
Doctoral Dissertation

Synthesis of Practical Noise-shaping Quantizers

for Networked Control Systems

Rodriguez Ramirez Juan Esteban

March 15, 2019

Graduate School of Information Science

Nara Institute of Science and Technology



A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Rodriguez Ramirez Juan Esteban

Thesis Committee:

Professor Kenji Sugimoto (Supervisor)

Professor Shoji Kasahara (Co-supervisor)

Associate Professor Takamitsu Matsubara (Co-supervisor)

Associate Professor Yuki Minami (Co-supervisor, Osaka University)

Assistant Professor Masaki Ogura (Co-supervisor)



Synthesis of Practical Noise-shaping Quantizers

for Networked Control Systems∗

Rodriguez Ramirez Juan Esteban

Abstract

Nowadays networked control systems (NCSs) are being widely implemented

in many applications. There are several problems that negatively affect and com-

promise the design of practical NCSs. Some of these problems are (i) data rate

constraints of the channel, (ii) network traffic congestion, and (iii) inaccuracies

in the model of the plant. The aim of this thesis is to develop novel noise-

shaping quantizers for NCSs and their design methods that alleviate the effects

of these problems. These quantizers filter the quantization noise and convert

continuous-valued signals into the appropriate discrete-valued ones. First, an im-

proved metaheuristic based design is proposed for finite-level dynamic quantizers

that minimize the performance degradation caused by quantization in systems

subjected to data-rate constraints. Second, in order to deal with the network

traffic congestion, a switching type dynamic quantizer is proposed. This quan-

tizer is actuated by a Gaussian functions based event-generator attached to the

plant and sends the data only when needed. Third, for the situations in which the

model of the plant is absent or is unreliable, this study proposes a type of quan-

tizer implemented with neural networks and a time series of the plant’s inputs and

outputs. This quantizer does not need a model of the plant, and could be applied

to time invariant linear or nonlinear systems. The designs of these quantizers

are formulated as nonlinear and nonconvex optimization problems that cannot

be solved using conventional optimization techniques. Therefore, this thesis pro-

poses design methods based on covariance matrix adaptation evolution strategy

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, March 15, 2019.

i



and differential evolution, which are stochastic optimization algorithms. The ef-

fectiveness of these quantizers and their design methods are verified by means

of a plethora of numerical examples. In addition, their performances are com-

pared among each other using statistical analysis tools. Several conclusions are

reached from these simulations and several solutions are developed to improve

the performance of these quantizers.

Keywords:

Networked Control System (NCS), Dynamic Quantization, Communication Con-

straints, Network Traffic Reduction, Metaheuristics, Neural Networks

ii



Contents

1. Introduction 1

1.1 Networked Control Systems . . . . . . . . . . . . . . . . . . . . . 1

1.2 Quantizer Design for Networked Control Systems . . . . . . . . . 4

1.3 Noise-shaping Quantizers . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Contributions and Philosophy . . . . . . . . . . . . . . . . . . . . 10

1.6 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Noise-shaping Quantizers Design Problems 14

2.1 Performance Evaluation of Noise-shaping Quantizers . . . . . . . 14

2.1.1 Performance Index . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Data Rate Constraints Management . . . . . . . . . . . . 17

2.2 Design Problem and Constraints . . . . . . . . . . . . . . . . . . . 18

2.3 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Covariance Matrix Adaptation Evolutionary Strategy . . . 21

2.3.2 Differential Evolution . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Firefly Algorithm . . . . . . . . . . . . . . . . . . . . . . . 25

3. Design of Finite-level Quantizers Under Data Rate Constraints 27

3.1 Considered System . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Performance Index . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Minimum Quantization Interval . . . . . . . . . . . . . . . . . . . 30

3.4 Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Design Variable Setting . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Comparison Among Metaheuristics . . . . . . . . . . . . . . . . . 41

3.7.1 Success Rate Comparison . . . . . . . . . . . . . . . . . . 41

3.7.2 Convergence Time Comparison . . . . . . . . . . . . . . . 44

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



4. Design of Event-triggered Quantizers (ETQs) 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 System Description . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Performance Index . . . . . . . . . . . . . . . . . . . . . . 52

4.2.3 Data Rate Constraint . . . . . . . . . . . . . . . . . . . . . 54

4.2.4 Network Utilization Rate . . . . . . . . . . . . . . . . . . . 54

4.2.5 Quantizer Design Problem . . . . . . . . . . . . . . . . . . 55

4.2.6 Event Definition . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Comparison among different versions of ETQ . . . . . . . . . . . . 60

4.5 ETQ for Multiple Input Signals . . . . . . . . . . . . . . . . . . . 65

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5. Design of Neural Network Quantizers (NNQs) 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Regression Based NNQ . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 System Description . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.3 Performance Index . . . . . . . . . . . . . . . . . . . . . . 80

5.3.4 Design Problem . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Classification Based NNQ . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.1 Regression and Classification Based NNQ Comparison . . 87

5.5.2 Comparison with Linear Dynamic Quantizers . . . . . . . 91

5.5.3 Activation Functions Comparison . . . . . . . . . . . . . . 93

5.6 NNQ for Multiple Input Signals . . . . . . . . . . . . . . . . . . . 96

5.6.1 Noise Addition Effect . . . . . . . . . . . . . . . . . . . . . 98

5.6.2 Performance Indexes Comparison . . . . . . . . . . . . . . 102

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

iv



6. Conclusion 107

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Possible Research Directions . . . . . . . . . . . . . . . . . . . . . 109

Acknowledgements 111

References 112

Appendix 127

A. Default Parameters for the (µ/µW , λ) CMA-ES Algorithm 127

B. Particle Swarm Optimization 128

C. NNQs Statistical Analysis Details 129

v



List of Figures

1 General structure of an NCS. . . . . . . . . . . . . . . . . . . . . 1

2 Example of a finite-level quantizer . . . . . . . . . . . . . . . . . . 3

3 Structure of an open loop quantized control system. . . . . . . . . 4

4 Feedback type dynamic quantizer . . . . . . . . . . . . . . . . . . 6

5 Thesis philososhy schematic . . . . . . . . . . . . . . . . . . . . . 11

6 Error system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Static quantizer’s example . . . . . . . . . . . . . . . . . . . . . . 16

8 Penalty cost comparison . . . . . . . . . . . . . . . . . . . . . . . 20

9 CMA-ES operation’s example over a two dimensional problem . . 22

10 Designed quantizers’ operation example . . . . . . . . . . . . . . . 43

11 Success rate for the second order plant (P1). . . . . . . . . . . . . 44

12 Success rate for the third order plant (P2). . . . . . . . . . . . . . 44

13 Metaheuristics’ convergence behavior for the second order plant P1. 46

14 Metaheuristics’ convergence behavior for the third order plant P2. 47

15 Event-triggered quantizer scheme . . . . . . . . . . . . . . . . . . 50

16 Operation of the trigger signal σ(k) . . . . . . . . . . . . . . . . . 51

17 Trigger function H(yq) example . . . . . . . . . . . . . . . . . . . 52

18 ETQ’s error system . . . . . . . . . . . . . . . . . . . . . . . . . . 53

19 ETQ’s example resulting signals . . . . . . . . . . . . . . . . . . . 58

20 GETQ resulting error signals . . . . . . . . . . . . . . . . . . . . 59

21 ETQ’s error signal comparison for different Ψ∗s . . . . . . . . . . 60

22 Alternative operation of the ETQs . . . . . . . . . . . . . . . . . 61

23 ETQ alternative design method’s output signals y(k) . . . . . . . 63

24 Input and trigger signals for ETQ designed with multiple u(k)s . 67

25 Outputs signals for ETQ designed with multiple u(k)s . . . . . . . 68

26 3 layered feed-forward neural network example . . . . . . . . . . . 73

27 Hidden layers’ activation function h(·) comparison . . . . . . . . . 75

28 Neural network quantizer’s considered system . . . . . . . . . . . 77

29 Static quantizer’s example . . . . . . . . . . . . . . . . . . . . . . 78

30 Quantizer’s supervised learning . . . . . . . . . . . . . . . . . . . 79

31 NNQ’s error system . . . . . . . . . . . . . . . . . . . . . . . . . . 80

32 NNQ design approach differences . . . . . . . . . . . . . . . . . . 82

vi



33 Static quantizer’s variation example . . . . . . . . . . . . . . . . . 83

34 Resulting signals from designed NNQs for M = 2 and nL = 2 . . . 86

35 Output signals from designed NNQs for M = 2 and nL = 4 . . . . 87

36 Output signals from designed NNQs for M = 8 . . . . . . . . . . 87

37 QNNR and QNNC cumulative errors comparison . . . . . . . . . . 91

38 Q and QNN cumulative errors comparison . . . . . . . . . . . . . 92

39 3-way ANOVA main effects plot for the hs comparison . . . . . . 96

40 3-way ANOVA interaction plot for the hs comparison . . . . . . . 97

41 Error system signals with a NNQ trained for multiple u(k)s . . . . 99

42 Error system signals with a NNQ trained for a single u(k) but fed

with multiple u(k)s . . . . . . . . . . . . . . . . . . . . . . . . . . 100

43 Output signals comparison for NNQs trained for multiple u(k)s

and different performance indexes . . . . . . . . . . . . . . . . . . 104

vii



List of Tables

1 Hyperparameters used in the simulations . . . . . . . . . . . . . . 38

2 Simulation results for the second and third order plants by CMA-ES 39

3 Simulation results for the second and third order plants by DE . . 40

4 Simulation results for the second and third order plants by FA . . 41

5 Simulation results for the second and third order plants by PSO . 42

6 Considered ETQ’s design methods . . . . . . . . . . . . . . . . . . 61

7 Minimum Ẽ for the different ETQ’s design methods . . . . . . . . 65

8 Considered neural networks’ structure. . . . . . . . . . . . . . . . 85

9 E(QNN) analysis for h = sigmoid . . . . . . . . . . . . . . . . . . 88

10 Tukey pairwise comparison for h = sigmoid and single factors . . . 90

11 Q and QNN cumulative errors comparison . . . . . . . . . . . . . 93

12 E(QNN) results summary for M = 8, h = tanh and h = ReLU . . 94

13 3-way ANOVA Tukey test results for h comparison . . . . . . . . 95

14 Noise effects analysis for NNQs designed for multiple u(k) . . . . 101

15 Performance indexes comparison for NNQs designed for multiple

u(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

16 Tukey pairwise comparison 1-way ANOVA for performance indexes

comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

17 E(QNN) 3-way ANOVA for h = sigm . . . . . . . . . . . . . . . . 129

18 Tukey pairwise comparison 3-way ANOVA for M = 2 . . . . . . . 130

19 Tukey pairwise comparison 3-way ANOVA for M = 8 . . . . . . . 131

20 3-way ANOVA for h comparison . . . . . . . . . . . . . . . . . . . 132

21 3-way ANOVA Tukey test results for h comparison . . . . . . . . 133

viii



1. Introduction

1.1 Networked Control Systems

In recent years, the networked control systems or NCSs have been receiving a

lot of attention from researchers and manufactures due to their many advantages

and potential applications [46, 72]. In an NCS the plants, controllers, sensors and

actuators are physically separated and connected to each other via communication

networks as it is shown in Figure 1. A characteristic feature of the NCSs is that the

communication network is shared and multiple control systems can be operating

over it at the same time. Moreover, the NCS can be connected to the companies

intranet or even to the internet allowing any type of data to go through them,

not only control signals [3, 133, 143].

Figure 1: General structure of an NCS.

The NCSs have several advantages. The elimination of the unnecessary wiring

and the use of network technologies reduce the system’s complexity and make it

very easy to add or withdraw controllers, sensors or actuators. Thus, NCSs make

the systems very flexible and scalable. Additionally, by using a network to connect

the elements of the control system, the costs of installation and maintenance are

greatly reduced. The NCSs connect the cyber space to the real world making

the tele-operation of systems very easy to implement [31, 145]. Examples of

NCSs are found in industrial automation [59], control systems for automobiles

and aircraft [118, 119], mobile sensor networks [88], haptics collaboration over

the Internet [45, 47, 121] and the control of large distributed systems such as

1



smart grids [114, 57], transportation and water distribution networks. They have

a lot of potential applications like disaster prevention systems [14], hazardous

environments monitoring, domotics [124], remote surgery [75], distribured robotic

networks [12], space and terrestrial exploration, tele-operated systems [16] and

many others [81, 36].

Although NCSs bring many advantages to the systems, they have several

problems associated to them, like (i) data-rate constraints in the channels, (ii)

network traffic congestion, quantization errors due to (i), and packet drops due

to (ii) among others [144, 35]. In addition, the (iii) inaccuracies in the model

of the plant make necessary to build more robust NCSs capable of dealing with

noise and uncertainties [42]. This thesis focuses in ways to alleviate the effects of

these problems.

In NCSs, the control and sensor signals are transmitted through the commu-

nication network. These signals need to be quantized in order to be sent through

a digital channel. The quantization is the process in which the continuous-valued

signals are transformed into discrete-valued ones. The device that performs the

quantization of the signals is called quantizer. In general, a quantizer is com-

posed by a certain number of quantization levels M and the quantization interval

d, which is the distance between the quantization levels. In many studies the

value of M is unbounded (M →∞) [53, 11, 76, 56, 93]. In others, the quantizers

that have a finite number of quantization level, these quantizers are called finite-

level quantizer [90, 116, 140]. In regard to d, the quantization interval can be a

constant or it can be variable, following some type of rule, like in the logarithmic

quantizers [41] and in the hysteresis quantizers [146]. Figure 2 shows an example

of a finite-level quantizer with constant d. When the effects of quantization are

considered in the design and operation of a control system, we are in the presence

of a quantized control system. Figure 3 shows how an open loop quantized system

works.

There exist limitations in the amount of data that can be transmitted per unit

of time in the networked control systems. These limitations are known as data

rate constraints of the channel. Since the quantizer is supposed to send data to

the plant in each sampling time, the data rate constraint of the channel limits the

number of quantization levels in the quantizer [127, 86]. Each quantized signal is

2



u

v

u2

v2

Figure 2: Example of a finite-level quantizer (M = 6). Where u is the continuous-

valued input and v is the discrete-valued output. The yellow area represents the

range of the quantizer and the blue one is the saturation area. In order for the

quantizer to work properly, u(t) should be always inside the range of quantizer.

For example the value of u1 gives a quantized value v1 inside the quantizer’s

range, but the value u2 inside the saturation area gives a quite smaller quantized

value v2.

transformed into a chain of bits by an encoder in order to be transmitted. The

amount of bits generated by the encoder depends on the amount of quantization

levels that the quantizer has. These bits should be sent before another sampled

signal arrives to the encoder. Then, the system will work properly only if the

amount of bits that can be sent through the channel during a sampling time

interval is more or at least equal to the amount of bits generated by the encoder

due to one quantized signal [90, 116].

Furthermore, a finite number of quantization levels may cause the saturation

of the amplitude of the quantized signal. The saturation happens when the

input signal’s amplitude is bigger than the maximum value that the quantizer

can transform. What happens in this case is usually that the quantizer assigns

to the quantized output the maximum value that the quantizer can produce. In

consequence there may be a big difference between the input and the output

of the quantizer. Such saturation problem has the potential to destabilize the

systems [131, 132, 34].

Since nowadays there are networks that transmit data in gigabits per second,

3



the data rate constraints may not look like a big problem. But remember that

the NCSs are shared networks and the effects of congestion and bottle necks will

affect the performance of the system [86].

Figure 3: Structure of an open loop quantized control system. The quantizer Q

transforms the control signal u in the quantized signal v. Then, v is transformed

into a chain of bits by the encoder E in order to be sent through the channel and

it is reconstructed on the destination by a decoder D.

1.2 Quantizer Design for Networked Control Systems

There are several studies that tackle the problem of networked control systems

subjected to quantization. These studies consider different types of quantizers

that are designed for different type of systems. The quantizers can be classified

into static or dynamic. In the static quantizers the quantized output depends only

on the current input. They are memoryless. On the other hand, the dynamic

quantizers produce a quantized output that is function of the current input and

past outputs. They have an internal memory. Many of these quantizers are

designed along side with the controller in order to secure the system’s stability.

Examples of these quantizers are the following.

Static quantizers designed to achieve stabilization considering the minimium

data rates were developed for noiseless linear system [132, 25, 22] and using ro-

bust quantization [64, 63]. In other studies the designed of the coarsest static

quantizers for stabilization [24, 68, 55] and for identification [129, 54] are con-

sidered. In addition, there is the sector bound approach in the design of static

logarithmic quantizers were they are designed to facilite the quadratic stability

of the system [27, 29] and for finite gain stabilization [142].

On the side of the dynamic quantizers there are also many studies. The ones

that consider the minimum data rates for stabilization using deterministic setups

4



were developed for linear systems [82, 83, 97, 115] and for nonlinear systems

[85, 20]. Furthermore, there are the ones that were developed in stochastic setups

[126, 128, 84]. Then, there are the studies that consider the coarsest dynamic

quantizer for stabilization. For instance, the quantizers with zoom-in and zoom-

out strategy. These quantizers dynamically adjust the quantizer’s range so that

it increases or decreases as the plant state approaches or diverges from the target,

respectively. These quantizers have been developed for linear systems [11, 127,

66, 67] and for nonlinear ones. [20, 65]. Also, in this category can be found the

finite-level logarithmic quantizer [28].

Another category of quantizers are the ones designed for event-driven control.

In this category the receding horizon quantizers can be mentioned. These dy-

namic quantizers are designed by solving a quantized finite horizon optimization

problem [101, 102, 103]. The solution can be implemented by means of a vector

quantizer or by a polytopal partition of the state space. Also, in this category the

delta modulators can be found [21, 56]. These quantizers use a differential coding

scheme to minimize the number of bits to be transmitted through the channel.

Finally, there are the feedback type dynamic quantizers that are designed in

the context of networked control to minimize the system’s performance degrada-

tion [4, 5, 90, 116, 140]. This dissertation focuses partially in this type of quan-

tizers. Some characteristics of these quantizers that distinguished them from the

ones mentioned above include that the quantization interval d is constant, they

are built using a digital filter followed by a static quantizer, and that they are

designed independently from the controller. Following, these quantizers will be

explained in more detail.

1.3 Noise-shaping Quantizers

The difference between a signal and its quantized version is known as quantization

error. The quantization errors are reflected in the output of the plant causing the

degradation in the performance of the system. The performance degradation due

to quantization might lead to instability. Several studies have been carried out

aiming to reduce the performance degradation due to quantization, and they have

shown that properly designed feedback type dynamic quantizers are effective for

this task [4, 5, 117, 77, 141]. This feedback type of quantizers can be grouped

5



into a bigger category of quantizers known as noise-shaping quantizes.

This dissertation considers the design of practical feedback type noise-shaping

quantizers Q. These quantizers are composed of a digital filter followed by a static

quantizers q as it is shown in Figure 4. The noise-shaping quantizers filter the

continuous-valued input signals u(k) along side with past discrete-valued outputs

v(k) to produce shaped noise signals ū(k). These signals are fed to the static

quantizer that maps them onto discrete-valued outputs v(k + 1).

Digital Filter q

v(k)u(k)

Q

u(k)

Figure 4: Feedback type noise-shaping quantizer.

These quantizers are called noise-shaping quantizer, because the filter shapes

the input and output signals together producing a noise like signal that is applied

to the static quantizer. As the previously discussed quantizers, the noise-shaping

quantizers can be static or dynamic. They are considered dynamic when the

digital filter have a memory that stores the quantizer’s internal state. This state

changes over time and affects the outputs. The quantizers are considered static

when the filter does not have such internal memory.

The limited amount of quantization levels in the quantizer may cause the

quantization errors to increase. For example, when the range of the quantizer is

big in comparison with the range of the input signal, the number of quantization

levels is small. The quantization errors and, in consequence, the performance

degradation can be reduced greatly by the proper design of the quantizers. In

the noise-shaping quantizer design the goal is usually to make the quantization

errors as small as possible in order to approximate the quantized system to the

ideal system without quantization.

In past studies some authors focuse only in the design of the quantizer’s digital

filter assuming that the quantization interval d is given and that the quantizer

has an infinite number of quantization levels M . For example, Azuma and Sugie

6



found a closed form expression with respect to the plant parameters to evaluate

the performance of a class of dynamic quantizers for linear and for non-linear

time invariant systems[4, 6]. Besides, based on the performance analysis, they

provided an analytic expression of the optimal quantizer and its performance.

Minami and Muromaki used differential evolution (DE) for the design of fixed-

order decentralized dynamic quantizers for discrete-valued input control [78].

In those studies the effects of the channel’s data rate constraints were not

taken into account. Then, in order to consider these effects it is necessary to

design the digital filter and the static quantizer at the same time. In this case

the static quantizer has a finite number of quantization levels. Some studies have

tackled already this type of problem [90, 116, 140, 106] and developed methods for

the design of the finite-level noise-shaping quantizers. However, these methods

are not perfect because they may not give optimal solutions to the quantizer

design problems.

For instance, Okajima et al. proposed a design method for finite-level dy-

namic quantizers for SISO systems [90]. They derived a design method of the

quantizer’s smallest quantization interval. Based on the invariant set analysis

the design method is derived as a linear matrix inequality (LMI) problem. In

[116], Sawada et al. extended the previous result to consider MIMO systems. In

these two studies the authors solved a relaxed version of the original quantizer

design problem and because of that the solution might be conservative. Then,

Yoshino et al. presented a design method for a dynamic quantizer under data rate

constraints [140]. The design is carried out by optimizing an objective function

using a metaheuristic known as particle swarm optimization (PSO). This method

gives a smaller performance degradation than the method proposed by Okajima

et al., but the rate of success in finding the optimum values of the quantizer is

very low. The low success rate is explained by the existence of local minima in

the objective function and the tendency of PSO of getting trapped on it.

Despite all these development in regard to quantization there are still many

drawbacks and open problems that need be addressed. One of these problems is

the conservativeness of the proposed solutions for the design of dynamic quantizer

for NCSs affected with data rate constraints [90, 116]. In addition, none of the

previous studies have considered the effect that the network traffic congestion

7



has on the system performance or the possibility that the network traffic can

be regulated by noise-shaping quantizers. Moreover, another drawback of the

quantizers proposed previously is that most, possibly all, of them are model-

based designs. This means that their design is carried out using a model of the

considered plant. There are cases, however, in which the model of the plant is

not available or the given model is not reliable. For these cases it is necessary to

have a model-free design method for noise-shaping quantizers.

1.4 Motivation and Objective

NCSs are a natural step in the evolution of the control systems. They have a lot of

advantages and the potential to become the standard in automation. For instance,

they are easy to implement and cheap, thus, very likely to be implemented even

in small industries. Thereby, it is important to increase the reliability of NCSs

reducing the performance degradation caused by quantization. A way to do this

is the use of noise-shaping quantizers properly designed to minimize the system’s

performance degradation.

In addition, the constraints in the communication channel is an issue that

needs to be addressed. Even if the channel has a big bandwidth the effects of

congestion and bottleneck cannot be ignored, since they make the system unable

to operate properly. Then, the quantizers should be designed considering the

constraints in the communication channel and in order to put as small traffic as

possible in the network.

Moreover, the design of optimal noise-shaping quantizers for NCSs should be

carried out even when the model of the plant is inaccurate or totally absent. In

other words, a model-free design for optimal noise-shaping quantizers is requited.

For these reasons the main objective of this thesis is:

To develop practical finite-level noise-shaping quantizers with their respec-

tive easy-to-use design methods that:

i Minimize the system’s performance degradation due to quantization,

ii Satisfy the channel’s data rate constraints,

iii Reduce the traffic that the system puts in the network, and

8



iv Can be designed without the need of a model of the plant.

In particular, this thesis considers the design of three different types of quan-

tizers that addresses the requirements mentioned above. These quantizers are

the following. First, novel metaheuristic based design methods are proposed for

finite-level dynamic quantizers that minimize the system’s performance degrada-

tion due to quantization and satisfy the channel’s data rate constraints. Second, a

switching type finite-level dynamic quantizer is proposed. This quantizer, known

as event-triggered quantizer (ETQ), minimizes the system’s performance degrada-

tion caused by quantization, satisfies data rate constraints, and reduces the traffic

that the system puts in the network. This quantizer operates in an event-based

manner, it is designed to send data to the plant only when it is needed. The use

of this type of quantizers is oriented to systems in which network resources like

bandwidth and energy are limited. This quantizer makes a trade-off between the

performance of the system and the network traffic generated. Finally, a neural

network based finite-level noise-shaping quantizer is developed. This quantizer,

called neural network quantizer (NNQ), minimizes the performance deterioration

of the system, and is designed without using the model of the plant. Instead,

time series of the plant’s outputs with their respective inputs are employed in the

design. This quantizer is useful in the cases in which a model of the plant is not

available or it is unreliable. Also, it is used when the model of the plant is too

complex to implement an optimal quantizer based on such model. Each of these

quantizers are developed in a dedicated chapter of this thesis.

The design problems of the quantizers considered in this thesis are not easy to

solve. They lead to the optimization of nonlinear and nonconvex functions, that

cannot be solved by algebraic methods or conventional numerical optimization

methods such as linear programming or quadratic programming. Thus, the use

of metaheuristics seems a reasonable option. Three different metaheuristics were

selected to implement the quantizers design methods, namely, covariance matrix

adaptation evolution strategy (CMA-ES), differential evolution (DE) and firefly

algorithm (FA). The effectiveness of the proposed quantizers and the design meth-

ods developed are verified by means of numerical examples. The efficiency of the

design methods are compared among each other and with previously developed

design methods based on particle swarm optimization (PSO) [140]. At last, com-

9



parisons among the performance of several variations of the proposed quantizers

were carried out and using statistical analysis techniques several conclusion were

reached.

1.5 Contributions and Philosophy

The main contributions and achievements of this work are summarized as follows:

• The development of practical design methods based on CMA-ES and DE

for dynamic quantizers affected by data rate constraints in the channel.

• The comparison of the proposed design methods with a previously devel-

oped design method and the evidence of their superior performance.

• The development of a novel event-triggered dynamic quantizer (ETQ) de-

signed for network traffic reduction.

• The introduction of a new parameter, known as network utilization rate, to

evaluate the traffic in the network.

• The development of design methods for ETQs based on DE.

• The comparison of the performance among variations of the ETQs and their

design methods.

• The introduction of the concept of neural network based noise-shaping

quantizer (NNQ).

• The development of a model-free design method for NNQs based on DE.

• The introduction of several variations of NNQ and the comparison among

them.

• The verification of the proper operation of the proposed quantizers and

their design methods.

Previous studies, like the ones introduced in Section 1.2, present results on

quantizer design for NCSs that are not sufficient for applying them to real-world

10



problems because they mainly focused on a theoretical approach. Motivated by

this fact, this study aims to develop practical noise-shaping quantizers. In this

case by practical it is understood that the quantizers are developed aiming toward

real-world applications.

Following this idea, this dissertation starts by considering previous studies

that are theoretical in nature, like the works of Azuma and Sugie, [4, 5] and

Okajima et al. [90, 92], and built on top of them expanding the quantizers

functionality in two directions or axes. These axes are: (1) the reduction of the

systems data-rate and (2) the complexity of the target systems. This idea is

illustrated in Figure 5.

Figure 5: Schematic of the philosophy of this thesis.

As it is shown in Figure 5, this study develops the ETQ, the NNQ, and

their design methods based on stochastic optimization. Each of these quantizers

expands the capabilities of previous studies in one of the considered axes. With

many simulations the practicality of the proposed quantizers was verified. After

that, based on the developments made in these two axes the combination of them

can produce quantizers that could be applied to real-world problems, which are

located in the area between the ETQs and NNQs developments.

