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Physics-based Image Decompositions

for Obtaining a Shape and Visual Textures∗

Tsuyoshi Takatani

Abstract

Measuring a shape and visual textures of an object is an important task in

computer vision and graphics. Most methods aiming at measuring them often

employ a physics-based approach because it recovers an accurate shape and the

visual textures, e.g., color and translucency, are derived from optical phenomena.

For example, photometric stereo is a well-studied technique to obtain detailed

surface orientations of an object. However, since photometric stereo assumes dif-

fuse reflection on the surface, it is difficult to be applied for a translucent object

in which complex optical phenomena, e.g., subsurface scattering, occur. Such

assumptions in physics-based measurements have limited opportunities of their

practical usages. A possible solution is an image decomposition to extract a spe-

cific component. If a physics-based image assumed by a measurement method

can be extracted, the method is expected to work properly on any materials. Ad-

ditionally, a physics-based image decomposition enables to obtain visual textures

which cannot be obtained by the existing measurement methods.

This thesis provides physics-based image decomposition techniques toward

obtaining a shape and visual textures of an object. In general, a detectors ob-

serves a radiant intensity from the object and the observed intensity essentially

includes a wide variety of physics-based components, such as optical and ther-

mal phenomena. That is why we aim at decomposing the observed intensity into

physics-based components which are assumed by methods to measure a shape

and visual textures. Since the radiant intensity is a sum of various light rays, the
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physics-base image decomposition can be conducted in spatial, temporal, and

spectral perspectives.

In the spatial perspective, a unified decomposition method, multiple weighted

measurements, is proposed to combine different decomposition approaches. Ex-

perimental results show that the proposed method can decompose observed im-

ages into physics-based images, such as diffuse and specular reflection and single

and multiple scattering. The decomposition result is applied to enable a novel

image segmentation in which a segment is based on visual textures, e.g., translu-

cency and opacity. The translucency of a translucent material is mostly derived

from subsurface scattering. Since subsurface scattering spatially blurs light in

an object, an incident spot light is blurred and its outgoing light becomes a dis-

tribution, called point spread function (PSF). A conventional camera observes a

sum of PSFs at all surface points but the PSF at each surface point describes

the translucency at the point. Therefore, the PSFs are decomposed into one at

each point using projector-camera (pro-cam) system. Measured PSFs are ap-

plied for physically reproducing the translucency of a material by a UV inkjet

printer. In addition to the image plane axes, a decomposition along the optical

principle axis is proposed to observe inside of an object. a combination of spatio-

sequentially modulated illumination with direct conversion enables to extract a

continuous series of layer images in an object. Experimental results show that

the proposed method decomposes observations into a series of layer images in a

semi-transparent object.

In the temporal perspective, far infrared (FIR) light transport decomposition

is proposed based on optical and thermal phenomena. Light absorbed by mat-

ters in an object transforms to heat and then conducts inside the object. This

thermal phenomena is so slow that it can be observed by a conventional thermal

camera at a video framerate, while optical phenomena, e.g., reflection of light, is

too fast to be observed at the video framerate. Thus, a temporal analysis brings a

decomposition of optical and thermal phenomena under controlled illumination.

Absorption is also related to both a surface normal and a light direction as well

as diffuse reflection. Thus, photometric stereo can be applied with the decom-

posed thermal component. More importantly, since most materials absorb and

radiate FIR light, it can be used for various materials, such as translucent glass,
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translucent plastic, and black object.

In the spectral perspective, a novel one-shot hyperspectral imaging using faced

reflectors is proposed to obtain spectral reflectance. A coupled mirror on which

a color filter is sticked is mounted in front of a conventional camera. Then, the

camera observes multi-bounce images whose spectra are different due to the color

filter at one-shot. At last, a hyperspectral image is reconstructed from the multi-

bounce images. Optical phenomena vary with respect to wavelength of light. For

example, light of longer wavelengths penetrates deeper inside of an object than

one of shorter wavelengths. Thus, analyzing spectral images reduces the effect

of subsurface scattering in photometric stereo. Experimental results show that

the use of spectral images makes photometric stereo more robust to translucent

materials and multi-textured objects.

Throughout this thesis, physics-based image decompositions are proposed in

spatial, temporal, and spectral perspectives toward obtaining a shape and visual

textures of an object. The proposed methods enable to obtain surface orientations

of an object with various materials, such as multi-textured, translucent, trans-

parent, and black objects, and various visual textures, such as optical feature,

translucency, inner structure, and spectral reflectance.

Keywords:

image decomposition, optical phenomena, spectral analysis, translucency, photo-

metric stereo
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Chapter 1

Introduction

Light interacts with matters and it causes a wide variety of complex optical phe-

nomena. As light hits a ripe apple, light of longer wavelengths in the visible spec-

trum is strongly reflected off surface of the apple and thus we see that it is a red

apple. Small droplets of water in the atmosphere scatter light of all wavelengths

in the visible spectrum, which makes clouds look white in the sky. Refraction

through raindrops disperses sunlight and it produces a rainbow. These complex

optical phenomena are preferred for photographic arts due to their beauty. How-

ever, the complex optical phenomena often disturb photometric measurements in

computer vision.

The photometric measurement is a physics-based technique to obtain a variety

of information about a target object, e.g., shape and visual textures. In general,

it recovers an accurate shape comparing with geometric methods, e.g., multi-view

stereo [5]. That is why the photometric measurement is practical and applicable

for an industrial use. But the photometric measurements, in general, assume

simple optical phenomena in a scene, which limits opportunities of its practical

use. Thus, the photometric measurements in a scene of the complex optical phe-

nomena are not necessarily guaranteed a proper performance. For example, pho-

tometric stereo [178], a well-known method to reconstruct surface orientations,

assumes diffuse reflection on the surface. It is difficult to be applied for glossy

and translucent materials because unexpected optical phenomena occur in/on

those materials, e.g., specular reflection and subsurface scattering. In order to

overcome such a problem, a lot of reflectance models for photometric stereo have
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been proposed to take account of the complex optical phenomena [155, 15, 44, 52].

Although the reflectance models could be applied not only for photometric stereo

but also for other photometric measurements, e.g., measurement of bi-directional

reflectance distribution function (BRDF), it is required to re-formulate them for

a specific case, and this procedure is not a trivial task. Another effective ap-

proach is an image decomposition or separation [105, 124, 97]. Since an observed

intensity includes various components, extracting only an expected component

from the observed intensity arrows a photometric measurement to work properly

without the re-formulation. Intrinsic image decomposition [14] has been stud-

ied in computer vision to separate a shading image and a reflectance image. In

general, Lambertian reflectance, i.e., ideal diffuse reflection, is assumed in the in-

trinsic image decomposition problem and the separated images are not based on

physical phenomena. However, the photometric measurements are based on phys-

ical phenomena. Therefore, physics-based image decompositions are addressed in

this thesis. Additionally, physics-based components can explain and obtain visual

textures, e.g., color and translucency.

The main topic in this thesis is physics-based decompositions. Target physics-

based components can be derived from optical, thermal, mechanistic, electric or

magnetic phenomena. In this thesis, we target on the optical and thermal phe-

nomena because our final application is photometric measurements and optical

absorption is related to thermal radiation. In order to observe the phenomena as

an image, an optical camera and a thermal camera are easily used, while it is dif-

ficult to observe the mechanistic, electric, and magnetic phenomena. A detector

observes a radiant intensity in a scene and the intensity essentially includes a wide

variety of physics-based components, e.g., the complex optical phenomena. Since

the radiant intensity is a sum of light rays, physics-based image decompositions

can be performed in spatial, temporal, spectral, and directional perspectives due

to the plenoptic function. In this thesis, we target on the spatial, temporal, and

spectral perspectives.

Once physics-based image decompositions are done, it is possible to use a

single physics-based component for the photometric measurements. In this thesis,

we apply the decompositions for measuring a shape and visual textures of an

object. Photometric stereo reconstructs surface orientations based on diffuse
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reflection, as mentioned above, and the surface orientations can be regarded as

the shape. As visual textures, spectral reflectance, i.e., color, translucency, and

glossiness are obtained via physics-based image decompositions. An inner layers

of the object can be a visual texture and also be shapes of matters in the object.

Obtaining the inner layers is important for inspections of human bodies and foods.

Recognizing materials is also important for object recognition problem because

a computer has to understand materials of an object when a robot picks it up.

Otherwise, the robot might crush the object with its strong power.

This thesis provides physics-based image decompositions toward obtaining a

shape and visual textures of an object. Target physics-based components are op-

tical and thermal phenomena in the spatial, temporal, and spectral perspectives.

The contributions of this thesis are achieving the ability to;

• spatially decompose observations into components based on optical phe-

nomena, such as diffuse and specular reflection and single and multiple

scattering;

• spatially decompose observations into subsurface scattering components

and then physically reproduce the translucency of a material by a UV

printer;

• spatially decompose observations into inner layer images of a semi-transparent

object along the optical principle axis;

• temporally decompose thermal observations into diffuse and global far in-

frared radiation components and then innovate thermal photometric stereo;

and

• observe a hyperspectral image at one-shot with a readily available system

and then improve the robustness of photometric stereo.

1.1. Physics-based components

When illuminating an object, light interacts with matters which consist of the ob-

ject. The interaction is basically categorized to five optical phenomena; reflection,

transmission, scattering, absorption, and fluorescence. Some light reached to a
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boundary between the air and the object is reflected off the boundary. Reflection

of light is often categorized to two phenomena; diffuse and specular reflection.

Diffuse reflection is a phenomenon in which light is reflected to all directions re-

gardless of an incident angle. Specular reflection is one in which light is reflected

to the regular direction to the incident angle. On surfaces of a concave object,

reflected light is again reflected off the boundary, which is called interreflections.

The remaining of light penetrates into the object. If a material of the object

is transparent, most of it transmits through the other-side boundary. The light

transporting inside of the object extincts along its light path because of scat-

tering and absorption. Scattering of light is caused by collisions with particles

in the object. Light which is scattered once with a particle is categorized to

single scattering and light of multiple collisions is called multiple scattering. Es-

pecially, scattering beneath the boundary is called subsurface scattering. Light

energy absorbed by the matters excites molecules in the object and then some

of it transforms and emits light again but its wavelength becomes longer. This

phenomenon is called fluorescence. Other of the absorbed light transforms to

heat via vibration of molecules, called the photothermal effect, and then heat

conducts in the object. All thermal objects radiate far infrared (FIR) light with

respect to its temperature. Thus, the brightness of FIR light radiated from the

object temporally vary with respect to the heat conduction.

Additionally, the photoelectric and photoacoustic effects occur depending on

the matters. The photoelectric effect is the emission of electrons or to produce

a current when light interacts with the matters. This effect has been applied for

a digital camera and solar cells. The photoacoustic effect is to produce sounds

because of the vibrations of matters when light is absorbed. This effect is applied

for imaging inner layers deeply, e.g., an observation of arteries.

1.2. Photometric stereo

Photometric stereo [178, 149] is a technique to estimate surface orientations from

multiple images taken under different lighting conditions. A key factor in this

process is the surface reflectance, which describes how the shading at each surface

point changes in relations to the lighting direction and the surface normal. By
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varying the light direction, the corresponding changes in the shading are used to

infer the surface normals according to the reflectance model.

Surface reflectance is normally assumed to follow Lambert’s law, whereby the

intensity I of the reflected light is proportional to the inner product of the lighting

vector l and the surface normal vector n:

I(x) = ρ(x)nTl, (1.1)

where ρ(x) denotes the albedo, or intrinsic color, of the surface at point x. When

changing the light direction, multiple observations can be obtained that can be

superposed in a matrix form as

I = ρ(x)Ln, (1.2)

where I and L are the superposed observation vector and lighting matrix, respec-

tively. If the lighting matrix is full-rank, then the surface normal vector can be

obtained as

n =
L†I

‖L†I‖2 , (1.3)

where L† is the pseudo-inverse matrix of L. This Lambertian model of reflectance

is frequently used in photometric stereo because of its simplicity and convenience.

Since photometric stereo can obtain micro-asperity of the surface, it is often

applied for inspections on a factory production line, archiving oil paintings, and

scanning human skin.

1.3. Visual textures

When we see an object we can feel how soft, hard, warm, cold, smooth, or rough

the object is from visual textures of the object. According to the recent study

about textures [183], factors for our visual feeling are shape, color, position, sur-

face reflectance, glossiness, translucency, micro-surface structure, and viscosity.

The color of the object is described as a spectrum in this thesis. The optical

phenomena explained in Section 1.1 affect some of the visual textures. Diffuse

and specular reflection derives the surface reflectance and glossiness. Especially,

the glossiness is strongly related to specular reflection. Subsurface scattering
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including single and multiple scattering produces the translucency, which is obvi-

ously important to render a photorealistic graphics. The micro-surface structure,

e.g. fur and asperity, causes the directional difference in reflectance. The viscosity

is a dynamic visual texture and difficult to be taken account of in the shape and

material measurement using static images. In this thesis, the spectral reflectance,

glossiness, and translucency are focused on as important visual textures.

1.4. Overview

The goal of this thesis is to propose physics-based decompositions in the spatial,

temporal, and spectral perspectives toward obtaining a shape and visual tex-

tures. A key question is what to be decomposed and how to use the components

when using a photometric measurement. In Chapter 3, a unified decomposition

method is proposed to spatially decompose observations into components based

on the optical phenomena. In experiments, the proposed method decomposes

into four different optical components; diffuse and specular reflection and single

and multiple scattering. Since the intensity ratio of the components varies with

respect to a material, a decomposition result is applicable to classify different ma-

terials in an image. Chapter 4 establishes a system to physically reproduce the

translucency of an object. In the measurement step, PSF at each surface point is

obtained via a spatial decomposition using modulated illumination. In the fabri-

cation step, a translucency similar to the measured one is physically reproduced

by UV printing, finding the best print parameters in a lookup table between

the parameters and the printed translucency. In Chapter 5, a novel method to

observe inside an object is proposed. Spatio-sequential modulated illumination

enables to decompose observations into inner layer images. It allows us to see the

inner structure of the object, which affects the visual texture. In Chapter 6, far

infrared spectrum, much longer wavelengths than the visible spectrum, is focused

on. A novel method to decompose far infrared light transport is proposed includ-

ing the photo-thermal effect. A fact is found out, that a radiation component

is available for photometric stereo. Since almost all materials can be observed

within the far infrared spectrum, it is possible to apply photometric stereo for

various materials, such as transparent, translucent, and black objects. Chapter 7
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Figure 1.1: The relationship among methods proposed in this thesis.

leads spectral imaging. Decomposing into each wavelength image enables to an-

alyze materials and optical phenomena. Although the existing system are costly

and time-consuming, a novel hyperspectral imaging technique is proposed, which

can be implemented with readily available mirrors and a color filer and enables to

obtain a hyperspectral image at one-shot. Chapter 8 introduces a novel technique

to enhance photometric stereo using multispectral images. As explained above,

subsurface scattering depends on wavelength of light. That is, some wavelength

can be less affected by subsurface scattering in a material. Therefore, spectral

analysis enables to reduce the effect of subsurface scattering and improve the

accuracy of photometric stereo.

The relationship among methods proposed in this thesis is explained in Fig. 1.1.

The physics-based decompositions are categorized into the spatial, temporal, and

spectral perspectives, which is the horizontal axis on a table in the figure. The

vertical axis describes physical phenomena to be decomposed. Yellow cells in the

table are targets for the proposed methods.
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Chapter 2

Related work

In this chapter, work related to this thesis is introduced. The main topic of

this thesis is image decomposition and photometric measurements of a shape and

visual textures.

2.1. Spatial decomposition

Researchers in computer vision and graphics have studied to separate images to

extract or remove some physics-based components from observed images. The

word expressions are different but they essentially mean the same as decomposi-

tion. Target components are different with respect to an application.

The first interest is in reflection of light. Shafer [146] has proposed the dichro-

matic reflectance model, in which the color of specular reflection depends on the

color of a light source while the color of diffuse reflection depends on the color of

an object. And then, a lot of work employed the dichromatic reflectance model to

separate the diffuse and specular reflection components [89, 138, 139, 156, 83, 127,

182, 6, 136]. Another effective technique to separate the reflection components

is based on polarization. Wolff and Boult [176] utilized linear polarization to re-

move the specular reflection component of the observed image. Many researchers

also used linear or circular polarization [115, 25, 102, 46]. Both of the methods

based on color and polarization can be combined since both are in complementary

relationship [121, 98, 82, 168, 172]. Moreover, other clues are used to separate

the diffuse and specular reflection components. Ikeuchi and Sato [72] used both a
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range and brightness images. Nishino et al. [128] assumed a known geometry of an

object to separate view-independent, as diffuse, and view-dependent, as specular,

components. Mukaigawa et al. [113] analyzed the reflection components based on

photometric linearization. Mallick et al. [104] formulated a decomposition model

based on locally spatial and spatio-temporal interactions. Tao et al. [161] used

line consistency based on relationship between light field data and the dichro-

matic model. Interreflections are often targeted as other reflection component,

which is a phenomenon of multiple reflections within a scene. Seitz et al. [145]

proposed a theory of inverse light transport to separate interreflections into each

bounce component. Bai et al. [11] developed a duality theory of forward and in-

verse light transports and then separated interreflections. Fu et al. [38] proposed

a separation method of interreflections from a single image using fluorescence.

A lot of decomposition work for optical phenomena has been introduced above.

Another approach is intrinsic image decomposition, which is to separate an image

into two intrinsic components; a reflectance image and a shading image [14]. The

reflectance image contains intrinsic colors of surface points which are independent

of an illumination, while the shading image includes various effects of lighting,

such as shadows, specular highlights, and shading. This topic is related to that

of this thesis but the intrinsic image is different from the physics-based image,

which is based on physical phenomenon, such as reflection and scattering of light.

Light scattering is often regarded as a component to be removed because it

disturbs the measurement methods. Gilbert and Pernicka [48] removed the single

scattering component in water by using circular polarization. Many polarization-

based methods were proposed for removing scattering component toward clear

appearance in hazy atmosphere [142] and muddy water [165]. Ghosh et al. [47]

modeled the layered facial reflectance consisting of specular reflection, single

scattering, and shallow and deep subsurface scattering components by using a

polarization-based method to achieve high quality rendering. Kim et al. [85] fused

the polarization technique with a light field camera to decompose specular reflec-

tion, single scattering, and scattering in different layer components. Narasimhan

and Nayar [119, 120] analytically modeled light scattering in atmosphere and

then proposed a method to remove scattering components of fog and haze. Wu

and Tang [181] decomposed the diffuse and specular reflection and subsurface
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scattering components based on the model proposed by Lin and Lee [99]. Na-

yar et al. [122] proposed an effective method to fast separate direct and global illu-

mination components, called high frequency illumination. Gupta et al. [55] com-

bined high frequency illumination with the polarization technique to remove scat-

tering components. Mukaigawa et al. [114] extended high frequency illumination

to separate the single and multiple scattering components. Decomposition also

plays an important role for understanding optical phenomena. Fuchs et al. [40]

employed confocal imaging for descattering. Kim et al. [84] removed the scat-

tering components by analyzing light field data. Various motivations exist for

decomposition methods. Light scattering causes an unclear image in atmosphere

and water. Many methods proposed to remove the effect of scattering and obtain

a clear image [48, 119, 120, 142, 77]. The removed scattering component can be

use for reconstructing a depth map [31]. The effect of scattering depends on the

distance. Thus, the distance can be estimated once the scattering component is

extracted. The scattering component plays an important role in such a method,

while that component is often regarded as an obstacle.

2.2. Temporal decomposition

Analyzing physics-based images in the time domain is a relatively new topic in

computer vision but important to directly understand interreflections and scatter-

ing of light. Wu et al. [179] developed a method to decompose diffuse reflection,

inter-reflection, and subsurface scattering based on the temporal response of a

femtosecond-pulsed laser. Interferometer [49] and holography [80] are also used

for time-resolved decomposition of images. As we can imagine, light reflected

once in a scene after emission from a system, which has a light source and a

detector, is arriving at the detector faster than light reflected twice. Resolving

the multi-path problem in the time-of-flight camera is an active research topic

and it has been studied by assuming the two-bounce or simplified reflection mod-

els [41, 30, 51, 76], K-sparsity [18, 37, 134], parametric model [64, 87], consistency

between ToF and stereo [94], simplified indirect reflections [117], and large-scale

multi-path [78]. Direct and indirect light transport can also be decomposed by

the time-resolved approach [130, 56]. The temporal decomposition approach can
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be used to recover the shape of transparent and translucent objects [148, 157].

