tively. On average, 11, 29, and 8 bug reports contain the top-10 discriminative
terms in the summaries for the Camel, Derby, and Wicket projects, respectively.
We find that our models achieve comparatively lower precision, recall, and f1-scores
when predicting Stack Trace for the Wicket project than for the Derby project. We
also find that a smaller percentage of bug reports share the top-10 discriminative
terms in the Wicket project than in the Derby project. This indicates that the
presence of the discriminative terms in the summary of the bug reports affect the
performance of our prediction models.
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Table 6.8: Top-10 discriminative terms based on the correlation value of each key
feature for the Camel project

Projects Features Top-10 discriminative terms
CE camel (0.175), property (0.128), sftp (0.123), package

(0.119), concurrentmodification (0.119), route (0.117),
org (0.111), camelcontext (0.104), specific (0.104),
configure (0.104)

TC window (0.152), failure (0.140), simple (0.131), prob-
lem (0.131), reference (0.131), raise (0.131), main
(0.131), content (0.119), bean (0.115), procedure
(0.109)

Camel STR bean (0.138), ftp (0.121), bug (0.117), run (0.117),
read (0.117), issue (0.114), stream (0.114), fill (0.113),
url (0.110), endpoint (0.105)

ST nullpointer (0.271), nullpointerexcept (0.179), config-
ure (0.162), concurrentmodification (0.162), default-
camelcontext (0.162), osg (0.153), provider (0.132),
regression (0.132), version (0.132), header (0.113)

EB java (0.135), pipeline (0.120), attribute (0.120), throw
(0.109 ), minimize (0.109), incorrect (0.108), content
(0.108), example (0.104), run (0.104), match (0.104 )
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Table 6.9: Top-10 discriminative terms based on the correlation value of each key
feature for the Derby project

Projects Features Top-10 discriminative terms
CE column (0.255), test (0.214), serial (0.192), failure

(0.186), order (0.178), insert (0.172), clause (0.166),
result (0.156), cause (0.155), apache (0.147)

TC language (0.167), make (0.164), failure (0.163), expect
(0.141), correct (0.138), remove (0.138), test (0.133),
found (0.133), drop (0.124), cause (0.116)

Derby STR nullpointer (0.160), select (0.141), insert (0.136), ig-
nore (0.135), sql (0.121), distinct (0.121), expression
(0.121), unexpect (0.117), derbynet (0.117), times-
tamp (0.107)

ST nullpointerexcept (0.229), incorrect (0.196), test
(0.194), assertionfailederror (0.192), nullpointer
(0.185), fail (0.178), ibm (0.163), wait (0.159), read
(0.151), weme (0.138)

EB incorrect (0.180), nullpointerexcept (0.166), sql
(0.146), server (0.133), derbytest (0.132), function-
test (0.132), include (0.124), privilege (0.124), java
(0.111), example (0.111)
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Table 6.10: Top-10 discriminative terms based on the correlation value of each
key feature for the Wicket project

Projects Features Top-10 discriminative terms
CE encode (0.134 ), object (0.130), tomcat (0.130), service

(0.118), issue (0.118), filterpath (0.106), zip (0.106),
double (0.106), log (0.105), catch (0.103)

TC wickettester (0.199), path (0.155), render (0.137),
component (0.135), model (0.132), enclosure (0.122),
datepicker (0.122), setenable (0.118), cookie (0.118),
label (0.118)

Wicket STR modalwindow (0.218), before (0.164), pagelink (0.147),
order (0.142), contribute (0.142), redirect (0.130),
datepicker (0.130), call (0.121), iframe (0.116), clear
(0.116)

ST debug (0.227), safari (0.227), nullpointer (0.224), ser-
vice (0.201), child (0.176), java (0.176), tomcat (0.176),
regression (0.161), reguestlogger (0.161), interrupt
(0.161)

EB work (0.140), failure (0.138), redirect (0.127), re-
source (0.127), trigger (0.120), return (0.119), val-
idatoradapter (0.105), issue (0.105), construct (0.109),
call (0.099)
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Table 6.11: Top-10 discriminative terms based on the correlation value for each
key feature of the Firefox project

Projects Features Top-10 discriminative terms
CB handler (0.231), javascript (0.201), bug (0.197), filter

(0.188), cover (0.188), read (0.188), protocol (0.142),
bind (0.142), event(0.142), html (0.138)

TC javascript (0.291), intermittent (0.261), browser
(0.251), expect (0.213), chrome (0.192), uncaught
(0.181), test (0.177), add(0.162), type (0.128), call
(0.127)

Firefox STR browser (0.255), javascript (0.246), test (0.230), inter-
mittent (0.226), content (0.180), remove (0.157), user
(0.146), window (0.146), unexpect (0.139), perform
(0.127)

ST browser (0.598), javascript (0.590), intermittent
(0.576), test (0.391), expect (0.369), uncaught (0.351),
crash (0.35), error (0.256), unexpect (0.243), np (0.23)

EB javascript (0.346), intermittent (0.344), browser
(0.326), test (0.251), content (0.238), uncaught (0.216),
error (0.205), chrome (0.191), build (0.180), perform
(0.170)
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Table 6.12: Top-10 discriminative terms based on the correlation value for each
key feature of the Thunderbird project

Projects Features Top-10 discriminative terms
CE bust (0.231), port (0.225), bug (0.204), source (0.188),

define (0.188), http (0.188), script (0.188), error
(0.161), folder (0.146), remove (0.145)

TC unexpect (0.350), fail (0.345), test (0.342), javascript
(0.311), mozmil (0.283), xpcshel (0.243), toolkit
(0.182), component (0.160), mail (0.157), content
(0.157)

Thunderbird STR test (0.292), unexpect (0.251), javascript (0.234), xpc-
shel (0.174), mozmil (0.174), delete (0.173), filter
(0.169), bug (0.167), fail (0.160), remove (0.149)

ST crash (0.448), test (0.393), mozmil (0.326), javascript
(0.311), unexpect (0.304), fail (0.266), mail (0.211),
dbview (0.175), init (0.175)

EB test (0.309), unexpect (0.266), javascript (0.256), fail
(0.243), component (0.228), mozmil (0.223), crash
(0.212), failure (0.168), build (0.166), error (0.145)

We also find that, in some cases, reporters include very short summaries. For
example, the description of the bug report 1 contains Stack Trace, Test Case, and
Expected Behavior. During the model evaluation (testing), our prediction model
should correctly predict, Stack Trace, Test Case, and Expected Behavior for this
bug report. The summary of this report is “MinaConsumerTest Failure,” which
contains only two terms, “MinaConsumerTest” and “failure.” In the table 6.11 and
6.12, we find that the term “failure” appears among the top-10 most discriminative
terms for Test Case. Thus, our model might predict Test Case because it is trained
using the summaries of the bug reports. For Stack Trace and Expected Behavior,

1https://issues.apache.org/jira/browse/CAMEL-795
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our models might provide an incorrect prediction because the summaries do not
contain terms correlated with Stack Trace and Expected Behavior. In another
example, the description of the bug report 2 contains Steps to Reproduce, Stack
Trace, and Code Example. Thus, during the model evaluation, our prediction
model should predict these features correctly. The summary of the bug report
is “NPE from came:run with below route codes.” After removing stop words,
the summary contains the terms “NPE (NullpointerExpection),” “Came,” “run,”
“route,” and “code.” In the table 6.11 and 6.12, we find “NPE,” “run,” and
“route” appear in the top 10 most discriminative terms for Stack Trace, Steps to
Reproduce, and Code Example, respectively. That might help to predict these
features. Therefore, the performance of our models might rely on the terms
contained in the summaries of the bug reports.