11



The key contributions of this study to the realm of NCSs are (i) the in-

troduction of novel structures of quantizers and (ii) their respective stochastic

optimization based design methods.

Furthermore, the contributions of this study make the quantizer design meth-

ods more practical; namely, the results help to apply quantizer design methods

to real-world problems. For instance, in large scale NCSs composed of a large

number of plants the ETQs could be implemented, or in plants with nonlinearities

which cannot be modeled the NNQs will be useful.

1.6 Dissertation Overview

The rest of this dissertation is organized as follows:

Chapter 2 presents a digest of the considered noise-shaping quantizers design

problems and proposed solutions. Also, the metaheuristics employed to

implement the quantizer design methods are described.

Chapter 3 discusses the finite-level dynamic quantizer affected by data rate

constraints. Its metaheuristic based design method is formulated alongside

with the methodology and settings to implement it. After that, the effec-

tiveness of the proposed design methods are verified by means of numerical

examples and a comparison is carried out among them and previously de-

veloped methods.

Chapter 4 introduces the event-triggered quantizer. Its structure is described,

the design problem is formulated and a design method is developed. Then,

numerical examples are carried out and the results commented. At last,

comparisons among this quantizer variations and their design methods are

performed.

Chapter 5 introduces the concept of neural network quantizers. First, the struc-

ture of feedforward neural networks are presented. Then, the NNQs struc-

ture is described, and its design method is developed. After that, its effec-

tiveness is verified with numerical simulations and comparisons are carried

out among variations of this quantizer.

12



Chapter 6 presents final conclusions, the limitations of the study and some

perspectives for future expansions of the current work.

1.7 Notations

Let R denote the set of real numbers, R+ the positive real numbers and N the

natural numbers. For the matrix A := [Aij], let the matrix abs(A) be defined by

abs(A) := [|Aij|]. For a square matrix A, let Λi(A) denote the ith eigenvalue of

A. For a real vector v := [vi] the expression ‖v‖ represents the Euclidean norm

of v. In addition, I denotes the identity matrix, 0 denotes the null matrix, and

E‖P‖ denotes the expected value of a probability distribution P.

13



2. Noise-shaping Quantizers Design Problems

This chapter introduces the design problems of the noise-shaping quantizers that

are considered in this dissertation. These quantizers are:

i Finite-level dynamic quantizers affected by data rate constraints,

ii Event-triggered quantizer, and

iii Neural network quantizer.

In addition, the basics on the analysis of these quantizers are given and the meta-

heuristics used in their design are described. These quantizers are all developed

to a great extent in their respective chapters. Here a digest of these quantizers

alongside with their commonalities are exposed.

2.1 Performance Evaluation of Noise-shaping Quantizers

In this thesis, the performance of finite-level noise-shaping quantizers is evaluated

using a type of system called error system. The general form of this error system

is shown in Figure 6.

Communication

Channel
PQ

P

+

-

y(k)

yq(k)v(k)

u(k)

v(k)

v(k)
M [level]

e(k)

Figure 6: Error system.

This error system is composed of the noise-shaping dynamic quantizer Q, the

plant P and the channel. The input signal u(k) is applied to the system and it

goes through two branches. The lower branch represents the ideal case in which

u(k) is applied directly to the plant giving the ideal output y(k). In the upper

branch the effects of the channel and quantization are considered, the quantized

input signal v(k) is applied to the plant and the output yq(k) will be known as

14



real output. The difference between y(k) and yq(k) is the error signal e(k), which

gives a measurement of the performance degradation of the system.

The error system varies slightly from each considered noise-shaping quantizer

in this thesis, but the main idea of comparing the ideal case with the case with

quantization remains the same.

The assumptions made in this thesis for all the quantizers are the following:

the communication channel has no losses and no delays, the plant P is stable and

the input signal is bounded, i.e., u(k) ∈ U for U := [umin, umax].

The noise-shaping quantizers in this thesis are designed for different type of

plants. The finite-level dynamic quantizer under data rate constraints and the

event-triggered quantizer are designed for linear plants meanwhile the neural net-

work quantizer is designed for any type of plant, linear or nonlinear. Nevertheless,

what these plants P have in common is that they are discrete-time, single-input-

single-output (SISO), and stable. The structure of the considered linear plants is

represented as follows

P :

{
x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k),
(1)

where k ∈ {0} ∪ N is the discrete time, x ∈ RnP is the state vector, u ∈ R is

the control signal, y ∈ R is the output signal, A ∈ RnP×nP , B ∈ RnP×1 and

C ∈ R1×nP are constant matrices and the initial state of the plant is x(0) = x0

for x0 ∈ RnP .

The structures of the considered noise-shaping quantizers are different from

each other. However, they all essentially have a structure similar to the one

shown in Figure 4. The digital filter is implemented differently in each case but

the static quantizer is the same. The structure of the original finite-level dynamic

quantizer is given as follows

Q :

{
ξ(k + 1) = Aξ(k) + B(v(k)− u(k)),

v(k) = q[Cξ(k) + u(k)],
(2)

where ξ ∈ RnQ is the state vector, v ∈ {±d
2
,±2d

2
, · · · ,±M

2
d
2
} is the quantized

output, A ∈ RnQ×nQ , B ∈ RnQ×1 and C ∈ R1×nQ are constant matrices, and

the initial state of the quantizer is ξ(0) = 0. The static quantizer q[·] rounds

15



the signals to the nearest quantization level at each time. The parameters of the

static quantizer are the number of quantization levelsM ∈ N and the quantization

interval d ∈ R+. Figure 7 shows an example of the function q[·] where M = 6.

Given the structure of considered static quantizer M is restricted to be even.

Cξ(k)+u(k)

q[Cξ(k)+u(k)]

Figure 7: Example of static quantizer q[·] (M = 6).

This structure of the dynamic quantizer is also used for the event-triggered

quantizer. In the neural network quantizer the digital filter is implemented using

a neural network. These quantizers will be explained in detail in their respective

chapters.

2.1.1 Performance Index

As it was mentioned previously, the error signal e(k) = yq(k) − y(k) is used to

evaluate the performance degradation of the system. By minimizing e(k), the sys-

tem composed of the quantizer Q and the plant P can be optimally approximated

to the plant P , in terms of the input-output relation.

In this context a parameter known as performance index is used to measure

the performance degradation of the system. This index can be defined in many

ways, and different types of quantizers and systems may find some definitions

more suitable than others. For instance, the performance index used in previous

studies [4, 5, 90] for the quantizer described in Equation (2) is defined as follows

E(Q) := sup
u∈U

k∈{1,2,...,L}

abs (yq(k)− y(k)) , (3)

where L ∈ N is the upper limit of the evaluation interval. For simplicity in this

16



study L will be referred to just as the evaluation interval. E(Q) gives the biggest

possible value of e(k), i.e., the worst case performance of the system.

This definition is very convenient. In [4] it was found that for linear plants,

represented by Equation (1), the performance index is independent of the input

signal and it is given by

E(Q) =
d

2

L∑
k=0

abs

[C 0
] [A BC

0 A + BC

]k [
B

B

] , (4)

where the evaluation interval L→∞. However, for practical purposes L can be

considered as a finite big number. This performance index is used in this thesis

for the design of finite level-dynamic quantizers and the design of event-triggered

quantizers. In the case of neural network quantizers the performance index is

based on the sum of square errors as it is done to train neural networks in the

machine learning field. This index is defined as follows

E(Q) :=
L∑
k=0

(yq(k)− y(k))2 . (5)

In order to obtain the smallest performance degradation, it is necessary to

make E(Q) as small as possible by the appropriately designing the noise-shaping

quantizer Q. Then, the quantizer design is reduced to an optimization problem,

where the cost function is given by E(Q) in Equation (3) and the design variables

are the parameters of the quantizer Q.

2.1.2 Data Rate Constraints Management

The data rate constraint of the communication channel imposes limitations in

the design of noise-shaping quantizers. Considering that Nb is the number of bits

that can be transmitted through the channel per sampling time, the number of

quantization levels M should satisfy the following condition

M ≤ 2Nb . (6)

In this thesis it is assumed that M is given satisfying Equation (6).

If there is no saturation in a finite-level static quantizer, then the maximum

quantization error is given by ∆q = d/2. Thus, in order to minimize E(Q) it is

17



necessary to make d as small as possible. However, the following condition should

be satisfied to avoid saturation

abs (ū(k)) ≤ 1

2
Md, (7)

ū(k) being the output of the digital filter. Then, since M is limited by the data

rate constraints, the minimum value of d is compromised. For instance, in the

case of a linear plant and the quantizer given by Equation (2), Okajima et al. in

[90] found that the minimum d that satisfies this condition is given by

d∗ =
(umax − umin)

M − abs(CT)abs(T−1B)Λ̄L

1− Λ̄
−

L∑
k=0

abs
(
C(A + BC)kB

) , (8)

where Λ̄ is the maximum absolute value of the eigenvalues of A + BC and T is

the matrix composed of the right eigenvectors of A+BC as columns that is used

for diagonalization.

Thus, d∗ is used in this thesis to find the optimal finite-level dynamic quan-

tizers and the event-triggered quantizer both subjected to data rate constraints.

For the case of the neural network quantizer, there is not such expression, and

the static quantizer may saturate. The difference between d∗ and d is that d∗

represents the minimum value of d for which the quantizer Q does not saturate.

The value of d∗ is specified in Equation (8) for the considered quantizer described

in Equation (2). Different types of quantizers may have other expressions to

evaluate d∗.

2.2 Design Problem and Constraints

The design of the considered noise-shaping quantizers are formulated as optimiza-

tion problems. In these problems the performance index E(Q) is minimized by

the appropriate selection of the quantizer parameters.

These optimization problems happen to be nonlinear and nonconvex. Then,

they cannot be solved directly by conventional optimization methods like linear

programming or quadratic programming. Thus, alternative optimization meth-

ods should be used. In this thesis, the design problems are solved using meta-

heuristics. The metaheuristics considered in this study are the covariance matrix

18



adaptation evolution strategy (CMA-ES) [40, 37], differential evolution (DE) [123]

and firefly algorithm (FA) [137]. These are all state of the art metaheuristics that

have many appealing properties. They are described in detail in the next section.

The noise-shaping quantizers design problems are subjected to constraint con-

ditions that define their space solutions. These constraints are different for the

different types of quantizers considered. The metaheuristic algorithms used in

this thesis were designed to solve unconstrained problems. Then, in order to

manage the optimization problems constraints a method developed by Maruta

et al. in [74] and [73] is employed. This method transforms the constrained

optimization problem into an unconstrained one as it is explained below.

First, the optimization problem subjected to multiple constraint conditions

should be formulated as follows

minimize
θ∈F

Jorg(θ), F := {θ | p1(θ) < 0, p2(θ) < 0, . . . , pm(θ) < 0}, (9)

where Jorg : Rn → R represents the original cost function, θ ∈ Rn is the de-

sign variable, pi : Rn → R is a linear/nonlinear hard constraint function and F
represents the feasible region, i.e., the set of solutions satisfying all constraint

conditions. It is assumed that F is not empty.

Second, it is necessary to find a function Jv : Rn → R satisfying the following

conditions:

(C1) Jv(θ) < 0 holds for any θ ∈ F.

(C2) Jv(θa) < Jv(θb) holds whenever Jorg(θa) < Jorg(θb) is satisfied.

The function Jv(θ) is known as virtual cost function and it always exists. Notice

that if Jorg(θ) already satisfies the first condition (C1), the virtual cost can be

simply set as Jv(θ) = Jorg(θ).

Lastly, once that Jv(θ) is selected, the constrained optimization problem in

Equation (9) is transformed into the following unconstrained one

minimize
θ∈Rn

J(θ), for J(θ) :=

{
Jv(θ) if p(θ) < 0,

p(θ) otherwise,
(10)

where

p(θ) := max[p1(θ), p2(θ), . . . , pm(θ)]. (11)

19



The function p(θ) is known as penalty cost, because this function is applied

when the constraints of the problem are not satisfied. Then, the constraints of

the problem act as variable penalty costs. A fixed penalty cost does not provide

information about how far a candidate solution is out from F, and it usually

happens that when all the candidate solutions are initially out of the feasible

region there is no way for the metaheuristic to make them go inside F. The

method described above solves this problem by providing the information about

how far a possible solution is out of F, this information is given by p(θ) in

Equation (125). Figure 8 shows an example a fixed penalty cost method and a

variable one. These penalty costs are applied the Peaks function of Matlab in the

example.

(a) Cost function J(θ). (b) Fixed penalty p. (c) Variable penalty p(θ).

Figure 8: Penalty cost comparison. In this example the cost function is the

Matlab’s Peaks function and the constraints are the following: −2 ≤ θ1 ≤ 2,

−2 ≤ θ2 ≤ 2.

2.3 Metaheuristics

Metaheuristics are high level strategies, often nature-inspired, for exploring fea-

sible solutions to optimization problems. The metaheuristics have several advan-

tages: they do not make assumptions on the problem to be solved; they do not

need the gradient or Hessian matrix of the function to be optimized, and many of

them are easy to implement and computationally inexpensive. As expected, they

have some drawbacks as well such as there is not guarantee that an optimal solu-

tion is ever found, some are very sensitive to the tuning of their hyperparameters

20



and the possibility of getting trapped into local minima [8, 138, 10].

The metaheuristics used for the quantizers design are covariance matrix adap-

tation evolution strategy (CMA-ES), differential evolution (DE) and firefly algo-

rithm (FA). The main reason to chose these metaheuristics is that they show a

very good performance in the optimization of multimodal functions with local

minima. Additionally, they are easy to implement and require very few hyper-

parameters to be tuned. The candidate solutions are known in different ways in

each of these metaheuristics. For instance, in CMA-ES they are called search

points, and in DE they are known as target vectors. Then, to unify the nomen-

clature and to avoid confusion, in this thesis the possible solutions will be known

as individuals. A brief description of these metaheuristics and their algorithms is

presented below.

2.3.1 Covariance Matrix Adaptation Evolutionary Strategy

The covariance matrix adaptation evolution strategy (CMA-ES) is an evolu-

tionary algorithm used for solving non-linear non-convex black-box optimization

problems in continuous domains. It is considered as a state-of-the-art in evolu-

tionary computation. In CMA-ES the possible solutions are generated randomly

according to a multivariate normal distribution with mean m and covariance

matrix Σ. The initial value of m is provided by the user or it can be selected

randomly inside the search space and initially Σ = I. Then, in each iteration of

the algorithm, the best individuals are selected and the parameters of the normal

distribution are updated. Thus, the mean m goes toward the best solution. In

the next iteration the individuals are generated randomly according to the normal

distribution with the new parameters [40, 39, 125]. An example of the operation

of CMA-ES is shown in Figure 9 for a two dimensional optimization problem.

The main advantage of CMA-ES over the other metaheuristics is that it does

not require the tunning of almost any parameter. The only parameter left to the

user is the number of individuals N . By increasing N from its default value, the

exploration capabilities and robustness of CMA-ES are usually improved, while

the convergence time increases. Other advantages are that it has several invari-

ance properties and it shows a very good performance in solving non-separable

and ill-conditioned problems.

21



(a) Peaks function. (b) Generation 1. (c) Generation 3. (d) Generation 6.

(e) Generation 9. (f) Generation 12. (g) Generation 15. (h) Generation 18.

Figure 9: Example of the operation of CMA-ES over a two dimensional

search space. It is shown how the N = 20 individuals (black dots) and

the mean (red dot) move in the search space through the generations.

The red break line helps to see the adaptation of the covariance matrix, it

represents a contour of the multivariate normal distribution with constant

probability p1 = 0.1.

This algorithm has been evolving since its first development around 1995. The

version applied in this study to the dynamic quantizer design is the (µ/µW , λ)

CMA-ES strategy, described in [37]. In the (µ/µW , λ) strategy, µ is the number

of parents of the next generation, µW indicates a weighted recombination of the

parents and λ is the number of individuals, although, in this thesis λ is represented

by N for comparison purposes with the other algorithms. The (µ/µW , λ) CMA-

ES algorithm is shown in Algorithm 1.

Algorithm 1 : (µ/µW , λ) CMA-ES

Initialization: Given N ∈ N, kmax ∈ N, m ∈ Rn, the step size σ ∈ R+

and the initial search space S0 = [θmin, θmax]
n. Initialize Σ ∈ Rn×n, pσ ∈ Rn

and pc ∈ Rn as Σ = I, pσ = 0 and pc = 0 respectively. Set the values of

the parameters cc, cσ, c1, cµ, dσ, µeff and wi (i = 1, 2, . . . N) to their default

values given in Appendix A. Then, k = 0.

Step 1 (Sample new population): N individuals {θ1,θ2, . . . ,θN} are

22



generated randomly from the multivariable normal distribution N (m, σ2Σ)

as follow

θi = m+ σyi, yi ∼ N (0,Σ) for i = 1, 2, . . . , N . (12)

Step 2 (Selection and recombination): The cost function J(θi) is eval-

uated for each θi, then the individuals {θ1,θ2, . . . ,θN} and their respective

{y1,y2, . . . ,yN} are ordered based on the fitness value of θi. The ones with

the best fitness go at the beginning.

The first µ individuals are the parents of the next generation. They are

combined with each other to generate the new mean as follows

m =

µ∑
i=1

wiθi = m+ σyw, (13)

yw =

µ∑
i=1

wiyi . (14)

Step 3 (Step size control):

pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µeffΣ−

1
2yw, (15)

σ ← σ × exp

[
cσ
dσ

(
‖pσ‖

E‖N(0, I)‖
− 1

)]
, (16)

where E‖N(0, I)‖ ≈
√
n (1− 1/4n+ 1/21n2).

Step 4 (Covariance matrix adaptation):

hσ =

{
1 if ‖pσ‖√

1−(1−cσ)2(k+1)
<
(
1.5 + 1

n−0.5

)
E‖N(0, I)‖,

0 otherwise,
(17)

pc ← (1− cc)pc + hσ
√
cc(2− cc)µeffyw, (18)

Σ← (1− c1 − cµ)Σ + c1

(
pcp

T
c + (1− hσ)cc(2− cc)Σ

)
+ cµ

µ∑
i=1

wiyiy
T
i .

(19)

Step 5 (Check stop condition): If the stop condition is not satisfied

k ← k+ 1 and go to Step 1. Otherwise, terminate the algorithm and return

m (or θ1).

23



The default values of the CMA-ES’ control parameters are shown in Appendix

A. Meanwhile, the initial values of m and σ are problem dependent and should

be chosen appropriately. A criteria for the selection of the initial m is to sample

it uniformly within a region of the search space where the user expects to find

the global optima S0 = [θmin, θmax]
n. If the global optima is not inside S0, the

CMA-ES algorithm will still be able to find it, but the convergence speed will be

slower and the probability of the algorithm to get trapped into a local minimum

will increase. On the other hand, the initial step size σ should not be too small

since it will reduce the algorithm performance on multimodal functions. A rule

of the thumb empirically found is to make σ = 0.3(θmax − θmin).

The stop criteria of the CMA-ES algorithm is problem dependent too and

it should be selected by the user. In this case the algorithm will terminate if

the maximum number of iterations kmax is reached or if the condition number of

the covariance matrix Σ exceeds 1014. In order to compare the performance of

CMA-ES against other metaheuristics different values of kmax were used.

2.3.2 Differential Evolution

DE is a population based metaheuristic algorithm inspired in the mechanism

of biological evolution [123, 100]. In this algorithm, the cost function J(θ) is

evaluated iteratively over a population of individuals θi, known as target vectors

in the DE literature, in each iteration the individuals improve their values and

move towards the best solution. Finally the individual with the lowest fitness

value in the last iteration is regarded as the optimal solution.

Some advantages of DE are that it is very easy to implement and has only

two tuning parameters: the scale factor F and the crossover constant H, apart

from the number of individuals N and the maximum number of iterations kmax.

Besides, DE shows very good exploration capacities and converge very fast to the

global optima. The DE algorithm is shown in Algorithm 2

Algorithm 2 : DE (DE/best/1/bin strategy)

Initialization: Given N ∈ N, kmax ∈ N, F ∈ [0, 2], H ∈ [0, 1] and the initial

search space S0 = [θmin, θmax]
n. Set k = 0 then select randomly N individuals

{θ1,θ2, . . . ,θN} in the search space.

24



Step 1: The cost function J(θ) is evaluated for each θi and θbase = θlk is

calculated by:

lk = arg mini∈{1,2,...,N} J(θi). (20)

If k = kmax then θbase is the final solution, if not go to step 2.

Step 2 (Mutation): For each θi a mutant vector Mi is generated by:

Mi = θbase + F (θτ1,i − θτ2,i), (21)

where τ1,i and τ2,i are random indexes subject to i 6= τ1,i 6= τ2,i 6= lk.

Step 3 (Crossover): For each θi and Mi a trial vector Ti is generated by:

Ti,j =

{
Mi,j if ρi,j ≤ H or j = jrand,

θi,j otherwise,
(22)

where ρi,j ∈ [0, 1] and jrand ∈ {1, 2, . . . , n} are generated randomly.

Step 4 (Selection): The members of the next generation k+ 1 are selected

by:

θi ←

{
Ti if J(Ti) ≤ J(θi),

θi otherwise,
(23)

then k ← k + 1 and go to step 1.

2.3.3 Firefly Algorithm

The firefly algorithm is a population based metaheuristic that is inspired in the

flashing behavior of tropical fireflies. It was first introduced in [137], and it has

been evolving since then. The algorithm is based on the following three idealize

rules about the fireflies behavior:

1. Each firefly will be attracted to other fireflies regardless of their sex.

2. The attractiveness between two fireflies is proportional to their brightness

and it decreases as the distance between them increases. The less brighter

firefly will move towards the brighter one and the brightest in the swarm

will move randomly.

25



3. The brightness of a firefly is determined by the landscape of the cost func-

tion.

Some advantages of the FA algorithm over the other metaheuristics are the

automatic subdivision of the set of individuals, the ability to deal with multi-

modality and the online tuning of the parameters to control the randomness in

the update law [139].

The FA algorithm has the following parameters: the initial randomness scaling

factor α0, the initial attractiveness β0, the absortion coefficient γ and the cooling

factor δ. The FA implementation used in this study is shown in Algorithm 3.

Algorithm 3 : FA

Initialization: Given N ∈ N, kmax ∈ N, α0, β0, γ ∈ [0,∞) (in practice

[0.1, 10]), δ ∈ (0, 1) and the initial search space S0 = [θmin, θmax]
n. Set k = 0,

then select randomly N individuals {θ1,θ2, . . . ,θN} within S0.

Step 1: The cost function J(θi) is evaluated for each θi, then the individuals

are sorted in ascending order based on their fitness value. If k = kmax then

θN is the solution of the algorithm, if not go to Step 2.

Step 2: Find the limits of the search space. Considering thatLb = [l1, l2, . . . , ln]

and U b = [u1, u2, . . . , un], then for j = {1, 2, . . . , n}:

lj = min
θj∈{θi,j |i=1,2,...,N}

θj, (24)

uj = max
θj∈{θi,j |i=1,2,...,N}

θj, (25)

where θi,j is the jth component of the individual θi.

Step 3: Reduce the randomness:

α = α0δ
k, (26)

Step 4: For i = {1, 2, . . . , (N − 1)} the following update law is applied to

each individual:

θi ← θi +
N∑

j=i+1

[
β0 (θj − θi) exp

(
−γ ‖θj − θi‖2

2

)
+ αεj

]
, (27)

εj = ρj(U b −Lb), (28)

where ρj ∈ [−0.5, 0.5] is a random number uniformly distributed. Then, make

k ← k + 1 and go to Step 1.

26



3. Design of Finite-level Quantizers Under Data

Rate Constraints

In this chapter the design of finite-level dynamic quantizers affected by the chan-

nel’s data rate constraints is studied. With numerical examples it is verified that

the quantizers and the proposed design methods work properly. After that, the

methods based on different metaheuristics are compared among each other and

with previously developed methods in order to evaluate their performance.

3.1 Considered System

The finite-level noise-shaping dynamic quantizer is designed using the feedforward

error system depicted in Figure 6. The assumptions made for the design of this

quantizers are the following: the communication channel has no losses and no

delays, the plant P is stable and the input signal is bounded, i.e., u(k) ∈ U for

U := [umin, umax]. The considered plant P is the one represented in Equation (1)

which is a discrete-time and single-input-single-output (SISO) system. This plant

is assumed to be stable. This assumption implies that all the eigenvalues of the

matrix A are inside the unit circle in the complex plane. The dynamic quantizer

Q considered in this chapter is the one described in Equation (2). The digital

filter and the static quantizer q[·] are the same. In this chapter it is assumed

that M is given by the designer. Thus, the design parameters of the dynamic

quantizer Q are A, B, C and d.

An important care that should be taken into account when designing a dy-

namic quantizer is to make the quantizer stable. The stability condition for the

quantizer can be derived easily. First, the quantizer’s output v(k) given in Equa-

tion (2) is represented as follows

v(k) = Cξ(k) + u(k) + w(k), (29)

where w(k) ∈
[
−d

2
, d

2

]
is the quantization error. Then, substituting the new v(k)

into Equation (2) the following representation of the quantizer is obtained

Q :

{
ξ(k + 1) = (A + BC) ξ(k) + Bw(k),

v(k) = Cξ(k) + w(k) + u(k).
(30)

27



In this representation the quantizer’s state ξ(k) depends only on the quan-

tization error w(k) which works as a bounded signal. Thus, the quantizer Q is

bounded-input-bounded-output (BIBO) stable if all the eigenvalues of A + BC

are inside the unit circle in the complex plane. This condition can be expressed

as

Λ̄ = max
i

abs (Λi(A + BC)) < 1, (31)

where Λ̄ is the maximum absolute value of the eigenvalues of the A + BC. The

BIBO stability for LTI systems establishes that every bounded input signal excites

a bounded output signal [15]. Formally, a discrete-time SISO system is BIBO

stable if and only if the system’s impulse response g(k) is absolutely summable

in the interval [0,∞) or
∞∑
k=0

abs(g(k)) ≤ K <∞ (32)

for some constant K.

3.2 Performance Index

As it was mentioned in Section 2.1.1, a performance index is used as a measure-

ment of the system’s performance degradation. In particular, the performance

index considered in this chapter is the one defined in Equation (3).

For the considered system this index takes the form given in Equation (4).

This expression was found by Azuma and Sugie in [4], and its development is

carried out as follows. Putting together Equations (1) and (2) gives

[
x(k + 1)

ξ(k + 1)

]
=

[
A 0

0 A

][
x(k)

ξ(k)

]
+

[
B

B

]
v(k)−

[
0

B

]
u(k),

y(k) =
[
C 0

] [x(k)

ξ(k)

]
.

(33)

By replacing the quantized output v(k) with Equation (29), the Equation (33)

can be expressed as:{
x̄(k + 1) = Āx̄(k) + B̄1w(k) + B̄2u(k),

y(k) = C̄x̄(k),
(34)

28



where:

x̄(k) =

[
x(k)

ξ(k)

]
, Ā =

[
A BC

0 A + BC

]
, B̄1 =

[
B

B

]
, B̄2 =

[
B

0

]
, C̄ =

[
C 0

]
.

