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Ubiquitous Systems for Counting Intake and

Burn out Calories.

摂取・消費カロリー推定のためのユビキタスシステム∗

Akpa Akpro Elder Hippocrate

Abstract

According to the World Health Organization latest statistics, nearly 39% of

the world adults aged 18 years and over were overweight in 2016, and 13% were

obese. In recent years, almost half of the global adults have attempted to control

their weight in order to maintain a fit weight or to loss weight. To reach that goal,

the most common methods are physical exercises and intake calorie restrictions.

Weight loss occurs when the energy of food intake is less than energy expenditure.

Therefore, to successfully manage body weight, it is necessarily to accurately es-

timate the amount of calorie expended through exercise and the calorie obtained

from meals. In other words, for one’s to control his/her body weight, it would

be important to measure the intake food calorie and adjust it to the amount of

expended calorie. However, previous studies have showed that in general people

tend to underestimate calorie from food and overestimate calorie burned from

physical activity.

The recent technology progress in the area of ubiquitous systems and wearable

devices is perceived by the research community as an opportunity to monitor

and measure food intake beyond clinical boundaries, as well as an opportunity to

track and assess physical exercises. In this dissertation, we investigate two ubiq-

uitous systems that can be used separately or together to assess calorie intake

and calorie expenditure. The first system, which is an image-based system, esti-

mates food weight and calorie from a single picture of the food by using ordinary
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and Technology, March 15, 2019.
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eating-chopsticks as a measurement reference. This system requires the user to

take only a single picture of his/her food, from the top with the chopsticks in the

picture. Using several image processing techniques, and meta-data of the food

image, the system automatically estimates the diameter and the height of the

food container. Then, given the food type, the system combines the information

about the container diameter, height and the food type to provide the weight of

the food in the image, and finally estimates the calories of the food.

The second system recognizes and counts physical exercises via a wearable smart-

glove. This system integrates 16 force sensitive resistor (FSR) sensors into wear-

able fitness gloves to assess physical exercises, by analyzing the time series of

the pressure distribution in the hand palms of the user observed during workout

sessions.

To assess the performances of the proposed systems, we ran two separated ex-

periments of different types. For the food intake calorie estimation system, the

experiment was ran over 15 food types and the system achieved an average rela-

tive error rate of 6.65% for the weight measurement and 6.70% relative error for

the calorie estimation.

The results of the experimental trial on the smart-glove system conducted with

10 participants over 10 common fitness exercises showed 88.90% of F-score for

overall activity recognition, in the case of user-dependent activity recognition. In

the case of leave-one-participant-out cross-validation, the result showed F-score

ranging from 58.30% to 100%, with an average of 82.00%. For the exercise rep-

etition count, the system achieved an average counting error of 9.85%, with a

standard deviation of 1.38.

Keywords:

Overweight and Obesity, Calorie estimation systems, Food intake, Physical ac-

tivity, Image processing, Sensors, IoT.
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1. Introduction

1.1 Background

Overweight and obesity are described as an abnormal and/or excessive fat ac-

cumulation that may cause prejudice to one’s health. According to the World

Health Organization (WHO) recent updates published on February 2018 [1], the

global rate of overweight and obesity have nearly triple since 1975. In 2016, 39%

of world adults were overweight and 13% were obese. These increasing rates are

a major public health concern. Both overweight and obesity are the fifth leading

risk of global death, with at least 2.8 million adults dying each year as a result

of being overweight or obese [2]. Since the fundamental cause of obesity and

overweight is the imbalance between calories consumed and calories expended,

the WHO preventions’ methods against overweight and obesity recommend at

the individual level the following 2 actions:

• Adopt a healthy eating behavior and control intake calories,

• Engage in regular physical activity.

Healthy eating involves eating calorie balanced meals, that is to say meals within

a personal calories goal, which is calculated based on weight, height, and physical

activity level. The recommended activity level is 60 minutes a day for children

and for adults 150 minutes of moderate intensity aerobic exercises or 75 minutes

of high-intensity cardio exercises every week. Thus, to successfully manage body

weight and prevent obesity, it would be beneficial for an individual to be able to

estimate: (1) the number of calories consumed in a meal and (2) the number of

calories expended through physical exercises [3].

The clinical methods to prevent overweight and obesity require the patients to

measure, record, and report daily food intake. Then, the daily recorded food

calorie intake is then compared again an estimated calorie burned from physical

activity, to provide sufficient feedback to the patients. This approach is known

as self-report dietary data or self-calories log. However many studies pointed

out that self-report is not reliable and should not be used as a measure of true

energy management [4], because people generally underestimate calories in meals

[5], [6] and overestimate calories expended through exercise [7], [8], [9]. Despite
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the limitations observed with self-report methods to manage body weight, we

cannot exclude this approach in the treatment of overweight and obesity, because

they contain valuable, rich, and critical information about calorie intake and

expenditure by the population that can be used to inform nutrition policy and

assess diet [4]. Supporting self-report dietary data is still important and needed

to control body weight, and the research community believes that this support

can be achieved by employing technological innovation [10].

1.2 Body Weight Control Strategies and Products

In 2014, a global survey revealed that 50% of world adults have attempted to

lose or to control their body weight [11]. Generally, they used various strategies

and products including professional-made and/or self-directed diet and exercise

plans.

The technology progress of recent years in the area of digital cameras, smart-

phones and wearable sensors are perceived by researchers and technology-users

as an opportunity to conveniently monitor food and exercise. Indeed, 19% of

smartphone owners have downloaded one or more health and fitness applications

[12], and around 115.4 Million of wearables tracking devices were shipped in 2017

[13].

When it comes to commercially available food tracking and fitness plans,

the most common solutions are provided through health and fitness website and

smartphone applications (apps). The major dietary and fitness smartphone apps

in the market include: LoseIt, MyFitnessPal, FitBit, LiveStrong, and All-in-

Fitness. In the research community, diet tracking and monitoring are dominated

by systems that rely on smartphone camera and use food image as systems’

input. In many studies, food image taken with users’ cameras are transmitted to a

central server to obtain nutritional and caloric contents of that food. For example,

Kawano et al. [14] proposed a mobile food recognition system for estimating

calorie and nutrition of foods, as well as recording users’ eating habits. The

system is a real-time recognition system that runs image recognition techniques

on an Android device, using the device embedded camera.

On the other hand, a wide range of ubiquitous and wearable computing sys-

tems have been developed by researchers and commercial industries to support

2



and motivate people into physical exercises. Some of the most popular wear-

able trackers include Fitbit, Garmin, Recofit, Apple watch, and Samsung. These

systems are mainly designed to track physical activity, estimate burned calorie,

evaluate user results and support decision-making to improve user performances.

Overall, given the importance of in-and-out calorie estimation for body weight

management, various food and exercise tracking systems have been developed to

support practitioners, patients, and doctors because the tracking data provide

them the sense of direction, help them adjust weight control plans, and enhance

the motivation and willingness of any calorie-conscious person to change his/her

lifestyle.

1.3 Problem Statement

Despite the existence of many image-based food nutrient calculation systems and

research studies, we have to admit that, they generally focus on food identifica-

tion and classification. Few studies have been done on automated food weight

measurement from a single image, because of the challenges of obtaining accurate

weight from only one image [15]. Up-to-date image-based food weight estimation

systems require the user to take multiple images or use markers, to graphically

reconstruct the food in the images. Food weight estimation from a single image

still remains an open and challenging problem to overcome for building highly

acceptable food calorie and nutrient estimation system; because without knowl-

edge of the food weight, we can not estimate the amount of calorie, needed in the

treatment of diet-related diseases [16].

On the other hand, the majority of the wearable and ubiquitous systems for

exercises monitoring are either limited to only track aerobic exercise (biking,

running) [17], [18], or focus only on muscle and strength training (push-up, chest

press) [19], [20]. In other words, each of the existing exercise monitoring systems

was designed to only track and evaluate a specific set of physical activities. Thus,

the use of such systems tend to limit or constraint the users to perform only

within the predefined set of exercises. For example, the system in [21] proposed

the use of a smart-mat to recognize and count gym exercises. Although the

system achieved good results (recognition rate of 82.5% and counting accuracy

of 89.9%) for exercises performed on the mat (such as push-ups, crunches, and
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squats), it appears obvious that the system can not be used for gym exercises

which are not performed on a gym mat.

1.4 Research Objectives and Scope

The aim of our research was to use ubiquitous and IoT technologies to propose

and develop systems for helping users to easily and efficiently achieve the two

main recommendations of the WHO to prevent overweight and obesity:

• Control and measure calorie intake from meals,

• Engage into and evaluate physical exercises.

For both recommendations, our intention was to develop supportive systems

that are:

• Easy to use and easy to carry,

• Suitable for daily life,

• Cheap or reasonable price,

• Using everyday life objects and commodity devices.

In this dissertation, we propose two distinct systems to estimate the amount

of intake calorie from food and calorie expenditure from exercises. The proposed

systems are independent to each other and can be used together or separately.

The first system, which we called NIES (Nutrient Intake Estimation System),

is an image-based system that estimates both the food weight and food calorie

from a single food picture by using ordinary eating-chopsticks as a measurement

reference. This system requires the user to take only a single picture of his/her

food, from the top with the chopsticks in the picture. Using several image process-

ing techniques, and meta-data of the food image, NIES automatically estimates

the diameter and the height of the food container. Then, given the food type, the

system combines the information about the container diameter, height and the

food type to provide the weight of the food in the image, and finally estimates

the calories of the food.
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The second system, called GIFT (Glove for Indoor Fitness Tracking), recog-

nizes and counts physical exercises via a smart-glove. GIFT integrates 16 force

sensitive resistor (FSR) sensors into wearable fitness gloves to assess physical ex-

ercises, by analyzing the time series of the pressure distribution in the hand palms

of the user observed during workout sessions.

Our experimental test on the NIES system ran over 15 different food types

achieved an average relative error rate of 6.65% for the food weight measurement

and 6.70% relative error for the calorie estimation. The results of the experimental

trial on the GIFT system conducted with 10 participants over 10 common fitness

exercises showed 88.90% of F-score for overall activity recognition, in the case

of user-dependent activity recognition. The result of leave-one-participant-out

cross-validation showed F-score ranging from 58.30% to 100%, with an average

of 82.00%. For the exercise repetition count, the system achieved an average

counting error of 9.85%, with a standard deviation of 1.38.

1.5 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, we present existing lit-

erature and related works on food calorie measurement and physical activity

tracking methods that applied computer visions and/or ubiquitous technologies

to evaluate dietary and physical activity. Chapter 3 describes our proposed food

weight and calorie estimation method, along with the obtained results and a dis-

cussion on the strengths and limitations of this method. Chapter 4 presents the

design, implementation and evaluation of the smart-glove to track and assess fit-

ness activity. Chapter 5 concludes this dissertation and provides directions and

recommendations for future works.
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2. Related Work

In this chapter, we discuss related works on food calorie estimation and physical

activity tracking that utilize sensors, computer vision, and IoT technologies to

assess dietary and physical activity. The works we review can be grouped into

three (3) main categories: food quantity and calorie estimation systems, off-the-

shelf exercise trackers, and fitness tracking in-the-lab.

2.1 Food Quantity and Calorie Estimation

2.1.1 Image-based food calorie assessment systems

There has been multiple research on estimating dietary composition of meals us-

ing image analysis. For example, Woo et al. [22] and Zhu et al. [15] proposed

a Technology-Assisted Dietary Assessment (TADA) system to process food im-

ages with a mobile device. In this system, users capture food images using a

mobile phone camera. Based on information (i.e., food name and code) de-

termined through food segmentation and classification of the food images, the

system chooses a particular food template shape corresponding to the food. And

then, the system reconstructs the three-dimensional properties of the food shape

by extracting feature points in order to size the food shape template. However,

in that system it is assumed that the plate is white, food items in the plate are

separated, and users have to take food photos with a chessboard-like marker to

calibrate the images; all of these settings are hardly possible in real eating envi-

ronment. The interesting point of this work is setting users free from any extra

operations besides shooting pictures through automated food recognition and 3D

volume reconstruction.