Decomposing interreflection components reveals a response signal from a scene

which cannot directly be seen by a camera, which is applied for non-line-of-sight

imaging [170, 64, 78, 167]. Saponaro et al. [137] used the FIR radiation compo-

nent to classify materials. When heating or cooling a material, a spatio-temporal

observation of the radiation characterizes the material property. Mu et al. [112]

employed a temporal measurement using single-photon avalanche diode (SPAD)

to extract directly transmitted light. Stoppa et al. [152] also used SPADs for

time-resolved fluorescence measurements.

2.3. Spectral decomposition

Traditional hyperspectral imaging employs a number of narrow band filters [162],

a tunable narrow band filter [42, 109], and diffractive media [67, 32]. In general,

methods based on a narrow band filter are time-consuming because it is necessary

to capture a scene multiple times with a number of different filters. Methods

based on diffractive media such as a grating and a prism also requires long time

to capture a scene because its hyperspectral image consists of multiple columns

obtained by push-broom imaging. Most commercial hyperspectral cameras are

based on those traditional approaches that are time-consuming and costly. To

deal with those problems, there are many alternative approaches.

There have been a number of methods for multispectral/hyperspectral imag-

ing in computational photography. Most of the methods rely on active illumina-

tion. D’Zmura [33] recovered spectral reflectance through estimating coefficients

in a linear model using a set of illumination patterns whose spectra are inde-

pendent from each other. Park et al. [133] reconstructed a multispectral video

by capturing a scene under multiplexed illumination which is combinations of

different LEDs. Chi et al. [22] selected an optimized set of wide band filters to

estimate spectral reflectance. They put the set of filters in front of a light source

instead of a camera. Han et al. [60] proposed a method to fast recover the spectral

reflectance by using a DLP projector and a high-speed camera. Instead of active

illumination, Oh et al. [129] proposed a framework for reconstructing hyperspec-

tral images by using multiple consumer-level digital cameras. They employed
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small differences of spectral sensitivities along multiple cameras for reconstruct-

ing a hyperspectral image. However multiple cameras are necessary to implement

this method. Although those methods are very effective to make hyperspectral

imaging more accurate and easier to be used, they still require expensive and

specialized equipments.

Several methods for one-shot hyperspectral imaging have been proposed. Mo-

rovic and Finlayson [111] proposed a method to estimate spectral reflectance from

a single RGB image. It is impossible to establish a unique correspondence between

an RGB vector and spectral reflectance because the dimension of reflectance is

higher than that of an RGB vector. Therefore, they made strong assumptions

that reflectance follows a normal probability distribution and is smooth, and

then trained a model under some conditions to which reflectance must adhere.

Abed et al. [2] proposed a linear interpolation method using lookup tables. In a

case of a scene under the same illumination, the reflectance of a polytope that en-

closes an RGB point in the scene is used for interpolation. And Nguyen et al. [126]

introduced a non-linear mapping strategy for modeling the mapping between an

RGB value and a spectra. Those one-shot hyperspectral imaging techniques are

effective to some extent but their accuracy highly rely on the dataset for train-

ing. Others for one-shot hyperspectral imaging are computed tomography image

spectrometers [58], which obtains diffracted signals by slicing a hyperspectral

image as a 3D data through a diffraction grating, and coded aperture snapshot

spectral imagers [9], which employs compressive sensing by dispersive elements

and a coded aperture. Both of the methods can estimate the 3D data from the

diffracted signals but still require expensive and specialized equipments. Man-

akov et al. [106] proposed a camera add-on using a kaleidoscope for high dynamic

range, multispectral, polarization, and light-field imaging. Their work looks sim-

ilar to our idea but they copied the input image onto 3×3 images, and then used

9 selected color filters. On the other hand, our basic idea is to use only a color

filter and put the filter on the reflectors, that is totally different from the work

by Manakov et al..

There are several methods using spectral imaging to separate some compo-

nents. Fu et al. [39] separated the reflection and fluorescence components using

high frequency illumination in the spectral domain. Asano et al. [10] extracted the
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absorption component from a subtraction between images at different wavelengths

and then used it to recover the shape of an object in water. Wind and Szyman-

ski [175] separated the scattering and transmission components using based on

Beer-Lambert law.

2.4. Photometric measurements of shape

In general, there are two types of methodologies to obtain a shape of an object.

One is a passive method, such as stereo camera [141] and multi-view stereo [144],

which is preferred for obtaining a large-size object, e.g. buildings. Another is an

active method, such as structured light [140] and time-of-flight sensing [150, 35],

which is practical for obtaining a detailed shape, e.g. industrial products and

human face. In this thesis, the active method is focused on because of its prac-

ticality. There have been many active methods for obtaining depths as a shape

clue, as given above, but reconstructing surface orientations is also important to

obtain a detailed shape.

The photometric stereo has been a broad interest in the computer vision field.

The Lambertian photometric stereo [177] is a standard way to recover the sur-

face normal by assuming Lambert reflection, no optical effect such as shadow

and scattering, orthogonal projection, and parallel lights. Since the traditional

photometric stereo assumes the diffuse reflection, it does not work well for glossy

surface. A solution is to separate the specular reflection component based on the

dichromatic reflectance model in preprocessing [143, 138, 139]. To apply the Lam-

bertian photometric stereo for a non-Lambert surface, other optical components

need to be separated by pattern projection [124], polarization [123], and fluores-

cence [164]. Inoshita et al. [73] improves the photometric stereo for translucent

objects using surface normal deconvolution, Ngo et al. [125] use a polarization

cue to recover a smooth surface, and Murez et al. [116] develop a photometric

stereo in a scattering media that consider the blur depending on the distance.

While these methods jointly compensate for the global light transport in their

solutions, we aim to separate the far infrared light transport.
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2.5. Photometric measurements of visual textures

Color is an important factor for visual textures and it can be obtained through

spectral analysis, as mentioned in Section 2.3. Decompositions can be used to

measure a slice of BRDF [118], Other important factors are translucency and

glossiness. Translucency of a material is derived from scattering and absorption

parameters. Thus, methods to measure the parameters [54, 103] are regarded

as ones to obtain the translucency of a material. Obtaining and reproducing

the translucency has been studied in computer vision and graphics [12, 28, 50].

Glossiness of a material is often studied as directional reflectance. In fact, the

glossiness is more affected by micro-surface structure than its material. Thus,

measurement of bi-directional reflectance distribution functions (BRDFs) can be

regarded as obtaining the glossiness [34, 36, 101].

Currently, the main application of obtained visual textures is to virtually ren-

der photorealistic graphics via physically-based rendering. However, a relatively

new application, physically reproduction of the visual textures, is challenged in

this thesis. To control color, a factor of the appearance, there are some commer-

cial 3D printers that can build a colorful object. Brunton et al. [20] increased the

number of controllable colors in 3D printing by utilizing natural error diffusion.

Weyrich et al. [174] controlled glossiness, a factor of the appearance, by using a

CNC router. Hašan et al. [62] and Dong et al. [27] controlled translucency, also

a factor of the appearance, by using a 3D printer. Papas et al. [132] replicated

both of the color and translucency by mixing different pigments.
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Chapter 3

Optical decomposition using

multiple-weighted measurements

An observed image is composed of multiple components based on optical phe-

nomena, such as light reflection and scattering. However, most scene analysis

methods in computer vision assume only simple optical phenomena as explained

in Chapter 1. Thus, decomposition methods are important for various computer

vision tasks because unexpected optical components in the observed image could

disturb the scene analysis methods.

Various optical components have been targeted for decomposition so that only

an expected component is extracted because the expected component is different

with respect to the scene analysis methods. For example, a polarization-based

method [176] is expected as removing specular reflection component. An active

method using a projector-camera system [122] supposes to separate direct and

indirect illumination components. However, the polarization-based method also

removes single scattering component and the direct illumination component still

has various components such as diffuse and specular reflection. Combining those

different methods could enable to decompose into more detailed components but

no general approach to combine them exists.

In this chapter, we propose a general approach to combine different decom-

position methods in a linear algebraic manner, called multiple weighted mea-

surements. With a novel perspective, a decomposition method can be regarded

as a weighted measurement, which weakens some of all components with some
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weights derived from the method. A weighted measurement is formulated in a lin-

ear algebra, which makes it possible to combine different kinds of decomposition

methods.

Experimental results show that the proposed approach decomposes observed

images into four optical components based on diffuse and specular reflection and

single and multiple scattering. The decomposed components are applied to ma-

terial segmentation as an application.

3.1. Multiple weighted measurements

An intensity on an image observed by a conventional camera is mixture of signals

derived from various optical phenomena, such as light reflection and scattering.

Assuming m components in the mixture, the observed image s ∈ R
P is written

as below;

s =
m∑
i=1

ci, (3.1)

where P is the number of pixels in an image and ci ∈ R
P(1 ≤ i ≤ m) is a com-

ponent image. The purpose of this chapter is to obtain each component image

ci from multiple observations. The component images can be defined in various

manners, e.g., diffuse and specular reflection, single and multiple scattering, or

direct and global illumination components. If a method which individually mea-

sures each of the components can exist, then no decomposition method is required.

However, such an individual measurement does not exist and that is why there

are a lot of decomposition methods. Even so, the decomposition methods do not

still provide the individual measurement. For example, a decomposition method

using polarization is expected to separate the specular reflection component from

others but the separated specular reflection component by polarization still in-

cludes the single scattering component. Thus, we regard a decomposition method

as extraction of a part of the mixture, named a weighted measurement. The de-

composition method weakens some components with a weight vector w ∈ R
m;

w = [w1w2 · · ·wm]
� . (3.2)
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The observed image s can be expressed by using the weight vector w, as follow;

s =
m∑
i=1

wici. (3.3)

The weighted measurement is formulated in matrix form, as follow;

s = Cw, (3.4)

where C = [c1c2 · · · cm] ∈ R
P×m as a component matrix.

Given n(≥ m) different weighted measurements, an observed image sj(1 ≤
j ≤ n) by each of the measurements with a weight vector wj is formulated as

below;

sj = Cwj. (3.5)

All the measurements can be expressed in matrix form, as below;

S = CW , (3.6)

where S = [s1s2 · · · sn] ∈ R
P×n, an observation matrix, andW = [w1w2 · · ·wn] ∈

R
m×n, a weight matrix, that is called multiple weighted measurements.

Decomposition which this chapter aims at is to obtain the component matrix

C. When the shape of the weight matrix is square, n = m, and the rank of the

matrix is full, rank(W ) = m, then the component matrix C can be computed by

C = SW−1. (3.7)

When the shape is horizontally-long rectangle, n > m, and rank(W ) = m, then

the component matrix Ĉ is estimated in a least squares manner, as follow;

Ĉ = SW+ = S(W�W )−1W�, (3.8)

where W+ is the pseudo inverse matrix of W . Finally, the decomposition is

performed in a linear algebraic manner, given a set of weighted measurements.

Additionally, the rank of the weight matrix reveals feasibility of the decompo-

sition in advance, before performing measurements. The decomposition is feasible

only if the rank is full, rank(W ) = m. Otherwise, other measurement methods

are required so that the rank is full. According to the nature of least squares, the

larger number of combinations is, the more stable solution is estimated, even if

the rank is full.
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3.2. Decomposition of reflection and scattering

components

In the previous section, we explained the theory of multiple weighted measure-

ments. A key of the proposed approach is to design the weight matrix W so that

the decomposition becomes feasible. However, we cannot arbitrarily design the

weight matrix because a weight vector is derived from a measurement method.

This section describes how to build the weight matrix as an implementation.

3.2.1 Light reflection and scattering components

An observed intensity at a point is mixture of various optical components. Fig-

ure 3.1(a) illustrates light reflection and scattering phenomena at the point. Light

reflection is often classified into two components; diffuse and specular reflection.

Diffuse reflection arises because of a microfacet structure on object surface. On

the other hand, specular reflection arises at an interface between the air and the

object surface (Fig. 3.1(b)).

Light scattering is also classified into two components; single and multiple

scattering, according to researches in computer vision [21, 114] and physics [71,

108]. Single scattering is caused by one-bounce collision with a particle, or par-

ticle aggregation, inside an object, which is often seen in optically thin media

(Fig. 3.1(c)). A well-known nature of single scattering is that an intensity of

single scattering exponentially decays along its light path. On the other hand,

multiple scattering is a phenomenon of multi-bounce collisions, which is often

seen in optically thick media (Fig. 3.1(c)).

In this chapter, we aim at decomposing observed images into the above four

optical components; diffuse and specular reflection and single and multiple scat-

tering. Interreflections are not explicitly modeled in this implementation. Since

interreflections and multiple scattering phenomena are similarly based on multi-

bounce collisions with surfaces and inside particles, respectively (Fig. 3.1(d)),

both of the components are included in the multiple scattering component.
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Figure 3.1: Light reflection and scattering. (a) Reflection and scattering phe-

nomena at a point. (b) Reflection is classified into two components; diffuse and

specular reflection. (c) Scattering is also classified into two components; single

and multiple scattering. (d) Interreflections and multiple scattering phenomena

are similarly based on multi-bounce collisions.
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Figure 3.2: Observed images by several separation methods. (a) under an ordi-

nary illumination, (b) circular polarization, (c-d) direct and global components by

high frequency illumination, (e-f) direct and global components by sweeping high

frequency illumination, (g-h) direct and global components by high frequency

illumination with circular polarization.
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3.2.2 Definition of measurement weights

Now we define weight vectors wj to the four components as previously described.

We consider four distinct weight elements which correspond to the four compo-

nents, i.e., diffuse reflection wDR, specular reflection wSR, single scattering wSS, and

multiple scattering wMS. By definition, each weight is in a range of 0 ≤ wi ≤ 1.

Therefore, a weight vector w ∈ R
4 is explained as

w = [wDR wSR wSS wMS]
�. (3.9)

In the following, we describe separation methods and their corresponding

weight vectors. Note that the weight vectors are theoretically determined from

the methodology, instruments, and experimental setup.

Normal observation

An image taken under an ordinary illumination, e.g., the uniform white illumina-

tion, condition contains all of the four components. We treat this observation as

the one that contains all the components equally without reduction of anything.

Therefore, the weight vector is defined as

wNML = [1 1 1 1]�. (3.10)

Figure 3.2(a) shows an image taken under white illumination projected by a

projector. In the scene, there are a marble stone, two billiard balls, and three

coins.

Circular polarization

Techniques based on circular polarization can separate specular reflection [176, 46]

and single scattering [48, 165] from other components. The nature of circular po-

larization is that right-handed (or left-handed) circularly polarized light cannot

transmit through a left-handed (or right-handed) circular polarizer. Since one-

bounce collision reverses the handedness of the polarized light, specular reflection

and single scattering, which are derived from one-bounce collision with a surface

and an inside particle, respectively, change the handedness of the polarized inci-

dent light. On the other hand, multi-bounce collisions, such as diffuse reflection
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and multiple scattering, turn polarized light into unpolarized one. Therefore,

putting a same-handed circular polarizer in front of both a light source and a

camera can remove specular reflection and single scattering.

However, in practice, a polarizer does not have a perfect capability for light

transmission and shielding but the single transmittance ts and the crossed trans-

mittance tc. The single transmittance ts is the ratio of the power of light passed

through the polarizer to that of the incident unpolarized light. The crossed

transmittance tc is the ratio of the power of light passed through the one-handed

polarizer to that of the incident opposite-handed polarized light. Thus, the weight

vector is defined as

wCP = [t2s tstc tstc t
2
s]

�. (3.11)

Figure 3.2(b) shows an observed image by using a circular polarization technique

in the same scene. We simply put a circular polarizer in front of the projector

and the same-handed circular polarizer in front of the camera. As we can see,

the coins cannot almost be seen and the highlights on the balls was removed.

High frequency illumination

High frequency illumination, proposed by [122], can separate direct and global

illumination components in a scene from observed images under spatially high

frequent pattern illuminations, such as a checkerboard pattern. The direct il-

lumination component includes directly reflected light on surfaces in the scene

and the global one includes others, such as in-directly reflected light, scattered

light, and transmitted light. For the details we refer the reader to [122]. In this

instance, the direct and global illumination components correspond to reflection

and scattering ones, respectively. Thus, the weight vectors for the direct and

global illumination components are defined as{
wHFI

D = [1 1 0 0]�,

wHFI
G = [0 0 1 1]�.

(3.12)

Separated direct and global illumination components in the scene are shown

in Fig. 3.2(c) and (d), respectively. Since the marble stone is a translucent ob-

ject, the intensity on the marble stone region is mostly included in the global

component. The billiard balls are also translucent to some extend, so the texture
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on the ball, e.g.the number 3, is blurred in the global component while that is

clear in the direct one. We can see specular interreflections on the white ball,

which is reflected on the ball again after being reflected on the coins.

Sweeping high frequency illumination

Mukaigawa et al. [114] have proposed sweeping high frequency illumination, which

can separate single and multiple scattering components in a scene by project-

ing spatially high frequent stripe patterns, inspired by high frequency illumina-

tion [122]. The separated direct component includes not only light reflection but

also single scattering, while the global one includes the others, such as multiple

scattering and intereflections. Therefore, the weight vectors for the direct and

global components are defined as{
wSHFI

D = [1 1 1 0]�,

wSHFI
G = [0 0 0 1]�.

(3.13)

Separated direct and global components in the scene are shown in Fig. 3.2(e)

and (f), respectively. Comparing with that in the direct component of high

frequency illumination (c), the marble stone region in the direct component (e)

is brighter because the single scattering component is included.

New combination: high frequency illumination with circular polariza-

tion

A combination of several separation methods let us define another weight vector.

For example, we combine the high frequency illumination technique with the cir-

cular polarization technique. It is easily implemented with the projector-camera

system, which is used to implement the high frequency illumination, and a pair

of the same-handed circular polarizers. The combination can separate direct and

global components, similar to the results of high frequency illumination, but the

specular reflection and single scattering components are removed in both of the

components. In this instance, each element of a new weight vector is the product

of corresponding elements of the weight vectors; Eqs. (3.11) and (3.12). Thus,
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the weight vectors are defined as{
wHFICP

D = wHFI
D ◦wCP = [t2s tstc 0 0]�,

wHFICP
G = wHFI

G ◦wCP = [0 0 tstc t
2
s]

�,
(3.14)

where ◦ is the Hadamard product operator. Note that the new weight vec-

tors, Eq. (3.14), are linearly independent of those of the circular polarization,

Eq. (3.11), and the high frequency illumination, Eq. (3.12). This is a way that we

can obtain a new weighted measurement by simply combining several separation

methods.

Figure 3.2(g) and (h) shows separated direct and global components, respec-

tively. As we can see, the specular reflection component is removed in the direct

component (g). Actually, there exists specular interreflections in the global com-

ponent of high frequency illumination (d), e.g., coins. However, in the global

component (h), those are perfectly removed thanks to the effect of circular po-

larization.

3.2.3 Weight matrix

We employ the five weighted measurements, as described above, to implement the

multiple weighted measurements for decomposition into four components; diffuse

and specular reflection and single and multiple scattering. In this instance, the

weight matrix W ∈ R
4×8 consists of the eight weight vectors, as

W = [sNMLwNML sCPwCP sHFIwHFI

D sHFIwHFI

G

sSHFIwSHFI

D sSHFIwSHFI

G sHFICPwHFICP

D sHFICPwHFICP

G ] , (3.15)

where sj is the global scales for each weighted measurement. The scales are

decided by an experimental setup. In practice, the scales are normalized to

one because the experimental setup is not changed while performing all of the

weighted measurements. The eight weight vectors do not have to be linearly

independent to each other as long as the wights matrix W has a full-rank.

