
Doctoral Dissertation

Context Enhancement of Recurrent Neural
Network Language Models for Automatic

Speech Recognition

Michael Alexander Hentschel

March 15, 2019

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Michael Alexander Hentschel

Thesis Committee:
Professor Yuji Matsumoto (Supervisor)
Professor Satoshi Nakamura (Co-supervisor)
Professor Hiroshi Sawada (Co-supervisor)
Associate Professor Tomoharu Iwata (Co-supervisor)

Context Enhancement of Recurrent Neural
Network Language Models for Automatic

Speech Recognition*

Michael Alexander Hentschel

Abstract

Language models are a key component of automatic speech recognition sys-
tems. In recent years, language models based on neural networks and in particular
recurrent neural networks have shown significant performance improvements on
traditional count-based language models. Language models calculate the proba-
bility of the next word from the word history. In the task of automatic speech
recognition, various context information beside words is available. This context
can be from different sources like the acoustic signal, the recent word history, or
a global text topic. However, neural network language models do not specifically
exploit this kind of context information. In the context of this thesis, different
kinds of context information that is available to the language model in auto-
matic speech recognition is identified. To make this information accessible to the
language model, different network architectures to exploit this context are pre-
sented. Subsequently, different combinations of context information and network
architectures are investigated on their effectiveness for state of the art recurrent
neural network language models. The presented methods achieved improvements
on state of the art recurrent neural network language models in terms of model
perplexity and word error rate in rescoring.

Keywords:

Language model, Automatic speech recognition, Domain adaptation, Prosody,
Context information

*Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science
and Technology, March 15, 2019.

i

音声認識用ニューラルネットワーク言語モデルのコ

ンテキスト強化*

Michael Alexander Hentschel

内容梗概

言語モデルは、自動音声認識システムの重要な要素である。近年、ニュー
ラルネットワーク、特にリカレントニューラルネットワークを用いている言
語モデルは、従来のカウントベース言語モデルの性能を大幅に改善した。言
語モデルは、単語履歴から次の単語の確率を計算するモテルである。自動音
声認識のタスクでは、単語以外に様々なコンテキスト情報が利用可能である。
このコンテキストは、音響信号、最近の単語履歴、またはグローバルテキス
トトピックの様な異なる情報源に基づくことができる。しかし、ニューラル
ネットワーク言語モデルは、この種のコンテキスト情報を特に利用していな
い。本論文では、自動音声認識において言語モデルが利用可能な種類のコン
テキスト情報を提案する。これらの情報を言語モデルで利用可能にするため、
コンテクスト情報を利用するネットワークアーキテクチャを提案する。続い
て、最新のリカレントニューラルネットワーク言語モデルへの有効性にに対
して、コンテキスト情報とネットワークアーキテクチャとの様々な組み合わ
せを調査する。提示された手法は、モデルのパープレキシティとリスコアリ
ングでのワードエラーレートで最新のリカレントニューラルネットワーク言
語モデルの改善を達成した。

キーワード

言語モデル, 音声認識, ドメイン適応, 韻律, コンテキスト情報

*奈良先端科学技術大学院大学情報科学研究科 博士論文, 情報処理学専攻, 2019年 3月
15日.

ii

Contents
1. Introduction 1

1.1 Motivation . 1
1.2 Contributions . 3
1.3 Thesis Outline . 4
1.4 Publications . 4

2. Statistical Language Models in Automatic Speech
Recognition 6
2.1 Automatic Speech Recognition . 6

2.1.1 Pre-processing and Feature Extraction 8
2.1.2 Acoustic Model . 11
2.1.3 Language Model . 13
2.1.4 Lexicon . 14
2.1.5 Decoder . 15
2.1.6 Evaluation Metric . 15

2.2 Count-based Language Models . 16
2.2.1 M-Gram Language Models 16
2.2.2 Smoothing Techniques for M-Gram Language Models . . . 17
2.2.3 Class-based Language Models 21
2.2.4 Cache Language Models 21

2.3 Neural Network Language Models 22
2.3.1 Feed-Forward Neural Network Language Model 23
2.3.2 Recurrent Neural Network Language Model 25
2.3.3 Neural Network Language Model Training 29

3. Context Information for Neural Network Language Models 34
3.1 Prosodic Features . 35

3.1.1 Fundamental Frequency 37
3.1.2 Signal Power . 38

3.2 Cache Memory Features . 38
3.2.1 Continuous Neural Cache 39
3.2.2 Bag-of-Words Cache . 41

iii

3.3 Text Topic Features . 43
3.3.1 Latent Dirichlet Allocation 44
3.3.2 Neural Network Context Representation 45

4. Neural Network Architectures for Context Adaptation 47
4.1 Input Enhancement . 47
4.2 Cache and Memory Augmentation 48

4.2.1 Connected Neural Cache 48
4.2.2 Bag-of-Words Cache . 49

4.3 Domain Adaptation Architectures 51
4.3.1 Feature-based Linear Hidden Network 54
4.3.2 Feature-based Learning Hidden Unit Contributions 55
4.3.3 Feature-based Hidden Layer Factorisation 57

4.4 Unified Framework for Context Extraction and Feature-based Adap-
tation . 60

5. Experiments and Discussion 64
5.1 Datasets . 64
5.2 Common Experimental Settings 66
5.3 Re-training of Prosodically-enhanced RNN-LMs 67

5.3.1 Experimental Setup . 67
5.3.2 Perplexity Evaluation . 70
5.3.3 N-best Rescoring . 72

5.4 Cache Extensions for LSTM-LMs 73
5.4.1 Experimental Setup . 74
5.4.2 Perplexity Evaluation . 74
5.4.3 N-best Rescoring . 75

5.5 Feature Based Domain Adaptation 76
5.5.1 Experimental Setup . 76
5.5.2 Penn Treebank Results . 79
5.5.3 TED Talk Results . 81
5.5.4 CSJ Results . 84
5.5.5 Discussion . 86

5.6 Unified Context Extraction and Adaptation Framework 91

iv

5.6.1 Experimental Setup . 91
5.6.2 Perplexity Results . 93
5.6.3 Rescoring Results . 94
5.6.4 Analysis of fLHUC Adaptation Parameters 96
5.6.5 Combination of UniFA with Conventional LDA Feature-

based Domain Adaptation 97
5.6.6 Combination of UniFA with factLSTM 98

6. Conclusion and Outlook 104
6.1 Usage of Prosodic Features for Language Models 104
6.2 Cache Extensions for Language Models 105
6.3 Feature-based Domain Adaptation of Language Models 105
6.4 Future Work . 106

Acknowledgements 108

References 109

List of Major Publications 126

Appendix 128

A. List of Abbreviations 128

B. List of Mathematical Symbols and Notation 129
B.1 List of Mathematical Operators 129
B.2 List of Mathematical Symbols . 130

C. Additional Perplexity Results for Prosodically-enhanced Recur-
rent Neural Network Language Models 133
C.1 F0 Features . 133
C.2 PW Features . 139

D. Additional Results for Domain Adaptation with a Unified Frame-
work for Context Extraction and Adaptation 141
D.1 Perplexity Results . 141

v

D.2 Rescoring Results . 141

vi

List of Figures
1 The general structure of an automatic speech recognition system

(after [79] and [68]). 7
2 The computation scheme of extracting MFCC features (after [65]). 10
3 An example of a tri-state HMM. 13
4 Trigram feed-forward neural network language model. 23
5 A vanilla RNN-LM as proposed in [92]. 25
6 A vanilla RNN-LM with word classes as proposed in [93]. 27
7 A long short-term memory cell [64]. 28
8 An LSTM-LM with long short-term memory as recurrent unit. . . 29
9 Training of a vanilla RNN-LM with backpropagation through time

where black lines denote the forward path and red lines the back-
ward path. 32

10 Continuous neural cache model as proposed by [48] visualised for
three time steps. 40

11 Graphical model representation of an LDA topic model. 44
12 A sequence summary network (SSN) that calculates a summary

vector from its inputs wl−1,...,l−N 46
13 LSTM-LM feature-based adaptation with Context dependent LSTM-

LM (contLSTM). 47
14 Continuous connected neural cache with an LSTM-LM. 49
15 BoW cache extension for an LSTM-LM. 50
16 Examples for model-based domain adaptation using (a) a linear

hidden network and (b) learning hidden unit contributions. The
inputs to the adaptation layers are a one-hot vector encoding the
domain information and the weights for this one-hot vector are
learned in re-training by error backpropagation. 52

17 LSTM-LM feature-based model adaptation with Linear Hidden
Network (fLHN-LSTM). 54

18 LSTM-LM feature-based domain adaptation with Learning Hid-
den Unit Contributions (LHUC, fLHUC-LSTM). 56

19 LSTM-LM domain adaptation with fLHUC and bias adaptation
(fLHUCB). 57

vii

20 LSTM-LM feature-based model adaptation with factorised hidden
layers (factLSTM). 59

21 UniFA adaptation framework with (a) the sequence summary net-
work (SSN) based context extractor network, and (b) LSTM-LM
domain adaptation with fLHUC. 63

22 An overview of the different datasets in the MIT-OCW corpus. . . 68
23 Outline of our proposed training method. 70
24 Histogram of sentence lengths in subtitle and TED-LIUM evalua-

tion sets. 77
25 Convergence on the validation set over 80 epochs for different mod-

els on TED dataset. 82
26 Comparison of different context window sizes versus validation

PPL for PTB with LDA features from 30 topics. 86
27 Comparison of different context window sizes versus PPL for the

Ted talks subtitle validation set with features from 50 LDA topics. 87
28 PCA plots of LDA features (a) and factor weights (b) for the

subtitle TED talks test set. Each colour represents a different talk
in the test set. 101

29 Comparison of LDA features (a) and factor weights (b) for part of
the test set (x axis corresponds to word index). 102

30 Visualisation of (a) LDA features for 200-word window size, fL-
HUC adaptation parameters before the sigmoid function from (b)
LDA features from 200-word window size and (c) SSN(50) for talks
six, seven and eight in the subtitle test set. 103

List of Tables
1 Overview of the Penn Treebank data set. 64
2 Overview of the MIT OpenCourseWare data set. The OOVs are

given with respect to the LM training set. 65
3 Overview for the TED Talks and TED-LIUM data sets. 65
4 Overview of the Corpus of Spontaneous Japanese data set. 66

viii

5 PPL results for RNNLMs trained on textual and prosodic features
for the test data of MIT-OCW. 71

6 WER results for 100-best rescoring of MIT-OCW. 72
7 PPL results for validation and test data of MIT-OCW. 75
8 WER results for 100-best rescoring on MIT-OCW. 75
9 Comparison of subtitle and TED-LIUM test sets. 77
10 PPL on the validation set of PTB for different numbers of fac-

torised hidden layers versus different LDA dimensions (LSTM-LM
105.66). The number in brackets with factLSTM gives the number
of factors used. 80

11 PPLs for baseline, best fLHN-LSTM and factLSTM model on the
validation and test set of PTB. 81

12 PPL and WER for our own subtitle based test set and TED-LIUM
with 50 LDA topics, a 200-word window size and factLSTMwith
15 factors. The trigram result represents the 1-best result and the
results for the neural network LMs are for 100-best rescoring. . . 83

13 PPL and WER for CSJ using topic features from 50 LDA topics
and a 200-word window size. The trigram result is the 1-best result
and the NNLM results are for 100-best rescoring. 85

14 N-best hypothesis comparison for selected utterance from TED-
LIUM test set. 88

15 N-best hypothesis comparison for several utterances from CSJ for
LSTM-LM and factLSTM. 89

16 Test PPL on TED talks for fLHN-LSTMwith different LHN sizes
after training for 70 epochs. 90

17 Comparison of subtitle and TED-LIUM test sets. 91
18 PPL for subtitle and TED-LIUM validation and test set. The

number in brackets denotes the context window size. 93
19 PPL results for CSJ. The number in brackets denotes the context

window size. 94
20 WER after 100-best rescoring for TED-LIUM. The number in

brackets is the context window size. 95

ix

21 WER after 100-best rescoring for CSJ. The number in brackets
denotes the context window size. 96

22 PPL for subtitle and TED-LIUM validation and test set. The
number in brackets denotes the context window size. 98

23 WER after 100-best rescoring for TED-LIUM. The number in
brackets is the context window size. 99

24 PPL results for TED-LIUM. LDA features from 200 word sliding
window and 50 topics. SSN with 50 word sliding window. 100

25 WER results for TED-LIUM. LDA features from 200 word sliding
window and 50 topics. SSN with 50 word sliding window. 100

29 All PPL results for MIT-OCW with prosodic F0 features for the
validation set. 135

30 All PPL results for MIT-OCW with prosodic F0 features for the
test set. 136

31 All PPL results for the MIT-OCW validation set when training on
the AM set with prosodic F0 features. 137

32 All PPL results for the MIT-OCW test set when training on the
AM set with prosodic F0 features. 138

33 All PPL results for MIT-OCW with prosodic PW features for the
validation set. 140

34 All PPL results for MIT-OCW with prosodic PW features for the
test set. 140

35 All PPL results for the MIT-OCW validation set when training on
the AM training set with PW features. 140

36 All PPL results for the MIT-OCW test set when training on the
AM training set with PW features. 141

37 PPL for subtitle and TED-LIUM validation and test set for UniFA
with 100 nodes in the SSN. 142

38 PPL for subtitle and TED-LIUM validation and test set for UniFA
with 300 nodes in the SSN. 143

39 PPL for subtitle and TED-LIUM validation and test set for UniFA
with 500 nodes in the SSN. 143

40 PPL for CSJ with 100 units in the SSN. 144

x

41 PPL for CSJ with 300 units in the SSN. 144
42 PPL for CSJ with 500 units in the SSN. 144
43 WER after 100-best rescoring for TED-LIUM for UniFA with 100

nodes in the SSN. 145
44 WER after 100-best rescoring for TED-LIUM for UniFA with 300

nodes in the SSN. 145
45 WER after 100-best rescoring for TED-LIUM for UniFA with 500

nodes in the SSN. 146
46 WER after 100-best rescoring for CSJ and UniFA with 100 nodes

in the SSN. 146
47 WER after 100-best rescoring for CSJ and UniFA with 300 nodes

in the SSN. 147
48 WER after 100-best rescoring for CSJ and UniFA with 500 nodes

in the SSN. 147

xi

1. Introduction
Speech is the natural form of communication for humans. We learn a language
as a child without any prior knowledge only by being exposed to it. Because it
is such a natural means of communication for us, researchers and engineers have
already been trying for a long time to develop technologies to enable machines
recognise speech and understand language. As natural and obvious this task
might seem to outstanding persons, the problem has shown to be anything but
trivial.

Currently, the most successful models in speech recognition use as a statistical
approach. From a statistical point of view, the problem of speech recognition can
be described as finding the most likely sequence of words corresponding to an
acoustic signal that we observe. As introduced in more detail in the next section,
this problem can be divided into two smaller sub-problems. The first one is to
model a likelihood of the feature sequence and the second one is to calculate a
probability for the word sequence. The first problem is handled by the acoustic
model and the second problem is handled by the language model. This makes
the language model a very important part of an automatic speech recognition
system. The language model is used for finding the best word sequence in a step
called decoding and subsequently a stronger language model can be used in a
second-pass decoding, the so-called rescoring.

1.1 Motivation
Within the scope of this thesis, language models used in automatic speech recog-
nition will be investigated. A language model’s task is to predict the probability
for a sequence of words. In order to improve this prediction, different approaches
have been proposed over the last decades. Early language models used linguistic
knowledge and incorporated rules. These models were eventually superseded by
statistical models. The parameters for these models are estimated from the rel-
ative frequencies of each term on a large data set. By using a sufficiently large
data set, one might assume that reliable statistics for a language model could be
estimated. However, using this discrete estimation technique has different short
comings. Estimating the frequency of a single term does not provide a good

1

probabilistic model for a sequence of several terms. However, when estimating
the relative frequencies of sequences, many of the possible sequences do not ap-
pear in the data. From this problem, many techniques on how to find a good
approximation for these unseen events have emerged. Some of the basic concepts
and state of the art methods will be explained in this thesis.

After these discrete models, more recently a different approach using artificial
neural networks has been used for language modelling. Neural network language
models first used a similar method as count-based models, that is, using a trun-
cated history of words. However, recurrent neural networks which were designed
for sequence modelling problems showed a better performance when applied to
speech recognition and other tasks. Models based on neural networks have the
ability to learn a common continuous-valued space that all words get projected
into. This common space allows to model semantics of words. Language models
based on neural networks have so far not completely replaced count-based mod-
els. Both language models showed to cover complementary information and in
current state of the art speech recognition systems an interpolation between both
models is used.

However, despite being the strongest language models that are currently avail-
able, neural network language models lack the ability to explicitly account for
context. How context can have an effect on the word probabilities can be illus-
trated easily by an example. Let us consider a newspaper as our data set. From
the whole newspaper, we can obtain a global estimate of word probabilities. How-
ever, a newspaper is segmented into different sections, like politics, finance, sports
and so on. If we investigate the distribution of words in each of these sections, we
find a different distribution depending on the section which we are in. Language
models that can account for such information can give a better estimate for likely
and unlikely word sequences. This will help a speech recogniser to improve the
recognition.

Context information from a text category is not the only context that can be
accessed in a speech recognition system. In a speech recognition system acoustic
information is available in addition to the textual information. Among this whole
information, some context can have a positive influence on the language model
and improve the word prediction. By enabling neural network language models

2

to use this information, an improvement on current state of the art methods can
be achieved in speech recognition.

1.2 Contributions
The focus of this thesis is on exploiting context information surrounding the
current word that can be extracted in an automatic speech recognition system
for language modelling. This task is two fold. First, one needs to identify use-
ful context information which can improve word prediction and improve speech
recognition results. Second, investigating network architectures that neural net-
work language models can make effective use of this context information.

Depending on the task, there is different context which can be exploited for
language modelling. The context can be visual information from images or videos.
It can be information from a different language in machine translation. In a search
application, we might have access to a user’s location. In this thesis, language
models for automatic speech recognition are investigated. Among others, we can
imagine that we have access to the following information. An audio signal, that is
the signal we try to recognise. Information about the speaker like the gender or a
speaker ID. In case we try to recognise a longer text, we have access to previously
recognised sentences. This might help us to find a local or global topic. Still, we
need a way to reliably extract this information in an automated way. Creating
annotations with this information in the data is time-consuming and requires
expert knowledge. Therefore, the information should be extracted as a feature
in an unsupervised manner. Introducing methods to achieve this objective is one
part of this thesis.

Next to identifying the available information, another main part of this thesis
is how to exploit the information in neural network language models. The general
network architecture used in this thesis will be recurrent neural network language
models. These models showed state of the art results in speech recognition. Dif-
ferent modifications of neural network architectures that allow to include context
information as an auxiliary feature will be described. These architectures have
partially been proposed, however, here a different way to use these architectures
will be investigated. Other architectures have been proposed in the context of a
different task that is unrelated to language modelling and in this thesis the ap-

3

plication to language modelling will be investigated. This thesis also investigates
an integrated approach to extract context information with a neural network and
adapting a language model, combining several of the investigated techniques.

1.3 Thesis Outline
The remainder of this thesis is organised as follows. Chapter 2 gives an intro-
duction to the problem of automatic speech recognition in general and introduces
the main components of a statistical automatic speech recognition system one-by-
one. After this overview, the fundamentals of count-based language models and
standard smoothing techniques as well as extensions will be introduced. Next to
count-based models, the fundamentals of neural network language models will be
explained. This includes different neural network language models architectures
using feed-forward and recurrent neural networks as well as an outline of the
training algorithm. After these basics, Chapter 3 introduces different kinds of
context information that can be used in the context of automatic speech recog-
nition for language modelling. In particular, prosodic features, cache models and
topic features will be presented. Chapter 3 describes each kind of information and
shows how features can be calculated from this information. How these features
can be exploited in neural network language models is described in the subsequent
Chapter 4, where different network architectures are introduced. Chapter 5 shows
experimental results for different context features with different model architec-
tures on common data sets. The experiments are evaluated in terms of perplexity
and word error rate. Finally Chapter 6 provides concluding remarks and gives
an outlook on future work that could not be covered in the scope of this thesis.

1.4 Publications
Parts of this thesis have been published at international conferences or domestic
meetings. The investigation of prosodic features for neural network language
model adaptation was published in [60]. A study of different cache extension was
presented at a domestic meeting [59]. Different methods for feature-based domain
adaptation of recurrent neural network language models were presented at an
international conference [55, 58]. An extended study of hidden layer factorisation

4

for feature-based domain adaptation was published as a journal paper [57]. The
unified approach for context extraction and adaptation of language models was
presented at an international conference [56].

5

2. Statistical Language Models in Automatic Speech
Recognition

This section provides a short overview of an Automatic Speech Recognition (ASR)
system. First, it describes the general problem description we addressing in ASR
and subsequently describe a general structure of an ASR system. Following the
general description of an ASR system’s components, we briefly overview the major
techniques used in statistical Language Models (LM) in ASR. These LMs are M -
Gram and Neural Network (NN) LMs (NNLM). The main focus of this thesis is
the practical application of NNLMs in the field of ASR.

2.1 Automatic Speech Recognition
Speech is our most efficient and natural means of communication. We are able
to convey complex concepts by just using speech. For machines, the task of au-
tomatically recognising and evaluating speech is commonly known as Automatic
Speech Recognition (ASR). One major application of ASR is Human-Machine
Interaction (HMI), where we would like to enable machines to interact with hu-
mans using their most preferred means of communication. However, building
a machine that successfully performs ASR has proven to be a non-trivial task.
Today’s systems make use of a statistical approach as described in the following.

The general layout of an ASR system is depicted in Figure 1. The input to
the system is the digitally converted representation s[t] of the continuous-valued
analog speech signal. This signal is recorded by one or multiple microphones
and then pre-processed (s̃[t]). Subsequently, a sequence of feature vectors o =

[o1,o2, . . . ,oK] is extracted from the pre-processed signal. These features are
used for training of the system and for testing. During system training we try
to find the optimal model parameters λ and testing means that we the system
on a new input it has not seen before. For the training, the features as well as a
transcription of the training data are available to build the lexicon, the language
model, and the acoustic model. During testing, these models are used to estimate
the transcription ŵ = ŵ1, ŵ2, . . . , ŵL for a newly extracted feature sequence.

For statistical ASR, we view the problem of speech recognition as a pattern
recognition problem. Given an observed sequence of acoustic features o, an ASR

6

Training

Speech
Signal

Pre-
processing

Feature
Extraction

Decoder ŵ =

argmaxw P (o|w;λ)P (w)
Transcription

Pronunciation Lexicon

Transcription Acoustic
Model

Language
Model

s[t] s̃[t]

P (o|w;λ) P (w)

o ŵ

Figure 1: The general structure of an automatic speech recognition system (after
[79] and [68]).

system should find the most likely word sequence ŵ = ŵ1, ŵ2, . . . , ŵL that corre-
sponds to the features

ŵ = argmax
w

P (w|o;λ), (1)

where λ denotes the statistical model of the recogniser. However, this problem is
in practice intractable, so we apply Bayes’ rule (e.g. [104]) to rewrite the above
problem as

ŵ = argmax
w

P (o|w;λ)P (w)

P (o)
. (2)

P (o) can be neglected in this optimisation problem, because it is independent of
the variable w which has to be optimised. The two remaining parts are P (w) the
a priori probability of a particular word sequence and P (o|w;λ) the probability
of observing a particular feature vector sequence given a corresponding word
sequence. This allows (2) to be simplified to

ŵ = argmax
w

P (o|w;λ)P (w). (3)

7

The above equation allows to decompose the original problem (1) into two sub-
problems. For each of these sub-problems, we can estimate a statistical model
from the training data. The a priori probability of a word sequence P (w) is
modelled by the Language Model (LM). The probability of observing a feature
vector sequence given a word sequence P (o|w;λ) is modelled by the Acoustic
Model (AM).

Regarding the mathematical notation,the following conventions will be used
in the remainder of this thesis. The matrix of feature vectors is composed as
follows

o = [o1,o2, . . . ,oK], (4)

where k is the time index in the observed sequence of K feature vectors. Vectors
and scalars in the matrix are indexed with brackets in the following way

o[1] = o1, (5)
o[1 : 4] = [o1,o2,o3,o4], (6)
o[1, 1] = o1(1) = o1. (7)

A sequence of values is denoted by the respective indices in the subscript

o1...4 = [o1,o2,o3,o4]. (8)

A word sequence w is usually composed of L words where without a loss of
generality each word wl is assumed to be represented by an integer ID

w = w1, w2, . . . , wL. (9)

2.1.1 Pre-processing and Feature Extraction

Natural signals usually exhibit a lot of redundancy. This redundancy leads to
a high-dimensional and highly correlated signal which is not desirable for the
classification task. Therefore, the main purpose of using features rather than the
raw audio signal is to remove this redundancy and the dimensionality of the signal.
It is well-known that in high dimensional spaces classification fails (“the curse of
dimensionality”, [9]). The reduction in dimensionality from, for example, 512 to

8

12 greatly reduces the computational complexity, which, for example, improves
processing speed or reduces power consumption. However, this requires features
that can capture the essential discriminative information that is necessary for
classification and which have little correlation and redundancy.

As common features for ASR, Mel Frequency cepstral Coefficients (MFCC)
[25] or Perceptual Linear Prediction (PLP) [61] are used. These features are
motivated by human perception. The computation scheme for MFCCs is depicted
in Figure 2. Features are commonly computed over a window length of 20-40ms
with a 10ms frame shift. This window is used because the speech signal is assumed
to be stationary over this short duration. The raw features usually exhibit a high
speaker and gender dependency which might be undesired in the system. To
remove these effects various normalising techniques exist.

A simple and common normalisation is Cepstral Mean and Variance Normal-
isation (CMVN) [139], which normalises the mean and variance of the features
to have zero mean and unit variance. Each element of the feature vector is nor-
malised as follows

ō = (o− µ)Σ−1, (10)

µ =
1

K

K∑
k=1

ok, (11)

Σ =

√√√√ 1

K

K∑
k=1

(ok − µ)(ok − µ)T. (12)

The input signal might include other undesired signals, such as noise and re-
verberation. This requires further noise and reverberation removal. In an actual
system implementation, such speech enhancement methods are used in the pre-
processing step. These enhancements include dereverberation [99] and denoising
filters [19]. In case where multiple microphones are used for recording the signals,
beamforming is a used to attenuate undesired sources and to enhance the desired
signal [10].

9

s[t]

Hamming
window

DFT

|(·)|2

Mel
filterbank

log(·)

DCT

ok

t

s[t]

0

1

k

hHam(k)

0

1

Ω

HMel(eΩ)

Figure 2: The computation scheme of extracting MFCC features (after [65]).

10

2.1.2 Acoustic Model

In statistical ASR, the AM is a statistical model for the likelihood of observing
a sequence of features o given a sequence of words w P (o|w;λ). Modelling this
problem on the word level has several disadvantages. One problem is that many
words only appear a few times in the training data. However, it is hard to estimate
reliable models for infrequent words. In addition, the system cannot recognise
words that were never seen in the training data. Since words are composed of
a long sequence of feature vectors, the classification problem will also be high-
dimensional. Because these issues make speech recognition on the word level
difficult, the problem is broken down into a smaller one.

Each word consists of sub-word units. The unit used in the AM of an ASR
system is a phoneme. A phoneme is the smallest unit which carries a change
in meaning. Using this sub-word unit has several advantages compared with
words. First, the number of phonemes is usually by far less than the number
words. Second, these units are much more frequent in the training data than
individual words. Usually, the pronunciation of a phoneme is context dependent.
Each phoneme has a right and a left context. This sequence consisting of three
phonemes is called a triphone.

In ASR, the phonemes are modelled by Hidden Markov Models (HMM) [73,
108]. HMMs allow flexibility for different feature sequence lengths. This flexibility
is desirable because the same phonene can be longer or shorter based on the way
it is pronounced. This simply relates to the fact that different speakers talk
at different speeds. An HMM consists of two statistical processes, where one is
observable and the other one is hidden. An HMM consists of discrete states s ∈ S.
The acoustic observations are emitted at each state when the HMM is traversed
along a sequence of states s. In the AM, the underlying state is unknown and
only the output, that means, feature vectors o are observable. Using HMMs as
statistical model for the AM, the probability of feature vectors can be calculated
as

P (o|w;λ) =
∑
s

P (o, s|w;λ). (13)

The summation only has to be carried over all states s that are contained in the

11

word sequence. Using Bayes’ rule, the above equation can be rewritten

P (o|w;λ) =
∑
s

K∏
k=1

P (ok|o[1 : k − 1], s, w;λ) · P (sk|o[1 : k − 1], s[1 : k − 1], w;λ).