(35)

The expression of the state x̄(k) for this system is given as follows

x̄(k) = Ā
k
x̄(0) +

k−1∑
i=0

Ā
k−1−i (

B̄1w(i) + B̄2u(i)
)
. (36)

Then, Equation (36) is taken into Equation (34) in order to find the plant

output under the effects of quantization, the real output yq(k). The result is

yq(k) = C̄Ā
k
x̄(0) +

k−1∑
i=0

C̄Ā
k−1−i (

B̄1w(i) + B̄2u(i)
)
. (37)

Considering the value Ā in Equation (35), the expresion Ā
k

can be reduced

to

Ā
k

=

[
Ak Ω(k)

0 (A + BC)k

]
, (38)

where Ω(k) is an expression that increases with k, in this case its value is not im-

portant since it will disappear from the calculation. Effectively, remembering that

x̄(0) = [x(0) ξ(0)]> = [x(0) 0]>, the terms of Equation (37) are represented

by

C̄Ā
k
x̄(0) = CAkx(0), (39)

C̄Ā
k−1−i

B̄2u(i) = CAk−1−iBu(i). (40)

Then, yq(k) can be rewritten as

yq(k) = CAkx(0) +
k−1∑
i=0

C̄Ā
k−1−i

B̄1w(i) +
k−1∑
i=0

CAk−1−iBu(i). (41)

For the case in which the control signal u(k) is applied directly to the plant

P (ideal case) the plant’s output y(k) is

y(k) = CAkx(0) +
k−1∑
i=0

CAk−1−iBu(i). (42)

29



The difference between the Equations (41) and (42) gives

yq(k)− y(k) =
k−1∑
i=0

C̄Ā
k−1−i

B̄1w(i). (43)

Taking the absolute value of both members of Equation (43) and considering

that the quantized error abs (w(i)) ≤ d
2

produce the following

abs (yq(k)− y(k)) = abs

(
k−1∑
i=0

C̄Ā
k−1−i

B̄1w(i)

)
,

≤
k−1∑
i=0

abs
(
C̄Ā

k−1−i
B̄1

)
abs (w(i)),

≤ d

2

k−1∑
i=0

abs
(
C̄Ā

k−1−i
B̄1

)
. (44)

By replacing the values in Equation (35) to Equation (44) the next expression

is obtained

abs (yq(k)− y(k)) ≤ d

2

k−1∑
i=0

abs

[C 0
] [A BC

0 A + BC

]k−1−i [
B

B

] . (45)

Finally, in [4] it is proven that the equality in Equation (45) gives the supre-

mum of abs (yq(k)− y(k)), this means that the performance index is given by

Equation (4).

3.3 Minimum Quantization Interval

As mentioned in Section 2.1.2 the data rate constraints of the channel pose some

limitations in the design of finite-level dynamic quantizer. In this study it is as-

sumed that the number of quantization levels M is given by the designer satisfying

the condition in Equation (6).

On the other hand, Equation (4) states that d is directly proportional to E(Q).

Then, in order to minimize E(Q) it is necessary to make d as small as possible.

However, d and M are subjected to the following condition derived from Figure 7

abs (Cξ(k) + u(k)) ≤ 1

2
Md, (46)

30



this is the same condition as Equation (7).

The minimization of d under this condition is equivalent to a reachable set

problem not easy to solve. Okajima et al. in [90], [91] and [92] found an expression

for the minimum quantization interval d∗ that satisfies the data rate constraints,

this expression is the one in Equation (8).

The development of that expression is carried out as follow. In order to design

d, it is necessary to consider the values of ξ(k) and u(k). Although the range of

u(k) is given by U = [umin, umax] the range of ξ(k) is unknown. Thus, the range

of ξ(k) should be estimated for a given Q.

The range of the quantizer Ū = [ūmin, ūmax] can be characterize by the ranges

of u(k) and ψ = Cξ as follows

Ū = [umin + ψmin, umax + ψmax] . (47)

Considering Equation (29) a normalized version of the quantization error w(k)

is given by

w̄(k) =
w(k)

d/2
=

2

d
(v(k)− Cξ − u(k)) , (48)

where w̄(k) ∈ [−1, 1] and, in consequence, |w̄(k)| ≤ 1. From this normalized error

the following system is built

H :

{
ξ(k + 1) = (A + BC) ξ(k) + d

2
Bw̄(k),

ψ(k) = Cξ(k), |w̄(k)| ≤ 1,
(49)

by making the following change in the coordinates ξ = d
2
ξ̄ the system H can be

represented as

H̄ :

{
ξ̄(k + 1) = (A + BC) ξ̄(k) + Bw̄(k),

ψ̄(k) = Cξ̄(k), |w̄(k)| ≤ 1,
(50)

where ψ̄ = 2ψ/d. Notice that the system H̄ is independent of d.

The reachable set problem is reduced into finding the ψ̄min and ψ̄max subjected

to the condition that

ψ̄min ≤ Cξ̄(k) ≤ ψ̄max, ∀ξ̄(k) ∈ Ξ, (51)

31



where Ξ is the reachable set of ξ̄(k) to w̄(k).

From the Equations (7) and (47) the following conditions can be derived

Cξ(k) + u(k) ≤ umax + ψmax = umax +
d

2
ψ̄max,

Cξ(k) + u(k) ≥ umin + ψmin = umin +
d

2
ψ̄min,

and the range of the quantizer is subjected to the following condition

ūmax − ūmin ≤ Md,(
umax +

d

2
ψ̄max

)
−
(
umin +

d

2
ψ̄min

)
≤ Md,

(umax − umin) +
d

2

(
ψ̄max − ψ̄min

)
≤ Md,

(umax − umin)

M − 1
2

(
ψ̄max − ψ̄min

) ≤ d. (52)

By using the optimal values of ψ̄min and ψ̄max the minimium quantization

interval dopt is given by

dopt =
(umax − umin)

M − 1
2

(
ψ̄optmax − ψ̄optmin

) , (53)

as it is shown in [90]. If M − 1
2

(
ψ̄optmax − ψ̄

opt
min

)
≤ 0, there is no d that satisfies the

data rate constraints and the quantizer should be redesign.

Considering the system in Equation (50), the value of ψ̄(k) can be obtained

by evaluating the system from τ = 0, 1, 2, . . . , k − 1 and having in account that

ξ̄(0) = 2
d
ξ(0) = 0. The value of ψ̄(k) is given by

ψ̄(k) =
k−1∑
τ=0

C(A + BC)k−1−τBw̄(τ), (54)

and the reachable set boundaries are given as follow

ψ̄optmin = −
∞∑
k=0

abs
(
C(A + BC)kB

)
, (55)

ψ̄optmax = +
∞∑
k=0

abs
(
C(A + BC)kB

)
. (56)

32



In reality the series in Equations (55) and (56) cannot be evaluated until ∞.

Thus, the values of ψ̄optmin and ψ̄optmin are approximated by evaluating the equations

until a finite number L, the evaluation interval. This gives

ψ̄Lmin = −
L∑
k=0

abs
(
C(A + BC)kB

)
, (57)

ψ̄Lmax = +
L∑
k=0

abs
(
C(A + BC)kB

)
. (58)

Then, Okajima et al. in [91] defined ψ̂ as follows

ψ̂ :=
abs(CT)abs(T−1B)Λ̄L

1− Λ̄
, (59)

=
∞∑
k=L

abs(CT)abs(T−1B)Λ̄k,

≥
∞∑
k=L

abs
(
C(A + BC)kB

)
,

where Λ̄ is given by Equation (31) and T is the matrix used for the diagonalization

of (A+BC), which means that its columns are the eigenvectors of (A+BC). ψ̂

satisfies these relations

ψ̄Lmin − ψ̂ ≤ ψ̄optmin ≤ ψ̄Lmin, (60)

ψ̄Lmax ≤ ψ̄optmax ≤ ψ̄Lmax + ψ̂, (61)

Finally replacing ψ̄optmin and ψ̄optmax in Equation (53) for
(
ψ̄Lmin − ψ̂

)
and

(
ψ̄Lmax + ψ̂

)
respectively the expression below is produced

d∗ =
(umax − umin)

M − ψ̂ − 1
2

(
ψ̄Lmax − ψ̄Lmin

) . (62)

which is the approximated version of Equation (53). It is fair to notice that

dopt = lim
L→∞

d∗. (63)

Putting all the Equations (57), (58) and (59) into Equation (62) the expression

in Equation (8) is obtained. The evaluation interval L should be selected as a

33



big number to reduce the error due to the approximation. Therefore, d∗ is used

for the design of the finite-level dynamic quantizer. Notice that the condition

d∗ > 0 should be satisfied when designing the quantizer. Since the numerator

in Equation (62) is always bigger than zero, this condition depends only on the

denominator being bigger than zero or not.

3.4 Design Problem

The finite-level dynamic quantizer design problem is formulated as follow:

Suppose that the plant P , the number of quantization levels M and the

input signal range U are given. Then, find the quantizer parameters A, B,

C and d which minimize E(Q), under the conditions that:

i Q is stable (Λ̄ < 1), and

ii The data rate constraint is satisfied (d = d∗ > 0).

The optimization problem considered here is non-linear and non-convex, so it

can not be directly solved by conventional optimization methods. For this reason

a metaheuristic approach is used to approximately solve the problem.

This quantizer design problem is subjected to two constraints that define its

space solution. The management of these constraints is carried out using the

method described in Section 2.2. Then, it is necessary to represent the con-

strained optimization problem in the form shown in Equation (9). The original

cost function is

Jorg(θ) = E(θ) | d = d∗(θ), (64)

where E(θ) is the performance index in Equation (4), d∗ is the quantization

interval given by Equation (8) and the candidate solutions θ are composed of the

n unknown elements of the matrices A, B and C. Then, the constraints of the

problem take the form

Stability constraint: Λ̄(θ) < 1 ⇒ p1(θ) = Λ̄(θ)− 1,

Data rate constraint: d∗(θ) > 0 ⇒ p2(θ) = −d∗(θ),
(65)

where Λ̄(θ) is given by Equation (31).

34



There are many ways to select Jv(θ) satisfying the conditions (C1) and (C2).

In this study the following virtual function is used

Jv(θ) = arctan[Jorg(θ)]− π/2, (66)

since it probed to be effective in the solution of the problems presented in [73].

Finally, the dynamic quantizer design problem is expressed by the uncon-

strained optimization problem given by

minimize
θ∈Rn

J(θ), for J(θ) :=

{
Jv(θ) if p(θ) < 0,

p(θ) otherwise,
(67)

Jv(θ) = arctan[E(θ)]− π/2 with d = d∗(θ), (68)

p(θ) = max[Λ̄(θ)− 1, −d∗(θ)]. (69)

3.5 Design Variable Setting

The quantizer design method consists in finding the values of A, B, C and d

of the dynamic quantizer given in Equation (2) that solve the unconstrained

optimization problem given by Equation (67). The optimization is carried out

by using one of the metaheuristics described in Section 2.3 (CMA-ES, DE or

FA). The cost function for the optimization is J(θ) in Equation (67) with Jv(θ)

and p(θ) given by Equations (68) and (69) respectively. In addition, the design

variable θ ∈ Rn is constructed with the n unknown elements of the matrices A,

B and C.

Then, given the plant P with order np, the first step is to choose the order

and form of the quantizer. The selection of the quantizers’ order can be subjected

to the precision wanted or the computational capacity available to implement it.

Once the order of the quantizer is chosen, it is time to set the form of the

quantizer. Of course, it is possible to consider all the elements of A, B and C as

variables for the optimization problem, in that case we will have n = 2nq + n2
q

variables in total. However, this setting is not optimal since it is possible to

represent the same quantizer into its equivalent canonical controllable form. Thus,

it will be better to express the quantizer directly into its canonical form because

in that case the amount of variables will be less (n = 2nq) and the metaheuristic

35



will found the solutions faster and more precisely. With this setting the form of

the quantizer is given by

A =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

θ1 θ2 θ3 · · · θn
2

 , B =


0

0
...

1

 , C =
[
θn

2
+1 θn

2
+2 · · · θn

]
(70)

Thereby, the form of the design variable or individuals for the metaheuristic

is θ = {θ1, θ2, . . . , θn}. Note that, although d is regarded as a design parameter

as well, its value is a function of A, B and C, since d = d∗ and d∗ is given by the

Equation (8).

3.6 Numerical Examples

A series of simulations were performed with the purpose of verifying the effective-

ness of the proposed metaheuristic based quantizer design method. The meta-

heuristics used are CMA-ES, DE, FA and PSO. The last one, PSO, was employed

in a previous study [140] and it is used here for comparison purposes. Appendix

B shows the PSO algorithm.

Considering the system in Figure 6, two different plants P were selected. One

is the second order system:

P1(s) =
s+ 20

s2 + 3s+ 2
, (71)

and the other is the third order system:

P2(s) =
s+ 10

s3 + 6s2 + 9s+ 10
. (72)

These plants are represented by their transfer functions which are defined for

LTI systems as the ratio of the Laplace transform of the output to the Laplace

transform of the input under the assumption the initial conditions are zero [87,

26]. Where in general s is a complex variable. After discretizing these plants

with the sampling time tS = 0.1[s] the following matrices for their state space

36



representations in Equation (1) are obtained:

P1 : A1 =

[
1.7236 −0.7408

1 0

]
, B1 =

[
0.5

0

]
,

C1 =
[
0.3533 −0.0083

]
, (73)

P2 : A2 =

2.4775 −1.0169 0.5488

2 0 0

0 0.5 0

 , B2 =

0.1250

0

0

 ,

C2 =
[
0.0443 0.0169 −0.0184

]
. (74)

For both plants the parameters for the quantizer are: U = [−1, 1], M = 2 and

L = 150. For P1 and P2, the form of the quantizer constant matrices are given

by

A1 =

[
0 1

θ1 θ2

]
, B1 =

[
0

1

]
, C1 =

[
θ3 θ4

]
, (75)

A2 =

 0 1 0

0 0 1

θ1 θ2 θ3

 , B2 =

0

0

1

 , C2 =
[
θ4 θ5 θ6

]
, (76)

respectively. Then, the form of the individuals for the metaheuristic algorithms

are θ(1) =
[
θ1 θ2 θ3 θ4

]>
for P1 and x(2) =

[
θ1 θ2 θ3 θ4 θ5 θ6

]>
for P2,

which implies that the dimension of the optimization problems are n1 = 4 and

n2 = 6, respectively.

The hyperparameters of the metaheuristics employed are given in the Table 1.

The metaheuristics’ performance is subjected to the value of the hyperparameters.

In this case we chose the control parameters based on the recommended values

of previous studies. For DE the same parameter as in [78] are used, for FA the

recommendations in [139] are followed and for PSO, in order to compare the

results, the same hyperparameters as in [140] are set. In the case of CMA-ES

the hyperparameters are the initial values of σ and m but they can be generated

automatically from the initial search interval S0 according to [37].

37



Table 1: Hyperparameters used in the simulations.

CMA-ES DE FA PSO

σ0 = 0.3 F = 0.6 α0 = 0.25 χ0 = 0.9

H = 0.9 β0 = 1 χ1 = 1

γ = 0.1 χ2 = 1

δ = 0.97

For DE, FA and PSO the initial individuals (members of the first generation)

are generated randomly inside the initial search space S0 = [−1, 1]n by an uniform

probability distribution. Additionally, for PSO the initial velocities of the parti-

cles are randomly initialized in the range V0 = [0, 1]n. For CMA-ES the initial

mean m0 is selected randomly using a uniform probability distribution within

S0 = [−1, 1]n and the initial individuals are sampled from the normal probability

distribution N (m, σ2I).

The simulations are performed by trying Nrun = 50 runs of the algorithms

for each combination of the parameters kmax = {50, 100, 200, 500, 1000} and N =

{50, 100, 500}. The results of the simulations are summarized in the Tables 2,

3, 4 and 5. In these tables, for each plant and for each combination of N and

kmax, the best Emin(Q), the mean and the standard deviation of Emin(Q), the

success rate (SR) in percentage [%] and the average execution time in seconds [s]

are shown. The success rate, which is used as a measurement of the algorithm

performance, is the ratio of the number of runs with the best solution to the total

number of runs of the algorithm Nrun.

The simulation results show that the design methods based on CMA-ES and

DE are quite superior than the ones based on FA and PSO. The design method

based on CMA-ES gave the best results for both plants, with the smallest perfor-

mance index value and the highest success rate. The results of the design method

based on DE are very good as well. Both methods CMA-ES and DE overcome

the design method previously developed based on PSO. And the method based

on FA show not to be appropriated for the design of the finite-level dynamic

quantizer. In Section 3.7 these results will be discussed in more detail.

On the other hand, the Tables 2 to 5 show that some values, such as the means

38



Table 2: Simulation results for the second and third order plants by CMA-ES

(Nrun = 50 trials). N denotes the number of individuals and kmax the maximum

number of iterations.

Second order system, P1 Third order system, P2

N kmax Best Mean St. dev. SR Time Best Mean St. dev. SR Time

50 50 0.5091 0.5870 0.1059 66 5.9 0.0719 0.0948 0.0335 0 8.8

50 100 0.5091 0.5395 0.0814 86 12.2 0.0691 0.0797 0.0302 82 18.2

50 200 0.5091 0.5800 0.1121 70 18.5 0.0691 0.0751 0.0238 94 37.8

50 500 0.5091 0.5438 0.0861 86 19.6 0.0691 0.0733 0.0200 92 91.6

50 1000 0.5091 0.5736 0.1089 74 17.5 0.0691 0.0814 0.0328 86 173.9

100 50 0.5091 0.5152 0.0353 98 12.7 0.0692 0.0704 0.0009 38 18.3

100 100 0.5091 0.5091 0.0000 100 26.7 0.0691 0.0691 0.0000 100 38.1

100 200 0.5091 0.5140 0.0347 98 29.8 0.0691 0.0691 0.0000 100 78.1

100 500 0.5091 0.5140 0.0347 98 29.0 0.0691 0.0691 0.0000 96 190.4

100 1000 0.5091 0.5190 0.0486 96 28.4 0.0691 0.0691 0.0000 98 388.6

500 50 0.5091 0.5091 0.0000 100 82.2 0.0691 0.0691 0.0000 98 86.0

500 100 0.5091 0.5091 0.0000 100 141.1 0.0691 0.0691 0.0000 100 180.0

500 200 0.5091 0.5091 0.0000 100 142.5 0.0691 0.0691 0.0000 100 356.5

500 500 0.5091 0.5091 0.0000 100 143.5 0.0691 0.0691 0.0000 100 911.3

500 1000 0.5091 0.5091 0.0000 100 146.5 0.0691 0.0691 0.0000 100 1715.2

and even the running time, do not change monotonically. This effect is because

the metaheuristics used are stochastic algorithms that will not necessarily give

better result by increasing the number of individuals or the number of iterations.

In fact, it is an open problem for some metaheuristics to find the optimal values

for the number of individuals and the stoping criterias [100].

Next, the performance of the designed quantizer in the system in Figure 6 is

evaluated. The quantizer parameters are taken from the simulations performed,

in particular, the quantizers that gave the smallest performance indices for each

plant are selected. Both quantizers were found for the design method based on

CMA-ES, and their values for P1 and P2 are shown as follow:

A1 =

[
0 1

−0.7413 1.7241

]
, B1 =

[
0

1

]
,

C1 =
[
0.6532 −1.1619

]
, d1 = 3.1082. (77)

39



Table 3: Simulation results for the second and third order plants by DE (Nrun =

50 trials). N denotes the number of individuals and kmax the maximum number

of iterations.

Second order system, P1 Third order system, P2

N kmax Best Mean St. dev. SR Time Best Mean St. dev. SR Time

50 50 0.5091 0.6051 0.1197 62 7.8 0.0692 0.1113 0.0461 4 7.9

50 100 0.5091 0.5885 0.1158 68 17.2 0.0691 0.0949 0.0419 30 16.2

50 200 0.5091 0.5984 0.1191 64 34.7 0.0691 0.0963 0.0433 32 33.9

50 500 0.5091 0.5896 0.1153 68 95.1 0.0691 0.0966 0.0432 44 86.0

50 1000 0.5091 0.5741 0.1086 74 181.9 0.0691 0.0838 0.0345 62 175.3

100 50 0.5091 0.5641 0.1026 78 16.4 0.0692 0.0871 0.0358 28 16.0

100 100 0.5091 0.5885 0.1158 68 33.5 0.0691 0.0817 0.0324 68 33.3

100 200 0.5091 0.5666 0.1023 78 67.6 0.0691 0.0853 0.0366 80 69.1

100 500 0.5091 0.5488 0.0910 84 170.8 0.0691 0.0832 0.0347 84 175.5

100 1000 0.5091 0.5438 0.0861 86 349.9 0.0691 0.0852 0.0367 84 350.9

500 50 0.5091 0.5190 0.0486 96 69.8 0.0692 0.0745 0.0198 76 77.5

500 100 0.5091 0.5438 0.0861 86 139.9 0.0691 0.0711 0.0140 98 174.6

500 200 0.5091 0.5425 0.0813 86 286.1 0.0691 0.0712 0.0140 96 352.5

500 500 0.5091 0.5438 0.0861 86 686.1 0.0691 0.0791 0.0300 90 907.0

500 1000 0.5091 0.5438 0.0861 86 1408.7 0.0691 0.0691 0.0000 100 1730.8

A2 =

 0 1 0

0 0 1

0.1391 −1.1584 2.0022

 , B2 =

0

0

1

 ,

C2 =
[
−0.2078 0.9785 −1.1550

]
, d2 = 3.2337. (78)

The selected input signal, which has range U = [−1, 1], is the following:

u(k) = 0.7 sin (3k) + 0.3 sin (4k). (79)

The results are shown in Figure 10, the upper figures show the time responses for

the second order system and lower ones for the third order system. Notice that in

both cases the quantized input signal v(k) has only two levels since it was specified

that M = 2. For the second order system Figure 10b shows how the real output

yq(k) follows closely the desired output y(k) and the error between them is very

small. In fact, the maximum error registered is maxk∈{1,2,...,150} abs [yq(k)− y(k)] =

0.3462. Then, since for the respective designed quantizer E(Q) = 0.5091, it is

verified that the maximum error in this example is less than the performance

40



Table 4: Simulation results for the second and third order plants by FA (Nrun =

50 trials). N denotes the number of individuals and kmax the maximum number

of iterations.

Second order system, P1 Third order system, P2

N kmax Best Mean St. dev. SR Time Best Mean St. dev. SR Time

50 50 0.6469 0.9025 0.1486 0 3.2 0.1744 0.2102 0.0233 0 5.8

50 100 0.7562 0.7958 0.0698 0 6.4 0.1546 0.1763 0.0148 0 12.4

50 200 0.7322 0.7852 0.0989 0 12.5 0.1624 0.1696 0.0031 0 26.0

50 500 0.5320 0.7449 0.0487 4 30.6 0.1614 0.1722 0.0078 0 66.6

50 1000 0.5324 0.7575 0.0922 4 59.3 0.1479 0.1716 0.0132 0 134.9

100 50 0.7690 0.9171 0.1569 0 5.8 0.1711 0.2063 0.0247 0 12.0

100 100 0.7497 0.8222 0.1311 0 11.5 0.1644 0.1735 0.0052 0 26.6

100 200 0.6737 0.7753 0.0587 0 22.8 0.1533 0.1699 0.0047 0 55.8

100 500 0.5783 0.7625 0.0442 2 56.7 0.1579 0.1692 0.0032 0 144.9

100 1000 0.5340 0.7629 0.0670 2 113.3 0.1438 0.1715 0.0090 0 285.7

500 50 0.7633 0.8128 0.0964 0 28.9 0.1668 0.1980 0.0167 0 81.2

500 100 0.6695 0.7821 0.0431 0 56.8 0.1479 0.1723 0.0061 0 170.2

500 200 0.7329 0.7620 0.0190 0 113.7 0.1341 0.1689 0.0057 0 349.3

500 500 0.6152 0.7672 0.0724 0 282.4 0.1200 0.1671 0.0087 0 880.0

500 1000 0.5684 0.7440 0.0533 8 577.9 0.1546 0.1697 0.0037 0 1776.7

index E(Q). The same situation happens for the third order system, where,

maxk∈{1,2,...,150} abs [yq(k)− y(k)] = 0.0319 and E(Q) = 0.0691.

3.7 Comparison Among Metaheuristics

In this section the results from the developed simulations are discussed in detail.

A comparison among the design methods based on CMA-ES, DE, FA and PSO is

developed in terms of the success rate, convergence behavior and execution time.

The data for this analysis can be found in the Tables 2, 3, 4 and 5.

3.7.1 Success Rate Comparison

For the second order system the best solution found for CMA-ES and DE is

the same Emin(QCMA−ES) = Emin(QDE) = 0.509057, for PSO is slightly bigger

Emin(QPSO) = 0.509073 and for FA is quite bigger Emin(QFA) = 0.531969. For

the third order system this relation is the same Emin(QCMA−ES) = Emin(QDE) =

41



Table 5: Simulation results for the second and third order plants by PSO (Nrun =

50 trials). N denotes the number of individuals and kmax the maximum number

of iterations.

Second order system, P1 Third order system, P2

N kmax Best Mean St. dev. SR Time Best Mean St. dev. SR Time

50 50 0.7291 0.7910 0.0271 0 6.4 0.1386 0.2052 0.0340 0 5.6

50 100 0.6467 0.7612 0.0196 0 13.4 0.1297 0.1814 0.0157 0 11.2

50 200 0.7437 0.7577 0.0027 0 28.2 0.0867 0.1650 0.0182 0 23.5

50 500 0.7015 0.7556 0.0080 0 76.8 0.0713 0.1579 0.0300 0 66.6

50 1000 0.5731 0.7518 0.0274 2 159.4 0.0706 0.1529 0.0333 0 151.7

100 50 0.7300 0.7815 0.0211 0 10.7 0.1047 0.1867 0.0195 0 11.4

100 100 0.6960 0.7593 0.0101 0 22.8 0.1556 0.1734 0.0063 0 23.7

100 200 0.6160 0.7491 0.0316 0 49.3 0.0789 0.1557 0.0293 0 48.5

100 500 0.5150 0.7476 0.0429 4 140.6 0.0716 0.1430 0.0405 0 135.7

100 1000 0.6261 0.7535 0.0194 0 306.0 0.0729 0.1510 0.0362 0 299.5

500 50 0.5204 0.7550 0.0366 2 52.8 0.0920 0.1660 0.0209 0 56.6

500 100 0.5561 0.7447 0.0436 4 110.7 0.0774 0.1505 0.0342 0 115.0

500 200 0.5114 0.7458 0.0477 4 234.5 0.0712 0.1491 0.0374 0 249.2

500 500 0.5097 0.7025 0.0964 22 566.6 0.0709 0.1357 0.0426 0 698.6

500 1000 0.5091 0.6777 0.1132 32 1108.1 0.0701 0.1305 0.0453 0 1477.3

0.069132, Emin(QPSO) = 0.070130 and Emin(QFA) = 0.119999.

The best solutions are provided by CMA-ES and DE. These solutions are

the same in both cases indicating that they both have the exploration capacities

to solve the quantizer design problem. Now, in the case of PSO for the second

order system, the best solution is very close to the one obtained by CMA-ES

and DE, while for the third order system, the difference between the results is

not negligible. In contrast, the solutions provided by FA are relatively big in

comparison with the others.

A more important point is the success rate when comparing these algorithms.

The success rate gives an idea about how effective is an algorithm. A low success

rate indicates that the algorithm gets trapped into local minima, and that the

probability to find the global minimum is small. Thus, an algorithm with high

success rate is reliable. The success rates of the quantizer design algorithms are

shown in Figure 11 for the second order system and in Figure 12 for the third

order system, this values are the same as in the tables.

42



Time [s]
0 5 10 15

-2

0

2

u(t) v(t)

(a) Input signals of 2nd order plant P1.

Time [s]
0 5 10 15

-2

0

2

y(t) yq(t)

(b) Output signals of 2nd order plant P1.

Time [s]
0 5 10 15

-2

0

2

u(t) v(t)

(c) Input signals of 3rd order plant P2.

Time [s]
0 5 10 15

-0.5

0

0.5

y(t) yq(t)

(d) Output signals of 3rd order plant P2.