For example, [wNML wHFI
D wHFI

G ] consists of linearly dependent columns because

wNML = wHFI
D + wHFI

G . However, all of them can be combined together in the

weight matrix W for a stable computation. Designing a weight matrix can be
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done ahead before measuring and computing, that is, the rank analysis of the

designed weight matrix let us know whether decomposition is feasible, or not, in

advance. In this instance, the weight matrix W has full-rank because ts � tc for

a general polarizer. Therefore, the decomposition is a well-posed problem.

In fact, the rank of the weight matrix W can be systematically analyzed in

this case. Let us consider the product WW� ∈ R
4×4. Its determinant has a

closed-form expression as

det(WW�) = t2s(ts − tc)
2(15t4s + 24t2stc(tc − ts) + 16). (3.16)

Therefore, with the condition ts � tc > 0, the determinant becomes positive; the

weight matrix W is full-rank. In practice, the conditioning of the weight matrix

W is more important for the stability of the pseudo inverse W+. One of the

ways to evaluate the conditioning is to assess the ratio between the largest and

smallest singular values, σmax and σmin, of the weight matrix W , which can be

numerically computed as

κ(W ) =
σmax

σmin

. (3.17)

κ(W ) is often called the condition number of W .

3.3. Experiments

First, we verify a result of the decomposition by the proposed approach. In the

verification, we use a simple scene where there are some typical materials in Sec-

tion 3.3.1. Second, we analyze the repeatability of the decomposition and the

effect of each of the weighted measurements in Section 3.3.2. Finally, we per-

form the decomposition in various complex scenes and discuss the decomposition

results in Section 3.3.3.

We begin at describing the experimental setup in this section. In all of the

experiments performed in this chapter, we use a 3M MPro160 projector as a light

source and a Point Grey Research Chameleon color camera as a recording device,

as shown in Fig. 6.6(a). To employ the circular polarization technique, we used

two circular polarizers, Kenko SQ Circular-PL with ts = 0.399 and tc = 0.0005

as the product-specific values. In measurements of the polarization approach, we

put them in front of the projector and the camera, as shown in Fig. 6.6(b). For
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(a)

(b)

(c) (d)

Camera

Projector

Polarizer
Polarizer

Figure 3.3: Experimental setup. (a) Locations of the camera and the projector.

(b) Circular polarizers placed in front of both of the camera and the projector.

(c) a part of a checkerboard pattern used for high frequency illumination. (d) a

part of a dotted line pattern used for sweeping high frequency illumination.

the high frequency illumination, we project several checkerboard patterns whose

block size is a 3×3 pixels square, as shown in Fig. 6.6(c). Figure 6.6(d) illustrates

a dotted line pattern for the sweeping high frequency illumination, which also

consists of only vertically, or horizontally, repeated 3× 3 pixels squares.

In the experiments in this chapter, we employ all of the weighted measure-

ments, described in Section 3.2.2, to obtain the observation matrix S. Since

the weight matrix W is defined as Eq. (3.15), we can compute the component

matrix Ĉ by Eq. (3.8), that is, we can obtain the decomposition into diffuse

and specular reflection and single and multiple scattering components. Note that

all of the weighted measurements are done under the same experimental setup.

Thus, we assume all of the global scales in Eq. (3.15) have been normalized.
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3.3.1 Verification

To verify the decomposition by the proposed approach, we use a simple and well-

designed scene, as shown in Fig. 3.4(a). The target scene consists of four typical

materials; a ceramic board, a duralumin plate, a block of milky epoxy resin, and

a cylinder of polyoxymethylene (POM) resin. On a surface of matte ceramics,

light tends to be evenly diffused for all angles because of its microstructure. Du-

ralumin, a type of aluminum alloys, strongly reflects light on its surface, therefore

a specularity becomes dominant. Both of the resins are translucent media but

they have different translucencies, as shown in Fig. 3.4(b). The block of milky

epoxy resin consists of an optically thin medium, thus we can observe a light ray

in the medium, which is a feature of single scattering and depends on the incident

light angle. On the other hand, in a optically thick medium, such as the cylinder

of POM resin, the observed light does not depend on the incident light angle but

evenly spreads because of multiple scattering.

We observed the scene with the five weighted measurements and then decom-

posed them into the four optical components by computing Eq. (3.8). The decom-

posed result is shown in Fig. 3.4(c-f), which are (c) diffuse reflection, (d) specular

reflection, (e) single scattering, and (f) multiple scattering components. To an-

alyze the result, we computed the averages of intensities in each material region

on each optical component image and summarized the proportion of the averages

in Fig. 3.4(g). As similar to our expectation, the dominant optical components

varied across the materials; diffuse reflection became dominant in the ceramic

board (78.7%), specular reflection in the duralumin plate (68.1%), single scat-

tering in the block of milky epoxy resin (41.0%), and multiple scattering in the

cylinder of POM (50.6%). Consequently, the verification shows that the decompo-

sition by the proposed approach leads a significant decomposition of observations

into the four optical components; diffuse and specular reflection and single and

multiple scattering, while it is difficult to quantitatively analyze its performance.

Note that the decomposition cannot be achieved by applying any of the existing

separation methods.
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Figure 3.4: Verification. (a) The target scene consists of four materials; a ce-

ramic board, a duralumin plate, a block of milky epoxy resin, and a cylinder

of polyoxymethylen (POM). (b) The resins have different scattering properties.

The observations are decomposed into four components; (c) diffuse and (d) spec-

ular reflection and (e) single and (f) multiple scattering components. (g) The

proportion of the averaged intensities in each material region.
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Table 3.1: Evaluation of the effect of each of the weighted measurements. We

performed the decomposition without one of the weighted measurements and

compared the result with that with all of them in PSNR[dB].

Removed measurement
Diffuse
reflection

Specular
reflection

Single
scattering

Multiple
scattering

Normal observation 25.5 26.7 24.1 26.8

Circular Polarization 25.2 26.4 24.1 26.6

High Frequency Illumination 26.3 27.6 25.2 26.1

Sweeping Hight Frequency

Illumination
25.3 26.4 24.6 24.4

High Frequency Illumination

with Circular Polarization
26.8 26.9 24.1 26.5

3.3.2 Analysis of decomposition results

We analyze the decomposition with two different perspectives. First, we show

the repeatability of the decomposition. We take each weighted measurement

five times under the same experimental setup, and then compare decomposition

results. Each of the decomposition results is evaluated in peak signal-to-noise

ratio (PSNR) between the others. The comparison resulted in 42.1[dB] in PSNR

on average with the standard deviation of 1.36[dB]. The average (and the standard

deviation) of PSNRs for diffuse and specular reflection and single and multiple

scattering components are 42.1(1.58), 42.0(1.42), 42.2(1.15), and 42.0(1.24)[dB],

respectively. Consequently, it shows that the repeatability of the decomposition

by the proposed approach is quite high.

Second, we evaluate the effect of each of the weighted measurements by com-

paring the decomposition result with all of them and that without one of them. As

shown in Table 3.1, the comparison results say that disusing one of the weighted

measurements leads to a large change in a decomposition result. This is because

the total number of weight vectors is few, thus W+ is significantly changed. For

example, when the circular polarization is disused, the PSNRs for diffuse and

specular reflection and single scattering components become the lowest. That is,

the circular polarization is important for the decomposition. On the other hand,
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the PSNRs when disusing the high frequency illumination are relatively high.

This is because of the redundancy of the multiple weighted measurements.

3.3.3 Decomposition in complex scenes

We apply the decomposition to more realistic and complex scenes, where there

are various everyday objects, as shown in Fig. 3.5. The scene (a) consists of

plastic cards, coins, wax candles, and a plastic cup of soap water, the scene (b)

consists of a mechanical pencil, a leather pen case, an eraser, an aluminum ruler,

and a sticky-paper, and the scene (c) consists of coins, phenolic billiard balls, and

a marble stone. Figure 3.5(c) shows the decomposed results; diffuse and specular

reflection and single and multiple scattering components, respectively, from left

to right.

In the diffuse reflection, single scattering, and multiple scattering components,

an intensity is observed to some extent on all the materials except for metals, such

as the coins and the ruler. This is because of subsurface scattering, as mentioned

in [173, 92]. Almost all real-world materials are translucent to some extent except

for metals. In the specular reflection component, an intensity is observed not only

on metal materials but also on other materials because specular reflection arises

on a smooth surface, such as the surface of the billiard balls. The scattering

media, such as the wax candles, the eraser, and the marble stone, show strong

intensities in the single and multiple scattering components. Optically thin media,

such as the soap water, the eraser, and the marble stone, show relatively stronger

intensities than the other materials in the single scattering component. Moreover,

the intensity in the single scattering component seems to depend on the shape of

an object, e.g., the edges of the wax candles have stronger intensities than other

parts. Note that we do not distinguish interreflections from multiple scattering in

this chapter, as mentioned in Section 3.2.1, so that interreflections in the scenes

are included in the multiple scattering component.

3.4. Application: Raw material segmentation

The decomposition enables a scene analysis in detail. In this chapter, a raw

material means unpainted and individually consisting of a single material. The

30
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Diffuse reflection
Multiple scattering
+ Inter-reflectionsSingle scatteringSpecular reflection
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(d)

Figure 3.5: Decomposition results in complex scenes. (a-c) the target scenes. (d)

the observations in each of the scenes are decomposed into diffuse and specular

reflection and single and multiple scattering components.
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(1) Blue paper
(2) Natural rubber

(7) Ceramic board

(3, 15) Acrylic board
(4) Wood
(5) Duralumin
(6, 9) Polyoxymethylen resin
(8) Milky epoxy resin
(10) Pink polyvinyl chloride resin
(11) Blue candle
(12) White candle

(16, 18) Polyethylene resin
(17) White paper

(13, 19) Polypropylene resin
(14) Cowhide

(1)
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Segmentation results

Figure 3.6: Raw material segmentation. (a) the target scene has 19 objects

with 13 different raw materials. (b-e) decomposed components by the proposed

method; diffuse and specular reflection and single and multiple reflection, respec-

tively. (f) segmented result by k-means clustering with different k values from

k = 2 to 13

goal of the raw material segmentation, similar to [100], where discriminative illu-

minations are used for classifying materials, is to classify materials in an image

based on the opacity and translucency. Since the proportion of optical compo-

nents carries significant information about the material property as we have seen

in Fig. 3.4(g). To show the potential of the decomposition, we perform the de-

composition in a scene, as shown in Fig. 3.6(a), where there are 19 objects with

13 different materials, and then apply a segmentation based on its decomposition

result.

We show the decomposition of observations into the four optical components

in Fig. 3.6(b-e), which are diffuse and specular reflection and single and multiple

scattering components, respectively. From the decomposition result, we form

a normalized 4-D feature vector, consisting of the four components, pixel by

pixel. And then we simply perform a conventional k-means clustering method as

segmentation to assess the effectiveness of the decomposition. The segmentation

results are shown in Fig. 3.6(f) with a varying parameter k(2 ≤ k ≤ 13). As a

visualization, the same color regions belong to the same segment.

When k = 2, the segmentation result clearly shows a distinction between
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opaque and translucent materials; the blue and green regions correspond to

opaque and translucent materials, respectively. When k = 3, Material 5 (du-

ralumin) is segmented as another isolated region because of its unique material

property, i.e., specular reflection is strongly seen on Material 5 because duralmin

is a type of aluminum alloys. When k = 4, Material 8 (milky epoxy resin) is

segmented as a blue-sky region because of its strong single scattering component.

When k = 5, Material 13 and 19 (polypropylene resins, PP) are segmented as a

different region. A PP resin is a translucent medium with an optically thinner

property than the other translucent media except for the milky epoxy resin. In the

segmentation result with k = 6, Material 4 (wood) and Material 14 (cowhide) are

separately segmented because both of them are opaquer than the other materials

segmented as the blue regions. When k = 7, Material 7 (ceramic) and 17 (paper)

are segmented as a new isolated region because of the fact that those materials

show stronger scattering components comparing with the other opaque materials.

When k = 8, Material 7 (ceramic) is separated as another region. When k = 9,

Material 3, 15 (Acrylic) and 10 (polyvinyl chloride resin) are mainly separated.

However, Material 16, 18 (polyethylene resins, PE), Material 11, and 12 (candles)

are partially separated even though they consist of one material. This is because

of the colors and the angle of illumination. When k = 10, Material 2 (rubber)

is separated from Material 1 (paper). When k = 11, 12, some regions on the

same materials are separated because of the angle of illumination. The result at

k = 13 has only 12 segments which are the same as k = 12. Consequently, the

translucent materials are classified into six types and the opaque materials into

six. This application shows that it is reasonable to classify various opaque and

translucent materials based on the decomposition by the proposed approach.

Additionally, we compare the segmentation result with a conventional base-

line one. Assuming that only RGB channels are available for segmentation, we

performed k-means clustering with k = 7 in the RGB space, which resulted

in Fig. 3.7(a). Apparently, it is difficult to separate segments based on material

properties by using a color-based segmentation approach. Comparing with that,

the segmentation result by our approach shows a segmentation based on material

properties, as shown in Fig. 3.7(b).
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(a) (b)

Figure 3.7: Comparison of segmentation results. (a) segmented result in the RGB

space. (b) segmented result based on the decomposition.

3.5. Discussion

In this chapter, we proposed the general approach, called Multiple Weighted Mea-

surements, which enables to uniformly combine any kind of separation methods,

such as color-based, polarization-based, and active projection-based, to finely de-

compose observations. As an implementation, we defined the weight vector of five

different weighted measurements and combined them in the proposed approach

to decompose observations into four optical component; diffuse and specular re-

flection and single and multiple scattering components. The experimental veri-

fication showed that the decomposition was reasonable because the proportions

of decomposed components were similar to the expectation based on physical

property for each material region on the image. In the experiments we performed

the decomposition in the various complex scenes. We also showed the possibility

of its application for raw material segmentation. The decomposition enables a

novel segmentation based on the opacity and translucency of materials unlike a

conventional segmentation based on the colors.

There are a few limitations in the proposed approach. First, a shadow is not

explicitly handled in the linear formulation (Eq. (3.1)). This may yield an unmod-

eled error in the shadow region as computing the decomposition. Second, unmod-

eled components are erroneously included in some of the four components. There

exist other optical phenomena, such as refraction and fluorescence, although only

the four components has been introduced in the chapter. For example, refracted
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light on the plastic cup of soap water in the target scene (a) in Fig. 3.5 can be seen

in the diffuse component. Third, since it is based on a combination of multiple

separation methods, a scene has to be static and the total processing time is a

summation of ones for which individual separation methods take. The first limi-

tation is a challenging problem to be solved but worthy to be considered in order

to expand the applicability of the decomposition. In order to resolve the second

limitation, a method which can separate the other components must be added to

the proposed approach. The third limitation cannot essentially be resolved but

the total processing time can be reduced if the target components are confined.

As shown in Table 3.1, the implemented combination has a redundancy for the

decomposition. That is, there must exist the optical combination corresponding

to a target component. If the number of combined measurements is reduced, the

total processing time also reduces.
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Chapter 4

Controlling translucency by UV

printing on a translucent object

Digital fabrication tools, such as 3D printer and CNC router, allow us to easily

build a complex-shaped object, and hence are often applied to make a custom-

built object, e.g., personal prosthetic limb. Since not only shape but also appear-

ance is an important factor for our visions, techniques to control the appearance

in digital fabrication are required.

To control color, a factor of the appearance, there are some commercial

3D printers that can build a colorful object. Brunton et al. [20] increased the

number of controllable colors in 3D printing by utilizing natural error diffusion.

Weyrich et al. [174] controlled glossiness, a factor of the appearance, by using a

CNC router. Hašan et al. [62] and Dong et al. [27] controlled translucency, also

a factor of the appearance, by using a 3D printer. Papas et al. [132] replicated

both of the color and translucency by mixing different pigments. The above

methods for controlling the translucency modify inside of the object. In contrast,

our purpose is also to control the translucency but by modifying outside of the

object.

In this chapter, we propose a method to control the translucency by using

a UV printer, which can print 2D patterns on 3D objects consisting of various

materials, such as plastic and metal. When putting an ink on a base material,

the translucency of the printed object depends on both the translucency of the

material and ink because of subsurface scattering, as shown in Fig. 4.1. The
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(a) Fabricated object (b) Subsurface scattering

Incident light

Base material

Ink layer

Figure 4.1: The translucency of a fabricated object. (a) The fabricated object

consists of a UV ink layer on a white wax. (b) Incident light is scattered inside of

both of the ink layer (red) and base material (blue), called subsurface scattering,

and hence the radiated light (purple) is mixture of them.

translucency can be modified by a combination of factors, such as base material,

color of an ink, and the number of printed layers. The proposed method controls

the translucency by UV printing through changing such a combination.

Three contributions of this chapter are to propose a novel approach using a UV

printer for controlling the translucency, fuse two different manners for resolving

tradeoffs, and implement the working system.

4.1. Controlling translucency by UV printing

In general, a UV printer prints the bottom layer with a matte white ink to remove

the translucency of base materials. On the other hand, we rather utilize the

translucency without printing the white layer. The translucency of the printed

object depends on both of the translucency of the base materials and inks, and

can be changed by a combination of the factors. If the translucency of the printed

objects in all combinations can be measured, it is easy to control the translucency

in an example-based manner. However, it is almost impossible to print and
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measure in all the combinations. Therefore, we fuse such a manner with a different

manner based on physics model.

The proposed method consists of measurement and fabrication steps, as shown

in Fig. 4.2. In the measurement step, the individual translucencies of the base

materials and inks are measured. The translucency of the printed object in a

combination is rendered based on a physics model. The translucency in all the

combinations can be rendered by simulation with few measurements. Therefore,

it enables to build a lookup table between the combinations and translucency,

like the example-based manner. In the fabrication step, given a query about

translucency, either measured or manually designed, a combination can be found

in the lookup table so that the translucency of the printed object is the most

similar to the query. The rest of this section explains the rendering method,

measuring the translucency, and building the lookup table and finding the best

combination.

4.1.1 Rendering the translucency of a layered object

The translucency of the printed object depends on both of the translucency of

the base material and ink, as mentioned above. A key feature is that the printed

object has a layered structure, as shown in Fig. 4.1(b). Thus, we apply Kubelka’s

layer model [91] to render the translucency. The original model formulates scalar

reflectance r and transmittance t of a two-layered object, as follow;⎧⎪⎪⎨
⎪⎪⎩
r = r1 + t21r2(1 + r1r2 + · · · ) = r1 +

t21r2
1− r1r2

,

t = t1t2(1 + r1r2 + · · · ) = t1t2
1− r1r2

,

(4.1)

(4.2)

where r1, t1 are the reflectance and transmittance of the top layer and r2, t2 those

of the bottom one, respectively. Now, let us take subsurface scattering into con-

sideration because it is a main cause why an object looks translucent. Since

subsurface scattering diffusely spreads light, it is modeled by point spread func-

tion (PSF). The PSF can also be separated into reflective and transmissive PSFs.

The reflective and transmissive PSFs of the top layer are defined as R1(x), T1(x),

respectively. As well, those of the bottom one are defined as R2(x), T2(x). The
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reflective PSF of the two-layered object is, therefore, written as

R(x) =R1(x) + ((T1 ∗R2) ∗ T1)(x)

+ ((((T1 ∗R2) ∗R1) ∗R2) ∗ T1)(x) + · · · , (4.3)

where ‘∗’ is the convolution operator. The transmissive PSF can also be written

as well but it is omitted here for saving the space. By Fourier transform, Eq. (4.3)

is transformed into

F [R] = F [R1] + F [T1]F [R2]F [T1] + · · ·

= F [R1] +
F [T1]

2F [R2]

1−F [R1]F [R2]
, (4.4)

where F [·] means Fourier transform and the argument x is omitted. If the PSFs

are isotropic, the imaginary parts in the frequency domain become zero. There-

fore, F [R] can be regarded as the reflective modulation transfer function (MTF),

which is defined as R̂(fx), where fx is the spatial frequency. Finally, the reflective

and transmissive MTFs of the two-layered object are written, as follow;⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
R̂(fx) = R̂1(fx) +

T̂1

2
(fx)R̂2(fx)

1− R̂1(fx)R̂2(fx)
,

T̂ (fx) =
T̂1(fx)T̂2(fx)

1− R̂1(fx)R̂2(fx)
,

(4.5)

(4.6)

where Â(fx) means the corresponding MTF to a PSF A(x).