As for food recording system with a recognition feature, Food-Log [23], [24] intro-

duced by Aizawa et al., estimates food balance by dividing a received food image

into 300 blocks. For each blocks, it extracts the color and DCT coefficients, and

classifies into five groups such as staple, main dish, side dish, fruit, and non-food.

Yang et al. [25] proposed a method to estimate the nutrition in foods. They

calculate pairwise statistics between local features computed over pixel-level seg-

mentation of the food image into eight ingredient types. The accuracy of this

system was up to 28%.

6



As it appears in the above-mentioned systems, the works are mainly focused on

the identification of the “menu” or the “food item”, without much consideration

of the food volume or the food weight in their estimation. Our proposed system

can estimate the food weight with no marker required. Note that our current

system estimates only food weight and not food types, and it requires user ’s
assistance to enter the food name.

2.1.2 Food quantity estimation systems

Food portion size estimation is extremely difficult since foods shapes and ap-

pearances are subject to variations due to the cooking circumstances and eating

conditions. For this reason, food volume and weight estimation for dietary man-

agement have been a challenge for ubiquitous computing and healthcare systems.

Most image-based food volume estimation systems use multiple images [26], [27],

video [28] or 3D reconstruction [29]. For example, Kong et al. developed an

application called DietCam [30] that automatically assesses food intake based on

multiple views of food. The user is required to take three pictures of the same

food separated by 120 degrees, in order to get the food volume. This requirement

increases the burden on the user.

Another approach appears in [31] where two pictures must be taken, one from the

top and one from the side, with the user ’s thumb placed beside the dish when

taking the picture from the top. In this study, they explored three categories of

food: single food, non-mixed food, and mixed food. While this system showed

good results for single and non-mixed foods such as eggs, oranges, and apples, it

had problems with mixed foods such as soup and curry.

Chen et al. [32] introduced a 3D/2D model-based image registration method for

quantitative food intake assessment. Their method uses global contours to deter-

mine the position, orientation, and scale of the user-selected 3D shape model. The

volume estimation obtained is accurate for food items such as oranges or ham-

burgers with a simple model. However for food items such as bananas or salads

that have a complex model, this system does not have a solution. There are also

methods utilizing sensorized eating surfaces such as smart tables equipped with

sensors, or modified tray to weigh the food during the meal time. For example,

7



Table 1: Comparison to some related food tracking works

Require

special

equip-

ment

Burden

level

Place

restric-

tion

Volume

or weight

estima-

tion

Accuracy

DietCam [30] No High No Yes Medium

Foodlog [24] No Low No No Low

Smart sur-

face [33]
Yes Low Yes Yes Good

Our system No Low No Yes Good

Bo et al. [33] proposed a smart tablecloth equipped with a fine-grained textile

matrix and a weight sensitive tablet. Based on user actions such as cutting or

stirring, they determined the food type, and by using pressure sensor under the

dining tray, they measured the food weight. However, this requires the user to

eat only on that table-cloth and dining tray. Also the system does not allow user

to move or change the position of the plate. Such restrictions are impractical,

if we want to use this system in an ordinary eating-place such as restaurant or

food-corner.

Compared to the above methods, our proposed food calorie estimation system is

less obtrusive, less burdensome, suitable for any eating-environment and requires

only one food picture for food weight and calorie measurement. Table 1 compares

some of the related works to our proposed food calorie estimation system.

2.2 Off-the-shelf Exercise Trackers

In this section, we focus on physical activity trackers that are already on the

market.

Commercially available devices such as running watches, fitness wristbands or

8



trackers are nowadays ubiquitous tools used by thousands of people. Fitbit [34]

and Garmin [35] are two of the most common wireless physical activity trackers

present in the market. These systems use heart-rate sensors, GPS, pedometers,

and other sensors to track physical activities. However, they mainly provide feed-

back and support for aerobic workouts (walking, running or biking), and almost

no feedback for strength and muscular training exercises. For example, Fitbit

does not recognize non-step based activities (such as push-up), and it requires

the user to manually log strength training such as dumbbell curl [36]. Another

well-known commercial system is ActiveLinxx (formerly known as Fitlinxx) [37].

This system integrates multiple sensors on strength training machines to track

the load of weight a user is moving, count the number of repetitions, and show

training progress on the built-in display of each machine. Although the new ver-

sion supports syncing users’ smartphone or tablet, this system still requires the

fitness center owners to purchase and install these training machines.

GoogleFit is another widely used activity tracking system which is in the form

of an application. It is available for download on any Android device and uses

built-in sensors of that device to track commonly-measured fitness data such as

the number of steps and calories burned. However, GoogleFit’s support website

revealed some limitations of the system [38]. For example, it is reported that

walking, running and biking detection is not perfect on GoogleFit, because only

smartphone or tablet sensors are not accurate enough for tracking this type of

activities.

2.3 Fitness Tracking in-the-lab

2.3.1 Glove-based systems

As for research works that use gloves for tracking physical activities, Chang et al.

[39] presented a system to track free-weight exercises, by incorporating a 3-axis

accelerometer into a workout glove and another accelerometer on users’ waist.

They used a Naive Bayes Classifier and Hidden Markov Models to recognize the

type of exercise. To count repetitions, they developed a peak counting algorithm

and a method using the Viterbi algorithm. Their experimental results showed

good results with a recognition accuracy of 90% and error count of around 5%
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over 9 different exercises. The limitation of this work is that they focused only

on free-weight exercises such as bench press, biceps curl, and lateral raise.

Another work presented by Qiang et al. [40] proposed a force-sensing glove system

for measuring real-time hand forces during motorbike riding activity with the aim

of giving feedback to the riders. Their prototype device consists of two gloves with

4 tactile sensors (A401 Flexi-Force) attached onside each glove and connected to a

micro-controller through front-end electronics. Contrary to our work, this system

focuses on different actions (clutch, throttle, brake, and steer) observed during a

single outdoor physical activity.

2.3.2 Pressure sensing based systems used in fitness activity

Sundholm et al. [21] proposed a textile pressure sensor matrix, that can be inte-

grated into fitness mats to recognize and count strength related exercises. Their

experiment with 7 participants showed that the pressure sensor mat successfully

distinguished 10 strength exercises with a recognition accuracy of 82.5% using

a kNN-classifier and counting accuracy of 89.9%. The major limitation of this

system is that it can not be used for gym exercises which are not performed on a

mat. Our work complements the areas not covered by their system with a glove

that reads and analyses hand palm interactions even for exercises that are not

performed on a mat.

A different work introduced by Zhou et al. in [41] described a wearable textile

sensor system for monitoring only gym leg exercises. The system relies on surface

pressure changes between the quadriceps skin and an elastic sports band to track

and evaluate gym leg workout. In an experiment with 6 participants and 24 leg

workout sessions, they achieved 81.7% of average recognition accuracy.

More works involving the use of pressure distribution were proposed to contribute

to the research field of sports activity assessment, in general. Bo et al. [42] made

a smart soccer shoe that uses pressure sensing matrices to detect and analyze the

interaction between players foot and the ball. Instead of using add-on sensors

to the shoe, they integrated the pressure sensing element inside the shoe surface

material in an unobtrusive fashion that can be manufactured together with the

shoes. The sensor system consists of two 34 and one 33 pressure sensing matri-

ces. Their experimental best performance nearly reaches 100% accuracy for 15

10



different types of ball shots.

2.3.3 Other sensor-based fitness systems

A state-of-art study, similar to our work is the “Recofit” system developed by

Microsoft Research [19]. Recofit uses inertial sensors attached to the upper fore-

arm of the athlete and measures 3-axis accelerometer and gyroscope to recognize

and count weight training and calisthenics exercises. The Recofit system gives

classification accuracy of 100%, 99.3%, 98.1%, and 96.0% for 4, 4, 7, and 13

types of exercises, respectively. The exercise types included exercises such as

squat, crunch, pushup, shoulder press, triceps extension, back fly, etc. Although

this result is impressive, there are several points to remark for comparison to our

work. First, Recofit uses only auto-correlation method to eliminate peaks in the

signal that do not correspond to actual exercise repetitions, whereas we utilize 3

methods including dynamic time warping (DTW) to get the actual repetitions.

Furthermore, our work focuses on exercises of 4 major groups of fitness training

(flexibility training, dynamic strength training, static strength training and cir-

cuit training), while the Recofit system focuses on 2 exercise groups which are

weight training and calisthenics.

Another more recent work developed by M. Hassan et. al [17] called “Foot-

Striker”, assists runners by actuating the calf muscles during treadmill running

sessions. FootStriker is a wearable system that detects the user’s running style

using force sensitive resistors (FSR) in the insole of a running shoe and uses

electric muscle stimulation (EMS) as a real-time feedback channel to intuitively

assist the runner in adopting a mid- or forefoot strike pattern. Their experiment

results showed that EMS actuation significantly outperforms traditional coaching

systems. While this study is closely related to ours in term of using FSR sensors,

it was mainly designed to detect a running strike and provide real-time feedback

without recognizing and/or counting strike to assess the runner performance.

To cope with the limitations of the aforementioned systems, we propose a new

type of a smart-glove based system to assess fitness exercises by analyzing hand

palm information during workout sessions. Our approach does not require to

re-adjust existing layouts of fitness centers or buy new fitness machines. Table

11



2 gives a summary of the related studies, along with the comparison with our

proposed smart-glove system in terms of target exercises, sensors used, and type

of data collected.
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2.4 Chapter Summary

Ubiquitous and IoT-based systems for tracking and assessing both the dietary

and physical activity have been widely studied in the past few years. However

most of these systems showed some limitations especially the lack of volume and

weight estimation of the eating food in the case of diet tracking, and the limited

range/number of tracked exercises in the case of physical activity tracking. In the

following chapters of this dissertation, we present the details of our two (2) ubiq-

uitous systems in the attempt to push the limits of existing dietary and physical

activity tracking systems. NIES (Nutrient Intake Estimation System) is our pro-

posed system for diet tracking and food calorie estimation, and GIFT (Glove for

Indoor Fitness Tracking) is our proposed IoT-based system to recognize, count

and track physical exercises.

Figure 1 gives an overview of the relation between existing systems and our pro-

posed systems, along with the foundations of this thesis.
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15



3. NIES: Nutrient Intake Estimation System

3.1 Introduction

As described previously in Section 1.3, despite the existence of many image-based

food nutrient calculation systems and research studies, food weight estimation

from a single image still remains an open and challenging problem to overcome;

because without knowledge of the food weight, one’s can not concretely estimate

the amount of calorie in a food. In this Chapter, we present our novel approach

to estimate food weight and calorie from a single image, with the help of eating

tools especially chopsticks which are used during meal times.

The proposed system just requires the user to take a single image from the top

with chopsticks visible in the image as shown in Fig. 2, with one stick positioned

on the edge of the container, while the other stick is put on the table close to the

container. For our experiment, we focused on bowl-shape containers and utilize

chopsticks of length 22 cm of our university’s restaurant, as measure reference,

and apply computer vision techniques on the food picture, which contains the

chopsticks. The fact that the system uses daily-life chopsticks, that can be found

everywhere, makes the system pervasive and suppress the burden of always car-

rying calibration objects as observed in existing systems like in [43].

Via a smartphone application, the user sends the taken image to the server. At

the server side, the system automatically measures the diameter and the height of

the food container using several images processing techniques, the camera’s focal

length and sensor size contained in the exchangeable image file (EXIF) metadata

of the image. Then, given the food type, the system combines the information

about the container diameter, the height and the food type to provide the weight

of the food in the image, and finally estimates the calories of the food. Our

proposed method aims to estimate a calorie of a food by:

• calculating the food weight from a single shot image,

• estimating the calorie from the calculated weight using a weight to calorie

nutrient database tables.