Figure 10: System responses when the control signal u(k) is applied to the

plants P1 and P2. The black lines represent the signals of the system without

quantization. Meanwhile, the blues ones are the signals when the quantization is

performed.

They show how the performances of CMA-ES and DE are quite better than the

performances of PSO and FA for the design of the quantizer. For the second order

system the success rates of CMA-ES and DE are always over 60%. Meanwhile, the

success rates of PSO are less than 40% and for FA less than 10%. For the third

order system the success rates of PSO and FA are 0% in all the cases. Thus,

it is verified that the quantizer design based on CMA-ES and DE are reliable

methods while the ones based on PSO and FA are not. Now, for both plants the

success rates obtained with CMA-ES are better than the ones obtained with DE,

specially when the number of individuals N and (or) the maximum number of

generations kmax are small, for bigger values of N and kmax their success rates

are very close to each other. Then, it is fair to say that the design method based

on CMA-ES is better and more reliable than the one based on DE.

An interesting result from the tables is the values of the mean. The means were

43



kmax

50 100 200 500 1000

P
er
ce
n
ta
ge

[%
]

0

20

40

60

80

100
N = 50

kmax

50 100 200 500 1000
0

20

40

60

80

100
N = 100

kmax

50 100 200 500 1000
0

20

40

60

80

100
N = 500

CMA-ES

DE

PSO

FA

Figure 11: Success rate for the second order plant (P1).

kmax

50 100 200 500 1000

P
er
ce
n
ta
ge

[%
]

0

20

40

60

80

100
N = 50

kmax

50 100 200 500 1000
0

20

40

60

80

100
N = 100

kmax

50 100 200 500 1000
0

20

40

60

80

100
N = 500

CMA-ES

DE

PSO

FA

Figure 12: Success rate for the third order plant (P2).

taken over the Nrun = 50 trials of the algorithm. For the CMA-ES based method

the mean for both order systems is very close to the best value or Emin(Q), same

for DE, but not as close as in CMA-ES. In contrast, for PSO the best value and

the mean are different for the second order system, since the mean is closer to the

local minima, in the third order case they are both close to the local minima. The

behavior of FA is similar to PSO. Another remarkable fact taken from the tables

is that the standard deviation in the CMA-ES based method is very small, almost

zero, indicating how close the results are from the mean that at the same time is

almost as the best result. The success rates are a reflection of these results.

3.7.2 Convergence Time Comparison

The convergence behavior of the algorithms is shown in Figure 13 for the second

order system and in Figure 14 for the third order system by sequences of E(Q)

against the generation number k. In these figures there were selected examples of

trials of the algorithms for each value of N and kmax = 500, although in the figures

44



the sequences are shown until k = 50. The only criteria used for the selection

of this sequences among the respective 50 trials was that the initial E(Q) should

be close to E(Q) = 1. In each case the figures show that the methods based on

CMA-ES and DE converge fast to the global optima, and that the design methods

based on PSO and FA converge more slowly to the local optima.

In terms of execution time PSO and FA shows to be faster than DE for both

systems, considering the results of Table 3, 4 and 5. However, comparing PSO

and FA execution times, it is notable that for the second order system the FA

algorithm is quite faster than PSO but for the third order system FA is slower

than PSO. This is due to the time complexity of the algorithms, thus, increasing

the dimension of the problem will make FA even more slower than PSO. For

CMA-ES the situation is a little ambiguous. For the second order system, it

shows to be quite faster than the others methods, moreover the execution time

does not depend on kmax after a certain value. On the other hand, for the third

order system, CMA-ES is slower than the other algorithms, and the execution

time increases with kmax. This behavior is explained with the double termination

condition of the CMA-ES algorithm that are implemented in this study. The first

one is that the generation number k reaches kmax, this is the only termination

condition for DE, FA and PSO, and this explains why for the third order system

the execution time depends on kmax. The second termination condition of CMA-

ES is that the condition number of the covariance matrix Σ exceeds 1014, clearly

this condition is responsible for the behavior in the case of the second order

system. The CMA-ES policy is that the algorithm should be stopped whenever

it becomes a waste of CPU-time to continue. Then, it is possible to add more

termination conditions for the CMA-ES algorithm, and in this way reduce its

execution time.

3.8 Summary

In this chapter design methods for the finite-level dynamic quantizer subjected

to data rate constraints are proposed. These methods are based on CMA-ES,

DE and FA. By means of numerical simulations the effectiveness of the proposed

design methods were confirmed. The metaheuristics that showed the best per-

formance in terms of success rate and execution time are the CMA-ES and DE

45



k

0 10 20 30 40 50

E
(Q

)

0.4

0.6

0.8

1

1.2

1.4

N = 50

CMA-ES
DE
PSO
FA

k

0 10 20 30 40 50

E
(Q

)

0.4

0.6

0.8

1

1.2

1.4

N = 100

CMA-ES
DE
PSO
FA

k

0 10 20 30 40 50

E
(Q

)

0.4

0.6

0.8

1

1.2

1.4

N = 500

CMA-ES
DE
PSO
FA

Figure 13: Convergence behavior of the different metaheuristics for the second

order plant P1 (kmax = 500). For better visualization the graphics only show the

results until k = 50. E(Q) further decreases in some cases.

algorithms.

The CMA-ES algorithm is not easy to implement, but it carries the big ad-

vantage that it does not require the tuning of any control parameter. Their values

are already optimized and established by default. DE is very easy to implement,

it is fast and has only three control parameters. These methods show very good

performances even with a relatively small amount of individuals and number of

generations. For CMA-ES the execution time shows a bipolar behavior for the

different order systems, although this can be solved by adding more termination

conditions to the algorithm.

Compared to the other metaheuristic based design methods, it was verified

that the performances of the CMA-ES and DE based methods are quite bet-

ter than the ones based on PSO and FA. However, compared with each other

the method based on CMA-ES is better than the one based on DE. Although,

46



k

0 10 20 30 40 50

E
(Q

)

0

0.2

0.4

0.6

0.8

1

1.2
N = 50

CMA-ES
DE
PSO
FA

k

0 10 20 30 40 50

E
(Q

)

0

0.2

0.4

0.6

0.8

1

1.2
N = 100

CMA-ES
DE
PSO
FA

k

0 10 20 30 40 50

E
(Q

)

0

0.2

0.4

0.6

0.8

1

1.2
N = 500

CMA-ES
DE
PSO
FA

Figure 14: Convergence behavior of the different metaheuristics for the third

order plant P2 (kmax = 500). For better visualization the graphics only show the

results until k = 50. E(Q) further decreases in some cases.

they show similar success rates and convergence behavior there are some small

differences.

47



4. Design of Event-triggered Quantizers (ETQs)

In this chapter, a switching-type finite level dynamic quantizer aimed to the

reduction of the NCSs’ network traffic is introduced. In addition, some design

methods of this quantizer based on differential evolution are proposed. With

numerical simulations it is verified that the proposed quantizer and its design

methods are effective. Finally, the design methods are compared among each

other and several conclusions drawn.

4.1 Introduction

In conventional control systems the controllers send signals to the plant in each

sampling time, which leads to continuous traffic in the network. Bandwidth

limitations and energy constraints set severe restrictions on the operation of many

types of NCSs. In addition, network traffic congestion brings several problems

such as delays in the delivery of data and packages loss. Then, in order to reduce

the effects of this problems, one admissible approach is to design a quantizer that

sends data to the plant only when it is necessary. This approach is similar to

the ones developed in the event-triggered control field where an event generator

attached to the plant asks for data to the controller when some kind of variation

in the plant’s state or output happens [44, 69, 95].

There are many studies that consider the reduction of network traffic gener-

ated by the control system. The event-triggered and self-triggered control disci-

plines are being developed with that goal. Nevertheless, there are not so many

studies that consider this traffic reduction in quantized NCSs. Some studies

worth to be mentioned are summarized as follow. [120] considered the problem of

event-triggered H∞ control for a quantized singular NCS. [99] developed a trigger-

ing method combining the event-triggering bandwidth reduction strategies and

speech coding techniques. [30] combined model-based NCSs and event-triggered

control to stabilize dynamical systems subjected to quantization and network

delays. [51] proposed a delay system model where the criteria of stability and

control of event-triggered NCSs are established using linear matrix inequalities

(LMIs). In addition, [79] tackled the considered problem without using event-

triggering techniques. Instead this study uses model-based NCSs and derives

48



sufficient stability conditions for two types of static and a dynamic quantization

schemes.

The present study is inspired in the event-triggered techniques mentioned

above. To tackle the problem of network traffic reduction, this chapter proposes

a class of switching-type dynamic quantizer denominated event-triggered quan-

tizer (ETQ). This quantizer is composed of a feedback type dynamic quantizer

and a Gaussian function based switching mechanism. Then, this study finds a

quantizer that (i) minimizes the deterioration of the system’s performance due to

quantization, (ii) satisfies the constraints caused by the communication data rate,

and (iii) reduces the amount of data that the system puts in the network. The de-

sign of this quantizer is carried out using the differential evolution metaheuristic

algorithm due to the complexity of its design problem.

Differently from the previous studies, this chapter does not concern with the

stability or the control of the plant, nor with the design of the controller. An open

loop system with a stable plant is considered. Then, the focus of this study is

on the minimization of the performance degradation due to quantization and the

reduction of the network traffic. An advantage of the proposed quantizer is that

the designer can specify the desired amount of network traffic reduction by setting

a parameter called network utilization rate during the quantizer’s design. Then,

the quantizer will balance the amount of traffic that is saved in the network with

the system’s performance degradation level. Another advantage is that this study

takes into account the data rate constraints of the channel, a feature disregarded

in the previous studies.

The contributions of this chapter are as follows. First, an event-triggered

quantizer with a Gaussian function based trigger mechanism is presented. Al-

though the structure with Gaussian functions has the potential to achieve sat-

isfactory performance due to its flexibility, it has not been studied so far to the

best of the author’s knowledge. Then, a network utilization rate is introduced,

and an optimal quantizer design problem for network traffic reduction is formu-

lated. Thus, a solution to the design problem could reduce the network traffic,

which leads to the improvement of the network reliability. The obtained results

facilitate the design of practical dynamic quantizers for NCSs.

The content of this chapter was published in [108], [109] and [112].

49



4.2 Problem Formulation

4.2.1 System Description

This chapter considers the system shown in Figure 15. This system is composed

of the event-triggered quantizer QS, the plant P , and the communication channel.

It is assumed that the channel has no losses or delays, that the plant is a remote

control system with an inner loop, and that the reference signal u is bounded,

i.e., u(k) ∈ U for U := [umin, umax].

PQ
yq(k)v(k)uq(k)

σ(k) σ(k)

v(k)

G

Quantizer

Event generator

Plant

Channel

QS

u(k)

Figure 15: NCS with an event-triggered quantizer.

The plant P is linear, discrete-time, and sigle-input-single-output (SISO). It is

same as the one described in Section 3.1 represented by Equation (1). In this case

it is also assumed that the plant is stable. Note that Equation (1) can express a

closed loop system with a plant and a stabilizing controller.

The structure of QS is shown in Figure 15. It is composed of a feedback-

type dynamic quantizer Q, an event generator G, and a switching mechanism

SW . The quantizer Q is the one described by Equation (2) in Section 3.1 with

the difference that its output is represented by uq(k) instead of v(k). To avoid

confusion, the equation with the modified notation is depicted as follows

Q :

{
ξ(k + 1) = Aξ(k) + B(uq(k)− u(k)),

uq(k) = q[Cξ(k) + u(k)].
(80)

The considerations are the same as the one in Equation (2), including the struc-

ture of the static quantizer q[·] exemplified in Figure 7.

The event generator G produces a trigger signal σ(k) ∈ {0, 1} that operates

as follows. When an event occurs, G sends σ(k) = 1 to SW on the other side of

the channel and the switch closes allowing Q to send v(k) = uq(k) to the plant.

50



Notice that the switch remains normally open, and that σ(k) = 0 means that no

signal is sent from G. If no data reach the plant in a sampling time k, the plant

will hold its previous input, namely, v(k) = v(k− 1). This behavior is illustrated

in Figure 16.

0
k

0
k

uq(k)

(k)
1

TS

1 2 3 4 5 6 LL-1...

v(k)

0
k

Figure 16: Operation of the trigger signal σ(k).

Accordingly, the operation of SW can be represented as

SW :

{
ζ(k + 1) = v(k),

v(k) = σ(k)uq(k) + (1− σ(k))ζ(k),
(81)

where, ζ ∈ R is the state of SW with ζ(0) = 0, and v(k) is the output of QS.

The events in G are determined by the output signal yq(k) using the following

rule

G : σ(k) =

{
1 if H[yq(k)] ≥ 0,

0 otherwise,
(82)

where H[yq(k)] is the trigger function defined as

H[yq(k)] := w>φ[yq(k)] =

nG∑
i=1

wiexp

[
−(yq(k)− µi)2

2s2
i

]
, (83)

where φ(x) = [φ1(x), φ2(x), . . . , φnG(x)]> is a vector of Gaussian functions, and

w ∈ RnG is a vector of constant weights. There are in total nG Gaussian functions

51



-3 -2 -1 0 1 2 3

φ
i(
y
q
)

0

2

4

yq

-3 -2 -1 0 1 2 3

H
(y

q
)

-10

0

10

20

Figure 17: Example of a trigger function H(yq) and the Gaussian functions φi(yq)

that compose it for nG = 20. The vertical brake lines represent ymin and ymax.

distributed along the range of the output signal y(k) ∈ [ymax, ymin] and together

they compose the trigger function as Figure 17 shows. Each Gaussian function

has only two parameters, a mean µi and a variance s2
i that are gathered in the

vectors µ and s2, respectively. This type of structure for the trigger function is

used due to its simplicity, flexibility, and relatively small number of parameters.

In this study it is assumed that only M is given. Thus, the design parameters

for QS are A, B, C, d, µ, s2, and w.

Notice that there are other versions of ETQ that were considered. These

versions are described and commented in Section 4.4. The version that was

explained in this section is the one that exhibits the best performance.

4.2.2 Performance Index

The quantizer’s performance analysis is carried out by using the error system

shown in Figure 18. The error system’s lower branch represents the ideal case

in which u(k) is applied directly to the plant giving the ideal output y(k). In

the upper branch the effects of the channel and event-triggered quantization are

considered. The quantized reference signal v(k) is applied to the plant giving the

52



PQ
yq(k)v(k)uq(k)

(k) (k)

v(k)

G

Channel

P

+

-

y(k)

e(k)u(k)

Figure 18: Event-triggered quantizer’s error system.

output yq(k). The difference between these outputs is the error signal e(k) =

yq(k)− y(k).

The biggest possible value of e(k), i.e., the worst case performance of the

system, is known as performance index E(QS) which is defined as in Section 2.1.1

by Equation (3). In order to obtain the smallest performance degradation, it is

necessary to make E(QS) as small as possible by the appropriate design of the

event-triggered quantizer QS. Then, the dynamic quantizer design is reduced to

an optimization problem, where the objective function is given by E(QS) in (3)

and the variables are the design parameters of QS.

However, because the quantizer’s structure is different the result given by

Equation (4) to calculate E(QS) cannot be used. Instead, this study evaluates

the finite time performance and considers an specific input signal. Thus, the

following approximated version of E(QS), with a finite evaluation interval L and

for a given u(k), is used

Ẽ(QS) := max
k∈{1,2,...,L}

abs (yq(k)− y(k)) . (84)

Notice that the relation E(QS) ≥ Ẽ(QS) holds since E(QS) represents the

maximum possible error in the output at any time and for any signal u(k). Ad-

ditionally, notice that Ẽ(QS) depends not only on QS but also on u and x0.

Although the notation Ẽ(Qs, u,x0) should be used, u and x0 are omitted for

simplicity.

53



4.2.3 Data Rate Constraint

In this chapter it is considered that the channel is subjected to data rate con-

straints, as it was described in Section 3.3. This limitation affects the design of

quantizers by subjecting them to the following condition M ≤ 2Nb . It is also

assumed that M is given satisfying this data rate constraint.

If there is no saturation in a finite-level static quantizer, then the maximum

quantization error is given by ∆q = d/2. In order to minimize Ẽ(QS) it is

necessary to make ∆q as small as possible. As showed in Section 3.3, the smallest

d that satisfies the data rate constraints and does not saturate the static quantizer

is the one given by Equation (8), where Λ̄ is given by Equation (31) and T is the

matrix composed of the right eigenvectors of A+BC as columns that is used for

diagonalization [90].

When the switch SW closes the feedforward system is the same as the one

considered in Chapter 2, for this reason the result in Equation (8) can be used in

the design of QS. Thus, in this study d∗ is used to construct the event-triggered

quantizer.

4.2.4 Network Utilization Rate

Normally the quantizer operates periodically, sending data through the network

in every sampling time. In contrast, the event-triggered quantizer sends data

only when the event generator asks for it. In this study the amount of traffic

that the quantizer puts in the network is represented in percentage and it is

called network utilization rate or NUR. Considering that L is the total number

of sampling intervals, as Fig. 16 shows, the NUR can be defined as

Ψ :=
100

L

L∑
k=1

σ(k). (85)

For instance, in Figure 16 if L = 9, then Ψ = 66.67%.

This study aims to reduce the amount of network traffic by the appropriate

design of QS. Of course, the reduction of the traffic in the network will negatively

affect the performance of the system by increasing the amplitude of e(k). Then,

it is important to make a compromise between the amount of traffic put in the

network and the precision of the output.

54



The traffic reduction is performed by establishing the desired maximum NUR,

reprented by Ψ∗, as a design parameter for the event-triggered quantizer. Thus,

the Ψ∗ is given by the designer.

4.2.5 Quantizer Design Problem

The design of QS is formulated as an optimization problem where Ẽ(QS) is mini-

mized under certain conditions. Thus, the design problem is formalized as follows:

Suppose that P , M , Ψ∗, u(k), and U are given. Then, find the parameters of

QS: A, B, C, d, µ, s2, and w which minimize Ẽ(QS), under the conditions that:

i The dynamic quantizer Q is stable (Λ̄ < 1),

ii The data rate constraint is satisfied (d = d∗ > 0),

iii The system’s NUR is bounded (Ψ ≤ Ψ∗),

iv The variances are positive (s2
min > 0), and

v The means are in the range of the output signal

(µmax ≤ ymax and µmin > ymin,).

The QS resulting from this problem, besides minimizing the output error, is

stable, satisfies the communication rate constraint and limits the amount of traffic

generated by the system.

This design problem cannot be solved by conventional optimization meth-

ods due to its nonlinear and nonconvex nature. Hence alternative methods such

as metaheuristics should be used. In Chapter 3 the differential evolution meta-

heuristic algorithm (DE) has been employed successfully showing a very good

performance in the design of dynamic quantizers. Moreover, DE is implemented

easily, is fast and has few control parameters. For these reasons, in this chapter,

DE is adopted to solve the event-triggered quantizer’s design problem. This study

uses the classical DE/best/1/bin strategy for the optimization.

Notice that in this chapter DE is preferred over CMA-ES for the design of

ETQs. The reason for this is that, although CMA-ES showed better performance

than DE in the previous chapter, CMA-ES consumes more computational re-

sources than DE. This is specially important when optimizing high dimensional

55



problems. In the previous chapter the dimension of the problems were n = 4

and n = 6 for the second order and third order plants respectively. However, in

this chapter the dimension of the optimization problem goes until n = 64. Thus

CMA-ES becomes slower and it is more difficult to run many simulations at the

same time in computers with moderate performance. On the other hand, DE

does not suffer as much a CMA-ES in this situation and it still runs relatively

fast.

The proposed design problem of QS is subjected to several constraints and

DE has no direct way to handle them. Therefore, the method developed by

[73] explained in Section 2.2 is used to transform the constrained optimization

problem into an unconstrained one. The unconstrained problem is the following

minimize
θ∈Rn

J(θ), for J(θ) :=

{
Jv(θ) if p(θ) < 0,

p(θ) otherwise,
(86)

Jv(θ) := arctan[Ẽ]− π/2 with d = d∗, (87)

p(θ) := max[(Λ̄− 1), −d∗, (Ψ−Ψ∗), −s2
min,

(µmax − ymax), (ymin − µmin)], (88)

where Ẽ, d∗, Λ̄, and Ψ correspond to the Equations (84), (8), (31), and (85),

respectively. In addition, s2
min, µmin, µmax, ymin, and ymax are the minimum and

maximum values of s2, µ and the range of y(k). The design problem constraints

are codified in (88). Notice that the design variable θ ∈ Rn is constructed with

the n unknown elements of the matrices A, B, C, µ, s2, and w.

4.2.6 Event Definition

Notice that despite the fact that the structure and design method of the event-

trigered quantizer QS was described in this section there is still no definition of an

event. This study does not provide such definition. An event happens when the

triggered function H[yq(k)] defined in Equation (83) becomes bigger or equal than

zero. This function is built by adding together the weighted Gaussian functions.

The weights, means and variances of these Gaussian functions are determined by

the metaheuristic algorithm. Thus, in a sense, is the metaheuristic algorithm the

one that determines what an event is.

56



There are several studies in the event-triggered and self triggered control fields

that provided different definitions of events for different types of systems [44, 69,

95]. However, this study does not use those definitions, since a new type of

quantizer is proposed. It is left as future work to consider formal definitions of

events and to analyze the meaning from the NCSs perspective of the events that

are determined from the metaheuristic algorithms.

4.3 Numerical Examples

Several numerical examples were carried out to prove that the event-triggered

quantizer and the proposed design method show good performance. The plant

used in these examples is given by

P (s) =
s+ 20

s2 + 3s+ 2
. (89)

This plant is discretized using a zero-order hold and a sampling time TS = 0.1[s].

It is the same as the one in Equation (73) used in Section 3.6. The given pa-

rameters of QS are: M = {2, 4, 8, 16}, L = 200, nG = 20, U = [−1, 1] and

Ψ∗ = {100%, 90%, 70%}. The quantizer is designed for the following signal

u(k) = 0.3 sin (6k) + 0.4 sin (k) + 0.3 sin (3k). (90)

The target vectors used in the DE algorithm are built with the design parameters

of QS. They are arranged as follows

A =

[
0 1

θ1 θ2

]
, B =

[
0

1

]
, C =

[
θ3 θ4

]
,

µ =
[
θ5 θ6 . . . θ24

]>
, s2 =

[
θ25 θ26 . . . θ44

]>
,

w =
[
θ45 θ46 . . . θ64

]>
. (91)

Thus, a target vector is given by θ = [θ1 θ2 . . . θ64]> and the dimension of the

optimization problem is n = 64. The control parameters of DE are N = 500,

kmax = 2000, F = 0.6, and H = 0.9. In addition, the individuals are randomly

initialized within the range S0 = [−1, 1]n and the simulations were performed

Nrun = 10 times for each considered case.

57



From these simulations several implementations of QS were obtained. Each of

them is optimized for a combination of the parameters M and Ψ∗. To show that

the designed quantizers work properly the signal in Equation (90) is applied to the

error system in Figure 18. For example, Figure 19 shows the signals resulting from

the quantizer designed with M = 4 and Ψ∗ = 70%. It can be seen that the output

signals y(k) and yq(k) are very similar, despite the fact that the channel is used

only 70% of the time, as σ(k) shows. In general, the designed quantizers show

good performance. Furthermore, the channel’s data rate constraint is satisfied.

This is evidenced by the fact that signal u(k) is inside the range of v(k), which

indicates that no saturation occurs in Q.

0 5 10 15

u
(k
),
v
(k
)

-1

0

1

0 5 10 15

σ
(k
)

0

1

Time [s]
0 5 10 15

y
(k
),
y
q
(k
)

-4

-2

0

2

4

Ẽ(QS) = 0.2097

Figure 19: Signals obtained when u(k) is applied to the system with QS designed

for M = 4 and Ψ∗ = 70%. The black lines are the ideal signals u(k) and y(k),

and the blue ones are the signals obtained when the event-triggered quantization

is performed v(k), σ(k) and yq(k).

58



Figure 20 offers another perspective to further validate the effectiveness of

QS. This figure shows the error signals e(k) obtained by applying random trigger

signals σ(k) to the optimal quantizer Q designed to minimize the performance

index but with no regard of the traffic generated. In these examples the optimal

quantizer is designed for M = 4 and the reference signal is the one in Equa-

tion (90). For comparison purposes the error signals obtained for a random σ(k)

with NUR close to 70% are selected. These NURs are Ψ1 = 69%, Ψ2 = 71%

and Ψ3 = 67% for e1(k), e2(k) and e3(k), respectively. Then, the error signal

e70%(k) obtained with the QS designed for M = 4 and Ψ∗ = 70% is included in

the graphic. Clearly, e70%(k) is the smallest error signal meaning that the event-

triggered quantizer effectively reduces the system’s performance degradation and

the system’s NUR at the same time.

Time [s]
0 5 10 15

e
(k
)

-2

0

2

e70%(k) e1(k) e2(k) e3(k)

Figure 20: Error signals ei(k) (i = 1, 2, 3) obtained by applying random trigger

signals σi(k) (i = 1, 2, 3) to the optimal quantizer Q designed for M = 4. The

error signal e70%(k) is the one obtained using the QS designed for M = 4 and

Ψ∗ = 70%.

Figure 21 depicts a comparison among the error signals e(k) obtained with

the quantizers designed for different Ψ∗s. The error signal’s magnitude decreases

when M increases as can be verified by comparing the graphics for M = 4 and

M = 8. Also, it can be verified how the error signals increase their magnitude as

Ψ∗ decreases. In addition, notice that Ψ∗ = 100% is the optimal case in which

no event-triggering is performed and it gives the smallest error signal that can be

obtained using QS. Then, the differences among the error signal magnitudes for

the cases with Ψ∗ = 90%, Ψ∗ = 70% and Ψ∗ = 100% are not very big. This means

59



that the performance of QS is comparable to the case with no event-triggering,

specially for high values of Ψ∗.

0 5 10 15

e
(k
)

-0.1

0

0.1

M = 4

Ψ = 100% Ψ = 90% Ψ = 70%

Time [s]
0 5 10 15

e
(k
)

-0.1

0

0.1

M = 8

Figure 21: Error signals e(k) when u(k) is applied to the error system with the

QS designed for different values of Ψ∗ and M .

4.4 Comparison among different versions of ETQ

In this section a comparison among the proposed design method (M1) and three

other design methods is carried out. The methods are summarized in Table 6.

The methods M2 and M3 were considered in [108], meanwhile M1 and M4

were published in [112]. In Table 6, the methods are classified into 1 Step and 2

Steps methods. In the 1 Step methods the dynamic quantizer Q is designed si-

multaneously with the event-generator G using DE. In the 2 Steps methods, first,

the optimal quantizer Q = Q∗ that minimizes E(Q), Equation (3), and satisfies

the data rate constraint is obtained using the method developed in Chapters 2

and 3. Then, in the second step, G is calculated using DE for Q∗ and having in

account that Ψ ≤ Ψ∗.

Moreover, the ETQs are divided into VV and V0 that represent two types of

operation of the quantizer. In the VV type, the plant assumes v(k) = v(k − 1)

60



Table 6: Differences among the design methods of QS.

Method M1 M2 M3 M4

Type 1 Step 1 Step 2 Steps 2 Steps

VV V0 V0 VV

Given A,B,C,M,Ψ∗, u(k), U

µ, s2 µ, s2

Find A,B,C, d,w

µ, s2 µ, s2

when it does not receive an input in a sampling time, i.e., σ(k) = 0. This

is the case represented by SW in Equation (81). In the V0 type, the plant

assumes v(k) = 0 when σ(k) = 0. In this case, v(k) can be presented simply

as v(k) = σ(k)uq(k). An example of the V0 type of operation is illustrated in

Figure 22. In order to clarify the difference between the V0 and VV types of

ETQs, the signals uq(k) and σ(k) in Figure 22 are the same as in Figure 16.