To demonstrate the usefulness of our prediction models in practice, we introduce
two cases from Camel project such as bug reports-CAMEL-4171 3 and CAMEL-
2909 4. In the case of CAMEL-4171, the reporter, Sergey Zhemzhitsky, provided
Observed Behavior, Stack Trace, and Code Example as the unstructured features
in the description of the bug report. When this bug report was assigned to the
developer, Claus Ibsen, to fix, he failed to reproduce the bug and asked for the
additional feature. One day later, another developer, Freeman Fang, made a
clarification question about the bug. Even after four months, the reporter did not
respond with the requested feature. In the meantime, a new version was released.
Then, the developer made a follow-up question i.e.,“ Any update? Did you try
with a later release or created a unit test”. Later, the bug was also identified in the
new version. One year and 3 months later, the developer received the requested
feature and finally resolved the bug. In the evaluation phase of our prediction
model, we see that our model correctly predicted “Steps to Reproduce” as the
required feature for this bug.

In the case of CAMEL-2909, the reporter, Max Matveev, submitted this report
on March 02, 2012. When this bug report was assigned to the developer, Claus
Ibsen to fix, he requested to the reporter to provide Stack Trace and Code
Example as additional required features to fix the bug. In this case, our model

2https://issues.apache.org/jira/browse/CAMEL-550
3https://issues.apache.org/jira/browse/CAMEL-4171
4https://issues.apache.org/jira/browse/CAMEL-2909
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correctly predicted Code Example successfully. However, our model made the
wrong prediction for the Stack Trace.

Another purpose of our quantitative analysis is to determine the best-performing
classification technique for building the prediction model. Our significance test
(sec Table 6.7) shows there is no single best-performing technique. However, NBM
performs comparatively better than the other techniques do. We do not know
exactly why NBM outperforms the other techniques. One possible reason is our
study design. We build prediction models based on the summaries of the bug
reports. The summary contains a limited number of terms. SVM performs better
in full-length documents, whereas NBM performs better in short documents [83].
NB assumes that each of the features is conditionally independent [84]. However,
in reality, this assumption of independence is rarely true. Instead, NBM uses a
multinomial distribution and works better than NB [83,85]. In spite of its better
prediction performance, NBM is a simple and fast technique for training and
testing the model [84]. The purpose of building key features prediction model is
to develop an automated features recommendation tool that works in real-time.
Thus, a simple and quick technique is essential. Therefore, NBM may be effective
in building a classification model for predicting key features.
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Our quantitative analysis has shown that NBM outperforms over other classifi-
cation techniques to predict the key features within-project setting. We want to
further investigate whether our models with NBM can work for predicting the key
features in the cross-project setting. To build prediction models in cross-project
setting, we use one dataset for the training the model and another dataset for
the testing the performance of the model. The table 6.13 shows the f1-scores of
predicting the key features in the cross-project setting. We notice that in most of
the cases, our models achieve in the cross-project setting only a bit worse than
those achieved in the within-project setting. For example, the best f1-score of
our models in the within-project for predicting Test Case of Camel project is
0.410 while in the cross-project setting the f1-score is 0.409 (e.g., Camel->Derby
setting). Therefore, we conclude that our models can work for predicting the key
features in the cross-project setting.

In our qualitative analysis, we found that the features missing from the initial
submission are unstructured features. Reporters provide these unstructured
features in the descriptions of the bug reports as unstructured natural language
text. Existing studies have revealed 10 unstructured features that are important to
developers when fixing bugs. However, these features are not all equally important
for all types of bug reports [5,14,86]. By examining the bug-fixing activities in
our qualitative analysis, we know which unstructured features are required to fix
each bug report. Thus, machine-learning techniques could help to predict essential
unstructured features when writing new bug reports by leveraging historical bug-
fixing activities. Therefore, we motivate building a prediction model based on
the summary text so that reporters of new bug reports might know which key
features should be included. Thus, in order to help reporters, we build prediction
models using the NB, NBM, KNN, and SVM text-classification techniques, based
on the summary text. We evaluate our models using the bug reports of the
Camel, Derby, Wicket, Firefox, and Thunderbird projects. Our models achieve
promising f1-scores when predicting key features, except for Stack Trace of the
Wicket project and Code Example of Firefox project. Given that our models are
the first automated support of their kind, such performance can make a difference
when writing bug reports.
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6.5.2 Implications

For Reporters:
Our models achieve promising f1-scores and accuracy to predict key features

based on the summary text of the bug reports. The reporters of the new bug
reports can know whether they need to provide a certain key feature to make a
good bug report at the initial submission. It helps the reporters especially novice
and end-users to write a good bug report by providing the minimum number of key
features. Our models need to be trained on historical bug reports. Practitioners
can easily collect historical bug reports from issue tracking systems such as JIRA
and Bugzilla. Therefore, our model is practical and can be of much benefit.
For Researchers:
Reporters might need more accurate and easier models, although our models

achieve a promising f1-Score to identify key features. To predict the key feature, we
apply four popular classification techniques to build prediction models. To mitigate
the class imbalance learning problems, we apply the basic imbalance learning
strategy since our datasets have a class imbalance learning problems. However,
more sophisticated techniques might provide better results. This highlight an
opportunity for further research to extend, customize or invent advanced techniques
to develop more accurate models.

6.6 Threats to Validity
In this section, we discuss some potential threats to the validity of our study,
based on the guidelines proposed by [87].

6.6.1 External validity

Threats to external validity relate to the generalizability of our results. We build
and test our models using five OSS projects from two ecosystems. Thus, our results
may not generalizable to all software systems especially proprietary systems.
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6.6.2 Internal validity

Our concerns related to internal threats are the experimental bias and errors.
We constructed training and testing data sets with which to build and test our
prediction models. We found that our data sets have a class imbalance problem.
To mitigate this problem, we applied SMOTE, a popular class imbalance learning
technique. In addition, to reduce the training data set selection bias, we applied 10-
fold cross-validation and repeated the experiment 10 times to report the average
performance. Our prediction models are trained and tested based using the
summaries of the bug reports. Therefore, they rely on well-written summaries.
An inaccurate summary may degrade the performance of our approach.