16



We present two contributions to the research field of image-based calorie estima-

tion:

• Usage of eating tools as measurement reference, in replacement of the usu-

ally use calibration cards,

• A calorie estimation method that considers foods served in containers hav-

ing bowl shape.

Figure 2: Food image with chopsticks on the top and at the bottom of a container.

3.2 Food Weight Measurement Method

One goal of our work is to help users record daily food as well as obtaining an

accurate weight estimation from a single picture of the food taken before eating.

An important part of our weight measurement process is the use of the chopsticks

present in the food image.

Chopsticks, which can be found easily in any kind of eating environments such

as homes, restaurants, and vending machines, are used as a reference for mea-

surement. We take advantage of the chopstick’s industry standards and well

known-length (20 cm to 22 cm) to compute the volume and weight of the foods

in the images.

In this work, we utilized disposable chopsticks measuring 22 cm, which are the

most commonly used and available in the university’s restaurant. We also used

the fact that generally foods are served in standardized food containers, designed

17



with regular shapes and normalized dimensions. Thanks to this standard, the

Japanese curry rice, for example, is rarely served in containers for ramen (Chi-

nese noodle).

In the early development stage of our system, we used chopsticks as reference

measurement to only estimate the diameter of the container in the picture and

then derive the height of the container from a pre-built diameter-to-height table,

which matches the diameter to the height based on the food type. However,

this approach was highly dependent on the accuracy of the pre-built diameter-to-

height table, and the obtained result was not satisfactory enough. Thereupon, we

proposed a weight estimation method that computes the diameter and the height

of the food container from a single image of the food, using several computer

vision techniques combined with the EXIF metadata of the image [44]. With

the food name provided, the system is able to estimate the food volume. Then,

we used the food volume and a density table to extract the mass of the food,

and finally estimate the food caloric content. In the following sections, we will

firstly explain how we compute the diameter of the food container through image

processing. Secondly, we will demonstrate how to get the container height from

a single image, using chopsticks and finally, we will explain how we combine the

food type, density table values and container sizes, to obtain the food volume

and its weight.

3.2.1 Measurement of the Food Container Diameter

To measure the diameter of the food container from the food picture, we need to

know the geometric shape and the size (pixels) of the container and the length of

the chopsticks (in pixels) in the picture.

Container shape detection

For the geometric shape problem, since foods are generally served in round shape

containers, we decided to initially detect the circle shape of the containers open-

top. To detect the circle shape of round dishes, we use a computer vision feature

extraction technique called the Hough transform.

The Hough transform can be used to isolate features of a particular shape within

an image. Because it requires the desired features to be specified in some paramet-
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ric form, the classical Hough transform is most commonly used for the detection

of regular curves such as lines, circles, ellipses, etc. [45]. The main advantage of

the Hough transform technique is that it is tolerant of gaps in feature boundary

descriptions and is relatively unaffected by image noise.

The Hough transform has two essential parameters, m and n. The parameter “m”

is used for the Canny edge detector, while “n” is for the center detection stage

[46]. The Canny operator is an optimal edge detector that takes as input a gray

scale image, and produces as output an image showing the positions of tracked

intensity discontinuities, which are the edges of the input image. The number of

circles detected by the Hough transform depends on these two parameters. To

detect the circle of the main round dish with high precision, after several tests, we

fixed these two parameters to 10 and 100. The smaller n is, the more false circles

may be detected. However, with n fixed to 100, we always obtained good circle

detection with all the tested food images. The result of the Hough transform is

the circle formed by the round shape of the container and its radius in pixels.

We store this value of the radius, which will be used later with the result of the

next subsection, to find the diameter of the container in real life.

Determination of the chopsticks length in the image

The next step consists of getting the length of the chopsticks in the image. We

achieve this step by applying the Canny edge algorithm to find the edges of the

input image (Fig. 5). The Canny edge requires three parameters: low threshold,

high threshold, and the kernel size.

The low threshold is used for edge linking, while the high threshold is used to

find a segment with strong edges. We previously presented the parameter “m”.

This parameter represents the low threshold that the Canny edge uses to link the

edges. If no value is given to the high threshold, the value of the high threshold is,

by default, set to three times the value of the low threshold, according to Canny’s

recommendation [47].

The kernel size is the size of the Sobel operator to be used inside. The Sobel

operator is an algorithm which emphasizes regions of high spatial frequency that

correspond to edges.

The output obtained from the Canny algorithm is processed to find contours in
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(a) original image. (b) edges detection.

(c) thresholded image. (d) output image.

Figure 3: Processing steps for container diameter and chopsticks length measure-

ment.

the food image. From the possible contours found, we only extract rectangular

contours and then retrieve the length in pixels of the chopsticks by taking the

length of the stick placed on the container, which appears as the longest stick in

the food image (Fig. 5).

Finally, all the obtained results, the container’ radius in the picture, the chop-

sticks length in the image and the known length of the chopsticks in real life, are

combined in a cross multiplication to determine the diameter of the container in

real life.

Table 3 shows the results of our diameter estimation method applied to 25 im-

ages of 5 different containers’ types (5 images for each type of container). The

pictures were taken at different positions but from the top, and the 25 containers

were empty. We decide to run the first test on empty containers to evaluate the
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Figure 4: Types of bowl used for testing

accuracy of the proposed method before testing the system with non-empty con-

tainers. The average estimation, the standard deviation (SD), and the relative

error of each estimation are also presented in the table.

Figure 4 shows the five different types of bowl used for testing. “Small bowl”

refers to bowl type used to serve white rice or salad, while “Big bowl” are for

udon, oyakodon, ramen, etc. The “miso soup” bowl is used for serving of miso

paste soup and other kinds of soup. The other two bowl types’ names are self-

explanatory (coffee, tea and water).

As shown in the table, the diameter estimation method achieves, in the best

case, a relative error rate of 3.75%, and 8.75% in the worst case, with the “coffee

cup”. For most of the container types, we obtained a standard deviation less than

0.9, except for the “Big bowl.”
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Table 3: Container diameter estimation

Miso

bowl

Small

bowl

Big

bowl

coffee

or

tea

cup

water

or

juice

glass

Real diameter (cm) 12 12 16 8 7

Picture 1 11 12 14 7 6

Picture 2 11 11 16 8 6

Picture 3 12 11 15 6.5 7

Picture 4 12 12 17 8 7

Picture 5 10 11 15 7 6

Average Estimation 11.20 11.40 15.40 7.30 6.40

Standard Deviation 0.83 0.57 1.14 0.70 0.54

Relative Error (%) 6.67 5.00 3.75 8.75 8.57

3.2.2 Measurement of the Food Container Height

To obtain the food volume, we need to get not only the container diameter but

also the container height. In our estimation method, we assume that the container

height is nearly equal to the distance between the two sticks of the chopsticks,

when one stick is on the containers’ top and the other placed at the bottom near

the container (Fig. 5a). This actual height can appear differently on the food

image, due to the perspective distortion produced by the smartphone camera lens

when taking the photo. In our current system, we assumed the “ideal case” in

which the distortion created by the camera lens does not affect excessively the

container height on the image. Our proposed method does not undistort the food

images.

We get the distance between the two sticks by using the triangle similarity theo-

rem applied to the pinhole camera model explained in the next paragraph. The

container height is then calculated by:

H = dCS1 − dCS2 (1)
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(a) Container height mea-

surement.

(b) Pinhole camera model.

Figure 5: Measurement of the Food Container Height.

where dCS1 and dCS2 are respectively the distances from the camera to the stick

1 and the stick 2 (Fig. 5a).

Pinhole camera model

The pinhole model describes the geometrical and mathematical relationship be-

tween a camera image plane and the objects in space. Figure 5b shows the pinhole

model used in our proposed measurement method.

A point P in world coordinate (Xw,Yw,Zw) has a 3D coordinate of (xw, yw,

zw). The line (blue line) of the point P passes through the point P and the

point Oc , which is the origin of the camera coordinate system(Xc,Yc,Zc). The

image plane, where 3D points are projected through the camera, is located at

distance f (camera focal length) from the origin of the camera. This image plane

is perpendicular to the Zw axis, which is the optical axis of the camera. This

optical axis points is the viewing direction of the camera. The point R, referred

as the image center, corresponds to the intersection of the image plane and the

optical axis. The projection of the 3D point onto the 2D image plane is the point

Q. This point lies at the intersection of the image plane and the projection line.

The point Q has coordinates (xi, yi) in the 2D coordinate system (Xi,Yi) with

the origin R of the image plane.
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To extract the distance from the camera to the point P , we need to find the

mathematical relation between the 2D coordinates of the point Q (xi, yi) and the

3D coordinates (xw, yw, zw) of the point P .

Triangle similarity

Two geometrical objects are similar if each object is congruent to the result of

a particular uniform scaling of the other object. Figure 6, which represents the

same scene as Fig. 5b, but from above, looking down in the negative direction of

Yw axis, possess two similar triangles OcfQ and OcZwP .

Figure 6: Pinhole camera model seen from Yw

Both triangles have part of the projection line as hypotenuses. The two ad-

jacent sides of the left triangle to the right angle are −xi and f (focal length of

the camera). For the right triangle, the adjacent sides are xw and zw. Since these

two triangles are similar, we get the following equation:

−xi

f
=

xw

zw
⇒ xi = − f

zw
xw. (2)

In the same way, when looking in the negative direction of Xw axis of the

world coordinate, we get:

−yi
f

=
yw
zw

⇒ yi = − f

zw
yw. (3)

From these two equations, the relation between (xi, yi) and (xw, yw, zw) is

derived:
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(
xi

yi

)
= − f

zw

(
xw

yw

)
. (4)

Because the mapping of a point from the world coordinate to a 2D coordinate

described in the pinhole model is a perspective projection followed by a 180 degree

(180◦) in the image plane, the resulting image is rotated by 180 degree. In order

to get the expected image from the camera, we need to rotate the coordinate

system in the image plan by 180 degree. Finally, after rotation, the mapping

from 3D coordinate of a point P (xw, yw, zw) to the 2D coordinate point Q (xi,

yi) is given by:

xi =
f

zw
xw and yi =

f

zw
yw. (5)

Measurement of the distance from camera to stick

To find the distance from a camera to an object or a marker, computer vision

techniques exploit the triangle similarity and pinhole model results, described in

the two previous paragraphs. The camera to object distance is given by:

P

F
=

W

Distcam obj

⇒ Distcam obj =
F ·W
P

, (6)

where F (mm) is the focal length of the camera, W (mm) the known width of the

object or marker, and P (pixels) the apparent width of the object in the image.

Given the sensor size of the camera, the formula can be defined as:

Distcam obj =
F ·W · Iw
Ow · Sz

, (7)

where Iw is the image width, Ow the object width (pixels) and Sz the sensor size

(mm).

In our current implementation, we use the food images from smartphone, and

for each image we extract the EXIF data of the camera system, which contains

metadata such as the camera focal length and the sensor size. In Section 3.2.1,

we explained how to get the width of each stick of the chopsticks. We input these

values into (7) to determine the distance dCS1 and dCS2 from the camera to each
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Table 4: Container height estimation

Miso

bowl

Small

bowl

Big

bowl

coffee

or

tea

cup

water

or

juice

glass

Real height (cm) 7.5 6.5 8 10 12

Picture 1 8 6 7 13 12

Picture 2 7 6 9 11 13

Picture 3 6 5 8.5 10.7 10

Picture 4 9 6 7 10 15

Picture 5 8 6 6.5 9.5 14

Average Estimation 7.6 5.75 7.6 10.84 12.8

Standard Deviation 1.14 0.5 1.08 1.34 1.92

Relative Error (%) 1.33 11.54 5.00 8.40 6.67

stick. Finally, we get the height H of the food container by taking the difference

between dCS1 and dCS2 (see (1)).

Table 4 shows the results of applying our height measurement method to the

same 25 images of empty containers as described in Section 3.2.1. The table also

gives the average estimation, the standard deviation (SD) along with the relative

error of the measurement for each container.

As shown in the table, the height estimation method achieves a relative error rate

of 1.33% in the best case with the “Miso bowl,” and 11.54% in the worst case,

with the “ Small bowl.”