Once the individual reflective and transmissive MTFs of the base materi-

als and inks are given, those of the printed object can be rendered by using

Eqs. (4.5) and (4.6). Recursively applying Eqs. (4.5) and (4.6), it is also possible

to render the MTFs of a multi-layered object.

4.1.2 Measuring the modulation transfer functions

The MTFs are employed for explaining the translucency, as mentioned above. In

this chapter, to measure the MTFs, we apply the modulated imaging, proposed

by Cuccia et al. [24] for measuring the quantitative scattering and absorption

coefficients of a medium. The modulated imaging is based on measuring MTFs
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Measuring UV inks

Rendering the translucency
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Lookup
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Figure 4.2: The whole system of the proposed method. That consists of mea-

surement and fabrication steps.

in a Pro-Cam system. Projecting a sinusoidal pattern onto the medium, light

scattering in the medium blurs the pattern, and hence the amplitude of the mea-

sured sinusoidal pattern is attenuated in comparison with that of the projected

one. The MTF consists of the rates of attenuation at different frequencies. We

refer the readers to [24] for the details.

We can directly measure the MTFs of the base materials in the Pro-Cam

system. However, it is impossible to directly measure the MTFs of the inks

because the ink layer has to be printed on an object. Therefore, we estimate

those by utilizing Eq. (4.5). As printing an ink whose reflective and transmissive

MTFs are R̂1(fx) and T̂1(fx), respectively, on a mirror, the reflective MTF of the

printed object M̂1(fx) is, as below;

M̂1(fx) = R̂1(fx) +
T̂1

2
(fx)

1− R̂1(fx)
, (4.7)

where we assume R̂2(fx) = 1 in Eq. (4.5) because of only specular reflection on

mirror. Also, as printing the same ink twice, the reflective MTF M̂2(fx) is, as

below;

M̂2(fx) = R̂1(fx) +
T̂1

2
(fx)M̂1(fX)

1− R̂1(fx)M̂1(fX)
. (4.8)

Now, the reflective and transmissive MTFs of the ink, R̂1(fx) and T̂1(fx), can be

estimated from Eqs. (4.7) and (4.8) at least because both of M̂1 and M̂2 can be
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measured. It is also possible to increase the number of the same ink layers and

then use it for a stable estimation in a least-squares method.

4.1.3 The lookup table

Finally, it is possible to build the lookup table by using the rendering method

with the measurements. The base materials should be translucent, such as rubber

and wax, not transparent and opaque. The lookup table is built by rendering in

all the combinations. Building the lookup table is a time-consuming process but

it is required only once.

In the fabrication step, given a query about translucency, a combination is

searched in the lookup table so that the translucency of the printed object is the

most similar to the query. Here, it is required to define distance for representing

how much a MTF is close to another. Thus, we employ a root-mean-square error

(RMSE) for that. The distance EAB between MTFs Â(fx) and B̂(fx) is defined

as

EAB =

√
1

|F|
∑
fx∈F

{
Â(fx)− B̂(fx)

}2

, (4.9)

where F is a set of discrete frequencies to be used for calculating the distance.

4.2. Experiments

We make experiments for evaluating the rendering method and the whole sys-

tem. For the measurements, we constructed a Pro-Cam system with a projector

(Vivitek QUMI Q8) and an RGB camera (FLIR Grasshopper3 Color). In the

experiments, we use three base materials; a plastic eraser, a wax candle, and a

piece of milky acrylic board.

4.2.1 Quantitative evaluation of the rendering method

The rendering method plays an important role in the proposed method because

the lookup table is based on that. Hence, firstly, we quantitatively evaluate the

rendering method. In this evaluation, the reflective MTFs of the printed objects

in several combinations are rendered and then compared with those which are

41



Figure 4.3: The rendered MTFs in comparison with the measured ones. (a) is a

case of the cyan on the plastic eraser and (b) the yellow on the acrylic board.

Table 4.1: The RMSEs of the rendered MTFs in comparison with the measured

ones.

Base materials

Inks Plastic eraser Wax candle Milky acrylic Average

Cyan 0.0242 0.0838 0.0548 0.0543

Magenta 0.0676 0.0726 0.0918 0.0773

Yellow 0.0741 0.1127 0.1861 0.1243

Average 0.0553 0.0897 0.1109 0.0853

measured through being fabricated. Here, we use three inks; cyan, magenta,

and yellow. As examples of the results, the rendered MTFs, as solid lines, and

the measured ones, as dashed lines, in three channels are shown in Fig. 4.3, in

which (a) is a case of the cyan on the eraser and (b) the yellow on the acrylic.

In Fig. 4.3(a), the rendered MTFs are very similar to the measured ones, whose

RMSE is on average 0.0242. On the other hand, in Fig. 4.3(b), both of them are

less similar, whose RMSE is on average 0.1861. The other RMSEs are witten in

Table 4.1 and the totally averaged RMSE is 0.0853. Since the range of reflectance

is in 0 to 1, it can be said that the error is on average 8.53%. We believe that is

reasonable for building the lookup table.
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4.2.2 Controlling the translucency for replication

We make experiments for controlling the translucency of the printed object. The

lookup table is built with the three base materials and fifteen inks. Though

only the inks of 100% were used in the previous experiment, the same inks of

20, 40, 60, and 80% are also used for building the lookup table here. Setting

the maximum number of printed layers five, it results in 2, 440, 845 elements in

the lookup table. A query about translucency can be manually designed but it is

easier to measure a real-world object. We, therefore, measure the reflective MTFs

of a slice of salmon and kiwi, as shown in Fig. 4.4, and a small region of those

is used as a query. As a result of finding the best combination to the salmon,

it was to print in the order of the magenta of 40%, yellow of 100%, magenta of

100%, and magenta of 100% on the wax candle, whose RMSE was 0.0812. As

well, the best combination to the kiwi was to print in the order of the cyan of

100%, magenta of 40%, magenta of 40%, magenta of 40%, and yellow of 60% on

the wax candle, whose RMSE was 0.0714. The results are shown in Fig. 4.4.

Moreover, we make an experiment for replicating the reflective MTFs of the

whole salmon pixel by pixel. According to the previous experiment, the wax

candle suits to the MTF of the salmon, thus a part of the lookup table where the

base material is the wax candle is used for finding the best combination for each

pixel. As the result, an image of the printed object is shown in Fig. 4.5(a), which

consists of four layers of inks on the wax candle. The layer images and the error

map are shown in Fig. 4.5(b-e) and (f), respectively.

4.3. Discussion

In this chapter, we proposed a novel method to control the translucency by UV

printing on a translucent material. We applied Kubelka’s layer model with few

measurements to render the translucency of the printed object, and then built

the lookup table. Given a query about translucency, it is possible to find a

combination of the factors in print, such as base materials, inks, and the number

of printed layers, in the lookup table so that the translucency by the combination

is the most similar to the query. That is, we can control the translucency of the

printed object.
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Salmon

Kiwi

Figure 4.4: Controlling the reflective MTFs for the queries based on real-world

objects; (a) salmon and (b) kiwi.

There are some limitations. Currently, we assume the PSFs are isotropic

but some real-world objects has anisotropic PSFs. Since the print-head of a

conventional UV printer moves within a 2D space, it is difficult to print on a

complex-shaped object but a transfer sheet for UV printing could resolve that

problem.
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(a) (b)

(d) (e)

(c)

(f)

1.0

0.0

0.5

Figure 4.5: Replicating the reflective MTFs of the salmon. (a) The printed object.

(b-e) The four layer images from the bottom to the top. (f) The error map.
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Chapter 5

Reconstruction of inner layers

using frequency correlation

imaging

Observing inside an object is still a difficult task but also important for a wide

variety of applications, such as bio-imaging, medical imaging, and industrial in-

spection. Therefore, various imaging techniques have been developed to achieve

a clear observation inside an object, such as X-ray fluorescence technique [26],

infrared reflectography [43], and terahertz imaging technique [69]. Researchers

in computational photography have used many kinds of coded projections as

spatial modulation. Levoy et al. [95] proposed a combination of a synthetic aper-

ture technique [96] and a confocal imaging technique [86] to reconstruct images

behind occlusions. Fuchs et al. [40] used the confocal imaging for recovering

a solid target in scattering media. Those methods utilize a pair of a projec-

tor and a camera, called Pro-Cam system, to implement confocal imaging, for

which both the projector and camera need to focus on the same depth plane.

Nayer et al. [122] proposed high frequency illumination to separate observations

into two components based on direct and global illuminations by projecting spa-

tially high frequency patterns, which is typically spatial modulation. Achar and

Narasimhan [4] extended the high frequency illumination for a multi-focus projec-

tor to recover scene shape and global illumination, simultaneously. This method

is based on a similar idea on which physically changing the projector focus is used

46



for a spatio-temporal modulation. Instead, the proposed method in this chapter

just changes the frequency of a projection pattern to realize a spatio-temporal

modulation. Gupta et al. [57] obtained depths with direct and global separation.

Tanaka et al. [158] proposed multi-frequency illumination to recover inner slices

of a translucent object. This approach is also similar to ours because of changing

the frequency of a projection pattern. However, it does not modulate a signal, so

that it is required to use an empirical optimization.

A temporal modulation is another way to analyze a scene. Heide et al. [65]

swept a modulated frequency and phase of a time-of-flight (ToF) camera to re-

cover the light propagation inside scattering medium. Kadambi et al. [79] built a

coded-illumination ToF camera with a deconvolution technique. Tadano et al. [154]

proposed a coded ToF camera which is capable to select a target depth. These

temporal modulation systems could be useful to reconstruct inner layer reflectance.

However, a ToF method requires a temporally severe synchronization, while our

Pro-Cam system just modulate a projection pattern.

In this chapter, we propose a novel technique to reconstruct reflectance maps

in inner layers of an object by using a Pro-Cam system. An easy implementation

consists of a perspective projector and an orthographic camera. When projecting

a sinusoidal pattern at a spatial frequency, a spatial frequency observed by the

camera varies with respect to a depth. However, it is not enough to reconstruct

reflectance in an inner layer because of its heterogeneity. Thus, we change the

frequency of the projection pattern multiple times. It enables to modulate a

temporal frequency depending on the position of a 3-D point in the scene. Since

an observed intensity includes response signals at various 3-D points, the response

signal at a certain point has to be extracted from observations to reconstruct the

reflectance. To do that, we employ a heterodyning technique, which we briefly

explain in Section 5.1. We introduce the proposed method, frequency correlation

imaging, in Section 5.2, perform simulations and analyses in Section 5.3, and

make experiments on real data in Section 7.3. Finally, we discuss the proposed

method and conclude this chapter in Section 5.5.
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5.1. The basics of heterodyning

Heterodyning is a traditional signal processing technique, invented by Fessenden [135],

to generate new frequencies by combining two or more frequencies. The technique

is often used for shifting a range of frequency into a new different range, as shown

in Fig. 5.1. Now, we briefly introduce the algorithm of heterodyning. Let us think

about a case where we want to obtain an oscillated signal at a frequency f1 in an

observation I(t). The observation is assumed as

I(t) = D + A(t) sin(ω1t+ φ(t)), (5.1)

where D is the offset, A(t) the amplitude, ω1 := 2πf1 the angular frequency, and

φ(t) the phase of the signal. It often happens that the frequency f1 is too high

to detect directly. Here, when a sinusoidal signal at a frequency f2 is multiplied,

it becomes

I(t) sin(ω2t) (5.2)

= D sin(ω2t) + A(t) sin(ω2t) sin(ω1t+ φ(t)) (5.3)

= D sin(ω2t)− A(t)

2
cos {(ω1 + ω2)t+ φ(t)} (5.4)

+
A(t)

2
cos {(ω1 − ω2)t+ φ(t)} , (5.5)

where ω2 := 2πf2. As a result, new frequencies ω1+ω2 and ω1−ω2 are generated.

By using a low pass filter, only the third term remains, as below;

〈I(t) sin(ω2t)〉low =
A(t)

2
cos {(ω1 − ω2)t+ φ(t)} . (5.6)

It becomes a low frequency signal, so that an analysis of the signal gets easier

than the observation. This procedure is called heterodyne detection.

Moreover, when f2 = f1, it is independent to f1, as below;

〈I(t) sin(ω2t)〉low =
A(t)

2
cosφ(t). (5.7)

However, it is still impossible to separate the amplitude A(t) and the phase φ(t).
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Mixer

+

frequency frequency

Figure 5.1: The basics of heterodyning, a signal processing technique to shift a

range of frequency.

Thus, multiplying Eq. (5.1) by cos(ω2t), as well, it becomes

I(t) cos(ω2t) (5.8)

= D cos(ω2t) + A(t) cos(ω2t) sin(ω1t+ φ(t)) (5.9)

= D cos(ω2t) +
A(t)

2
sin {(ω1 + ω2)t+ φ(t)} (5.10)

+
A(t)

2
sin {(ω1 − ω2)t+ φ(t)} . (5.11)

As well, by using a low pass filter, the third term remains, as follow;

〈I(t) cos(ω2t)〉low =
A(t)

2
sinφ(t). (5.12)

Finally, it is possible to reconstruct A(t) and φ(t) from Eqs. (5.7) (5.12). This

procedure is called direct-conversion.

5.1.1 Imaging using heterodyning

In fact, heterodyning has been applied for imaging techniques, such as synthetic

array heterodyne [153], interferometry [53], and optical coherence tomography

(OCT) [70]. Because those optical heterodyning are based on modulations of

the phase and/or frequency, that is, wavelength, of light, a severe alignment
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is required to work properly. Especially, since interferometry and OCT require

coherent light, it cannot be applied to reconstruct a deep inner layer. Also, indi-

rect time-of-flight imaging employs heterodyning based on temporal modulation

of the amplitude [29], which is basically used for measuring a distance, not for

reconstructing reflectance in an inner layer.

In this chapter, we propose a novel spatio-temporal modulation method in

which the temporal frequency of illumination is modulated depending on the

position of a 3-D point. A response signal is mixed with other signals until being

observed. Therefore, we employ the direct-conversion technique to extract the

response signal for reconstructing the reflectance.

5.2. Frequency correlation imaging

Now, we begin with introducing the proposed method to reconstruct reflectance

maps in inner layers of an object. Firstly, we formulate a novel spatio-temporal

modulation technique, secondly build the observation model in a Pro-Cam sys-

tem, and then, finally, explain a reconstruction of reflectance at each point in

inner layers, based on the heterodyning technique. We call the proposed method

frequency correlation imaging.

Now, we assume that a Pro-Cam system consists of a perspective projector

and an orthographic camera, as shown in Fig. 5.2. When projecting a sinusoidal

pattern onto a reflectance standard located at a depth z1, let f1 a frequency of

the pattern on the image. According to a nature of an orthographic camera,

the size of an object on the image is always the same regardless of a distance

between the object and the camera. On the other hand, a projection pattern

from the projector spatially broadens with respect to a depth. Therefore, when

the standard is moved to another depth z2 > z1, a frequency f2 on the image

becomes lower than f1, that is, f2 < f1. This relationship can be held in any case

between two depths. Thus, we formulate such a depth-dependent frequency as a

spatial modulation in Section 5.2.1.

Theoretically, as long as the depth-dependent frequency is available, various

setups can be built up. For example, it is possible to pair a perspective projector

with a perspective camera, whose focal length is different from projector’s one,
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Orthographic
camera

Perspective
projector

Beam
splitter

Projection pattern on the projector

Pattern at a depth 

Pattern at a depth 

Figure 5.2: An example of a Pro-Cam system consisting of a perspective projector

and an orthographic camera.

such as a coaxial setup and a parallel planes setup, as shown in Fig. 5.3. Moreover,

it is also implementable that a projector is rotated to a camera and a projector

is located even behind an object to observe transmission. Hereafter, we assume

an easy setup consisting of a perspective projector and an orthographic camera

to explain the spatial modulation, the observation model, and the reconstruction

method.

5.2.1 Spatial modulation for depth-dependent frequency

We assume the projector is located as its projection plane is parallel to the image

plane and both spatial axes on the projection plane are also parallel to those on

the image plane, as shown in Fig. 5.2. The origin of the image plane is regarded as

the origin of the Pro-Cam system. Also, the projector is assumed to be available

for focus-free projection, such as a laser projector. Now, we think a case where

it projects a 1-D sinusoidal pattern along x axis. The projection pattern L1 at a
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Perspective
projector

Perspective
camera

Target object

(a) (b)

(c) (d)

Figure 5.3: Various Pro-Cam setups for frequency correlation imaging. Theo-

retically, as long as the depth-dependent frequency is observed in the system, a

modulation model can be formulated. (a) a coaxial setup with different focal

lengths, (b) a parallel planes setup with the same focal lengths, (c) a rotated

projector setup, and (d) a transmission setup.
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depth z1 is written as below;

L1(x, y) = D1 + A1 sin(ω1x+ φ), (5.13)

where D1 is the offset, A1 the amplitude, ω1 the angular frequency, and φ the

phase of the sinusoidal pattern. (x, y) is a position on the image plane and the

x axis is the modulation axis. Since a projection pattern from the perspective

projector is spatially broadened with respect to a depth, the pattern at a different

depth z2(= z1 + δz) is represented as

L2(x, y) = D2(x, y) + A2(x, y) sin(ω2x+ φ), (5.14)

where D2(x, y), A2(x, y) and ω2 are the offset, amplitude, and angular frequency

of the sinusoidal pattern at the depth z2, respectively. By using the angular

frequency at the depth z1, that at the depth z2 can be formulated as below;

ω2 =
z1
z2
ω1. (5.15)

Note that the phase of the pattern does not change for each of the depths. Here,

light to illuminate the depth z2 can be regarded as one transmitted by a plane

at the depth z1. If transmittance at the depth z1 is spatially homogeneous, the

offset D2 and amplitude A2 at the depth z2 are spatially invariant. For a general

scene, the transmittance spatially varies, so that the offset and amplitude become

position-dependent.

In general, it can be formulated for a discrete depth zi(= z1 + (i − 1)δz), as

below;

Li(x, y) = Di(x, y) + Ai(x, y) sin(ωix+ φ), (5.16)

where Li(x, y) is the projection pattern at a depth zi and Di(x, y), Ai(x, y) and

ωi are the offset, amplitude, and angular frequency of the pattern. Di(x, y) ≤
Dj(x, y) and Ai(x, y) ≤ Aj(x, y) hold for any i > j. Based on the first depth z1,

the angular frequency at i-th depth zi can be written as

ωi =
z1

z1 + (i− 1)δz
ω1. (5.17)

That is, the angular frequency of a projected sinusoidal pattern is reduced relative

to a depth.
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5.2.2 Observation model in the Pro-Cam system

The image plane is parallel to the projection one but the optical axes are not

necessary to be coaxial. Now, the difference between the origins of the image and

projection planes is defined as (xp, yp). In fact, the size of a pixel in the projection

plane is not necessarily the same as that in the image one. Thus, we define the

size of a projected pixel at the first depth z1 relative to that in the image plane

as the scale factor s. Finally, when the origin of the projection plane is projected

at (xp, yp) in the image plane, Eq. (5.16) is rewritten as

Li(x, y) = Di(x̂, ŷ) + Ai(x̂, ŷ) sin(ωix̂+ φ), (5.18)

where x̂(x) := s(x − xp) and ŷ(y) := s(y − yp). Here, we omit the arguments of

them to improve the readability, as long as obvious.