6.7 Chapter Summary
Our goal is to propose an approach that predicts whether reporters should provide
certain features in their reports. To achieve this goal, we develop an approach to
support reporters while writing new bug reports. We build classification models
to predict the key features using four popular text-classification techniques. Our
models are trained using the summaries of the bug reports so that reporters
may know which features to provide in the descriptions of new bug reports.
We evaluate our prediction models using the bug reports of the Camel, Derby,
Wicket, Firefox, and Thunderbird projects. Our models achieve the best f1-score
for Code Example, Test Case, Steps to Reproduce, Stack Trace and Expected
Behavior of 0.70 (Wicket), 0.70 (Derby), 0.70 (Firefox), 0.65 (Firefox), and
0.76 (Firefox), respectively, which are promising. Our comparative study of
the different classifications techniques reveals that NBM outperforms the other
techniques when predicting key features. We also compare the performance of
our models with the baseline models. The results show that our models provide a
12–115% improvement over the baseline models. Our experimental results also
show that our best performing model (NBM) can work for predicting the key
features in the cross-project setting.
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7 Key Features Recommendation
Model

The goal of this chapter is to develop a key features recommendation model to
suggest features that reporters should be provided in the description of the bug
reports. To achieve the goal, we develop a recommendation model by leveraging
historical bug fixing knowledge and machine learning techniques. Our model, first,
identify topN (N=1,3,5,10) similar bug reports of a new bug report based on the
summary text of the bug reports. Then, it scans the topN similar bug reports and
extract key features. Finally, our model recommends key features to the reporters
based on the topN similar bug reports.

7.1 Introduction
Bug reports play an important role in all phases of the bug fixing process. In OSS
projects, most bug reporters work voluntarily. In many cases, reporters submit
incomplete or inaccurate bug reports that affect the different phases of the bug
fixing process. Thus, tools support is essential to improve the bug fixing process.
Existing researchers focus on building tool to support reporters by notifying
unstructured features that are missing in the description of the bug reports [1,21].
However, not all unstructured features are necessarily appropriate for all bug
reports [5]. Thus, existing tools may provide unnecessary notifications to the
reporters that might increase the complexity of bug reporting. In order to support
bug reporting, in chapter 6, we build classification models to predict whether
the certain key features reporters should provide in the description of the bug
reports. We build a separate classification model for each key features based on
the summary text of the bug reports. Our models achieve promising F1-scores to
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predict key features. However, in a real-time web environment, running multiple
models might be time-consuming. Thus, a simpler model is essential to support
reporters in real time.
To address the above issue and to develop a simpler model, in this chapter,

we proposed a key features recommendation model to suggest features that
reporters should provide in the description of the bug reports. In recent years,
information retrieval (IR) and machine learning based automatic techniques has
gained popularity to identify similar bug reports [28, 49, 50] and duplicate bug
reports [34, 51, 52]. Rocha et al. [49] used the summary text of the bug reports
to train their model and perform well to identify pending bug reports. We also
utilize similar bug concept because bug-tracking systems for large open-source
software (OSS) projects contain a large number of bug reports of fixed bugs. For
each bug, it contains initial bug reports, developers and reporters activities during
fixing, patches that fixed bugs, etc. Thus, examining historical bug reports can
be a good way to understand which features developers require to fix bugs. Our
intuition is developers may require similar features to fix similar bugs. Thus, in
our approach, first, we calculate the similarity scores of the bug reports of the fixed
bugs for the new bug reports based on the summary text. Then, we select the
topN (N=1,2,3,......N, means top N similar documents) similar bug reports based
on the similarity score. Finally, our model recommends the key features based on
the key features of the topN similar bug reports. To evaluate the effectiveness of
our recommendation model, we conduct an experiment on the bug reports of three
projects (Camel, Derby, and Wicket) from the Apache ecosystem and two projects
(Firefox and Thunderbird) from the Mozilla ecosystem. The experimental results
show that our key features recommendation model can successfully recommend
key features that reporters should provide in the description to make good bug
reports.

7.1.1 Chapter Organization

The remainder of the chapter is organized as follows. Section 7.2 describes
background and definition of related terms and techniques. Section 7.3 describes
the design of our proposed key features recommendation model. Section 7.4
presents and discusses the experimental results. Section 7.5 discusses the limitation
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of our model. Finally, section 7.6 summarizes this work.

7.2 Background and Definition
All IR (information retrieval) based techniques need to extract and and preprocess
textual contents from the historical bug reports. First, we extract the summary
text and features from the description of the bug reports. Next, after the textual
contents from the bug reports are obtained, we need to preprocess them. The
purpose of text preprocessing is to standardize words in bug reports. There are
three main steps: text normalization, stopword removal, and stemming. The
following is the description of each step.

• Text normalization: In this step, punctuation marks and special symbols
are deleted from documents (i.e., bug reports). Then, documents are split
into constituent words. The identifiers are split into smaller words following
the Camel casing convention (e.g., “ApacheCamel” is split into “Apache”
and “Camel”).

• Stopword Removal: In this step, English stopwords are deleted from
documents (i.e., bug reports). These words frequently appear in many
documents. Thus, they are not too helpful to differentiate a document from
the other ones.

• Stemming: In this step, we transform English words to their root form.
For example, “connection”, “connecting”, and “connected” are all reduced
by stemming to connect.

.
There are many IR based techniques that have been employed for triaging and

localizing bugs. We highlight a popular IR based technique namely Vector Space
Model (VSM).
Vector Space Model(VSM): VSM is a widely used technique in traditional

information retrieval. Several approaches [59, 63, 66] have adapt VSM to bug
traiging and localizing software bugs. In VSM, each bug report is represented as
an n-dimensional vector, where n is the number of unique index terms appearing
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in all the documents (d) and a new bug report is represent as a query (q), and wt

is the weight of the i− th index term in the vector < w1, w2, ..., wn > defined as
follows:

wt ∈ d = tftd × idft (7.1)

In equation 7.1, tf refers to the frequency of index term occurrences in a
document and idf refers to the frequency of index term occurrences over the
entire collection of documents. Among many variations of weights, the logarithmic
variant was used because it can lead to better performance. A typical formula for
tf and idf are shown in equation 7.2.

tf(t, d) = log(ftd) + 1 (7.2)

idf(t) = log( N

1 + nt

) (7.3)

where t represents an index term, d represents a particular document, ftd is the
number of term t occurs in document d, N is the total number of documents, and
nt is the number of documents in which term t occurs. After transforming bug
reports into vectors, we calculate the degree of similarity between a given bug
report and historical bug reports as shown in equation 7.4.

Similarity(q, d) =
~Vq · ~Vd

| ~Vq|| ~Vd|
(7.4)

7.3 Design of our Proposed key features
recommendation model

7.3.1 Dataset Preparation

In order to validate our recommendation model, we use the bug reports of the
three projects (Camel, Derby, and Wicket) from the Apache ecosystem and two
projects (Firefox and Thunderbird) from the Mozilla ecosystem. We discuss in
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Figure 7.1: The overall structure of our recommendation model

details about dataset preparation especially, projects and bug reports section in
chapter 4 (see section 4.2.1). We use the summary of the bug reports for building
vector space model (VSM) and calculate similarity scores. For recommending key
features, we use extracted features from the description and comments of the bug
reports. Therefore, we prepare datasets for each project based on the summary
and extracted features from the description and comments of the bug reports to
evaluate the performance of our recommendation model.