3.2.3 Volume Estimation and Food Type Identification

Estimation of the food volume is a critical step for any calorie estimation system

for dietary assessment. In our proposed system, after determining the container

dimensions, we estimate the food volume from the food image by firstly estimating

the container volume, and then using the density information for that particular
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food, we estimate its volume and weight. Currently, we use the “aqua-calc” table

[48] which provides a volume to mass conversion for more than 4000 food items

and ingredients.

Volume estimation

In our current implementation of our NIES, we focus on the foods that are served

in containers of bowl shape. A bowl is a round, open-top container used in many

cultures, especially in Japanese culture, to serve foods. Geometrically, classic

bowl can be represented as spherical cap. A spherical cap is a section of a sphere

slide off by a plane (fig.7).

Figure 7: Spherical cap

The volume of a spherical cap is defined by this ordinary used equation:

V =
π

6
· h · 3r2 + h2, (8)

where r is the radius of the base of the cap, and h its height. These two parameters

are obtained from the methods described in the Sections 3.2.1 and 3.2.2.

Figure 8 shows the results of our volume estimation using (8). The best volume

estimation are obtained with the “Water or juice glass”, and the“coffee or tea

cup” with respectively a percentage error rate of 1.38% and 1.98%. The system

produces acceptable results for other container types.

Knowing the container volume, which we assume to be closely equal to the food

volume when the bowl is full, we can get the food weight using density table

information of each food type.

Food type identification

Food recognition and classification has been the focus of many image-processing
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Figure 8: Volume estimation performance

studies in the recent years. Among these studies, some exploited the local fea-

tures of food images to identify the food type [25], while other focused on global

features such as global histogram [49]. Other studies utilized features extraction

techniques such as scale invariant features transform (SIFT) [50] for food image

classification. Kagaya et al. proposed a food detection and recognition system

using a deep-learning approach called convolutional neural network (CNN) [51].

However in most cases, the accuracy of the classifiers proposed in these study are

questionable and/or require further improvements to perform as expected.

In our current implementation, we did not implement any food classification tech-

nique; we manually enter the food name in the system.

As mentioned before, the most critical and challenging step in dietary assessment

is the food weight estimation from the food image. Therefore, at this stage, we

assume that the food type has been well identified or given manually.

Density table

Food density tables are databases which provide a tool for researchers and pro-

fessionals of food analysis to convert volume into weight and vice-versa. Data

collected are prepared from the literature, various national food composition ta-

bles and measurements are conducted by international and national organization

such as FAO (Food and Agriculture Organization of the United Nations), FNDDS
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Table 5: Density table for some food types

Food name and description
Density

(g/cm3)

Volume

(cm3)
Weight(g)

Bread, dry mix, prepared 0.845 150 126.75

Natto 0.74 150 111

Noodles, Chinese chow mein 0.19 150 28.5

Rice, white, raw 0.782 150 117.3

Soybeans, green, raw 1.082 150 162.3

Tofu, raw, regular 1.048 150 157.2

Tomato sauce 1.036 150 155.5

Orange juice, raw 1.048 150 157.2

Egg, white, raw, fresh 1.027 150 154.05

Apple juice, unsweetened 1.048 150 157.2

(Food and Nutrient Database for Dietary Studies) or USDA (United States De-

partment of Agriculture).

In this study, we used the “aqua-calc” density [48], since it has data available for

Japanese food types as well as international food types. It provides a volume to

mass conversion for more than 4000 food items and ingredients. Table 5 shows

for some foods, their density along with the conversion to weight for a volume of

150 cm3 of each food.

In our system, the food weight is obtained by multiplying the estimated volume

acquired from the food image with the specific food density as shown in (9).

food weight = estimated volume× food density. (9)

3.3 Food Journaling and Experiment

To validate the measurement obtained from our proposed estimation system,

we performed validation experiments using images of various food types (rice,

ramen, miso, oyakodon, guydon) served in the five container types mentioned
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before. Over three weeks, we collected the food images from 15 participants (12

male) aged 23-31, through an Android food journal application (app) that we

developed. To certify the accuracy of our system, from the collected images,

we selected only images that are from foods served in our university restaurant,

since we know their pre-estimated weight and calorie. The details about this

food journal app and the results of our experiment are discussed in the following

sections.

3.3.1 Image Collection through Smartphone Application

One mission of the proposed system is to help people who suffers from obesity,

overweight and diet-related disease to keep a record of the amount of daily nu-

trients they consumed without the need for recording this data manually. The

functions of our system are to calculate not only the weight of the food in the

picture, but also the amount of calories and to keep a food log of the users’ con-

sumed foods. To accomplish this, we developed a smartphone app that runs on

Android devices and takes advantage of the built-in camera, processing power

and network capabilities of the smartphones. The app represents the interface

for users to send and receive data about their foods. Over three weeks, the par-

ticipants used this app to collect food images for testing the estimation method

proposed in this study. The application is also utilized in another research study,

in which we assess the consistency of meal-tracking and behavior change using

a game-based approach [52]. Figure 9 shows some screenshots of the application

relevant to the food images collection and the proposed estimation method.

In the “Welcome screen,” users have the control buttons to navigate to the game

screens, upload screens and to other options screens such as “food log-calendar”

and pop-ups. The “Upload screen” allows users to take a photo or choose a

photo from the gallery and contains a form where users can fill in additional

information such as hunger level and mood. Figure 10 shows some of the images

received during the 3-week food image collection campaign.
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(a) Welcome screen. (b) Upload screen. (c) Recommendation

screen.

Figure 9: Smartphone application for food images collection.

Figure 10: Examples of food images collected
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3.3.2 Results of the Weight Measurement

During the period of food images collection, we received 119 images from the

participants. Among these images, about 40 images were not taken from top or

with the chopsticks not positioned as shown in Fig.2.

Some other images were not foods served in round dish containers. These kinds

of images were initially accepted because the image collection application is used

for a separate study, which does not have restrictions on the food photo, but we

do not include them in this evaluation. Figure 11 shows some of the food images

received but not used in the experiment. Finally we worked with 50 images,

grouped into 15 food types. From Equation (9), we compute the weight of these

foods images.

Figure 11: Examples of food images not used

Table 6 shows for each food type the real weight (average weight), the estimated

weight, the difference between these two values, and the relative error. The lowest

relative error 3.60% was obtained from the estimation of the katsudon, and the

highest rate came from the big bowl of rice with 10.17%. About 13 of the food

types have their relative errors less than 10%.

The table also shows the differences of the estimated weight to the real mea-

surements for each food images. The differences show that 8 food types (rice,

ramen, miso, guydon, fried rice, tendon, kakesoba, and tonjiru) were overesti-

mated, while the other types were underestimated. The largest overestimation
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was obtained from the gyudon weight estimation, with a difference of 33.8g. The

average relative error for the weight estimation is about 6.78%.

Table 6: Results of proposed method in comparison with real values

Food type

Average

measured

weight

(g)

Estimated

weight

(g)

Absolute

Error (g)

Relative

Error

(%)

Oyakodon 468.5 450.5 -18 3.84

Tamagodon 444.5 422 -22.5 5.06

Katsudon 413.6 398.7 -14.9 3.60

Kakeudon 405 398.5 -6.5 1.60

Rice (small size) 160 174.5 14.5 9.06

Rice (regular size) 340.4 305.4 -35 10.28

Ramen 650 680 30 4.62

Miso soup 143 155 12 8.39

Gyudon 416.5 450.3 33.8 8.12

Fried rice 371.8 400 28.2 7.58

Tendon 380 400 20 5.26

Kake soba 375 402 27 7.20

Kitsunu soba 428 385.5 -42.5 9.93

Tsukimi soba 434 390 -44 10.14

Tonjiru 176 185 9 5.11

Average relative error 6.65%

3.3.3 Calorie Estimation

Once we know the estimated food weight, we can move on to the final step of

estimating the amount of calorie (energy) of the food in the image. To achieve

this step, we rely on nutritional fact database (NFD) and food guide as reference

to provide nutritional information. Previous studies show that NFD and food
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guide are important components to realize useful and successful calorie estima-

tion system [28]. Details about nutritional values of various food types are stored

in these databases and are available from national and international health orga-

nizations.

In Japan, the Ministry of Health, Labour and Welfare (MHLW) and the Ministry

of Agriculture, Forestry and Fisheries (MAFF) introduced the “Spinning food

guide” as the food and nutrition reference tool to help people practice healthy

eating. Figure 12 (Source: Ministry of Agriculture, Forestry and Fisheries web-

site [53]) shows the Japanese spinning food guide accompanied by a chart that

indicates the recommended daily servings for each food group.

Figure 12: Japanese food guide spinning top

Our system currently uses such databases as reference to estimate the amount

of calorie of the food in the received images.

For this study, since we used images of food served in our institute’s restaurant,

we adopted the restaurant pre-estimated food calorie database as ground truth

data to evaluate our proposed system.

Table 7 shows for each food type the real values of weight and calorie, followed

34



by the estimated weight and calories. The absolute error and relative error be-

tween each estimated value and the real values are also presented in the table.

A quick observation of Tables 6 and 7 reveal that the values of the relative error

obtained during the weight measurement are really close to the relative error val-

ues achieved in the calorie estimation. This observation allows us to confirm that

the food calorie estimation strongly depends on the food weight measurement.

The average relative error for the calorie estimation is about 6.70%. The worst

case of underestimation is observed from the Rice (regular size) with an absolute

error of −59 kcal, while the worst overestimated food shown an absolute error

of +63 kcal (guydon). According to the USDA nutrient Database [54], 63 kcal

represent the quantity of eneregy (calorie) in 1 medium raw egg of 44g. From

this, we can assert that our proposed system has an overall acceptable result, and

can work better if we overcome some current limitations, described in the next

section.
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3.4 Discussion

Our experiment revealed several strengths and weaknesses in our proposed calorie

estimation system. In the rest of this section, we discuss some of the strengths,

limitations and how we plan to overcome them in our future work.

3.4.1 Food Container Type

To the best of our knowledge, this is the first study of food weight and calorie

estimation that considers food served in bowls. In our proposed system, we

focused on food served in bowl shape containers, but the methods explained can

be applied to plate containers as well as other types of containers. Other existing

works [15] required the use of plate container with a specific color. For example,

[22] assumed that the food is served in a white plate and the food items in the

plate should be separated. With respect to their works and results, in this study,

we tried to explore a different aspect with foods served in bowls, from a single

image, without the use of calibration items.

From the experiments, we found that our weight estimation has some limitations

coming from the camera angle (angle of view and angle of shoot). When the food

image is not properly taken from the top, the system fails to detect the container

shape and the chopsticks in the image (Fig 13).

To solve this problem, we will try to get the camera angle by either extract-

ing more data from the EXIF metadata, or get the angle from the smartphone

accelerometer sensor.

3.4.2 Food Serving Style and Containers

In this work, we assumed that foods are served to fill the containers. However, in

real-life, foods are rarely served to fill the entire volume of the containers. There is

almost always a space between the open-top of the container and the foods. This

fact is probably the cause of over-estimation observed during the experiments.

Another issue of the proposed system appears in the situation where a food menu

is composed of many dishes or having one container for each food item of the

menu. In such a scenario, the system is limited and cannot estimate the weight

and calorie of all the dishes by using a single image. In this case, our target is
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(a) Original image. (b) Edges detection.

(c) Thresholded image. (d) Output image.

Figure 13: Processing steps for container diameter and chopsticks length mea-

surement.

only the main dish served in the largest bowl container. To estimate the calorie

of the entire “set-menu”, the system needs to get the image of each dish of the

menu and process them separately. However, this approach might be tedious for

a menu with more than two dishes.