An observed intensity I(x, y) on the image plane is represented as a summation

of all intensities from different depths, as below;

I(x, y) =
∑
i

Ii(x, y), (5.19)

where Ii(x, y) is an intensity at a depth zi. When a scene is projected by the

projector explained above, a discrete scene point pi(x, y) at i-th depth zi is il-

luminated as Li(x, y). Assuming reflectance of the scene point is Ri(x, y), an

intensity Ii(x, y) can be represented as

Ii(x, y) = Li(x, y)Ri(x, y)Ei(x, y), (5.20)

where Ei(x, y) is an attenuation rate at which the light reaches to the camera after

being reflected at the scene point and then passing through the scene. Assuming

light not reflected on the plane at a depth zi−1(i ≥ 2) is all transmitted to the

next depth zi, the offset and amplitude at the depth zi can be written as

Di(x, y) = Ti−1(rix, riy)Di−1(x̂(rix), ŷ(riy)), (5.21)

Ai(x, y) = Ti−1(rix, riy)Ai−1(x̂(rix), ŷ(riy)), (5.22)

where ri :=
z1+(i−2)δz
z1+(i−1)δz

and Ti(x, y) := 1 − Ri(x, y). Because the light reflected at

i-th depth zi attenuates at all of the first to the (i−1)-th depths, the attenuation
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rate can be written as

Ei(x, y) =
i−1∏
j=1

Tj(x, y). (5.23)

Finally, the observed intensity I(x, y) on the image plane is written as below;

I(x, y)

=
∑
i

Li(x, y)Ri(x, y)Ei(x, y) (5.24)

=
∑
i

{
D∗

i (x, y) + A∗
i (x, y) sin(ωix̂+ φ)

}
, (5.25)

where, (5.26)

D∗
i (x, y) := Ri(x, y)Ei(x, y)Di(x, y), (5.27)

A∗
i (x, y) := Ri(x, y)Ei(x, y)Ai(x, y). (5.28)

5.2.3 Reconstruction of reflectance maps in layers

Let us consider a case where the angular frequency of the sinusoidal pattern

temporally varies. An observed intensity I(x, y, t) at a time t under projecting a

sinusoidal pattern with a time-varying angular frequency ωi(t) can be represented

as

I(x, y, t) =
∑
i

{
D∗

i (x, y) + A∗
i (x, y) sin(ωi(t)x̂+ φ)

}
. (5.29)

In practice, changing the angular frequency ω1 at the depth z1 leads the time-

varying angular frequency ωi(t) based on Eq. (5.17). Here, we utilize the direct-

conversion. As multiplying the both sides of Eq. (5.29) by sin(ωk(t)x̂), it becomes

I(x, y, t) sin(ωk(t)x̂)

=
∑
i

{
D∗

i (x, y) sin(ωk(t)x̂)

− A∗
i (x, y)

2
cos((ωi(t) + ωk(t))x̂+ φ)

+
A∗

i (x, y)

2
cos((ωi(t)− ωk(t))x̂+ φ)

}
. (5.30)

Focusing on the right side of Eq. (5.30), only when i = k, the time-dependent

part, ωi(t)−ωk(t), in the third term becomes time-independent. That is, the third
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term becomes the DC component in the time-series data I(x, y, t) sin(ωk(t)x̂),

only when i = k. Therefore, defining an extraction of the DC component of time-

series data τ(t) through Fourier transform as 〈F [τ(t)]〉DC, the DC component can

be extracted as below;

〈F [I(x, y, t) sin(ωk(t)x̂)]〉DC =
A∗

k(x, y)

2
cosφ. (5.31)

As well, by multiplying the both sides of Eq. (5.29) by cos(ωk(t)x̂), we can get

〈F [I(x, y, t) cos(ωk(t)x̂)]〉DC =
A∗

k(x, y)

2
sinφ. (5.32)

Because of cos2 φ + sin2 φ = 1, a summation of squares of Eqs. (5.31)(5.32) be-

comes {
A∗

k(x, y)

2
cosφ

}2

+

{
A∗

k(x, y)

2
sinφ

}2

=
A∗

k(x, y)
2

2
. (5.33)

Thus, we can obtain A∗
k(x, y) for any k-th depth zk.

Reconstruction begins at the first depth to deeper depths. According to

Eq. (5.28), A∗
1(x, y) for the first depth z1 is A∗

1(x, y) = R1(x, y)E1(x, y)A1(x, y).

Because the first depth is assumed to be the most closest plane to the camera,

the light reflected at the first depth does not attenuate, that is E1(x, y) = 1.

Therefore, once the amplitude A1(x, y) at the first depth is measured in advance,

the reflectance R1(x, y) can be reconstructed, as below;

R1(x, y) =
A∗

1(x, y)

A1(x, y)
. (5.34)

The amplitude A2(x, y) and attenuation rate E2(x, y) at the second depth z2 can

be computed by Eq. (5.22) and Eq. (5.23), respectively. Thus, the reflectance

R2(x, y) can also be reconstructed, as well. For a general depth zi, the reflectance

Ri(x, y) can be reconstructed as follow;

Ri(x, y) =
A∗

i (x, y)

Ei(x, y)Ai(x, y)
. (5.35)
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Figure 5.4: Rendered images of the ten layers object. On the left, the object is

illuminated by a whole white pattern, while a sinusoidal pattern on the right.

The bars on the right of images indicate reflectance.

5.3. Simulations and analyses

5.3.1 Validation

We evaluate the proposed method on synthetic data. To render the synthetic

data, we simulate the same setup as explained in Section 5.2, consisting of a

perspective projector and an orthographic camera. In this simulation, we set the

origin of the projection plane to (xp, yp) = (0, 0), the scale factor to s = 1, and

the first depth to z1 = 100mm. The size of an image is 1000 × 1000 pixels, as

well as the size of a projection pattern. For projection, the offset and amplitude

at the first depth z1 is set to D1 = 0.5 and A1 = 0.5, as the maximum brightness

of the projector is 1. The frequency f1 of a sinusoidal pattern at the first depth

z1 is set to every 0.001Hz in the range of 0.001 ≤ f1 < 0.5Hz, where the angular

frequency ω1 = 2πf1.

Using an object consisting of multiple layers as a target, we evaluate the

accuracy of reconstruction. The object consists of ten layers whose gap is set

to δz = 10mm. There are circles on the layers, where are filled with different

reflectances. In Fig. 5.4, rendered images when projecting a whole white pattern

and a sinusoidal pattern are shown. Figure 5.5 shows the reference reflectance
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Figure 5.5: Evaluation of reconstructing reflectance maps in the ten layers. The

PSNRs in the reconstruction are 28.89, 22.91, 17.53, 15.53, 14.70, 11.97, 9.17,

7.71, 6.83, and 4.95dB for the top and bottom layers, respectively.

map, the reconstructed one, and the reconstruction error map of each of the inner

layers. For the first and second layers, the reconstructed maps seem quite similar

to the reference ones. In fact, peak signal-to-noise ratios (PSNRs) between those

are 28.89 and 22.91dB for the first and second layers, respectively. As we can

see, the errors around the central region are large. This is because light rays

around the origin of the projection plane do not broaden for the orthographic

camera. Therefore, all the three terms in Eq. (5.30) are mostly regarded as the

DC components, even though the frequency ωi varies, which means the frequency

is not modulated. It results in that heterodyning does not work properly around

the region. The remaining PSNRs for the third to tenth layers are 17.53, 15.53,

14.70, 11.97, 9.17, 7.71, 6.83, and 4.95dB, respectively. As easily imagined, the

deeper a layer is, the low the accuracy of reconstruction is. In a case with a

number of layers, it is difficult for light to reach deeper layers and also to come
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back to the surface of an object. That is a main cause why the accuracy of

reconstruction gets worse as the number of layers increases.

5.3.2 Analysis of the depth resolution

We analyze the depth resolution of the proposed method. For validation, we only

set the first depth and the gap to z1 = 100mm and δz = 10mm for simplicity.

Here, we evaluate the accuracy of reconstruction in PSNR when the first depth

and the gap are changed. We change the first depth in a range of 1 ≤ z1 ≤ 500mm

and the gap in a range of 0.1 ≤ δz ≤ 30mm, and then render two layers object,

which are extracted from the ten layers. The frequencies for projection are also

the same as that on the two layers object. The PNSRs while changing the first

depth and the gap are shown in Fig. 5.6. Looking around a range of smaller

gaps, cases where the first depth is smaller resulted in accurate reconstructions,

relatively. In simulation, the projector is assumed to project the whole scene, so

that, in those cases, the angle of projection becomes quite large. It results in that

the amount of change in the depth-dependent frequency is made large. That is

why those cases has a high resolution in depth. On the other hand, because the

frequency fast decreases for a deeper depth, the accuracy when the gap is set to

a large value decreases. In practice, it is almost impossible to set the first depth

to a small value such as z1 = 1, 5, 10mm. In a practical region of the first depth,

the accuracy increases as well as the gap increases.

5.3.3 Analysis of the effect of the amount of change in

frequency

For the temporal modulation in frequency domain, it is important how to change

the frequency. Here, we analyze the effect of the amount of change in frequency.

In simulation, we use the two layers object again. The first depth and the gap

are set to z1 = 50mm and δz = 15mm because it seems to lead an accurate

reconstruction as a possibly implementable setup, according to Fig. 5.6. Now, we

change the frequency of the projection pattern in Eq. (5.29). The frequency is

changed by

f1(t) = f 0
1 + δft, (5.36)

59



Figure 5.6: Analysis of the depth resolution.

where f 0
1 is the offset frequency, now set to 0.001Hz because the spatial resolution

of the projector is 1000 pixels in the modulation axis. The time factor t is

currently just a frame number. When changing the amount of change δf in a

range of 0.001 ≤ δf ≤ 0.12Hz, we evaluate the PNSR in reconstruction. As a

result, shown in Fig. 5.7, the accuracy of reconstruction gradually decreases as

the amount of change in frequency δf increases. Thus, it can be said that the

amount of change in frequency for the temporal modulation should be set to a

small value.

5.4. Experiments on real data

Finally, we make experiments on real data. A setup consists of a perspective

laser projector (SK Telecom, LB-UH6CB, 1280×720) and an RGB camera (FLIR,

Grasshopper3, 1920×1440) with a telecentric lens (Edmund Optics, #55-348), as

shown in Fig. 5.8. Note that we use linear polarizers to remove specular reflection

which makes it difficult to observe projected patterns. A projection brightness

can be set within the range of 0 to 255, so that the offset and amplitude of

a sinusoidal pattern at the first depth z1 is set to D1 = 127 and A1 = 127,

respectively. The frequency f1 of the pattern is set to every 7.8125 × 10−4Hz
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Figure 5.7: Analysis of the effect of the amount of change in frequency δf .

in the range of 7.8125 × 10−4 ≤ f1 < 0.5Hz. In practice, the projector is not

perfectly focus-free despite a laser projector because it has a range of the working

distance. According to our measurement, the projector requires at least 250mm as

the working distance to focus. The telecentric lens also has practical limitations,

which are a shallow depth of field (DoF) and a limited working distance. In the

setup, the DoF of the capture system is 60mm and the closest working distance

is 130mm based on our measurement.

5.4.1 Calibration

The first depth z1, the scale factor s, and the origin of the projection plane (xp, yp)

are required for the reconstruction. To achieve a better reconstruction, a spatial

resolution of the projection should be higher in the image plane. However, in

the setup, it is limited because of the working distance of the projector and the

DoF and working distance of the telecentric lens. Therefore, we put a reflectance

standard as close to the Pro-Cam system as a projected chessboard pattern is in

focus, and then, obtain the factors. Firstly, to obtain the origin xp, the projector

projects a vertical line pattern whose central position is x = 0. The thickness of

the line can be changed up to an observed intensity. The origin yp is, as well,

obtained by projecting a horizontal line pattern. Secondly, by projecting a thick
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Figure 5.8: Experimental setup.

vertical line pattern, it is possible to obtain the scale factor s through a simple

rate between the projected and an observed thicknesses in pixel. Finally, the first

depth z1 can be obtained from observations when moving the standard to another

depth while projecting a thick line pattern. Let an observed thickness of the line

at the first depth z1 and one at another depth z1+ δz be w1 and w2, respectively.

From the similarity relation, as well as Eq. (5.17), the following equation holds;

w2 =
z1 + δz

z1
w1. (5.37)

Now, since the parameters expect for z1 are known, the first depth z1 can be

obtained as

z1 =
w1δz

w2 − w1

. (5.38)

As a result, we obtained xp = 656.08, yp = 27.00, s = 0.299, and z1 = 252.83mm

in the setup.

5.4.2 Reconstruction of reflectance maps

Firstly, to evaluate the proposed method in the real world, we make an experi-

ment on a simple object which consists of two overhead projector (OHP) sheets.

On each of the OHP sheets, a different colored circle is printed, as shown in
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(a) (b) (c)

Figure 5.9: Target objects used in the experiments on real data. Those consist of

OHP sheets. (a) A circle, whose color and size are different, are printed on each.

(b) CVPR logos in 2017 and 2018 are printed. (c) A, B, C, and D are printed,

respectively.

Fig. 5.9(a). The gap between the OHP sheets is set to δz = 10mm. Figure 5.10

shows the reference reflectance map, the reconstructed one, and the reconstruc-

tion error map on each of the layers. Here, the reference reflectance maps are

taken by observing each of the sheet under a white pattern illumination without

collapsing its alignment. The circle on the top layer is clearer in the reconstructed

top layer than the reconstructed bottom layer. The circle on the bottom layer

can be seen through the circle on the top layer in the reconstructed bottom layer.

As a result, the PSNRs in reconstruction are 34.32 and 30.76dB for the top and

bottom layers, respectively.

The second target object consists of two OHP sheets on which the CVPR

logos were printed, as shown in Fig. 5.9(b). The gap between the layers is set

to δz = 10mm, as well. Figure 5.11 shows the reconstructed reflectance maps on

the layers. The estimated top layer (a) seems only the logo in 2018 and we can

see texts of “CVPR 2018” and “Salt Lake City” and the Wasatch Mountains.

On the estimated bottom layer (b), it can be seen that a text of “CVPR 2017”

appears on the Diamond Head, instead of the Wasatch Mountains, and even a

small text of “21-26”, which is the dates when the CVPR 2017 was held, can be
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Figure 5.10: Experimental result on the real data. The target object consists of

two OHP sheets on which a circle is printed. The gap between the sheets is set

to 10mm.

seen. However it is strongly affected by the top layer due to its shadows.

The third target object also consists of four OHP sheets on which alphabets

A, B, C, and D are printed from the first to fourth layers, respectively. The each

gap is set to δz = 10mm, as well. Figure 5.12 shows the reconstructed reflectance

maps on the layers. The alphabet A in Fig. 5.12(a) is quite clear comparing

with the others. The alphabets B, C, and D are relatively clear in Fig. 5.12(b-

d), respectively. However, it can be seen that a top layer affects to a bottom

layers. In Fig. 5.12(d), all the alphabets can be seen to some extent. Finally, the

reconstructed result of layers as the gap is set to δz = 1mm is shown in Fig. 5.13.

The range of reconstructed depths is from 0 to 34mm and the target depths are

writen on the left-top in each image. The depth resolusion of the current setup

is not so high that the reconstructed images between the OHP sheets have some

intensity, which are ideally supposed to be black images.
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(a) (b)

Figure 5.11: Reconstruction of reflectance maps in two layers. The target object

consists of two OHP sheets on which CVPR logos are printed.

5.5. Discussions

We proposed a novel technique to reconstruct reflectance maps in multiple inner

layers of an object by using a Pro-Cam system. The key idea is spatio-temporally

modulated illumination, which modulates a temporal frequency depending on the

position of a 3-D point in a scene. A heterodyning technique leads extracting

a response signal from observations under the proposed illumination. Finally,

we reconstruct reflectance maps in inner layers based on the extracted response

signals. In the simulations, we evaluated the accuracy of reconstruction and

analyzed the depth resolution and the effect of the amount of change in frequency

for the temporal modulation. The quantitative evaluation on the real data was

also performed, which shows the proposed method can reconstruct reflectance

maps in layers.

There are still some limitations in the proposed method. It assumes there is

no refraction on a boundary but it always occurs in the real world. Refraction will

also change the frequency, so it is a next challenge to model the phenomenon. In

a general object, light is scattered and absorbed to some extent. Especially, light

scattering is a well known phenomenon working as a low pass filtering, so that it is

a significant issue for the proposed method. The scattering phenomenon is often

formulated as a point spread function and the phenomenon can be written as a

convolution operation [158]. This formulation could be installed in our model.
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(a) (b)

(c) (d)

Figure 5.12: Reconstruction of reflectance maps in four layers. The target object

consists of four OHP sheets on which alphabets A, B, C, and D are printed.
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Figure 5.13: Analysis of the reconstruction in four layers. The gap for recon-

struction is set to 1mm.
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Chapter 6

Thermal photometric stereo

Light transport decomposition has attracted broad interest in the computer vision

and computer graphics fields. This is because many computer vision techniques

implicitly or explicitly assume only diffuse reflection, which simplifies observation

models. An image in the real world is, however, composed of many optical com-

ponents, such as specular reflection, inter-reflection, and subsurface scattering.

Light transport decomposition plays an important role to bridge the gap between

the real world and the models.

Prior works have decomposed light transport using color [147], polarization [166],

and active illumination [124]. The time-resolved approach has emerged because

the each optical components has different transient properties on the tens of pico

seconds order [179]. There are multiple time-resolved approaches, for example,

with the use of a femto-pulsed laser, interferometer [49], time-of-flight camera

modifications [63, 88], and single-photon sensor [131]. Inspired by the temporal

decomposition of light transport, we develop a novel time-resolved decomposition

technique for far infrared light transport. A key observation is that the speed of

heat propagation is extremely slow compared with the speed of light propaga-

tion. Using thermal imaging, the time-resolved decomposition is feasible at a

video frame rate.

To date, thermal imaging has been treated as being different from visible light

imaging: The thermal image represents the temperature of the object, while the

visible light image reflects the visual information. We show, however, similar

images can be obtained when the observation environment is appropriately con-
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(a) A ball. (b) Color image. (c) Thermal image.

Figure 6.1: A ball captured by a conventional color camera and a thermal camera.

(a) The target object. (b) Reflection image using a conventional camera. (c)

Thermal image of the same object. When the object is carefully illuminated,

shading of both images is the same, which implies conventional computer vision

techniques can be applied to the thermal images.

trolled, because thermal imaging makes up a part of far infrared light imaging.

Figure 6.1 shows an image captured by a color camera and a thermal image,

where a ball is illuminated by a point light source. Both the color image and the

thermal image exhibit the same shading. This observation implies that computer

vision techniques can also be applied for thermal images.

In this chapter, we show that far infrared light transport can be regarded as

a composition of multiple optical and thermal effects similar to the visible light

transport. We define ambient, specular, diffuse, and global components in the

thermal observation, and show the transient property of each component. Based

on this model, a time-resolved decomposition of the far infrared light transport

is proposed. Moreover, we show that the surface normal can be estimated based

on the Lambertian photometric stereo, because the diffuse component, which

follows the cosine law, of the far infrared light is separated. The proposed thermal

photometric stereo can be applied for any objects that absorb light and convert

it into heat, including black body, transparent, and translucent objects. It has a

wide applicability compared with the photometric stereo using visible light.

The chief contributions of this study are threefold. First, we extend the vis-

ible light transport model to the far infrared light transport. We show that the
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Figure 6.2: Far infrared light transport. While far infrared light can partially be

reflected on the surface, the rest of the light is converted to heat energy, propa-

gates inside the object, and is then converted to far infrared light corresponding

to the temperature. The composition of all the components are captured by a

camera. The observation system is closed in the far infrared light domain.

thermal image is a composition of ambient, specular, diffuse, and global compo-

nents, which is similar to the visible light transport. Second, a novel approach for

time-resolved light transport decomposition is provided based on the difference

of the transient property of the far infrared light transport. Finally, we show that

ordinary computer vision techniques can be straightforwardly applied to thermal

images. As a proof of the concept, we propose a method to recover the surface

normal using a photometric stereo after decomposing the far infrared light trans-

port. The surface normal of challenging objects that have complicated optical

effects can be recovered.

6.1. Far infrared light transport

We start with a brief review of thermal and far infrared light imaging. A typical

thermal camera observes the temperature of the object by measuring the inten-

sity of far infrared light because all objects emit far infrared light according to

its temperature. When the object is a black body, the temperature and the in-

tensity of far infrared light are governed by the Stefan-Boltzmann law [68], which

represents a one-to-one correspondence between temperature and intensity:

E = σT 4, (6.1)
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Figure 6.3: Far infrared light and heat transport components. Similar to the

visible light transport, far infrared light transport consists of (a) ambient, which

is the original temperature, (b) specular reflection as light, (c) diffuse radiation,

and (d) global radiation caused by heat propagation. Because the speed of heat

is slower than that of light, every components has distinctive transient properties

hence they are separable.

where E is the intensity of the radiated far infrared light, σ is the Stefan-

Boltzmann constant, and T is the thermodynamic temperature. We can handle

the intensity of the far infrared light as the temperature, and vice versa.