7.3.2 Approach

The figure 7.1 depicts the overall structure of our key features recommendation
model. In order to develop a key features recommendation model, we extract
the title/summary from the fixed bug reports (i.e., marked as FIXED) and build
training corpus. After tokenizing the training corpus, we apply pre-processing
techniques, remove stop words, and convert terms into their root forms. Then,
we build a TF-IDF vector space model for the training corpus. For the new bug
report, we extract the title/summary from the initial bug report and apply similar
pre-processing techniques similar way as the training corpus. We find the most
similar fixed bug reports of the new bug report based on the cosine similarity
scores. After that, it scans the description and comments of the most similar bug
reports and extract the key features. Finally, our model recommends key features
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to reporters so that they can make a good quality description of a new bug report
by providing the minimum number of key features.

7.3.3 Model Evaluation

To evaluate the performance of our prediction models, we use a traditional
evaluation metric, namely accuracy. This metric is commonly used to evaluate
classification performance [72] and can be derived from a confusion matrix. A
confusion matrix lists all four possible classification results. If a feature of a bug
report is present and predicts correctly, it is a true positive (Tp). If it predicts
incorrectly, then it is a false positive (Fp). Similarly, there is a false negative (Fn)
and a false positive (Fp) outcome. Based on Tp, Fp, Fn, and Tn, we calculate the
accuracy.

Accuracy is the proportion of correctly recommended features in terms of total
recommendation:
Accuracy = T p+T n

T p+F p+F n+T n
.

In binary classification/prediction precision or recall is used to measure how
accurately classify or predict a particular class (positive or negative). In our case
(features recommendation), the accurate recommendation is important. Thus, we
use accuracy to see how accurately our model can recommend features.

7.4 Evaluation Result and Discussion
Approach: In our manual analysis (see Chapter 4), we identify reported unstruc-
tured features from the description and comments for each bug reports. Thus, we
know the key features that were required to fix each bug. This required features
set, we consider as ground truth for the evaluation of our recommendation model.
In the testing phase, we compare the recommendation output with ground truth
for each key feature to calculate the recommendation accuracy. For instance, B1

is one of the bug reports of test dataset and “Steps to Reproduce” is the required
feature for fix B1. If our model recommended “Steps to Reproduce” correctly then
the recommendation accuracy is 100% for the B1. Otherwise, the recommendation
accuracy is 0%. Similarly, we calculate recommendation accuracy for each feature
of each testing bug report and present the average recommendation accuracy in
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Table 7.1: Recommendation accuracy for Top 3 of our model for different projects

Features Projects
Camel Derby Wicket Firefox Thunderbird

Code Example 0.57 0.78 0.63 0.89 0.81
Test Case 0.79 0.62 0.59 0.60 0.71
Steps to Reproduce 0.64 0.67 0.72 0.62 0.62
Stack Trace 0.86 0.75 0.90 0.91 0.85
Expected Behavior 0.59 0.63 0.61 0.65 0.69

the table 7.1.

Results: We see from the table 7.1 that the recommendation accuracy for Top
3 of our model is promising. For example, our recommendation model achieves
the highest accuracy for Code Example is 0.89 for the Firefox project. It means
that our recommendation model can accurately recommend Code Example for
the 89% test cases of the Firefox project. In the case of Stack Trace, our model
can accurately recommend 91% test cases of the Firefox project. These indicate
that our model can effectively recommend key features that are useful for the
developers to fix the bug. Existing tools focus on notifying features that are
missing in the description of the bug reports. However, not all unstructured
features are equally important for each bug report to fix. Thus, existing tools may
provide unnecessary notifications. Our model recommends only those features
that were useful to fix similar types of bugs. The fiqure 7.2 shows a use case
of our recommendation model. The Camel-7650 is a bug report of the Camel
project. Camel-3584, Camel-6413, and Camel-6097 are the most similar bug report
of the Camel-7650. We see that Steps to Reproduce, Expected Behavior, and
Code Example were the useful features to fix these three bugs. Thus, our model
recommends these three features for the Camel-7650. Based on the recommended
features, reporters can make a good bug report by providing the minimum number
of unstructured features.
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Figure 7.2: An example recommendation of our model

7.5 Usages of our model

7.5.1 Integration of our model with existing bug tracking
system

Our propose features recommendation model can integrate with the Jira/Bugzilla
issue tracking system. The figure 7.3 shows the overall architecture of our pro-
posed integration. In the web interface, a reporter writes the summary of a bug
report. An Ajax event fire after writing the summary of a bug report and start
preprocessing in the server side. Then, identify topN similar bug reports based on
the summary and generate recommended features set by scanning the top similar
bug reports. Finally, our model sends the recommendation to the reporters on
the web interface.

7.5.2 Applicability of our model in high impact bug

Our analysis results the bug reports of high impact bugs show that the degree
of key features varies among the different types of high impact bugs. High
impact bugs should be fixed as early as possible because of its impact on the
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Figure 7.3: The overall architecture of our recommendation model

software development process, product, and end-users. Thus, the accurate key
features recommendation is very essential. Experimental results show that our
recommendation model can accurately recommend key features. To train and test
our prediction and recommendation models, we did not consider types of high
impact bugs in this research. In chapter 6, we see that our models can accurately
predict key features in both within projects and cross projects setting. These
suggest that our model can also apply to high impact bugs. If you train and test
our model within the same type of high impact bug then reporters may get more
accurate features recommendation.

7.5.3 Implications

For Reporters
Evaluation results show that our proposed features recommendation model

achieve promising accuracy to recommend key features. Bug reporters can get
accurate features recommendation that is important for the developers to fix bugs
based historical bug fixing insights. Thus, reporters can make good bug reports
by providing the minimum number of features.
Bug Tracking System
Our empirical study reveals a large percentage of bug reports do not contain

sufficient features at the initial submission. This indicates that bug reporters
need real-time support to make good bug reports. Our model needs to be trained
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on historical bug reports. Practitioners can easily collect historical bug reports
from issue tracking systems such as JIRA and Bugzilla. Therefore, our model
is practical and can be of much benefit. By incorporating our model with the
existing bug reporters system, bug reporters would get real-time support to make
good reports.

7.6 Limitations
In this section, we discuss some potential threats to the validity of our study,
based on the guidelines proposed by [87]. Threats to external validity relate to
the generalizability of our recommendation model. We test our model using the
sample bug reports of five OSS projects from two ecosystems. The sample bug
reports may not represent the actual picture of the project. Thus, our results may
not generalizable to all software systems especially for the proprietary systems.
To identify similar bug reports of the new bug report, we use the summary
text. In some cases, reporters make a very short summary. Thus, some similar
bug reports may get a low similarity score because of the short summary text
since the similarity score is calculated based on the textual similarity. Therefore,
in the worst case, our recommendation model may produce an inappropriate
recommendation.

7.7 Chapter Summary
This chapter proposed a novel approach called a key features recommendation
model to suggest features that reporters should provide in the description of the
bug reports. Our model utilizes the description and comments of the bug reports
to generate a key features recommendation. When a reporter writes the summary
of a new bug report, our recommendation model first identifies the most similar
bug reports based on the summary text of the bug report. Then, our model scans
the description and comments of the topN similar bug reports and recommend
key features based on the topN similar bug reports. We evaluate the accuracy
of our recommendation model using the bug reports of three projects (Camel,
Derby, and Wicket) from the Apache ecosystem and two projects (Firefox and
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Thunderbird) from the Mozilla ecosystem. The experimental results show that
our model can accurately recommend key features. The following are the some of
the challenges that need to address to improve the performance of our proposed a
key features recommendation model.