(14)

This can be simplified with a first-order Markov assumption, that means, the
current state and feature vector only depend on the previous state

P (o|w;λ) =
∑
s

K∏
k=1

P (ok|sk, w;λ) · P (sk|sk−1, w;λ). (15)

P (ok|sk, w;λ) is the emission probability of a feature vector ok in state sk.
P (sk|sk−1, w;λ) is the transition probability from state sk−1 to the next state sk.
For the emission probability P (ok|sk, w;λ), Gaussian Mixture Models (GMM)
with Θ = {cm,µm,Σm} are used. Each mixture has a weight cm, a mean vector
µm, and a covariance matrix Σm. The probability density to observe a feature
vector ok by GMM m is calculated as a sum over all mixture components

fX(ok|Θ) =
M∑

m=1

cmNm(ok|µm,Σm). (16)

HMM and GMM parameters can be estimated jointly using Baum-Welch algo-
rithm [6].

An example of an HMM with three states is shown in Figure 3. The HMM
is always entered in the first state, because the initial transition equals zero for
any other state but state s1. All states have an outgoing transition except the
last one s3 which means that this is the final state of the HMM (marked by the
double lines). The model in Figure 3, is a linear HMM which has only transitions
to the next state or a self-loop. This type of HMMs is commonly used in speech
recognition. The HMMs for multiple phonemes are concatenated to form a model
for a triphone. The number of all possible triphones is very high, so that we
might not observe all triphones in the training data. In such case, triphones can
be decomposed into monophones and the parameters among different triphones
can be shared and clustered.

AMs using GMM-HMM have been used for a long time and they are still very
robust for example in low-resource applications. More recently, hybrid models

12

s1 s2 s3
a1,2

a1,1

a2,3

a2,2 a3,3

Figure 3: An example of a tri-state HMM.

which use a deep neural network (DNN) in the AM showed better performance
than GMM-HMM models. In a hybrid system, the DNN is used to calculate the
posterior probabilities of the HMM states from a window of acoustic features.

2.1.3 Language Model

In natural language, words rarely occur as isolated events. They are usually
concatenated in a sentence and the formation of sentences is restricted by the
grammar of a language. Language Models (LM) are used to encode the syntax
and semantic of a language.

An LM calculates the overall probability for a sequence of words P (w) of
length L. The probability for a word in the sequence is a conditional probability
depending on the previous words

P (w) = P (w1) · P (w2|w1) · . . . · P (wL|w[1, . . . , L− 1]) (17)

=
L∏
l=1

P (wl|w[1, . . . , l − 1]). (18)

When calculating the joint probability for every word in a sentence, the context
length increases from word to word. Due to the high amount of different possible
sentences it is impossible to train an LM which accounts for the whole word
history in a sentence. In practice, the Markov assumption is used and the history
is shortened accounting for the last M − 1 words. These M -Grams calculate the
probability of a word sequence as

P (w) =
L∏
l=1

P (wl|w[l −M + 1, . . . , l − 1]). (19)

Here, we will briefly describe the case of M = 3, that is a trigram LM. A more
general overview of count based LMs will be given in Chapter 2.2. The parameters

13

of an M -Gram are estimated from the relative frequencies of the training data.
For example, the probability for a trigram LM can be estimated by

P̂ (wl|wl−2, wl−1) =
C(wl, wl−1, wl−2)

C(wl−1, wl−2)
, (20)

where C(wl, wl−1, wl−2) is the word count for the word sequence wl, wl−1, wl−2.
An M -Gram is thus a maximum likelihood estimate of the training data.

However, it is very unlikely that every possible combination of words exists in
the training data. To make the M -Gram robust against unseen events, smoothing
strategies for obtaining an estimate for these events exist. Smoothing techniques
shift probability mass of frequently occurring events to unseen events. They are
distinguished between interpolation and back-off. In interpolation, the probabil-
ity from a lower-order M -Gram is linearly interpolated with the full M -Gram

P̂ (wl|wl−2, wl−1) = α(wl|wl−2, wl−1) + γ(wl−1)β(wl|wl−1), (21)

where γ(wl−1) is a normalisation term.
Back-off, in comparison, estimates the probability of unseen events by backing-

off to lower-order M -Grams

P̂ (wl|wl−2, wl−1) =

α(wl|wl−2, wl−1), if C(wl, wl−1, wl−2) > 0

γ(wl−1)β(wl|wl−1), otherwise.
(22)

M -Grams estimate word probabilities in high-dimensional discrete space. This
space does not consider any word similarities which lead to the development of
other LMs beside M -Grams. One of these is a neural network LM (NNLM).
NNLMs project all the words into a common low-dimensional continuous valued
space. There are two main types of NNLMs, which are based on feed forward
networks and recurrent neural networks.

2.1.4 Lexicon

As mentioned in the previous sections, the AM uses phonemes as modelling unit.
However, the LM used in ASR is based on words. To estimate the probability
P (o|w;λ)P (w) of the AM and the LM, a mapping from words to phonemes is
needed. The lexicon provides this pronunciation mapping. According to the
entries in the lexicon, HMMs for different triphones are concatenated to form the
AM for a word.

14

2.1.5 Decoder

Given LM, AM, and lexicon, the decoder tries to find the most likely word se-
quence, i.e., optimising the initial problem

ŵ = argmax
w

P (o|w;λ)P (w). (23)

A solution to this problem is given by Viterbi decoding [141, 3]. An alternative
is the A∗ algorithm [52] where a search tree is decoded in depth-first manner.
Since the search space grows exponentially, it is important to prune unpromising
search hypothesises. One such pruning technique is beam search. This, however,
does not guarantee anymore that the optimum solution is found.

After a first-pass decoded result is obtained, more complex models can be
applied to improve the decoding result. From the decoder a list of n-best hypoth-
esises can be obtained, which can be re-ranked using for instance NNLMs.

2.1.6 Evaluation Metric

Throughout this thesis there are two important evaluation metrics. For isolated
evaluation of an LM, perplexity (PPL) is used. The PPL of a word sequence w

of length L is defined as

PPL(w) = P (w)−
1
L (24)

=

(
L∏
l=1

P (wl|w[1, . . . , l − 1]

)− 1
L

(25)

= 2−
1
L

∑L
l=1 log2 P (wl|w[1,...,l−1]). (26)

PPL can be interpreted as the average number of words the LM has to choose from
at each word prediction. It thus is a metric that defines how large the decision
tree is. The logarithm of base two of the PPL is equivalent to the entropy of the
model

H(w) = log2 PPL(w) (27)

= − 1

L

L∑
l=1

log2 P (wl|w[1, . . . , l − 1]). (28)

15

For evaluation of the whole ASR system, Word Error Rate (WER) is used.
For an utterance of length L WER is defined as

WER =
Substitutions+Deletions+ Insertions

L
. (29)

It is defined for the smallest number of operations (substitutions, deletions, in-
sertions) that is required to change the decoded utterance to the ground truth
utterance. WER can be used to measure the performance of a whole ASR system
by counting the mistakes in the output of the system compared to the reference.
However, it is only a measure of the combined model and might not show the
effect of a single component.

2.2 Count-based Language Models
Count-based LMs are an essential part of an ASR system. Their major advantage
is that their parameters can be estimated at low computational cost. This allows
to apply the model to large amounts of training data with a large vocabulary
size. In addition, these models are an essential part for decoding. Count-based
LMs can also be used jointly with NNLMs by linear interpolation to improve the
performance of NNLMs. Chapter 2.1.3 already gave a brief introduction on LMs
and their application in an ASR system. This section introduces count-based
LMs in more detail. This includes an overview of common smoothing techniques
and extensions like class-based LMs and cache LMs.

2.2.1 M-Gram Language Models

An M -Gram is an approximation for predicting a word wl in a word sequence w.
The Markov assumption is applied to truncate the word history to the previous
M−1 words. That means the conditional probability for the whole word sequence
is shortened

P (w) =
L∏
l=1

P (wl|w[1, . . . , l − 1]) (30)

=
L∏
l=1

P (wl|w[l −M + 1, . . . , l − 1]). (31)

16

For notational convenience, the history of a word wl in an M -Gram w[l −M +

1, . . . , l − 1] will be denoted by h for the remainder of this section. In ASR
systems, bigrams M = 2 or trigrams M = 3 are used for decoding. M -Grams
with longer history can be used after a decoding result is obtained in a rescoring
step.

The conditional probability in (31) for an M -Gram is obtained by a maximum
likelihood estimate on the training data. For an M -Gram with arbitrary history
lengthM , the conditional probabilities are estimated from the relative frequencies
of the word sequences in the training data

P̂ML(wl|h) =
C(wlh)

C(h)
. (32)

C(·) denotes the count of a word sequence, and the word sequences wlh and h

are the M -Gram and its context, respectively. As the history length M increases,
the observations of these M -Grams in the training data decrease. For instance,
if the vocabulary size |U| is 10.000 words, the number of possible trigrams would
be 10.0003 = 1012. This means, many of these trigrams will not be observed in
the training data and the probability estimate for these trigrams will be zero.
However, if the output probability of the LM is zero for a word, according to (3)
this word cannot be output by the ASR system. To obtain non-zero estimates for
all M -Grams, which are not observed in the training data, smoothing techniques
are applied.

2.2.2 Smoothing Techniques for M-Gram Language Models

The goal of smoothing techniques is to assign probability mass to unseen M -
Grams in the training data. Depending on the smoothing technique, there are
existing different ways to redistribute the probability mass. In general, we dis-
tinguish between back-off and interpolation. A smoothing technique based on
back-off uses the probability estimate of a lower-order M -Gram in case its count
is zero

P̂back−off(wl|h) =

α(wl|h), if C(wl|h) > 0

γ(h)β(wl|w[l −M + 2, . . . , l − 1]), otherwise,
(33)

17

where α(wl|h) denotes the higher order estimate, γ(h) is a constant such that all
probabilities sum up to one, and β(wl|w[l−M +2, . . . , l− 1]) the lower-order M -
Gram estimate. For notational convenience, this lower-order shortened history
will be denoted as g = w[l −M + 2, . . . , l − 1]) for the remainder of this section.

A method relying on interpolation will always interpolate the higher order
estimate with the lower-order estimate

P̂interpolate(wl|h) = λ(wl|h)α(wl|h) + (1− λ(wl|h))β(wl|g). (34)

λ(wl|h) is an interpolation parameter that again should ensure that the probabil-
ities sum up to one. A comprehensive overview of different smoothing techniques
for M -Grams was provided in [21, 46]. Here, only a few major techniques are
introduced.

When word sequences only appear a few times (one to three) in the whole
training set, their probability is generally greatly overestimated [46]. If a larger
size training set is available, their number of appearances might still be the same,
which in turn means that their probability would be much lower. It might also
just happen by chance that a particular word sequence from many with the same
history occurs but none of the others. For instance, this could be the case for word
sequences containing weekdays, where examples with “Monday” and “Tuesday”
are contained in the training data, but none for the remaining days of the week.
For this reason, in the Good-Turing [45] estimation modified counts are used.
In modified counts r∗, an M -Gram that occurs r times in the training data is
pretended to occur r + 1 times

r∗ = (r + 1)
nr+1

nr

, (35)

where nr is the number of M -Grams that occur r times. The modified counts
r∗ will usually be lower than the original counts r. This is according to the
intention to lower the overestimate for rare M -Grams. By modifying the counts,
probability mass is left over which can be attributed to unseen events. This Good-
Turing estimation is used in Katz smoothing [78]. Katz smoothing uses modified
counts for word sequences that occurred in the training data and it backs-off to

18

a lower-order M -Gram for unseen histories

P̂Katz(wl|h) =

C∗(wlh)

C(h)
, if C(wlh) > 0

γ(h)P̂ML(wl|g), otherwise.
(36)

C∗(·) denotes the count for an M -Gram where the count is modified according to
(35). In Katz smoothing, the modified count is divided by the true count of the
context to derive the estimates of observed M -Grams. The weight γ(h) assures
that the probabilities sum up to one and the probability “mass” is proportionally
redistributed from M -grams which appear in the training data to those which do
not.

In Katz smoothing, the back-off probability assigns an over-estimate to words
that appear usually only in certain contexts. For example, currencies like “dollar”,
“euro”, or “yen” are likely to appear after a number, or the word “Francisco” is
likely to appear after “San”, but all these words are unlikely to appear after a
word like “on”. This problem of overestimates appears especially for words with
low count and the model uses back-off in the case of low or zero counts.

Kneser-Ney smoothing [101, 82] addresses this problem by using a modified
back-off distribution. For the estimates of observed events, absolute discounting
[100] with a single discount paramter D is used

α(wlh) =
C(wlh)−D, 0

C(h)
. (37)

Kneser-Ney smoothing was motivated by marginal constraints. In general, the
marginal distribution of the joint distribution P (h,wl|g) should be identical to
the given distribution P (wl|g)

P (wl|g) =
∑
∀h

P (h,wl|g). (38)

For instance, for a unigram and a bigram, the marginal constraints are given by

P (wl) =
∑
wl−1

P (wl, wl−1), (39)

P (wl|wl−1) =
∑
wl−2

P (wl, wl−2|wl−1). (40)

19

These marginal constraints should be fulfilled for a well-designed probability dis-
tribution, however, they are not fulfilled for most conventional backing-off es-
timates relying on relative frequencies. Using these marginal constraints, the
back-off β(wl|g) can be derived as

β(wl|g) =
C+(·, g, wl)

C+(·, g, ·)
, (41)

C+(·, g, w) =
∑

w:C(g,w)>0

1, (42)

C+(·, g, ·) =
∑
w

C+(·, g, w), (43)

where C+(·, g, w) = |{g|C(wg) > 0}| denotes the number of distinct contexts g

the word w can appear in. For instance, the unigram back-off β(wl) is given by

β(wl) =
C+(·, wl−1, wl)∑
w C+(·, wl−1, ·)

. (44)

Combining this back-off probability (41) and the estimate for observed events
using absolute discounting (37), the combined formula can be written as

P̂KN(wl|h) =

C(wlh)−d,0

C(h)
, if C(wlh) > 0

γ(h)C+(·,g,wl)
C+(·,g,·) , otherwise.

(45)

A modification of Kneser-Ney smoothing is modified Kneser-Ney smoothing
[22]. Whereas in Kneser-Ney smoothing a single discount parameter D is used for
all M -Gram counts, in modified Kneser-Ney smoothing, the discount parameters
D depends on the M -Gram count. The back-off probability is unchanged from
normal Kneser-Ney smoothing.

In smoothing methods using back-off, the estimate is backed-off to the lower-
order M -Gram when the count of the higher order M -Gram is equal to zero.
However, smoothing methods based on interpolation always interpolate the higher
order model with the lower-order model. One method for interpolation is Jelinek-
Mercer smoothing [74]. In cases where the higher order M -Gram cannot be
estimated from the training data, the lower-order ones are used. In Jelinek-
Mercer smoothing the maximum likelihood estimate (32) is interpolated with a
lower-order model

P̂JM(wl|h) = λ(wl|h)P̂ML(wl|h) + (1− λ(wl|h))P̂JM(wl|g). (46)

20

The lower-orderM -Gram in the above equation is defined recursively. The lowest-
order M -Gram can thus be the unigram (P (wl)) or the zero-gram, that is, the
uniform distribution over the vocabulary size

P̂zero(wl) =
1

|U|
. (47)

The interpolation coefficient can be estimated efficiently with the Baum-Welch
algorithm [6, 108] on held-out data when a fixed maximum likelihood estimate is
given.

2.2.3 Class-based Language Models

A drawback of count-based LMs is that these models do not learn any semantic
information. Semantically similar words are treated as different events. For
instance, an M -Gram LM treats all days of the week as a different word, whereas
they are likely to appear in the same context. Class-based LMs [17, 47] try to
mitigate this shortcoming by clustering words into semantically similar classes.
A class-based LM defines a mapping from the vocabulary U to a set of word
classes C. The probability estimate of a word can be derived by multiplying the
conditional probability of the word class Cl with the M -Gram probability given
the word class

Pclass(wl|h) = P (Cl|Cl−1) · P (wl|Cl). (48)

P (Cl|Cl−1) is a bigram estimate over word classes and P (wl|Cl) gives the mem-
bership probability of wl belonging to Cl. Using word classes showed to improve
Word Error Rate (WER) in ASR for small data sets compared with using only
an M -Gram LM, but the gains vanish when more training data is available [46].

2.2.4 Cache Language Models

M -Gram LMs have only a very limited history. However, there might be words in
the more distant past relevant for prediction of the current word wl. Cache LMs
[83, 75, 24] were introduced to extend the short M -Gram history by a dynamic
longer history. Cache LMs are like M -Grams estimated from relative frequencies.
However, they use a context window of the most recent words to derive the

21

estimate dynamically. Cache LMs are not used as stand-alone LM. Usually, the
estimate from the cache is used in a linear interpolation with a smoothedM -Gram

Pngram−cache(wl|h) = λP (wl|h) + (1− λ)Pcache(wl|h), (49)

where Pcache is the probability estimated from relative frequencies over the cash.
Experiments showed large perplexity (PPL) improvements when using cache LMs.
However, improvements in ASR were harder to achieve because errors in the
recognition result affect the cache [46].

2.3 Neural Network Language Models
Despite their simplicity, there are several disadvantages of count-based LMs, as
pointed out in Chapter 2.2. By increasing the history length, M -Grams become
increasingly sparse and their parameter size grows exponentially. In addition,
count-based LMs do not consider any semantics. For these models, the singular
or plural of a word, or different days of a week, which might be likely to appear
in the same context, all represent different events. Because M -Grams consider
words and counts as discrete events, they are known to not generalise well for
unseen events.

In this section, a different paradigm for language modelling will be described.
These language models are based on Neural Networks (NN). NNs showed superior
performance in many tasks such as AMs for ASR, and machine translation to
name just two examples. NN-based LMs (NNLM) use a continuous valued space.
All words are embedded into this (usually) low dimensional space. In this space, it
is possible to encode semantics of similar words. This property can be illustrated
by the following example.

The party will be on Monday.
My friend’s birthday will be next week.
Observing a couple of these examples in the training data will give higher

probabilities to sentences with a more general pattern.
[Event] will be [time].
However, not all of these possible examples might be observed in the train-

ing data. For NNLMs, the two paradigms feed-forward and Recurrent Neural
Network LMs (RNN-LMs) exist, which will be described in the following.

22

wl−1

wl−2

xl

hl

ŵl

U (w)

U (w)

U (h)
V (w)

Figure 4: Trigram feed-forward neural network language model.

2.3.1 Feed-Forward Neural Network Language Model

Before the application to LMs, NNs were successfully applied to LM related
tasks such as word category prediction [97]. LMs based on feed-forward NNs
were first proposed by Yoshua Bengio et al. [11, 12]. However, the computational
constraints were very high and there had to be made many compromises on the
model. Holger Schwenk et al. [116, 117] were among the first to explore the
application of feed-forward NNLMs to tasks like ASR. An overview for feed-
forward NNLM was published by Holger Schwenk in [115].

Feed-forward NNLMs are similar to count based models. They use a fixed size
context window of past words, which means they use a shortened word history.
As with M -Grams, these models rely on the Markov assumption and model the
probability of a word sequence as

P (w) =
L∏
l=1

P (wl|w[l −M + 1, . . . , l − 1]), (50)

where M is the order of the model. The architecture of a trigram feed-forward
NNLM is shown in Figure 4. The model uses as input the last two preceding
words. Each word is represented by a word ID, which is encoded in a word vector
w. The dimensionality of this vector is the size of the vocabulary |U|. In the
word vector w, all dimensions except for the active word ID are set to zero. This
encoding is called a one-hot vector and it allows for efficient computation of the
network input.

23

Subsequently, the input words w are projected into a lower-dimensional em-
bedding space by a shared projection matrix U (w)

xl = [U (w),U (w)][wl−1,wl−2]
T. (51)

For convenience, the above equation uses block matrix notation. The projections
of all input words are concatenated to form the input vector xl to the hidden
layer. Feed-forward NNLMs usually use a single hidden layer with a hyperbolic
tangent or sigmoid non-linearity f(·)

hl = f(U (h)xl + b
(U,h)). (52)

b(U,h) is the bias vector for the hidden layer. The prediction of word ŵl is calcu-
lated by the output layer followed by the softmax function

ŵl = softmax (V (w)hl), (53)

where the softmax function for a vector x is defined as

softmax (x) = ex∑I
i=0 exi

. (54)

The softmax function normalises the output, such that its elements sum up to
one. This is required to obtain output probabilities P (wl|w[l−M +1, . . . , l− 1])

for word wl. The size of the output layer is the size of the vocabulary |U|. This
is the computational bottle-neck, as with all NNLMs

The model learns an embedding space for the words through the projection
matrix U (w) as part of the training. In this space, semantically similar words are
projected to positions close to each other in space. As shown by Tomas Mikolov et
al. [91], this leads to a space where simple arithmetic operations on the projected
word vectors, like plus and minus, can be used to get to similar words. For
instance, subtracting the capital of Germany (Berlin) from the word vector for
Germany and adding the capital for Japan (Tokyo), will lead to a vector that is
very similar to the word vector for Japan

x(′Germany′)− x(′Berlin′) + x(′Tokyo′) = x(′Japan′). (55)

24

wl−1

hl−1

hl

ŵl

U (w)

U (h)
V (w)

xl

Figure 5: A vanilla RNN-LM as proposed in [92].

2.3.2 Recurrent Neural Network Language Model

Feed-forward NNLMs use a fixed input length which limits their history to the
sequence length of the input. This was the motivation for using Recurrent Neural
Networks (RNN) in LMs. Vanilla RNN-LMs have an Elman-type recurrent layer
[36] that enables these networks in theory to use an unlimited history. However,
the vanishing an exploding gradient problem [13] limits the effective history length
these networks can remember. Different kinds of RNN-LM architectures were
proposed [92, 128, 72], which differ in the kind of recurrent unit that is used in
the network. Here, vanilla RNN-LMs based on Elman-type recurrent networks
[92, 93] are discribed and LSTM-LMs where the recurrent layer is realised by long
short-term memory [64, 128, 127].

The vanilla RNN-LM uses an Elman-type recurrent layer as shown in Figure 5.
The input to the network is the one-hot vector wl−1 for the last word and the
hidden layer state from the previous time step hl−1

xl = [wT
l−1, h

T
l−1]

T. (56)

The current hidden state hl is calculated by multiplying the input with the cor-
responding transition matrices and applying a non-linear activation function σ(·)

hl = σ(Uxl) (57)
= σ(U (w)wl−1 +U

(h)hl−1). (58)

25

In this case, σ(·) is the sigmoid function

σ(x) =
1

1 + ex . (59)

U is the weight matrix for the input vector, which can be decomposed into U (w)

and U (h), the parts for the word and last hidden layer, respectively.
This structure is at first equivalent to a bigram LM because the output only

depends on the current word. However, by unfolding the hidden state recursively
in time, it becomes obvious that the model in theory covers an infinitely long
history

hl = σ(U (w)wl−1 +U
(h)hl−1) (60)

= σ(U (w)wl−1 +U
(h)σ(U (w)wl−2 +U

(h)hl−2︸ ︷︷ ︸
=l−1

)) (61)

= σ(U (w)wl−1 +U
(h)σ(U (w)σ(U (w)wl−3 +U

(h)hl−3︸ ︷︷ ︸
=l−2

) +U (h)hl−2

︸ ︷︷ ︸
=l−1

)). (62)

Thus, RNN-LMs are capable of calculating the probability for a word sequence
on an untruncated history unlike all other models introduced so far

P (w) =
L∏
l=1

P (wl|w1...l−1). (63)

The output of the network, that is the probability for word wl, is computed
by multiplying the hidden state with the output layer V (w) and applying the
softmax function

ŵl = softmax (V (w)hl). (64)

One of the problems of all NNLMs is the large output layer and the softmax
function. The softmax function normalises each element in the output vector
which is a computational bottle-neck for a vector of such high dimensionality.
Mikolov et al. [93] proposed to segment the output layer into two parts to speed
up the computation. This extension to the original RNN-LM is shown in Figure 6.
The vocabulary is sorted according to the word frequency and split into word

26

wl−1

hl−1

hl

ŵl

cl

U (w)

U (h)

V (w)

V (c)

xl yl

Figure 6: A vanilla RNN-LM with word classes as proposed in [93].

classes. Each word class covers words of a similar relative frequency. When
calculating the output probability, the network first calculates the softmax over
each class and in a second step the softmax over all words in the most-likely class
Cl

yl = softmax (V (c)hl) · softmax (V (w)hl)
∣∣∣
Cl

. (65)

Usually the number of classes is much smaller than the vocabulary size which
leads to a significant reduction of computational cost at a small loss of accuracy.

Although RNN-LMs in theory can cover an infinitely long history, in practice
these networks cannot be trained to exploit such a long history. Vanilla RNNs are
limited by the vanishing and exploding gradient problem [13]. During network
training, gradients are calculated and the error of a training criterion is back-
propagated through the network. These errors can get scaled by a factor larger
or smaller than one. This leads to an explosion or vanishing of the gradient over
multiple time steps (see [64] for a detailed analysis). To circumvent this problem
of recurrent networks, Hochreiter et al. [64] proposed a novel recurrent unit
which they called Long Short-Term Memory (LSTM). In this unit the gradients
are restricted to one and the LSTM cell has additional gates to enhance learning
capabilities. Using these LSTM cells, Martin Sundermeyer et al. [128] proposed
a modification of Tomas Mikolov et al.’s vanilla RNN-LM.

A single LSTM cell is shown in Figure 7. In the language model, multiple of
these cells are used in the hidden layer. Each cell uses the following equations to

27

forget gate f l

cl input gate

il

output gate

ol

hl

xl

xl

hl−1

hl−1

xl

hl−1

xl

Figure 7: A long short-term memory cell [64].

calculate its cell state cl and output hl

il = σ(W (i,w)xl +W
(i,h)hl−1 + b

(i)), (66)
f l = σ(W (f,w)xl +W

(f,h)hl−1 + b
(f)), (67)

ol = σ(W (o,w)xl +W
(o,h)hl−1 + b

(o)), (68)
gl = tanh(W (g,w)xl +W

(g,h)hl−1 + b
(g)), (69)

cl = f l ⊙ sl−1 + il ⊙ gl, (70)
hl = ol ⊙ tanh(cl), (71)

il, f l and ol are usually named the input, forget and output gate, respectively.
W ({i,f,o},w) and W ({i,f,o},h) denote the weight matrices for each gate for the word
input and the previous hidden layer, respectively. b({i,f,o}) are the bias vectors
for the respective gates. Since the above equations use vector notation, σ(·) is
the element wise sigmoid, tanh(·) is the element wise hyperbolic tangent and ⊙
denotes an element wise multiplication.

When the recurrent layer uses LSTM memory cells instead of a vanilla RNN,
in the remainder of this thesis a simplified description from the complete set of
equations in 66 to 71 will be used. To distinguish the difference between vanilla

28

wl−1 LSTM

hl

ŵl

U (w) V (w)

Figure 8: An LSTM-LM with long short-term memory as recurrent unit.

RNN-LMs and those using LSTMs, the latter one will be denoted as LSTM-LM.
Figure 8 shows the simplified model of an LSTM-LM. The input word ID is again
encoded by a one-hot vector wl−1. Then the input into the LSTM xl is calculated
using the word embedding matrix U (w)

xl = U
(w)wl−1. (72)

The LSTM computations in (66) to (71) are replaced by a single operation

hl = lstm(xl). (73)

After the output of the recurrent layer hl, the output layer V (w) and the softmax
function follow to calculate the probability for the next word ŵl

ŵl = softmax (V (w)hl). (74)

2.3.3 Neural Network Language Model Training

Training of a statistical classifier involves usually two steps. First, a training
criterion or optimisation function is defined. This is the output function the
classifier computes. Second, the derivative of this training criterion with respect
to the classifier parameters is derived and optimised by for example gradient
descend. For NNLMs the training criterion is cross entropy (CE). Adapting a
general notation, it is defined as ([34, p. 318])

CE =
L∑
l=1

C∑
c=1

tl,c log(
tl,c
yl,c

), (75)

where tl,c is the target label and yl,c the actual output of the NNLM for pattern
l and class c. The number of classes is in the case of language modelling the

29

number of words in the vocabulary U . For language modelling, we use a maximum
likelihood of the training data. In this case we assume that the training label t
is one for the target word and zero for all other output words

tl,c =

1, if wl = wcl

0, otherwise.
(76)

Using this assumption, the training criterion can be simplified using yl,c=cl as the
output of the network for the target word wcl to the following form

CE = −
L∑
l=1

log yl,c=cl . (77)

The derivative of the CE training criterion has to be taken with respect to all
parameters in the network. To update the parameters β in the NN, the following
update rule is then applied

β′ = β − η
∂CE

∂β
, (78)

where η is called the learning rate. To update parameters prior to the output
layer, the chain rule has to be applied. This training method is commonly known
as stochastic gradient descend (SGD) or error backpropagation [112] because the
errors from the output are backpropagated to the input. SGD is the simplest case,
but there also exist modifications where the parameter update rule is modified
[33]. A general derivation of the backpropagation algorithm for NNs can be
found in common literature on machine learning and pattern recognition [34, 15].
Following in this section, the parameter update will be outlined step-by-step for
the case of a feed-forward NNLM. The notation in this section follows the one
used in other literature [90, 126].