0
k

0
k

uq(k)

(k)
1

v(k)

0
k

TS

1 2 3 4 5 6 LL-1...

Figure 22: Operation of the trigger signal σ(k) for the V0 type ETQ.

Finally, the design methods in Table 6 differ as well in the parameters that are

given and the ones that they need to find. In particular, in methods M2 and M3

the parameters µ and s2 are given. In these cases the means of the Gaussians

61



µ are distributed uniformly along the range of the output signal y(k). Thus,

µi = ymin + (∆y/2) + ∆y(i− 1) for i = 1, . . . , nG, where ∆y = (ymax − ymin)/nG

is the space between the means of two neighbor Gaussians; ymax and ymin are

respectively the maximum and the minimum values of y(k). In the case of the

variances s2, it is assumed that s2
1 = s2

2 = . . . = s2
nG

= (∆y/3)2. This is actually

the case illustrated in the upper graphic of Figure 17.

The design methods M2, M3 and M4 have constraint management strategies

similar to the one used in M1. The virtual function Jv(θ) is the same, the one

in Equation (87), but p(θ) is different in each case. In M2 the conditions that

regulate the parameters µ and s2 in p(θ) are absent, namely

p(θ) := max[(Λ̄− 1), −d∗, (Ψ−Ψ∗)]. (92)

In the 2 Steps methods, M3 and M4, the function p(θ) is divided into two parts.

For M3 the penalty p(θ) becomes

Step 1: p1(θ) = max[(Λ̄− 1), −d∗], (93)

Step 2: p2(θ) = Ψ−Ψ∗, (94)

each for one step of the design. For M4 the conditions that regulate µ and s2

should be added as follows

Step 1: p1(θ) = max[(Λ̄− 1), −d∗], (95)

Step 2: p2(θ) = max[(Ψ−Ψ∗), −s2
min,

(µmax − ymax), (ymin − µmin)], (96)

In order to verify that these design methods work properly and to compare

them with M1, additional numerical examples were performed. The plant, ref-

erence signal and settings of these examples are the same as the ones described

in Section 4.3 including the form of the constant matrices A, B, and C in Equa-

tion (91). The simulations were performed again Nrun = 10 times for each combi-

nation of M and Ψ∗. After the simulations ended, the error system was fed with

u(k), Equation (90), to test the designed quantizers. They all work well, some

examples of their output signals are shown in Figure 23. These examples show

some interesting results.

62



0 5 10 15

y
(k
),
y
q
(k
)

-4

-2

0

2

4

M2

Ẽ(QS) = 0.3548

0 5 10 15

y
(k
),
y
q
(k
)

-4

-2

0

2

4

M3

Ẽ(QS) = 0.6064

Time [s]
0 5 10 15

y
(k
),
y
q
(k
)

-4

-2

0

2

4

M4

Ẽ(QS) = 0.6374

Figure 23: Output signals y(k) (in black) and yq(k) (in blue) for the different

design methods (M2, M3, and M4) when the system is fed with u(k) and QS is

designed for Ψ∗ = 70% and M = 4.

63



The considered design methods are compare to each other using statistical

analysis techniques. First, the analysis of variance (ANOVA) is applied consid-

ering four groups of data. Each group corresponds to the performance indexes

Ẽ(QS) of a design method obtained from the simulation runs for a specific M

and Ψ∗. Thus, for each combination of M = {2, 4, 8, 16} and Ψ∗ = {70%, 90%}
a one-way ANOVA with a significance level α = 0.05 is applied. The goal is to

determine if there is some statistical difference among the performance indexes

means of the design methods. For all the cases it was found that the null hypoth-

esis is rejected. Then, in each case at least two design methods differ significantly.

Following up after ANOVA, multiple comparison procedures such as Fisher’s LSD

and Tukye’s test were applied. The conclusions taken from both procedures were

the same. The first one is that the design methods in which Q and G are designed

together (M1 and M2) outperform the ones in which they are designed separately

(M3 and M4). This fact can be verified by comparing the output signal graphics

and their performance indexes Ẽ(QS) in Figure 23 and Figure 19.

Another observation is that the quantizers designed with the method M1 show

the best performance among the other quantizers except for the case in which

M = 2. For M > 2 the method M1 has the smallest mean in each combination of

M and Ψ∗. On the other hand, when M = 2 the method M2 gives the quantizers

with the best performance. These results are exemplified in Table 7 where the

minimum Ẽ(QS) obtained with each design method for Ψ∗ = 90% are shown.

An explanation of this behavior is that in M2 (and M3) when the plant does not

receive any v(k) in a sampling time, it assumes v(k) = 0. Thus, if M = 2 there

are only two values, different than 0, that v(k) can take, then making v(k) = 0 on

the side of the plant creates effectively a third quantization level. Accordingly, the

error is reduced because M is increased. This effect loses its appeal for M > 2,

and maintaining the previous input when no v(k) arrives to the plant showed to

be more effective.

Regarding to the methods M3 and M4, that perform the design in two steps,

the statistical analysis showed that for M = 2 the method M3 is better than M4

but when M increases M4 showed to be superior. This result goes along with the

theory because M4 has more variables and, in consequence, more flexibility.

Finally, it is worth to mention that due to the trade-off that happens between

64



Table 7: Minimum Ẽ(QS) for Ψ∗ = 90% for the different design methods

and number of quantization levels M .

Method M = 2 M = 4 M = 8 M = 16

M1 0.5023 0.1216 0.0656 0.0454

M2 0.3151 0.1469 0.0912 0.0845

M3 0.7908 0.1443 0.1439 0.1461

M4 1.4249 0.2815 0.2037 0.0703

the NUR and the errors’ magnitude, it is important that the designer carefully

selects the value of Ψ∗ having in account the system’s needs and limitations.

4.5 ETQ for Multiple Input Signals

So far in this chapter the design of the ETQs have been carried out only for a

single input signal u(k). This is a severe limitations that affects the operation

of the system. Ideally, an ETQ should should be designed independently of the

input signal. However, a design method independent of the input signal may not

exist. Thus, in an attempt to alleviate this limitation, in this section the design

of the ETQ is carried out using a set of input signals. It is assumed that the

considered input signals are bounded.

In this case the performance of the ETQ is evaluated using the error system

depicted in Figure 18. The performance of the ETQ for multiple input signals u(k)

is evaluated using a generalization of the performance index in Equation (122)

which used for the case of a single input signal. Thus, the performance index of

ETQ for multiple u(k) is defined as follows

Ẽm(QS) := max
i∈{1,2,...,nu}

Ẽ(ui(k)) = max
i∈{1,2,...,nu}
k∈{1,2,...,L}

abs (yq(ui(k))− yi(k)) , (97)

where, nu ∈ N represents the considered amount of input signals. It is assumed

that the considered input signals are independent from each other. The design

problem is the same as in the case of a single input signal which is described

in Section 4.2.5 with the difference that the performance index is the one in

65



Equation (97) and that the NUR generated by each signal should be less than

Ψ∗. This design problem is solved using differential evolution.

In order to verify the effectiveness of the ETQs when they are designed for

multiple u(k) various numerical simulations were performed. Two design methods

are considered, the 1 stepped original one M1 and the 2 stepped one M4. The

settings of these examples are similar the ones in Section 4.3 for a single input

signal. With the differences that a set of input signals is used instead of a single

one, and that the performance index used in this case is the one in Equation 97.

The considered set of input signals is the following

u1(k) = 0.3 sin (6k) + 0.4 sin (k) + 0.3 sin (3k), (98)

u2(k) = 0.5 sin (k) + 0.5 sin (0.2512k), (99)

u3(k) = 0.2 sin (4k) + 0.2 sin (k) + 0.3 sin (5k), (100)

u4(k) = 0.2 sin (3k) + 0.6 sin (k) + 0.2 sin (6k), (101)

u5(k) = 0.1 sin (0.2512k) + 0.4 sin (2.5119k) + 0.5 sin (k). (102)

Thus, the considered plant is the one given in Equation 89, the sampling time

is tS = 0.1, and the evaluation interval is L = 500. The known parameters of QS

are the following M = {2, 8}, nG = 20, U = [−1, 1] and Ψ∗ = {90%, 70%, 50%}.
The unknown parameters of QS are the variables to be found by DE and they

are arranged in a DE individual θ as in Equation 91. The parameters of the

DE algorithm are the same as before and the simulations are run Nrun = 10

times. After the simulations ended and to verify that the designed quantizers

work properly the error system was fed with the considered u(k)s. Some of the

resulting signals are shown in Figure 24 and Figure 25.

Figure 24 shows the signal obtained from the ETQ designed using the design

method M1 for M = 2 and Ψ∗ = 70%. The left column shows the considered

input signals ui(k) (i = 1, 2, . . . , 5) in black and their respective quantized versions

vi(k) (i = 1, 2, . . . , 5) in blue. In the right column there are shown the trigger

signals σi(k) (i = 1, 2, . . . , 5) for each u(k). Figure 25a depicts the outputs, the

ideal ones yi(k) (i = 1, 2, . . . , 5) in black and the ones due to quantization in blue

yq,i(k) (i = 1, 2, . . . , 5). The left column show the outputs from the signals in

Figure 24 for Ψ∗ = 70%. For comparison, in the right column there are shown

the outputs for the quantizer designed for M = 2 and Ψ∗ = 90%. It is possible

66



0 5 10 15 20

u
1
(k
),
v
1
(k
)

-2

0

2

0 5 10 15 20

u
2
(k
),
v
2
(k
)

-2

0

2

0 5 10 15 20

u
3
(k
),
v
3
(k
)

-2

0

2

0 5 10 15 20

u
4
(k
),
v
4
(k
)

-2

0

2

Time [s]
0 5 10 15 20

u
5
(k
),
v
5
(k
)

-2

0

2

(a) Input signals.

0 5 10 15 20

σ
1
(k
)

0

1

0 5 10 15 20

σ
2
(k
)

0

1

0 5 10 15 20

σ
3
(k
)

0

1

0 5 10 15 20

σ
4
(k
)

0

1

Time [s]
0 5 10 15 20

σ
5
(k
)

0

1

(b) Trigger signals.

Figure 24: Signals resulting from exciting the ETQ designed with the M1 method,

M = 2, Ψ∗ = 70%, and the set of considered u(k). The signals in black are

the input signals without quantization ui(k) (i = 1, 2, . . . , 5) and the ones in

blue are the signals when event-triggered quantization is applied vi(k) adn σi(k)

(i = 1, 2, . . . , 5). Each row shows the inputs an outputs for one particular u(k).

to see that the error between the output signals is relatively small and how the

quantized outputs follow the ideal ones mostly well.

From these figures it is possible to infer that the ETQs design with M1 work

relatively well. In the case of the ETQs designed for M = 2 using the 2 Steps

design method M4, the errors are big making the quantizers not usable. In the

67



0 5 10 15 20

y
1
(k
),
y
q
1
(k
)

-10

0

10

0 5 10 15 20

y
2
(k
),
y
q
2
(k
)

-10

0

10

0 5 10 15 20

y
3
(k
),
y
q
3
(k
)

-10

0

10

0 5 10 15 20

y
4
(k
),
y
q
4
(k
)

-10

0

10

Time [s]
0 5 10 15 20

y
5
(k
),
y
q
5
(k
)

-10

0

10

(a) Output signals for Ψ∗ = 70%.

0 5 10 15 20

y
1
(k
),
y
q
1
(k
)

-10

0

10

0 5 10 15 20

y
2
(k
),
y
q
2
(k
)

-10

0

10

0 5 10 15 20

y
3
(k
),
y
q
3
(k
)

-10

0

10

0 5 10 15 20

y
4
(k
),
y
q
4
(k
)

-10

0

10

Time [s]
0 5 10 15 20

y
5
(k
),
y
q
5
(k
)

-10

0

10

(b) Output signals for Ψ∗ = 90%.

Figure 25: Output signals resulting from exciting the ETQs designed with the

M1 method M = 2, Ψ∗ = {70%, 90%}, and the set of considered u(k). The

signals in black are the ideal outputs yi(k) (i = 1, 2, . . . , 5) and the signals in blue

are the ones obtained with event-triggered quantization yq,i(k) (i = 1, 2, . . . , 5).

Each row shows the inputs an outputs for one particular u(k).

case of M = 8 the errors are small for both design methods. To make a proper

comparison among these design methods. A 1-way ANOVA test followed by the

Tukey’s test for a confidence level α = 0.01 are run for each combination of M

and Ψ∗ being the factor the design methods. The results of these test show that

for M = 2 the method M1 is significantly better than M4 in each case. For M = 8

68



there is only significant difference for Ψ∗ = 70% being again M1 superior to M4.

In this case M4 has better mean than M1 only for Ψ∗ = 90%, however there is

no significant difference.

The main disadvantage of this design method is that the time used for the

training can be high. It takes nu times longer to train this quantizer than in the

case with a single u(k).

4.6 Summary

In this chapter, the event-triggered dynamic quantizer is introduced in addition

to four design methods. These design methods are based on the differential

evolution algorithm, which is a reliable and easy to use metaheuristic. With

several numerical examples the effectiveness of the proposed quantizer and its

design methods are verified. The examples showed that method M1 produces the

quantizers that have the best performance for M > 2 and method M2 for M = 2.

Some contributions of this chapter are the introduction of the event-triggered

quantizer which is a new type of intelligent device that can be applied to real-word

networked control systems and the use of event-trigger techniques which enable

the intelligent control of dynamical systems. In particular, this devise employs

the knowledge from previous input signals to reduce the traffic that the system

puts in the network and codifies this knowledge in a function that is approximated

using a weighted set of Gaussian functions.

A limitation of the presented design methods is that they perform the quan-

tizer’s design for a given input signal u(k). Therefore, it is necessary to consider

an event-triggered quantizer that is designed independently of the input signal or

at least to consider the design for multiple input signals. A possible solution is

to use a bigger amount of Gaussian functions or even another type of structures

for the event-generator. Another limitation is that the differential evolution al-

gorithm is not well suited for design problems with dimension higher than one

hundred variables. Thus, if the dimension of the problem increases it would be

necessary to look for other metaheuristics.

These limitations establish possible directions for future research. For in-

stance, some future works are the theoretical analysis of the proposed quantizer

to search for a design method independent of the input signal, and the quantizer’s

69



experimental evaluation over real-world applications. Other research directions

are the quantizer’s implementation using different structures like artificial neural

networks or Markov chain models, and the search for more suitable metaheuris-

tics to perform the quantizer’s design. Finally, another future work is the event-

triggered quantizer’s design taking into account the closed loop system and the

control of the plant. A possibility is to combine the quantizer and the controller

in a single device.

70



5. Design of Neural Network Quantizers (NNQs)

This chapter introduces a new type of noise-shaping quantizer that is constructed

using neural networks and it is designed without the need of a model of the plant.

Several variations of this quantizer are also proposed along side with a design

method based on metaheuristics. With the aid of many simulations this quantizer

and its design method proved their effectiveness. In addition, the variations of

this quantizer are analysed and many interesting results are shown.

5.1 Introduction

So far in this study, the design of the quantizers was carried out using information

from the plant, namely, they are model-based designs. Thus, the previous results

cannot be directly applied to cases in which the model of the plant is unknown or

cannot be used. Examples of these cases are that the plant cannot be identified,

that the given model of the plant is not accurate, or it is just not practical to

use the model due to its complexity. In addition, previous studies has found the

expression of optimal dynamic quantizers for the cases of linear systems [4] and

nonlinear systems [6]. These expressions are a function of the respective linear

or nonlinear plant. A problem arises when the structure of the nonlinear plant is

unknown, because in that case the structure of the optimal quantizer is unknown

as well.

The problem of quantized systems with uncertainties in the plant has been

considered by many researchers. A popular approach is to use robust control to

make the systems resilient in a certain range against the plant’s uncertainties [19,

70, 135]. Another well known approach is the use of adaptive control that provides

on-line estimations of the systems’ unknown parameters based on measurements

[41, 42, 134, 80]. These studies focus mostly in the system stability and employ

plant models along side with models of the uncertainties. Therefore, they are not

very useful when the plant is unknown or the model is too complex. For these

cases the data-driven control strategies are preferred. In the data-driven control

the system’s elements, such as controllers and observers, are implemented using

artificial neural networks and the system is designed using series of input and

outputs of the plant instead of a mathematical model [23, 113, 136, 60, 18]. The

71



used of neural networks in control systems is not uncommon. Several studies

employ these networks to build controllers for linear or nonlinear systems with

or without uncertainties [48, 49, 94, 96].

Accordingly, in this chapter the data-driven approach is considered for the de-

sign of feedback-type noise-shaping quantizers. These quantizers are constructed

using feedforward neural networks and they are designed without the model of

the plant, i.e., model-free design. It only needs a set of inputs of the plant,

with their respective outputs, to perform the design. From here this quantizer

will be referred to as neural network quantizer (NNQ). The selection of neural

networks to perform this job is motivated by the fact that feedforward neural

networks are very dynamic and that they can be used to represent any type of

nonlinear function/system, in this sense they work as universal approximators

[17, 50]. Some advantages of this approach are that it requires only a time series

of input/output data from the plant and that it can be applied not only to linear

but also to nonlinear plants. The neural networks can be trained to perform two

types of tasks: regression and classification. For this reason, two types of NNQ

are proposed, one based on regression and another based on classification. The

difference between these quantizers will be explained in the following sections.

The design of these quantizers is carried out by optimizing the neural net-

work’s weights and biases. However, the problem is set up as a nonlinear and

nonconvex optimization problem that cannot be solved by conventional neural

network training techniques nor by conventional optimization methods. There-

fore, this study uses the differential evolution (DE) metaheuristic algorithm to

perform the quantizer’s design.

This study was inspired by the work in [60] where the controller for a plant

with unknown structure is designed using a set of plant’s inputs and outputs.

The main differences between these studies are that instead of implementing a

controller the present study implements a quantizer, and that the neural network

optimization is carried out using DE instead of techniques based on backpropa-

gation.

This chapter is structured as follows, first the concept and basics of neural

networks are presented. Second, the NNQ based on regression is introduced.

Then, its design problem is formulated. Following, the NNQ based on classifica-

72



tion is described. With numerical examples the effectiveness of these quantizers

and their design method are verified. After that, several design variations are

considered in order to optimize the quantizer’s performance. Finally, the case in

which the quantizer is designed for multiple input signals is studied.

Part of this chapter’s content was already published in [110], [111] and [105].

5.2 Feedforward Neural Networks

5.2.1 Structure

A neural network is a mathematical construction that is used to learn a mapping

from a set of inputs to a set of target values. The network is composed by a series

of interconnected nodes, the neurons, that perform mathematical transformations

to their inputs. The neurons are arranged in layers and the information flows from

one layer to another until the final layer provides the output of the network [9, 7,

33]. There are many types neural networks, in this chapter the fully connected

feed-forward type will be considered to build the NNQs. An example of this type

of network is shown in Figure 26.

z yx

w

z

... ... ... ... ...

Hidden unitsInputs Outputs

x

y

y

y

(1)

K1K0

z
(1)

K1
z

(2)

K2

z
(1)

0

z
(1)

1

z
(1)

2
z

(2)

2

z
(2)

1

z
(2)

0

(2)(1)

1

2

0

x1

x2

x

w
(2)

K2K1
w

(3)

K3K2

K3
K0

Figure 26: Fully connected 3 layered feed-forward neural network example.

The following elements can be recognized in the network, the input units

x ∈ RK0 , the output units y ∈ RKnL , and the hidden units z(i) ∈ RKi (i =

1, 2, . . . , nL − 1), where nL is the number of layers in the network. A useful

73



notation to describe a neural network is a vector such as K = [K1, K2, . . . , KnL ]

in which its elements represent the number of neurons in each layer.

Each neuron performs a nonlinear transformation of a weighted summation

of the previous layer outputs as follows

z
(l)
j = h

(
Kl∑
i=0

w
(l)
ji z

(l−1)
i

)
, (103)

where w
(l)
ji represents the weight of the connection that goes from the ith neu-

ron in layer (l − 1) to the jth neuron in layer l. Notice that here a simplified

notation is used, where instead of having biases the units x0 = 1 and z
(l−1)
0 = 1

are included in the network. Then, because these elements are constants, their

respective connection’s weight w
(l)
j0 serves as bias parameters. The weights of all

the connections in the network are put together in a vector w called the weights

vector that has dimension

nw =

nL−1∑
i=0

(Ki + 1)Ki+1. (104)

On the other hand, h(·) represents the nonlinear transformation and is called

activation function. There are many functions that serve as activation functions.

The most commonly used for the hidden units are the logistic sigmoid, the hyper-

bolic tangent, and the rectified linear unit (ReLU). They are defined as follows

sigm(a) =
1

1 + exp (−a)
, (105)

tanh(a) =
1− exp (−2a)

1 + exp (−2a)
, (106)

ReLU(a) = max(a, 0). (107)

These functions are depicted in Figure 27 for comparison.

As mentioned before, the neural networks can be designed to perform regres-

sion or classification. The activation function used in the output layer hout(·)
depends on the type of task that the network performs. When it is designed

for regression the activation function is just a linear function, being the identity

function the most popular choice. When the network is designed for classification

74



-4 -3 -2 -1 0 1 2 3 4
S
ig
m
o
id

0

0.5

1

-4 -3 -2 -1 0 1 2 3 4

t
a
n
h

-1

0

1

MNUR = 90%

-4 -3 -2 -1 0 1 2 3 4

R
eL

u

0

2

4

Figure 27: Hidden layers’ activation function h(·) comparison.

the softmax function is used. This function is the following

softmax(ai) =
exp (ai)∑M
j=1 exp (aj)

for i = 1, 2, . . . , KnL . (108)

Finally, the output of the network y(k) is calculated by propagating the inputs

from layer to layer until the output layer is reached. For example, in the case of

nL = 3 the overall network function is given by

yl(x) = hout

(
K2∑
k=0

w
(3)
kl h

(
K1∑
j=0

w
(2)
kj h

(
K0∑
i=0

w
(1)
ji xi

)))
, (109)

for l = 1, 2, . . . , nL.

A neural network is considered to be deep when it has four or more layers.

Deep neural networks are a relatively new development in machine learning field

that has greatly improved the performance of images and speech recognition

[62, 61].

75



5.2.2 Initialization

The learning resulting from the training of a deep neural network depends highly

on the initial weights of the network because many of the learning techniques

are in essence local searches. Therefore, it is very important to initialized the

network’s weights appropriately [130, 2].

There are several ways to initialize the neural networks to perform the train-

ing. The most common method is the uniformly random initialization where

random values sampled from a certain interval using a uniform probability distri-

bution are assigned to the weights and biases of the network. The initialization

intervals are selected according to the networks characteristics but they are usu-

ally small and close to zero. Popular ones are the intervals [−1, 1] or [−0.5, 0.5].

Another very popular type of initialization was developed in [32] by Glorot

and Bengio. This method is know are Xavier Uniform initialization (from Xavier

Glorot). In this method the weights of each layer in the network are initialized

using random uniform sampling in a specific interval

wi ∼ U [−li, li], bi = 0 for i = 1, 2, . . . , nL, (110)

where, wi and bi represent the weights and biases of the ith layer, receptively.

Notice that the biases are initialized to zero. The limits of the interval are given

by li which is a function of the number of neurons of the considered layer Ki, the

number of neurons in the previous layer Ki−i and the hidden layers activation

function h. These limits are the following

li =
4
√

6√
Ki−1 +Ki

for h(a) = sigm(a), (111)

li =

√
6√

Ki−1 +Ki

for h(a) = tanh(a), (112)

In [43], He et al. extended this method for the ReLU activation function as

follows

li =

√
6√
Ki

for h(a) = ReLU(a), (113)

76



5.3 Regression Based NNQ

5.3.1 System Description

This study considers the system depicted in Figure 28.

PNN
yq(k)v(k)u(k) uq(k) v(k)

Sy

V(k)

Yq(k)

Channel

QNN

Quantizer

Plant

Figure 28: Considered system with a neural network quantizer QNN .

This system is composed of a quantizer QNN , a communication channel that

has no looses or delays, and a plant P with unknown structure.

The plant is represented by the following single-input-single-output (SISO)

general model

P :

{
x(k + 1) = f (x(k), v(k)) ,

y(k) = g (x(k)) ,
(114)

where k ∈ {0} ∪ N is the discrete time, x ∈ RnP is the state vector with initial

value x(0) = x0, v ∈ R is the input signal, and y ∈ R is the output signal. The

functions f : RnP ×R→ RnP and g : RnP → R are in general nonlinear mappings.

It is assumed that f and g are continuous and smooth.

Another assumption is that, although the model is unknown, the plant is

stable and it is possible to feed it with inputs and measure its outputs. Then, a

time series of inputs and outputs of the plant will be available. These time series

are represented as follows

U = [u(1), u(2), . . . , u(ns)]
>, (115)

Y = [y(1), y(2), . . . , y(ns)]
>, (116)

77



where ns is length of the time series, namely, the amount of samples. Notice that

y(k) (k = 1, 2, . . . , ns) represents the output of the plant P when u(k) is applied

directly to it, i.e., v(k) = u(k).

The quantizer QNN , shown in Figure 28, is composed of a neural network

NN , a static quantizer q, and a couple of memories, Sv and Sy. It is represented

as follows

QNN :

{
uq(k) = Γ [u(k),V (k),Y q(k)] ,

v(k) = q [uq(k)] ,
(117)

where u ∈ R is the input signal, uq ∈ R is the output of NN , and v ∈
{±d

2
,±2d

2
, · · · ,±M

2
d
2
} is the output of QNN , the quantized input signal.

The signals V (k) and Y q(k) are, respectively, the outputs of the memories

Sv and Sy. They are time series of past values of the quantized inputs v(k) and

the outputs of the plant yq(k), as follows

V (k) = [ v(k − 1), v(k − 2), . . . , v(k − nV )]>, (118)

Y q(k) = [yq(k − 1), yq(k − 2), . . . , yq(k − nY )]>, (119)

where nV and nY are the dimensions of the memories.

The static quantizer q[·] receives the continuous output of the neural network

uq(k) and rounds it to the nearest discrete value to generate v(k). It has two

parameters: one is the number of quantization levels M ∈ N and the other is the

quantization interval d ∈ R with d > 0. Figure 29 shows an example of the static

quantizer with M = 4.

0

d

Md

v(k)

uq(k)

d

Figure 29: Example of a static quantizer q[·] (M = 4).

78



The nonlinear function Γ : R×RnV ×RnY → R represents the neural network

function. Inside QNN the neural network implements the dynamics of the quan-

tizer. The inputs of NN are u(k), V (k) and Yq(k), and its output is the signal

uq(k), they are represented as follows

x(k) =
[
u(k), V >(k), Yq

>(k)
]>

, (120)

uq(k) = y(k). (121)

Accordingly, the dimension of the neural network input x(k) is K0 = 1+nV +

nY and the first equation of (117) can be written as y(k) = Γ[x(k)]. Initially,

the logistic sigmoid, Equation (105), is used as activation function for the hidden

units, and because the regression type of network is considered is this section,

the output units activation function is the identity function hout(a) = a. Notice

that in this case KnL = 1 since there is only one output uq(k).

In this study it is assumed that M , nV , nY and K are given. Thus the design

parameters of QNN are w and d.