3.4.3 Edge Detection Limitation

The shape detection steps can sometimes fail to detect the edge of the containers

and the chopsticks. These detection failures can be caused by various environ-

mental parameters such as the lighting conditions, illuminations and the color

of the eating tables or containers [31]. In our work, all the photos were taken

by the participants in their usual and natural eating environments, without any

environmental bias. The use of such images taken in these non-pre-defined eating
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environments, with no control on the illuminations, can affect the result of the

shape detection mechanism. However, despite the use of these food photos taken

without any environmental bias, the proposed system achieved a good edge de-

tection rate of approximately 64%. Indeed, out of the 79 properly taken photos

(described in Section 3.3.2), the system succeeded to correctly detect the edges in

50 images used for the evaluation of the overall system. We believe that this rate

of edge detection without environment bias is acceptable to achieve an effective

food journaling system.

3.4.4 Food Type Detection

In our current work, we did not implement any food type recognition techniques.

We assumed that the food type is entered manually into the system. The moti-

vation for this approach is that we firstly focused on the most challenging part

of the food calorie estimation systems, which is the volume and weight measure-

ment from food images. As mentioned in Section 3.2.3, there are already plenty

of studies that use computer vision techniques to recognize food type. However,

few studies proposed a method to compute food weight from images.

In recent years, there is also a growing interest on the use of machine learning

algorithms to identify food type. For example, Pouladzadeh et al. proposed

a system that uses deep convolutional neural networks to classify 10000 high-

resolution food images for system training. Their results show that the accuracy

of this method for food recognition of single food portions is about 99%. Al-

though food recognition is an important step in the process of calorie estimation,

in this work, we prioritized to propose an approach to overcome the most chal-

lenging step of this process. One of our plans for future work is to combine a

deep learning classification algorithm with our current weight estimation system,

in order to realize a fully automated food calorie estimation system.
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3.5 Chapter Summary

In this chapter, we presented our food weight measurement and calorie estimation

system based on image processing, using the smartphone camera and chopsticks

as measurement reference. The system, also, constructs a food journal to keep

track of daily consumed meals. We exploit image-processing techniques and the

EXIF metadata of the food image (camera focal length, sensor size) to measure

the food container size, determine the food volume, get the food weight and

estimate the calorie by using density and nutrient database information of that

particular food. An important aspect of this process is the use of chopsticks,

which suppress the obligation of carrying and using calibration objects as shown

in many existing systems. The conducted experiments show tenable results from

the system which achieved an average relative error rate of 6.65% for the weight

measurement, and 6.70% relative error rate for the calorie estimation. We believe

that the proposed method could be used as helping tool for use in treatment of

obesity, overweight and diet-related disease.
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4. GIFT: Glove for Indoor Fitness Tracking

The previous chapter described our NIES system for food weight and calorie

assessment. In this new chapter, we will present GIFT, our system for tracking

and assessing physical activity.

4.1 Introduction

The last decades have seen a growing interest in systems that encourage and

support people to the regular practice of physical activity in general, and fit-

ness activity in particular. With the recent development of wearable computing

and sensors technology, a wide range of ubiquitous systems have been developed

by researchers and commercial industries to support and motivate people into

physical activity. These systems are designed to track physical activity, evaluate

user results, and support decision-making to improve user performances. Fitness

workout tracking is important because fitness tracking data provide practitioners

with a sense of direction, help them adjust their workout routine, and enhance

their motivation and willingness to change their lifestyle [55, 56]. However, the

majority of these existing ubiquitous systems are either limited to only track

aerobic exercise (biking, running) [17, 18], or focus only on muscle and strength

training (push-up, chest press) [19, 20]. In other words, each of these systems

was designed to only track and evaluate a specific set of physical activities.

Thus, the use of such systems tend to limit or constraint the users to perform

only within the predefined set of exercises. We, therefore, propose to develop a

system that would take away these constraints from the fitness practitioners and

help them achieve their fitness goals.

Our proposed system is motivated by the following two observations:

• In general, fitness athletes (with no distinction of their gender, age, or goal)

usually wear sports-gloves during their workout sessions. They wear the

sports-gloves for various reasons such as supporting grip pressure, protecting

the hands from calluses and blisters, or increasing lift power [57].

• During workout, for most fitness activity (except for aerobics activities like

running), there is always one or multiple interactions between the gloves
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Figure 14: Examples of commonly performed fitness exercises.

(hands) and the athlete’s body or between the gloves and the workout

materials.

With that in mind, we propose a smart-glove that can track fitness exercises

whenever there is a direct interaction between the athlete’s hands and the workout

environment. Figure 14 shows some examples of commonly practiced fitness

exercises with the red dots representing the area of interactions between the

hand palm and the environment.

Our proposed smart-glove (Figure 15) based system is designed with 16 Force

Sensitive Resistor (FSR) sensors for tracking, recognizing, and counting physical

activities performed in any fitness environment. It relies on a single sensorized

wearable device to monitor a wider range of fitness activities than existing systems

[39, 58], without the need to modify fitness environment or to attach various

sensors on different parts of the athlete body.

The novelty of our proposed system resides in the approach and data type used

to track fitness exercises. Indeed, most common fitness tracking systems rely

on inertial sensors such as accelerometers to get information about users’ body

positions and movements, whereas our system utilizes data coming directly from

the contact surfaces between the users’ hands and the workout environment.

Based on this approach, our system could be more suitable to distinguish between

exercises of the same type. For example, a classic push-up (Fig 16 - left side) will

produce a pressure distribution different from the distribution of a cross-body

push-up (Fig 16 - center) or a reverse hand push-up (Fig 16 - right side). This

kind of distinction among the same type exercises become difficult when using

only inertial sensors because the body positions and movements are quite similar.

Our ultimate goal with the proposed system is to provide fitness athletes with

a real-time system that:
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Figure 15: Inside and outside views of the smart-glove prototype.

Figure 16: Three distinctive types of push-ups.

• Recognizes the activity being performed,

• Counts the number of repetitions (reps),

• Estimates the calorie burned out by each exercise set,

• Recommends future exercises to achieve users’ goal.

In this dissertation, we focus on the design, the activity recognition, and the

exercise counting performance of our smart-glove system.

The core contributions of this work are summarized as follows:

• Novel wearable sensing approach: We introduce a new resistive pressure

glove that uses FSR sensors suitably mounted in the inside part of a sport

glove to read real-time bio-mechanical information from the hand palm to

recognize and count fitness activity.
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• Single activity detection: By analyzing the pressure distribution applied

over all the palm surface during a workout session, we can recognize most

exercises of the following 4 different groups of fitness training:

– flexibility training (e.g., side lunge stretch),

– dynamic strength training (e.g., squat),

– static strength training (e.g., plank),

– circuit training (e.g., push-up + bench dip + lunge).

Through an experiment study, we showed that our smart-glove system suc-

cessfully recognizes 10 frequently performed fitness exercises. We selected

10 different fitness exercise types that target different muscle groups as de-

scribed in Chapter 4.3. Using the Ensemble subspace KNN classification

method, over 300 exercise sets from 10 participants, the system achieved

88.00% recognition accuracy with the 10 fold cross-validation. In the case

of the leave-one-participant-out cross-validation, we obtained an average

recognition accuracy of 82.00%.

• Exercise counting approach: For each exercise set, by investigating the sig-

nal from the glove’s sensors, the system automatically counts the number

of exercise repetition without prior need of training templates. By doing so,

we ensure that repetitions of each exercise set are counted independently of

the activity type and the user’s workout speed. We evaluated the exercise

counting performance of the system using 5186 repetitions from the 10 ex-

periment participants. The overall results show an average counting error

rate of 9.85%.

4.2 Design and architecture of GIFT

This section explains the design and architecture of our smart-glove system.

The GIFT system intends to record and analyze the pressure distribution applied

to a user hand palm during his/her training sessions. Therefore, we designed our

prototype by taking into consideration the following technical aspects:
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Figure 17: The sixteen locations on the glove where the force sensitive sensors

are positioned to read the pressure distributions.

• Sensing zone: A smart-glove that well covers the palm surface will enable

us to get the accurate location of high pressure points, and the pressure

distribution applied over all the palm surface.

• Portability : The device should work in any fitness center or workout envi-

ronment. Also, it should be lightweight and easy to wear.

• Comfort level : Comfort is an important aspect when designing an IoT

device worn by human users. Therefore, the glove should provide an ac-

ceptable or high comfort level to users, without hindering users’ movement.

The current prototype of the smart-glove system consists of 3 main components:

a set of 16 FSR sensors, a data sampling unit (DSU), and a visualization and

computation software.

4.2.1 The force-sensitive fitness glove

The smart-glove contains a set of 16 force sensitive resistors (FSR) sensors which

are mounted on the palm of the glove as depicted in Figure 17. The 16 FSR
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sensors are used to read the forces applied to the palm when a user is performing

a fitness exercise. FSR sensors are commonly used to detect physical pressure,

squeezing and weight. They are easy to use and low-cost. In this work, we utilized

the Interlink 402 Short Tail model [59]. Each sensor has an active sensing area

of 12.70 mm diameter, 0.46 mm thickness, and can sense force up to 20 N. Based

on the force applied to the sensors, their electrical resistive values change, and

the voltage values corresponding to the pressure is read by the DSU. All sensors

are separately connected to the DSU using twisted pair cables (Figure 15).

As for now, we use only one hand of the fitness glove pair. For this first prototype

of our fitness glove, we wanted to ensure the maximum or full coverage of the

athlete’s hand palm, in order to get as much as possible pressure distributions data

from different areas of the palm. For this reason, we utilized 16 FSR sensors on our

first prototype. This number of sensors might be excessive, but it guarantees full

coverage of the sensing zone, which is important when studying a first prototype

of a wearable sensing device. However, for our final system, we intend to reduce

this number of FSR sensors based on the results and observations of this work.

4.2.2 The data sampling and communication unit (DSU)

The data sampling and communication unit (DSU) reads the data from the force

sensors and sends the data to the computing and visualization unit. The DSU

is composed of an Adafruit Feather 32u4 Bluefruit, a 16 channel multiplexer

(16chMUX), a resistor of 2kΩ, and a small 400mA/h Li-Po battery.

The Adafruit Feather 32u4 Bluefruit is an Arduino-compatible + Bluetooth Low

Energy (BLE) with a built-in USB and battery charging module [60]. It has a

10 bit resolution of AD converter and can read raw digital value from 0 to 1023.

The DSU samples and transfers sensing data via BLE at 5 Hz. The operating

supply voltage is 3.3V and it is powered by a small 400mA/h Li-Po battery. Our

battery-life duration tests show that it can last over 6 hours, which is enough for

weekly use, considering that average gym-goers train 3 days per week for about

2 hours per training session [61].

The DSU components are connected and put inside a white 3D-printed box, and

positioned on the athlete’s forearm. The DSU and the 16 FSR sensors constitute

the hardware portion of the smart-glove system that the athlete wears during
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Figure 18: A user performing a knee-pull-in exercise. The real-time visualization

laptop and the DSU are indicated by the blue and red circles respectively.

his/her training session. This hardware portion weighs approximately 101 g (16

sensors + wires ≈ 43 g and the DSU with 3D case + battery ≈ 58 g.)

4.2.3 Visualization and computation software

The visualization and computation software is responsible for logging and display-

ing the data sent via Bluetooth by the DSU. It provides, through a web-based

user interface (UI), a real-time feedback of the activity’s pressure distribution,

with the option to save the data into a CSV file (Comma-Separated Values) for

further processing. The value of the pressure intensity applied to each sensor is

indicated as a heatmap-like color distribution on the glove image on the display.

Figure 18 shows an example of a user doing a knee-pull-in exercise while watching

at the visualization UI tool (Fig. 19).

4.3 Experiment

To analyze the system’s capability of recording, classifying, and counting fitness

activities, we designed and ran a 1-hour workout session experiment with 10
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BLE Smart-Glove Visualization Tool

FSR smart glove Pressure distrubition

FSR sensors

Figure 19: Screenshot of the visualization UI tool for an exercise.

participants. Participants were informed that they could stop the experiment

at any time without losing benefits. Before their enrollment and participation,

we obtained written informed consent from each participant. With participants’

consent, we recorded video of the experiment that we used later as ground truth

data to evaluate the performance of the system. Out of 40 preselected fitness

exercises, we selected 10 exercises for our experiment based on the following two

criteria:

• Exercises with less risk of injuries: Since our participants are graduate

students with their own academic schedule, we prioritized exercises with

minimum injuries’ risk.