We assume that the scene is illuminated by a stable parallel light source of far

infrared light and the object is captured by a thermal camera as shown in Fig. 6.2.

When the object is not a black body, a part of the far infrared light reflects on the

surface, while the rest of the light is absorbed and converted to the heat energy,

the temperature increases, and far infrared light is emitted corresponding to its

temperature. The observation is the sum of these effects and we term this total

energy transport as far infrared light transport because the observation system is

closed in the far infrared light domain.

An image captured by a normal camera is the composition of multiple light

transport effects, e.g., specular and diffuse reflections, inter-reflection, and subsur-

face scattering. Similarly, the thermal image is a sum of the multiple far infrared

light transports as shown in Fig. 6.3. A main difference between visible and far

infrared light transport is that the temporal transient properties are significantly

different among the light transport components. The transient state of visible

light transport is not observable at a video frame rate because the speed of light
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Figure 6.4: Transient properties of far infrared light transport. Because the

temporal responses of the components are significantly different, they can be

separated from the thermal video frames.

is extremely fast, while that of the far infrared light transport is easily observable

because the heat conversion and propagation are relatively slow. Figure 6.4 illus-

trates a concept of the temperature transition of the far infrared light transport

components. Before the light source is turned on, the observation consists of only

the ambient component. The specular reflection appears immediately after the

light source is turned on, and diffuse and global radiation slowly appear as the

temperature increases. Then, the diffuse radiation reaches the steady state faster

than the global radiation.

The observed thermal image I(t) at a video frame t can be modeled as

I(t) = A(t) + S(t) +D(t) +G(t), (6.2)

where A, S,D,G are the ambient, specular reflection, diffuse radiation, and global

radiation components, respectively. We omit the camera pixel c because this

observation is pixel-wise, and we assume the light source is turned on at t = 0

without the loss of generality. We review the detailed properties of the far infrared

light transport components below.

Ambient The ambient component is the original temperature of the object.

This corresponds to the intensity of far infrared light coming from the object when

the heat source is turned off. The ambient component is assumed to be constant

over time, and the effect of the heat source can be extracted by subtracting the

initial state of the heat radiation. In the context of optical measurements, the

ambient component corresponds to the ambient light or the dark current. The
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ambient component A(t) is expressed as

A(t) = τ, (6.3)

where τ is the original temperature of the object.

Specular reflection The specular component is an effect of far infrared light

itself and not related to the heat propagation or temperature of the object. In the

temperature measurement context, the specular component disturbs the observed

temperature. Because it is the behavior of light, the specular component has the

same properties as the visible light transport. The specular component S(t) is

only observed when the light source is turned on as

S(t) =

⎧⎨
⎩L0rS (t > 0)

0 (t ≤ 0)
, (6.4)

where rS is the specular reflectance, and L0 is the intensity of the ideal light

source. Because the speed of light is very fast, the specular component is stable

and no transient state is observed on the video frame scale. Note that we ignore

other optical effects such as diffuse reflection and subsurface scattering because

they can be negligible for many materials owing to the long wavelength. They

have however the same transient property, hence they can be safely regarded as

a part of the specular reflection.

Diffuse and global radiation Diffuse radiation is defined as the surface heat-

ing. The energy is absorbed on the surface and the temperature of the surface is

raised by photothermal conversion. Corresponding to the irradiance of light, the

absorption energy of the incident far infrared light follows the cosine law [68]. The

emission energy is linear to the absorbed energy, which is known as Kirchhoff’s

law of thermal radiation [68], which is given as

αE = εE, (6.5)

where α and ε are the coefficients of absorption and emission, respectively. The

raised temperature can be observed from any camera position; hence it corre-

sponds to the Lambertian reflection of visible light transport. Because diffuse

radiation is the effect on a single point, it is nearly stable but there is a small
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transient state when the energy is absorbed, the temperature is raised, and far

infrared light is emitted. Compared with the temporal spread of diffuse reflec-

tion [169], which is about tens of picoseconds, the temporal scale of diffuse radi-

ation is much slower, and can be captured at the video frame rate.

When the object is heated over a sufficiently long time, the temperature is

propagated in all directions, and we term this heat propagation as global radiation.

Heat propagation is very slow, where it takes a few seconds to minutes, which is

much slower than the diffuse radiation. Because global radiation spreads spatially,

it corresponds to the subsurface scattering in the visible light observation.

Because the intensity of the far infrared light corresponding to the inner tem-

perature follows the Fresnel law [110], the global radiation varies with respect to

the viewing angle. However, it works as a scale factor with our setting, hence the

effect of Fresnel refraction can be safely ignored.

It has been reported that the diffuse reflection and subsurface scattering can

be regarded as the same physical phenomenon [74, 61, 159]; the light scatters

on or beneath the surface and eventually bounces off of the material in random

directions. Diffuse reflection represents the total intensity of light close to the

incident point on the surface, and the subsurface scattering represents the light

at a distance away from the incident point on the surface. The same thing

can be said of the radiation; diffuse radiation is the heat energy whose heating

point is local and global radiation is the heat that is propagated in all directions.

Separating these components is a heuristic problem and we adopt exponential

fitting to separate them.

We model the transient state of radiation using the exponential functions as⎧⎨
⎩D(t) = R∞(1− e−σdt)d∞

G(t) = R∞(1− e−σgt)g∞,
(6.6)

where σd and σg (σg � σd) represent the coefficient of the transient speed of

diffuse and global radiations, respectively, and d∞ and g∞ represents the ratio

of diffuse and the global radiation components at the steady state to the total

radiation, respectively.
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6.2. Thermal Photometric Stereo

Based on the difference in the transient properties of the far infrared light trans-

port components, we develop a decomposition method and thermal photometric

stereo.

6.2.1 Decomposition

Based on the observation of the transient properties, we decompose these com-

ponents. First, the ambient component is observed before the light source is

turned on. The light source is turned on at t = 0, and the specular component

is the increased observation immediately after the light source is turned on. The

radiation component is the transient state of increasing temperature and it is ob-

served until the temperature becomes steady. Finally, the radiation is separated

into diffuse and global radiations based on the speed to reach the steady state.

We will next explain the details of the separation.

Separating ambient component The ambient component is the observation

before the light source is turned on, and is determined as

A = I(0). (6.7)

The transient observation Tr(t) is the rest of the observation, given as

Tr(t) = I(t)− A. (6.8)

Separating specular reflection and radiation The specular component is

the reflection of light and has no transient state; hence it can be obtained as the

increase immediately after the light source is turned on. The specular component

S is obtained as

S = Tr(ε), (6.9)

where ε is an infinitesimal time duration.

The rest is the radiation, which has a temporal transient state. The radiation

R(t) can be obtained as

R(t) = Tr(t)− S. (6.10)
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Separating diffuse and global radiation

We fit the radiation components R(t) to the model defined in Eq. 6.6 as

σ̂d, d̂∞, σ̂g, ĝ∞ = arg min
σd,d∞,σg ,g∞

‖R(t)−D(t)−G(t)‖22

s.t. min
t

− log (R∞ −R(t))

t
≤ σg � σd

0 ≤ d∞ ≤ 1

0 ≤ g∞ ≤ 1

d∞ + g∞ = 1, (6.11)

where R∞ = R(∞) is the steady state of the radiation components. The first

constraint represents that the time duration to the steady state of each component

is smaller than the time for the observation to reach the steady state. Because

the diffuse radiation is faster than the global radiation, σg is less than σd. The

second and third constraints represent that the intensity of the diffuse and global

radiations are smaller than the total radiation. The last constraint represents

that the total radiation is a sum of diffuse and specular reflection, which reduces

one degree of freedom. Fitting these parameters is not a convex problem so we

use a grid search to find the global optimum. This does not involve a large

computational cost because there are only three variables and the boundaries of

the parameters can be predicted by the radiation profile R(t).

Other options Another viable approach is to use the decrease in temperature

after the light source is turned off. By switching on and off the light source over

a short duration, the specular reflection and diffuse radiation can be directly ob-

tained, as shown in Fig. 6.5(a), because the effect of heat propagation is negligible

over a very short time. However, the diffuse radiation does not reach the steady

state, hence it may suffer from extremely low SNR. To extend the heating time

could improve the SNR, however, the global radiation cannot be ignored. To

determine the suitable heating duration is another heuristic problem.

The cooling process is also useful to analyze far infrared light transport as

shown in Fig. 6.5(b). Because heating and cooling are the reverse phenomena,

light transport decomposition can be achieved in a very similar way. Because this

takes twice as long time, we chose to analyze only the heating process.
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(a) Heating in a short duration. (b) Transient state of cooling.

Figure 6.5: Other viable approaches. (a) By turning on and off the light source

in a sufficiently short time, the specular reflection and diffuse radiation can be

directly obtained. (b) Transient state after the light source is turned off contains

similar information.

6.2.2 Surface normal estimation

When the object is heated by a narrow beam, the point absorbs the energy and

radiates far infrared light according to the increased temperature. The absorbed

energy follows the cosine law [68] as is observed for the light irradiance. Therefore,

the diffuse component at the stable state can be represented as

D(∞) = R∞d∞ = R∞ρi�n, (6.12)

where ρ is the albedo of heat energy, and i ∈ R
3 and n ∈ R

3 represent the light

direction and surface normal, respectively.

Because the diffuse radiation and diffuse reflection follow the same cosine

law, the ordinary photometric stereo can be applied for diffuse radiation. The

ordinary photometric stereo is not applicable for black body, transparent objects,

and translucent objects that does not have diffuse reflection or are governed by

other light transports. However, the diffuse radiation is a phenomenon of energy

absorption and emission, so the surface normal of much more objects can be

uniformly obtained using diffuse radiation. We propose a photometric stereo

approach to the diffuse radiation, which we call the thermal photometric stereo.

As shown in Eq. 6.12, the decomposed diffuse radiation follows the cosine

law hence it can be directly used for the Lambertian photometric stereo. The
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estimated diffuse radiation component d̂∞ can be simply represented as

d̂∞ = ρi�n. (6.13)

When multiple light sources are placed at different positions, multiple observa-

tions can be obtained that can be superposed in a matrix form as

d = ρIn, (6.14)

where d and I are the superposed diffuse and light source direction matrices,

respectively. When the light direction matrix is a full-rank matrix, the surface

normal can be obtained as

n =
I†d

‖I†d‖2
, (6.15)

where I† is a pseudo-inverse matrix of I.

6.3. Experiments

The experimental setup is shown in Fig. 6.6. The target object is illuminated by

far infrared spot lights (Exo Terra Heat-Glo 100W) and measured by a thermal

camera (InfRec R500). The ambient component is observed before the light source

is turned on. Then, the light source is turned on and the change of temperature

is captured as a video.

The real light bulb is not stable immediately after turning on and requires a

warm-up period in practice. In our experiments, the bulb is warmed up outside

the experiment room and brought in under a cover. Removal of the cover is the

actual meaning of the light being turned on. The wall of the room is heated over

the experiment time and it could become a heat source. To avoid this effect,

we place the object far from the wall and the room is actively cooled using an

air-conditioner.

Decomposition result A black painted wooden sphere as shown in Fig. 6.7(a)

is measured. A frame of the measured thermal video is shown in Fig. 6.7(b).

Figure 6.7(c) shows the transition of the measured temperature at the black

circular point shown in Fig. 6.7(b). The ambient component is the measured
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Figure 6.6: Experimental setup. The object is illuminated by far infrared light

and captured by a thermal camera.

temperature before turning on the light source, and specular component is the

increased intensity immediately after the light source is turned on. The radiation

components are the rest, which is shown in Fig. 6.7(d). The radiation components

are not fitted well by a single exponential curve because this is a sum of the

diffuse and global radiations. Figure 6.7(e) shows the decomposed diffuse and

global radiations. The sum of these fit well to the observation.

This procedure is applied for all the pixels, and the decomposed images are

shown in Figs. 6.7(f) - (h). The specular component represents the reflection of

the light source on the surface, the diffuse radiation represents the reasonable

shading, and the global radiation represents the warming of the entire object.

Surface normal estimation

By using multiple light source positions and separating each diffuse radiation,

we can apply the Lambertian photometric stereo. Figure 6.8 shows the result

of the thermal photometric stereo for the same object as shown in Fig. 6.7. A

normal of the sphere is obtained as shown in Fig. 6.8(d). The result is compared
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(a) The target. (b) Example frame.

(c) Temporal profile of the temperature.

(d) Radiation profile. (e) Decomposed radiations.

(f) Specular comp. (g) Diffuse radiation. (h) Global radiation.

Figure 6.7: Decomposition result for a black painted wooden ball. (a) The scene.

(b) One of thermal video frames. Transient profiles of a point, indicated by

the black circle, are shown. (c) Measured temperature transition. (d) Radiation

profile. Ambient and specular reflection are subtracted from (c). (e) Decomposed

diffuse and global radiations. (f-h) Decomposed images of specular reflection,

diffuse, and global radiation, respectively.
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(a) (b) (c) (d) (e)

Figure 6.8: Results of the thermal photometric stereo. (a - c) Decomposed diffuse

radiation at different light positions. (d) Estimated surface normal. (e) The

ground-truth normal.

with the result without light transport decomposition (composition of specular,

diffuse, and global) and radiation (composition of diffuse and global) as shown

in Fig. 6.9. As the temperature is not raised around t = 0, the compared results

are noisy. The error increases owing to the global radiation at a longer time. As

the best result, the angular errors of the result without decomposition and that of

radiation is 7.71 and 6.50 degrees, respectively, while our method achieves a better

result and the angular error is 5.85 degrees. This result shows the effectiveness

of the separation of diffuse radiation.

We apply our method to other materials, including crystal glass, translucent

plastic, and translucent marble. The decomposed diffuse component and esti-

mated surface normal are shown in Fig. 6.10. Because our method is based on

the diffuse radiation, materials that are difficult to measure with the ordinary

vision techniques, e.g., transparent and translucent objects, can be measured in

the same way. A plastic ornament is also measured, and the result shows the

feasibility of our method to a complex shaped objects.

Our method does is not suitable for some objects that does not absorb the far

infrared light. Metallic materials are such objects and the thermal observation of

a metallic ball is shown in Fig. 6.11. The metallic ball reflects all the incident light

and behaves like a mirror. There is no transient state as shown in Fig. 6.11(c)

which shows there are no radiation components. This problem is identical to the

visible light observation.
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Figure 6.9: The effectiveness of decomposition. Photometric stereo result with-

out decomposition, result using radiation components, and comparison with our

method. Our method is time invariant and the accuracy is shown as a dotted

line. The angular error of our method is 5.85 degrees, which shows that our

decomposition is effective for the separation of diffuse radiation.
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Figure 6.10: Results on various materials. Spheres made by wood, crystal grass,

plastic, and marble are measured, which are challenging objects for ordinary

computer vision techniques. Our method uniformly recovers the surface normal

for many materials. A complex shape is also measured, and our method recovers

the normal appropriately.
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(a) Metallic ball. (b) Observation. (c) Temperature profile.

Figure 6.11: A failure case. The absorption rate is too small hence the metallic

ball reflects all the incident light and shows the spherical thermal map of the

room. The plot shows the temporal response of the highlighted point, where no

transient components are observed. In such a case, only the ambient and specular

components can be obtained and the photometric stereo does not work well.

6.4. Discussion

This chapter presents a novel technique for the time-resolved decomposition of

far infrared light transport. We describe the far infrared light transport model,

its transient properties, and that the ordinary vision techniques can be applied

to decomposed thermal images. We propose a surface normal reconstruction

using a photometric stereo after the diffuse component in a thermal image is

separated. Our method recovers the surface normal of any objects that absorbs

the incident light, including transparent, translucent, and black objects as well

as matte objects.

While the effectiveness of our method is shown by some real-world experi-

ments, some limitations are also encountered. First, the result is noisy owing to

the low SNR observations and pixel-wise calculation. Because far infrared light

cannot be measured by silicon sensors, the quality of the imaging sensor is not

well developed. Naturally, this will be improved in the future, and it will directly

improve our results. A global optimization that considers smoothness or simply

using a smoothing filter are other options to improve the results.

Another limitation is that some materials, such as metals, do not exhibit much
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diffuse radiation. In such a case, the ambient and specular components can be

separated; however, the photometric stereo is not applicable. This problem is

the same as that encountered with visible light observation, e.g., photometric

stereo suffers from mirror surface objects. In contrast, the absorption of many

objects, including glass, is high, hence the potential applicability of our method

is relatively higher than visible light observation techniques.
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Chapter 7

One-shot hyperspectral imaging

using faced reflectors

A hyperspectral image includes valuable information which is useful for various

computer vision tasks such as material recognition [163], color consistency [3],

and anomaly detection [151]. However, conventional hyperspectral imaging re-

quires an expensive and professional system that is not easily available. Most

commercial hyperspectral cameras capture a scene multiple times with a large

number of narrow band filters or a tunable narrow band filter. Since a narrow

band filter allows the spectral light at a certain wavelength to pass through, it

is possible to capture an image at the wavelength by attaching the filter in front

of the camera. Multiple capturing with different narrow band filters enables us

to obtain a hyperspectral image. Another commercial system employs dispersing

the light into individual wavelengths by using a prism or a diffraction grating.

Since the camera captures only the dispersed light on a 2D slice in the scene at a

time, sweeping in the whole scene is necessary to obtain a hyperspectral image.

In this chapter, we propose a novel technique of one-shot hyperspectral imag-

ing using faced reflectors on which color filters are attached, as shown in Fig. 7.1.

The light emitted from the light source is diffusely reflected on the target scene

and then observed by the camera as an image. Moreover, the light after being

reflected on the scene is also reflected on the reflectors before being observed by

the camera. Thus, the spectrum of that observation is different from that without

reflecting on the reflectors. That is, we can observe another image filtered by a
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Light source

RGB cameraTarget

Reflector Color filter

Observed
intensity

Observation Model

Light source Target Filter Camera

Key Idea Each reflection on the filters changes the spectrum

No reflection

Once reflection

Twice reflection

Three times reflection

Optimization Reconstruct a hyperspectral image

Wavelength

Figure 7.1: Overview of the proposed technique of one-shot hyperspectral imaging

using faced reflectors. This simple setup employs a coupled mirror on which color

filters are attached. Since the spectrum of the light varies at each reflection, we

can obtain multiple observations from a single image. The observations allow us

to reconstruct a hyperspectral image.
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different spectrum. On the faced reflectors, where the light is reflected multiple

times, the light at each reflection is regarded as filtered by a different spectrum.

Therefore, we can obtain multiple observations filtered by different spectra at

once.

The technique can be implemented by various faced reflectors setup, such

as a coupled mirror and a kaleidoscope geometry, as will be explained in Sec-

tion 7.2. Our experimental results show that even a coupled mirror setup with

only one kind of a color filter is capable of capturing a hyperspectral image whose

reconstruction error is on average 14% on real data, as shown in Section 7.3.

Contributions Our contributions are summarized as:

• One-shot hyperspectral imaging: Our technique is capable of capturing a

hyperspectral image with one-shot by using a coupled mirror with only one

kind of color filter, and its quantitative error is on average 14%.

• Extremely low cost measurement system: Implementing our technique only

requires a pair of planar mirrors and a color filter, which are readily available

for most users, and all of them totally cost less than $100.