For NNLM training, first a training sample is presented to the the network.
Then the output error, that is, the derivative of the CE is calculated with respect
to the output of the network

e
(o)
l = tl − yl. (79)

e
(o)
l is the error in the output, tl the target label, that is word wl and yl is the

output of the NN. To update the parameters, the chain rule is applied to (79)

30

and the derivative is taken with respect to the parameters of the output layer
vjk ∈ V (w)

v′jk = vjk + ηhl,je
(o)
l,k . (80)

To update the parameters in the input layer, the derivative of the hidden state
hl is taken with respect to its input

e
(h)
l = (V (w)

T
e
(o)
l)⊙ hl ⊙ (1− hl). (81)

In the above equation, ⊙ is an element-wise multiplication of two vectors. (81)
uses the derivative for the sigmoid function

∂σ(x)

∂x
= σ(x)(1− σ(x)) (82)

Using this derivative, the following update rule can be used to obtain the updated
parameters for each element in the input layer matrix u

(h)
i,j ∈ U (h)

u
(h)′
i,j = u

(h)
i,j + ηxl,ie

(h)
l,j (83)

Finally, the parameters in the projection layer u
(w)
m,i ∈ U (w) are updated by one

more step of error backpropagation

e
(p)
l = U (h)T

e
(h)
l , (84)

u
(w)′

m,i = u
(w)
m,i + ηe

(p)T

l U (w)(wl−1,m +wl−2,m). (85)

The last equation can be greatly simplified since w is zero for all elements other
than the input at time l− 1 and l− 2. This means we do not have to update all
elements in the projection layer, but only those for the active word indices.

Usually, not only a single training example is used to update the parameters
but many samples are grouped in a so-called mini-batch. This makes all update
equations matrix-matrix operations. The update process is repeated for all ele-
ments in the training data. One whole sweep through the training data is called
an epoch. If we train a NNLM by SGD, the model learns the training data and
it is well known that NNs tend to overfit on the training data when trained for
many epochs. To control the training progress, a held-out data set (validation
data) is used to adjust the learning rate and the number of epochs. When the

31

ŵl

hl

wl−1

hl−1

wl−2

hl−2

wl−3

hl−3

U (w)

U (h)

V (w)

U (w)

U (h)

U (w)

U (h)

Figure 9: Training of a vanilla RNN-LM with backpropagation through time
where black lines denote the forward path and red lines the backward path.

classification performance on the validation set starts to deteriorate, the learning
rate is reduced and eventually training is terminated.

The parameter update equations as in (80), (83), and (85) can be derived in
a similar way for the recurrent layer in vanilla RNN-LMs and the LSTM cells in
LSTM-LMs [64]. However, training an RNN-LM in this manner will not make
the network learn to use the history. It effectively trains the network only as a
bigram LM. To make the RNN-LM learn to use its history, a recursive unfolding
of the recurrent layer over time as shown in Figure 9 is required. By unfolding
the recurrent layer, the network becomes equivalent to a feed-forward network
with shared parameters for the hidden layer. However, in contrast to a multi-

32

layer feed-forward NN, an unfolded RNN-LM has an input at each hidden layer.
The unfolding of the recurrent layer over time and the backpropagation of errors
through time is called backpropagation through time [95, 143, 144] (BPTT).
Vanilla RNN-LMs are only unfolded over a few timesteps (usually less than five)
because of the vanishing gradient problem.

To train RNN-LMs, the training data has to be presented in sequential or-
der because these models work on sequences. For mini-batch training it is thus
common to have different mini-batches starting at different points in the training
data. These mini-batches then proceed sequentially through the training data.

33

3. Context Information for Neural Network Lan-
guage Models

LMs prediction the probability of a word sequence. As introduced in the previous
section, M -Grams LMs and feed-forward NNLMs make this prediction using a
truncated word history. RNN-LMs have the ability to cover a long history and in
theory they can properly calculate the conditional probability for a word sequence
as given in (18).

However, for vanilla RNN-LMs the effective history is also limited and LSTM-
LMs will in practice bias their prediction on the recent word history. Besides being
able to model semantic similarities among words very well, these models might
not be able to cover a more global context of the underlying word sequence. A
text or a presentation can be thought of to cover a general topic. For instance,
a newspaper article might report news on a recent event, or someone might give
a talk on current social problems and suggestions how to handle them. Further
on, texts are usually structured into segments which should handle a consistent
line of thought. Depending on the section, there can be several sub-topics beside
the main topic. The same applies to conversations. A conversation or a meeting
covers one or multiple topics.

In addition, there is also context information beside this word history and
topic information in ASR. In ASR, there is also the acoustic signal s and the
feature vector sequence extracted from it o. This signal can contain speaker
characteristics, which could allow for adaptation to a speaker’s style when com-
bined with the LM.

In the remainder of this section, different kinds of context information are
introduced as follows. In the context of ASR, there is first the information con-
tained in the acoustic signal s, that is spectral and prosodic features. Second is
local word context as it can be exploited in caches for LMs. Third is context in-
formation from topic information. Topic information is information provided on a
document level. Here, a common context model called latent Dirichlet allocation
which has been a very popular topic model in research will be introduced. In ad-
dition, this section introduces neural network based methods to extract topic-like
information.

34

3.1 Prosodic Features
Prosodic features are one possible kind of information which can help to improve
language modelling. Prosodic information is a way to describe the speaking style.
A person’s way of speaking is characterised by many variables. Men and women
speak with a lower or a higher voice in general. Some speakers speak very fast
and fluent, while others have a slower rhythm and make many breaks. When
talking in front of a larger crowd, we tend to raise our voice so that everyone in
the audience is able to hear us. Vice versa, when we want to deliver a message
to someone secretly without anyone around us noting it, we are whistling.

These are just a few examples, but they illustrate the main points that
prosodic information consists of: fundamental frequency (or pitch), signal power,
and duration. Where duration usually refers to speaking rate or the length of
syllables or pauses in between syllables. The motivation for using prosodic in-
formation for language modelling is that studies showed that humans can make
use of prosody in their speech processing [122]. In addition, this information is
less affected by noise and channel variations compared to other spectral features
[118].

Furthermore, prosodic information is usually not captured by the AM. Fea-
tures for AM can include signal power but usually do not include the fundamental
frequency. Duration is not included explicitly either. Including prosodic features
in the LM rather than the AM uses features on a word level compared to phone
level. We might think for example that important words are stressed differently
from unimportant words. Such information could be useful in rescoring to dis-
tinguish correct from incorrect hypothesises.

In the past, prosodic information was included in several approaches for var-
ious language processing tasks. An early approach for including prosody in an
ASR system included the investigation of acoustic and lexical stress on a phoneme
level [62]. For the resolution of ambiguities in the scoring of parsing hypothesis,
[136] and [103] used automatically detected prosodic phrase boundaries.

It was also investigated if prosodic information could be modelled by statistical
models. [39] investigated the explicit modelling of word durations with GMMs.
The authors used feature vectors with phoneme durations for each word to train
the GMMs. To make the system robust against unseen words they included back-

35

off monophones as well into their system. Subsequently, using hidden events, such
as, sentence boundaries or disfluencies in an M -Gram LM was investigated in
[124]. The speech data was annotated with sentence boundaries and disfluencies,
such as, repetitions, deletions, and filled pauses. This data was then used to train
a decision tree classifier. An extension to both the afore mentioned approaches
was provided by [137], where an M -Gram model was introduced to predict the
pause duration between words from the word context.

For the task of speech under standing, Nöth et al. [102] were the first to
claim integrating prosody throughout a speech understanding system. Nöth et
al. proposed a speech-to-speech system that should translate utterances from
German to English. It was trained and evaluated on a corpus that was hand-
labelled with specific prosodic information. In an extension to maximum entropy
LMs [109, 14], Chan et al. [18] proposed to incorporate information derived from
part of speech tags and accent annotations.

Recent approaches using RNN-LMs, proposed the integration of duration and
frequency information for word prediction [40]. Prosodic features from a context
size of several syllables were used as input to the network. A similar approach
was shown by Fu et al. [38]. They used prosodic information on a word level as
an additional feature for the LM. In contrast to many of the above mentioned
approaches, Gangireddy et al. and Fu et al.’s approaches did not require any
annotation in the data for specific prosodic features. They used prosodic features
that can be calculated from the acoustic signal and did not require any special
hand-labelled data. In practise, this method is preferred because annotation for
prosody might not be available in many corpora and systems.

This is also the motivation for the prosodic features described in the remainder
of this section. The features should be computable using tools that are available
for free on the internet or their computation should follow a standard processing
scheme that is known to the public. In addition, there are other requirements
and restrictions to features. First, the information for the features should be
extractable in an ASR system. Second, the information has to be combinable
with the LM. The prosodic features introduced in the following are based on
fundamental frequency and signal power.

36

3.1.1 Fundamental Frequency

The fundamental frequency is a basic characteristic of human speech. It varies
between male and female, children and adults. The fundamental frequency or F0
is defined as “an inverse of the period of the voiced signal in each short time frame,
and a voiced segment is defined as one composed of successive short time frames
that contain voiced signals” [98]. From this definition, the task of estimating F0
can be divided into two subtasks, that is, deciding whether a segment contains
voice or not, and estimating the F0.

Various algorithms have been developed to estimate F0. Currently, state
of the art estimators are Getf0 [131], YIN [26], and SAaC [35]. The publicly
available open-source speech recogniser Kaldi [107] features an estimator that
builds on these state of the art algorithms [43]. In the experiments section 5.3,
the method described in [98] is used for estimating F0 features.

From the F0 feature vector sequence oF0, the following features are calculated
for each word:

1. Mean F0 (µF0) of all F0 feature frames Nl within one word wl (f0m)

µF0[l] =
1

Nl

ne∑
n=ns

oF0[n], (86)

where ns is the corresponding start index and ne the end index of word wl

in the F0 feature sequence.

2. The central difference of f0m between adjacent words wl−1 and wl+1, com-
monly known as delta coefficient (f0d)

∆F0[l] =
µF0[l + 1]− µF0[l − 1]

2
. (87)

The prosodic information is estimated frame-wise at a frame shift of 1 ms. To
calculate the mean F0, static word boundaries cannot be used because usually
a different amount of feature frames is included within the word boundaries for
one word wl. These word boundaries are estimated from a word-frame alignment
obtained using a speech recogniser. From the word-frame alignment, estimated
start and end times of each word can be obtained.

37

3.1.2 Signal Power

The signal power which is related to loudness is used a second prosodic feature in
this thesis. The signal power is calculated from the speech signal s[t] by taking
the square of the signal value. As for F0 features, mean (pwm) and delta (pwd)
features per word features wl are calculated.

µpw[l] =
1

Nl

ne∑
n=ns

s[n], (88)

∆pw[l] =
µpw[l + 1]− µpw[l − 1]

2
, (89)

where ns is the corresponding start index and ne the end index of word wl in the
speech signal. The speech signal in ASR is commonly an uncompressed linear
PCM audio file sampled at 8 to 16 kHz. As for F0 features, the word boundaries
for each word ns and ne are estimated from a word-frame alignment from a speech
recogniser.

3.2 Cache Memory Features
As outlined in Chapter 2.3.2, RNN-LMs [92] have the ability to learn word se-
quences, however, their learning capability is limited by the exploding and van-
ishing gradient problem[13]. This was subsequently addressed in LSTM-LMs
[64, 128]. However, recent research suggests, that even LSTMs do not have suf-
ficient memory for some tasks. Neural touring machines [49] demonstraged more
effective generalisaion beyond the training data compared to LSTMs. One of the
tasks Graves et al. trained their networks on, the model had to learn a sim-
ple sequence copy algorithm. It showed to successfully learn this algorithm and
generalising the task to sequences of arbitrary length.

Memory networks [145][125] share a similar idea. They were able to achieve
a better performance on a question answering task and a lower PPL on the Penn
Treebank dataset [88] compared with RNN or LSTM models. Using this idea,
Tran et al. [135] proposed recurrent memory networks that combine an LSTM
with the memory cell from the memory network. Tran et al. evaluated their model
in terms of perplexity on datasets for three languages and a sentence completion
task. Furthermore, stack-augmented RNNs [76] were investigated on the task

38

of learning simple algorithmic patterns. Stack-augmented RNNs are a recurrent
network that has the ability to read from and write to a stack.

However, a problem of the above methods is that they are computationally
expensive. For instance, during training the network has to learn the memory
access mechanism. This mechanism is often realised by calculating attention vec-
tors over the memory and the input to the network. For language modelling, sim-
pler ways of extending neural networks with memory, such as, pointer networks
[140, 89] and a continuous cache-based approach [48], showed to be effective. In
pointer networks, the pointers enable the network to establish direct connections
from the input to the output. This enables the network to use Out-Of-Vocabulary
(OOV) words appearing on the input of the network for word prediction. In the
continuous cache, the hidden state of the network and the true output label are
used to calculate a probability for the predicted word from the cache.

For language modelling, there have been other approaches in recent years
based on Bag-of-Words (BoW). In order to make use of the information in pre-
ceding dialogue turns, Zamora et al. [147] extended a feed forward neural network
with a cache component. The cache should keep information from previous dialog
turns because, for instance, a question in a dialogue can be related to the an-
swer following it. BoW was introduced later as a cache extension for RNN-LMs
[71, 50]. The BoW input was an exponentially decaying cache over the whole
word history.

In this section, the continuous cache [48] will be described in more detail.
Followed by a cache using BoW that is different from the one introduced in
previous research [71, 50]. The BoW cache that is introduced here uses higher-
order M -Gram information in addition to only unigrams. A similar idea has been
proposed for M -Gram by Goodman [46].

3.2.1 Continuous Neural Cache

A novel way to implement a continuous Neural Cache (NC) was presented in [48].
The cache was proposed as an extension to an LSTM-LM. It consists of a list
of tuples (hc,l,wc,l), where hc,l is the hidden state of the network at time l and
wc,l the true target label the network should predict at this time step. Items in
the cache are marked with a subscript c to distinguish them from the elements in

39

hl−3 hl−2 hl−1 hl

wl−4 wl−3 wl−2 wl−1

P̂LSTM(ŵl)

⊕
ŵl

(hc,l−3,wc,l−3)

(hc,l−2,wc,l−2)

(hc,l−1,wc,l−1)

P̂NC(ŵl)

U (w) U (w) U (w) U (w)

V (w)

λ

(1− λ)

Figure 10: Continuous neural cache model as proposed by [48] visualised for three
time steps.

the network. The input word vector wl−1 to the network is encoded as a one-hot
vector and the input to the LSTM is obtained by multiplication with a linear
layer U (w). The cache and an LSTM-LM are shown with an unfolded structure
over three time steps in Figure 10.

Denoting the elements in the cache by a subscript c as (hc,l,wc,l), the output
of the cache for each possible element k in the output vector ψl is calculated from
a cache of length N as

ψl[k] =
N∑

n=1

1ŵl[k]=wc,l−n[k]e(θh
T
l hc,l−n). (90)

1a=b is a function that evaluates to one if a is equal to b and is zero for all other
cases. θ is a positive real valued parameter that can be chosen freely.

In addition, a cosine word similarity measure instead of this hard word identity
can also be used.

ψl[k] =
N∑

n=1

(
ŵT

l wc,l−n

||ŵl||||wc,l−n||

)2

e(θhT
l hc,l−n)

40

Using a similarity measure, also semantically similar words will be assigned some
probability mass. Similar words can be expected to appear in a semantically
similar context.

The exponent of the exponential calculates an inner product of two vectors.
This value is high when the previous hidden state stored in the cache hc is similar
to the current hidden state hl of the network. By multiplying this similarity with
1a=b it is restricted only to the cases, where the previous target of the network
matches the k-th word in the output. In other words, the cache can be seen as a
similarity measure which tries to increase the probability of words with a similar
history. To obtain a probability from the cache, we can sum over all elements in
the output vector ψl of the cache and normalise all elements by this sum

P̂NC(ŵl) =
1∑

kψl[k]
ψl. (91)

As stated by the authors, an advantage of this cache architecture is that it is
not required to train the LM and the cache jointly. The joint probability for ŵl is
obtained by a linear interpolation of the output probability of the cache P̂NC(ŵl)

with the prediction of the network P̂LSTM(ŵl)

P̂ (wl) = λP̂LSTM(ŵl) + (1− λ)P̂NC(ŵl). (92)

The cache itself does not influence the parameters of the network. Therefore,
there is no increase in training time.

3.2.2 Bag-of-Words Cache

A simple form for a cache is BoW as it was used in previous research [71, 50]. A
BoW can be thought of as a list that counts how often a word appears but without
remembering when a word appeared. To obtain some time correspondence in the
BoW cache, an exponentially decaying weight was multiplied with all words up
to the current time l−1. The word appearing most recent had the highest weight
and the word furthest in the past had the lowest weight. These weighted word
vectors are summed up and input into the network.

The first approach introduced here is similar, but it does not keep a continu-
ously updated BoW. In this BoW cache realisation a cache of N entries is used.

41

The output of the cache is calculated by assigning an exponentially decaying
weight to each entry in the cache

c
(u)
l =

N−1∑
n=0

wcu,ne−n, (93)

where wcu,n is the n-th vector in the cache. The first word in the cache has the
highest weight and it decreases down to last word in the cache.

The cache itself can be thought of as an ordered list of the past N words. The
words in the list are sorted according to their frequency of appearance. When a
new word appears, it is prepended to the list. If the cache contains more than N

words after prepending the new one, the last word in the list is removed from the
cache. However, the list only contains each word once. If a word re-appears, it
is taken from its current position and inserted at the head of the list. Organising
the cache this way ensures that the most frequent words get assigned the highest
weight. This type of cache is further on denoted the unigram cache because as it
contains the information about the last most frequent N unigrams.

Since many high frequency words in a corpus, like ’the’ or ’a’, do not carry
any important information these types of words are excluded from the cache.
The frequency of all words in the vocabulary is estimated from the training data.
Likewise, it is reasonable to assume that infrequent words in the training data
are unlikely to appear often in the evaluation data. Therefore, infrequent words
are also excluded from the cache.

In addition to the unigram cache, one can also build another BoW cache
attached to each unigram for bigrams. Each word in the unigram cache has a list
with the last M words that appeared after this word. For this bigram BoW cache
the same ordering and insertion policy as for the unigrams is used. However, for
the bigram cache there is no threshold for the word frequency. The calculation for
the output of the bigram cache c(b)l is analogue to the calculation for the output
of the unigram cache c(u)l in (93)

c
(b)
l =

M−1∑
m=0

wcb,me−m. (94)

42

3.3 Text Topic Features
Texts of whatever sort can usually be grouped into larger segments that contain
a similar subject. These larger segments can span from a few sentences up to
several pages in a book. Depending on the subject that is addressed in such a
segment, different words are more likely to appear in this segment. For example,
when looking at a textbook about finances and comparing it with a textbook
about signal processing, many different terms will appear depending on the book.
Looking at each textbook in more particular, there will be chapters on different
methods. In the book about signal processing from the example, there will be
a chapter on Fourier transformation and there will also be a chapter on linear
shift invariant systems. Both chapters will use different terms for some parts but
the Fourier transformation is a basic method that will also be mentioned in the
section on linear shift invariant systems. This short example shows that a very
different vocabulary can be used depending on the subject but subjects can also
share parts of the vocabulary.

Estimating such subjects is commonly known as topic models. In information
retrieval, topic models are of interest to find related documents. An impor-
tant scheme is Salton and McGill’s term-frequency inverse-document-frequency
[113]. Words which appear frequently in a document but only rarely in a set of
documents are assumed to be characteristic terms for this document. An early
probabilistic model to estimate topics is latent semantic indexing [28]. This was
later extended to probabilistic latent semantic indexing [66]. However, the pa-
rameter size of these models grew with the number of documents. This issue was
addressed in Latent Dirichlet Allocation [16] (LDA).

In addition to these probabilistic models, more recently NNs became a popular
method for context representations. Convolutional NNs (CNN) were used as
context representation in a sentence classification task by Kim et al. [81]. Denil
et al. used CNNs for summarising documents [32]. CNNs were used for other
NLP tasks as well [77]. A method for obtaining a document representation by a
feed-forward NN was presented by Le et al. This method called paragraph vector
was very successful and extensions of this method were subsequently proposed
[20]. [84]. Lin et al. combined RNNs for word and sentence prediction in a
hierarchichal RNN for document modelling [85]. Another popular and successful

43

α θ q w

β

M

N

Figure 11: Graphical model representation of an LDA topic model.

context representation is the encoder-decoder framework [129]. Encoder-decoder
models were very successful in machine translation [5] or in the generation of
conversation responses [119] among other tasks.

The remainder of this section will briefly introduce the LDA topic model.
Features calculated from an LDA topic model were used successfully for domain
adaptation of LMs. In addition, a neural context representation based on a
Sequence Summary Network [138] (SSN) will be described.

3.3.1 Latent Dirichlet Allocation

LDA as presented by Blei et al. [16] is a generative model for estimating topics
in a collection of documents. It assumes that each document in this collection is
modelled by a mixture of an underlying set of topics. These topics are modelled
by a mixture over a set of topic probabilities. As a Bag-of-Words model, LDA
ignores the word order in a document and provides a low-rank representation of
the document, namely the number of topics. Figure 11 shos the graphical model
for LDA.

LDA describes the following generative process to generate each document in
a collection of N documents [16]

1. Sample the document lengthM from a Poisson distribution: M ∼ Poisson(ξ)

2. Choose a multinomial distribution over topics for the document by sampling
from a Dirichlet distribution parameterised by α: θ ∼ Dir(α)

44

3. For each word wm of the M words:

• Choose a topic: qm ∼ Multinomial(θ)

• Choose a word wm from the unigram distribution associated with the
topic p(wm|qm, β)

LDA has the two key parameters α and β that have to be learned during
model training. The first parameter α determines the shape of the Dirichlet
distribution θ ∼ Dir(α) over the multinomial distribution Multinomial(θ) that
is used for drawing each topic qm. β directly influences the word probabilities
p(wm|qm, β).

In the context of LMs it is important to address the specification of a document
for LDA. To train the LDA model, the training corpus has to be split into several
documents. A case where this can be done easily is, for instance, when the corpus
consists of individual talks which are appended to form the whole training set.
If the training data should consist only of a single training file, [94] suggested
to regard a chunk of several sentences as a document. However, in some cases
this violates our assumption that a unit of text, which the topic distribution is
calculated for, consists of a consistent topic. To generate features from the LDA
topic model that can be used with the LM, [94] suggested to calculate the topic
distribution for a window of past words.

An LDA topic model neglects word order and all words in a document will
contribute equally when calculating a topic distribution. When combining fea-
tures from an LDA topic model with an LSTM-LM, the LSTM also captures some
kind of context information. The cell state cl can be related to the context an
LSTM remembers. However, this state is processed by an exponentially decaying
function. That means, words further in the past have less influence on the current
output than more recent words.

3.3.2 Neural Network Context Representation

The NN context representation used in this thesis uses a sequencs summary net-
work [138] (SSN). The SSN is a feed forward NN with one or more linear layers,
each followed by a non-linearity. In this thesis, rectified Linear Units (reLU) is
used as non-linearity. Figure 12 shows an SSN.

45

wl−1

...

wl−N

SSN

SSN

yl−1

yl−N

average

U (w)

U (w)

al

Figure 12: A sequence summary network (SSN) that calculates a summary vector
from its inputs wl−1,...,l−N .

When applied to word sequences, the input to the SSN is a context win-
dow of N words [wl−1,wl−2, . . . ,wl−N]. Each element in this word sequence
is multiplied with a word embedding matrix U (w) and the word embeddings
[xl−1,xl−2, . . . ,xl−N] are input into the SSN

[xl−1,xl−2, . . . ,xl−N] = [U (w)wl−1,U
(w)wl−2, . . . ,U

(w)wl−N]. (95)

The context window covers the current word wl−1 and the previous N − 1 words.
For each input, the SSN computes an output [yl−1,yl−2, . . . ,yl−N]

yl−n = SSN(xl−n), ∀n ∈ {1, 2, . . . , N}. (96)

All outputs are averaged over the whole context window to obtain a fixed-size
vector representation of the input word sequence

al =
1

N

N∑
n=1

yl−n. (97)

This context representation al can be used as adaptation feature for the LM.

46

4. Neural Network Architectures for Context Adap-
tation

The previous section introduced different kinds of context information which can
be useful for language modelling. This section now deals with the question of how
such information can be incorporated into an LM. Different ways for exploiting
the context information in NNLMs will be introduced. The context information
will mainly be provided as an auxiliary feature. Different ways on how this
feature can be input into the NNLM and effectively improve word prediction will
be described. As basic NNLM architecture, an RNN-LM is used in this thesis. As
recurrent unit, mainly LSTM will be used. This section introduces different ways
how a common LSTM-LM can be modified to include the context information.

4.1 Input Enhancement

wl−1

al

LSTM

hl

ŵl

U (w) V (w)

U (a)
V (a)

Figure 13: LSTM-LM feature-based adaptation with Context dependent LSTM-
LM (contLSTM).

A simple way to use the context information is to extend the input of the
network to include an auxiliary feature al. Figure 13 shows this extension as
originally proposed for RNN-LMs [94, 23] and also used with LSTM-LMs [120].
The input xl can be written as

xl = U
(w)wl−1 +U

(a)al + b
(U,a), (98)

47

where U (a) and b(U,a) are the weight matrix and bias vector for the adaptation
features, respectively. This model will be referred to as context dependent LSTM-
LM (contLSTM) in the following. In addition to using the feature on the input of
the network, the adaptation feature can also be connected with the output layer
directly.

ŵl = softmax (V (w)hl + b
(V,w) + V (a)al + b

(V,a)), (99)

where V (a) and b(V,a) are the weight matrix and bias vector of the linear layer con-
necting the adaptation feature vector to the output. Introducing this connection
is motivated by maximum-entropy LMs.

For RNN-LMs, this adaptation scheme achieved a significant PPL reduction
compared with a vanilla RNN-LM when LDA features [94] or prosodic features
[40] were used as auxiliary features. The PPL reduction with LDA features can
be explained to some extent by the vanishing gradient problem that RNNs suffer
from [13]. The long context information provided by the adaptation features can
circumvent this problem. However, in combination with LSTM-LMs the relative
PPL reduction achieved by this method was not as large as with vanilla RNN-LMs
[120].

4.2 Cache and Memory Augmentation
4.2.1 Connected Neural Cache

In Chapter 3.2.1, a continuous NC was introduced. The output of the cache was
interpolated with the output from the LM to obtain a probability estimate for
the combined model in (92). Here, a way to connect the NC directly with the
NN is presented. Figure 14 shows the combination of the continuous NC and the
LSTM-LM. The cache is connected at two points. A linear layer with transition
matrix U (nc) connecting the output from the cache h(nc) to the input of the LSTM
is added. The input to the LSTM can thus be formulated as

xl =U
(w)wl−1 +U

(nc)h
(nc)
l . (100)

The cache is also directly connected to the softmax by a linear layer V (nc)

ŵl =softmax (V (w)hl + V
(nc)h

(nc)
l). (101)

48

wl−1 LSTM

hl

⊕
ŵl

(hl−3,wl−3)

(hl−2,wl−2)

(hl−1,wl−1)

cache

c
(nc)
l h

(nc)
l

U (w) V (w)

V (nc)
U (nc)

Figure 14: Continuous connected neural cache with an LSTM-LM.

The continuous NC in Chapter 3.2.1 uses only a single interpolation factor for
all words. By connecting the NC to the network with linear layers, the network
can learn interpolation weights for each word through error backpropagation.
During training, the parameters of the network can be jointly optimised with the
cache. This should enable the network to learn better interpolation weights for
each individual word.

Calculating the output of the cache can be computationally expensive. There-
fore, the cache is combined with a pre-trained LM and only the weights in the
linear layers for the cache U (nc) and V (nc) are trained. The parameters of the base
model are left unchanged except for the linear layer before the softmax V (w).

4.2.2 Bag-of-Words Cache

Chapter 3.2.2 introduced a cache that was a list of the last N most frequent
unigrams. For each unigram, it could hold the last M most frequent bigrams.
This cache can be connected via linear layers to an LSTM-LM in the same manner

49

wl−1 LSTM

hl

⊕
ŵl

...

cache

unigram bigram

c
(u)
l

c
(b)
l

h
(u)
l

h
(b)
l

U (w) V (w)

y(t)

U (u)

V (u)

V (b)

U (b)

Figure 15: BoW cache extension for an LSTM-LM.