• Exercise group that target full body muscles training: Most fitness programs

provide workout plans that focus on full-body basic set of muscles which

are biceps, triceps, chest, legs and abs [?]. Therefore, we chose to focus on

common exercises suitable for both amateurs and professionals that workout

these full-body muscles.
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Figure 20: Exercises performed during the experiments, except the side-to-side

lunge. Red areas represent the interaction surface between the glove and the

workout environment.

4.3.1 Participants demography

For the experiment, we recruited 10 healthy participants aged from 22 to 30

years (Mean = 25.9, Standard Deviation (SD) = 3.21). Their weight ranged

from 50 kg to 82.2 kg (Mean = 67.2, SD = 10.07), and height between 158

cm to 182 cm (Mean = 173.4, SD = 6.32). Only 1 out of the 10 participants

was a female. All participants were full-time graduate students with different

workout levels and experience. Five participants were regular gym-goers, who

usually exercise 3.5 times/week. Three participants do not often exercise and did

not practice any sport in the last six months before the experiment day. The

two other participants reported to exercise once or twice a week when they have

time, but not on a regular basis. Three participants were also participants of

our previous study about users’ requirements for smartphone fitness application,

and they were highly motivated to see how our smart-glove could help them to

improve their workout performance [62].
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Table 8: Selected fitness exercises with their target muscle group

Exercises Target muscle group

1 Bench dips triceps, shoulders

2 Climber Hips, legs, quadriceps

3 Dumbbell curl biceps

4 Knee-pull-in Abdominals

5 Knee-twist-in Abdominals

6 Plank leg raise Lower back, glutes, triceps

7 Pilate dips (triceps) triceps, biceps, shoulders, back

8 Push up Chest

9 Side-to-side lunge Glutes, quadriceps, butt

10 Wall push up Arms, shoulder, chest

4.3.2 Experiment setup and tasks

The participants were asked to perform the 10 selected fitness exercises while

wearing the smart-glove. Each exercise is executed 3 times (3 sets for each exer-

cise), at the participant’s natural speed and pace, to make the experiment more

realistic. Each set lasts for 30 seconds, and the participants were allowed to take

1 or 2 minute-break between the sets. During the break time, the glove was

turned off by the participants to save battery. The ordering of the exercise was

randomized, each participant freely chose the order in which he/she wants to per-

form the exercise. Table 8 lists the 10 exercises along with their corresponding

target muscle group and Figure 20 shows a sketch of each exercise with the red

area representing the interaction zone between the glove and the environment.

Depending on each participant pace, the overall experiment lasts for 1-hour to

1-hour-and-half.

4.3.3 Procedure and apparatus

At first, each participant is asked to read and sign the informed consent state-

ment. Then, we introduced the experiment as well as the 10 workout exercises
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to the participant. After filling out the demographic data sheet, the participant

is equipped with the smart-glove on his/her dominant hand (left or right hand),

with nothing attached on the other hand. After that, we ask the participant to

warm-up for 3-minutes by freely doing any stretching movements he/she wants.

During the experiment, all participants wore the smart-glove and the DSU unit

to read the pressure distribution on the hand palm and send the data via Blue-

tooth to the visualization software for displaying and saving the workout data.

If needed, participants were allowed to remove the smart-glove during the break-

time between sets. Once the experiment is over, we ask each participant to take

a short after-experiment survey of 2 questions:

1. How comfortable is the smart-glove? (rate on a 10 stars’ scale)

2. Any feedback, comments, suggestions or ideas related to the device and the

system?

In addition to the smart-glove apparatus, we provided participants with a 2 kg

dumbbell to perform the dumbbell curl exercise.

4.4 Fitness Activity recognition: Methods and Results

The raw data from the smart-glove is a stream of time-series data of the 16-

channels pressure values (each sensor represents a channel). From these pressure

values, we extracted a set of features that could be used to distinguish between

fitness exercise types.

4.4.1 Features selection and extraction

For each exercise set performed by a user, we characterize the exercise as a single

signal, denoted by weight(t), obtained by averaging the 16-channels values (dif-

ferent values from each channel) over the time. In other words, we represent each

exercise set with a single signal, by “grouping” the 16 channel signals.

The signal weight(t) is the mean of the 16 channels computed over each row of

the time series data. It is represented as a column vector and is calculated using

Equation (10):
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weight(t) =

∑16
i=1 channeli

16
(10)

The computed weight(t) is then normalized according to its mean value and

standard deviation. Hereinafter, we will use the notation W (t) to refer to the

normalized weight(t).

All the activities provoke different changes in the pressure distribution and the

intensity, at different points on the palm surface, in the temporal domain. There-

fore, we computed the following set of time and frequency domains features:

• Mean of each channel

• Standard Deviation for each channel

• Number of above mean crossing of W (t)

• Number of below mean crossing of W (t)

• Number of peaks of W (t)

• Skewness of W (t)

• Kurtosis of W (t)

• Band power of W (t)

• Mean frequency of W (t)

• Max power spectrum of W (t) FFT

Overall, 40 features were extracted (32 directly from the sensors, and 8 from the

signal W (t)) and used to train the classification model. Many of these features

have been intensively investigated in previous studies and proved to be effective

for activity recognition [63, 64]. For example, the mean crossing feature has been

heavily used in human speech recognition and handwriting recognition problems

[63]. Statistical features such as the mean or kurtosis are frequently used because

of their simplicity and high performance across several human activity recognition

problems [65].
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4.4.2 Recognition results

To develop our classifier, we tested various classification algorithms, particularly

the Decision tree, Random Forest, SVM, k-NN and Ensemble methods. We report

the result for the classifier based on the Ensemble Subspace KNN method, which

achieved the best recognition results. It is well-known that Ensemble methods

can be used to improve better predictive performance that could be obtained

from any of the constituent learning algorithms alone [66].

To assess the robustness of the classifier against known and unknown users, we

performed the following two evaluations.

“Leave-one-session-out” cross validation

As a baseline, we first evaluated the recognition performance for every single par-

ticipant. For each participant and each activity dataset, we trained the classifier

with 2 out of 3 exercise sets and tested the classifier on the remaining exercise

set. The person dependent evaluation was repeated for all 10 participants, with

10-fold cross-validation on each dataset.

The confusion matrix of the average recognition results along with the F1 score is

presented in Figure 21a. The overall exercise recognition accuracy nearly reached

88.00% more precisely, with 6 of the 10 exercises having a recognition rate of

100%. The lowest misclassification of 53.80% was observed with the climber ex-

ercise. The F1 score was 0.889. It is worth pointing out that only three exercises

(pilate dip, plank leg, and climber) have their recognition rate lower than 80%.

“Leave-one-participant-out” cross validation

Ideally, the system should be operational for any new user without additional

training procedure. We, therefore, performed leave-one-participant-out cross-

validation to understand the robustness of the system against new unregistered

users. For each participant, the classifier is trained with all the data from the

other participant, and it is tested with the data from that participant. The

confusion matrix of the average recognition results and the F1 score are shown

in Figure 21b.

The person independent result shows an overall accuracy of 82.0%, with a F1

score of 0.830. This suggests that our system works well across different users.
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In this case, also, climber and plank leg have the lowest accuracy rates of 58.3%

and 60% respectively. Five exercises have their recognition rate lower than 80%

(pilate dip, knee twist, side lunge, plank leg, and climber).

For both evaluations (leave-one-session-out and leave-one-participant-out),

the overall recognition results indicate highly acceptable levels of exercise recog-

nition accuracy which are higher than 80%. Most of the misclassification happens

with exercises such as climber and plank leg raise. We also note an inaccurate

prediction for pilate dips, where athletes keep the same posture till the end of

the exercise.

The decrease in the accuracy rate between the person dependent and the person

independent evaluation is undoubtedly a result of participants having different

workout style, hand size, etc. We believe the system could be more robust against

new users if we provided with more training data that include more participants.

As smart-gloves are intended for personal usage, we suppose the optimum recog-

nition accuracy can be obtained for end-users that agree to provide training data

during their first use.

4.5 Counting repetitions: Methods and Results

The goal of our proposed smart-glove system is to count how many repetitions

a user has performed during an exercise set. To fulfill this goal, we designed

a counting algorithm that uses the raw data from the smart-glove to count the

number of exercise repetitions during fitness sessions. An exercise repetition is

characterized by a specific pattern, observed within the time series signal W (t)

obtained from the 16 force sensitive resistor sensors (FSR). The counting phase

itself is composed of 3 steps:

• Step 1: conditioning of the signal W (t)

• Step 2: peaks detection and elimination

• Step 3: repetition pattern detection and similarity match.

Figure 22 depicts the different steps of the counting algorithm. The dashed box

indicates the activity type (exercise name) obtained from the activity recognition
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(a) Average recognition result for leave-one-session-out.

(b) Average recognition result for leave-one-participant-out.

Figure 21: Average recognition result for (a) person dependent and (b) person

independent evaluation.
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Figure 22: overview of the DTW-based repetition count algorithm.

step described in the previous Section 4.4. The counting algorithm notations

along with their descriptions are summarized in Table 9.

4.5.1 Weight signal conditioning

The signal W (t), as explained in the previous Section 4.4.1, is the mean of the

16 channels computed over each row of the time series data. W (t) is computed

using Equation (10), and normalized according to its mean value and standard

deviation.

For each exercise set, the acquired W (t) signal is smoothed with an eleven points

fourth order Savitzky-Golay (SG) smoothing filter [67]. The SG filter is a digital

filter that can be applied to a time series data to smooth the data, that is, to

increase the signal-to-noise ratio without significantly distorting the signal. The

role of the SG filter is to approximate the values within a specified window by a

polynomial of a specified order to minimize its least-square error. The advantage

of using SG filtering before processing a signal is that it does not delay the signal

and can preserve features such as local minima and maxima (peaks) [58]. Finally,

the smoothed signal is passed to the next step (Step 2), for peaks detection and

elimination.
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Table 9: Algorithm notations

Notation Description

W (t) The mean of the 16 sensors for each time sample.

∆period The minimum possible time to perform a repetition.

SZ Searching zone of 10 seconds to find the repetition pattern.

CP candidate peaks obtained after Step 2.

RCj Repetition candidate at index j.

Rpat Repetition pattern of an exercise set.

distanceDTWpat Smallest normalized distance between matching RC.

thresh dtw Threshold value used to accept or deny matching.

4.5.2 Peaks Detection and Elimination

In this step, we exploit the local maxima (peaks) of the signal W (t) to find

repetition candidates and to reject peaks that are significantly low to be candidate

peaks. The intuition behind our approach is that most of the exercise repetitions

result in strong peaks.

Figure 23a shows an example of a “simple-and-easy” signal, where each repetition

corresponds to a high-amplitude peak, occurring at a regular time interval, with

almost similar shapes. Counting the number of repetitions from such fitness

exercise signal is quite easy (the numbers and the blue triangles represent all the

candidates peaks before running the counting algorithm). However, the signals

obtained from the smart-glove are not always that simple. Depending on the

exercise type and the user’s workout style, the peak amplitudes and shapes are

different and inconstant (Figure 23b).

Therefore, our algorithm has to be efficient and global to handle any exercise

repetition signal from the smart-glove. To that end, in this step, we need to

find and reject peaks that are not generated by actual repetitions such as peaks

caused by fatigues and sub-repetitions.