7.1. One-shot hyperspectral imaging technique

7.1.1 Appearance model of faced reflectors

We first introduce the model to take an image by an RGB camera. We assume

that isotropic spectral reflectance on the surface under a uniform illumination for

a whole scene. An observed intensity yk in the k-th channel of an image can be

expressed as

yk =

∫
Λ

l(λ)s(λ)ck(λ)dλ, (7.1)

where λ is the wavelength, l(λ) is the spectrum of the illumination, s(λ) is the

spectral reflectance, ck(λ) is the spectral sensitivity of the k-th channel on the

camera, and Λ is the range of wavelength, for example, from 400 to 700nm if the

visible light is assumed. When a pair of reflectors is placed between the scene

and the camera as shown in Fig. 7.1, the light reflected in the scene is specularly
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reflected on the reflectors before being observed by the camera. Suppose that a

color filter whose spectrum is f(λ) is attached on both reflectors and the spectral

reflectance of the reflector is flat, the observed intensity of the light once reflected

on the reflector, see the yellow line in Fig. 7.1, can be expressed as

yk,1 =

∫
Λ

l(λ)s(λ)f(λ)ck(λ)dλ. (7.2)

When the light is twice reflected, shown as the green line in Fig. 7.1, it is multi-

plied by one more f(λ). Regarding the light without reflection on the reflector,

the red line in Fig. 7.1, as the case of f 0(λ), the observed intensity yk,i to the

i-bounce light reflected on the reflectors can be formulated as

yk,i =

∫
Λ

l(λ)s(λ)f i(λ)ck(λ)dλ, (7.3)

where 0 ≤ i ≤ N and N is the maximum number of bounces. N is an important

factor to stably reconstruct the spectral reflectance and so we will discuss it in

Section 7.1.3.

7.1.2 Problem formulation

The problem is here to estimate the spectral reflectance s(λ) when all of the spec-

tra of the light source l(λ) and the color filter f(λ) and the spectral sensitivities

of the camera ck(λ) are known. To solve that, we transform Eq. 7.3 into a discrete

formulation. The discrete formulation to Eq. 7.3 is

yk,i =
∑

λb≤λ≤λe

lλsλf
i
λck,λ

=
∑

λb≤λ≤λe

ak,i,λsλ, (7.4)

where ak,i,λ � lλf
i
λck,λ, λb and λe are the minimum and maximum wavelengths in

the range, respectively. Eq. 7.4 can be written in a matrix format as follows:

yk,i = aT
k,is, (7.5)

where ak,i = (ak,i,λb
, ak,i,λb+dλ, · · · , ak,i,λe)

T, s = (sλb
, sλb+dλ, · · · , sλe)

T, and dλ

is the granularity of wavelength in the discrete formulation. The resolution of
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wavelength is defined as Nλ = λe−λb

dλ
. When all intensities of 3 channels and N

bounces are measured, a simultaneous equation can be composed as

y = As, (7.6)

where

y = (yr,0, yg,0, yb,0, yr,1, · · · , yb,N)T ∈ R
3N , (7.7)

A = [ar,0,ag,0,ab,0,ar,1, · · · ,ab,N ]
T ∈ R

3N×Nλ . (7.8)

Here, when the intensity vector y is observable and the coefficient matrix A is

known, then the spectral reflectance s can be reconstructed as follows:

ŝ = arg min
s

‖As− y‖2. (7.9)

When the rank of the coefficient matrix is sufficient, Eq. 7.9 can easily be solved

by a conventional least squares technique.

7.1.3 The nature of the coefficient matrix A

The reconstruction of the spectral reflectance can be solved by a conventional

least squares technique as mentioned in Section 7.1.2. However, the stability of

its computation depends on the coefficient matrix A. To obtain a stable solution,

the rank of the coefficient matrix A has to be sufficient.

Furthermore, it is well known that the condition number of a problem is an

important factor to stably solve the problem in the field of numerical analysis.

A problem with a low condition number can stably be solved. In our formula-

tion, the condition number of the problem is decided by the coefficient matrix as

follows:

κ(A) =
σmax

σmin

, (7.10)

where σmax, σmin are the maximum and minimum of singular values of A, respec-

tively. We define σmax � σ1 and σmin � σrank(()A).

Because we have assumed that the spectrum of the illumination lλ, the spectral

sensitivities of the camera ck,λ, and the spectrum fλ are all known, then the

coefficient matrix A can be evaluated in advance. Therefore, when we have
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multiple color filters, it is possible to select the optimal color filter which make

the rank sufficient and the condition number the lowest. We verify this nature in

Section 7.3.2 by an experiment on synthetic data.

7.1.4 Constrained optimization

Although, as mentioned in Section 7.1.2, Eq. 7.9 can be solved by a least squares

method, it often gets unstable because of the nature of the coefficient matrix

A. To deal with that, we have explained how to construct the optimal setup

by selecting the color filter to be used in Section 7.1.3. Moreover, we employ a

convex optimization technique to make the computation more stable.

The spectral reflectance physically can neither be a negative value nor over

1.0. This fact can be used as a strong box constraint. We can adopt a smoothness

constraint on the spectral reflectance since it is often measured in the real world.

Thus, we can rewrite Eq. 7.9 as

ŝ = arg min
s

{
‖As− y‖2 + α

∫
Λ

(
∂2s(λ)
∂λ2

)2

dλ

}
,

s.t. 0 ≤ s(λ) ≤ 1 (λ ∈ Λ), (7.11)

where α is the coefficient for the smoothness term. Then, Eq. 7.11 can be ex-

pressed in a matrix format as

ŝ = arg min
s

{‖As− y‖2 + α‖Ds‖2} ,
s.t. 0 ≤ sλ ≤ 1 (λb ≤ λ ≤ λe), (7.12)

where D is the second-order difference matrix. The objective function in Eq. 7.12

can be expressed in a quadratic program format as

‖As− y‖2 + α‖Ds‖2
= sT(ATA+ αDTD)s− 2yTAs+ yTy. (7.13)

Since the third term yTy is constant, then Eq. 7.12 is equivalent to

ŝ = arg min
s

{
sT(ATA+ αDTD)s− 2yTAs

}
,

s.t. 0 ≤ sλ ≤ 1 (λb ≤ λ ≤ λe). (7.14)
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Figure 7.2: The setup of a coupled mirror.

We solve Eq. 7.14 by using the quadratic cone programming technique [19]. To

implement that optimization program, we utilize the python optimization library

cvxopt [1].

7.2. Various setups as implementation

In Section 7.1, we have explained our technique of one-shot hyperspectral imaging

by using faced mirrors. In order to implement the technique, various setups are

available. In this section, we introduce two types of feasible setups by using a

coupled mirror and a kaleidoscope.

7.2.1 Coupled mirror geometry

The simplest setup uses a pair of planar reflectors, faced to each other, on which

color filters are attached. This setup is generally called a coupled mirror. First, we

assume that the same filters are attached on both reflectors. Figure 7.2 illustrates

the setup of a coupled mirror whose length is z and intervening distance is d. The

angle of view of the camera is defined as θ. In this setup, the number of bounces

N is geometrically limited to

N ≤
⌊
z

d
tan

θ

2

⌋
. (7.15)

Note that, in the actual setup, the number of bounces is also limited by the energy

of the irradiance even if the right-hand side in Eq. 7.15 is a large number.
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For instance, when an RGB camera whose angle of view is 120◦ and a coupled

mirror whose length is 300mm and intervening distance is 10mm are used, N ≤
51. The resolution of wavelength Nλ has to be less than or equal to 3N because

the number of channels is three and the coefficient matrix A has to be a vertically

long or square matrix for well-posedness. Therefore, the granularity of wavelength

is limited to dλ ≥ λe−λb

3N
; that is, for example, it is theoretically possible to perform

hyperspectral imaging at each 1.96nm wavelength, if the range is the visible light.

Secondly, we assume that two different color filters whose spectra are f(λ)

and g(λ) are attached on the reflectors, respectively. In this case, Eq. 7.3 can be

rewritten as

yk,i,j =

∫
Λ

l(λ)s(λ)f i(λ)gj(λ)ck(λ)dλ, (7.16)

where 0 ≤ (i + j) ≤ N . Since, geometrically, the reflection alternately happens

on each reflector, |i−j| ≤ 1. Therefore, if 1 ≤ i ≤ N
2
−1 then the patterns of j for

each i are three; j ∈ {i− 1, i, i+ 1}, and if i ∈ {0, N
2
} then the patterns are two.

Totally, the number of combinations of (i, j) is (3
2
N − 2). In the case of using

the same filter, the number of bounces represents the number of row vectors in

the coefficient matrix. On the other hand, if the number of bounces is more than

four, using two different filters makes the number of row vectors larger, and thus,

the computation becomes more stable.

7.2.2 Kaleidoscope geometry

In computer vision, the kaleidoscope geometry has often been used to obtain

many information by one-shot imaging for measuring the bi-directional texture

function [59] and the shape [93] of an object. This approach can as well be useful

for our technique of one-shot hyperspectral imaging. There are many kinds of

kaleidoscope such as triangular pole, quadrangular pole, and hexagonal pole.

Since our basic technique is based on a pair of reflectors, a setup consisting of

multiple pairs of reflectors is a good match. Here, we introduce the quadrangular

pole geometry as an implementation.

The quadrangular pole, shown in Fig. 7.3, consists of two pairs of reflectors.

In principle, it is possible to use four different color filters but we only use two

different filters whose spectra are f(λ) and g(λ). One kind of filter is attached
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Figure 7.3: The setup of a kaleidoscope. Left: a quadrangular pole setup when

two different color filters, whose spectra are f(λ) and g(λ), are used. Right: the

combinations of (i, j) in Eq. 7.17 at a taken image.

on one of the pairs and another is attached on another of the pairs. Then, an

observed intensity can be expressed as

yk,i,j =

∫
Λ

l(λ)s(λ)f i(λ)gj(λ)ck(λ)dλ, (7.17)

where 0 ≤ i ≤ N and 0 ≤ j ≤ N . The number of combinations of (i, j)

is naturally N2, if the camera has the same horizontal and vertical angles of

view. Generally, the vertical angle is less than the horizontal one, so the number

of combinations can be lower but still is larger than that of a coupled mirror

geometry configuration.

7.3. Experiments

7.3.1 Spectral dataset

We first explain the spectral dataset to be used in our experiments. In our

experiments, we define the range of wavelength as the visible light, from 400 to

700nm. To generate synthetic data of spectral reflectance, we use a set of 1995

spectral reflectance including 350 surfaces Krinov dataset [90], 120 Dupont paint

chips, 170 natural objects [171], 24 Macbeth color checker patches, 1269 Munsell
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Figure 7.4: The spectral dataset.

chips, and 62 surfaces dataset [13]. We then measured the spectra of 253 Roscolux

color filters and a thin clear orange filter for real data by using a spectrometer,

OceanOptics Maya2000Pro. The spectral sensitivity of the camera, Nikon D5100,

was estimated by the PCA-based method with data from [75, 81], as explained

in [129]. Figure 7.4 shows the spectral sensitivity of the camera and the spectra

of several of the color filters.

7.3.2 Synthetic data

We first perform experiments on synthetic data to validate our technique. As-

suming a coupled mirror case with only one type of color filter, we simulated

all observations for each bounce on each channel of the camera when using each

of the 253 Roscolux filters and the thin clear orange filter. We repeated this

simulation for observing each of the 1995 materials by Eq. 7.3. Then, we added

zero-mean random Gaussian noise with a standard deviation of 0.1% onto the

simulated intensities.

We reconstruct each spectral reflectance of the materials when using each of

the filters by using Eq. 7.14. Then, we calculate their root-mean-square errors

(RMSEs) to the ground truth for quantitative evaluation. The reconstructed

results for the spectral reflectance of the Macbeth color checker are shown in
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Figure 7.5: Experimental results on synthetic data for reconstructing the spectral

reflectance of the Macbeth color chart in the spectral dataset when using the thin

clear orange filter to be used in experiments on real data. The horizontal and

vertical axes indicate wavelengths[nm] and reflectance, respectively.

Figure 7.6: Experimental results on synthetic data for reconstructing the spectral

reflectance of the Macbeth color chart in the spectral dataset when using the #67

Light Sky Blue filter in the Roscolux color filters. The horizontal and vertical

axes indicate wavelengths[nm] and reflectance, respectively.
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Figs. 7.5 and 7.6 as examples, in which we used the thin clear orange filter and

the #67 Light Sky Blue filter. As can be seen, the reconstruction results are

mostly similar to the ground truth but the error at shorter wavelength is relatively

larger. The condition numbers when using the thin clear orange filter and the #67

Light Sky Blue filter are 1.29× 105 and 0.26× 105, respectively. The #67 Light

Sky Blue filter has the smallest condition number of the Roscolux color filters.

The averages of RMSEs for the Macbeth color checker by using the thin clear

orange filter and the #67 Light Sky Blue filter were 0.03 and 0.01, respectively.

Since the maximum value of reflectance can be 1.00, the average reconstruction

errors is 3% when using the thin clear orange filter. The camera simulated in the

experiments, shown in Figs. 7.5 and 7.6, can be regarded as an ideal float-value

camera. However, a practical camera is an integer-value camera with 16 or 8 bits,

usually. Thus, we evaluate RMSEs when using 16-bit and 8-bit cameras. The

reconstructed results when using 16-bit and 8-bit cameras of the Macbeth color

checker are shown in Figs. 7.7 and 7.8, respectively. The averages of RMSEs for

the Macbeth color checker when using the 16-bit and 8-bit cameras were 0.02

and 0.05, respectively. It is shown that the performance of camera affects to the

reconstruction accuracy. We will discuss this relationship between the condition

number and the reconstruction error later. Then, we analyze the reconstruction

errors from both perspectives of color filters and materials.

Figure 7.9 shows the average RMSE for reconstructing all materials when

using each of the filters. After sorting in ascending order, we pick up 6 filters and

then plot their spectra. This analysis explains what kind of filter is better in terms

of smaller reconstruction error. As a result, a filter which allows a wide range of

wavelengths and has higher gradients along wavelength is better as compared to

a filter whose spectrum is very low or flat and has only one hump. Figure 7.10

shows the average RMSE for all filters when reconstructing each of the materials.

We select 8 materials and then plot their spectral reflectance. This analysis shows

what kind of material is difficult to be reconstructed. Results show that when

the spectrum is smoother, the RMSE is smaller, but when if has a gap along

wavelength, like the red line in Fig. 7.10, it is hard to be reconstructed. This is

because of the smoothness constraint in Eq. 7.11.

Secondly, we analyze the relationship between condition numbers and recon-
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Figure 7.7: Experimental results on synthetic data for reconstructing the spectral

reflectance of the Macbeth color chart in the spectral dataset when using a 16-bit

camera.

Figure 7.8: Experimental results on synthetic data for reconstructing the spectral

reflectance of the Macbeth color chart in the spectral dataset when using an 8-bit

camera.

98



Figure 7.9: Analysis of the reconstruction errors for each filter. Top: the average

RMSE for reconstructing all materials when using each of the 253 filters, sorted

in ascending order. Bottom: the spectra of 6 filters chosen as color points on the

top.
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Figure 7.10: Analysis of the reconstruction errors for each material. Top: the

average RMSE for all filters when reconstructing each of the 1995 materials,

sorted in ascending order. Bottom: the spectral reflectance of 8 materials chosen

as color points on the top.
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Figure 7.11: The relationship between the condition number of the coefficient

matrix A and the reconstruction error. This shows the condition number is

correlated to the reconstruction error.

struction errors to verify our assertion mentioned in Section 7.1.3. We compute

the condition number of coefficient matrix A when using each of the filters, and

then compare that with the average RMSE for the filter. Figure 7.11 shows the

relationship between the condition numbers and the average RMSEs for all of

the filters. It can be seen that the condition number is correlated with the aver-

age RMSE which supports our claim. This correlative relationship is helpful in

selecting an optimal color filter.

7.3.3 Real data

After testing the proposed technique on synthetic data, we perform experiments

on real data. We first implemented a simple setup which consists of two planar

front surface reflectors and the thin clear orange filter, as shown in Fig. 7.12(a).

All real data are taken by the camera Nikon D5100 under a white light source D65.

Since the length of the reflectors is 100mm, the intervening distance is 20mm, and

the angle of view is 120◦, up to 8-th bounce reflections can be observed according

to Eq. 7.15. Experimentally, it is only possible to observe up to 4-th bounce, as

shown in Fig. 7.12(b), because of a physical interference between the camera and
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(a) (b)

RGB camera

Coupled mirror setup 1-st 2-nd 3-rd0-th 4-th

Figure 7.12: Real setup. (a) coupled mirror setup consisting of two surface reflec-

tors and the thin clear orange filter on the both reflectors. (b) a captured image

by the camera where up to 4-th bounce can be seen.

Target area

Figure 7.13: Experimental target: a green leaf. Left: a captured image by the

camera with the real setup, where up to 2-nd bounce can be seen. Right: the

area inside blue dash line is a target for reconstructing a hyperspectral image.

Figure 7.14: Experimental results on real data for reconstructing the spectral

reflectance of green, red, and yellow chips on the Macbeth color chart.
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(a) (b)

Figure 7.15: Experimental result on real data for reconstructing a hyperspectral

image when capturing a green leaf. (a) the hyperspectral image reconstructed by

our technique. (b) the ground truth hyperspectral image captured by SurfaceOp-

tics SOC710. Reflectance is shown as pseudo-color. Note that the indicated

wavelengths are different from each other because the resolutions of wavelength

are different.

the setup.

To evaluate the accuracy of reconstructing spectral reflectance, we again use

several chips on the Macbeth color chart, whose reflectance is known. As men-

tioned above, because only up to 4-th bounce can be observed, the number of

total observations is 15, from 3 channels and 0 to 4-th bounces. This means

that the granularity of wavelength is limited to 20nm. We reconstruct spectral

reflectance in 30nm for stable computation. On each of yellow, red, and green

chips, the pixel values are averaged to be used. Then, we reconstruct the spectral

reflectance of those color chips. Figure 7.14 shows the spectral reflectance recon-

structed by our technique and the ground truths. As a result, it can be seen that

the reconstruction results roughly fit to the ground truths for all color chips. The

RMSEs for green, red, and yellow chips are 0.09, 0.13, and 0.20, respectively.

We finally perform a practical experiment for reconstructing a hyperspectral

image. A target object is a green leaf, as shown in Fig. 7.13. When using the

simple real setup, only up to 2-nd bounce can be observed because of the size of

the leaf, so the number of total observations is nine. Furthermore, we can observe

only a region inside blue bash line in Fig. 7.13 because of physical interference.

Since it is necessary to perform geometric registration along all observed images,
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we put four markers in the scene and then compute homography transformation

of the images. Figure 7.15 shows the hyperspectral image reconstructed by our

technique and the ground truth captured by the hyperspectral camera SurfaceOp-

tics SOC710. Note that the wavelengths indicated in Fig. 7.15 are not exactly

same because the resolutions of wavelength are different between our method and

the hyperspectral camera. Although only nine observations are available, our re-

sult has similar distributions to that of the ground truth, especially at 550 and

587nm. On the other hand, at shorter and longer wavelengths, the reconstructed

images almost have no signal. This is because of the lack of observations and low

signal-to-noise ratio.

7.4. Discussion

Our experimental results on synthetic data have shown that it is possible to

reconstruct the accurate spectral reflectance by using a coupled mirror setup if the

number of observations is large enough. A comparison between Figs. 7.5 and 7.6

shows that it is important to select the optimal color filter when the camera

and the light source have been decided. In fact, it is difficult to observe many

bounces in a real setup, as shown in the experiments on real data in Section 7.3.3.

This is mainly because of two reasons: a) attenuation in light intensity and b)

physical interference between the camera and the setup. Another problem comes

from the color filter which is attached on the reflectors. Although we used a

very thin filter, 2.5μm, the light was diffusely reflected a little and so the image

after few bounces became unclear. This issue can be resolved by using thin

color glass with a metallic sheet. While it is still difficult to obtain an accurate

hyperspectral image as much as one by a commercial hyperspectral camera, the

proposed technique can be used for capturing a very detailed spectral image

around a certain wavelength, not whole wavelengths.

In this chapter, we have proposed a novel technique of one-shot hyperspectral

imaging using faced reflectors, such as a coupled mirror and a kaleidoscope, on

which color filters are attached. The key idea is based on that each of multiple

reflections on the filters has a different spectrum, which allows us to observe mul-

tiple intensities through different spectra. We formulated an appearance model
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for faced reflectors. Then, we analyzed the nature of the coefficient matrix, which

is one of our contribution in this chapter, and showed that the condition number

was correlated with the reconstruction error. Also, we analyzed the reconstruc-

tion errors to reveal what kind of filter should be used for a real implementation.