50

as the continuous NC in Chapter 4.2.1.
This connection is shown in Figure 15. The unigram cache is highlighted in

red and the bigram cache is highlighted in blue in Figure 15. The output of both
caches is a vector of the vocabulary size. These vectors are compressed to the
same size as the number of LSTM units by a linear layer with a subsequent non-
linearity. Here, reLU was used as non-linearity. This dimensionality reduction is
used to reduce the computational complexity. The number of hidden units in the
LSTM is usually significantly smaller than the number of words in the vocabulary
U . With h(u)

l and h(b)
l denoting the outputs of the hidden layer for the unigram

and bigram cache, respectively, the input to the LSTM can then be written as

hl =U
(w)wl−1 +U

(u)h
(u)
l +U (b)h

(b)
l , (102)

where U (u) and U (b) are a linear layer connecting the vectors to the LSTM.
Both outputs of the hidden layer h(u)

l and h(b)
l are also added to the output of

the LSTM before the softmax. A linear transformation is applied on both vectors
and the input to the softmax can be written as

ŵl =softmax (V hl + V
(u)h

(u)
l + V (b)h

(b)
l). (103)

The direct connection of the cache output to the network output is inspired by
several previous research. [50] proposed using a direct connection when using an
RNN-LM. To a further extend, it is also related to the idea of highway networks
[121] and residual connections [53], which have proven useful when training deeper
networks.

4.3 Domain Adaptation Architectures
This section introduces different network structures for domain adaptation of
LMs. Usually, LMs are trained on general-domain text data covering a large
variety of domains. However, domain specific language models achieve lower
PPL and WER in ASR compared with general-domain LMs. Therefore, the
adaptation of general-domain LMs to specific topics has been an ongoing research
interest. For M -Gram LMs, a comprehensive overview of adaptation techniques
was provided in [110] and [8]. M -Gram adaptation with topic model information

51

ŵl

⊕
RNN hl

wl−11, . . . , 0

U (w)

V (w)

V

V (a)

backprop
↓

(a)

ŵl

⊗
RNN hl

wl−11, . . . , 0

2σ

U (w)

V (w)

V

U (a)

backprop
↓

(b)

Figure 16: Examples for model-based domain adaptation using (a) a linear hidden
network and (b) learning hidden unit contributions. The inputs to the adaptation
layers are a one-hot vector encoding the domain information and the weights for
this one-hot vector are learned in re-training by error backpropagation.

such as LDA features was presented in [132, 54, 86, 142, 51]. There were also
domain-adaptation approaches for other LM types, such as maximum entropy
LMs [109, 14, 31, 80, 2].

Commonly, two paradigms for domain adaptation of NNLMs are distinguished,
that is, model-based and feature-based domain adaptation. In model-based adap-
tation, the parameters in the network are adapted with in-domain data in a two-
step process. First, a general LM is trained, where often an adaptation layer
is inserted into the network. In the second step, the weights in this adaptation
layer are updated using in-domain data. Model-based adaptation has been used
for feed-forward NNLMs [105, 1] and RNN-LMs [133]. Recently, model-based
adaptation with a Linear Hidden Network [42, 7] (LHN) was proposed. Fig-
ure 16 (a) shows model-based adaptation with an LHN. An LHN adds a linear
hidden layer in the network without a subsequent non-linearity. As input to this
linear layer, the authors used the output of the RNN and a one-hot label encoding
the domain. The weights in this linear layer are learned during re-training.

A slightly different approach for model-based adaptation uses a gating mech-
anism. In AM adaptation, a method called Learning Hidden Unit Contributions

52

[130, 114] (LHUC) has been previously proposed. In this case, the speaker adapta-
tion data is used to apply a gating mechanism to the hidden units of an NN-based
AM. In [41], the application of LHUC to RNN-LMs was investigated. This model
is shown in Figure 16 (b). The authors applied the concept of LHUC to the out-
put of the hidden layer and the adaptation weights were learned from in-domain
data. The authors showed improvements for PPL and N-best rescoring.

However, with little adaptation data, model-based adaptation can be a prob-
lem because the adapted models are prone to overfitting [41]. In addition, model-
based adaptation requires domain labels throughout the whole corpus. Creating
this annotation is expensive.

Compared with model-based domain adaptation, feature-based domain adap-
tation has the advantage that it does not require domain labels in the corpus. In
feature-based adaptation, an adaptation feature such as topic information from
LDA [16] is used. The LM is trained with the adaptation feature to adapt its
activations in the network to the topic information. Usually, the input of the
network is extended by additional domain specific features, such as the network
structure presented in Chapter 4.1. Many methods have been proposed, where
these features act as a domain dependent bias. For RNN-LMs, the first proposed
approach was a context dependent RNN-LM [94], which used LDA features to al-
low the network to exploit information from a context window of the current word.
This method has also shown to be successful for RNN-LMs [23] on multi-domain
broadcast data in the MGB Challenge [7]. The authors showed that feature-
based domain adaptation outperforms model-based adaptation in the context of
the MGB Challenge. Domain adaptation has mainly been proposed using vanilla
RNN-LMs. Soutner et al. [120] proposed the domain adaptation of an LSTM-
LM, using the same adaptation mechanism as for context dependent RNN-LMs
[94]. A feature-based adaptation mechanism using a gating on the word vectors
was proposed in [148]. The authors combined information from in-domain and
general-domain word vectors.

In the remainder of this section, three different approaches for feature-based
domain adaptation of NNLMs are presented. The first one is a feature-based
realisation of an LHN (fLHN). The second one is feature-based LHUC (fLHUC).
The third one is factorised hidden layers. RNN-LMs have been the main target

53

wl−1

al

LSTM

hl

⊕
d
(bias)
l

ŵl

U (w) V (w) V

V (a)

Figure 17: LSTM-LM feature-based model adaptation with Linear Hidden Net-
work (fLHN-LSTM).

of domain adaptation techniques presented in the literature, but LSTM-LMs are
currently the state-of-the-art. For this reason, LSTM will be used as recurrent
unit in all NNLMs. In addition, all compared adaptation methods work in an
unsupervised manner, that means, these methods do not require any domain label
in the training data. This setting is more relevant in practice because LMs can
be trained on large text corpora of many million words. It would be costly and
time intensive to annotate such large corpora by humans.

4.3.1 Feature-based Linear Hidden Network

Recently, domain adaptation with a linear hidden network (LHN) was proposed
as model-based adaptation method for vanilla RNN-LMs [27]. Since the focus of
this thesis is on feature-based adaptation methods, an LHN adaptation layer is
used with LDA topic features instead of a domain label as input. To distinguish
the feature-based approach from the model-based approach, this is denoted by
fLHN-LSTM. Figure 17 shows the network structure for an fLHN-LSTM. The
LHN introduces an additional linear layer between the LSTM and the output
layer. Since the output d(bias)

l of this intermediate linear layer is not followed by
a non-linearity, it is called a linear hidden network.

The LHN takes two inputs. First, the LDA features al that are transformed
by a linear layer with weight matrix V (a) and bias vector b(V,a). Second, the

54

output of the LSTM hl that is also transformed by a linear layer with weight
matrix V (w) and bias b(V,w)

d
(bias)
l = V (w)hl + b

(V,w) + V (a)al + b
(V,a). (104)

From the above equation, it becomes visible that the LHN introduces a topic
dependent bias term (V (a)al + b

(V,a)). After the LHN follows a linear layer V
and the softmax function to calculate the probability for the current word ŵl

ŵl = softmax (V d(bias)
l + b(V)). (105)

The LDA features are input to the LHN during network training and evaluation.

4.3.2 Feature-based Learning Hidden Unit Contributions

LHUC was first introduced for AM adaptation in ASR. It was also applied as
model-based adaptation method to vanilla RNN-LMs [41] and it showed to reduce
PPL and WER compared with a vanilla RNN-LM. Here, LHUC is introduced as
a feature-based adaptation method. The adaptation weights used in LHUC are
calculated from auxiliary features in a similar way to what has been proposed
as subspace LHUC [114]. For NNLM domain adaptation, LHUC is used in a
similar scheme to fLHN-LSTM, as shown in Figure 18. Feature-based LM domain
adaptation with LHUC will be in the following denoted by fLHUC-LSTM.

The adaptation parameters in fLHUC are calculated from the LDA features.
The features are multiplied with a linear layer, followed by a sigmoid non-linearity
and an amplification by two

h
(a)
l = 2σ(U (a)al + b

(U,a)), (106)

where U (a) and b(U,a) are the weight matrix and bias vector of the linear layer
connecting the LDA feature vector. The amplification of the sigmoid function is
introduced to compensate for the reduced amplitude of some nodes. The multi-
plication with the sigmoid non-linearity sets some of the outputs of the LSTM
to zero. To keep the amplitude of the activations in the output layer on approx-
imately the same level, in [130, 114] it was suggested to multiply the output of
the sigmoid non-linearity by two. The adaptation parameters h(a)

l are used as a

55

wl−1

al 2σ

LSTM

hl

⊙
d
(LHUC)
l

ŵl

U (w) V (w) V

U (a)

h
(a)
l

Figure 18: LSTM-LM feature-based domain adaptation with Learning Hidden
Unit Contributions (LHUC, fLHUC-LSTM).

gate for the output of the LSTM

d
(LHUC)
l = (V (w)hl + b

(V,w))⊙ h(a)
l , (107)

where ⊙ denotes an element-wise multiplication of two vectors. The adaptation
parameters h(a)

l have values between [0, 2] and it can be interpreted as a context
dependent gating of the units in the adaptation layer. The output layer and the
softmax function follow after the output of the adaptation layer

ŵl = softmax (V d(LHUC)
l + b(V)). (108)

The paradigm mainly used for NNLM domain adaptation in the literature is
bias-based adaptation. The model shown in Figure 19 combines bias-based adap-
tation and context dependent gating with fLHUC. The model is a combination
of the models described in Chapter 4.3.1 and this section. The model uses an
addition of both adaptation layers before output layer

d
(LHUC)
l = (V (w)hl + b

(V,w))⊙ h(a)
l , (109)

d
(bias)
l = V (w)hl + b

(V,w) + V (a)al + b
(V,a), (110)

ŵl = softmax (V (d
(LHUC)
l + d

(bias)
l) + b(V)). (111)

Bias adaptation has been shown to be effective in model-based and feature-
based domain adaptation methods and with fLHUCB we can also make use of
this adaptation mechanism. As a result, by using fLHUCB we can combine the
advantages of both bias adaptation and fLHUC-LSTM in a single model.

56

wl−1

al 2σ

LSTM

hl

⊙
d
(LHUC)
l

d
(bias)
l

⊕
ŵl

U (w)

V (w)

V (a)

V (w)

V

U (a) h
(a)
l

Figure 19: LSTM-LM domain adaptation with fLHUC and bias adaptation (fL-
HUCB).

4.3.3 Feature-based Hidden Layer Factorisation

The feature-based domain adaptation methods introduced so far usually add a
bias to the network input or output. This bias depends on the topic feature or
a (given) domain label. The factorised hidden layer-based domain adaptation
that is introduced here is fundamentally different from other approaches. The
output layer is factorised into multiple layers so-called factors, where each factor
is weighted by a factor weight. This can also be seen as a linear combination of
different subspaces.

It is also similar to a linear combination of multiple domain dependent LMs
that share a common hidden state. In comparison with a simpler model combi-
nation, hidden layer factorisation can use a much simplified training scheme. To
train a model combination or mixture of experts, the following training process
is required:

1. Train baseline general-domain LSTM-LM on the whole training set

2. Train an LDA topic model

3. Calculate topic distribution for each document (talk, lecture, conversation
etc.) in training, validation and test set

57

4. Cluster all documents according to the topic distribution

5. Create one LM for each cluster by re-training the baseline LSTM-LM on
each document cluster

6. Optimise interpolation weights of all cluster-LSTM-LMs on the validation
set

For the re-training (step (5)), the user has to decide if all weight matrices in the
LM should be retrained or only certain weight matrices. Hidden layer factorisa-
tion greatly simplifies this training process, because (1) no document clustering
is required, (2) no re-training of a baseline model is required, and (3) the op-
timisation of interpolation weights is done automatically during training. The
interpolation weights are the factor weights that are calculated from an auxiliary
network. This auxiliary network is trained jointly with the main network by stan-
dard error backpropagation. The input of this auxiliary network is a vector of
LDA features. Factorised hidden layer adaptation has been successfully applied
to acoustic model adaptation [29] and speaker aware beamforming [149].

Figure 20 shows an LSTM-LM with domain adaptation using factorised hid-
den layers. This network architecture is hereafter denoted by factLSTM. In factL-
STM, the output of the LSTM is used as an input to N linear layers with corre-
sponding weight matrix L(w)

n and bias b(L,w)
n . These layers are called factors. The

size of each factor is the number of hidden units times the vocabulary size. That
means, each factor has the same size as the output layer. Each factor is weighted
by a factor weight γn

zl =
N∑

n=1

γn(L
(w)
n hl + b

(L,w)
n)︸ ︷︷ ︸

=zn

. (112)

The sum of all factors is used as input to the softmax function

ŵl = softmax (zl) . (113)

As with the fLHN-LSTM and fLHUC-LSTM, there is no non-linearity after the
factors. There is only a multiplication with a factor weight before calculating the
probability for the current word ŵl.

58

wl−1

al σ

auxiliary network

LSTM

hl

...

⊗γ1

⊗γ2
...

⊗γN

⊕
zl

ŵl

U (w)

L
(w)
1

z1

L
(w)
2

z2

L
(w)
N

zN

U (a)

Figure 20: LSTM-LM feature-based model adaptation with factorised hidden
layers (factLSTM).

To calculate each factor weight γn, an auxiliary network is used. The input to
the auxiliary network are the topic features calculated from an LDA topic model.
This auxiliary network can be of arbitrary depth. Here, a feed-forward network
with a single hidden layer followed by a sigmoid non-linearity is used

γ = [γ1, γ2, . . . γn, . . . , γN]
T = σ(U (a)al + b

(U,a)), (114)

where U (a) and b(U,a) are the weight matrix and bias vector for the linear layer.
The parameters of the auxiliary network can be trained jointly with the main
network by error backpropagation, as shown in [30]. This means the auxiliary
network and the main network do not have to be trained in separate training
steps.

The two architectures factLSTM and fLHUC-LSTMare related to each other.
In fLHUC-LSTM, one weight is multiplied with one node, whereas in factL-
STM one weight is multiplied with one hidden layer. Comparing both methods,

59

fLHUC-LSTM has the advantage that it needs less parameters, because it does
not require multiple output layers. However, factLSTM has the advantage that
individual factors can cover more domain specific information while others can
cover general-domain information.

4.4 Unified Framework for Context Extraction and Feature-
based Adaptation

The training of LMs with feature-based domain adaptation requires several steps.
First, an LDA topic model has to be trained independently from the LM as
outlined in Chapter 3.3.1. This requires text pre-processing and the segmentation
of the training data into documents. However, the training data might not always
have this segmentation. Second, training the LDA topic model follows a very
different scheme from extracting the features. The LDA topic model is trained
on a set of documents, whereas the features are calculated from a sliding window
over the input text. In addition, the LDA features are not optimised for LM
adaptation.

Facing this scenario, it is desirable to have a more integrated approach for
feature-based domain adaptation. This is the motivation for UniFA, a Unified
framework for Feature-based domain Adaptation. UniFA is a combined approach
for training the context representation and the LM jointly in a single training
step. It does not require any text pre-processing and the training data can be
used in the same form for training the LM and the context representation. The
model learns to extract the context features itself to improve word prediction.

To obtain a context representation in this framework, an SSN as introduced
in Chapter 3.3.2 is used. The SSN learns to extract a context representation
from a fixed-size window of past words. This context representation is used in
an adaptation layer to calculate the adaptation parameters. An adaptation layer
in inserted in the LM before the output layer. In UniFA, this adaptation layer
is realised by fLHUC as introduced in Chapter 4.3.2. In comparison with con-
ventional LDA feature-based adaptation, the advantage of using such approach
is that the context representation and the LM can be trained jointly by standard
error backpropagation in a single training step. In contrast to an LDA topic

60

model, the approach does not require any pre-processing of the text data. The
SSN and the LM can both be trained using the same data.

The adaptation framework UniFA as shown in Figure 21 consists of two main
parts:

1. A context extractor network, that learns a fixed-length context representa-
tion from a window of past words.

2. An adaptation layer, where the feature extractor network’s output is used
to adapt the LSTM cells’ output.

For the context representation, a context extractor network based on an SSN
shown in Figure 21 (a) is used. SSNs were developed for speaker adaptation of
acoustic models but they are also suitable for summarising context of word vec-
tors. There are usually other more common methods for context representations
in natural language processing, but the SSN is computationally very efficient.
Because it consists of a (shallow) feed-forward network, the output can easily be
computed in parallel for the whole context window on a GPU.

More common methods for context representations in natural language pro-
cessing include convolutional neural networks [81, 77], or vector based represen-
tations like paragraph vector [84] and derivatives thereof [20]. Paragraph vector,
despite being a successful method, is not suited for UniFA because it requires
training a document matrix for each document. A row in this matrix serves
as representation for each document and the matrix has to be extended for un-
known documents in the evaluation set. Another popular and successful context
representation is the encoder-decoder framework [129], which showed to be very
successful in machine translation [5] or in the generation of conversation responses
[119], among other tasks. However for this application, such encoder architecture
would be computationally very expensive because the LSTM-based encoder has
to be run over a long (possibly a few hundred words) context window at each
word prediction.

A recent approach for LM domain adaptation which is related to UniFA was
presented by Irie et al [70]. It uses a mixture of pre-trained LSTM-LMs where
the weight for each LSTM-LM is determined by a mixer network. This mixer
network is represented by another LSTM. However, there are several differences

61

with UniFA. First, the method introduced by Irie et al. is not a pure feature-based
domain adaptation method because it requires domain information during pre-
training. Second, it is a multi-step training process whereas UniFA is a single-step
training process.

The SSN was already described in more detail in Chapter 3.3.2. Therefore, a
detailed description is omitted here. For the application in UniFA, it is important
to note that an SSN can be trained jointly with the network it is attached to by
error backpropagation. In [138], this was shown for speaker adaptation of an
AM. That means, it fulfils the requirement that the context representation is
jointly trainable with the main network. The context representation al that is
the output of the SSN is used as adaptation feature for the LM.

The context adaptation layer in UniFA is realised by fLHUC. As described in
Chapter 4.3.2, the adaptation layer is inserted after the LSTM before the output
layer. The context representation al calculated by the context extractor network
is used as adaptation feature for the fLHUC as follows

h
(a)
l = 2σ(U (a)al + b

(U,a)). (115)

U (a) and b(U,a) are the weight matrix and bias vector of the linear layer for the
output of the SSN. This linear layer is necessary to match the output dimension-
ality of the context extractor network and the adaptation layer. As described in
Chapter 4.3.2, fLHUC applies a gating function to the output of the LSTM using
an adaptation parameter

d
(LHUC)
l = (V (w)hl + b

(V,w))⊙ h(a)
l . (116)

When combining the output of the SSN with the adaptation layer, it was very
helpful to use a normalisation of the context features. In UniFA, layer normal-
isation [4] is applied to the input of the sigmoid function. This normalisation
is necessary to reduce the output of the SSN to a value range that works well
with the input range of the sigmoid function. The sigmoid function has a range
from [−4, 4] where backpropagation works well. Using a sigmoid non-linearity in
the SSN could be a way to remove the normalisation function but experiments
showed that the gradients are not backpropagated properly in this case and the
SSN does not learn a context representation.

62

wl−1

...

wl−N

SSN

SSN

yl−1

yl−N

average

U (w)

U (w)

wl−1 LSTM

hl

2σ

⊙
d
(LHUC)
l

ŵl

U (w) V (w) V

U (a)

h
(a)
l

(a)

(b)

al

Figure 21: UniFA adaptation framework with (a) the sequence summary network
(SSN) based context extractor network, and (b) LSTM-LM domain adaptation
with fLHUC.

63

5. Experiments and Discussion
This section covers the experimental results for the methods introduced within
this thesis. First, an overview of the different datasets that were used for conduct-
ing the experiments will be given. Second, the general experimental settings will
be explained. This covers the toolkits used for implementation of the models as
well as the toolkits used for the speech recognition experiments. Following these
explanations will be the experimental results and discussion for different mod-
els. For each set of experiments, the detailed experimental settings and model
training parameters are outlined before the analysis of the results.

5.1 Datasets
The experiments were conducted on four different data sets. These data sets
consisted of written language and spontaneous speech corpora. The written lan-
guage corpora comprised news articles and the spontaneous speech corpora were
mostly lecture corpora. Here more details on each data set is given.

Table 1: Overview of the Penn Treebank data set.

Set Sentences Words Vocabulary/OOV
Training 42068 887521 10000
Validation 3370 70390 —
Test 3761 78669 —

Table 1 shows the details for the Penn Treebank [88] (PTB) data set. It is
a small data set with under 1M words in the training set. The whole data set
consists of news articles from the Wall Street Journal. It has been commonly used
as a benchmark task for LMs. The vocabulary was thresholded at 10K words and
in the available pre-processed versions1 all OOVs in the validation and test sets
are already replaced by OOV tokens. Therefore, no OOV rate can be given.

Table 2 shows the details for the MIT OpenCourseWare [44] (MIT-OCW) data
set. It consists of lectures and talks from the MIT OpenCourseWare website

1http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz or https:
//github.com/tomsercu/lstm/tree/master/data

64

http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
https://github.com/tomsercu/lstm/tree/master/data
https://github.com/tomsercu/lstm/tree/master/data

Table 2: Overview of the MIT OpenCourseWare data set. The OOVs are given
with respect to the LM training set.

Set Sentences Words Vocabulary/OOV
LM Training 417611 6153008 47448
AM Training 56306 1149602 27096
Validation 3460 23720 112
Test 6989 75050 253

Table 3: Overview for the TED Talks and TED-LIUM data sets.

Set Sentences Words Vocabulary/OOV
TED Talks Training 665070 5112647 72239
TED Talks Validation 2125 17344 1
TED Talks Test 3464 26704 4
TED-LIUM Training 56803 1545951 32656
TED-LIUM Validation 507 17783 240
TED-LIUM Test 1155 27500 230

and MIT World website. The training data for the LM is a combination of
MIT lectures (1.3M words), data from the Switchboard corpus (3.1M words)
and another lecture corpus (1.7M words) (MICASE2). The data from the lecture
corpora are suited to each other, but the data from the Switchboard corpus does
not match the lecture data well. The smaller AM training set has about 1.1M
words which corresponds to roughly 100h of transcribed speech.

Table 3 shows the details for the TED talks data set and the TED-LIUM [111]
speech recognition task. The TED talks data set consists of the original subtitles
while for TED-LIUM the validation set and test set use re-transcribed talks. The
TED talks set uses subtitles from more talks compared with TED-LIUM to train
a better LM.

Table 4 shows the details for the Corpus of Spontaneous Japanese [87] (CSJ).
As ASR task for CSJ, the publicly available task [96] was used. CSJ is the
largest of all corpora used in the experiments. It consists of Japanese lectures

2http://www.hti.umich.edu/m/micase

65

http://www.hti.umich.edu/m/micase

Table 4: Overview of the Corpus of Spontaneous Japanese data set.

Set Sentences Words Vocabulary/OOV
Training 430672 7721240 70901
Heldout 10000 234145 —
Test 1 1272 27651 96
Test 2 1292 28424 106
Test 3 1385 18283 92

and presentations. The training data available for training the AM is about
500h of speech. The same data was also used to train the LM. The first 10K
utterances in the training set were used as validation set for LM training. CSJ
does not have a distinguished validation set. There are only three test sets. Test
set number three was used to determine the interpolation parameters for the LMs
in rescoring.

5.2 Common Experimental Settings
Following the introduction of the data sets, this section gives an overview of
the different toolkits used for the experiments. To train the LMs (M -Gram
and NNLM) different toolkits were used depending on the model. The SRILM
toolkit [123] was used to train M -Gram LMs. It is a commonly used toolkit
for M -Gram LMs that contains a wide functionality to train different LMs with
different smoothing techniques and also allows to use dynamic cache LMs. For the
NNLMs, two different toolkits were used. In case of vanilla RNN-LMs, Mikolov
et al.’s RNNLM toolkit [92] was used as base for the implementation. For the
experiments with LSTM-LMs, a self-implemented LM toolkit based on the deep-
learning toolkit Chainer [134] was used. The training and evaluation of these
models were based on the PTB example available online3.

As speech recogniser, two different systems were used. The first ASR system
was the NTT SOLON [67] speech recogniser. This recogniser is a proprietary
GMM-HMM-based ASR system. The second speech recogniser was the open-
source speech recognition toolkit Kaldi [107]. This recogniser allows to train

3https://github.com/chainer/chainer/tree/master/examples/ptb

66

https://github.com/chainer/chainer/tree/master/examples/ptb

DNN-HMM hybrid models and offers a large set of evaluation tasks. The tasks
and baseline results are publicly available.

The training parameters vary from experimental set to experimental set be-
cause the toolkits can be different depending on the experimental set. Therefore,
the detailed parameters are given with each experimental set.

Depending on the experiment, the following other tools were also used. To
estimate F0 contours of a speech signal, the proprietary estimator from Nakatani
et al. was used [98]. This estimator calculates F0 values and an estimate if a
speech sequence is voiced or unvoiced. To train an LDA topic model and calculate
topic features, the scikit learn [106] machine learning toolkit was used.

5.3 Re-training of Prosodically-enhanced RNN-LMs
This section summarises the experimental results for RNN-LMs enhanced with
prosodic features. The key point of these experiments was to address the imbal-
ance that can occur when an LM should be trained on both text and acoustic data.
It is not for every corpus the case that there are existing acoustic data for the
all available text data. In the experiments, retraining of RNN-LMs, rather than
training an LM from scratch is investigated. Using this method, PPL and WER
reductions for N-best rescoring on the MIT-OCW lecture corpus were achieved
over conventional RNN-LMs that only rely on textual information.

5.3.1 Experimental Setup

The experiments were conducted on the MIT-OCW corpus [44] consisting of MIT
lectures. The corpus consists of an LM training set and an AM training set. The
LM training set has approximately 6M words and a vocabulary of 47K words.
The AM training set has approximately 1M words and a vocabulary size of 27K
words. Both datasets have partially non-overlapping vocabulary. Some words are
included in the smaller AM training set but not in the LM training set and vice
versa. In addition, there is a validation set and a test set. Figure 22 illustrates
the details of the MIT-OCW corpus in more detail. Furthermore, these numbers
nicely show the imbalance of text and transcribed training data.

The implementation for the RNN-LM used in the experiments was based

67

LM
6M words
47K vocab

AM
1.1M words
27K vocab

development
24K words
2.8K vocab

evaluation
75K words
4K vocab

Unique vo-
cabulary
in develop-
ment set: 112
words

Unique vo-
cabulary
in evalua-
tion set: 253
words

Common vocabulary of all datasets: 1363 words
(part where re-training can be effective)

Common vocabulary of LM and AM dataset: 25847 words
(part where re-training can be applied)

Figure 22: An overview of the different datasets in the MIT-OCW corpus.

68

on Mikolov’s RNN-LM toolkit [92]. However, modifications were made to the
implementation to include the auxiliary features. The model used the architecture
as described in Chapter 4.1 but without the direct connection from the auxiliary
features to the output layer. In addition, an option to train for a minimum
number of epochs was added. Training was continued with the final learning
rate until the minimum number of epochs was reached. To prepare the baseline
network for re-training, it was already extended at its initialisation to include
the auxiliary features. During training of the baseline model, this additional
input was always set to zero. However, there is no particular need to include the
inputs in training of the base model. By extending the input transition matrix
by additional columns for the auxiliary features, this addition can also be made
to a fully-trained network.

The RNN-LM used for all experiments had a hidden layer with 300 nodes and
250 classes on the output. The speech recogniser for the ASR experiments on
N-best rescoring was NTT SOLON. A trigram LM with Kneser-Ney smoothing
[82] was estimated using the SRILM toolkit [123] and used for interpolation with
the RNN-LM probability. The trigram had a PPL of 199 on the test data.

F0 features were estimated using the method from [98]. The features were
calculated from a 42 ms window and the frame shift was 1 ms. Subsequently,
these features were combined with a word-frame alignment estimated with NTT
SOLON speech recogniser on the transcribed data for the training, validation
and test data. During N-best rescoring, the word-frame alignment was estimated
with the 100-best list produced by the speech recogniser.

For F0 features, logarithmic and linear scale are often used. In the experi-
ments, logarithmic f0d was used, which was normalised to zero mean and unit
variance with the global mean and variance estimated on the training set. A f0d
feature was calculated from the voiced and unvoiced F0 frames within a word
boundary. For f0m, linear scale was used and the features were normalised per
utterance. One feature was only calculated from the voiced frames (as estimated
by [98]) within a word boundary.

The signal power was calculated per sample and the feature for one word was
the average of all samples within the boundaries of this word. The same feature
types as for F0, that means, average per word (pwm) and difference between words

69

AM data LM data

F0 & PW AM text LM text

training

base RNNLM

re-training

re-trained RNNLM

Figure 23: Outline of our proposed training method.