To filter out false repetition peaks, we primarily compute all the local maxima

of the W (t) signal to obtain a list of all candidate peaks. Then, we sort these

57



candidate peaks based on their amplitude and compute the peak at the 20th

percentile. Secondly, we reject all peaks with an amplitude smaller than the 20th

percentile. The 20th percentile represents the amplitude value below which 20%

of the candidate peaks may be found. That means 80% of the candidate peaks are

higher than this value. The percentile based technique has been largely used for

filtering peaks in signals processing problems [68]. It appears that the percentile

method is more efficient than setting absolute threshold values, as demonstrated

in [19]. The reason is that setting a fix lower threshold value will lead to a selection

of many candidate peaks, but might also contain multiple false candidate peaks;

while a fix higher threshold will only detect high amplitude peaks repetitions.

Therefore, applying an appropriate n-th percentile technique appeared to be a

good technique for a 1st level peaks filtering. In our study, generally peaks

corresponding to fatigues or sub-repetitions fall below the 20th percentile peak.

In Figures 23a and 23b, the red line represents the 20th percentile of each signal.

Finally, after rejecting the candidate peaks lower than the 20th percentile, we

filter the remaining candidate peaks based on the time elapsed between successive

candidates. We compare the time between a peak candidate and the previously-

accepted candidate. If the current peak candidate is at least ∆period seconds

away from the previously-accepted, we accept this current peak candidate. If

not, we reject the current peak candidate and move to the next candidate. The

intuition behind this approach is that if two consecutive peaks in the signal are

very close (e.g., less than 0.4sec), one of them is not an actual repetition peak.

The value of ∆period (in seconds) represents the minimum possible time for a

human to perform a repetition. For each exercise, we get this period based on the

fastest repetition observed during our experiment for that exercise. For example,

for the lateral stretch exercise ∆period is equaled to 1.0sec, and for push up

exercises it is equaled to 2.0sec.

After rejecting the false candidate peaks based on the 20th percentile threshold

and the time elapsed, the remaining candidate peaks are passed to the next step

(Step 3) for the repetition pattern detection.
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(a) Example signal with constant peak amplitude and regular shapes.

(b) Example signal with inconstant peaks amplitude and irregular shapes.

Figure 23: Examples of repetition signals.
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4.5.3 Repetition Pattern Detection and Similarity Match

At the end of the two previously described steps, we already have a naive rep-

etitions count algorithm. We could have stopped the algorithm after these two

steps. However, this algorithm would be sensitive to variations in timing, speed,

and individual repetition style. Therefore, to make our counting algorithm ro-

bust against exercise type and speed variations, we incorporated the dynamic

time warping (DTW) algorithm to find the repetition pattern of the exercise set,

and then we examine the signal W (t) to find out how many time the same pattern

is repeated in the signal.

Dynamic time warping (DTW) is a widely used technique that utilizes dynamic

programming to find the optimum distance between time series [5]. It allows us to

compare signal sequences that are not temporally aligned by creating a mapping

which minimizes the distance between input sequences. The DTW algorithm has

been proved to be effective for speech recognition [69] and has been intensively

used in previous studies related to activity recognition [65], human motion [70]

and bio-informatics [71].

In our counting algorithm, we utilize DTW to:

• find the repetition pattern (RP ) of an exercise set (phase 1),

• measure the similarity between a repetition candidate (RC) and the repe-

tition pattern (phase 2).

Compared to some previous studies as in [21], rather than selecting a standard

template for an exercise type, we extract the particular repetition pattern of each

single exercise set. By doing so, we ensure that each exercise set is evaluated

independently of the activity type and the user’s speed.

Find the repetition pattern (Phase 1)

In this phase, we empirically defined a time window of length 10 seconds starting

from second 4 to second 14 of W (t). We called this time window the searching

zone (SZ). The algorithm will look for the repetition pattern only inside the SZ.

The reason behind starting from the 4th second is that most people usually utilize

the first seconds of an exercise to adjust their body and/or find their comfortable

hands’ position. For this reason, the first repetitions of an exercise are not always
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actual exercise repetitions.

We work with signal sequences between the consecutive candidate peaks (CP )

obtained after Step 2. We denoted by RCj (repetition candidate j), the signal

sequence of W (t) between the candidate peaks CPi and CPi+1, inside the SZ

(Table 9). The algorithm loops through the repetition candidate and uses the

DTW algorithm to find the first repetition candidate that matches the other

repetition candidates inside the SZ.

For example, given an exercise signal with 4 candidate peaks at indices CP3, CP4,

CP5, CP6 inside the searching zone. The algorithm will generate 3 repetition

candidates such as RC1 = W (t)[CP3:CP4], RC2 = W (t)[CP4:CP5] , and RC3 =

W (t)[CP5:CP6] respectively. Then, we use the DTW algorithm to compare RC1 to

RC2, RC2 to RC3, and RC1 to RC3.

If RC1 matches RC2 and RC3, then the algorithm will consider RC1 (the signal

sequence between CP3 and CP4) as the repetition pattern(Rpat), and save in a

variable called distanceDTWpat the smallest normalized distance between RC1

and RC2 or RC3. If there is no matching among the 3 repetitions candidates,

then the algorithm will do the following:

1. reject the candidate peak CP3;

2. define a new searching zone SZ of 10 seconds starting from the candidate

peak CP4;

3. repeat the pattern searching process in the new SZ.

This new searching zone will include one or more candidate peaks (P4, P5, P6, P7

and maybe P8). The pattern detection phase stops when the algorithm finds a

repetition candidate that matches 2 or more other RC inside the SZ. This rep-

etition candidate is then considered as the repetition pattern Rpat of the current

exercise set and passed to the next phase of similarity match.

Figure 24a shows an example of a pattern repetition found in the initial searching

zone (red color) and Figure 24b is another example where the pattern repetition

is found in the self-generated searching zone (orange color).

Similarity matching and repetition count (Phase 2)

In this phase, we utilize the DTW algorithm to compare each repetition candidate
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(a) Repetition pattern found in the initial searching zone.

(b) Repetition pattern found in the self-generated searching zone

Figure 24: Examples of exercise repetition patterns found in different searching

zones. The blue triangles represent all the candidate peaks before running the

algorithm. The green circles indicate the accepted candidate peaks from Step 2.
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to the exercise repetition pattern Rpat from the beginning of the exercise, and we

count repetition candidates that are most similar to Rpat as actual repetitions.

To decide whether two repetitions are similar or not, we need to define a match-

ing threshold parameter. This threshold parameter, which we call β, specifies the

maximum allowable euclidean deviation between two signal sequences to be con-

sidered as matching. The higher the value of β, the more divergent (or dissimilar)

sequences are considered as matching and the algorithm over-performed. There-

fore, a reasonable value for β has to be determined for optimum performance.

Through a try and error approach, we set β = 1.5 in our current implementation.

With this threshold parameter, we compute the threshold DTW (thresh dtw)

value which is used to accept or reject a repetition candidate. The thresh dtw is

given by Equation (11):

thresh dtw = β ∗ distanceDTWpat (11)

If the normalized DTW distance between a repetition candidate and the exer-

cise repetition pattern is less or equal to the thresh dtw, the repetition candidate

RC is considered as similar to the exercise pattern Rpat and counted as an actual

exercise repetition, else the repetition candidate is rejected (Equation (12)).

RCj =

accept if dtw(RCj, Rpat) ≤ thresh dtw

reject if dtw(RCj, Rpat) > thresh dtw
(12)

At the end of this evaluation condition, we sum up the number of similar RC

and output the total number of repetitions.

4.5.4 Counting algorithm evaluation and results

To evaluate the efficiency of our repetition counting algorithm, we utilized the

set of data collected during the experiment described in Section 4.3. We also

used the videos recorded during this experiment as Ground truth data (GT). For

each exercise set, we used the algorithm to compute the number of repetitions

for each participant and compared these number with the actual number of rep-

etitions obtained from the recorded videos. Out of the 10 exercises, one exercise

(pilate arms) was a non-counting exercise. Therefore, we evaluated the counting

algorithm over 9 fitness exercises. Indeed, during the pilate arms exercise, the
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athlete has to keep the same position during the entire exercise duration without

doing any repetitions. We must also note that due to our camera’s battery and

memory shortage, we missed the following 4 ground truth videos:

• video of P3 performing the knee twist in exercise;

• video of P4 performing the plank leg raise exercise;

• video of P7 performing the climber exercise;

• video of P10 performing the climber exercise.

We omitted in our evaluation, the results obtained from the algorithm for these

4 cases.

To investigate the impact of the DTW in our counting algorithm, we evaluated

the algorithm at the end of Step 2 (without DTW) and Step 3 (with DTW)

separately.

Figure 25: Average exercise repetitions count from the ground truth and count

without and with the DTW.

Results after Step 2 (without DTW)

The results described below are obtained after Step 1 and Step 2. The algorithm
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counted an overall number of 5280 repetitions for all the exercise sets, whereas the

ground truth data showed a total of 5186 repetitions. In general, the algorithm

slightly over-counted the number of repetitions.

The box plot in Figure 25 depicts the average number of repetition from the

ground truth (blue color) and the algorithm without using DTW (red color).

The x-axis shows the fitness activities, and the y-axis displays the number of

repetitions. We can observe that only 2 exercises (knee twist in and side lunge)

were under-counted. Furthermore, for each participant we computed the average

repetitions count per exercise (remember that each exercise has been performed

3 times), from the ground truth (GT) and the algorithm (Alg). Then, we defined

and calculated the mis count values for each exercise, using Equation(13). The

parameter mis count allows us to rapidly understand the performance of the

algorithm after each step (Step 2 and Step 3).

mis count = GT − Alg (13)

Table 10 gives for each participant the results of themis count per exercise. From

this Table, we observe that without DTW, the proposed algorithm produced high

over-counting of +5 up to +17 the actual number of repetitions (e.g., dumbbell

of P3; side lunge of P7). We also notice some high under-counting, especially

with the knee-twist-in exercise with −10 of the exact repetitions number, in the

worst case. We defined as a “high over-counting” any repetitions count number

obtained from the algorithm that is higher than 4+ the number of actual repe-

tition. The same definition is applied to the undercount cases, where the “high

under-counting” starts from −4 of the number of actual repetitions. These high

over-counting and high under-counting results attest that after Step 2, the algo-

rithm is still sensitive to timing and speed variations. The high over-counting

and under-counting repetitions numbers are highlighted in red and blue color re-

spectively in Table 10.

Although the peaks count and time-elapsed approach can count well without

looking into the pattern, this approach only is not sufficient for counting exercise

repetitions. One way to improve it is to utilize the DTW algorithm to find the

repetition pattern of each exercise set and then use this pattern to count the

exercise repetitions.
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Table 10: Average mis count of the algorithm after Step 2 and Step 3 for each

exercise and participant

Exercise types P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Average

Bench dip
without DTW -8.0 +1.7 -2.7 +1.0 -1.7 -3.3 -3.7 -1.3 -5.7 -7.7 -3.1

with DTW -2.3 +0.3 -1.0 +0.7 +0.7 -1.7 -1.0 +1.0 -3.0 -3.0 -0.9

Climber
without DTW 0.0 +1.0 -1.7 2.7 -1.3 -0.7 NaN +1.3 -3.3 NaN -0.3

with DTW +0.7 +2.7 +0.7 +2.0 +2.3 +2.0 NaN +1.0 -2.3 NaN +1.1

Dumbbell
without DTW +0.7 +4.0 +6.3 -3.3 -1.7 -3.7 +2.3 +0.7 -1.0 -2.0 +0.2

with DTW +0.7 +2.7 +4.3 -1.0 -0.7 +1.0 +2.7 +1.7 +0.3 -0.3 +1.1

Knee pull in
without DTW +0.3 -2.0 -0.3 +2.0 +0.3 +4.7 +1.3 +2.3 -6.3 +1.0 +0.3

with DTW +0.7 -1.0 -1.7 +1.3 +0.7 +2.7 +0.0 +2.7 -2.3 +0.3 +0.3

Knee twist in
without DTW -3.3 -3.7 NaN +8.3 +1.7 +2.0 +8.0 +1.7 -10.3 +1.7 +0.7

with DTW -0.7 +1.3 NaN +4.7 +3.7 +4.0 +3.0 +1.3 -3.7 +2.0 +1.7

Side lunge
without DTW +2.3 -0.7 +9.8 +8.0 -5.7 +0.7 +17.3 +16.7 +9.7 -1.3 +5.7

with DTW +1.0 +1.0 +4.5 +3.3 -2.3 +4.0 +6.3 +6.0 +4.0 -0.3 +2.8

Plank leg raise
without DTW +1.0 -1.3 -1.0 NaN -1.7 -3.0 +5.0 -0.3 -5.7 -0.7 -0.9

with DTW +2.0 -0.3 +0.7 NaN +4.0 +0.3 +3.3 +0.3 -3.0 +1.0 +0.9

Push-up
without DTW -5.3 -1.3 -2.3 -1.7 +4.7 -6.7 -2.0 +2.0 -2.7 -3.0 -1.8

with DTW -3.3 -1.0 -1.0 -0.7 +3.7 -4.3 -3.0 +6.0 -3.3 -2.0 -0.9

Wall push-up
without DTW -9.7 +0.7 -0.3 -1.0 -0.3 -9.0 -0.7 +0.7 -5.0 +0.3 -2.4

with DTW -1.7 +0.7 +0.3 -0.7 +0.3 -2.3 -0.6 +0.7 -3.0 0.0 -0.6

Results after Step 3 (with DTW)

At the end of Step 3, the algorithm counts 5053 total repetitions, whereas the

ground truth showed a total of 5186 repetitions. The average repetition count

obtained after using DTW are almost equal to the number of repetitions observed

in the ground truth data. The box plot in Figure 25 depicts the average number

of repetition from the ground truth (blue color) and the algorithm after integrat-

ing DTW (orange color).