• Accurately Identify Similar Bug Reports: We use the title/summary
text to calculate the similarity score between a new bug report with historical
bug reports. In some cases, bug reports of fixed bugs contain a very short
summary. It affects the similarity scores. Thus, we plan to apply differ-
ent machine learning techniques such as Word Embedding and Word2Vec
techniques.

• Validation of Our Recommendation Model: Initially, we use accuracy
to evaluate the performance of our recommendation model. We have a plan
to evaluate our recommendation model using other evaluation metrics.

• Automatically Extracting Features from Bug Reports: We are plan-
ning to suggest the actual features so that reporters can make a good bug
report by slightly modifying the recommended features. However, we are
facing challenges to automatically extracting features from the bug reports
of fixed bugs.
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8 Conclusion

Bug reports are the primary means through which developers triage and fix bugs.
It plays an important role in all phases of the bug-fixing process. Prior research
shows that there is a clear mismatch between the features that developers would
wish to appear in a bug report, and the features that actually appear. They
also found that bug reports are neither complete nor accurate, and often do not
provide all the features that developers find useful when fixing bugs. In an effort
to improve bug management process, the goal of this research is to understand key
features that make a good bug report and to develop an automatic key features
recommendation model to support reporters for making a good bug report. To
achieve our goal, we first perform a qualitative analysis of five OSS projects to
investigate the key features of a bug report by examining bug-fixing activities.
We also conduct an empirical study on the bug reports of six types of high impact
bugs of the Apache Camel project. Our qualitative analysis reveals that Steps
to Reproduce, Test Case, Code Example, Stack Trace, and Expected Behavior
are the additional required features that developers often requested during bug
fixing. Through qualitative analysis, we identify five key features (i.e., Steps to
Reproduce, Test Case, Code Example, Stack Trace, and Expected Behavior) that
reporters often miss in their initial bug reports and developers require them for
fixing bugs. Our empirical study on the bug reports of high impact bugs reveals
that the degree of key features varies among the different types of high impact
bugs, however, four key features are almost the same. Our statistical analyses
reveal that the additional requirement for the key features during bug fixing
significantly affect the bug-fixing process.
In an effort to support the reporters to make a good bug report, we first

develop classification models to predict the key features using four popular text-
classification techniques. Our models are trained using the summaries of the bug
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reports so that reporters may know which features to provide in the descriptions of
new bug reports. We evaluate our prediction models using the bug reports of the
Camel, Derby, Wicket, Firefox, and Thunderbird projects. Our models achieve the
best f1-score for Code Example, Test Case, Steps to Reproduce, Stack Trace and
Expected Behavior of 0.70 (Wicket), 0.70 (Derby), 0.70 (Firefox), 0.65 (Firefox),
and 0.76 (Firefox), respectively, which are promising. Our comparative study of
the different classifications techniques reveals that NBM outperforms the other
techniques when predicting key features. In order to investigate whether our best
performing model is applicable in the cross-projects setting to predict key features,
we train our model by one projects’ dataset and evaluate the performance of the
model by another projects’ dataset. The result shows that our model can work
successfully in the cross-projects setting to predict key features. We also compare
the performance of our models with the baseline models. The results show that
our models provide a 12–115% improvement over the baseline models. Then, we
proposed a novel approach called key features recommendation model to suggest
features that reporters should provide in the description of the bug reports. The
experimental results show that our model can accurately recommend key features.
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Appendix A

Understanding Key Features of a Bug Report
We use the following python code to download bug reports from the Jira issue
tracking system.

1 import u r l l i b . r eque s t
2 from u r l l i b . e r r o r import URLError # the docs say t h i s i s the base

e r r o r you need to catch
3 f o r i in range (0 ,10000) :
4 i s sue_id1=’WICKET− ’+s t r ( i )
5 u r l =" https : // i s s u e s . apache . org / j i r a / s i / j i r a . i s s u e v i e w s : i s sue−

xml/ "+is sue_id1+’ / ’+i s sue_id1+’ . xml ’
6 t ry :
7 s=u r l l i b . r eque s t . ur lopen ( u r l )
8 contents = s . read ( )
9 except URLError :

10 pr in t ( ’ an e r r o r occurred whi l e f e t c h i n g : "{} " ’ . format ( u r l ) )
11 cont inue # sk ip t h i s u r l and proceed to the next
12 f i l e = open ( i s sue_id1+’ . xml ’ , ’wb ’ )
13 f i l e . wr i t e ( contents )

We use the following python code to parse the bug reports and load into the
MySQL database.

1 import os
2 from xml . e t r e e import ElementTree
3 from xml . e t r e e . ElementTree import ParseError
4 #from xml .dom import NotFoundErr
5 import mysql . connector
6 from mysql . connector import e r ro r code
7 t ry :
8 cnn = mysql . connector . connect (
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9 user=’ root ’ ,
10 password=’ Sdlab@jp14 ’ ,
11 host=’ l o c a l h o s t ’ ,
12 database=’ jsme_journal ’
13 )
14 pr in t ( " I t work f i n e " )
15 except mysql . connector . Error as e :
16 i f e . e r rno == er ro r code .ER_ACCESS_DENIED_ERROR:
17 pr in t ( " Something i s wrong with username or password " )
18 e l i f e . e r rno == er ro r code .ER_BAD_DB_ERROR:
19 pr in t ( " Database does not e x i s t " )
20 e l s e :
21 pr in t ( e )
22 #f i l e =’DERBY−5.xml ’
23 count = 1
24 whi le ( count < 11000) :
25 proName = "CAMEL"
26 I s s u e I d = proName+"−"+s t r ( count )
27 f i leName = I s s u e I d+" . xml "
28 f i l e _ s t a t u s = os . path . i s f i l e ( f i leName )
29 count = count+1
30 cur so r = cnn . cur so r ( )
31 i f f i l e _ s t a t u s == True :
32 dom = ElementTree . parse ( f i leName )
33 channel = dom. f i n d a l l ( ’ channel / item ’ )
34 f o r c in channel :
35 s t r t i t l e = c . f i n d ( ’ t i t l e ’ )
36 csummary = c . f i n d ( ’ summary ’ )
37 summary = csummary . t ex t
38 c i s sue_type = c . f i n d ( ’ type ’ )
39 c p r i o r i t y=c . f i n d ( ’ p r i o r i t y ’ )
40 c s t a t u s=c . f i n d ( ’ s t a tu s ’ )
41 c r e s o l u t i o n=c . f i n d ( ’ r e s o l u t i o n ’ )
42 c r e p o r t e r=c . f i n d ( ’ r e p o r t e r ’ )
43 c a s s i n e e=c . f i n d ( ’ a s s i g n e e ’ )
44 ccreate_date=c . f i n d ( ’ c r ea ted ’ )
45 cupdate_date=c . f i n d ( ’ updated ’ )
46 cre so lve_date=c . f i n d ( ’ r e s o l v e d ’ )
47 ca f f e c t ed_ ve r s i on=c . f i n d a l l ( ’ v e r s i on ’ )
48 c f i x ed_ver s i on=c . f i n d a l l ( ’ f i x V e r s i o n ’ )
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49 pr in t ( c f i x ed_ver s i on )
50 ccomponent=c . f i n d ( ’ component ’ )
51 cvote s=c . f i n d ( ’ votes ’ )
52 cwatches=c . f i n d ( ’ watches ’ )
53 c d e s c r i p t i o n=c . f i n d ( ’ d e s c r i p t i o n ’ )
54 comments=c . f i n d a l l ( ’ comments ’ )
55 #curso r=cnn . cur so r ( )
56 s t r s q l = ( "INSERT INTO bug_reports (pName , issue_key ,

issue_type , s tatus , p r i o r i t y , r e s o l u t i o n , r epor te r , a s s inee ,
create_date , update_date , reso lve_date , a f f e c t ed_ver s i on ,
f ixed_vers ion , component , votes , watches , summary , d e s c r i p t i on ,
attachment ) VALUES(%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%
s ,%s ,%s ,%s ) " )