(pwd) were used. For both pwm as well as pwd logarithmic scale features were
used. All features were normalised to zero mean and unit variance. pwd features
were normalised with the global mean and the global variance estimated from the
training set. pwm features were normalised per utterance. For calculating the
logarithmic signal power, always a small epsilon (10−10) was added to cope with
zero signal power.

The re-training scheme is outlined in Figure 23. In the first step, a base RNN-
LM was trained on the 6M LM training set. Second, this model was re-trained
with the text and prosodic features from the AM training set. The base RNN-LM
was trained on the LM training data for 16 epochs with a start learning rate of
0.1. The re-trained models were re-trained for 6 epochs and re-training started
with a learning rate of 0.000024. Throughout the experiments, all parameters
(e.g. feature computation method) were chosen based on the validation set. The
results given in the following are for the test set. The validation set results can
be found along with additional results in Appendix C.

5.3.2 Perplexity Evaluation

Table 5 shows the PPLs for the different models. Re-training with text data
only results in a relative PPL reduction of 7 % for the network and 1 % after

70

Table 5: PPL results for RNNLMs trained on textual and prosodic features for
the test data of MIT-OCW.

Model PPL Net PPL Net+3-gram
LM text only 163.79 150.12
Re-training on AM text 152.50 148.22
+ f0d 149.27 145.52
+ f0m 150.28 146.51
+ both f0 145.40 142.84
+ pwd 146.89 143.77
+ pwm 148.25 145.29
+ both pw 141.92 139.95
+ f0d and pwd 146.09 142.94
AM text only 203.87 164.10
+ f0d 186.68 151.34

interpolation with a trigram LM.
Re-training the base LM with different F0 features, the best result was ob-

tained with delta features. The PPL was reduced by 9 % compared with the
base model and 2 % compared with the network re-trained using text only. The
PPL reduction was 3 % after trigram interpolation. Signal power features also
improved on the baseline. The largest PPL reduction among all prosodic features
was 10 % and 4 % on the baseline and text re-training, respectively, with pwd.

In addition to individual features, also combinations of features were investi-
gated. Table 5 shows the results for a combination of F0 features, power features
and the best F0 (f0d) and power feature (pwd), respectively. Among all these
combinations, combining signal power features gave the largest PPL reduction,
that is, 13 % and 7 % reduction on the baseline and the model re-trained on text
only, respectively.

As additional information, Table 5 also provides results using the conventional
method, that means, training an LM jointly on text and acoustic information
from the beginning. However, these results cannot be directly compared to the
results from re-training because there are significant differences in the models

71

Table 6: WER results for 100-best rescoring of MIT-OCW.

Model WER
LM text only 24.6
Re-training on AM text 24.5
+f0d 24.4
+f0m 24.6
+both f0 24.5
+pwd 24.7
+pwm 24.6
+both pw 24.7
+f0d and pwd 24.6
AM text only 25.7
+ f0d 25.9

(vocabulary size, training data size etc.). The results are shown in the last two
rows of Table 5. f0d was used as example for prosodic information. With f0d
PPL reduced 8 % compared with a model trained on AM text data only.

5.3.3 N-best Rescoring

After PPL evaluation, N-best rescoring experiments were conducted on the 100-
best list obtained using NTT SOLON speech recogniser. Table 6 shows the WER
for the baseline model, re-training with text only and re-training with prosodic
features. All RNN-LM scores were interpolated with the score from a 3-gram LM
(interpolation weight 0.8 for the RNN-LM).

The baseline for a vanilla RNN-LM resulted in a WER of 24.6 %. Re-training
with the AM training text resulted in a WER reduction of 0.1 %. The highest
WER improvement was achieved with f0d features. f0d features reduced the WER
about 1 % relative or 0.2 % absolute compared with the baseline. pwd features
gave the largest reduction in the PPL evaluation, but they did not lead to an
improvement of WER. This was consistent during all experiments for different
hyperparameters with pwd features.

Since the training objective of the LM (minimising word prediction error) and

72

the evaluation target in rescoring (minimising errors between recognition result
and ground truth) are different, an improvement of the LM in terms of PPL does
not necessarily have to lead to a reduction in WER. Comparing the rescoring
results of the baseline RNN-LM and the model re-trained with pwd features,
there were only small differences in the selected hypothesis. These differences
often affected the beginning of a sentence where fill words were inserted, or other
positions in the sentence where functional words were inserted or misrecognised
for the wrong word. Further on, comparing the mean and variance of all features
of each word in the vocabulary for training, test, and rescoring, the statistics of
the features for rescoring were closer to the values of the training data than the
test data. The errors in the recognition hypothesises might have introduced errors
in the word-frame alignment which lead to feature sequences that were more likely
for the LM but these hypothesises contained more errors. A definite answer to
this problem can, however, not be given because it would require the comparison
of all hypothesis for all utterances. In addition, the recurrent state of the RNN-
LM could also influence the result because it could carry over wrong information
to subsequent utterances. Considering the hidden state of the RNN-LM in this
analysis is difficult, because it is hard to analyse.

As for the PPL results, Table 6 also shows rescoring results for the conven-
tional method as additional information. Using the same two models as for PPL
evaluation, the baseline WER was 25.7 % for the model trained on AM text
data only. The WER increased by 0.2 % when additional f0d features were used.
Although the results cannot be compared directly, for these experimental con-
ditions re-training showed to be more effective than the conventional combined
training.

5.4 Cache Extensions for LSTM-LMs
This section presents the experimental results for cache extensions of LSTM-LMs.
The different cache architectures as introduced in Chapter 3.2 and Chapter 4.2
will be evaluated. For this analysis, PPL and WER experiments were conducted
on the MIT-OCW lecture corpus.

73

5.4.1 Experimental Setup

For the experiments, PPL evaluation and N-best rescoring on the MIT-OCW
lecture corpus [44] were conducted. The corpus had about 6M words and the
vocabulary size is 47K. The vocabulary was not truncated. The corpus has about
100h of transcribed speech.

As speech recogniser, the GMM-HMM based NTT SOLON speech recogniser
was used. The 1-best result for this speech recogniser had a WER of 26.7%. The
LSTM-LMs were implemented using the deep learning toolkit chainer [134]. All
LMs were trained with mini-batches of length 128 and truncated backpropagation
through time after 20 words. The initial learning rate was set to 0.1 and was
reduced by a factor of 1.3 after the sixth epoch in every epoch. As optimiser
AdaGrad [33] was used and all models were trained for 16 epochs. Dropout was
used on all linear layers during training.

For the networks with connected NC, the NC was connected to an LSTM-LM
that was pre-trained for 16 epochs. In the combined training with the cache, only
the connections in the linear layer before the softmax of the base LSTM-LM and
the linear layers of the cache were updated for 5 epochs with a learning rate of
0.1. The learning rate decreased by a factor of 1.3 every epoch.

To calculate the word error rate in N-best rescoring, the log probability from
the LSTM-LM for the whole utterance was interpolated with a trigram probability
and the acoustic model score. The trigram LM was trained using the SRILM
toolkit [123] and used Kneser-Ney [82] smoothing. The trigram itself had a PPL
of 199 on the test data.

5.4.2 Perplexity Evaluation

Table 7 shows the PPL for an LSTM-LM baseline and the compared cache ar-
chitectures for the validation and test data. A trigram had a PPL of 199 on the
test data. The LSTM-LM baseline had a PPL of 147.03.

Using the continuous cache from Chapter 3.2.1, the PPL was reduced by
roughly 30% on the test data to 103.42. This result corresponds to the numbers
reported in [48]. However, connecting the cache directly to the softmax layer did
not result in any PPL reduction. Looking at the training logs, the PPL remained
almost unchanged during training. This suggests that the network was not able

74

Table 7: PPL results for validation and test data of MIT-OCW.

model val test
LSTM 175.24 147.03
NC 125.58 103.42
Connected NC 213.12 189.60
Connected NC (wsim) 213.89 190.79
BOW unigram 183.07 149.02
BOW uni + bigrams 178.81 149.79

Table 8: WER results for 100-best rescoring on MIT-OCW.

model WER
LSTM 24.3
NC 24.2
Connected NC 25.2
Connected NC (wsim) 25.3
BOW unigram 31.5
BOW uni + bigram 31.7

to learn good parameters for the interpolation with the cache in this architecture.
Using a word similarity (wsim) instead of equality for the word vector did not
change the result.

For the BoW cache, two scenarios were investigated. In the first case, only
the unigram information h(u)

l was used. In the second case, both unigram h
(u)
l

and bigram h
(b)
l information was used. In both cases, the PPL increased slightly

compared with the LSTM baseline.

5.4.3 N-best Rescoring

Table 8 shows the results for n-best rescoring on the 100-best list obtained from
SOLON speech recogniser [67]. Without rescoring, the speech recogniser achieved
a WER of 26.7%. For the baseline system in 100-best rescoring with an LSTM-
LM, the WER was 24.3%.

Using the continuous cache, although a significant PPL reduction was achieved,

75

the WER only improved by 0.1% (absolute) on the LSTM-LM. During PPL eval-
uation, the cache can be filled with the ground-truth next-word information.
However, in rescoring, the LM can only use recognition hypothesises. These hy-
pothesises contain most likely recognition errors. In addition, to achieve a low
WER not the most likely utterance from an LM point of view might be the best
one. The hypothesis which has the lowest number of errors compared with the
transcription will achieve the lowest WER. This hypothesis can be very unlikely
from an LM point of view. For example, a hypothesis with multiple word inser-
tions and replacements might get a higher LM score than a single utterance with
just one word substitution, because the former one is more likely for the LM.
Furthermore, the cache output zero in many cases and the capability of the cache
to predict OOVs was irrelevant for rescoring.

As expected from the PPL results, the neural connected continuous cache did
not achieve any improvements in WER on the baseline. Using the BoW cache,
the WER increased significantly. The results were even worse than those after the
first pass only. Such a behaviour was not to be expected from the PPL evaluation
where performance dropped only slightly. So far, there is not any explanation
why the WER increased by such high number.

5.5 Feature Based Domain Adaptation
This section presents the results for feature-based domain adaptation of LSTM-
LMs with conventional LDA features. The network architectures as described in
Chapter 4.1 and 4.3 were investigated in the experiments.

5.5.1 Experimental Setup

For the experiments, three different datasets were used. First is the well-known
Penn Treebank [88] (PTB), which has roughly 0.9M words in the training set and
a vocabulary size of 10K. The dataset consists of articles from the Wall Street
Journal covering different topics, such as, politics and finance. The standard
segmentation, that is, sections 0-20 as training, 21-22 as validation and 23-24 as
test set was used.

The second corpus consists of TED talks and the TED-LIUM corpus [111] for

76

Table 9: Comparison of subtitle and TED-LIUM test sets.

sentence length (words) Vocabulary length
min max mean var size (words)

subtitle 2 19 9 8.88 3638 30168
TED-LIUM 2 122 25 209.39 3568 28655

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

0

200

400

Sentence Length [#words]

[#
se
nt
en
ce
s]

subtitle
TED-LIUM

Figure 24: Histogram of sentence lengths in subtitle and TED-LIUM evaluation
sets.

the ASR experiments. For the ASR system, the standard Kaldi [107] recipe was
used. The training data provided in TED-LIUM is small for an LM. To have a
larger training set, subtitles from additional TED talks were crawled. The final
LM training set consisted of 2494 talks and with a total size of 5.1M tokens and a
vocabulary size of 73K words. All words appearing only once in the training data
were replaced by an unknown token. This resulted in an effective vocabulary size
of 43K words which was used to train the NNLMs.

From the original subtitles, a subtitle validation and test set were generated
in the same way as the 5.1M word training set. The validation and test sets
used the same data as in the IWSLT 2011 evaluation campaign [37]. The results
reported in the following will be for the subtitle test set and TED-LIUM’s test
set.

The TED-LIUM validation and test set were re-transcribed from the original
talks to have verbatim transcriptions. Rousseau et al. wanted to have verba-

77

tim transcriptions to accurately tune the AM during training. However, the
re-transcription introduced a mismatch with the subtitle sets. Some key-figures
about the subtitle-based and the TED-LIUM test set are summarised in Table 9.
Furthermore, Figure 24 shows a histogram of the different sentence lengths. The
sentence length for both evaluation sets is very different. Because the TED-LIUM
validation and evaluation sets have longer sentences on average, the probability
of the end of sentence symbol is reduced compared with the subtitle-based sets.

The third dataset was the Corpus of Spontaneous Japanese (CSJ). As training
data for the LMs, a training set of approximately 8.2M words was used. The
vocabulary size was 71K and 44K after keeping only every word which appeared
at least twice. For the rescoring experiments with CSJ, the ASR system from the
publicly available Kaldi recipe was used. The validation set for LM and AM were
the first 10K utterances of the training data provided in the CSJ corpus. The
implementation for the acoustic model was the same as for the experiments with
TED talks, that is Karel’s DNN. The acoustic model was a feed-forward DNN.
As with TED talks, the speech recogniser was trained without any sequence
discriminative training.

For training of the LDA model, two different schemes depending on the
dataset. For PTB, the same scheme as used by Mikolov et al. [93] was ap-
plied. That means, the training set was divided into chunks of ten utterances
and each of these chunks was regarded as a single document. For the TED talks
and CSJ, this segmentation was not necessary because the datasets consist of
different talks and each talk could be used as a separate document.

Before training the LDA topic model, a list of common stop words as well
as high and low frequency words were removed. This pre-processing was only
applied to train the LDA topic model and to compute the LDA features for the
different datasets. However, this processing was not applied to the text which
was used to train the LMs. The LDA implementation for the experiments was
the one provided in scikit-learn [106].

For calculation of the LDA features, a sliding window covering the previous 50
words in case of PTB and 200 words in case of TED and CSJ was used. The LDA
features extracted from this context window represented the topic distribution
over this sliding window. Than means, the LDA features were not static features

78

for each talk and instead represented dynamic, context dependent features. For
N-best rescoring, the LDA features were calculated from the N-best list. The
features were not calculated on the ground-truth data. In case the sliding window
extended over the current utterance, the context for the one-best recognition
result was kept over proceeding utterances. In a similarly way, the state of the
LSTM for the one-best hypothesis was kept across sentences.

As common part to all NNLMs, the LSTM-LM used a single layer LSTM with
300 units. The adaptation layer for fLHUC-LSTM and fLHN-LSTM also had 300
units. For PTB and CSJ, all networks were trained for 20 epochs. For TED, the
number of training epochs was optimised for each model on the validation set
WER. The mini-batchsize and backpropagation through time length were tuned
on PTB to give a good compromise of training time and PPL. From the results,
the mini-batchsize was set to 128 and the backpropagation through time length
was set to 20 words. The initial learning rate was 0.1 and the AdaGrad [33]
optimiser was used. Gradients were clipped to an L2-norm of five. If the PPL
improvement on the validation set data was less than 0.1% within one epoch, the
learning rate was multiplied by 0.5. In all models, dropout [63] with a dropout
ratio of 50% was used. As for [27], in fLHN-LSTM, the weight matrix of the
linear layer connecting the LSTM and the domain adaptation layer (V (w)) was
initialised with the identity matrix.

5.5.2 Penn Treebank Results

Because PTB is a small data set, it was used to test different parameter settings
for further experiments. The vocabulary size is also very low which allows to train
different types of factLSTM with a large number of factors and to investigate the
effect of a larger number of factors on the PPL. A further point of interest was
the influence of the number of LDA topics on the results.

Table 10 shows the validation set results for different LM architectures. The
topic features for these models were calculated from topic models with 30 to
60 topics. The PPL of an LSTM-LM baseline was 105.66. contLSTM did not
show any improvement on an LSTM-LM. This is in contradiction to the result
from Soutner et al. [120], but the authors used only 20 LSTM units and here
300 LSTM units were used in the model. In case of a small number of hidden

79

Table 10: PPL on the validation set of PTB for different numbers of factorised
hidden layers versus different LDA dimensions (LSTM-LM 105.66). The number
in brackets with factLSTM gives the number of factors used.

Model

LDA
topics 30 40 50 60

contLSTM 118.72 117.83 122.72 121.74
fLHN-LSTM 103.99 105.59 107.16 105.76
fLHUC-LSTM 103.35 104.01 104.76 104.80
fLHUCB 106.81 109.70 108.93 107.55
factLSTM(5) 105.06 105.55 105.93 106.08
factLSTM(10) 102.15 102.11 102.81 101.02
factLSTM(20) 102.92 102.80 101.54 101.06
factLSTM(30) 101.36 102.64 102.24 100.91
factLSTM(40) 103.75 102.69 101.75 100.69

units, the network might be able to use the LDA features as a context memory.
fLHN-LSTM and fLHUC-LSTM were able to reduce the PPL compared with the
LSTM-LM baseline in some cases. fLHUCB did not show any PPL reduction on
the LSTM-LM baseline.

The performance of factLSTM, depends on the number of LDA topics as well
as the number of factors. For the same number of factors, the general trend
showed a lower PPL with an increasing LDA size. When the LDA size was kept
constant and the number of factors was increased, the PPL was also reduced.
From the investigated configurations, the combination of the highest number of
topics and the highest number of factors had the lowest PPL. However, choosing
a large number of factors (larger than 10) did not result in much further PPL
reduction on the PTB dataset. This might be due to the small size of PTB.
With a small number of factors, the PPL is not much reduced compared with the
LSTM-LM baseline.

Table 11 shows the PPL results for the validation and the test set obtained
with the best model from each architecture. The trigram LM uses Kneser-Ney
[82] smoothing and was estimated using the SRILM toolkit [123]. However, all

80

Table 11: PPLs for baseline, best fLHN-LSTM and factLSTM model on the
validation and test set of PTB.

Model LDA topics val test
trigram — 182.16 171.68
LSTM — 105.66 98.94
contLSTM 40 117.83 109.00
fLHN-LSTM 30 103.99 97.42
fLHUC-LSTM 30 103.35 95.90
fLHUCB 30 106.81 99.61
factLSTM(40) 60 100.69 94.99

PPLs shown for the NNLMs were obtained without trigram interpolation. For
contLSTM, 40 LDA topics were used. For fLHN-LSTM, fLHUC-LSTM, and fL-
HUCB 30 LDA topics were used, and for factLSTM 60 topics and 40 factors
were used. The number of parameters were around 6.7M for contLSTM, around
6.5M for fLHN-LSTM, fLHUC-LSTM, and fLHUCB, and around 123M for factL-
STM. The baseline LSTM-LM had around 6.4M parameters. The training time
of LSTM-LM, contLSTM, fLHN-LSTM, fLHUC-LSTM, and fLHUCB was about
1h. factLSTM took 12h to train. contLSTM again had the overall highest PPL
among all NNLMs. fLHN-LSTM had a 1% lower PPL compared with the LSTM-
LM baseline (relative improvement). fLHUC-LSTM had a 2% and 3% lower PPL
than the LSTM-LM baseline on the validation and test set, respectively. fLHUCB
had a slightly higher PPL compared with the baseline and the individual models.
Overall, out of all domain adaptation methods, factLSTM achieved the high-
est relative PPL reduction compared with the LSTM-LM baseline. factLSTM
improved 5% on the validation and 4% on the test set.

5.5.3 TED Talk Results

On the TED talks data set, each model was trained until convergence. The
PPL of the validation set over 80 epochs is shown in Figure 25. LSTM-LM
reached its minimum after roughly 40 epochs. contLSTM had a slightly lower
PPL compared with LSTM-LM. fLHUC-LSTM had almost the same convergence

81

0 10 20 30 40 50 60 70 80

50

100

Epoch

PP
L

LSTM
contLSTM
fLHN-LSTM
fLHUC-LSTM
factLSTM

Figure 25: Convergence on the validation set over 80 epochs for different models
on TED dataset.

as contLSTM. Both reached the minimum PPL on the validation set around 50
epochs. fLHN-LSTM converged after around 40 epochs to its minimum and
convergence appeared to be faster than for LSTM-LM. factLSTM had the lowest
PPL of all models after 20 epochs and reached the lowest PPL of all models at 80
epochs. The converged models had the lowest PPLs on the subtitle validation and
test sets. However, PPL is not directly related with WER after rescoring. To find
the model with the lowest WER on TED-LIUM, the WER for 100-best rescoring
was evaluated every five epochs around the point where the PPL converged. From
these results, the model with the lowest WER on the validation set was selected
for each model architecture. These models were used for the PPL and WER
analysis in this section.

Table 12 shows the results for the TED-LIUM dataset. For the TED talks,
PPL results for the trigram LM were obtained with the model that is distributed
with the Kaldi recipe [146]. The PPLs for the NNLMs are, as for the PTB
results, without trigram interpolation. The trigram was used to interpolate LM
and AM scores in 100-best rescoring. The corresponding interpolation weights for
each LM and the trigram were optimised on the TED-LIUM validation set. The
interpolation weight of trigram and NNLMs was mainly between [0.9, 1] for the
NNLM. Therefore, the WER after rescoring was for the main part determined
by the NNLM. All NNLMs with domain adaptation used LDA features from 50

82

Table 12: PPL and WER for our own subtitle based test set and TED-LIUM
with 50 LDA topics, a 200-word window size and factLSTMwith 15 factors. The
trigram result represents the 1-best result and the results for the neural network
LMs are for 100-best rescoring.

Model Training Test PPL WER[%]
Epochs subtitle TED-LIUM val test

trigram — 156.41 222.05 16.3 15.1
LSTM 40 51.98 156.29 14.2 12.1
contLSTM 45 47.34 165.69 14.5 12.3
fLHN-LSTM 40 44.72 127.99 14.1 12.1
fLHUC-LSTM 40 47.69 144.70 14.0 11.9
fLHUCB 40 38.65 133.46 13.9 11.8
factLSTM 70 31.74 101.04 13.8 11.6

topics and a window size of 200 words.
The PPL for the trigram is considerably higher than for the NNLMs on the

subtitle and TED-LIUM test sets. This can be explained by the fact that the tri-
gram is trained on out-of-domain data. A trigram trained on the subtitle training
set had a considerably lower PPL of 106.58 on the subtitle test set. However,
the trigram trained on out-of-domain data was used for the ASR system and
consequently the results for this trigram are provided here. The baseline LSTM-
LM reduced the trigram’s PPL by 67% on the subtitle test set and 30% on the
TED-LIUM test set. The WER decreased by 20% after rescoring. The baseline
LSTM-LM had approximately 26M parameters and training for 40 epochs took
approximately 4.5h.

contLSTM improved on an LSTM-LM on the subtitle test set. However, on
the TED-LIUM test set, the PPL was higher than for the LSTM-LM. After 100-
best rescoring, the WER also increased compared with the baseline. The number
of model parameters increased by 2M to 28M and the training time increased
by around 2h. fLHN-LSTM had a 14% and 18% lower PPL compared with an
LSTM-LM for the subtitle and TED-LIUM test sets, respectively. In 100-best
rescoring, the WER showed slight improvement on the LSTM-LM baseline for
the validation set, but it was equal on the test set. fLHUC-LSTM had a slightly

83

higher PPL than fLHN-LSTM on both test sets but it was lower than the LSTM-
LM baseline. The WER showed a slight but not significant reduction on the
baseline. fLHN-LSTM and fLHUC-LSTM had 105K more parameters than an
LSTM-LM, but the training time was about the same.

The combination of bias and gating based domain adaptation in fLHUCB
reduced PPL by 26% and 15% compared with the LSTM baseline. For the TED-
LIUM test set, the PPL was between that of fLHN-LSTM and fLHUC-LSTM.
This shows again the different characteristics of training and test data. The
relative WER reduction was 2.5% compared with the LSTM-LM baseline on the
test set. This shows that both methods have complementary information that
can help to improve the performance.

For factLSTM, 15 factors were used due to the limitation of GPU memory size.
factLSTM had 207M parameters and the training time was 67h for 70 epochs.
This method did increase the number of model parameters as well as the training
time compared with the other methods, however, no particular optimisation of
the implementation was done which speeds up the computation on GPUs. On the
TED-LIUM test set, this method showed significantly lower PPL compared with
all compared methods, namely 39% lower than an LSTM-LM and 21% lower than
an fLHN-LSTM. After 100-best rescoring, a 3% relative WER reduced reduction
compared with an LSTM-LM was achieved.

A matched-pair significance test showed a significant difference of factLSTM
compared with the LSTM-LM baseline at a significance level of p = 0.1%. All re-
maining methods did not show a significant improvement on the baseline. These
results show that feature-based adaptation can improve both PPL and ASR
rescoring performance. factLSTM achieved superior performance in general com-
pared with other approaches for exploiting auxiliary features. This is, however,
at the expense of using a larger amount of parameters.

5.5.4 CSJ Results

CSJ consists of a training set and three test sets, but there is no dedicated
validation set. For parameter tuning for 100-best rescoring, test 3 was selected
as a validation set. The window size and the number of LDA topics was the
same as for TED talks. Table 13 shows the PPL and WER for all three test sets.

84

Table 13: PPL and WER for CSJ using topic features from 50 LDA topics and
a 200-word window size. The trigram result is the 1-best result and the NNLM
results are for 100-best rescoring.

Model Test 1 Test 2 Test 3
PPL WER[%] PPL WER[%] PPL WER[%]

trigram 82.45 12.26 89.17 9.34 94.89 12.22
LSTM 40.52 10.71 41.79 8.08 41.01 10.49
contLSTM 42.66 10.72 43.66 8.17 43.30 10.67
fLHN-LSTM 39.66 10.59 41.07 7.94 41.29 10.63
fLHUC-LSTM 38.90 10.62 40.40 7.93 39.94 10.38
fLHUCB 38.79 10.55 39.37 7.85 39.74 10.36
factLSTM(15) 38.61 10.63 39.34 7.95 39.87 10.45

Using an LSTM-LM reduced the trigram PPL by more than 50% and led to an
improvement in 100-best rescoring.

Feature-based domain adaptation achieved on average a relative PPL reduc-
tion of 3% compared with the LSTM-LM baseline. This results was much lower
than the relative reduction with the TED talks, but the baseline LSTM-LM al-
ready had a very low PPL for CSJ. fLHN-LSTM reduced the WER around 1%
relative to the LSTM-LM in test 1 and test 2. fLHUC-LSTM reduced the PPL
by 3% to 4%. The relative WER reduction was between 1% to 2%. It achieved
a consistent WER reduction across all test sets compared with the LSTM-LM
baseline.

Using fLHUCB, the PPL was reduced by 3% to 6% relative to the LSTM-
LM baseline. WER was reduced relative by 1% and 3% in test 1 and test 2,
respectively. Compared with the 1-best decoding result obtained with a trigram
LM, the WER was reduced 14%, 16% and 15% for test 1, test 2, and test 3,
respectively. The CSJ data are much better matched between training and test
data than the TED talks dataset. The numbers show that in this case fLHUCB
achieved a consistent improvement over fLHN-LSTM or fLHUC-LSTM.

factLSTM achieved the lowest PPL on test 1 and test 2 among all NNLMs but
the WER did not match this result. Unfortunately, factLSTM did not achieve
a similar performance as on TED talks. The PPL and WER were only slightly

85

50 100 200 500100

110

120

LDA window size [words]

PP
L

LSTM contLSTM fLHN-LSTM
fLHUC-LSTM factLSTM

Figure 26: Comparison of different context window sizes versus validation PPL
for PTB with LDA features from 30 topics.

reduced compared with the LSTM-LM baseline.

5.5.5 Discussion

Following the PPL and WER results, this section provides further discussion
on the effect of LDA features on NNLMs. At first, the features themselves are
discussed. As mentioned in Chapter 3.3.1, the LSTM itself captures context
information in its cell state. However, it is valid to assume that an LDA topic
model can capture a different kind of context information. To investigate under
which circumstances the information provided by the LDA features can have a
beneficial effect on the model performance, experiments with varying context
window lengths were performed.

Figures 26 and 27 show the validation set PPL for PTB and TED, respectively.
In these two figures, the PPL for different context window lengths for extracting
the LDA features is shown. For PTB, the window length was between 50 to
500 words and the topic model size was fixed to 30 topics. For TED, a window
length of 50 to 1000 words and 50 topics were used because the training data for
TED is larger than for PTB. For the ASR results in Chapter 5.5.3, the number
of training epochs was optimised for each model to obtain the lowest possible

86

50 200 500 100035

40

45

50

55

LDA window size [words]

PP
L

LSTM contLSTM fLHN-LSTM
fLHUC-LSTM factLSTM

Figure 27: Comparison of different context window sizes versus PPL for the Ted
talks subtitle validation set with features from 50 LDA topics.

WER. However, here model PPL is the major focus and consequently all NNLMs
compared in Figure 27 were trained for 40 epochs.

For PTB, the trend shows that all models reached a minimum PPL with a
window size between 100 to 200 words. Using a smaller or a longer window,
the PPL of domain-adapted models usually increased. This result indicates that
shorter windows are well covered by the LSTM itself and longer windows contain
too general information. In case of TED, a context window size around 200
words gave a good result as well. In general, the LMs using domain adaptation
improved on both corpora on a baseline LSTM-LM. This result suggests that the
LDA features contain information, that is not captured in the LSTM.