Table 10 also provides for each participant the result of the mis count per exer-

cise after Step 3. The highest over-count was about 6.3+ the actual repetitions

number (e.g., side lunge of P7), whereas the highest observed undercount was

about −4.3 of the actual number of repetitions (e.g., push-up of P6).
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The difference in the results obtained before and after integrating the DTW al-

gorithm shows that the DTW makes our counting algorithm more robust and

accurate.

Overall results

In evaluating our algorithm, we computed another parameter: error rate in

percent.

The error rate is calculated as the absolute value of themis count over the actual

count (GT). For each exercise and participant, we calculated the error rate by

using the average repetitions count obtained after integrating the DTW (Step 3).

Figure 26a plots the average counting error rate of each activity, while Figure 26b

shows the average counting error rate of each participant.

Independently of the participant and exercise type, there is no result of an er-

ror rate higher than 20%. With most participants, the push-up exercise has the

highest error rate of 17.70%. This is explicable since the push-up exercise is the

most exhausting exercise to be performed over 30 sec. Some participants pause

and resume while in the middle of the push-up exercise, before the time out. Two

participants performed the “lady push-up” style because they felt incapable of

doing the standard push-up during 30 sec. Two other participants performed the

push-up in a different style, which consists of making sub-repetition movement

after each normal repetition. This style (a.k.a “military push-up”) is generally

performed by non-amateurs to boost up the effect of the standard push-up.

Only two exercises (knee-twist-in and push-up) have their error rate higher than

10%. The average counting error rate for all exercises is 9.84% and the partici-

pant average counting error rate is 9.78%. The worst error rate by participants

was obtained with P9 (19.38%), followed by P6 (12.26%). These high error rates

might be related to the fact that P9 and P6 did not practice any sports activity

in the last six month before the experiment day.

Overall, the results indicate that our repetition counting approach is an accept-

able way to make a smart-glove that can also count exercise repetitions. The

system might work better with regular gym-goers than irregular practitioners.

However, we need more testing with experimented fitness practitioners to con-

firm or deny this hypothesis.
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(a) Average error rate for each exercise.

(b) Average exercise count from the ground truth and count after Step 3 of the algorithm.

Figure 26: Average error rate by exercise and by participant.
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4.6 Discussion

4.6.1 Users feedback

In our short exit survey, participants were asked to assess the comfort level of the

smart-glove on a scale from 0 to 10, with 0 being not comfortable and 10 comfort-

able. Figure 27 shows the result of this comfort level assessment. 4 participants

out of 10 rated the smart-glove with 5 stars, only 1 participant gave a 10-stars

score and the other rated it to 6 or 7 stars. The average obtained comfort level

of the smart-glove is 6.2 over 10.

The second question of the survey (do you have any feedback, comments, sugges-

tions or ideas related to the device and the system ?) revealed that participants

want the smart-glove to be adjustable, for fitting their hand size. In fact, our

current prototype was designed to be “gender neutral with a unique size.” There-

fore some participants felt like the smart-glove was slightly big, while others said

that it was small. For example, P1 said: “It would be nice if the width could

be adjustable to fit it (the glove) to my arm.”, whereas P9 reported: “It (the

glove) fits well on my hand but sometimes slides (during the workout).” Another

participant (P3) mentioned: “I want to have better tight on my fingers.”

From these feedbacks, we agree that our next prototype should follow the fabri-

cation designs of ordinary fitness gloves already available on the market, in terms

of materials, sizes, and appearances.

4.6.2 Number of FSR

As mentioned in Section 4.2, we intentionally utilized many FSR sensors (16 FSR)

in our first prototype to ensure full coverage and also for investigating the main

pressure areas in the palm during fitness activity. Through this investigation, we

aim at reducing the total number of FSR sensors in our final smart-glove proto-

type.

By analyzing the data collected during the experiment, it appears that some sen-

sors can be removed without drastically altering the activity recognition and exer-

cise counting results. For each activity, we got 30 exercise sets (10 participants×
3 sets per activity). From these 30 sets per activity, we computed the average
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Figure 27: Score of the 10-stars scale comfort level for each participant.

force applied to each sensor, to determine whether or not a sensor is activated

(used) during that particular exercise. For this evaluation, we used the absolute

force applied to the sensors, without normalization.

Table 11 shows the average force values applied to each sensor per exercise, and

Figure 28 presents the relation between each exercise and the activation status

of the sensors. For each exercise, we also computed the mean of the total forces

MTF applied to all sensors (mean of each column in Table 11).

If for a given exercise, the average value of a sensor is:

• higher than or equal to MTF , we consider the sensor as “always” activated

during the exercise (green circle in Figure 28).

• lower than MTF and higher than MTF/10, then the sensor is considered as

“sometimes” activated (orange triangle).

• less than MTF/10, then the sensor is considered as “not actually” activated

during the exercise (red cross).

The intuition behind this reasoning is that if a value is 10 times less than the
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Figure 28: Sensors activation status during fitness exercise.

average of all values, then this value is significantly low and negligible. From the

results of this analysis, we can suggest a new design of the proposed smart-glove,

without the sensors at position 5 and 9. Indeed, at these positions, the sensors

values are negligible for most exercises. The sensors on the fingers (position

13, 14, 15 and 16) can also be removed or slightly moved down because they

are frequently inactivated or few times activated for most exercises except for

the dumbbell curl exercise. Sensors on positions 1, 2, 3, 4, 7 and 8, which are

generally highly activated should remain in the same spots for the next prototype.

4.6.3 Fitness exercises without direct pressure on the palm

One limitation of our current system is the tracking of exercises such as running

that does not produce pressure variation in the palm. To overcome this issue,
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we intend to integrate inertial sensors such as accelerometers or gyroscopes into

the DSU (data sampling and communication unit) of our next smart-glove pro-

totype. By adding such inertial sensors into our system, we’ll be able to track

pressure-less exercises, as well as improving the exercises’ recognition and count-

ing performance of the proposed system.

4.6.4 The ultimate goal

As for now, we have not yet reached our ultimate goal of providing the amount of

calorie burned during an exercise. However, this last step can quickly be achieved

by using the obtained information: the exercise type and the number of repeti-

tion.

Indeed, many online databases of thousand exercises such as FitClick [72] pro-

vide calorie information of workout exercises assuming that the exercise name,

the number of repetition, and the exercise duration are already known. Thereby,

our immediate future work will consist to connect our system to those databases

and extract the calorie expenditure information.

Regarding calorie burned from other daily physical activities, our plan is to com-

bine the GIFT system to existing estimation systems that target those activities.
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4.7 Chapter Summary

In this chapter, we investigated a novel smart-glove based system for tracking

indoor fitness activity. Our approach exploits the interactions between the hand

palm and the working environment to assess fitness activities. The system inte-

grates 16-FSR sensors into a fitness glove to identify fitness activities and count

the repetition of an exercise, by analyzing a time series of the pressure distribu-

tion applied to the hand palm during the exercise.

We presented the design of the Smart-glove, and evaluated the exercise recogni-

tion performance and the accuracy of the repetition counting algorithm of the

system. Our validation experiment with 10 healthy participants over 10 commons

fitness exercises showed an overall exercise recognition accuracy of 88.00% for the

person dependent evaluation and 82.00% for the person independent evaluation.

The evaluation of the repetition counting algorithm achieved an average counting

error rate of 9.85%. Based on our results, we concluded that a smart-glove that

collects and analyzes hands palms pressure could be used to track and assess

fitness activities.

Clearly, in its current design, the system alone is not enough for tracking exercises

that do not generate pressure in the hand palms. However, it provides valuable

results that can be combined with the data from inertial sensors, to develop more

complete systems for supporting fitness practitioners.
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5. Conclusion and Future Work

5.1 Summary

The goal of our work was to propose and implement ubiquitous systems to support

people in the prevention and treatment of overweight and obesity. To ensure

the usefulness of the systems we wanted to realize, we initially focused on the

main recommendations of the World Health Organization (WHO) to prevent

overweight and obesity: (1) control and limit calorie food intake, and (2) engage

in and track regular physical activity. For these two recommendations, we have

designed and implemented two ubiquitous-based systems which are easy-to-use,

easy-to-carry, suitable for daily usage and designed with commodity devices.

For the first WHO’s recommendation, we developed an image-based system

that we called NIES (Nutrient Intake Estimation System). NIES estimates the

food weight and calorie of a food using the picture of that food taken with a

smartphone camera. The novelty of this system is that it used chopsticks as a

measurement reference to determine food size portion. Since the eating tools are

already available in the most eating environment, the users of the system are not

required to always carry calibration cards or other measurements objects. Our

experimental trial for the NIES ran on 50 different food pictures has shown highly

acceptable results. We achieved an average error rate of 6.65% for the food weight

measurement, and 6.70% for the calorie estimation.

For the second WHO’s recommendation, we designed and implemented a

smart-glove based system, called GIFT (Glove for Indoor Fitness Tracking), that

monitors and tracks physical sports activity. The GIFT system reads, records,

and analyses the time series pressure distribution signal produced by the direct

interaction between the users’ hand palms and the workout environment. We

used these time series data to assess the users’ workout performances. We origi-

nally designed the smart-glove with 16- force sensitive resistors (FSR) to ensure a

full coverage of the sensing zone. However, the results of this study showed that

the number of FSR can be reduced to 12 or 10. Our validation experiment on the

GIFT system performed with 10 participants over 10 ordinary fitness exercises

showed an average recognition rate of 82.00% and an average repetition count

error rate of 9.85%.
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Overall, the two systems proposed in this study have the following core contri-

butions. Firstly, we demonstrated that eating tools, which are found everywhere,

can also be used as a measurement reference instead of the usually carried cali-

bration cards. Secondly, while most existing studies focused on non-mixed food

served on plate containers, we showed that mix food served in bowl shape con-

tainers can also be measured by utilizing the image of that food. Thirdly, we

presented a new wearable sensing device that uses bio-mechanical information

from the hand palm to monitor, track and evaluate fitness session.

5.2 Future work

For future work, we plan to improve the food weight estimation method by in-

tegrating the distortion coefficient of the user personal smartphone. Also, we

intend to make the NIES system image processing algorithm more robust in or-

der to recognize other eating tools such as spoon, fork or knife. Furthermore,

for the GIFT system, we’ll investigate several engineering approaches to reduce

the number of FSR needed, minimize the electronic footprints, and maximize the

coverage of the hand palm.
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