In our experiments on real data, we showed the error of reconstructing spectral

reflectance was on average 14% and performed hyperspectral imaging. The ac-

curacy is still low but it supports our claim that one-shot hyperspectral imaging

is feasible using faced reflectors with appropriate color filters.

7.4.1 Trade-off and limitations

There is a trade-off between spectral and spatial resolutions. The trade-off is

derived from the granularity of wavelength, dλ ≥ λe−λb

3N
. To obtain high spectral

resolution, the number of bounces N needs to be enough large. However, it leads

to a fact that the size of each bounce region in a image, which is equal to the

spatial resolution, reduces. A way to make N larger is to shorten the intervening

distance but it leads to a narrow field of view since the distance is equal to the

field of view of the proposed setup.

Currently, the proposed setup has two limitations; low SNR after a number

of bounces on the reflectors and only flat-surface objects as the target. Because

of the low SNR, the variations of observations caused by a small number of

observable bounces are limited but it can be resolved by using the kaleidoscope

geometry with different color filters. Another way is to capture an image by a

high dynamic range technique. Targeting a object with complex geometry is a

challenging work because shape reconstruction is required to find corresponding

between different bounce images. Those will be our future work.
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Chapter 8

Enhanced photometric stereo

using multispectral images

Photometric stereo, a technique originally proposed by Woodham [178] and Sil-

ver [149], is a traditional method for estimating surface orientations from multiple

images taken under different lighting conditions. A key factor in this process is

the surface reflectance, which describes how the shading at each surface point

changes in relation to the lighting direction and the surface normal. By varying

the light direction, the corresponding changes in the shading are used to infer the

surface normals according to the reflectance model.

Surface reflectance is normally assumed to follow Lambert’s law, whereby the

intensity I of the reflected light is proportional to the inner product of the lighting

vector l and the surface normal vector n:

I(x) = ρ(x)nTl, (8.1)

where ρ(x) denotes the albedo, or intrinsic color, of the surface at point x. This

Lambertian model of reflectance is frequently used in photometric stereo be-

cause of its simplicity and convenience. However, the small deviations from the

Lambertian model displayed by many materials produces inaccuracies in shape

reconstruction.

Various methods have been proposed for dealing with non-Lambertian re-

flectance. Non-Lambertian highlights are treated as outliers within a Lambertian

photometric stereo framework [16], or removed from images [105]. Some instances
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Figure 8.1: Overview of our algorithm for enhancing the performance of photo-

metric stereo using multispectral images.

of photometric stereo are formulated for specific parametric reflectance models,

such as the Torrance-Sparrow model [45], a combination of isotropic Ward mod-

els [52], and m-lobed reflectance maps [155]. Several work have been presented

for an arbitrary form for the reflectance [7, 66]. Some methods analyze color

for photometric stereo, but mainly to minimize image acquisition with differ-

ently colored illuminations [8], to improve robustness by incorporating additional

measurements [23], or to aid in removing non-Lambertian reflectance compo-

nents [105, 97].

Our algorithm is outlined in Figure 8.1. Our input is a set of images captured

at various wavelengths and for different lighting directions. For each wavelength,
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we apply Lambertian photometric stereo. In addition, the multispectral image

constructed from the set of wavelengths is segmented into different multispectral

regions. In each of these, we evaluate the photometric stereo results for each

wavelength, using matrix rank analysis to identify which wavelength is most con-

sistent with the Lambertian model. The surface normal map computed for each

wavelength are then merged by selecting the optimal wavelength for each region.

We thus obtain the final normal map. This approach is validated with simulated

images. Experiments on real images support this multispectral approach, showing

visible improvements in surface normal estimation over conventional photometric

stereo based on brightness images.

8.1. Photometric Stereo using Multispectral Im-

ages

8.1.1 Wavelength-dependent Reflectance

We first examine the wavelength-dependence of reflectance and its effects on

photometric stereo reconstruction. When accounting for a continuous range of

wavelengths, the Lambertian reflectance model in Eq. (8.1) can be expressed as

I(λ, x) = σ(λ)ρ(λ, x)e(λ)n(x)Tl, (8.2)

where λ ranges over the measurable wavelengths of the sensor, σ is the spectral

sensitivity of the camera, ρ is the spectral reflectance at a given surface point,

and e is the spectrum of the light source.

The diffuse reflection that is conventionally used for photometric stereo arises

from a physical process in which light penetrates an object surface, scatters off

material particles, and is emitted out of the surface. According to the Lamber-

tian model, this outgoing light is distributed uniformly in all directions, with an

intensity given by Eq. (8.2).

In reality, the directional distribution of the outgoing light is determined by

how the light is scattered within the material. This subsurface scattering is phys-

ically determined with respect to the optical properties of the material, virtually

all of which are wavelength-dependent. For example, the wavelength can affect

108



the number of scattering events. For details on the wavelength-dependence of

optical properties in materials, we refer the reader to [17].

This wavelength-dependence of optical properties suggests that surface re-

flectance is also spectrum-sensitive, thereby affecting the reconstruction quality

of photometric stereo. We demonstrate this in Figure 8.2 with a simulated sphere

rendered using real reflectance data for red plastic, obtained from the MERL

BRDF dataset [107]. Forty images with different lighting directions were used for

photometric stereo, and the color spectrum was coarsely sampled in red, green,

and blue channels. The angular error maps in the reconstructions reveal different

degrees of accuracy in the different color channels.

8.1.2 Region-based Identification of Optimal Wavelengths

Given a set of multispectral images captured with a stationary camera and dif-

ferent lighting directions, our algorithm first computes Lambertian photometric

stereo, performs a region segmentation, and identifies the optimal wavelength

for each region, which is then used to merge the normal maps computed with

different wavelengths. The details of the process are as follows.

Region segmentation As mentioned previously, the optimal wavelength for

Lambertian photometric stereo may vary across the image because of varying

BRDFs. In particular, our investigations have shown that regions of different

color often have different optimal wavelengths. To improve the reconstruction

accuracy, we therefore segment the scene by normalized multispectral informa-

tion, and determine the optimal wavelength for each of the regions. We apply

k-means clustering for the segmentation, using an image where the object is fully

illuminated (i.e., no shadows).

Optimal wavelength identification in each region To find the optimal

wavelength in each segmented region, we evaluate the data in each region. For

a region with N pixels and M lighting conditions, we can express Eq. (8.2) in

matrix form as

I = g(λ)NL, (8.3)

where g(λ) = σ(λ)ρ(λ)e(λ), I ∈ R
N×M is a matrix of image intensities, N ∈ R

N×3
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(a)

(b) (c) (d) (e) (f)

Avg. 1.42
Var. 1.02

Avg. 5.37
Var. 11.42

Avg. 13.43
Var. 44.13

Avg. 2.56
Var. 2.63

Figure 8.2: Effect of different wavelengths on photometric stereo. (a) One of 40

images rendered with different lighting directions; (b) ground truth of the normal

map; normal maps and angular error maps using the (c) red, (d) green, and

(e) blue color channels for Lambertian photometric stereo; and (f) results with

brightness images.

is a matrix of surface normals, and L ∈ R
3×M is a matrix of lighting vectors.

As seen in Eq. (8.3), the Lambertian model predicts that the rank of the ob-

servation matrix I must equal that of the normal vector matrix N, given that the

sampled lighting directions are not co-planar (i.e., rank(()L) = 3). As rank(()I)

deviates further from rank(()N), the data becomes more poorly fitted by the

Lambertian model and then Lambertian photometric stereo should produce less

accurate results as discussed in [180].

In view of this effect, we evaluate the wavelengths by determining how close

the rank of its observation matrix is to rank(()N). The evaluation function used

in this work is

E =
σk+1

σk

, (8.4)

where k = rank(()N) and σi denotes the i-th eigenvalue of I. This function

becomes large when the rank of I falls below k (i.e., σk close to 0) or exceeds

k (i.e., σk+1 becomes large). Thus, the wavelength that minimizes E is that
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for which the rank of I is closest to rank(()N). A small additive term may be

included in the denominator to avoid division by zero, but in practice we have

found σk never to be zero.

Assuming the rank of N to be three, Eq. (8.4) is evaluated with k = 3.

Corresponding values of k should be used in degenerate cases of lower rank. For

each segmented region, the optimal wavelength minimizes E, and to enhance

Lambertian photometric stereo, we estimate the final normal map by combining

the normal maps of each region that correspond to its optimal wavelength.

8.2. Experimental Results

8.2.1 Simulation images

We first validate our method on a simulated scene for which the ground truth

surface normals are known. Our scene consists of an egg-shaped surface ren-

dered with the reflectances of seven different materials from the MERL BRDF

dataset [107]. Forty images under different lighting directions are generated. One

of these is shown in Figure 8.3(a). The ground truth is exhibited in Figure 8.3(b).

We note that the MERL BRDF dataset provides reflectance data in terms of only

red, green, and blue, so our multispectral technique is performed with three color

channels in this instance.

Photometric stereo is first computed for each of the color channels separately,

and also for the brightness images obtained by summing the three color chan-

nels. The estimated normal maps, angular error maps, and error statistics are

shown in Figure 8.3(c-f). Overall, the brightness images yield better results than

the images of individual color channels, probably because of a higher signal-to-

noise ratio (SNR) resulting from summing multiple measurements. However, in

some regions, using an individual color channel yields a better estimate than the

brightness images (see the red rectangles in Figure 8.3 for example).

The result of combining normal map regions from different color channels

is shown in Figure 8.3(g). Each region from the three color channel images is

evaluated using Eq. (8.4), giving the values shown in Table 8.1. Pixels with sharp

highlights detected by intensity thresholding were discarded from the evaluation
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(a) (b)

(c) Avg. 4.16; Var. 0.49

(d) Avg. 5.88; Var. 0.73

(e) Avg. 10.40; Var. 1.51

(f) Avg. 4.29; Var. 0.37

(g) Avg. 3.14; Var. 0.16

Figure 8.3: Normal map estimation for simulation images. (a) One of 40 images

rendered under different light directions; (b) ground truth of the normal map;

normal maps and angular error maps using the (c) red, (d) green, and (e) blue

color channels; (f) with brightness images; (g) with our method.

by removing their rows from the observation matrix. With this multispectral

technique, we achieve reconstructions that surpass those derived from brightness

images, despite our technique not using summed measurements to improve the

SNR.

8.2.2 Real images

We conducted an experiment with a real scene captured using a fixed camera

(Point Grey Research Grasshopper), a halogen lamp (OSRAM), and nine narrow

band filters at 450, 488, 580, 650, 694, 730, 780, 880 and 940 nm (Edmond

Optics). A translation stage (Sigma) was used to switch the narrow band filters
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Table 8.1: Evaluation function values.

Material name Red Green Blue

blue-acrylic 0.960 0.985 0.642

green-plastic 0.840 0.831 0.885

light-brown-fabric 0.687 0.852 0.968

orange-paint 0.767 0.812 0.897

purple-paint 0.348 0.837 0.847

red-phenolic 0.403 0.932 0.900

yellow-matte-plastic 0.434 0.604 0.898

Plushie 450nm 488nm 580nm 650nm 694nm

730nm 780nm 880nm 940nm Brightness Ours

Figure 8.4: Picture and normal maps estimated using different wavelengths,

brightness images, by applying our method.

automatically. Images were recorded under twelve different lighting directions.

We applied photometric stereo to the images under perspective projection [160]

to estimate the surface normals.

The target object in this experiment is a plushie shown in Figure 8.4, made

of fabric of different colors.

Normal estimation using each wavelength The normal maps of the plushie

estimated from different wavelengths are shown in Figure 8.4. Subtle but visible

differences are apparent in the results obtained from the different wavelengths.

Long wavelengths tend to yield smoother reconstruction results, possibly because

113



they penetrate deeper into the surface. By contrast, shorter wavelengths often

yield sharper surface details. At certain wavelengths, such as 650 nm, surface

normal discontinuities may appear, coinciding with sharp color gradients on the

surface. These effects may indicate problems in fitting the Lambertian model to

the data at these wavelengths.

From the surface normal reconstructions for the different wavelengths, we next

determine which wavelengths are most consistent within the Lambertian model

with our segmentation and evaluation scheme.

Segmentation and region evaluation Segmentation is performed using the

nine color channels of our multispectral images. The segmentation result of the

target object is shown in Figure 8.5(a). The plushie is divided into nine different

region types. Disconnected areas on the image with the same region index are

treated collectively as one region.

After segmentation, Eq. (8.4) is used to determine the optimal wavelength for

each region. The values of the evaluation function for the different wavelengths

are shown in Figure 8.5(c) for each region. The evaluation curves tend to be even

over the color spectrum, possibly because the fabric material is less transparent,

and hence more similar degrees of light penetration into the surface at different

regions and for different wavelengths.

Combination of normal maps using evaluation function values The

evaluation function minima in Figure 8.5(c) yield the optimal wavelength for

each region, displayed in the label map in Figure 8.5(b). Long wavelengths in the

visible range are often selected.

A reasonable supposition is that the optimal wavelength corresponds to the

surface color of a region, since these wavelengths produce the brightest image and

a high SNR. However, our results suggest otherwise. For example, the optimal

wavelength is in the red spectral range even for a green surface, because of the

subsurface scattering properties of this region.

The normal map computed by our method from the label map and the normal

maps at different wavelengths is shown in Figure 8.4. Though the ground truth

is unavailable for this object, our normal map appears qualitatively more correct

than the normal map computed from brightness images. With our method, the
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Figure 8.5: Our algorithm illustrated. (a) Nine regions segmented by k-means

clustering in multispectral space. (b) Optimal wavelength for each region iden-

tified by Eq. (8.4). (c) Evaluation function values versus wavelength for each

region.

normal map is less sensitive to texture.

8.3. Discussion

In this chapter, we proposed a new technique based on multispectral images to

improve Lambertian photometric stereo. The resulting normal map is obtained

by combining different normal maps computed at an optimal wavelength deter-

mined in each region of the image. Optimal wavelength determination does not

require ground truth geometry, but is based instead on matrix rank analysis.
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Our experiments demonstrated significant wavelength-dependence of various ma-

terials in photometric stereo reconstruction. Our method demonstrably shows

improvements over traditional photometric stereo based on brightness images.

Some materials have reflectance properties that differ significantly from the

Lambertian model for any wavelength. To broaden the applicability of our tech-

nique, future work will extend our approach to other parametric reflectance

models used in photometric stereo. In addition, we intend to investigate the

wavelength-dependent reflectance of various objects for the purpose of material

recognition.

116



Chapter 9

Conclusion

Throughout this thesis, physics-based image decompositions were proposed to-

ward obtaining a shape and visual textures of an object. As the shape, surface

orientations are reconstructed by photometric stereo using the decompositions.

As the visual textures, spectral reflectance, translucency, and inner structure of

the object are obtained. In the spatial perspective, we proposed the image de-

composition based on optical phenomena, e.g., diffuse and specular reflection,

single and multiple scattering, and subsurface scattering as PSFs. Also, the de-

composition of inner layers was proposed to observe the inside of the object. In

the temporal perspective, FIR light transport was decomposed based on optical

and thermal phenomena, e.g., reflection of light and diffuse and global radiation.

In the spectral perspective, the one-shot hyperspectal imaging was proposed to

obtain the spectral reflectance image. Finally, the achievement of this thesis are

enabling to;

• reconstruct surface orientations of an object which consists of various mate-

rials, e.g., multi-textured, translucent, transparent, and black objects, with

a less effect of subsurface scattering;

• obtain a hyperspectral image at one-shot;

• obtain PSFs at each surface point as the translucency of a material; and

• observe inner layers of an object whose materials are relatively semi-transparent.
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In Chapter 3, we proposed a general approach to uniformly combine any kind

of separation methods for achieving a detailed decomposition. The experimental

results showed that the proposed approach can decompose observations into four

component images based on diffuse and specular reflection and single and multiple

scattering. The decomposed result enables a novel image segmentation based on

the opacity and translucency of materials.

In Chapter 4, we established a system to measure translucency of an object

and physically reproduce it by UV printing. We defined a modulated transfer

function as the translucency. The system obtains the modulated transfer func-

tion of a translucent object using a pro-cam system and prints multiple layers

with different colors using a UV printer. The experiment result showed that the

proposed system can reproduce the appearance of translucent materials, such as

a slice of salmon and beef.

In Chapter 5, we proposed a technique to reconstruct reflectance maps of inner

layers in an object using a pro-cam system. Frequency correlation imaging using

spatio-sequentially modulated illumination and homodyne detection enables to

extract only a signal from a specific depth. The experimental result showed that

the proposed technique can reconstruct four different layers of an object whose

depths can be manually assigned.

In Chapter 6, we discovered that radiation of far infrared light from an object

when illuminating is also available for photometric stereo. A far infrared light

transport including light and heat is temporally decomposed to extract the ra-

diation component. Since almost all materials except metals radiate far infrared

light, we achieved to reconstruct surface orientations of various materials, such

as transparent, translucent, and black objects.

In Chapter 7, techniques of spectral imaging were proposed. First, we pro-

posed a novel method to obtain a hyperspectral image at one-shot using faced

reflectors. A capture system can easily be implemented by setting a coupled

mirror on which a color filter is stuck in front of a conventional camera. The ex-

perimental result showed that the averaged RMSE of a spectrum reconstructed

by the proposed method is 14%. Second, in Chapter 8, we utilized multispectral

images to improve photometric stereo. Since the effect of subsurface scattering is

different depending on a wavelength of light, the optimal wavelength for a mate-
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rial is found out in photometric stereo. The experimental result showed that the

proposed technique can improve the robustness of photometric stereo comparing

with the traditional one using grayscale images.

9.1. Limitations and future work

While this thesis proposes radiometric decompositions for obtaining a shape, an

inner structure, and visual textures of an object with various materials, there

are still some limitations. The proposed photometric stereo technique using far

infrared light is applicable for various materials except for metals. The emissivity

of metals is so low that its radiation component cannot be extracted. Obtaining

a shape of metals is important for industrial applications but also a challenging

task. Thus, it will be our future work.

Currently, frequency correlation imaging for observing an inner structure can-

not target a scattering media, e.g. human skin. For wide and practical applica-

tions, scattering in an object should be considered. Even if scattering occurs in

the object, the spatial frequency of a sinusoidal projection pattern is not changed

and thus it is possible to extend the technique.

The proposed system for measuring and reproducing translucency of an ob-

ject cannot reproduce other visual textures, such as glossiness and micro-surface

structure. However, those are important for making appearance of a fabricated

object look realistic. Polarization imaging might be helpful to obtain those visual

textures and can be future work.
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[62] Miloš Hašan, Martin Fuchs, Wojciech Matusik, Hanspeter Pfister, and Szy-

mon Rusinkiewicz. Physical reproduction of materials with specified subsur-

face scattering. ACM Trans. on Graphics (ToG), 29(4):61:1–61:1, August

2010.

128



[63] Felix Heide, Matthias B. Hullin, James Gregson, and Wolfgang Heidrich.

Low-Budget Transient Imaging using Photonic Mixer Devices. ACM Trans.

on Graphics (ToG), 32(4):45:1–45:10, 2013.

[64] Felix Heide, Lei Xiao, Andreas Kolb, Matthias B Hullin, and Wolfgang

Heidrich. Imaging in Scattering Media using Correlation Image Sensors and

Sparse Convolutional Coding. Optics express, 22(21):26338–26350, 2014.

[65] Felix Heide, Lei Xiao, Andreas Kolb, Matthias B Hullin, and Wolfgang

Heidrich. Imaging in scattering media using correlation image sensors and

sparse convolutional coding. Optics Express, 22(21):26338–26350, 2014.

[66] T. Higo, Y. Matsushita, and K. Ikeuchi. Consensus photometric stereo.

In Proc. of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1157–1164, 2010.

[67] Michele Hinnrichs and Mark A. Massie. New approach to imaging spec-

troscopy using diffractive optics. In Optical Science, Engineering and In-

strumentation ’97, volume 3118, pages 194–205, 1997.
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