57 pName=proName
58 i ssue_key=I s s u e I d
59 i f c i s sue_type i s None :
60 i s sue_type=" Nul l "
61 e l s e :
62 i s sue_type=cissue_type . t ex t
63 i f c s t a t u s i s None :
64 s t a tu s=" Nul l "
65 e l s e :
66 s t a tu s=c s t a t u s . t ex t
67 i f c p r i o r i t y i s None :
68 p r i o r i t y=" Nul l "
69 e l s e :
70 p r i o r i t y=c p r i o r i t y . t ex t
71 i f c r e s o l u t i o n i s None :
72 r e s o l u t i o n=" Nul l "
73 e l s e :
74 r e s o l u t i o n=c r e s o l u t i o n . t ex t
75 i f c r e p o r t e r i s None :
76 r e p o r t e r=" Nul l "
77 e l s e :
78 r e p o r t e r=c r e p o r t e r . t ex t
79 i f c a s s i n e e i s None :
80 a s s i n e e=" Nul l "
81 e l s e :
82 a s s i n e e=c a s s i n e e . t ex t
83 i f ccreate_date i s None :
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84 create_date=" Nul l "
85 e l s e :
86 create_date=ccreate_date . t ex t
87 i f cupdate_date i s None :
88 update_date=" Nul l "
89 e l s e :
90 update_date=cupdate_date . t ex t
91 i f c r e so lve_date i s None :
92 reso lve_date=" Nul l "
93 e l s e :
94 reso lve_date=creso lve_date . t ex t
95 i f c a f f e c t ed _ve r s i on i s None :
96 a f f e c t ed_ve r s i on=" Nul l "
97 e l s e :
98 s t r e v=" "
99 f o r ev1 in ca f f e c t e d_ve r s i o n :

100 s t r e v += ev1 . t ex t
101 s t r e v = s t r e v+’ / ’
102 a f f e c t ed_ve r s i on=s t r e v
103 pr in t ( a f f e c t ed_ve r s i on )
104 i f c f i x ed_ver s i on i s None :
105 pr in t ( c f i x ed_ver s i on )
106 f i x ed_ver s i on=" Nul l "
107 pr in t ( f i x ed_ver s i on )
108 e l s e :
109 s t r v=" "
110 pr in t ( s t r v )
111 f o r v1 in c f i x ed_ver s i on :
112 pr in t ( v1 . t ex t )
113 s t r v +=v1 . t ex t
114 s t r v=s t rv+’ / ’
115 f i x ed_ver s i on=s t rv
116 #f ixed_ver s i on=c f i x ed_ver s i on . t ex t
117 pr in t ( f i x ed_ver s i on )
118

119 i f ccomponent i s None :
120 component=" Nul l "
121 e l s e :
122 component=ccomponent . t ex t
123 i f cvote s i s None :
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124 votes=" 0 "
125 e l s e :
126 votes=cvote s . t ex t
127 i f cwatches i s None :
128 watches=" 0 "
129 e l s e :
130 watches=cwatches . t ex t
131 i f csummary i s None :
132 summary=" Nul l "
133 e l s e :
134 summary=csummary . t ex t
135 summary=summary [ 0 : 1 5 0 0 ]
136 #pr in t ( summary)
137 i f c d e s c r i p t i o n i s None :
138 d e s c r i p t i o n=" Nul l "
139 e l s e :
140 d e s c r i p t i o n=c d e s c r i p t i o n . t ex t
141 i f d e s c r i p t i o n i s None :
142 d e s c r i p t i o n=d e s c r i p t i o n
143 e l s e :
144 d e s c r i p t i o n=d e s c r i p t i o n [ 0 : 6 5 0 0 ]
145 pr in t ( d e s c r i p t i o n )
146 ##i f l en ( d e s c r i p t i o n ) >= 6500 :
147 #d e s c r i p t i o n=d e s c r i p t i o n [ 0 : 6 5 0 0 ]
148 #e l s e :
149 # d e s c r i p t i o n=d e s c r i p t i o n
150 attachment=0
151 bug_report=(pName , issue_key , issue_type , s tatus , p r i o r i t y ,

r e s o l u t i o n , r epor te r , a s s inee , create_date , update_date , reso lve_date ,
a f f e c t ed_ver s i on , f ixed_vers ion , component , votes , watches , summary ,
d e s c r i p t i on , attachment )

152 cur so r . execute ( s t r s q l , bug_report )
153 cnn . commit ( )
154

155 s t r s q l = ( "INSERT INTO bug_report_comments ( issue_key ,
comment_id , comments ) VALUES(%s ,%s ,%s ) " )

156 f o r c1 in comments :
157 commentall=c1 . f i n d a l l ( ’ comment ’ )
158 f o r c2 in commentall :
159 i ssue_key=I s s u e I d
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160 i f c2 i s None :
161 cont inue
162 e l s e :
163 cId=c2 . get ( ’ id ’ )
164 cmm=c2 . t ex t [ 0 : 5 0 0 0 ]
165 comment=(issue_key , cId ,cmm)
166 cur so r . execute ( s t r s q l , comment )
167 cnn . commit ( )
168

169 cur so r . c l o s e ( )
170 cnn . c l o s e
171 e l s e :
172 pr in t ( " F i l e Not Found " )
173 cont inue
174

175 cnn . c l o s e
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Appendix B

Investigating Key Features of High Impact Bugs
(HIB) Report
We present here some of the comparative study results between high impact and
normal bug reports. The figure 8.1 shows the distribution of bug fixing time
among additional features request and non-request groups.

Figure 8.1: The Impact of additional request for features during bug fixing

The figure 8.2 shows the distribution of the bug reports among additional
features requested and non-requested groups for high-impact bugs. The x-axis
of the bar chart represents the high-impact bugs and the y-axis represents the
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percentages. We found that 0 to 29 percentages of total bug reports request for
additional features during bug fixing. It indicates that reporters should be become
more careful to file high-impact bug reports more accurately.
The figure 8.3 shows the distribution of the bug reports among additional

features requested and non-requested groups for normal and others bug reports.
The x-axis of the bar chart represents the types and the y-axis represents the
percentages. We found that 75% of the total bug reports were requested for
additional features in Incomplete bug reports. 10% and 24% of the total bug
reports were requested for additional features in normal and unresolved bug
reports respectively. It indicates that additional features request during bug fixing
may be one of the reasons to become a bug reports incomplete and unresolved.