A general remark regarding the topic features themselves. During the experi-
ments, it showed that the model performance is highly dependent on the quality
of the topic model and the features estimated from it. Estimating a good LDA
topic model will improve the feature quality and this is important for model per-
formance. It is reasonable to assume that all models can benefit from better topic
features that might be derived from other topic models than LDA. Comparing the
training set sizes of TED talks and PTB, in case of TED talks the amount of data
is roughly five fold the amount of data for PTB. The increased data size might

87

Table 14: N-best hypothesis comparison for selected utterance from TED-LIUM
test set.

REF: this really solves the problem i’ve got a picture here of a place
in kentucky this is the left over the ninety nine percent where
they’ve taken out the PART THEY BURN NOW so IT’S called
depleted uranium that would power the U S

1-best: this really solves the problem i’ve got a picture here HAVE a
place in kentucky this is the left over the ninety nine percent
where they’ve taken out the **** **** PARTY BERNAU so
**** called depleted uranium that would power the * U.S.

LSTM-LM:this really solves the problem i’ve got a picture here of a place
in kentucky this is the left over the ninety nine percent where
they’ve taken out the **** **** PARTY BERNAU so **** called
depleted uranium that would power the * U.S.

factLSTM: this really solves the problem i’ve got a picture here of a place
in kentucky this is the left over the ninety nine percent where
they’ve taken out the part they burn now so it’s called depleted
uranium that would power the * U.S.

have helped estimating a better LDA topic model. The features calculated from
this model were more effective for the LMs and lead to a higher PPL reduction.

In addition to analysis of the features, a more in-depth analysis of the recog-
nition results before and after rescoring is provided at this point. Comparing the
results for different model architectures, the NNLMs had less errors with func-
tional words. In the 1-best decoding result, these words were often left out or
misrecognised. In cases where an utterance contained a large number of errors,
rescoring with the NNLMs did not reduce the number of errors considerably. In
this case, the output from the speech recogniser contained too many errors. It
was not possible to bring up hypothesises containing less errors in the output
because they might not have been contained in the 100-best list. In some cases,
a relation between the corrected error and a topic could be established. One such
example is shown in Table 14. It shows the ground-truth utterance, the result
after 1-best decoding, rescoring with LSTM-LM, and rescoring with factLSTM.

88

Table 15: N-best hypothesis comparison for several utterances from CSJ for
LSTM-LM and factLSTM.

ID S00F0019 0174028 0176082
REF: あのコンクリートとか木でできた
LSTM-LM:あのコンクリートとか霧で来た
factLSTM:あのコンクリートとか切りできた
ID A01M0097 0181518 0188807
REF: 音調指令えー第三す声一個飛びますけれどもは一個の負の指

令えー第二声については
LSTM-LM:音調指令えー大賛成行くと言いますけれどもは一個の負の指

令えー第二声については
factLSTM:音調指令えー大賛成以降と言いますけれどもは一個の負の指

令えー第二声については
ID A01F0001 0663553 0670466
REF: アンプフィルターを通しＤＡＴで録音しディバイダーで変換

してえパソコン取り込むのは先程と一緒です
LSTM-LM:アンプフィルターを通しＤＡＴで録音シーディば間で変換し

てえーパソコン取り込むのは先程と一緒です
factLSTM:アンプフィルターを通しＤＡＴで録音シーディバイザーで変

換してえーパソコン取り込むのは先程と一緒です

A close investigation of the probabilities that each NNLM assigned to the
different hypothesises for one utterance showed that each model preferred the
hypothesises in a different way. There was no constant offset in the probabilities
between different models. This leads to the conclusion that each model architec-
ture makes different use of the information provided by the LDA features.

Different from English, Japanese has many homonyms. Topic information
might be helpful to select the correct homonym depending on the context. Ta-
ble 15 shows different rescoring results from CSJ. The comparison shows the true
reference transcription, the result for a conventional LSTM-LM and the result
for factLSTM. The different LMs sometimes selected different homonyms but in
most cases a relation to a topic is not visible.

89

Table 16: Test PPL on TED talks for fLHN-LSTMwith different LHN sizes after
training for 70 epochs.

LHN size 300 600 1200
Parameters 26M 39M 65M
Training time 9h 11h 16h
subtitle PPL 45.25 41.98 42.79
TED-LIUM PPL 133.67 131.50 135.04

Figure 28 shows an analysis of the factor weights for factLSTM. Figure 28 (a)
shows a principal component analysis (PCA) plot of the LDA features for all talks
in the TED subtitle based test set. Each colour represents one talk and one dot
corresponds to one feature. The plot reveals that the LDA features are mainly
distributed along three axes. The PCA of the factor weights for the same talks
is shown in Figure 28 (b). Each dot in the figure represents a factor weight. The
distribution is very different from the LDA feature plot. The network learns a
mapping of the features that helps to improve the prediction for the next word. In
particular, some factor weights for different talks appear to be mapped to similar
regions in the PCA space.

In addition to the PCA plots, Figure 29 (a) and (b) show the LDA features
and corresponding factor weights for part of the test set. The figures show distinct
regions of high weights for the LDA features and high factor weights that corre-
spond to each other. Interesting is the region highlighted in red in Figure 29 (a)
and (b). In this interval, there is no distinct LDA feature with high intensity but
factor one exhibits a high activation. The same factor keeps a high activation
after word index 16000 which can be linked to one topic with high activation
in this region. This is a good illustration how the auxiliary network learns to
combine different topic features into a single factor weight. The corresponding
factor can then learn common information among these different topics.

factLSTM has significantly more parameters than the other models. It is
therefore necessary to investigate if an increased the number of parameters in
compared methods can lead to a similar PPL reduction. As compared method
fLHN-LSTM was investigated. To increase the number of parameters, the size of
the adaptation layer was increased. Table 16 shows PPL results for fLHN-LSTMs

90

Table 17: Comparison of subtitle and TED-LIUM test sets.

sentence length (words)
min max mean

subtitle 2 19 9
TED-LIUM 2 122 25

with different LHN sizes after 70 epochs for the subtitle test set of TED talks.
The table also shows the number of parameters and the training time for each
model. The PPL did not change considerably, even if the number of nodes in the
LHN was increased four fold. As comparison, factLSTM had a PPL of 31.74 for
the subtitle test set and 101.04 for the TED-LIUM test set. The model had 207M
parameters and the training time for 70 epochs was 67h. These numbers confirm
that not only the increased number of parameters may cause the performance
improvement of factLSTM.

5.6 Unified Context Extraction and Adaptation Framework
This section compares conventional LDA feature-based domain adaptation of
LSTM-LMs with a unified framework for joint context extraction and model
adaptation as described in Chapter 4.4. Experimental results for PPL analysis
and rescoring will be given. In addition, some further discussion on the context
representation and model adaptation parameters will be provided.

5.6.1 Experimental Setup

For the experiments with UniFA, the TED talks dataset and CSJ were used. For
TED talks, the LM training set consisted of subtitles from 2494 TED talks. The
validation and test sets were composed of subtitles as well. The training set had
approximately 5.1M tokens and a vocabulary size of 43K words, where every word
appearing only once was mapped to the OOV token.

For ASR experiments, a speech recogniser based on the standard TED-LIUM
Kaldi recipe [111, 107] was used. The speech recogniser in the recipe is a DNN-
HMM hybrid model using a feed-forward DNN AM without any sequence dis-
criminative training. The validation and test sets in the TED-LIUM recipe and

91

in the subtitle set contained the same talks, but TED-LIUM uses re-transcribed
talks. This re-transcription introduced some mismatch with the text data that
was used for training the LMs. The major difference is the sentence length in the
subtitle and TED-LIUM test sets as shown in Table 17. By re-transcribing the
talks, the sentence length in TED-LIUM increased compared with the original
subtitles.

The experiments on CSJ used also the publicly available Kaldi recipe [96].
The implementation for the acoustic model was the same as for the experiments
with TED talks, namely Karel’s DNN. The AM was a DNN speech recogniser
without any sequence discriminative training. The training data for the LMs
were the same as those used for the LMs in the CSJ recipe. The training set had
approximately 8.2M words. The vocabulary size was 71K and became 44K after
retaining only words that appeared at least twice. The validation set used during
model training was the same as that used for training the LMs in Kaldi’s CSJ
recipe, namely the first 10K utterances of the training data.

All NNLMs in the experiments used state of the art LSTMs as recurrent units.
The recurrent layer had 300 LSTM cells. The optimiser for model training was
AdaGrad [33] and the starting learning rate was 0.1. The gradients were clipped
to an L2 norm of 5. Further on, standard backpropagation through time for 20
time steps and a mini-batch size of 128 was used. The networks were regularised
by dropout [63] with a dropout ratio of 50%. As mentioned in Chapter 4.4, layer
normalisation [4] was used for combining the SSN with the fLHUC adaptation
layer. All methods were implemented with the open-source toolkit chainer [134].

In the experiments, fLHUC was compared with two different methods to derive
the adaptation features. In both cases, the same fLHUC adaptation layer [58]
was used but the adaptation parameters were derived in a different way. The
first method was conventional LDA feature-based domain adaptation (fLHUC-
LSTM). In this case, the LDA implementation from Scikit-learn [106] was used
to train the topic model and to calculate the features. The number of LDA topics
was set to 50. The topic model was trained by splitting the subtitle training set
into individual talks. For training and evaluation of the LMs, the LDA features
were calculated from a fixed-size sliding window. The second method uses an
SSN to extract the context features.

92

Table 18: PPL for subtitle and TED-LIUM validation and test set. The number
in brackets denotes the context window size.

Model Subtitle PPL TED-LIUM PPL
val test val test

LSTM-LM 51.58 51.98 209.34 156.29
fLHUC-LSTM (50) 48.32 48.56 226.48 154.15
fLHUC-LSTM (100) 47.47 47.44 188.33 139.12
fLHUC-LSTM (200) 46.76 46.98 173.51 135.68
UniFA (50) 35.74 36.82 144.09 120.14
UniFA (100) 38.27 37.66 165.55 129.21
UniFA (200) 37.18 37.82 168.79 135.34

For N-best rescoring, the LDA features and the context features for UniFA
were calculated from the 100-best list. That means, recognition errors in the hy-
pothesis can have an effect on the context representation of subsequent utterances
if an utterance is shorter than the context window.

5.6.2 Perplexity Results

First, the PPL results are compared. In Table 18 the results for TED talks are
shown. All PPLs for NNLMs were obtained without M -Gram interpolation and
show therefore a fair comparison of the different adaptation mechanisms. As
baseline, the PPL of an LSTM-LM without any domain adaptation is given.

As comparison to UniFA, conventional LDA feature-based domain adaptation
with LDA features calculated from a window size of 50, 100, and 200 words was
used. The adaptation parameters in fLHUC were calculated from the adaptation
features. fLHUC-LSTM showed slight improvements on the LSTM-LM for the
subtitle set and TED-LIUM for longer context window lengths. On TED-LIUM,
a window size of 200 words led to a 23% and 12% PPL reduction for the validation
set and test set compared with a 50-word window size.

The SSN in UniFA had 300 units and used a single hidden layer. For UniFA,
the same window sizes as with fLHUC-LSTM were used. Comparing the PPL
with other methods, UniFA achieved a significantly lower PPL on the subtitle set

93

Table 19: PPL results for CSJ. The number in brackets denotes the context
window size.

Model Heldout Test 1 Test 2 Test 3
LSTM 37.88 40.52 41.79 41.01
fLHUC-LSTM (50) 36.64 39.39 40.79 40.15
fLHUC-LSTM (100) 36.44 39.03 40.13 40.19
fLHUC-LSTM (200) 36.16 38.90 40.40 39.94
UniFA (50) 36.89 39.98 40.70 40.28
UniFA (100) 36.72 39.52 40.79 39.38
UniFA (200) 36.65 39.48 40.61 39.60

and TED-LIUM. The PPL reduction ranged from 26% to 19% on the subtitle set.
Especially for small context window sizes, UniFA showed a high PPL reduction
compared with fLHUC-LSTM. On TED-LIUM, it consistently outperformed the
LSTM-LM baseline and could further improve on fLHUC-LSTM.

Table 19 shows the PPL results for CSJ. The models using context adaptation
with LDA features consistently achieved lower PPLs compared with the baseline
LSTM-LM. As for TED talks, the model using the longest context window size
for the context representation had the lowest PPL.

For the experiments on CSJ, an the SSN with 300 units and two hidden layers
was used in UniFA. The UniFA models achieved a comparable PPL as fLHUC-
LSTM on CSJ. There was not a large improvement on fLHUC-LSTM as with
TED talks. However, all models consistently improved on the LSTM-LM.

5.6.3 Rescoring Results

Another very important metric for LMs used in ASR systems is their improvement
of the recognition result after rescoring in terms of WER. For this purpose,
Kaldi’s TED-LIUM task was used for 100-best rescoring. The 1-best result was
obtained with a trigram LM that is part of the TED-LIUM recipe [146]. The
trigram was trained on different data than TED talks. Table 20 shows the WER
for the 1-best decoding result and after 100-best rescoring for all models. The
baseline LSTM-LM achieved already a great WER reduction compared with the

94

Table 20: WER after 100-best rescoring for TED-LIUM. The number in brackets
is the context window size.

Model val WER[%] test WER[%]
1-best 16.3 15.1
LSTM-LM 14.2 12.1
fLHUC-LSTM (50) 14.3 12.2
fLHUC-LSTM (100) 14.0 12.2
fLHUC-LSTM (200) 14.0 11.9
UniFA (50) 13.8 11.8
UniFA (100) 13.7 12.0
UniFA (200) 13.9 12.0

1-best result. For fLHUC-LSTM, the ASR results were analogue to the PPL
results. With a short context window, fLHUC-LSTM did not show a lower WER
than the LSTM-LM. The method could only improve on the baseline with a larger
context window.

UniFA showed an improvement on an LSTM-LM across all context window
sizes. The validation set WER was in all cases better than for fLHUC-LSTM
and it only fell behind fLHUC-LSTM for the longest window size of 200 words.
A matched-pair significance test showed a significant improvement of UniFA(50)
on an LSTM-LM at a significance level p < 5%.

As Table 9 shows, for TED-LIUM the average utterance length is 25 words.
This corresponds exactly to half the window length of the best UniFA model.
LMs do not benefit much from a very large context window in rescoring because
there might be many recognition errors from preceding utterances in the context
window. However, these errors seem not to harm the model at shorter context
windows and the extractor network can successfully provide additional (short-
term topic) information.

Table 21 shows the WER after 100 best rescoring on CSJ. Since CSJ does
not have a dedicated validation set, the interpolation parameters for the trigram
LM and the NNLMs were optimised on test 3. The obtained parameters were
applied to the remaining test sets as well. Rescoring with an LSTM-LM lead to
a relative WER reduction of 13 to 14% compared with the 1-best result. fLHUC-

95

Table 21: WER after 100-best rescoring for CSJ. The number in brackets denotes
the context window size.

Model Test 1 WER[%] Test 2 WER[%] Test 3 WER[%]
1-best 12.26 9.34 12.22
LSTM 10.71 8.08 10.49
fLHUC-LSTM (50) 10.70 7.91 10.49
fLHUC-LSTM (100) 10.63 7.85 10.34
fLHUC-LSTM (200) 10.62 7.93 10.38
UniFA (50) 10.65 7.90 10.44
UniFA (100) 10.60 7.85 10.32
UniFA (200) 10.65 7.99 10.29

LSTM slightly improved on the LSTM-LM baseline result. UniFA achieved a
comparable or slightly lower WER as fLHUC-LSTM.

5.6.4 Analysis of fLHUC Adaptation Parameters

In addition to comparing each model’s effectiveness in ASR, further investiga-
tion of the adaptation parameters learned by each model is provided. Basis for
this comparison are the best models with LDA features and SSN from Chap-
ter 5.6.3. TED talks was used as data set. Figure 30 shows a visualisation for the
fLHUC adaptation parameters before the sigmoid function when learned from
LDA features and from the SSN with different window lengths. As data for the
comparison, talks six, seven and eight in the TED talks subtitle test set were
used. Figure 30 (a) and (b) show the LDA features for a 200-word window and
the adaptation parameters the network learned to extracted from them, respec-
tively. The LDA features show three distinct topics with high activation for each
of the talks. The adaptation parameters have values around zero for most of
the nodes in the adaptation layer, which means that the node passes through
its input. However, certain nodes show either high (red horizontal lines) or low
(blue horizontal lines) activation depending on the active LDA topic. This means
that these nodes amplify or attenuate their input, respectively. This result also
nicely illustrates the effectiveness of fLHUC. Some LSTM output nodes get am-

96

plified, while others get attenuated depending on the active topic. This means
that certain words will see a higher activation in the output layer depending on
the context which should correspond to a higher probability of these words. This
is successful realisation of a context dependent LM because depending on the
context some words will be more likely than others.

Figure 30 (c) shows the adaptation parameters when learned to extract with
the SSN from a context window of 50 words4. Similar to the adaptation parame-
ters learned from LDA features, there are also some nodes in the adaptation layer
that receive constant high or low activations during each talk. This suggests that
the SSN learns to capture a global topic-like context spanning several thousand
words. However, the adaptation parameters from the SSN appear noisier com-
pared with the ones learned from the LDA features. This means that the SSN
output changes more frequently depending on the context compared with LDA
features. This suggests that in addition to the long-term context the SSN can
also capture more local context. This leads to a more frequent regulation of each
node in the adaptation layer. As the experimental results showed, LDA features
with shorter context windows were unable to capture these local topic changes
but it was important for reducing PPL and WER.

5.6.5 Combination of UniFA with Conventional LDA Feature-based
Domain Adaptation

The comparison of fLHUC-LSTM and UniFA showed different tendencies. fLHUC-
LSTM had better performance with long context windows whereas UniFA had
better performance for short context windows. This might come from the differ-
ent training schemes. The LDA topic model was trained on larger document units
compared with the SSN (whole talk vs. 50–200 word context window). However,
for feature calculation, both methods used the same context window. This means
both should have produced a feature from the same amount of context informa-
tion. It is possible that the feature from the SSN was only an average of the
context window for longer window sizes because the network could not learn to
extract any specific information from these windows. It is thus worthwhile inves-
tigating a combination of both LDA features and the SSN. (115) was modified

4A threshold was to values around minus two to improve the visualisation.

97

Table 22: PPL for subtitle and TED-LIUM validation and test set. The number
in brackets denotes the context window size.

Model Subtitle PPL TED-LIUM PPL
val test val test

LSTM-LM 51.58 51.98 209.34 156.29
fLHUC-LSTM (200) 46.76 46.98 173.51 135.68
UniFA (50) 35.74 36.82 144.09 120.14
UniFA (100) 38.27 37.66 165.55 129.21
UniFA (200) 37.18 37.82 168.79 135.34
UniFA (50) + LDA (200) 34.73 35.73 153.23 117.66
UniFA (100) + LDA (200) 37.14 37.85 153.23 125.43
UniFA (200) + LDA (200) 42.94 42.93 156.28 133.03

in such way that the input to the sigmoid function was the output of the SSN as
well as the LDA features after a transformation by a linear layer.

PPL results for a combination of LDA features with UniFA framework are
shown in Table 22. The combination of both context representations showed a
slight reduction of PPL. Especially on the TED-LIUM set, the models improved
using the additional information from the LDA features. This suggests that
the LDA features captured some complementary information from the SSN. In
addition, the LDA features might have contained more invariant information
compared with the context from the SSN.

Table 23 shows the results for rescoring for the combination of both LDA and
SSN. For UniFA with a 50 word context window, the LDA features from the 200
word context window did not help to further reduce the WER. For UniFA with
longer context windows (100 and 200 words), the WER was closer to the result
of fLHUC-LSTM.

5.6.6 Combination of UniFA with factLSTM

The UniFA framework uses fLHUC as adaptation layer. However, the frame-
work is not limited to fLHUC. A combination with other adaptation layers is
also possible. As an example of such modification, here, the combination with

98

Table 23: WER after 100-best rescoring for TED-LIUM. The number in brackets
is the context window size.

Model val WER [%] test WER [%]
1-best 16.3 15.1
LSTM-LM 14.2 12.1
fLHUC-LSTM (200) 14.0 11.9
UniFA (50) 13.8 11.8
UniFA (100) 13.7 12.0
UniFA (200) 13.9 12.0
UniFA (50) + LDA (200) 13.9 11.9
UniFA (100) + LDA (200) 13.9 12.0
UniFA (200) + LDA (200) 13.8 11.9

factLSTM is shown. factLSTM showed the best results of all adaptation layers
with conventional LDA in Chapter 5.5. When combining factLSTM with UniFA,
the factor weights are calculated from the output of the SSN.

Table 24 shows PPL results for conventional factLSTM with 10 and 15 factors
for the TED talk dataset. Increasing the number of factors showed to consistently
improve the results. The last line in Table 24 shows the results for the UniFA
framework using factLSTM and 10 factors. These PPL results are close to factL-
STM with 15 factors.

Table 25 shows the WER after 100-best rescoring. The WER after rescoring
of UniFA with hidden layer factorisation is on the same level as for factLSTM
with conventional LDA features and 15 factors. This means that a model with
significantly less parameters can be used compared with LDA feature-based factL-
STM. For the TED talk dataset a reduction of five factors reduces the number
of model parameters by 64.5M. The additional number of parameters introduced
by the SSN is approximately 92K. For the overall number of model parameters,
the additional parameters introduced by the SSN is negligible.

99

Table 24: PPL results for TED-LIUM. LDA features from 200 word sliding win-
dow and 50 topics. SSN with 50 word sliding window.

Model Subtitle PPL TED-LIUM PPL
val test val test

trigram 179.39 156.41 251.89 222.05
LSTM-LM 51.58 51.98 209.34 156.29
factLSTM (10) 36.84 37.92 135.76 109.78
factLSTM (15) 29.50 31.74 129.98 101.04
UniFA + factLSTM (10) 27.99 31.80 131.68 109.81

Table 25: WER results for TED-LIUM. LDA features from 200 word sliding
window and 50 topics. SSN with 50 word sliding window.

Model val WER [%] test WER [%]
1-best 16.3 15.1
LSTM-LM 14.2 12.1
factLSTM (10) 13.9 11.7
factLSTM (15) 13.8 11.6
UniFA + factLSTM (10) 13.8 11.6

100

component 1

co
m

po
ne

nt
2

(a)

component 1

co
m

po
ne

nt
2

(b)

Figure 28: PCA plots of LDA features (a) and factor weights (b) for the subtitle
TED talks test set. Each colour represents a different talk in the test set.

101

(a)

(b)

Figure 29: Comparison of LDA features (a) and factor weights (b) for part of the
test set (x axis corresponds to word index).

102

Figure 30: Visualisation of (a) LDA features for 200-word window size, fLHUC
adaptation parameters before the sigmoid function from (b) LDA features from
200-word window size and (c) SSN(50) for talks six, seven and eight in the subtitle
test set.

103

6. Conclusion and Outlook
Within the scope of this thesis, different kinds of context information and neural
network architectures for exploiting context features were investigated. In the
experiments, always a combination of a specific type of context feature along with
a model structure was investigated. The conclusions are given in the following
for each combination individually. After the conclusion from the experimental
results, an outlook on future work follows in the remainder of this section.

6.1 Usage of Prosodic Features for Language Models
The usage of prosodic information was investigated in a re-training scheme for
an RNN-LM. The investigated method could improve the PPL of a base model
(re-)trained on text data only. Comparing the results of the re-training with
prior research, a similar reduction of PPL and WER was achieved. However, the
benefit of the approach investigated here is that it requires less transcribed audio
data. The approach allows to train an LM with a large vocabulary on text data
and adapt the weights of the part where prosodic information is available.

On the negative side, features that lead to a high PPL reduction did not
always result in a WER improvement. There might have been errors with the
word-frame alignment which deteriorate the quality of the features. However,
so far no definite answer can be given as to why prosodic information was not
helpful to reduce WER in many cases. Preliminary experiments on CSJ showed
the same tendency as the results on MIT-OCW but a more in-depth analysis
would require a case-by-case analysis of the rescoring results and this is left for
the moment for future work.

In addition, MIT-OCW was a task very well suited for this training scheme.
The LM training data consists of lot of out-of-domain training data. Re-training
with the AM training data resulted already in a PPL reduction. This means,
model-based domain adaptation helped to improve the LM.

The benefit of the re-training scheme is, that by using only a small amount of
transcribed audio data, the performance of an LM trained on text data only can
be improved. In addition, the method does not require any specific annotations
in the corpus, for instance, prosody or part of speech tags, because the features

104

used throughout the experiments can be calculated directly from the audio data.

6.2 Cache Extensions for Language Models
Two conceptually different cache extensions using a continuous neural cache and
BoW cache were evaluated when connected to LSTMs. However, in the experi-
ments the effect of the cache on the LSTM was not beneficial. The continuous
neural cache was successful in reducing the PPL but did not show a signifi-
cant benefit in rescoring. With the BoW cache, although PPL evaluation was
only slightly worse compared to the baseline, during rescoring the cache severely
degraded the WER. Overall, the conclusion was that the investigated cache im-
plementations were not effective for the dataset in the experiments and on the
task of rescoring in ASR.

6.3 Feature-based Domain Adaptation of Language Models
A comparison and discussion of different feature-based domain adaptation tech-
niques for NNLMs was provided. Feature-based methods have in comparison to
model-based methods the advantage that they can be applied in an unsupervised
manner. In practice, such methods are preferable because they do not require
any domain information in the training, validation and test data which can only
be made by experts. The LDA topic model used in the comparison can also be
trained in an unsupervised manner.

The compared methods use different strategies. There is domain adaptation
via an additive bias, a multiplicative gating and a factorisation of the output
layer. Bias-based adaptation as used in fLHN-LSTM was originally proposed for
model-based adaptation, but as the experiments showed it can also be successfully
applied in feature-based adaptation. It improved considerably on an LSTM-LM
baseline on three different data sets. Simple bias adaptation with contLSTM did
not show to improve on an LSTM-LM in the experiments.

Model adaptation with fLHUC-LSTM improved on the baseline LSTM. As
feature-based domain adaptation approach, fLHUC achieved a larger relative
reduction in WER than in previous research as model-based adaptation. The
method successfully benefited from topic information provided by an LDA topic

105

model and consistently improved on the baseline LSTM-LM. fLHUCB, which is
a simple approach for combining fLHUC with bias adaptation, showed that it
can improve on both individual methods. When the training and test conditions
are matched and sufficient data is available, this method performed better than
domain adaptation with a bias or fLHUC. This shows that bias and gating have
complementary information that can help to improve performance.

On most of the datasets used in the experiments, factLSTM showed superior
results compared with other methods for feature-based domain adaptation. The
advantage of fLHN-LSTM, fLHUC-LSTM, and fLHUCB over factLSTM is the
smaller number of parameters. In addition the convergence speed during model
training was also faster. But none of models was able to achieve a similar PPL
or WER as factLSTM on the PTB and TED talks data sets.

The last investigated domain adaptation method was a unified framework
for feature-based LM domain adaptation based on an SSN and fLHUC. The
results on a dataset of TED talks showed PPL reductions compared with a base-
line LSTM-LM and feature-based domain adaptation with LDA features. In the
rescoring experiments on the TED-LIUM dataset, UniFA consistently improved
on an LSTM-LM baseline and showed lower WER than conventional feature-
based adaptation in all but one cases.

Investigating the adaptation parameters that the network learns to extract
from LDA features or the SSN, there were similar patterns in both cases but the
SSN learned to extract more short term context. Capturing short-term changes in
the topic was helpful to reduce PPL and WER. This was also a good visualisation
for the effectiveness of domain adaptation. Long-term high or low activations of
individual nodes in the adaptation layer correspond to a global topic. These
distinct network activations show that the network learns to adjust the output
distribution for certain topics.

6.4 Future Work
Out of all investigated context information, domain adaptation of NNLM with
topic features was the most successful approach. The experimental results showed
a higher consistency compared with results from prosodic features and were
clearly superior to the cache-based methods. However, in this thesis the use

106

of prosodic information was only investigated as model-based adaptation for an
RNN-LM. Joint training with prosodic features from scratch is equivalent to
feature-based adaptation. This should be investigated with the network architec-
tures that showed effective for feature-based domain adaptation.

In addition, the effect of prosodic information and topic information was only
investigated in isolation. A joint investigation of both features should be con-
ducted. Such investigation can also include the use of an SSN to extract prosodic
information from the audio signal itself. Such extraction has the advantage that
no feature-engineering is required to select prosodic features.

Regarding the results from UniFA, an improvement on the current context
representation learned by the SSN has to be considered. So far, longer context
window sizes were not helpful to further improve the results. The LDA features
were superior when a context window length of 200 words was used. Here, a pre-
training of the SSN for instance as an auto-encoder could be helpful and should
be investigated.