5.3.2 Training Data

The sampled data available to perform the training of the neural network are U

and Y . Traditionally, in order to train a neural network it is necessary to have

a series of sampled inputs and target values that match the inputs and outputs

of the network. However, in the considered case the available target values Y

do not correspond to the outputs of the network. Instead, the neural network’s

output uq(k) is transformed by q and the unknown plant to the output yq(k) that

can be compared with the target values as Figure 30 shows.

yq(k)V(k)

Yq(k)

uq(k) y(k)

u(k)
Unknown

+ -

e(k)

NN
+

Noise

System

Figure 30: Supervised learning of the quantizer.

For this reason the conventional methods based on error backpropagation

cannot be used to train the network. A solution to this problem is to perform

79



supervised training of the network using some other method like metaheuristics

to minimize an error function.

5.3.3 Performance Index

Since the neural network cannot be trained by conventional methods, the design

of QNN is carried out considering the error system depicted in Figure 31.

P
yq(k)v(k)u(k) v(k)

Channel

P

+
-

y(k)

e(k)

QNN

Figure 31: Error system considered.

This system is composed of two branches. In the lower branch the input u(k)

is applied directly to the plant P that produces the ideal output y(k). In the

upper branch the effects of quantization are considered and u(k) is applied to

the quantizer QNN that generates the quantized signal v(k) that is applied to

the plant. The output of the plant in this case is represented by yq(k), and the

difference e(k) = yq(k)− y(k) is the error signal.

The performance of QNN is evaluated using the sum-of-squares error function,

that here works as the performance index that was defined in previous chapters.

This function is defined as follows

E(w, d) =
1

2

ns∑
k=0

[yq(u(k),w, d)− y(k)]2 (122)

where u(k) is used to build x(k) along side with V (k) and Y q(k) that are gener-

ated dynamically. This error function is used in the machine learning field when

the neural networks are trained for regression, and the samples are independent

and identically distributed [9].

It is desired to make the performance index as small as possible in order

to maintain the output error low. Then, the design of QNN is set up as an

optimization problem in which the performance index is minimized.

80



5.3.4 Design Problem

The design problem can be formulated as:

Suppose that M , U , Y , K, nV , and nY are given. Then, find the parameters

of QNN : w, and d which minimize E(w, d), under the condition that:

i The quantization interval is positive (d > 0).

This design problem is nonlinear and nonconvex. Thus it cannot be solved

using gradient based optimization methods like linear programming or quadratic

programming. Moreover, conventional neural network training techniques based

on error backpropagation cannot be used neither due to the structure of the

system, as it was shown previously. Therefore, alternative optimization methods

should be used.

In this regard the metaheuristics stand out from the available options because

of their flexibility and big variety of implementations [89]. In particular, the

differential evolution (DE) metaheuristic algorithm is used to perform the design

of QNN . This choice is justified by the fact that DE has proved to be effective in

the training of feedforward neural networks [52] and that it has shown a very good

performance in the design of dynamic quantizers [106, 107, 108]. The version

of DE implemented here is the DE/best/1/bin strategy, which is described in

Algorithm 2.

Since the design parameters of QNN are w and d, an individual for the DE

algorithm will have the following form θ = [d w]> with dimension n = 1 + nw.

From these parameters, the weights vector w is not affected by any constraint,

but the quantization interval d should always be positive d > 0.

As mentioned in previous chapters, DE has no direct way to handle the con-

straints of the optimization problem. Thus, the constraint management method

described in Section 2.2 is used. This method transforms the constrained opti-

mization problem into the following unconstrained one.

minimize
θ∈Rn

J(θ), for J(θ) :=

{
Jv(θ) if p(θ) < 0,

p(θ) otherwise,
(123)

Jv(θ) := arctan[E(θ)]− π/2, (124)

p(θ) := −d, (125)

81



where E(θ) correspond to (122). This condition assures that d is positive.

5.4 Classification Based NNQ

The neural network quantizer based on classification QNNC shares the same prin-

ciples as the one based on regression QNNR. The main difference between these

quantizers is in the neural network’s structure. In QNNR the network has only

one output that shapes the input signal, i.e., the network is trained to perform

regression. In QNNC the network has as many outputs as the considered amount

of quantization levels M . Each output represents the probability that a given

input is matched with a specific quantization level, i.e., the network is trained for

classification. Figure 32 helps to clarify this difference.

Shape

V

Yq

v
u

y = uq

u

k

y

k

0

(a) Regresion based approach.

Index

of the

max

Ratio

V

Yq

v
u

y1

y2

yM

...

uq

Classificationu

k

y

k

1 1 3 32

y1

y2

y3

0

uq

(b) Classification based approach.

Figure 32: Difference between the neural network quantizer based on regression

and the one based on classification.

The system in which QNNC is implemented is the same as QNNR, the one

in Figure 28. This is quantizer is also represented by Equation (117), with the

82



memories are described in Equations (118) and (119). The static quantizer q(·),
however, is not a conventional one. Its input uq(k) represents a set of indexes,

each of which makes reference to a specific quantization level. Thus, q is adapted

to match each index to the corresponding quantization level as Figure 33 shows.

This quantizer is defined by the number of quantization levels M ∈ N and the

quantization interval d ∈ R+.

1

1 2 3 40

d

M

v(k)

uq(k)

Figure 33: Example of static quantizer q[·] adapted for the NNQ based on clas-

sification (M = 4).

The dynamics of QNNC are implemented with a fully connected feedforward

neural network that is trained to perform classification [9, 33]. The inputs of this

network are the same as in the previous case x(k) =
[
u(k), V>(k), Yq

>(k)
]

and

the hidden units activation function h(·) is the logistic sigmoid in Equation (105).

However, the outputs y(k) are different. Since the network is trained for clas-

sification, the output layer’s activation function hout(·) is the softmax function

in Equation (108). Thus, each output of the network yi(k) is associated with

one quantization level. Indeed, because of this hout(·), each output represents

the probability that a given input is classified into a specific quantization level.

Therefore, the quantization level with the biggest probability is selected to be the

network’s output, and Γ(·) is modified as follows

Γ : uq(k) = arg max
i∈{1,2,...,M}

yi(k). (126)

As in the case of QNNR, the parameters M , nV , nY and K are considered

given by the designer. Then, the design parameters of QNNC are w and d.

Finally the same principles and strategies described in Sections 5.3.2, 5.3.3

and 5.3.4 are apply to QNNC . Thus, the design problem of QNNC is formulated

83



as well as an optimization problem that is solved using DE. It is important to

notice that the cost function used to train QNNC is the same as the one use for

QNNR, the sum-of-squares error function in Equation (122). Usually, a neural

network that is trained for classification would be using the cross-entropy error

function as cost function [122], but due to the situation described in Section 5.3.3

the sum-of-squares error functions is employed instead.

5.5 Numerical Examples

To verify that the neural network quantizer QNN in its two variations and its

design method work properly, several numerical simulations were performed. In

these simulations the following discrete, nonlinear and stable plant is used

P :



[
x1(k + 1)

x2(k + 1)

]
=

[
f1(x(k)) + f3(x(k))u(k)

f2(x(k)) + f3(x(k))u(k)

]
,

y(t) = 1.45x1(k) + x2(k),

(127)

f1(x) = 0.8x1 − 0.4x2 + 0.4e−|x2| cos3(x1),

f2(x) = 0.6x2 + 0.4e−|x1| |cos(x1)|
1
2 ,

f3(x) = 0.01 + 0.01((x1)4 + 0.1)−1.

The sampling time is tS = 0.1[s] and the initial state is x0 = [0.1, −0.2]>.

The input signal used in the examples is the following

u(k) = 0.3 sin (6k) + 0.4 sin (k) + 0.3 sin (3k), (128)

and the evaluation interval is L = 1000, which implies that amount of samples

taken is ns = 1000.

The quantizers are constructed with nY = nV = 5, M = {2, 8} and neural

networks with nL = {2, 4}. Given the size of the memories and the dimension

of u(k) all the networks have inputs with dimension K0 = 11. The neural net-

works’ structure depends on the type of quantizer and M . Table 8 summaries the

structure of the quantizers used in the simulations. For the regression case (R)

the network’s structure and the dimension of w (nw) are independent of M . This

84



Table 8: Considered neural networks’ structure.

Type M K nL nw n

R {2, 8}
[10, 1] 2 132 133

[10, 10, 10, 1] 4 352 353

C

2
[10, 2] 2 142 143

[10, 10, 10, 2] 4 362 363

8
[10, 8] 2 208 209

[10, 10, 10, 8] 4 428 429

is not the case for the classification type of quantizer (C). Table 8 also shows a

comparison among the nw of each network.

The control parameters of DE are N = 500, kmax = 2000, F = 0.6, and

H = 0.9. The simulations were performed Nrun = 50 times for each considered

case. Then, since the individuals have the form θ = [d w]> the dimensions of

the optimization problems n will be the ones shown is the last column of Table

8. Looking at Table 8 it is possible to see that QNNC has more parameters than

QNNR, this is a factor that influences the performance of the proposed design

method.

The DE individuals are initialized as follows. The first element d is uniform

randomly sampled from the interval [0, 1]. The following elements, the network

weights and biases, are initialized using the uniform random and the Xavier uni-

form initialization methods, described in Section 5.2.2. For the uniform random

method the initialization interval is S0 = [−1, 1]n. In the implementation of the

Xavier method a small modification is made. Instead of initializing the biases to

zero there are sampled uniformly in an interval close to zero. For these numerical

examples the interval [−0.5, 0.5] is used. This is done because if all individuals

have the same elements equal to zero, the mutation and crossover processes will

not generate values different than zero for these elements.

After running the DE algorithm Nrun times for each considered case, the

quantizers QNN with the lowest E(w, d) are selected to be the optimal quantizers.

Then, in order to test these quantizers, the error system in Figure 31 is fed with

85



the input signal u(k) for each case. It results that all the quantizers work properly

and show good performance. For instance, Figure 34 depicts the signals resulting

from applying u(k) to the system with the quantizers designed for M = 2 and

nL = 2. This figure shows that the output signals obtained by quantization yq(k)

follow the ideal output signal y(k) pretty well and that the error between them

is small in both cases. Also, the inputs of the static quantizers uq(k) are shown

for comparison.

0 5 10 15

u
(k
),
v
(k
)

-1

0

1

0 5 10 15

u
q
(k
)

-10

0

10

Time [s]
0 5 10 15

y
(k
),
y
q
(k
)

-1

0

1

2
M = 2, nL = 2

(a) QNNR.

0 5 10 15

u
(k
),
v
(k
)

-1

0

1

0 5 10 15

u
q
(k
)

1

1.5

2

Time [s]
0 5 10 15

y
(k
),
y
q
(k
)

-1

0

1

2
M = 2, nL = 2

(b) QNNC .

Figure 34: Signals resulting from applying u(k) to the system with the NNQs

designed for M = 2 and nL = 2. The black lines represent the signals without

quantization (u(k), y(k)) and the blues ones are the signals when quantization is

applied (v(k), uq(k), yq(k)).

To further validate this observation, in Figure 35 there are shown the output

signals of the system where the NNQs were designed for M = 2 and nL = 4, and

in Figure 36 the ones for M = 8, nL = 2 and nL = 4.

86



Time [s]
0 5 10 15

y
(k
),
y
q
(k
)

-1

0

1

2
M = 2, nL = 4

(a) QNNR.

Time [s]
0 5 10 15

y
(k
),
y
q
(k
)

-1

0

1

2
M = 2, nL = 4

(b) QNNC .

Figure 35: Output signals yq(k) (blue) and y(k) (black) resulting from applying

u(k) to the system with QNN designed for M = 2 and nL = 4.

0 5 10 15

y
(k
),
y
q
(k
)

-1

0

1

2
M = 8, nL = 2

Time [s]
0 5 10 15

y
(k
),
y
q
(k
)

-1

0

1

2
M = 8, nL = 4

(a) QNNR.

0 5 10 15

y
(k
),
y
q
(k
)

-1

0

1

2
M = 8, nL = 2

Time [s]
0 5 10 15

y
(k
),
y
q
(k
)

-1

0

1

2
M = 8, nL = 4

(b) QNNC .

Figure 36: Output signals yq(k) (blue) and y(k) (black) resulting from applying

u(k) to the system with QNN designed for M = 8, nL = 2 (upper graphic) and

nL = 4 (lower graphic).

5.5.1 Regression and Classification Based NNQ Comparison

The minimum values of the performance indexes, Equation (122), found by DE,

are listed in Table 9. In addition, this table lists the average performance in-

dexes and their standard deviation. The values in this table are divided accord-

ing to their M , initialization method, nL and type (regression or classification).

There are two initialization methods implemented: uniform random (Urand) and

Xavier.

It is difficult to draw conclusions from this table by simple observation. For

87



Table 9: E(QNN) analysis for h = sigmoid (Nrun = 50).

M Init. nL Type Min. Avg. Std. Dev.

2 Urand 2 R 3.73724 4.32987 0.48300

C 3.66946 4.27038 0.34762

4 R 3.66764 4.22516 0.45819

C 3.54773 4.30158 0.49296

Xavier 2 R 3.42879 4.15830 0.36054

C 3.53307 4.09696 0.35038

4 R 3.65081 4.10635 0.35909

C 3.63822 4.04066 0.29597

8 Urand 2 R 0.17825 0.20622 0.01612

C 0.91201 2.91111 1.54333

4 R 0.22911 0.32243 0.14041

C 0.81667 2.81630 1.43382

Xavier 2 R 0.20424 1.90045 1.22825

C 0.93284 2.85580 1.44467

4 R 0.24762 0.85188 1.03043

C 1.00016 2.61201 1.06714

example, looking at the minimum values of E(QNN) in the case of M = 2, it

is possible to says that QNNC have better performance (smaller E(QNN)) than

QNNR in most cases. The average values not always corroborate this observa-

tion. For M = 8, QNNR has the smallest E(QNN) in each case. However, there

is no evidence that there is significant difference between these types of quan-

tizer. Therefore, the analysis of variance (ANOVA) is used to check if there are

significant differences among these values.

Because there are many factors that influence E(QNN) the a one-way ANOVA

analysis may not be appropriate. Instead, the 3-way ANOVA (ANOVA with 3

factors) is used. The considered factors are Type, initialization method (Init.)

and number of layers nL. The categories of each factor are known as elements. For

instance, the elements of the factor Type are R (regression) and C (classification).

88



The M is not taken as a factor, because M = 8 clearly gives smaller E(QNN)s

than M = 2. Then, it is not necessary to check which one gives better results.

The considered significance level is α = 0.05. The goal is to determine if there is

some statistical difference among the E(QNN)’s means of the design methods.

The ANOVA test tells if there are significant differences among sets of data.

When doing 3-way ANOVA it is possible to see not only if there is significant

difference among elements of a factor but also among combinations of elements of

different factors. In this particular case, it will tell if there is significant difference

between QNNR and QNNC , and also it will tell if there are differences among the

combinations of the quantizer types and the initialization methods. Then, the

3-way ANOVA test is run separately for M = 2 and M = 8. For the case of

M = 2 the significant difference is found only for the initialization method. For

the case of M = 8 the significant difference is found for all the factors and the

combinations of them with exception of the combination of the quantizer type

and nL. The details of these analyzes are shown in Table 17 in Appendix C.

The ANOVA test only tells if the null hypothesis that there is no significant

difference among the means is rejected or not. It does not tell which element of

a factor is better. For this purpose, comparison procedures such as Fisher’s LSD

and Tukey’s test should be used. In this study the Tukey’s test is used to perform

the comparison. A summary of this test is shown in Table 10 for the individual

factors. The results for the combination of factors are shown in Table 18 for

M = 2 and in Table 19 for M = 8 in Appendix C.

In Table 10 the means that do not share a letter are significantly different.

In addition, the means of the elements of each factor are decreasing from top to

bottom. Thus, the following conclusions are extracted from the table. First, for

M = 2 there is no significant difference between QNNR and QNNC nor between

the number of layers nL = 2 and nL = 4. However, there is significant differ-

ence between the initialization methods, and the Xavier method outperforms the

Urand method. Second, for M = 8 there is significant difference between the

elements of each single factor. Then, QNNR is better than QNNC , the Urand

initialization method shows better performance than the Xavier method and the

quantizers with nL = 4 have better performance than the ones with nL = 2.

These results are interesting because of the differences found if both cases of

89



Table 10: Tukey pairwise comparison 3-way ANOVA for h = sigmoid and single

factors. Grouping Information Using the Tukey Method and 95% confidence.

Means that do not share a letter are significantly different.

M Factor N Mean Grouping

2 Type R 200 4.20492 A

C 200 4.17739 A

Init Urand 200 4.28175 A

Xavier 200 4.10057 B

nL L2 200 4.21388 A

L4 200 4.16844 A

8 Type C 200 2.79881 A

R 200 0.82024 B

Init Xavier 200 2.05504 A

Urand 200 1.56401 B

nL L2 200 1.96839 A

L4 200 1.65066 B

M . An argument that could be made is that the difference between the regression

and classification types of quantizer are due to the difference in the amount of

variables of each network. When M increases, QNNC will have more variables

than QNNR in the output layer, and because of this difference the DE algorithm

favors the quantizer with less variables.

Part of these results are illustrated in Figure 37 which depicts the cumulative

errors of the output signals when the error system is fed with u(k) for the cases

in which both QNN are designed with nL = {2, 4} and M = {2, 8} using the

Urand initialization method. This error is defined as

E(k) :=
1

2

k∑
i=1

[yq(i)− y(i)]2 for k = 1, 2, . . . , L, (129)

which is the considered performance index, Equation (122), over time. The results

show that QNNR and QNNC have similar performances for M = 2 since the

90



0 5 10 15

E
(k
)

0

0.2

0.4

M = 2

EC :L2 EC :L4 ER:L2 ER:L4

Time [s]
0 5 10 15

E
(k
)

0

0.1

0.2

M = 8

Figure 37: Cumulative errors E(k) when the error system is excited with u(k).

The labels of these errors are: EC:L2 and EC:L4 for QNNC with nL = 2 and nL = 4,

respectively. Similarly, ER:L2 and ER:L4 are the errors for QNNR.

cumulative errors are close to each other in the considered cases. However, for

M = 8 the difference is big.

5.5.2 Comparison with Linear Dynamic Quantizers

In order to further validate the effectiveness of the neural network quantizer a

comparison is carried out with the dynamic quantizer Q previously developed in

Sections 2 and 3. This quantizer has a structure similar to the QNN with the

difference that the dynamics is implemented using a linear system instead of a

neural network. It is the one represented in Equation (2). The quantizer Q is

constructed to operate with linear plants, and its design is carried out using the

model of that plant. Thus, since a nonlinear plant is being considered, in this

chapter the dynamic quantizer is designed by optimizing an approximation of its

performance index given by

EQ(A,B,C, d) := sup
k∈{1,2,...,L}

abs [yq(k)− y(k)] , (130)

Because the state vector of the considered plant has dimension nP = 2, in

91



these examples, the matrices A, B, and C adopt the following form

A =

[
0 1

θ1 θ2

]
, B =

[
0

1

]
, C =

[
θ3 θ4

]
. (131)

Figure 38 shows the cumulative error, Equation (129), of the output signals when

the error system is excited with u(k) for the cases in which QNNR is designed

with nL = {2, 4} and Urand initialization method, and Q is designed using

the methods described in Section 3 based on DE [106] and covariance matrix

adaptation evolution strategy (CMA-ES) [107].

0 5 10 15

E
(k
)

0

0.2

0.4

0.6

M = 2

EL2 EL4 EDE ECMA−ES

Time [s]
0 5 10 15

E
(k
)

0

0.02

0.04

M = 8

Figure 38: Cumulative errors E(k) resulting when u(k) is applied to the error

systems with different QNN and Q. The cumulative error labels are: EL2 for QNN

with nL = 2, EL4 for QNN with nL = 4, EDE for Q designed with DE [106], and

ECMA−ES for Q designed with CMA-ES [107].

The values of E(k) at the final time shown in the graphics (k = 15[s]) are

presented in Table 11.

The results indicate that QNN is superior than Q in dealing with this partic-

ular nonlinear plant. This is because the E(k) of QNN is in each case less than

the E(k) of Q. Although the difference is small the trend is clear and it can be

expected that the difference will grow by applying better training methods to the

neural network.

92



Table 11: Cumulative error E(k) at k = 150tS = 15[s].

M EL2 EL4 EDE ECMA−ES

2 0.396287 0.316274 0.419084 0.419084

8 0.026807 0.029498 0.032181 0.032151

5.5.3 Activation Functions Comparison

So far only one type of activation function h(·), the sigmoid function, have been

used in the hidden layers to build the neural networks. However, there are other

activation functions that can be used. In fact, the search of more effective ac-

tivation functions is an active area of research [1, 104, 43]. In this section two

additional activation functions are considered: the hyperbolic tangent (tanh) and

the Rectified Linear Unit (ReLU). These functions were defined, respectively, in

Equation (106) and Equation (107) and were shown in Figure 27.

Several numerical simulations were performed to compare the performance of

the NNQs built with these functions. The settings of these simulations are the

same as in the previous cases where h = sigm, but they were carried out only for

M = 8. These simulations were run Nrun = 50 times for each case. The results

are summaries in Table 12.

As before, it is difficult to draw conclusions from the table by simple obser-

vation. Therefore, the ANOVA test is used to analyse the data. In this case

there are four factors that influence the results: h, initialization method, nL and

quantizer type. However, because the influence of nL is understood the focus in

this section will be in the factors: h, initialization method, quantizer type, and

the interaction among each other. Therefore, the 3-way ANOVA general linear

model of E(QNN) versus quantizer type (Type), initialization method (Init) and

activation function h is considered. The significance level used in this analysis is

α = 0.05.

The analysis of variance showed that the statistical null hypothesis that all the

means are the same was rejected for each single factor and for the combination of

them. This means that in each case there is at least one element that significantly

differs from the others. The summary of this analysis can be found in Table 20

93



Table 12: E(QNN) results summary for h = tanh and h = ReLU (M = 8).

h Init. nL Type Min. Avg. Std. Dev.

tanh Urand 2 R 0.17945 0.57343 0.73814

C 0.85707 2.17040 1.21598

4 R 0.24340 1.83621 1.37026

C 0.69604 1.62132 0.68768

Xavier 2 R 0.17010 0.20761 0.02103

C 0.92943 1.97048 0.78436

4 R 0.19868 0.25325 0.03900

C 0.66041 1.77138 0.99609

ReLU Urand 2 R 0.16532 0.75854 1.21252

C 0.70494 1.93226 0.98668

4 R 0.19175 3.04153 1.69148

C 0.71718 1.93823 1.27409

Xavier 2 R 0.22438 2.97202 1.24661

C 0.72398 2.12915 1.12578

4 R 0.22062 3.01670 1.70763

C 0.63188 2.14319 1.03974

in Appendix C. After that, the Tukey pairwise comparison is made to see the

differences among the quantizer’s design elements. The results of this test are

summarized in Table 13 for the single factors and some combinations of factors.

The rest of the factors combination results are shown in Table 21 in Appendix C.

The results in Table 13 are quite interesting. First, they tell that there is a

significant difference between the QNNR and QNNC , and that QNNR outperforms

QNNC . Second, they show that there is difference between the initialization

methods, and that the Urand method exhibits better performance than the Xavier

method. These results corroborate the ones obtained in Section 5.5.1 shown in

Table 10 for M = 8 and h = sigm. Third, the table shows that the performances

of the considered activation functions vary significantly, that the one with the best

94



Table 13: Tukey pairwise comparison 3-way ANOVA for the activation func-

tions comparison (M = 8). Grouping information using the Tukey test and 95%

confidence. Means that do not share a letter are significantly different.

Factor N Mean Grouping

Type C 600 2.23930 A

R 600 1.32836 B

Init Xavier 600 1.89033 A

Urand 600 1.67733 B

h ReLU 400 2.24145 A

sigm 400 1.80953 B

tanh 400 1.30051 C

Type*Init C Xavier 300 2.24700 A

C Urand 300 2.23161 A

R Xavier 300 1.53365 B

R Urand 300 1.12306 C

Type*h C sigm 200 2.79881 A

R ReLU 200 2.44720 B

C ReLU 200 2.03571 C

C tanh 200 1.88340 C

R sigm 200 0.82024 D

R tanh 200 0.71763 D

performance is h = tanh, and that the one with lowest performance is h = ReLU.

These results, however, may vary depending of specific cases. Then, it is

interesting to analyze the performance of the combination of factors. Hence,

the Type∗Init combination tells that for QNNC there is no significant difference

between the initialization methods, but that for QNNR there is, and that the

Urand method gives the best results in this case. The Type∗h combination shows

that for QNNC the activation functions with the best performance are ReLU and

tanh with no significant difference between them. On the other hand, for QNNR

the activation functions with the best performance are sigm and tanh also with

95



no significant difference between them. Finally, Figure 39 and Figure 40 show

some plots that help to clarify the influence of these factors and how they interact

with each other.

C R

M
ea
n
o
f
E

1.2

1.4

1.6

1.8

2.0

2.2

Type

Urand Xavier

Init

ReLU sigm tanh

h

Figure 39: 3-way ANOVA main effects plot for E(QNN) fitted means.

5.6 NNQ for Multiple Input Signals

So far in this chapter the design of the NNQs have been carried out only for one

reference signal u(k). This can pose severe limitations to the system. Ideally, a

NNQ should work with any type of input signal. Thus, the quantizer should learn

about the plant’s internal structure not only its response to one specific signal.

This can be done, perhaps, using system identification techniques and theory.

However, the approach considered in this chapter is to feed the system with a

variety of signals with different frequencies. The assumption that the signals are

bounded in the interval U = [−1, 1] is maintained.

The performance of the NNQ in this case is evaluated using the same er-

ror system as in the case for a single input signal given in Figure 31 . Also,

the performance index is a generalization of the one described in Section 5.3.3,

Equation (122), for a single input signal. Thus, the performance index of NNQ

96



M
ea
n
o
f
E

1.0

1.5

2.0

2.5

3.0

Type * Init

Init

Urand

Xavier

Type

C R

M
ea
n
o
f
E

1.0

1.5

2.0

2.5

3.0

Type * h

Init

Urand Xavier

Init * h

h

ReLU

sigm

tanh

Figure 40: 3-way ANOVA interaction plot for E(QNN) fitted means.

for multiple u(k) is defined as follows

Em(w, d) =
nu∑
i=1

E(ui(k),w, d) =
1

2

nu∑
i=1

ns∑
k=0

[yq(ui(k),w, d)− yi(k)]2 (132)

where, nu represents the considered amount of input signals. This number is

arbitrary, however, the more signals are used the bigger the neural network should

be. Notice, that it is assumed that there is no interaction among the signals, they

are independent from each other. The design problem is the same as in the case

for a single input signal which is described in Section 5.3.4 with the difference

that the performance index is the one in Equation (132). This design problem

is solved again using differential evolution. The main disadvantage of this design

method is that the time used for the training can be high. It takes nu times

longer to train this quantizer than in the case with a single u(k).

In order to verify the effectiveness of the NNQs when they are designed for

multiple u(k) various numerical simulations were performed. The considered

plant is the one given in Equation (127), the sampling time is tS = 0.1, and the

97



evaluation interval is L = ns = 500. The input signals used in these simulations

are the same the ones used in Section 4.5 from Equation 98 to Equation 102.

The simulations in this case were carried out for the regression type of quan-

tizer QNNR with M = 2 and a neural network given by K = [10, 10, 10, 1]

(nL = 4, nw = 352). The configuration of the DE parameters are the same as

in the numerical examples in Section 5.5 and the simulations are run Nrun = 10

times. After the simulations ended and to verify that the designed quantizer

works properly the error system was fed with the considered u(k)s. The resulting

signals are shown in Firgure 41. This figure shows the form of the considered in-

put signals ui(k) (i = 1, 2, . . . , 5) in black in the left column. The signals in blue

are the respective quantized signals vi(k) (i = 1, 2, . . . , 5) that go to the plant,

they have only two quantization levels. The right column depicts the outputs, the

ideal ones yi(k) (i = 1, 2, . . . , 5) in black and the ones due to quantization in blue

yq,i(k) (i = 1, 2, . . . , 5). It is possible to see that the error between the output

signals is small and how the quantized outputs follow the ideal ones mostly well.