Figure 8.2: Distribution (additional Req vs non-Req) of bug reports in high-impact
bugs

The figure 8.4 shows the distribution of overall bug fixing time among normal
and high-impact bug reports.The x-axis of the bar chart represents the bug types
and the y-axis represents the bug fixing time in log scale. In overall, bug fixing
time for normal bug reports are slightly lower that the high-impact bug reports.
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Figure 8.3: Distribution (additional Req vs non-Req) of bug reports in normal
and others bugs

we have done significance test on bug fixing time among normal and high-impact
bug reports.
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Figure 8.4: Distribution bug fixing time normal vs high-impact
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Appendix C

Predicting Key Features

Java programming with Weka-api

To build classification models we use Java programming with Weka-api. We
include here the source codes that we used to build classification model.

1

2 package smote ;
3 import java . i o . F i l e ;
4 import java . i o . F i l eWr i t e r ;
5 import java . t ex t . SimpleDateFormat ;
6 import java . u t i l . Date ;
7 import java . u t i l . Random ;
8

9 import weka . c l a s s i f i e r s . C l a s s i f i e r ;
10 import weka . c l a s s i f i e r s . bayes . NaiveBayes ;
11 import weka . c l a s s i f i e r s . bayes . NaiveBayesMultinomial ;
12 import weka . c l a s s i f i e r s . f u n c t i o n s .SMO;
13 import weka . c l a s s i f i e r s . l a zy . IBk ;
14 import weka . core . In s tance ;
15 import weka . core . In s tance s ;
16 import weka . core . c onve r t e r s . Conver t e rUt i l s . DataSource ;
17 import weka . f i l t e r s . F i l t e r ;
18 import weka . f i l t e r s . supe rv i s ed . i n s t anc e .SMOTE;
19 import weka . f i l t e r s . unsuperv i sed . a t t r i b u t e . StringToWordVector ;
20 // import weka . core . Stopwords ;
21

22 pub l i c c l a s s Fp_Smote_New {
23

24 pub l i c s t a t i c void main ( St r ing agrs [ ] ) throws Exception {
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25

26 F i l e f o l d e r = new F i l e ( " / Research / Doctora lReseacher /IEICE/
Dataset /2NDReview/ " ) ;

27 F i l e [ ] l i s t O f F i l e s = f o l d e r . l i s t F i l e s ( ) ;
28

29 f o r ( i n t i 11 = 0 ; i 11 < l i s t O f F i l e s . l ength ; i 11++) {
30 i f ( l i s t O f F i l e s [ i 11 ] . i s F i l e ( ) ) {
31 i f ( l i s t O f F i l e s [ i 11 ] . getName ( ) . endsWith ( " . a r f f " ) ) {
32 St r ing f i leName=l i s t O f F i l e s [ i 11 ] . getName ( ) ;
33 St r ing [ ] parFileName=fi leName . s p l i t ( " . a r f f " ) ;
34 St r ing [ ] parFileName1=parFileName [ 0 ] . s p l i t ( "_" ) ;
35

36 // System . out . p r i n t l n ( " F i l e " + parFileName1 [0 ]+
parFileName1 [1 ]+ parFileName1 [ 2 ] ) ;

37 St r ing f i l eRootPath = " / Research / Doctora lReseacher /
IEICE/ Dataset /2NDReview/ "+fi leName ;

38 // St r ing f i l eRootPath = "/ Research / Doctora lReseacher /
HIB_Clas s i f i ca t i on /JCST/JCST/NewDatasets/"+bugType+"/"+
projectName +". a r f f " ;

39 In s tance s rawData = DataSource . read ( f i l eRootPath ) ;
40 // Stopwords sw=new Stopwords ( ) ;
41 StringToWordVector f i l t e r = new StringToWordVector

(10000) ;
42 f i l t e r . setInputFormat ( rawData ) ;
43 St r ing [ ] opt ions = { "−W" , " 10000 " , "−L" , "−M" , " 2 " ,
44 "−stemmer " , " weka . core . stemmers .

IteratedLovinsStemmer " ,
45 "−stopwords−handler " , " weka . core . stopwords . Rainbow

" ,
46 "−t o k e n i z e r " , " weka . core . t o k e n i z e r s .

Alphabet icTokenizer "
47 } ;
48

49 //sw . add ( " can " ) ;
50 f i l t e r . se tOpt ions ( opt ions ) ;
51 f i l t e r . setIDFTransform ( true ) ;
52 f i l t e r . setStopwords (new F i l e ( " / Research /

Doctora lReseacher /IEICE/ Dataset / stopwords . txt " ) ) ;
53 In s tance s data = F i l t e r . u s e F i l t e r ( rawData , f i l t e r ) ;
54 //System . out . p r i n t l n ( data ) ;
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55

56

57 data . s e tC la s s Index (0 ) ;
58

59 i n t numRuns = 10 ;
60 double [ ] r e c a l l=new double [ numRuns ] ;
61 double [ ] p r e c i s i o n=new double [ numRuns ] ;
62 double [ ] fmeasure=new double [ numRuns ] ;
63

64 double tp , fp , fn , tn ;
65 // St r ing c l a s s i f i e r N a m e [ ] = { "KNN" } ; //{ "NBM" , "KNN

" , "NB" , "SVM" } ;
66 // St r ing c l a s s i f i e r N a m e [ ] = { "KNN" , "NB" } ;
67 St r ing c l a s s i f i e r N a m e [ ] = { "NBM" , "KNN" , "NB" , "SVM" ,

"ZR" } ; //{ "BG" } ;
68 // St r ing c l a s s i f i e r N a m e [ ] = { "NBM" , "KNN" , "NB" , "SVM

" , "BG" } ;
69 // St r ing c l a s s i f i e r N a m e [ ] = { "BG" } ; //{ "BG" } ;
70 Date dNow = new Date ( ) ;
71 SimpleDateFormat f t =new SimpleDateFormat ( "YYMMdd

’− ’hhmm" ) ;
72 St r ing cdt=f t . format (dNow) ;
73

74 F i l e f i l e=new F i l e ( " / Research / Doctora lReseacher /IEICE/
Outputset /2NDReview/ "+" WithZeroSmote_ "+parFileName1 [0 ]+ "_"+
parFileName1 [3 ]+ "_. txt " ) ;

75 // F i l e f i l e=new F i l e ( " / Research / Doctora lReseacher /
HIB_Clas s i f i ca t i on /JCST/JCST/NewOutput/"+bugType+"/"+projectName
+"_"+ c l a s s i f i e r N a m e [0 ]+" _smote . txt " ) ;

76 Fi l eWr i t e r fw=new Fi l eWr i t e r ( f i l e ) ;
77 fw . wr i t e ( " C l a s s i f i e r "+" \ t "+"−−−−Prec i s i on−−−−−−"+" \ t "+