Finally, a general remark on the application of context information to rescor-
ing. Learning a more robust context representation has to be considered. Across
different experiments, in case where large PPL reductions were achieved, the re-
sult could not always be carried over to large WER improvements. This has
different reasons. The LMs are trained on the ground truth data and all features
used for training are also calculated on this data. Increasing the robustness could
be achieved by introducing distortions in the training data. A possible approach
how these distortions could be generated was presented in [69]. The training
objective of the LM is maximisation of the next word probability whereas the
objective in rescoring should be to find the hypothesis that has the least amount
of errors with respect to an unknown target phrase. Another possible way for
improvement could in this respect be training the LM with the objective of WER
reduction and not PPL reduction.

107

Acknowledgements
I would have not been able to accomplish this thesis without the continuous
support of many people that I would like to express my sincere appreciation to.
First and foremost, I would like to thank my family for their support during this
adventure.

I would like to thank Prof. Yuji Matsumoto along with all other assistant pro-
fessors and the students in the Computational Linguistics Laboratory at NAIST.
I am very glad that you welcomed me in your laboratory and I enjoyed very much
the support of other PhD students and helping each other along the way. It was
always a relief to see that all of us had the same problems for some part and we
were able to support each other.

Next are Dr. Tomohiro Nakatani, Dr. Atsunori Ogawa, Dr. Marc Delcroix
and Dr. Tomoharu Iwata from NTT Communication Science Laboratories. They
were co-authors on my publications and gave me many fruitful advise for my
research. I am also very thankful that I could use the infrastructure at NTT
Communication Science Laboratires for my research.

I would like to thank all the people I met in Nara as fellow interns of NTT
Communication Science Laboratories during my PhD. This includes the following
people Hendrik Meutzner, Ferenc Kazinczi, Christian Hümmer, Juan Azcarreta,
Kateřina Žmolíková, Lukas Drude, Christopher Schmura, Thilo von Neumann,
Austin Windsor and Aswin Shanmugam Subramanian. Many of them became
very good friends I still keep regular contact with. Among these people, a special
thanks goes to Ferenc and Juan for proof reading my thesis.

Michael Hentschel
Nara, Japan
March 15, 2019

108

References
[1] Tanel Alumäe. Multi-domain Neural Network Language Model. In INTER-

SPEECH, volume 13, pages 2182–2186, 2013.

[2] Tanel Alumäe and Mikko Kurimo. Domain Adaptation of Maximum
Entropy Language Models. In Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 301–306, 2010.

[3] Xavier L. Aubert. An overview of decoding techniques for large vocabulary
continuous speech recognition. Computer Speech and Language, 16(1):89 –
114, 2002.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
Normalization. arXiv preprint arXiv:1607.06450, 2016.

[5] Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In International Con-
ference on Learning Representations (ICLR), 2015.

[6] L. E. Baum. An inequality and associated maximization technique in statis-
tical estimation of probabilistic functions of Markov processes. Inequalities,
3:1–8, 1972.

[7] Peter Bell, Mark JF Gales, Thomas Hain, Jonathan Kilgour, Pierre Lan-
chantin, Xunying Liu, Andrew McParland, Steve Renals, Oscar Saz, Mir-
jam Wester, et al. The MGB challenge: Evaluating multi-genre broadcast
media recognition. In IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), pages 687–693. IEEE, 2015.

[8] Jerome R Bellegarda. Statistical language model adaptation: review and
perspectives. Speech Communication, 42(1):93–108, 2004.

[9] Richard Bellman and Rand Corporation. Dynamic Programming. Rand
Corporation research study. Princeton University Press, 1957.

[10] Jacob Benesty, Shoji Makino, and Jingdong Chen, editors. Speech
Enhancement. Springer-Verlag, Berlin Heidelberg, 2005.

109

[11] Yoshua Bengio and Réjean Ducharme. A neural probabilistic language
model. In Proceedings of Advances in Neural Information Processing Sys-
tems, volume 13, pages 932–938, 2001.

[12] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of Machine Learning Research,
3:1137–1155, 2003.

[13] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning Long-Term
Dependencies with Gradient Descent is Difficult. IEEE Transactions on
Neural Networks, 5(2):157–166, 1994.

[14] Adam L Berger, Vincent J Della Pietra, and Stephen A Della Pietra. A
Maximum Entropy Approach to Natural Language Processing. Computa-
tional Linguistics, 22(1):39–71, 1996.

[15] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer Science & Business Media, 2006.

[16] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research, 3:993–1022, 2003.

[17] Peter F. Brown, Peter V. Desouza, Robert L. Mercer, Vincent J. Della
Pietra, and Jenifer C. Lai. Class-Based n-gramModels of Natural Language.
Computational Linguistics, 18(4):467–479, 1992.

[18] Oscar Chan and Roberto Togneri. Prosodic Features for a Maximum
Entropy Language Model. In INTERSPEECH, pages 1858–1861, 2006.

[19] Jingdong Chen, Jacob Benesty, Yiteng Arden Huang, and Eric J Diethorn.
Fundamentals of Noise Reduction. In Jacob Benesty, M. Mohan Sondhi,
and Yiteng Huang, editors, Springer Handbook of Speech Processing, pages
843–872. Springer-Verlag, Berlin Heidelberg, 2008.

[20] Minmin Chen. Efficient vector representation for documents through cor-
ruption. In International Conference on Learning Representations (ICLR),
2017.

110

[21] Stanley F. Chen and Joshua Goodman. An Empirical Study of Smoothing
Techniques for Language Modeling. In Annual Meeting of the Association
for Computational Linguistics (ACL), pages 310–318, 1996.

[22] Stanley F. Chen and Joshua Goodman. An Empirical Study of Smoothing
Techniques for Language Modelingmpirical study of smoothing techniques
for language modeling. Computer Speech and Language, 13(4):359–394,
1999.

[23] Xie Chen, Tian Tan, Xunying Liu, Pierre Lanchantin, Moquan
Wan, Mark JF Gales, and Philip C Woodland. Recurrent Neural
Network Language Model Adaptation for Multi-Genre Broadcast Speech
Recognition. In INTERSPEECH, pages 3511–3515, 2015.

[24] P. Clarkson and A. J. Robinson. Language model adaptation using mixtures
and an exponentially decaying cache. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 799–802, 1997.

[25] Steven Davis and Paul Mermelstein. Comparison of Parametric
Representations for Monosyllabic Word Recognition in Continuously
Spoken Sentences. IEEE Transactions on Acoustics, Speech and Signal
Processing, 28(4):357–366, August 1980.

[26] Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency
estimator for speech and music. The Journal of the Acoustical Society of
America, 111(4):1917–1930, 2002.

[27] Salil Deena, Madina Hasan, Mortaza Doulaty, Oscar Saz, and Thomas
Hain. Combining Feature and Model-Based Adaptation of RNNLMs for
Multi-Genre Broadcast Speech Recognition. In INTERSPEECH, pages
2343–2347, 2016.

[28] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Lan-
dauer, and Richard Harshman. Indexing by Latent Semantic Analysis.
Journal of the American Society of Information Science, 41(6):391–407,
1990.

111

[29] Marc Delcroix, Keisuke Kinoshita, Atsunori Ogawa, Christian Hümmer,
and Tomohiro Nakatani. Context Adaptive Neural Network Based Acoustic
Models for Rapid Adaptation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 26(5):895–908, May 2018.

[30] Marc Delcroix, Keisuke Kinoshita, Chengzhu Yu, Atsunori Ogawa, Takuya
Yoshioka, and Tomohiro Nakatani. Context adaptive deep neural networks
for fast acoustic model adaptation in noisy conditions. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5270–5274, 2016.

[31] Stephen Della Pietra, Vincent Della Pietra, Robert L. Mercer, and Salim
Roukos. Adaptive language modeling using minimum discriminant estima-
tion. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), volume 1, pages 633–636, 1992.

[32] Misha Denil, Alban Demiraj, Nal Kalchbrenner, Phil Blunsom, and Nando
de Freitas. Modelling, Visualising and Summarising Documents with a
Single Convolutional Neural Network. In Advances in Neural Information
Processing Systems (NIPS), 2014.

[33] John Duchi, Elad Hazan, and Yoram Singer. Adative Subgradient Methods
for Online Learning and Stochastic Optimization. Journal of Machine
Learning Research, 12:2121–2159, 2011.

[34] Richard O. Duda, Peter E. Hart, and David G. Strok. Pattern Classifica-
tion, Second Edition. John Wiley and Sons, 2001.

[35] Daniel PW Ellis and Byunk Suk Lee. Noise Robust Pitch Tracking by
Subband Autocorrelation Classification. In INTERSPEECH, 2012.

[36] Jefferey Elman. Finding Structure in Time. Cognitive Science, 14:179–211,
1990.

[37] Marcello Federico, Luisa Bentivogli, Paul Michael, and Stüker Sebastian.
Overview of the IWSLT 2011 evaluation campaign. In International Work-
shop on Spoken Language Translation (IWSLT), 2011.

112

[38] Tong Fu, Yang Han, Xiangang Li, Yi Liu, and Xihong Wu. Integrating
Prosodic Infromation into Recurrrent Neural Network Language Model for
Speech Recognition. In 2015 Asia-Pacific Signal and Information Process-
ing Association Annual Summit and Conference (APSIPA), pages 1194–
1197. IEEE, 2015.

[39] Venkata Ramana Rao Gadde. Modeling word durations. In INTER-
SPEECH, pages 601–604, 2000.

[40] Siva Reddy Gangireddy, Steve Renals, Yoshihiko Nankaku, and Akinobu
Lee. Prosodically-enhanced Recurrent Neural Network Language Models.
In INTERSPEECH, pages 2390–2394, 2015.

[41] Siva Reddy Gangireddy, Pawel Swietojanski, Peter Bell, and Steve Renals.
Unsupervised Adaptation of Recurrent Neural Network Language Models.
In INTERSPEECH, pages 2333–2337, 2016.

[42] Roberto Gemello, Franco Mana, Stefano Scanzio, Pietro Laface, and Re-
nato De Mori. Linear hidden transformations for adaptation of hybrid
ANN/HMM models. Speech Communication, 49(10):827–835, 2007.

[43] Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Korbinian Riedham-
mer, Jan Trmal, and Sanjeev Khudanpur. A pitch extraction algorithm
tuned for automatic speech recognition. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 2494–2498,
2014.

[44] James Glass, Timothy J. Hazen, Scott Cyphers, Igor Malioutov, David
Huynh, and Regina Barzilay. Recent Progress in the MIT Spoken Lecture
Processing Project. In INTERSPEECH, pages 2553–2556, 2007.

[45] I. J. Good. The population frequencies of species and the estimation of
population parameters. Biometrika, 40(3 and 4):237–264, 1953.

[46] Joshua T. Goodman. A bit of progress in language modeling. Computer
Speech and Language, 15(4):403–434, 2001.

113

[47] Joshua T. Goodman. Classes for fast maximum entropy training. In
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 1, pages 561–564, May 2001.

[48] Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural
language models with a continuous cache. International Conference on
Learning Representations (ICLR), 2017.

[49] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines.
arXiv preprint arXiv:1410.5401, 2014.

[50] Md Akmal Haidar and Mikko Kurimo. Recurrent Neural Network Language
Model With Incremental Updated Context Information Generated Using
Bag-of-Words Representation. In INTERSPEECH, pages 3504–3508, 2016.

[51] Md Akmal Haidar and Douglas O’Shaughnessy. Topic n-gram count lan-
guage model adaptation for speech recognition. In Spoken Language Tech-
nology Workshop (SLT), pages 165–169. IEEE, 2012.

[52] Peter. E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2):100–107, July 1968.

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[54] Aaron Heidel, Hung-an Chang, Lin-shan Lee, et al. Language model adap-
tation using latent dirichlet allocation and an efficient topic inference algo-
rithm. In INTERSPEECH, pages 2361–2364, 2007.

[55] Michael Hentschel, Marc Delcroix, Atsunori Ogawa, Tomoharu Iwata, and
Tomohiro Nakatani. Factorised Hidden Layer Based Domain Adaptation
for Recurrent Neural Network Language Models. In 2018 Asia-Pacific Sig-
nal and Information Processing Association Annual Summit and Confer-
ence (APSIPA ASC), pages 1940–1944, Honolulu, Hawaii, 12–15 November
2018.

114

[56] Michael Hentschel, Marc Delcroix, Atsunori Ogawa, Tomoharu Iwata, and
Tomohiro Nakatani. A Unified Framework for Feature-based Domain
Adaptation of Neural Network Language Models. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton
, UK, 12–17 May 2019.

[57] Michael Hentschel, Marc Delcroix, Atsunori Ogawa, Tomoharu Iwata, and
Tomohiro Nakatani. Feature Based Domain Adaptation for Neural Network
Language Models with Factorised Hidden Layers. IEICE Transactions on
Information and Systems, 102(3), March 2019.

[58] Michael Hentschel, Marc Delcroix, Atsunori Ogawa, and Tomohiro
Nakatani. Feature Based Learning Hidden Unit Contributions for Domain
Adaptation of RNN-LMs. In 2018 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC),
pages 1692–1696, Honolulu, Hawaii, 12–15 November 2018.

[59] Michael Hentschel, Atsunori Ogawa, Marc Delcroix, and Tomohiro
Nakatani. Evaluation of Various Cache Extensions for LSTM Based
Language Models. In Special Interest Group Spoken Language Processing
Research Meeting, number 116. Information Processing Society of Japan,
Osaka, May 2017.

[60] Michael Hentschel, Atsunori Ogawa, Marc Delcroix, Tomohiro Nakatani,
and Yuji Matsumoto. Exploiting Imbalanced Textual and Acoustic Data
for Training Prosodically-enhanced RNNLMs. In 2017 Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference
(APSIPA ASC), pages 618–621, Kuala Lumpur, Malaysia, 12–15 December
2017.

[61] Hynek Hermansky. Perceptual linear predictive (PLP) analysis of speech.
The Journal of the Acoustical Society of America, 87(4):1738–1752, 1990.

[62] James L. Hieronymus, David McKelvie, and Fergus McInnes. Use of acous-
tic sentence level and lexical stress in HSMM speech recognition. In 1992
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 225–227. IEEE, 1992.

115

[63] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[64] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neu-
ral Computation, 9(8):1735–1780, 1997.

[65] Christian Hofmann. Evaluation of a novel hmm training concept for
reverberation-robust asr. SIM Project Work, 2010.

[66] Thomas Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings
of the Twenty-Second Annual International SIGIR Conference, pages 50–
57, 1999.

[67] Takaaki Hori. NTT speech recognizer with outlook on the next generation:
SOLON. In Proc. NTT Workshop on Communication Scene Analysis, 2004,
2004.

[68] Takaaki Hori and Atsushi Nakamura. Speech Recognition Algorithms Using
Weighted Finite-State Transducers. Morgan & Claypool Publishers, 1st
edition, 2013.

[69] Yinghui Huang, Abhinav Sethy, Kartik Audhkhasi, and Bhuvana Ramab-
hadran. Whole sentence neural language model. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
6089–6093, 2018.

[70] Kazuki Irie, Shankar Kumar, Michael Nirschl, and Hank Liao. RADMM:
recurrent adaptive mixture model with applications to domain robust lan-
guage modeling. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6079–6083, 2018.

[71] Kazuki Irie, Ralf Schlüter, and Herman Ney. Bag-of-Words Input for
Long History Representation in Neural Network-based Language Models
for Speech Recognition. In INTERSPEECH, pages 2371–2375, 2015.

[72] Kazuki Irie, Zoltán Tüske, Tamar Alkhouli, Ralf Schlüter, and Hermann
Ney. LSTM, GRU, Highway and a Bit of Attention: An Empirical Overview

116

for Language Modeling in Speech Recognition. In INTERSPEECH, pages
3519–3523, 2016.

[73] Frederick Jelinek. Continuous Speech Recognition by Statistical Methods.
Proceedings of the IEEE, 64(4):532–556, April 1976.

[74] Frederick Jelinek and Robert L Mercer. Interpolated estimation of markov
source parameters from sparse data. In Workshop on Pattern Recognition
in Practice, pages 381–397, 1980.

[75] Frederick Jelinek, Bernard Mérialdo, Salim Roukos, and Martin Strauss. A
Dynamic Language Model for Speech Recognition. In Workshop on Speech
and Natural Language, HLT 1991, pages 293–295, 1991.

[76] Armand Joulin and Tomas Mikolov. Inferring Algorithmic Patterns with
Stack-Augmented Recurrent Nets. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 190–198, 2015.

[77] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A
Convolutional Neural Network for Modelling Sentences. In Annual Meeting
of the Association for Computational Linguistics (ACL), volume 1, pages
655–665, 2014.

[78] Slava M. Katz. Estimation of Probabilities from Sparse Data for the
Language Model Component of a Speech Recognizer. IEEE Transactions
on Acoustics, Speech and Signal Processing, 35(3):400–401, 1987.

[79] Walter Kellermann. Lecture notes in Signal Processing for Speech and
Audio. Friedrich-Alexander-Universität Erlangen-Nürnberg.

[80] Sanjeev Khudanpur and Jun Wu. Maximum entropy techniques for exploit-
ing syntactic, semantic and collocational dependencies in language model-
ing. Computer Speech and Language, 14(4):355–372, 2000.

[81] Yoon Kim. Convolutional Neural Networks for Sentence Classification.
In Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746–1751, 2014.

117

[82] Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram lan-
guage modeling. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), volume 1, pages 181–184, 1995.

[83] Roland Kuhn and Renato De Mori. A Cache-Based Natural Language
Model for Speech Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(6):570–583, 1990.

[84] Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and
Documents. In International Conference on Machine Learning (ICML),
pages 1188–1196, 2014.

[85] Rui Lin, Shujie Liu, Muyun Yang, Mu Li, Ming Zhou, and Sheng Li. Hi-
erarchical recurrent neural network for document modeling. In Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages
899–907, 2015.

[86] Yang Liu and Feifan Liu. Unsupervised language model adaptation via
topic modeling based on named entity hypotheses. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4921–4924, 2008.

[87] Kikuo Maekawa. Corpus of spontaneous Japanese: Its design and evalua-
tion. In ISCA & IEEE Workshop on Spontaneous Speech Processing and
Recognition, 2003.

[88] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini.
Building a large annotated corpus of English: the Penn Treebank. Com-
putational Linguistics, 19(2):313–330, 1993.

[89] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.
Pointer Sentinel Mixture Models. arXiv preprint arXiv:1609.07843, 2016.

[90] Thomas Mikolov. Statistical Language Models based on Neural Networks.
PhD thesis, Brno University of Technology, 2012.

118

[91] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
Estimation of Word Representations in Vector Space. arXiv preprint
arXiv:1301.3781, 2013.

[92] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev
Khudanpur. Recurrent neural network based language model. In INTER-
SPEECH, pages 1045–1048, 2010.

[93] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and San-
jeev Khudanpur. Extensions of recurrent neural network language model. In
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5528–5531. IEEE, 2011.

[94] Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural
network language model. In Spoken Language Technology Workshop (SLT),
volume 12, pages 234–239. IEEE, 2012.

[95] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational
Geometry. MIT Press, 1969.

[96] Takafumi Moriya, Tomohiro Tanaka, Takahiro Shinozaki, Shinji Watanabe,
and Kevin Duh. Automation of system building for state-of-the-art large
vocabulary speech recognition using evolution strategy. In IEEE Workshop
on Automatic Speech Recognition and Understanding (ASRU), pages 610–
616. IEEE, 2015.

[97] Masami Nakamura and Kiyohiro Shikano. A study of English word category
prediction based on neutral networks. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), volume 2, pages
731–734, May 1989.

[98] Tomohiro Nakatani, Shigeaki Amano, Toshio Irino, Kentaro Ishizuka, and
Tadahisa Kondo. A method for fundamental frequency estimation and
voicing decision: Application to infant utterances recorded in real acoustical
environments. Speech Communication, 50(3):203–214, 2008.

[99] Patrick A. Naylor and Nikolay D. Gaubitch. Speech Dereverberation.
Springer Verlag, London, 2010.

119

[100] Hermann Ney and Ute Essen. On smoothing techniques for bigram-based
natural language modelling. In IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), volume 2, pages 825–829,
1991.

[101] Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring proba-
bilistic dependences in stochastic language modelling. Computer Speech
and Language, 8(1):1 – 38, 1994.

[102] Elmar Nöth, Anton Batliner, Andreas Kießling, Ralf Kompe, and Heinrich
Nieman. VERBMOBIL: The Use of Prosody in the Linguistic Components
of a Speech Understanding System. IEEE Transactions on Speech and
Audio Processing, 8(5):519–532, 2000.

[103] Mari Ostendorf, Colin W Wightman, and Nanette M Veilleux. Parse scor-
ing with prosodic information: an analysis/synthesis approach. Computer
Speech and Language, 7(3):193–210, 1993.

[104] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Vari-
ables, and Stochastic Processes, Fourth Edition. McGraw-Hill Series in
Electrical and Computer Engineering. McGraw-Hill, New York, 2002.

[105] Junho Park, Xunying Liu, Mark JF Gales, and Phil C Woodland. Improved
Neural Network Based Language Modelling and Adaptation. In INTER-
SPEECH, pages 1041–1044, 2010.

[106] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[107] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej
Glembek, Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian,
Petr Schwarz, Jan Silovsky, Georg Stemmer, and Karel Vesely. The Kaldi
Speech Recognition Toolkit. In IEEE Workshop on Automatic Speech Recog-
nition and Understanding (ASRU). IEEE, December 2011.

120

[108] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proceedings of the IEEE, 77(2):257–
286, Feb 1989.

[109] Ronald Rosenfeld. A maximum entropy approach to adaptive statistical
language modeling. Computer Speech and Language, 10:187–228, 1996.

[110] Ronald Rosenfeld. Two Decades of Statistical Language Modeling: Where
Do We Go from Here? Proceedings of the IEEE, 88(8):1270–1278, 2000.

[111] Anthony Rousseau, Paul Deléglise, and Yannick Esteve. TED-LIUM: an
Automatic Speech Recognition dedicated corpus. In LREC, pages 125–129,
2012.

[112] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323:533–536, 1986.

[113] Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, New York, 1983.

[114] Lahiru Samarakoon and Khe Chai Sim. Subspace LHUC for fast adaptation
of deep neural network acoustic models. In INTERSPEECH, pages 1593–
1597, 2016.

[115] Holger Schwenk. Continuous space language models. Computer Speech and
Language, 21(3):492–518, 2007.

[116] Holger Schwenk and Jean-Luc Gauvain. Connectionist language modeling
for large vocabulary continuous speech recognition. In International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), volume 1,
pages 765–768, 2002.

[117] Holger Schwenk and Jean-Luc Gauvain. Training neural network language
models on very large corpora. In Proceedings of Human Language Technol-
ogy Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 201–208, 2005.

121

[118] Elizabeth Shriberg, Andreas Stolcke, Dilek Hakkani-Tür, and Gökhan
Tür. Prosody-Based Automatic Segmentation of Speech into Sentences
and Topics. Speech Communication, 32(1):127–154, 2000.

[119] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett,
Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill
Dolan. A Neural Network Approach to Context-Sensitive Generation of
Conversational Responses. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), pages 196–205, 2015.

[120] Daniel Soutner and Luděk Müller. Application of LSTM Neural Networks
in Language Modelling. In International Conference on Text, Speech and
Dialogue, pages 105–112. Springer, 2013.

[121] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway
Networks. arXiv preprint arXiv:1505.00387, 2015.

[122] Karsten Steinhauer, Kai Alter, and Angela D Friederici. Brain potentials
indicate immediate use of prosodic cues in natural speech processing. Nature
Neuroscience, 2(2):191–196, 1999.

[123] Andreas Stolcke. SRILM – an extensible language modeling toolkit. In
International Conference on Speech and Language Processing, pages 901–
904, 2002.

[124] Andreas Stolcke, Elizabeth Shriberg, Dilek Z. Hakkani-Tür, and Gökhan
Tür. Modeling the prosody of hidden events for improved word recognition.
In EUROSPEECH, pages 307–310, 1999.

[125] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-To-End
Memory Networks. In Advances in Neural Information Processing Systems
(NIPS), pages 2440–2448, 2015.

[126] Martin Sundermeyer. Improvements in Language and Translation
Modeling. PhD thesis, RWTH Aachen University, 2016.

122

[127] Martin Sundermeyer, Hermann Ney, and Ralf Schlüter. From Feedforward
to Recurrent LSTM Neural Networks for Language Modeling. IEEE/ACM
Transactions on Audio, Speech and Language Processing, 23(3):517–529,
2015.

[128] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM Neural
Networks for Language Modeling. In INTERSPEECH, pages 194–197,
2012.

[129] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Pro-
cessing Systems (NIPS), volume 2, pages 3104–3112, 2014.

[130] Pawel Swietojanski and Steve Renals. Learning hidden unit contributions
for unsupervised speaker adaptation of neural network acoustic models. In
Spoken Language Technology Workshop (SLT), pages 171–176. IEEE, 2014.

[131] David Talkin. A Robust Algorithm for Pitch Tracking (RAPT). In W. Bas-
tiaan Kleijn and Kuldip Paliwal, editors, Speech Coding and Synthesis,
pages 495–518. Elsevier Science Inc., New York, 1995.

[132] Yik-Cheung Tam and Tanja Schultz. Dynamic Language Model Adaptation
using Variational Bayes Inference. In INTERSPEECH, pages 5–8, 2005.

[133] Ottokar Tilk and Tanel Alumäe. Multi-Domain Recurrent Neural Network
Language Model for Medical Speech Recognition. In Baltic HLT, pages
149–152, 2014.

[134] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a
Next-Generation Open Source Framework for Deep Learning. In Workshop
on Machine Learning Systems (LearningSys) in the Twenty-ninth Annual
Conference on Neural Information Processing Systems (NIPS), 2015.

[135] Ke Tran, Arianna Bisazza, and Christof Monz. Recurrent Memory
Networks for Language Modeling. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT), pages 321–331, San
Diego, California, June 2016. Association for Computational Linguistics.

123

[136] Nanette M. Veilleux, Mari Ostendorf, and Colin W. Wightman. Parse
Scoring With Prosodic Information. In 1993 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 1993.

[137] Dimitra Vergyri, Andreas Stolcke, Venkata Ramana Rao Gadde, Luciana
Ferrer, and Elizabeth Shriberg. Prosodic knowledge sources for automatic
speech recognition. In 2003 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), volume 1, pages 208–211, 2003.

[138] Karel Veselỳ, Shinji Watanabe, Katerina Žmolíková, Martin Karafiát,
Lukáš Burget, and Jan Honza Černockỳ. Sequence summarizing neural
network for speaker adaptation. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5315–5319. IEEE,
2016.

[139] Olli Viikki and Kari Laurila. Cepstral domain segmental feature vector
normalization for noise robust speech recognition. Speech Communication,
25(1):133–147, 1998.

[140] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In
Advances in Neural Information Processing Systems (NIPS), pages 2692–
2700, 2015.

[141] Andrew Viterbi. Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm. IEEE Transactions on In-
formation Theory, 13(2):260–269, April 1967.

[142] Shinji Watanabe, Tomoharu Iwata, Takaaki Hori, Atsushi Sako, and Yasuo
Ariki. Topic tracking language model for speech recognition. Computer
Speech and Language, 25(2):440–461, 2011.

[143] Paul J. Werbos. Generalization of backpropagation with application to a
recurrent gas market model. Neural Networks, 1(4):339–356, 1988.

[144] Paul J. Werbos. Backpropagation Through Time: What It Does and How
to Do It. Proceedings of the IEEE, 78(10):1550–1560, 1990.

124

[145] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory Networks.
International Conference on Learning Representations (ICLR), 2015.

[146] Will Williams, Niranjani Prasad, David Mrva, Tom Ash, and Tony Robin-
son. Scaling recurrent neural network language models. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5391–5395. IEEE, 2015.

[147] Francisco Zamora-Martínez, S Espana-Boquera, MJ Castro-Bleda, and Re-
nato De-Mori. Cache neural network language models based on long-
distance dependencies for a spoken dialog system. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4993–4996, 2012.

[148] Jian Zhang, Xiaofeng Wu, Andy Way, and Qun Liu. Fast Gated Neural
Domain Adaptation: Language Model as a Case Study. In International
Conference on Computational Linguistics (COLING), pages 1386–1397,
2016.

[149] Katerina Zmolikova, Marc Delcroix, Keisuke Kinoshita, Higuchi Takuya,
Atsunori Ogawa, and Tomohiro Nakatani. Speaker-aware neural network
based beamformer for speaker extraction in speech mixtures. In INTER-
SPEECH, pages 2655–2659, 2017.

125

List of Major Publications

Journal Papers
• Michael Hentschel, Marc Delcroix, Atsunori Ogawa, Tomoharu Iwata, and

Tomohiro Nakatani. Feature Based Domain Adaptation for Neural Network
Language Models with Factorised Hidden Layers. IEICE Transactions on
Information and Systems, 102(3), March 2019.