The biggest errors are produced by u2(k) and u5(k) where the frequency is low

and the amplitude for their respective y(k) is small. Therefore, it is possible to

say that the NNQ for multiple u(k)s works well in a certain range of frequencies.

This range of frequencies is probably a function of the sampling time and the

plant.

To further verify that the NNQ for multiple u(k)s works properly, the same

quantizer designed previously for a single input signal, u1(k), is fed with the other

considered input signals . The results are shown in Figure 42. This figure clearly

shows the advantage of designing the quantizer for multiple u(k)s.

5.6.1 Noise Addition Effect

In all the numerical examples previously developed some degree of noise was

always added to the input signals to perform the training. The idea is to make

the quantizer robust to the presence of noise. The noise added in this examples

is white noise with amplitude 2.5% of the input signals semi range (0.025(umax−
umin)/2), and it is added ones for each run of the DE algorithm. This means

that the u(k)s used to sample the outputs are noisy, and that the noise does not

change during a run of DE.

98



0 5 10 15 20

u
1
(k
),
v
1
(k
)

-1

0

1

0 5 10 15 20

u
2
(k
),
v
2
(k
)

-1

0

1

0 5 10 15 20

u
3
(k
),
v
3
(k
)

-1

0

1

0 5 10 15 20

u
4
(k
),
v
4
(k
)

-1

0

1

Time [s]
0 5 10 15 20

u
5
(k
),
v
5
(k
)

-1

0

1

(a) Inputs.

0 5 10 15 20

y
1
(k
),
y
q
1
(k
)

-1

0

1

2

0 5 10 15 20

y
2
(k
),
y
q
2
(k
)

-1

0

1

2

0 5 10 15 20

y
3
(k
),
y
q
3
(k
)

-1

0

1

2

0 5 10 15 20

y
4
(k
),
y
q
4
(k
)

-1

0

1

2

Time [s]
0 5 10 15 20

y
5
(k
),
y
q
5
(k
)

-1

0

1

2

(b) Outputs.

Figure 41: Signals resulting from exciting the designed QNNR with the set of

considered u(k). The signals in black are the signals without quantization (u(k),

y(k)) and the ones in blue are the signals when quantization is applied (v(k),

yq(k)). Each row shows the inputs an outputs for one particular u(k).

This section studies the effects of additive noise in the design of NNQs. For

this purpose three cases are considered. First, no noise case, the quantizer is

trained without adding noise. Second, fixed noise case, the noise is added to

the input signal only at the beginning each run of DE. This is the case used so

far. Third, variable noise case, the noise is added to the input signal in each

evaluation of the cost function in the DE algorithm. The fixed noise case has the

99



0 5 10 15 20

u
1
(k
),
v
1
(k
)

-1

0

1

0 5 10 15 20

u
2
(k
),
v
2
(k
)

-1

0

1

0 5 10 15 20

u
3
(k
),
v
3
(k
)

-1

0

1

0 5 10 15 20

u
4
(k
),
v
4
(k
)

-1

0

1

Time [s]
0 5 10 15 20

u
5
(k
),
v
5
(k
)

-1

0

1

(a) Inputs.

0 5 10 15 20

y
1
(k
),
y
q
1
(k
)

-1

0

1

2

0 5 10 15 20

y
2
(k
),
y
q
2
(k
)

-1

0

1

2

0 5 10 15 20

y
3
(k
),
y
q
3
(k
)

-1

0

1

2

0 5 10 15 20

y
4
(k
),
y
q
4
(k
)

-1

0

1

2

Time [s]
0 5 10 15 20

y
5
(k
),
y
q
5
(k
)

-1

0

1

2

(b) Outputs.

Figure 42: Signals resulting from feeding the QNNR designed for the single input

signal u1(k) with the set of signals given from Equation (98) to Equation (102).

The signals in black are the signals without quantization (u(k), y(k)) and the

ones in blue are the signals when quantization is applied (v(k), yq(k)). Each row

shows the inputs an outputs for one particular u(k).

advantage that the simulations are relatively fast in comparison with the variable

noise case.

Thus, simulations are performed for the cases with no noise and variable noise.

The settings of these simulations are the same as in Section 5.6, and the noise

added in the case of variable noise is again 2.5% of the input signals semi range.

100



The simulations are run Nrun = 10 times for each case. The results of these

simulations are summarized in Table 14. They are the ones in bold faced letters.

In this table the results for the case with fixed noise are added as well. Obviously,

the case with no noise gives the smallest performance index.

Table 14: E(QNN) analysis of NNQs for multiple signals with the addition of

white noise (Nrun = 10).

Noise % Noise Type Min. Avg. Std. Dev.

0% none 10.97863 11.54412 0.47002

fixed 12.18897 12.97703 0.59440

variable 12.18248 13.21686 0.65075

2.5% none 12.44563 13.57155 0.63996

fixed 12.71939 13.54894 0.55361

variable 12.35034 13.56092 0.74476

5% none 13.79437 15.14641 0.85155

fixed 14.00222 14.95164 0.53057

variable 13.90767 14.74668 0.54413

10% none 15.75112 17.24837 1.02287

fixed 16.48679 17.69108 0.74287

variable 16.82818 18.41722 1.68169

Other u(k)s none 18.78743 19.99981 1.10599

fixed 18.48116 20.98486 1.15570

variable 19.32231 21.11520 1.02833

The rest of the values in Table 14 are the summary of the performances

indexes obtained by feeding all the quantizers designed for 2.5% of noise with the

same input signals perturbed with different percentages of noise. This is done

to test the robustness of the designed quantizers to the presence of white noise

and to get an idea of the best way to design these quantizers. Furthermore, in

the last category ’Other u(k)s’, the quantizers instead of being perturbed with

white noise, were excited with a set of signals different than the ones for which

the quantizers were designed for.

101



From these results the one way ANOVA test for α = 0.05 is carried out for

each level of noise being the factor the considered noise addition cases. This

analysis showed that the only instance where the are significant differences is the

case for 0% of noise. Then, the Fisher LSD and Tukey’s test were run for this

case showing that the case with no noise gives the smallest mean. However, this

result is trivial since the quantizer was designed for that purpose. Thus, although

from the values of Table 14 it may seem that the case with no noise is better than

the others, there were no significant differences to be found. In conclusion, the

addition of noise in the training of NNQs seems to be not necessary.

5.6.2 Performance Indexes Comparison

In this section the effects of using performance indexes different than the one

described in Section 5.3.3 are explored. This performance index is based on

the sum of square errors and it is also the one used for the NNQ trained for

multiple signals, Equation (132). In addition to this performance index there are

some others that can be used. For example, the sum of the absolute values of

the errors and the supremum of the errors’ absolute values. These performance

indexes are represented in Equation (134) and Equation (135), respectively. The

one in Equation (133) is the sum of square errors, that it is shown here again just

for comparison.

Es2: E(ui(k),w, d) =
ns∑
k=0

[yq(ui(k),w, d)− y(k)]2, (133)

Esa: E(ui(k),w, d) =
ns∑
k=0

abs (yq(ui(k),w, d)− y(k)), (134)

Ema: E(ui(k),w, d) = max
u∈U

k∈{0,1,2,...,ns}

abs (yq(ui(k),w, d)− y(k)) , (135)

for i = 1, 2, . . . , nu. For better reference the identifiers Es2, Esa and Ema are

assigned to each performance index. These indexes can be used to designed

the NNQs for a single input signal or they can be inserted into Equation (132),

replacing the sum of squares errors, to design NNQs for multiple input signals.

To verify the effectiveness of these performance indexes and to compare them

with the one previously used, Es2, several numerical examples were carried out.

102



The settings of these examples are the same as in Section 5.6 with the exception,

of course, of the performance index used. Thus, for Esa and Ema the simulations

are run Nrun = 10 times. After the simulations ended, to verify the effectiveness

of the the designed quantizers, the error system is fed with the considered input

signals. The quantizers work properly, as it is shown in Figure 43. These output

signals can be compared with their equivalents in Figure 41b obtained from the

system with the quantizer designed for Es2.

Now the problem is how to compare these different performance indexes. Usu-

ally, these indexes are the ones that determine the system performance but in this

case the performance of these indexes is being compared. Therefore, the compar-

ison is carried out as follows. Each quantizer designed for a specific performance

index is fed with the considered input signals and the value of the other perfor-

mance indexes are calculated based on the error signal. After that, a statistical

analysis is run for the values of each index to see if there is significant difference

in each case. The summary of the resulting values is shown in Table 15.

Table 15: E(QNN) analysis of NNQs for multiple signals designed with different

expressions of E(QNN) (Nrun = 10).

Evaluated with Designed with Min. Avg. Std. Dev.

Es2 Es2 10.97863 11.54412 0.47002

Esa 11.03669 12.13267 0.77098

Ema 13.51830 16.46565 2.12234

Esa Es2 133.75732 137.56370 2.20182

Esa 133.15346 138.12278 3.28806

Ema 148.04155 164.15430 9.80238

Ema Es2 0.20996 0.22437 0.00781

Esa 0.20278 0.22691 0.01148

Ema 0.19847 0.21099 0.01070

Then, for each case of ’Evaluated with’ in Table 15 a one way ANOVA test

with significance level α = 0.05 is performed. In each considered case there was

significant difference among the performance indexes. Then, to see which index

103



0 5 10 15 20

y
1
(k
),
y
q
1
(k
)

-1

0

1

2

0 5 10 15 20

y
2
(k
),
y
q
2
(k
)

-1

0

1

2

0 5 10 15 20

y
3
(k
),
y
q
3
(k
)

-1

0

1

2

0 5 10 15 20

y
4
(k
),
y
q
4
(k
)

-1

0

1

2

Time [s]
0 5 10 15 20

y
5
(k
),
y
q
5
(k
)

-1

0

1

2

(a) Esa

0 5 10 15 20

y
1
(k
),
y
q
1
(k
)

-1

0

1

2

0 5 10 15 20

y
2
(k
),
y
q
2
(k
)

-1

0

1

2

0 5 10 15 20

y
3
(k
),
y
q
3
(k
)

-1

0

1

2

0 5 10 15 20

y
4
(k
),
y
q
4
(k
)

-1

0

1

2

Time [s]
0 5 10 15 20

y
5
(k
),
y
q
5
(k
)

-1

0

1

2

(b) Ema

Figure 43: Output signals comparison for NNQs trained for multiple u(k)s and

different performance indexes. The signals in black represent the ideal outputs

y(k) and the ones in blue are the outputs when quantization is applied yq(k).

Each row shows the inputs an outputs for one particular u(k).

has better performance the Fisher LSD and Tukey’s tests were carried out. Both

tests gave similar results. The summary of the Tukey’s tests is shown Table 16.

These results evidence the following relations. First, that there is no significant

difference between the Es2 and Esa indexes, and that in each case Es2 has a

smaller mean. Thus, although there is no significant difference, it seems that

Es2 has slightly better performance than Esa. Second, that Ema is significantly

104



Table 16: Tukey pairwise comparison 1-way ANOVA for performance indexes

comparison. Grouping Information Using the Tukey Method and 95% confidence.

Means that do not share a letter are significantly different.

Evaluated with Factor N Mean Grouping

Es2 Ema 10 16.466 A

Esa 10 12.133 B

Es2 10 11.544 B

Esa Ema 10 164.15 A

Esa 10 138.12 B

Es2 10 137.56 B

Ema Esa 10 0.22691 A

Es2 10 0.22437 A

Ema 10 0.21099 B

different than the other indexes and that only for the case of Ema it shows the

best performance. Accordingly, it is safe to say the performance indexes Es2 and

Esa are preferred for the design of NNQs.

5.7 Summary

This chapter introduces the concept of neural network quantizers (NNQs) that are

designed using a set of the inputs and outputs of the plant. These quantizers are

aimed to systems in which the model of the plant is unknown or unreliable. They

are constructed using feedforward neural networks and static quantizers. Two

types of NNQs are proposed: regression and classification types. In addition, a

design method based on differential evolution is proposed for these quantizers.

By means of several numerical examples it was found that both types of NNQs

are effective along side with their DE based design method. Furthermore, many

variations were considered in the construction of these quantizers. These vari-

ations are reflected in the number of quantization levels (M = {2, 8}), in the

number of layers of the network (nL = {2, 4}), in the type of network initial-

105



ization technique (Urand, Xavier) and in the hidden layers’ activation functions

(sigm, tanh, ReLU). Several conclusions were reached based on the analysis of

variance performed on the simulations results. Some of the most important are

that the quantizers based on regression outperform the ones based on classifica-

tion, that the best initialization method is the random uniform (Urand), and that

the activation function that gives the best performance is tanh.

The design of NNQs for multiple input signals was also considered. The

results show that these quantizers are effective. Moreover, the effects of additive

white noise in the design of NNQs was studied. The results shows that the is no

significant difference in adding noise or not when training the quantizer. Finally,

impact of using different types of performance indexes in the quantizer’s design

was explored. All the indexes gave good results, and one based on the sum of

square errors seems to perform the best.

There are, however, still many issues that need to be addressed. Some draw-

backs of theses quantizers are the long time required for the design and that

the precision decreases when the number of input signals increases. Some future

works include the implementation of the pre-training of the neural network, and

the used of metaheuristics adapted to high dimensional optimization.

106



6. Conclusion

6.1 Summary

In this thesis several types of noise-shaping quantizers for networked control sys-

tems (NCSs) were proposed. Each of these quantizers is designed to solve certain

problems that affect the NCSs. First, a finite-level dynamic quantizer design

method based on metaheuristics is proposed. The metaheuristics considered in

this study are CMA-ES, DE and FA. Second, a switching type dynamic quan-

tizer known as event-triggered quantizer is proposed. This quantizer is actuated

by an event-generator based on Gaussian functions that is attached to the plant

and sends the data only when needed. Finally, the neural network quantizer is

introduced. This quantizer is implemented with neural networks and a time se-

ries of the plant’s inputs/outputs. This quantizer does not need a model of the

plant, and could be applied to any type of system. Several numerical simulations

were carried out to verify the effectiveness of these quantizers and their proposed

design methods. From the results of theses simulations several conclusions were

made.

For the design of finite-level dynamic quantizers subjected to data rate con-

straints it was found that the CMA-ES and DE based design methods show in

general very good performance in terms of success rate and convergence time.

They both have advantages and disadvantages comparing to each other. The

method based on CMA-ES shows a slightly better performance than DE, spe-

cially when considering a relatively small amount of individuals and number of

generations, besides the execution time is smaller. Moreover, CMA-ES carries

the big advantage that it does not require the tuning of any control parameter.

Their values are already optimized and established by default. Nevertheless, it

is worth to mention that DE is very easy to implement contrary to CMA-ES.

Compared to the other metaheuristic based design methods, it was verified that

the performance of the CMA-ES and DE based methods are quite better than the

ones based on PSO and FA. For these reasons, it is possible to say that the meth-

ods based on CMA-ES and DE are very reliable for the design of the finite-level

dynamic quantizer, but the ones based on FA and PSO are not.

In regard to the proposed event-triggered dynamic quantizer it was found

107



that it works well along with its DE based design methods. It is important to

remember that the reduction of the traffic in the network will negatively affect

the performance of the system by increasing outputs errors. Thus, the designer

should very carefully choose the maximum NUR value having in account the

network capabilities and the system limitations. From the considered design

methods, the ones in which the dynamic quantizer is designed along side with

the event-generator show superior performance. Nevertheless, the methods in

which dynamic quantizer and the event-generator are designed separately are

useful when the dynamic quantizer is already implemented in the system. The

version VV, where the plant retains the previous data until a new one arrives, is

superior to the version V0, where the plant assumes zero when no data arrives.

The version V0 is only better for the case of M = 2, but its performance decreases

for M > 2. Moreover, the design methods in which the Gaussian functions’ means

and variances are variables generate less errors than the methods in which they

are fixed. However, for these methods it is important to consider meta heuristics

adapted for high dimensional optimization.

The proposed neural network quantizers showed good performance as well as

their DE based design method. These quantizers are built with a neural network

and a static quantizer. The statistical analysis performed on the simulations

results showed that from the two types of proposed NNQs the ones based on

regression QNNR outperform the ones based on classification QNNC . Addition-

ally, two initialization methods were considered, random uniform (Urand) and

Xavier, being the first one the most effective. From the considered hidden layers’

activation functions (sigm, tanh, ReLU) the one that gives the quantizers with

the best performance is tanh. These results vary slightly when considering QNNR

and QNNC separately. For QNNR the best initialization method is Urand and the

best activation functions are tanh and sigm with no significant difference. On the

other hand, for QNNC there is no significant difference between the considered ini-

tialization methods and the activation functions that give the best performances

are tanh and ReLU again with no significant difference. In addition, it was found

that the NNQs outperform the finite-level dynamic quantizers considered before,

when dealing with plants with unknown structure.

108



6.2 Limitations

Although the proposed quantizers partially solve the considered problems there

are subjected to some limitations. The first one is that the ETQs and NNQs

are designed using a known input signal. This is a very restrictive condition. To

overcome this constraint it is important to find theoretical expressions for the

performance indexes that are independent of the input signals. However, this

expression may not exist. Therefore, in this study the design of quantizers for a

set of input signals is also considered. In the case of NNQs it is expected that

using a big enough set of signals the neural network will capture information of

the plant’s internal structure and the quantizer will be able to work properly

independently of the input signal.

The second limitation of this study is the time that it takes to design the

quantizers. In particular, the design of ETQs and NNQs for multiple signals

take quite a lot of time. It is important to find ways to reduce the quantizer’s

design time. For instance, some direct ways to optimize the design time include

to parallelize the metaheuristics execution, to use powerful computers and to

codify the quantizer’s design program using compiled programming languages

like C/C++.

Finally, the metaheuristics used in this study are not well suited to perform

the optimization of high dimensional problems (n > 100). In order to improve the

quantizers’ performance it is necessary to use metaheuristics designed for large

scale global optimization problems [71]. Examples of these metaheuristics include

variations of DE and CMA-ES or the use of metaheuristic based on cooperative

coevolution [98, 13].

6.3 Possible Research Directions

This thesis is just the starting point in the development of the proposed noise-

shaping quantizers. There are many issues that need to be addressed regarding

to their structure and design. The performance of the proposed quantizers can be

greatly improved. For instance, it is still needed to find an analytical expression

for the optimal finite-level dynamic quantizer subjected to data rate constraints.

Besides, the event-triggered quantization offers a fruitful field for research. Many

109



types of event-triggered quantizer can be constructed and the event-triggered

and self-triggered control theories should be applied on their analysis and design.

In regard to the neural network quantizers there is a lot of work to do. For

example, the use of metaheuristics designed for large scale global optimization,

the search for techniques to accelerate the design time of these quantizers, and

the use of strategies from the system identification field in the design of NNQs are

future research directions. Finally, other problems that affect the NCSs should

be considered as well in the design of theses quantizers. These problems include

package looses and delays in the delivery of data, the effects of the noise in the

channel, and the security of the control system against external attacks.

110



Acknowledgements

I would like to express my sincere gratitude to Professor Kenji Sugimoto and

Associate Professor Takamitsu Matsubara for accepting me into their laboratory

as a student, for their kindness, thoughtful advice and assistance throughout my

study. To the Assistant Professors Masaki Ogura, Taisuke Kobayashi and Cui

Yunduan for their kind advice and helpful comments. I would also like to thank

Professor Shoji Kasahara for his contribution on the thesis committee and to As-

sociate Professor H. Okajima, Kumamoto University, for his valuable comments.

To Hideko Hayashi for helping me out with all the paper work required during

my courses. I also would like to thank my parents Gerardo and Norma, my aunt

Sofia and my siblings, Mariano, Belen and little Gerardo, who have been sup-

porting me from the distance and for all their prayers. To my girlfriend Desislava

for taking care of me and supporting me in the difficult times. I would also like

to thank the Government of Japan through its scholarship program Monbuka-

gakusho for granting me the financial support that enabled me to come to Japan

for my education and research. Finally, I wish to specially thank Associate Pro-

fessor Yuki Minami, Osaka University, for guiding me through the master and

doctoral courses, for his wise advice, kindness and patient, for encouraging me to

surpass my limits and for being a true friend.

111



References

[1] F. Agostinelli, M. D. Hoffman, P. J. Sadowski, and P. Baldi. Learning ac-

tivation functions to improve deep neural networks. CoRR, abs/1412.6830,

2014.

[2] E. Alpaydin. Introduction to Machine Learning, chapter Multilayer Percep-

trons, pages 233–277. The MIT Press, 2nd edition, 2010.

[3] P. J. Antsaklis and J. Baillieul. Special issue on technology of networked

control systems. Proceedings of the IEEE, 95(1):5–8, 2007.

[4] S. Azuma and T. Sugie. Optimal dynamic quantizers for discrete-valued

input control. Automatica, 44(2):396–406, 2008.

[5] S. Azuma and T. Sugie. Synthesis of optimal dynamic quantizers for

discrete-valued input control. IEEE Transactions on Automatic Control,

53(9):2064–2075, 2008.

[6] S. Azuma and T. Sugie. Dynamic quantization of nonlinear control systems.

IEEE Transactions on Automatic Control, 57(4):875–888, 2012.

[7] Y. Bengio. Learning deep architectures for ai. Foundations and Trends in

Machine Learning, 2(1):1–127, 2009.

[8] L. Bianchi, M. Dorigo, L. Gambardella, and W. J. Gutjahr. A survey on

metaheuristics for stochastic combinatorial optimization. Natural Comput-

ing, 8(2):239–287, 2009.

[9] C. M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2006.

[10] I. Boussäıd, J. Lepagnot, and P. Siarry. A survey on optimization meta-

heuristics. Information Sciences, 237:82–117, 2013. Prediction, Control and

Diagnosis using Advanced Neural Computations.

[11] R. W. Brockett and D. Liberzon. Quantized feedback stabilization of linear

systems. IEEE Transactions on Automatic Control, 45(7):1279–1289, 2000.

112



[12] F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of Robotic Net-

works. Applied Mathematics Series. Princeton University Press, 2009.

[13] R. Chandra, M. Frean, and M. Zhang. On the issue of separability for

problem decomposition in cooperative neuro-evolution. Neurocomputing,

87:33–40, 2012.

[14] C.-K. Chang, J. M. Overhage, and J. Huang. An application of sensor

networks for syndromic surveillance. In Proceedings of the 2005 IEEE Net-

working, Sensing and Control, pages 191–196, 2005.

[15] C.-T. Chen. Linear System Theory and Design. Oxford University Press,

Inc., New York, NY, USA, 3rd edition, 1998.

[16] M.-Y. Chow and Y. Tipsuwan. Network-based control systems: a tuto-

rial. In Proceedings of the 27th Annual Conference of the IEEE Industrial

Electronics Society, volume 3, pages 1593–1602, 2001.

[17] G. Cybenko. Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[18] J. de Jesús Rubio. Discrete time control based in neural networks for pen-

dulums. Applied Soft Computing, 68:821–832, 2018.

[19] C. De Persis. Robust stabilization of nonlinear systems by quantized and

ternary control. Systems & Control Letters, 58(8):602–608, 2009.

[20] C. De Persis and A. Isidori. Stabilizability by state feedback implies stabi-

lizability by encoded state feedback. Systems & Control Letters, 53(3):249–

258, 2004.

[21] C. C. de Wit, F. R. Rubio, J. Fornes, and F. Gomez-Estern. Differential

coding in networked controlled linear systems. In Proceedings of the 2006

American Control Conference, pages 4177–4182, 2006.

[22] J.-C. Delvenne. An optimal quantized feedback strategy for scalar linear

systems. IEEE Transactions on Automatic Control, 51(2):298–303, 2006.

113



[23] N. Dong and Z. Chen. A novel data based control method based upon

neural network and simultaneous perturbation stochastic approximation.

Nonlinear Dynamics, 67(2):957–963, 2012.

[24] N. Elia and S. K. Mitter. Stabilization of linear systems with limited infor-

mation. IEEE Transactions on Automatic Control, 46(9):1384–1400, 2001.

[25] F. Fagnani and S. Zampieri. Stability analysis and synthesis for scalar

linear systems with a quantized feedback. IEEE Transactions on Automatic

Control, 48(9):1569–1584, 2003.

[26] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of

Dynamic Systems. Prentice Hall Press, Upper Saddle River, NJ, USA, 7th

edition, 2014.

[27] M. Fu and L. Xie. The sector bound approach to quantized feedback control.

IEEE Transactions on Automatic Control, 50(11):1698–1711, 2005.

[28] M. Fu and L. Xie. Finite-level quantized feedback control for linear systems.

IEEE Transactions on Automatic Control, 54(5):1165–1170, 2009.

[29] H. Gao and T. Chen. A new approach to quantized feedback control sys-

tems. Automatica, 44(2):534–542, 2008.

[30] E. Garcia and P. J. Antsaklis. Model-based event-triggered control for

systems with quantization and time-varying network delays. IEEE Trans-

actions on Automatic Control, 58(2):422–434, 2013.

[31] X. Ge, F. Yang, and Q.-L. Han. Distributed networked control systems: A

brief overview. Information Sciences, 380:117–131, 2017.

[32] X. Glorot and Y. Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the 13th International Con-

ference on Artificial Intelligence and Statistics, volume 9, pages 249–256,

2010.

[33] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,

2016.

114



[34] G. C. Goodwin, K. Lau, and M. G. Cea. Control with communication

constraints. In Proceedings of the 12th International Conference on Control

Automation Robotics Vision, pages 1–10, 2012.

[35] G. C. Goodwin, E. I. Silva, and D. E. Quevedo. A brief introduction to

the analysis and design of networked control systems. In Proceedings of the

2008 Chinese Control and Decision Conference, pages 1–13, 2008.

[36] R. A. Gupta and M. Chow. Networked control system: Overview and

research trends. IEEE Transactions on Industrial Electronics, 57(7):2527–

2535, 2010.

[37] N. Hansen. The CMA evolution strategy: a comparing review. In J. Lozano,

P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolution-

ary computation. Advances on estimation of distribution algorithms, pages

75–102. Springer, 2006.

[38] N. Hansen. Benchmarking a bi-population cma-es on the bbob-2009 func-

tion testbed. In Proceedings of the 11th Annual Conference Companion on

Genetic and Evolutionary Computation Conference: Late Breaking Papers,

pages 2389–2396, 2009.

[39] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complex-

ity of the derandomized evolution strategy with covariance matrix adapta-

tion (CMA-ES). Evolutionary Computation, 11(1):1–18, 2003.

[40] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation

in evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[41] T. Hayakawa, H. Ishii, and K. Tsumura. Adaptive quantized control for

linear uncertain discrete-time systems. Automatica, 45(3):692–700, 2009.

[42] T. Hayakawa, H. Ishii, and K. Tsumura. Adaptive quantized control for

nonlinear uncertain systems. Systems & Control Letters, 58(9):625–632,

2009.

[43] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpass-

ing human-level performance on imagenet classification. In Proceedings of

115



the 2015 IEEE International Conference on Computer Vision, pages 1026–

1034, 2015.

[44] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada. An introduction

to event-triggered and self-triggered control. In Proceedings of the IEEE

51st Annual Conference on Decision and Control, pages 3270–3285, 2012.

[45] J. Hespanha, M. Mclaughlin, G. S. Sukhatme, M. Akbarian, R. Garg, and

W. Zhu. Haptic collaboration over the internet. In Proceedings of the 5th

Phantom Users Group Workshop, 2000.