"−−−−Recal l−−−−−−"+" \ t "+"−−−−−F−measure−−−−−−"+" \ r \n " ) ;
78 f o r ( S t r ing name : c l a s s i f i e r N a m e ) {
79 double t o t a l P r e c i s i o n , t o t a l R e c a l l , totalFmeasure ;
80 t o t a l P r e c i s i o n=t o t a l R e c a l l=totalFmeasure =0;
81 double avgPrec i s ion , avgRecal l , avgFmeasure ;
82 avgPrec i s i on=avgReca l l=avgFmeasure=0;
83

84 f o r ( i n t run = 0 ; run < numRuns ; run++){
85 System . out . p r i n t l n (name) ;
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86 C l a s s i f i e r c l a s s i f i e r = n u l l ;
87

88 i f (name . equa l s ( "NBM" ) )
89 c l a s s i f i e r = new NaiveBayesMultinomial ( ) ;
90

91 i f (name . equa l s ( "ZR" ) )
92 c l a s s i f i e r = new ZeroR ( ) ;
93

94 i f (name . equa l s ( "NB" ) )
95 c l a s s i f i e r = new NaiveBayes ( ) ;
96

97 i f (name . equa l s ( "KNN" ) )
98 c l a s s i f i e r = new IBk ( ) ;
99

100 i f (name . equa l s ( "SVM" ) )
101 c l a s s i f i e r = new SMO() ;
102

103 i f (name . equa l s ( "RF" ) )
104 c l a s s i f i e r = new RandomForest ( ) ;
105

106 // i f (name . equa l s ( "BG" ) )
107 // c l a s s i f i e r = new Bagging ( ) ;
108

109 i f (name . equa l s ( "BG" ) )
110 {
111 Bagging bagger = new Bagging ( ) ;
112 bagger . s e t C l a s s i f i e r (new RandomForest ( ) ) ;
113 // bagger . se tSeed (2 ) ;
114 c l a s s i f i e r=bagger ;
115

116 // c l a s s i f i e r . s e t C l a s s i f e r (new RandomTree ( ) )
117 }
118

119 i f (name . equa l s ( "ST" ) )
120 c l a s s i f i e r = new Stack ing ( ) ;
121

122 i f (name . equa l s ( "STC" ) )
123 c l a s s i f i e r = new StackingC ( ) ;
124

125 i f (name . equa l s ( "VT" ) )
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126 c l a s s i f i e r = new Vote ( ) ;
127

128 i f (name . equa l s ( "ADB" ) )
129 {
130 AdaBoostM1 m1 = new AdaBoostM1 ( ) ;
131 m1. s e t C l a s s i f i e r (new DecisionStump ( ) ) ; // needs

one base−c l a s s i f i e r
132 //m1. setNumIterat ions (10) ;
133 //m1. b u i l d C l a s s i f i e r ( t ra in ingData ) ;
134 c l a s s i f i e r = m1;
135 }
136

137 // c r o s s v a l i d a t i o n
138 i n t f o l d s = 10 ;
139 Random random = new Random(1) ;
140 data . randomize ( random ) ;
141 data . s t r a t i f y ( f o l d s ) ;
142

143

144 tp = fp = fn = tn = 0 ;
145 f o r ( i n t i = 0 ; i < f o l d s ; i++) {
146

147 In s tance s t r a i n s = data . trainCV ( f o l d s , i , random ) ;
148 In s tance s t e s t s = data . testCV ( f o ld s , i ) ;
149

150 // smote
151 SMOTE smote=new SMOTE() ;
152 smote . setInputFormat ( t r a i n s ) ;
153 In s tance s smoteTrains = F i l t e r . u s e F i l t e r ( t r a in s ,

smote ) ;
154

155 c l a s s i f i e r . b u i l d C l a s s i f i e r ( smoteTrains ) ;
156 f o r ( i n t j = 0 ; j < t e s t s . numInstances ( ) ; j++) {
157

158 In s tance in s t anc e = t e s t s . i n s t anc e ( j ) ;
159

160 double c l a s sVa lue = in s t ance . c l a s sVa lue ( ) ;

161 double r e s u l t = c l a s s i f i e r . c l a s s i f y I n s t a n c e (
i n s t ance ) ;
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162

163 i f ( r e s u l t == 0 .0 && c la s sVa lue == 0 . 0 ) {
164 tp++;
165 } e l s e i f ( r e s u l t == 0.0 && c la s sVa lue == 1 . 0 ) {
166 fp++;
167 } e l s e i f ( r e s u l t == 1.0 && c la s sVa lue == 0 . 0 ) {
168 fn++;
169 } e l s e i f ( r e s u l t == 1.0 && c la s sVa lue == 1 . 0 ) {
170 tn++;
171 }
172 }
173 }
174

175 i f ( tn + fn > 0)
176 p r e c i s i o n [ run ] = tn / ( tn + fn ) ;
177 i f ( tn + fp > 0)
178 r e c a l l [ run ] = tn / ( tn + fp ) ;
179 i f ( p r e c i s i o n [ run ] + r e c a l l [ run ] > 0)
180 fmeasure [ run ] = 2 ∗ p r e c i s i o n [ run ] ∗ r e c a l l [ run ] /

( p r e c i s i o n [ run ] + r e c a l l [ run ] ) ;
181 System . out . p r i n t l n ( "The "+(run+1)+"−th run " ) ;
182 System . out . p r i n t l n ( " P r e c i s i o n : " + p r e c i s i o n [ run ] ) ;
183 System . out . p r i n t l n ( " Reca l l : " + r e c a l l [ run ] ) ;
184 System . out . p r i n t l n ( " Fmeasure : " + fmeasure [ run ] ) ;
185 t o t a l P r e c i s i o n+=p r e c i s i o n [ run ] ;
186 t o t a l R e c a l l+=r e c a l l [ run ] ;
187 totalFmeasure+=fmeasure [ run ] ;
188

189 }
190 avgPrec i s i on=t o t a l P r e c i s i o n /numRuns ;
191 avgReca l l=t o t a l R e c a l l /numRuns ;
192 avgFmeasure=totalFmeasure /numRuns ;
193 System . out . p r i n t l n ( " avgPrec i s i on : " + avgPrec i s i on

) ;
194 System . out . p r i n t l n ( " avgReca l l : " + avgReca l l ) ;
195 System . out . p r i n t l n ( " avgFmeasure : " + avgFmeasure ) ;
196 fw . wr i t e (name+" "+" \ t "+avgPrec i s i on+" \ t "+

avgReca l l+" \ t "+avgFmeasure+" \ r \n " ) ;
197 }
198 fw . c l o s e ( ) ;
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199

200

201 }
202 }
203

204 }
205

206 }
207 }

R Programming

We use the following R code to conduct significance test between two classifications.
1 C1_name=’NB’
2 C2_name=’SVM’
3 x1=subset ( thunderbird_EB , s e l e c t=c ( F_measure ) , subset=c ( trimws (

C l a s s i f i e r , which=c ( " both " ) )==C1_name) )
4 x2=subset ( thunderbird_EB , s e l e c t=c ( F_measure ) , subset=c ( trimws (

C l a s s i f i e r , which=c ( " both " ) )==C2_name) )
5 wi lcox . t e s t ( x1 [ [ 1 ] ] , x2 [ [ 1 ] ] , a l t e r n a t i v e = c ( " two . s ided " ) )
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