Papers at International Conferences
• Michael Hentschel, Atsunori Ogawa, Marc Delcroix, Tomohiro Nakatani,

and Yuj Matsumoto. Exploiting Imbalanced Textual and Acoustic Data
for Training Prosodically-enhanced RNNLMs. In 2017 Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference
(APSIPA ASC), pages 618–621, Kuala Lumpur, Malaysia, 12–15 December
2017.

• Michael Hentschel, Marc Delcroix, Atsunori Ogawa, and Tomohiro Nakatani.
Feature Based Learning Hidden Unit Contributions for Domain Adaptation
of RNN-LMs. In 2018 Asia-Pacific Signal and Information Processing Asso-
ciation Annual Summit and Conference (APSIPA ASC), pages 1692–1696,
Honolulu, Hawaii, 12–15 November 2018.

• Michael Hentschel, Marc Delcroix, Atsunori Ogawa, Tomoharu Iwata, and
Tomohiro Nakatani. Factorised Hidden Layer Based Domain Adaptation
for Recurrent Neural Network Language Models. In 2018 Asia-Pacific Sig-
nal and Information Processing Association Annual Summit and Confer-
ence (APSIPA ASC), pages 1940–1944, Honolulu, Hawaii, 12–15 November
2018.

• Michael Hentschel, Marc Delcroix, Atsunori Ogawa, Tomoharu Iwata, and
Tomohiro Nakatani. A Unified Framework for Feature-based Domain Adap-
tation of Neural Network Language Models. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK,
12–17 May 2019.

126

Papers at Domestic Research Meetings
• Michael Hentschel, Atsunori Ogawa, Marc Delcroix, and Tomohiro Nakatani.

Evaluation of Various Cache Extensions for LSTM Based Language Models.
In Special Interest Group Spoken Language Processing Research Meeting,
number 116, Information Processing Society of Japan, Osaka, May 2017.

127

Appendix

A. List of Abbreviations

ASR Automatic Speech Recognition
DNN Deep Neural Network
PLP Perceptual Linear Prediction
MFCC Mel Frequency Cepstral Coefficients
CMVN Cepstral Mean and Variance Normalisation
GMM Gaussian Mixture Model
HMM Hidden Markov Model
EM Expectation Maximisation
DFT Discrete Fourier Transform
DCT Discrete Cosine Transform
WER Word Error Rate
PPL Perplexity
AM Acoustic Model
LM Language Model
NN Neural Network
NNLM Neural Network Language Model
RNN Recurrent Neural Network
RNN-LM Recurrent Neural Network Language Model
LSTM Long Short-Term Memory
LSTM-LM Long Short-term Memory recurrent neural network Lan-

guage Model
OOV Out-Of-Vocabulary
BoW Bag-of-Words
NC Neural Cache
LDA Latent Dirichlet Allocation
CNN Convolutional Neural Network
NLP Natural Language Processing
HMI Human-Machine Interaction
LHN Linear Hidden Network

128

fLHN Feature-based Linear Hidden Network
LHUC Learning Hidden Unit Contributions
fLHUC Feature-based Learning Hidden Unit Contributions
PCA Principal Component Analysis
fLHN-LSTM Feature-based Linear Hidden Network Long Short-Term

Memory language model
factLSTM Factorised hidden layer Long Short-Term Memory lan-

guage model
contLSTM Context dependent Long Short-Term Memory language

model
fLHUC-LSTM Feature-based Learning Hidden Unit Contributions

Long Short-Term Memory language model
fLHUCB Feature-based Learning Hidden Unit Contributions

Long Short-Term Memory language model with Bias
adaptation

SSN Sequence Summary Network
UniFA Unified framework for Feature-based domain Adapta-

tion of neural network language models

B. List of Mathematical Symbols and Notation

B.1 List of Mathematical Operators

argmax(·) The argmax function
softmax (·) The softmax function
σ(·) The sigmoid function
(·)T Transpose of a matrix
C(·) The count function for the number of occurrences of a

word sequence
lstm(·) An LSTM cell
1a=b A function that evaluates to one if a is equal to b and

zero for all other cases
N The normal distribution

129

e The exponential function

B.2 List of Mathematical Symbols

s[t] The time-discrete input signal to the speech recogniser
s̃[t] The pre-processed time-discrete input signal
Ω The circular frequency
U The vocabulary of the language model
w A word from the word sequence
w A word sequence
o A Feature vector extracted from the input signal
o A sequence of feature vectors
o An element of the feature vector (that is one dimension)
D Discount parameter for Kneser-Ney Smoothing
h The history for an M -Gram
g The shortened history for back-off
w A vector of words
C The symbol for word classes
C The set of word classes
r The count of an M -Gram
r∗ The modified count for the Good-Turing formula
λ An HMM model
Θ A GMM model
c The mixture weight in a GMM
µ Mean vector of a GMM
Σ Covariance matrix of a GMM
Φ A set of parameters
Ω class label
S The set of states of an HMM
s A state of an HMM
s A sequence of states in an HMM
CE the Cross Entropy training criterion
e The output error vector
t The training target label

130

η The learning rate for error backpropagation
il The LSTM input gate
f l The LSTM forget gate
ol The LSTM output gate
cl The LSTM cell state
W The weight matrix for gates in an LSTM
b A bias vector
xl The input vector to NNLM
wl−1 The input word vector
al An auxiliary feature vector
hl The hidden layer of an NNLM
h

(a)
l LHUC gating weights
yl The input to the softmax function in an NNLM
ŵl The output word vector of an NNLM
cl The output class vector for class-based NNLMs
U The transition matrix from the input to the hidden layer
U (w) The word part of the transition matrix from the input

to the hidden layer
U (h) The hidden layer part of transition matrix from the in-

put to the hidden layer in RNN-LMs
b(U,h) The bias vector for the hidden-to-hidden input layer
U (a) The input layer for auxiliary features
b(U,a) The input layer bias for auxiliary features
V The output layer
b(V) The bias vector for the output layer
V (w) The word part of the transition matrix from the hidden

layer to the output layer
b(V,w) The bias vector for the word part for the hidden-to-

output layer
V (c) The class part of transition matrix from hidden-to-

output layer
V (a) The transition matrix for auxiliary features from the

input to the output or adaptation layer

131

b(V,a) The bias vector for auxiliary features from the input to
the output or adaptation layer

d(LHUC) The fLHUC adaptation layer output
d(bias) The fLHN adaptation layer output
ψl The output vector of the neural cache
c
(nc)
l The output vector with word probabilities from the neu-

ral cache
c
(u)
l The output vector of the unigram cache
c
(b)
l The output vector of the bigram cache
h

(nc)
l The projected output vector of the neural cache
h

(u)
l The projected output vector of the unigram cache
h

(b)
l The projected output vector of the bigram cache
U (nc) The transition matrix from the neural cache to the

NNLM input
U (u) The transition matrix from the unigram cache to the

NNLM input
U (b) The transition matrix from the bigram cache to the

NNLM input
V (nc) The transition matrix from the neural cache to the

NNLM output
V (u) The transition matrix from the unigram cache to the

NNLM output
V (b) The transition matrix from the bigram cache to the

NNLM output
γ The factor weight for factLSTM
γ The vector of all factor weights
z The output of a factorised layer
L(w) The transition matrix of a factorised layer
b(L,w) The bias vector of a factorised layer

132

C. Additional Perplexity Results for Prosodically-
enhanced Recurrent Neural Network Language
Models

In Chapter 3.1, prosodic information from fundamental frequency (F0) and signal
power was introduced. Subsequently, Chapter 5.3 showed the experimental re-
sults on the MIT-OCW corpus when this information is applied to the re-training
of RNN-LMs. This section shows the full list of prosodic features that were inves-
tigated. This includes additional features from F0 and signal power. Additional
results for MIT-OCW with these prosodic features are also presented. In addi-
tion to model re-training, this section also shows the full list of results for models
trained from scratch on the smaller MIT-OCW AM training set.

C.1 F0 Features
Chapter 3.1.1 introduced the calculation of mean and delta features from the F0
feature sequence oF0 were introduced. In addition, further features were calcu-
lated from the F0 feature sequence. Chapter 3.1.1 introduced delta coefficients
as they are common in ASR systems. This includes:

1. Acceleration coefficients (f0a)

∆2
F0[l] =

∆F0[l + 1]−∆F0[l − 1]

2
. (117)

This is the second order derivative or often also called delta-delta coeffi-
cients.

2. The variance (σF0) for all F0 features frames Nl within one word wl (f0v)

σF0[l] =
1

Nl

ne∑
n=ns

oF0[n]− µF0[l], (118)

where ns is the corresponding start index and ne the end index of word wl

in the F0 feature sequence.

133

3. The mean F0 (f0u) for all feature frames NL of an utterance

µF0,utt[l] =
1

NL

ne∑
n=ns

oF0[n]. (119)

For utterance level mean f0u, the same feature is used for all words in one
utterance.

Chapter 5.3 described a specific way to normalise f0m and f0d features in the
experiments. In addition, other ways for normalisation were investigated. This
includes:

• Linear and logarithmic scale of all features

• Using the voiced/unvoiced decision of the F0 estimator [98] to calculate
the features for one word. If the decision was used, only those F0 feature
frames that were considered as voiced were used to calculate the prosodic
features.

• Normalising features with the global mean and variance or with the mean
and variance per utterance to unit variance and zero mean.

For the F0 estimator, two implementations were available. An older version of
the implementation that used a weak smoothing and a newer implementation
that used a strong smoothing for the F0 values. Both lead to slightly different
results. The old implementation is hereafter denoted as NakOld and the newer
implementation is denoted as NakNew.

Tables 29 and 30 show the full set of PPL results for re-training or RNN-LMs
with prosodic features on the MIT-OCW corpus. Table 29 shows the results for
the validation set and Table 30 shows the results for the test set.

In addition to the re-training scheme as described in Chapter 5.3.1, all features
were also investigated when trained from scratch only on the smaller MIT-OCW
AM training set. Tables 31 and 32 show the PPLs for these models. As mentioned
in Chapter 5.3.2, these PPLs cannot be directly compared with the models trained
on the LM training set because of the difference in vocabulary size.

134

Feature extractor voiced lin/global lin/utt log/global log/utt

f0a
NakNew

no 177.33 183.39 170.64 183.48
yes 183.60 183.50 175.74 183.35

NakOld
no 175.70 183.25 170.92 183.34
yes 183.81 183.13 174.18 183.38

f0d
NakNew

no 178.02 183.11 170.74 183.04
yes 185.42 183.20 178.50 183.36

NakOld
no 183.08 182.73 171.37 183.14
yes 184.09 182.16 177.48 182.85

f0m
NakNew

no 183.40 183.15 183.82 183.51
yes 182.44 181.98 183.49 182.68

NakOld
no 181.89 181.61 181.53 180.90
yes 180.67 180.36 182.91 181.86

f0u
NakNew

no 183.62 183.43 184.02 183.43
yes 184.08 183.43 183.97 183.43

NakOld
no 183.62 183.43 183.50 183.43
yes 183.91 183.43 183.73 183.43

f0v
NakNew

no 183.78 183.52 183.40 183.47
yes 183.33 183.51 183.58 183.53

NakOld
no 183.52 182.41 182.53 182.33
yes 183.65 183.07 183.03 183.14

Table 29: All PPL results for MIT-OCW with prosodic F0 features for the vali-
dation set.

135

Feature extractor voiced lin/global lin/utt log/global log/utt

f0a
NakNew

no 150.62 151.87 149.34 151.69
yes 150.35 152.24 150.65 152.15

NakOld
no 148.50 151.72 147.85 151.54
yes 151.47 151.88 150.17 151.79

f0d
NakNew

no 149.26 152.06 149.27 152.19
yes 151.27 150.83 149.64 152.03

NakOld
no 151.17 149.51 148.45 150.55
yes 150.17 149.95 149.34 151.58

f0m
NakNew

no 150.76 150.61 152.43 152.28
yes 150.79 149.34 152.23 150.21

NakOld
no 151.30 150.09 150.70 148.06
yes 150.17 150.28 152.11 151.09

f0u
NakNew

no 151.14 152.40 152.92 152.40
yes 152.67 152.40 152.72 152.40

NakOld
no 152.35 152.40 152.24 152.40
yes 152.58 152.40 152.75 152.40

f0v
NakNew

no 152.45 152.39 152.74 152.40
yes 150.82 152.36 152.32 152.14

NakOld
no 152.03 150.00 148.94 150.92
yes 152.35 152.39 151.73 151.51

Table 30: All PPL results for MIT-OCW with prosodic F0 features for the test
set.

136

Feature extractor voiced lin/global lin/utt log/global log/utt

f0a
NakNew

no 198.27 202.65 201.70 200.31
yes 240.84 230.25 246.59 223.04

NakOld
no 218.15 239.48 218.66 237.26
yes 208.25 225.25 203.12 219.70

f0d
NakNew

no 209.20 200.74 204.75 231.64
yes 202.78 202.51 217.17 199.56

NakOld
no 204.10 198.53 337.84 201.85
yes 201.72 200.91 200.95 200.48

f0m
NakNew

no 194.48 207.65 197.17 198.64
yes 198.28 225.75 203.95 214.42

NakOld
no 201.01 215.73 201.86 219.80
yes 211.86 237.21 206.48 224.37

f0u
NakNew

no 196.48 204.20 196.27 204.20
yes 196.19 204.20 206.22 204.20

NakOld
no 213.27 204.20 200.00 204.20
yes 201.53 204.20 260.77 204.20

f0v
NakNew

no 252.32 208.92 244.88 241.65
yes 203.81 214.81 207.71 203.33

NakOld
no 202.25 198.13 233.37 203.89
yes 223.70 200.97 198.98 207.69

Table 31: All PPL results for the MIT-OCW validation set when training on the
AM set with prosodic F0 features.

137

Feature extractor voiced lin/global lin/utt log/global log/utt

f0a
NakNew

no 209.24 205.63 203.01 208.84
yes 210.70 213.57 224.64 209.38

NakOld
no 211.18 211.24 211.47 214.11
yes 205.68 208.72 214.97 212.41

f0d
NakNew

no 217.76 201.00 202.93 213.02
yes 198.67 198.65 211.54 197.73

NakOld
no 202.02 201.28 281.62 200.08
yes 199.45 199.34 197.66 199.64

f0m
NakNew

no 214.72 221.81 218.41 216.18
yes 203.93 214.93 217.71 209.75

NakOld
no 200.24 207.80 209.23 212.42
yes 216.22 211.29 221.89 218.72

f0u
NakNew

no 216.89 203.87 212.30 203.87
yes 212.54 203.87 209.73 203.87

NakOld
no 208.26 203.87 209.00 203.87
yes 199.15 203.87 220.88 203.87

f0v
NakNew

no 220.81 203.90 222.22 213.60
yes 202.69 204.74 205.20 202.18

NakOld
no 201.67 201.86 204.43 201.10
yes 208.32 201.10 200.47 204.75

Table 32: All PPL results for the MIT-OCW test set when training on the AM
set with prosodic F0 features.

138

C.2 PW Features
Chapter 3.1.2 introduced mean and delta features for signal power. In addition,
further prosodic features were derived from signal power in a similar way to F0:

1. Acceleration coefficients (pwa) or delta-delta coefficients

∆2
pw[l] =

∆pw[l + 1]−∆pw[l − 1]

2
. (120)

2. The variance (σpw) of the signal power within frames Nl corresponding to
word wl (pwv)

σpw[l] =
1

Nl

ne∑
n=ns

s[n]− µpw[l], (121)

where ns is the corresponding start index and ne the end index of word wl

in the acoustic signal.

3. The mean signal power (pwu) for all feature frames NL of an utterance

µpw,utt[l] =
1

NL

ne∑
n=ns

s[n]. (122)

For utterance level mean pwu, the same feature is used for all words in one
utterance.

For the experiments in Chapter 5.3, pwm and pwd were logarithmic scale
features with different normalisations. In addition, for all power features linear
were also investigated. The normalisation to zero mean and unit variance was
done per utterance or with the global mean and variance.

Tables 33 and 34 show the PPL results for all prosodic signal power features
on the validation and on the test set of MIT-OCW. Table 33 shows the results
for the validation set for re-training with prosodic features. Table 34 shows the
PPL results after re-training on the test set.

In addition to the re-training scheme as described in Chapter 5.3.1, all features
were also investigated when trained from scratch only on the smaller MIT-OCW
AM training set. Tables 35 and 36 show the PPLs for these models.

139

Feature lin/global lin/utt log/global log/utt
pwa 183.22 183.38 170.85 183.24
pwd 183.81 183.17 170.20 181.57
pwm 183.16 181.73 181.81 178.30
pwu 183.55 183.43 183.54 183.43
pwv 183.36 182.63 182.99 181.79

Table 33: All PPL results for MIT-OCW with prosodic PW features for the
validation set.

Feature lin/global lin/utt log/global log/utt
pwa 152.45 152.09 148.74 152.01
pwd 152.12 151.50 146.89 149.52
pwm 152.30 151.38 149.77 148.25
pwu 152.34 152.40 152.41 152.40
pwv 152.40 151.81 152.23 151.80

Table 34: All PPL results for MIT-OCW with prosodic PW features for the test
set.

Feature lin/global lin/utt log/global log/utt
pwa 245.46 275.96 346.44 198.43
pwd 207.28 201.56 245.89 194.84
pwm 201.24 204.87 203.22 191.26
pwu 202.46 204.20 194.81 204.20
pwv 202.69 200.17 202.54 205.09

Table 35: All PPL results for the MIT-OCW validation set when training on the
AM training set with PW features.

140

Feature lin/global lin/utt log/global log/utt
pwa 224.76 222.59 424.17 209.04
pwd 207.02 202.32 263.54 209.19
pwm 198.56 202.27 223.18 210.24
pwu 201.44 203.87 210.14 203.87
pwv 200.31 201.05 210.74 206.66

Table 36: All PPL results for the MIT-OCW test set when training on the AM
training set with PW features.

D. Additional Results for Domain Adaptation with
a Unified Framework for Context Extraction
and Adaptation

In addition to the PPL results for UniFA in Chapter 5.6.2 and the rescoring
results in Chapter 5.6.3, this section provides PPL andWER results for additional
configurations of the sequence summary network (SSN) in UniFA. This section
contains results for TED talks and CSJ.

D.1 Perplexity Results
Tables 37, 38, and 39 show the PPL results on TED talks for UniFA with an
SSN with 100, 300 and 500 nodes, respectively. The context window size for a
single hidden layer SSN varied from 1 to 200. For two hidden layers the context
window size was between 50 and 200.

Tables 40, 41, and 39 show the PPL results on CSJ for UniFA with an SSN
with 100, 300 and 500 nodes, respectively. The context window size for the SSN
varied from 50 to 200 and one or two hidden layer were used in the SSN.

D.2 Rescoring Results
Tables 43, 44, and 45 show the WER results after 100-best rescoring on TED
talks for UniFA with an SSN with 100, 300 and 500 nodes, respectively. The

141

Table 37: PPL for subtitle and TED-LIUM validation and test set for UniFA
with 100 nodes in the SSN.

SSN layer context Subtitle PPL TED-LIUM PPL
val test val test

LSTM-LM — 51.58 51.98 209.34 156.29
UniFA 1 1 39.17 40.75 167.17 133.23
UniFA 1 5 35.42 38.31 151.68 124.53
UniFA 1 10 36.19 38.05 190.45 136.78
UniFA 1 25 36.43 38.87 157.90 119.34
UniFA 1 50 36.06 37.90 169.62 130.90
UniFA 1 100 36.12 37.37 151.55 123.58
UniFA 1 200 42.95 42.37 144.17 126.53
UniFA 2 50 42.34 43.17 170.95 138.58
UniFA 2 100 40.90 41.97 144.33 124.25
UniFA 2 200 44.23 44.70 151.44 131.76

context window size for a single hidden layer SSN varied from 1 to 200. For two
hidden layers the context window size was between 50 and 200.

Tables 46, 47, and 48 show the WER results after 100-best rescoring on CSJ
for UniFA with an SSN with 100, 300 and 500 nodes, respectively. The context
window size for the SSN varied from 50 to 200 and one or two hidden layer were
used in the SSN.

142

Table 38: PPL for subtitle and TED-LIUM validation and test set for UniFA
with 300 nodes in the SSN.

SSN layer context Subtitle PPL TED-LIUM PPL
val test val test

LSTM-LM — 51.58 51.98 209.34 156.29
UniFA 1 1 36.94 38.93 302.91 194.42
UniFA 1 5 31.73 35.00 150.72 124.48
UniFA 1 10 33.33 35.90 259.29 144.86
UniFA 1 25 33.35 35.45 136.74 112.66
UniFA 2 50 41.78 43.09 146.79 126.06
UniFA 2 100 44.94 45.62 141.05 123.91
UniFA 2 200 43.74 43.76 147.20 124.60

Table 39: PPL for subtitle and TED-LIUM validation and test set for UniFA
with 500 nodes in the SSN.

SSN layer context Subtitle PPL TED-LIUM PPL
val test val test

LSTM-LM — 51.58 51.98 209.34 156.29
UniFA 1 1 34.86 36.99 163.07 134.93
UniFA 1 5 30.41 33.37 158.76 125.16
UniFA 1 10 31.67 34.58 149.41 115.88
UniFA 1 25 33.89 35.44 171.16 139.20
UniFA 1 50 32.98 34.99 149.06 124.06
UniFA 1 100 35.40 36.25 164.21 131.26
UniFA 1 200 39.26 39.35 155.11 129.95
UniFA 2 50 37.71 38.85 148.65 120.91
UniFA 2 100 43.91 44.62 153.62 128.33
UniFA 2 200 41.81 41.87 139.49 120.10

143

Table 40: PPL for CSJ with 100 units in the SSN.

SSN layer context Heldout Test 1 Test 2 Test 3
LSTM-LM — 37.88 40.52 41.79 41.01
UniFA 1 50 36.85 39.95 41.00 40.37
UniFA 1 100 36.22 39.58 40.47 39.52
UniFA 1 200 36.63 39.71 40.56 39.42
UniFA 2 50 36.77 39.75 40.46 40.24
UniFA 2 100 36.83 39.91 40.54 40.03
UniFA 2 200 36.39 39.08 40.22 39.68

Table 41: PPL for CSJ with 300 units in the SSN.

SSN layer context Heldout Test 1 Test 2 Test 3
LSTM-LM — 37.88 40.52 41.79 41.01
UniFA 1 50 37.34 40.25 41.18 40.78
UniFA 1 100 35.94 39.06 40.13 39.07
UniFA 1 200 36.29 39.52 40.20 39.67

Table 42: PPL for CSJ with 500 units in the SSN.

SSN layer context Heldout Test 1 Test 2 Test 3
LSTM-LM — 37.88 40.52 41.79 41.01
UniFA 1 50 36.95 40.09 41.04 40.13
UniFA 1 100 36.29 39.15 40.44 39.22
UniFA 1 200 36.24 39.40 40.21 39.49
UniFA 2 50 36.76 39.90 40.88 40.10
UniFA 2 100 36.29 39.45 40.21 39.25
UniFA 2 200 36.74 39.56 40.47 39.68

144

Table 43: WER after 100-best rescoring for TED-LIUM for UniFA with 100 nodes
in the SSN.

SSN layer context val WER[%] test WER[%]
1-best — 16.3 15.1
LSTM-LM — 14.2 12.1
UniFA 1 1 14.1 11.9
UniFA 1 5 13.9 11.8
UniFA 1 10 14.1 11.9
UniFA 1 25 13.9 11.9
UniFA 1 50 14.0 12.1
UniFA 1 100 13.9 12.0
UniFA 1 200 13.9 12.2
UniFA 2 50 13.9 12.1
UniFA 2 100 14.0 12.1
UniFA 2 200 14.0 12.1

Table 44: WER after 100-best rescoring for TED-LIUM for UniFA with 300 nodes
in the SSN.

SSN layer context val WER[%] test WER[%]
1-best — 16.3 15.1
LSTM-LM — 14.2 12.1
UniFA 1 1 25.5 28.8
UniFA 1 5 15.7 16.8
UniFA 1 10 14.0 11.9
UniFA 1 25 13.8 11.9
UniFA 2 50 13.8 11.9
UniFA 2 100 13.8 12.0
UniFA 2 200 13.9 12.1

145

Table 45: WER after 100-best rescoring for TED-LIUM for UniFA with 500 nodes
in the SSN.

SSN layer context val WER[%] test WER[%]
1-best — 16.3 15.1
LSTM-LM — 14.2 12.1
UniFA 1 1 24.7 50.1
UniFA 1 5 13.8 16.8
UniFA 1 10 13.9 11.7
UniFA 1 25 13.9 11.8
UniFA 1 50 13.9 11.7
UniFA 1 100 13.8 11.9
UniFA 1 200 14.0 12.0
UniFA 2 50 13.8 12.1
UniFA 2 100 13.9 12.2
UniFA 2 200 13.9 12.1

Table 46: WER after 100-best rescoring for CSJ and UniFA with 100 nodes in
the SSN.

SSN layer context Test 1 Test 2 Test 3
1-best — 12.26 9.34 12.22
LSTM-LM — 10.71 8.08 10.49
UniFA 1 50 10.70 8.03 10.39
UniFA 1 100 10.66 7.81 10.43
UniFA 1 200 10.66 7.96 10.31
UniFA 2 50 10.55 7.92 10.34
UniFA 2 100 10.57 8.01 10.34
UniFA 2 200 10.60 8.02 10.28

146

Table 47: WER after 100-best rescoring for CSJ and UniFA with 300 nodes in
the SSN.

SSN layer context Test 1 Test 2 Test 3
1-best — 12.26 9.34 12.22
LSTM-LM — 10.71 8.08 10.49
UniFA 1 50 10.65 7.94 10.47
UniFA 1 100 10.60 7.93 10.33
UniFA 1 200 10.68 7.99 10.37

Table 48: WER after 100-best rescoring for CSJ and UniFA with 500 nodes in
the SSN.

SSN layer context Test 1 Test 2 Test 3
1-best — 12.26 9.34 12.22
LSTM-LM — 10.71 8.08 10.49
UniFA 1 50 10.65 7.91 10.43
UniFA 1 100 10.59 7.96 10.29
UniFA 1 200 10.63 7.87 10.33
UniFA 2 50 10.72 7.96 10.44
UniFA 2 100 10.60 7.93 10.34
UniFA 2 200 10.70 7.90 10.34

147

	Introduction
	Motivation
	Contributions
	Thesis Outline
	Publications

	Statistical Language Models in Automatic Speech Recognition
	Automatic Speech Recognition
	Pre-processing and Feature Extraction
	Acoustic Model
	Language Model
	Lexicon
	Decoder
	Evaluation Metric

	Count-based Language Models
	M-Gram Language Models
	Smoothing Techniques for M-Gram Language Models
	Class-based Language Models
	Cache Language Models

	Neural Network Language Models
	Feed-Forward Neural Network Language Model
	Recurrent Neural Network Language Model
	Neural Network Language Model Training

	Context Information for Neural Network Language Models
	Prosodic Features
	Fundamental Frequency
	Signal Power

	Cache Memory Features
	Continuous Neural Cache
	Bag-of-Words Cache

	Text Topic Features
	Latent Dirichlet Allocation
	Neural Network Context Representation

	Neural Network Architectures for Context Adaptation
	Input Enhancement
	Cache and Memory Augmentation
	Connected Neural Cache
	Bag-of-Words Cache

	Domain Adaptation Architectures
	Feature-based Linear Hidden Network
	Feature-based Learning Hidden Unit Contributions
	Feature-based Hidden Layer Factorisation

	Unified Framework for Context Extraction and Feature-based Adaptation

	Experiments and Discussion
	Datasets
	Common Experimental Settings
	Re-training of Prosodically-enhanced RNN-LMs
	Experimental Setup
	Perplexity Evaluation
	N-best Rescoring

	Cache Extensions for LSTM-LMs
	Experimental Setup
	Perplexity Evaluation
	N-best Rescoring

	Feature Based Domain Adaptation
	Experimental Setup
	Penn Treebank Results
	TED Talk Results
	CSJ Results
	Discussion

	Unified Context Extraction and Adaptation Framework
	Experimental Setup
	Perplexity Results
	Rescoring Results
	Analysis of fLHUC Adaptation Parameters
	Combination of UniFA with Conventional LDA Feature-based Domain Adaptation
	Combination of UniFA with factLSTM

	Conclusion and Outlook
	Usage of Prosodic Features for Language Models
	Cache Extensions for Language Models
	Feature-based Domain Adaptation of Language Models
	Future Work

	Acknowledgements
	References
	List of Major Publications
	Appendix
	List of Abbreviations
	List of Mathematical Symbols and Notation
	List of Mathematical Operators
	List of Mathematical Symbols

	Additional Perplexity Results for Prosodically-enhanced Recurrent Neural Network Language Models
	F0 Features
	PW Features

	Additional Results for Domain Adaptation with a Unified Framework for Context Extraction and Adaptation
	Perplexity Results
	Rescoring Results