[46] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent results in

networked control systems. Proceedings of the IEEE, 95(1):138–162, 2007.

[47] K. Hikichi, H. Morino, I. Arimoto, K. Sezaki, and Y. Yasuda. The evalua-

tion of delay jitter for haptics collaboration over the internet. In Proceedings

of the 2002 IEEE Global Telecommunications Conference, volume 2, pages

1492–1496, 2002.

[48] W. Holderbaum. Neural network application to linear systems with bi-

nary inputs. In Proceedings of the 42nd IEEE International Conference on

Decision and Control, volume 5, pages 5103–5108, 2003.

[49] W. Holderbaum. Application of neural network to hybrid systems with

binary inputs. IEEE Transactions on Neural Networks, 18(4):1254–1261,

2007.

[50] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks

are universal approximators. Neural Networks, 2(5):359–366, 1989.

[51] S. Hu and D. Yue. Event-triggered control design of linear networked sys-

tems with quantizations. ISA Transactions, 51(1):153–162, 2012.

[52] J. Ilonen, J.-K. Kamarainen, and J. Lampinen. Differential evolution train-

ing algorithm for feed-forward neural networks. Neural Processing Letters,

17(1):93–105, 2003.

116



[53] H. Inose, Y. Yasuda, and J. Murakami. A telemetering system by code

modulation-Δ-Σ modulation. IRE Transactions on Space Electronics and

Telemetry, SET-8(3):204–209, 1962.

[54] H. Ishii and T. Basar. An analysis on quantization effects in H∞ parameter

identification. In Proceedings of the 2004 IEEE International Conference

on Control Applications, pages 468–473, 2004.

[55] H. Ishii and B. A. Francis. Quadratic stabilization of sampled-data systems

with quantization. IFAC Proceedings Volumes, 35(1):67–72, 2002. 15th

IFAC World Congress.

[56] J. Jaglin, C. C. de Wit, and C. Siclet. Delta modulation for multivariable

centralized linear networked controlled systems. In Proceedings of the 47th

IEEE Conference on Decision and Control, pages 4910–4915, 2008.

[57] R. Javed, G. Mustafa, A. Q. Khan, and M. Abid. Networked control of a

power system: A non-uniform sampling approach. Electric Power Systems

Research, 161:224–235, 2018.

[58] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings

of the 1995 IEEE International Conference on Neural Networks, volume 4,

pages 1942–1948, 1995.

[59] A. Kheirkhah, D. Aschenbrenner, M. Fritscher, F. Sittner, and K. Schilling.

Networked control systems with application in the industrial tele-robotics.

IFAC-PapersOnLine, 48(10):147–152, 2015. 2nd IFAC Conference on Em-

bedded Systems, Computer Intelligence and Telematics CESCIT 2015.

[60] E. Konaka. Model-free controller design for discrete-valued input systems

based on autoencoder. In Proceedings of the 2016 SICE Annual Conference,

pages 685–690, 2016.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification

with deep convolutional neural networks. Communications of the ACM,

60(6):84–90, 2017.

117



[62] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado,

J. Dean, and A. Y. Ng. Building high-level features using large scale un-

supervised learning. In Proceedings of the 29th International Coference on

International Conference on Machine Learning, pages 507–514, 2012.

[63] K. Li and J. Baillieul. Robust quantization and coding for multidimensional

linear systems under data rate constraints. In Proceedings of the 43rd IEEE

Conference on Decision and Control, volume 2, pages 1920–1925, 2004.

[64] K. Li and J. Baillieul. Robust quantization for digital finite communica-

tion bandwidth (dfcb) control. IEEE Transactions on Automatic Control,

49(9):1573–1584, 2004.

[65] D. Liberzon. Hybrid feedback stabilization of systems with quantized sig-

nals. Automatica, 39(9):1543–1554, 2003.

[66] D. Liberzon. On stabilization of linear systems with limited information.

IEEE Transactions on Automatic Control, 48(2):304–307, 2003.

[67] D. Liberzon and D. Nesic. Input-to-state stabilization of linear systems with

quantized state measurements. IEEE Transactions on Automatic Control,

52(5):767–781, 2007.

[68] J. Liu and N. Elia. Quantized feedback stabilization of non-linear affine

systems. International Journal of Control, 77(3):239–249, 2004.

[69] Q. Liu, Z. Wang, X. He, and D. Zhou. A survey of event-based strategies on

control and estimation. Systems Science & Control Engineering, 2(1):90–97,

2014.

[70] T. Liu, Z. Jiang, and D. J. Hill. Quantized stabilization of strict-feedback

nonlinear systems based on iss cyclic-small-gain theorem. Mathematics of

Control, Signals, and Systems, 24(1):75–110, 2012.

[71] S. Mahdavi, M. E. Shiri, and S. Rahnamayan. Metaheuristics in large-scale

global continues optimization: A survey. Information Sciences, 295:407–

428, 2015.

118



[72] M. S. Mahmoud and M. M. Hamdan. Fundamental issues in networked

control systems. IEEE/CAA Journal of Automatica Sinica, 5(5):902–922,

2018.

[73] I. Maruta, T. Kim, D. Song, and T. Sugie. Synthesis of fixed-structure

robust controllers using a constrained particle swarm optimizer with cyclic

neighborhood topology. Expert Systems with Applications, 40(9):3595–3605,

2013.

[74] I. Maruta, T. Kim, and T. Sugie. Fixed-structure controller synthesis: A

meta-heuristic approach using simple constrained particle swarm optimiza-

tion. Automatica, 45(2):553–559, 2009.

[75] C. Meng, T. Wang, W. Chou, S. Luan, Y. Zhang, and Z. Tian. Remote

surgery case: robot-assisted teleneurosurgery. In Proceeding of the 2004

IEEE International Conference on Robotics and Automation, volume 1,

pages 819–823, 2004.

[76] Y. Minami, S. Azuma, and T. Sugie. An optimal dynamic quantizer for

feedback control with discrete-valued signal constraints. In Proceedings of

the 46th IEEE Conference on Decision and Control, pages 2259–2264, 2007.

[77] Y. Minami, S. Azuma, and T. Sugie. Optimal decentralized sigma-delta

modulators for quantized feedback control. Nonlinear Theory and Its Ap-

plications, IEICE, 3(3):386–404, 2012.

[78] Y. Minami and T. Muromaki. Differential evolution algorithm based design

of discrete-valued input systems. In Proceedings of the 2014 SICE Annual

Conference, pages 333–336, 2014.

[79] L. A. Montestruque and P. J. Antsaklis. Static and dynamic quantization in

model-based networked control systems. International Journal of Control,

80(1):87–101, 2007.

[80] N. Moustakis, S. Yuan, and S. Baldi. An adaptive design for quantized

feedback control of uncertain switched linear systems. International Journal

of Adaptive Control and Signal Processing, 32(5):665–680, 2018.

119



[81] R. M. Murray, K. J. Astrom, S. P. Boyd, R. W. Brockett, and G. Stein.

Future directions in control in an information-rich world. IEEE Control

Systems Magazine, 23(2):20–33, 2003.

[82] G. N. Nair and R. J. Evans. Stabilization with data-rate-limited feedback:

tightest attainable bounds. Systems & Control Letters, 41(1):49–56, 2000.

[83] G. N. Nair and R. J. Evans. Exponential stabilisability of finite-dimensional

linear systems with limited data rates. Automatica, 39(4):585–593, 2003.

[84] G. N. Nair and R. J. Evans. Stabilizability of stochastic linear systems with

finite feedback data rates. SIAM Journal on Control and Optimization,

43(2):413–436, 2004.

[85] G. N. Nair, R. J. Evans, I. M. Y. Mareels, and W. Moran. Topological feed-

back entropy and nonlinear stabilization. IEEE Transactions on Automatic

Control, 49(9):1585–1597, 2004.

[86] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans. Feedback con-

trol under data rate constraints: An overview. Proceedings of the IEEE,

95(1):108–137, 2007.

[87] K. Ogata. Modern Control Engineering. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 4th edition, 2001.

[88] P. Ögren, E. Fiorelli, and N. E. Leonard. Cooperative control of mobile

sensor networks:adaptive gradient climbing in a distributed environment.

IEEE Transactions on Automatic Control, 49(8):1292–1302, 2004.

[89] V. K. Ojha, A. Abraham, and V. Snášel. Metaheuristic design of feedfor-

ward neural networks: A review of two decades of research. Engineering

Applications of Artificial Intelligence, 60(Supplement C):97–116, 2017.

[90] H. Okajima, N. Matsunaga, and K. Sawada. Optimal quantization in-

terval design of dynamic quantizers which satisfy the communication rate

constraints. In Proceedings of the 49th IEEE Conference on Decision and

Control, pages 4733–4739, 2010.

120



[91] H. Okajima, K. Sawada, J. Kaibe, and N. Matsunaga. Performance im-

provement of dynamic quantizer with reachability of output. Transactions

of the Society of Instrument and Control Engineers, 48(6):359–361, 2012.

[92] H. Okajima, K. Sawada, and N. Matsunaga. Dynamic quantizer design

under communication rate constraints. IEEE Transactions on Automatic

Control, 61(10):3190–3196, 2016.

[93] H. Okajima, T. Umemoto, N. Matsunaga, and S. Kawaji. Analysis of dy-

namic quantizer in 2-dof internal model control system with dead-time. In

Proceedings of the 2009 ICCAS-SICE, pages 4380–4383, 2009.

[94] Y. Pan, Y. Liu, B. Xu, and H. Yu. Hybrid feedback feedforward: An efficient

design of adaptive neural network control. Neural Networks, 76:122–134,

2016.

[95] C. Peng and F. Li. A survey on recent advances in event-triggered commu-

nication and control. Information Sciences, 457-458:113–125, 2018.

[96] J. Pérez, J. A. Cabrera, J. J. Castillo, and J. M. Velasco. Bio-inspired

spiking neural network for nonlinear systems control. Neural Networks,

104:15–25, 2018.

[97] I. R. Petersen and A. V. Savkin. Multi-rate stabilization of multivariable

discrete-time linear systems via a limited capacity communication chan-

nel. In Proceedings of the 40th IEEE Conference on Decision and Control,

volume 1, pages 304–309, 2001.

[98] M. A. Potter and K. A. D. Jong. A cooperative coevolutionary approach

to function optimization. In Proceedings of the International Conference

on Evolutionary Computation. The Third Conference on Parallel Problem

Solving from Nature: Parallel Problem Solving from Nature, pages 249–257,

1994.

[99] U. Premaratne, S. K. Halgamuge, and I. M. Y. Mareels. Event triggered

adaptive differential modulation: A new method for traffic reduction in

networked control systems. IEEE Transactions on Automatic Control,

58(7):1696–1706, 2013.

121



[100] K. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution: A Prac-

tical Approach to Global Optimization. Natural Computing Series. Springer-

Verlag, Berlin, Heidelberg, 1 edition, 2005.

[101] D. E. Quevedo, J. A. D. Doná, and G. C. Goodwin. Receding horizon

linear quadratic control with finite input constraint set. IFAC Proceedings

Volumes, 35(1):183–188, 2002. 15th IFAC World Congress.

[102] D. E. Quevedo, G. C. Goodwin, and J. A. De Doná. Finite constraint set

receding horizon quadratic control. International Journal of Robust and

Nonlinear Control, 14(4):355–377, 2004.

[103] D. E. Quevedo, C. Müller, and G. C. Goodwin. Conditions for optimality

of näıve quantized finite horizon control. International Journal of Control,

80(5):706–720, 2007.

[104] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation func-

tions. CoRR, abs/1710.05941, 2017.

[105] J. E. Rodriguez Ramirez and Y. Minami. Design of neural network quan-

tizers for networked control systems. Electronics, 8(3), 2019.

[106] J. E. Rodriguez Ramirez, Y. Minami, and K. Sugimoto. Design of finite-

level dynamic quantizers by using differential evolution algorithm. In Pro-

ceedings of the 2015 SICE Annual Conference, pages 841–844, 2015.

[107] J. E. Rodriguez Ramirez, Y. Minami, and K. Sugimoto. Design of finite-

level dynamic quantizers by using covariance matrix adaptation evolution

strategy. International Journal of Innovative Computing, Information and

Control, 12(3):795–808, 2016.

[108] J. E. Rodriguez Ramirez, Y. Minami, and K. Sugimoto. Event-triggered

dynamic quantizers for networked control systems. IFAC-PapersOnLine,

50(1):5190–5195, 2017. 20th IFAC World Congress.

[109] J. E. Rodriguez Ramirez, Y. Minami, and K. Sugimoto. Event-triggered

quantizer for network traffic reduction. Journal of Advanced Computational

Intelligence & Intelligent Informatics, 21(6):1111–1113, 2017.

122



[110] J. E. Rodriguez Ramirez, Y. Minami, and K. Sugimoto. Neural network

quantizers for discrete-valued input control. In Proceedings of the 11th

Asian Control Conference, pages 2019–2024, 2017.

[111] J. E. Rodriguez Ramirez, Y. Minami, and K. Sugimoto. Design of quantizers

with neural networks: Classification based approach. In Proceedings of the

2018 International Symposium on Nonlinear Theory and Its Applications,

pages 312–315, 2018.

[112] J. E. Rodriguez Ramirez, Y. Minami, and K. Sugimoto. Synthesis of event-

triggered dynamic quantizers for networked control systems. Expert Systems

with Applications, 109:188–194, 2018.

[113] M. Rădac, R. Precup, E. M. Petriu, and S. Preitl. Iterative data-driven

tuning of controllers for nonlinear systems with constraints. IEEE Trans-

actions on Industrial Electronics, 61(11):6360–6368, 2014.

[114] T. Sauter and M. Lobashov. End-to-end communication architecture for

smart grids. IEEE Transactions on Industrial Electronics, 58(4):1218–1228,

2011.

[115] A. V. Savkin. Analysis and synthesis of networked control systems: topo-

logical entropy, observability, robustness and optimal control. Automatica,

42(1):51–62, 2006.

[116] K. Sawada, H. Okajima, N. Matsunaga, and Y. Minami. Dynamic quantizer

design for mimo systems based on communication rate constraint. In Pro-

ceedings of the 37th Annual Conference of the IEEE Industrial Electronics

Society, pages 2572–2577, 2011.

[117] K. Sawada and S. Shin. Synthesis of dynamic quantizers for quantized

feedback systems within invariant set analysis framework. In Proceedings

of the 2011 American Control Conference, pages 1662–1667, 2011.

[118] P. Seiler and R. Sengupta. Analysis of communication losses in vehicle

control problems. In Proceedings of the 2001 American Control Conference,

volume 2, pages 1491–1496, 2001.

123



[119] P. Seiler and R. Sengupta. An H∞ approach to networked control. IEEE

Transactions on Automatic Control, 50(3):356–364, 2005.

[120] P. Shi, H. Wang, and C.-C. Lim. Network-based event-triggered control

for singular systems with quantizations. IEEE Transactions on Industrial

Electronics, 63(2):1230–1238, 2016.

[121] S. Shirmohammadi and N. H. Woo. Evaluating decorators for haptic collab-

oration over internet. In Proceedings of the 2nd International Conference on

Creating, Connecting and Collaborating through Computing, pages 105–109,

2004.

[122] P. Y. Simard, D. Steinkraus, and J. Platt. Best practices for convolutional

neural networks applied to visual document analysis. In Proceedings of the

7th International Conference on Document Analysis and Recognition, pages

958–963, 2003.

[123] R. M. Storn and K. Price. Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces. Journal of Global

Optimization, 11(4):341–359, 1997.

[124] C. Suh and Y.-B. Ko. Design and implementation of intelligent home control

systems based on active sensor networks. IEEE Transactions on Consumer

Electronics, 54(3):1177–1184, 2008.

[125] T. Suttorp, N. Hansen, and C. Igel. Efficient covariance matrix update

for variable metric evolution strategies. Machine Learning, 75(2):167–197,

2009.

[126] S. Tatikonda and S. Mitter. Control over noisy channels. IEEE Transactions

on Automatic Control, 49(7):1196–1201, 2004.

[127] S. Tatikonda and S. Mitter. Control under communication constraints.

IEEE Transactions on Automatic Control, 49(7):1056–1068, 2004.

[128] S. Tatikonda, A. Sahai, and S. Mitter. Stochastic linear control over a com-

munication channel. IEEE Transactions on Automatic Control, 49(9):1549–

1561, 2004.

124



[129] K. Tsumura. Criteria for systems identification with quantized data and the

optimal quantization schemes. IFAC Proceedings Volumes, 38(1):261–266,

2005. 16th IFAC World Congress.

[130] V. N. Vapnik. Statistical Learning Theory, chapter 9, pages 395–399. Wiley-

Interscience, 1998.

[131] W.-S. Wong and R. W. Brockett. Systems with finite communication band-

width constraints. i. state estimation problems. IEEE Transactions on Au-

tomatic Control, 42(9):1294–1299, 1997.

[132] W.-S. Wong and R. W. Brockett. Systems with finite communication band-

width constraints. ii. stabilization with limited information feedback. IEEE

Transactions on Automatic Control, 44(5):1049–1053, 1999.

[133] Y.-Q. Xia, Y.-L. Gao, L.-P. Yan, and M.-Y. Fu. Recent progress in net-

worked control systems - a survey. International Journal of Automation

and Computing, 12(4):343–367, 2015.

[134] L. Xing, C. Wen, H. Su, J. Cai, and L. Wang. A new adaptive control scheme

for uncertain nonlinear systems with quantized input signal. Journal of the

Franklin Institute, 352(12):5599–5610, 2015.

[135] L. Xing, C. Wen, H. Su, Z. Liu, and J. Cai. Robust control for a class of

uncertain nonlinear systems with input quantization. International Journal

of Robust and Nonlinear Control, 26(8):1585–1596, 2016.

[136] P. Yan, D. Liu, D. Wang, and H. Ma. Data-driven controller design for

general mimo nonlinear systems via virtual reference feedback tuning and

neural networks. Neurocomputing, 171:815–825, 2016.

[137] X. Yang. Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2008.

[138] X. Yang. Metaheuristic Optimization. Scholarpedia, 6(8):11472, 2011. re-

vision #91488.

[139] X. Yang and X. He. Firefly algorithm: Recent advances and applications.

International Journal of Swarm Intelligence, 1(1):36–50, 2013.

125



[140] R. Yoshino, H. Okajima, N. Matsunaga, and Y. Minami. Dynamic quantiz-

ers design under data rate constraints by using pso method. In Proceedings

of the 2014 SICE Annual Conference, pages 1041–1046, 2014.

[141] K.-Y. You and L.-H. Xie. Survey of recent progress in networked control

systems. Acta Automatica Sinica, 39(2):101–117, 2013.

[142] C. Zhang and G. E. Dullerud. Finite gain stabilization with logarithmic

quantization. In 2007 46th IEEE Conference on Decision and Control,

pages 3952–3957, 2007.

[143] D. Zhang, P. Shi, Q.-G. Wang, and L. Yu. Analysis and synthesis of net-

worked control systems: A survey of recent advances and challenges. ISA

Transactions, 66:376–392, 2017.

[144] W. Zhang, M. S. Branicky, and S. M. Phillips. Stability of networked control

systems. IEEE Control Systems Magazine, 21(1):84–99, Feb 2001.

[145] Y.-B. Zhao, G.-P. Liu, Y. Kang, and L. Yu. A Brief Tutorial of Networked

Control Systems, pages 1–11. Springer Singapore, Singapore, 2018.

[146] J. Zhou. Decentralized adaptive control for interconnected nonlinear sys-

tems with input quantization. IFAC-PapersOnLine, 50(1):10419–10424,

2017. 20th IFAC World Congress.

126



Appendix

A. Default Parameters for the (µ/µW , λ) CMA-

ES Algorithm

The default values of these parameters were taken from [38].

i Selection and Recombination:

N = 4 + b3 ln (n)c, µ = bµ′c, µ′ =
N

2
(136)

wi =
w′i∑µ
j=1 w

′
j

, w′i = ln (µ′ + 0.5)− ln i for i = 1, . . . , µ (137)

µeff =
1∑µ

i=1 w
2
i

(138)

ii Step-size control:

cσ =
µeff + 2

n+ µeff + 5
(139)

dσ = 1 + 2 max

(
0,

√
µeff − 1

n+ 1
− 1

)
+ cσ (140)

iii Covariance matrix adaptation:

cc =
4 + µeff/n

n+ 4 + 2µeff/n
(141)

c1 =
2

(n+ 1.3)2 + µeff

(142)

cµ = min

(
1− c1, αµ

µeff − 2 + 1/µeff

(n+ 2)2 + αµµeff/2

)
with αµ = 2 (143)

127



B. Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based metaheuristic inspired

in the behavior of biological communities like swarms of bees and flocks of birds

[58]. In the PSO nomenclature an individual is called particle and the set of all

the particles is called swarm.

PSO is implemented very easily and has only three control parameters: inertia

parameter χ0, cognition parameter χ1 and social parameter χ2. This algorithm is

very good for local optimization, but not so much for global optimization. Several

variations try to improve its performance and ability to scape from local minima.

In addition, PSO is very sensitive to the tuning of the control parameters and

sometimes it is difficult to find a good set of parameters to make the algorithm

effective. The version used in this study is shown in Algorithm 4.

Algorithm 4 : PSO

Initialization: Given N ∈ N, kmax ∈ N, χ0 ∈ [0, 1], χ1 ∈ [0, 4], χ2 ∈ [0, 4]

and the search spaces S0 = [xmin, xmax]
n and V0 = [vmin, vmax]

n. Set k =

0, then select randomly N individuals {θ1,θ2, . . . ,θN} and their velocities

{v1,v2, . . . ,vN} in the corresponding search spaces.

Step 1: The cost function J(θi) is evaluated for each θi. Then, the personal

best solutions and the global best solution are selected by:

θpbest,i = arg min
θ∈{θ(j)i |j=1,2,...,k}

J(θ), (144)

θgbest = arg min
θ∈{θpbest,i|i=1,2,...,N}

J(θ). (145)

where (j) indicates the generation of the respective individual. If k = kmax

then θgbest is the solution of the algorithm, if not go to Step 2.

Step 2: Sequentially the following update laws are applied to each individual.

vi ← χ0vi + χ1ρ1,i (θpbest,i − θi) + χ2ρ2,i (θgbest − θi) , (146)

θi ← θi + vi, (147)

where ρ1,i and ρ2,i ∈ [0, 1] are random numbers uniformly distributed. Then

make k ← k + 1 and go to Step 1.

128



C. NNQs Statistical Analysis Details

Table 17: E(QNN) 3-way ANOVA for h = sigm. For the general linear model:

E(QNN) versus Type, Init and nL. The considered significance level is α = 0.05.

The factor coding is (−1, 0,+1). There is significant difference when P-Value< α.

M Source DF Adj SS Adj MS F-Value P-Value

2 Type 1 0.0758 0.07576 0.47 0.496

Init 1 3.2826 3.28257 20.16 0.000

nL 1 0.2065 0.20646 1.27 0.261

Type*Init 1 0.1295 0.12954 0.80 0.373

Type*nL 1 0.1082 0.10818 0.66 0.415

Init*nL 1 0.0075 0.00755 0.05 0.830

Type*Init*nL 1 0.1229 0.12294 0.76 0.385

Error 392 63.8188 0.16280

Total 399 67.7518

M Source DF Adj SS Adj MS F-Value P-Value

8 Type 1 391.470 391.470 299.31 0.000

Init 1 24.110 24.110 18.43 0.000

nL 1 10.096 10.096 7.72 0.006

Type*Init 1 38.542 38.542 29.47 0.000

Type*nL 1 2.204 2.204 1.68 0.195

Init*nL 1 10.787 10.787 8.25 0.004

Type*Init*nL 1 6.449 6.449 4.93 0.027

Error 392 512.695 1.308

Total 399 996.352

129



Table 18: Tukey pairwise comparison 3-way ANOVA for h = sigm and M = 2.

Grouping Information Using the Tukey Method and 95% confidence. Means that

do not share a letter are significantly different.

Factor N Mean Grouping

Type*Init C Urand 100 4.28598 A

R Urand 100 4.27751 A B

R Xavier 100 4.13233 B C

C Xavier 100 4.06881 C

Type*nL R L2 100 4.24408 A

C L2 100 4.18367 A

C L4 100 4.17112 A

R L4 100 4.16575 A

Init*nL Urand L2 100 4.30012 A

Urand L4 100 4.26337 A B

Xavier L2 100 4.12763 B C

Xavier L4 100 4.07350 C

Type*Init*nL R Urand L2 50 4.32987 A

C Urand L4 50 4.30158 A

C Urand L2 50 4.27038 A B

R Urand L4 50 4.22516 A B

R Xavier L2 50 4.15830 A B

R Xavier L4 50 4.10635 A B

C Xavier L2 50 4.09696 A B

C Xavier L4 50 4.04066 B

130



Table 19: Tukey pairwise comparison 3-way ANOVA for h = sigm and M = 8.

Grouping Information Using the Tukey Method and 95% confidence. Means that

do not share a letter are significantly different.

Factor N Mean Grouping

Type*Init C Urand 100 2.86371 A

C Xavier 100 2.73390 A

R Xavier 100 1.37617 B

R Urand 100 0.26432 C

Type*nL C L2 100 2.88345 A

C L4 100 2.71416 A

R L2 100 1.05333 B

R L4 100 0.58715 C

Init*nL Xavier L2 100 2.37812 A

Xavier L4 100 1.73195 B

Urand L4 100 1.56937 B

Urand L2 100 1.55866 B

Type*Init*nL C Urand L2 50 2.91111 A

C Xavier L2 50 2.85580 A

C Urand L4 50 2.81630 A

C Xavier L4 50 2.61201 A

R Xavier L2 50 1.90045 B

R Xavier L4 50 0.85188 C

R Urand L4 50 0.32243 C

R Urand L2 50 0.20622 C

131



Table 20: E(QNN) 3-way ANOVA for different activation functions (M = 8).

For the general linear model: E(QNN) versus Type, Init and h. The considered

significance level is α = 0.05. The factor coding is (−1, 0,+1). There is significant

difference when P-Value< α.

Source DF Adj SS Adj MS F-Value P-Value

Type 1 248.95 248.947 173.20 0.000

Init 1 13.61 13.610 9.47 0.002

h 2 177.47 88.735 61.74 0.000

Type*Init 1 11.71 11.714 8.15 0.004

Type*h 2 295.36 147.678 102.75 0.000

Init*h 2 77.41 38.704 26.93 0.000

Type*Init*h 2 69.32 34.659 24.11 0.000

Error 1188 1707.53 1.437

Total 1199 2601.36

132



Table 21: 3-way ANOVA Tukey pairwise comparison for different activation func-

tions (M = 8). Grouping Information Using the Tukey Method and 95% confi-

dence. Means that do not share a letter are significantly different.

Factor N Mean Grouping

Init*h Xavier ReLU 200 2.56526 A

Xavier sigm 200 2.05504 B

Urand ReLU 200 1.91764 B

Urand sigm 200 1.56401 C

Urand tanh 200 1.55034 C

Xavier tanh 200 1.05068 D

Type*Init*h R Xavier ReLU 100 2.99436 A

C Urand sigm 100 2.86371 A

C Xavier sigm 100 2.73390 A

C Xavier ReLU 100 2.13617 B

C Urand ReLU 100 1.93525 B

R Urand ReLU 100 1.90003 B C

C Urand tanh 100 1.89586 B C

C Xavier tanh 100 1.87093 B C

R Xavier sigm 100 1.37617 C D

R Urand tanh 100 1.20482 D

R Urand sigm 100 0.26432 E

R Xavier tanh 100 0.23043 E

133


