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Light Transport Acquisition via

Selective Light Path Measurement∗

Takafumi Iwaguchi

Abstract

An active measurement, that senses the scene with a camera under controlled

illumination, is one of the common techniques in computer vision field. Most of

the conventional techniques rely on ideal light transport, or a response to the illu-

mination of the scene. However, since an actual light transport depends on scene

geometry and light behavior, undesired light transport such like inter-reflections

and scattering could degrade the measurement. The goal of this thesis is to ac-

quire desired light transport for further application such like to analyze the light

behavior, to visualize the meaningful information, and to capture the appearance

of objects in the real world, that are important tasks in the field of computer

vision and computer graphics. To acquire the desired light transport, we focus

on the light path from a light source to a sensor cell in the camera. In the con-

ventional imaging, since the camera forms image by integrating all the light to

sensor cells from various directions during exposure, the information of each path

is lost. In order to acquire light transport before integration, we propose a selec-

tive path measurement. We control illumination and exposure to specify the path

for the measurement. Our contribution also includes the proposal of the analysis

and the application of the light transport. We tackle two problem settings. The

first problem is an optical tomography of diffuse surface object that has a diffuse

surface and a transparent body, like grapes. We propose acquisition of the light

transport along straight paths inside the object. We propose a light path model

and reconstruction algorithm. We demonstrate that our framework successfully

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, February 20, 2019.
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reconstructs the interior of a real object. The second problem is a light transport

acquisition of projector-camera system. We propose novel acquisition according

to the transport distance. We demonstrate our acquired light transport can be

applied for various visualization and application.
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1. Introduction

1.1 Background

An active measurement, that senses the scene with a camera under controlled

illumination, is one of the common techniques in computer vision field, such like

the active stereo [1, 2], as in the photometric stereo [3, 4], and imaging radar [5].

The conventional active measurement techniques computes results from captured

images. Light transport is a key factor of the active measurement. Illustration

of light transport is shown in Fig. 1. Let us consider a case that we perform

the active measurement of the scene. Multiple light sources and multiple photo-

detectors (camera sensor can be regarded as an array of photo-detectors) are used

for the measurement. Light evolves after it starts from a light source, interacts

with the scene, and then finally is observed by photo-detectors. Light transport is

a response of the scene to the incident light that describes a relationship between

the incident light and the outgoing light.

The acquisition of light transport is important task in the fields of both com-

puter vision and computer graphics for its application. The light transport itself

is a great clue for understanding light behaviors such like diffuse reflections, dif-

fuse and specular inter-reflections, and subsurface scattering in the scene. In

active measurement, the result, (depth or normal) is computed from the light

transport. Light transport is also applied for image-based relighting that allows

us to synthesize an image of the scene relighted with the arbitrary illumination.

A goal of this thesis is to acquire the light transport for further applications.

The light transport is complicated process relating to optical phenomenon and

scene geometry. This makes its acquisition and analysis difficult. We describe this

problem by taking Fig. 2 for an example. The most of the conventional techniques

rely on the ideal measurement. For example, the active stereo techniques assume

diffuse reflection on the surface from the direct illumination. Since inter-reflection

between multiple objects (in the yellow line) is not following the assumption, it

cause the wrong estimation. Also, the scattering in translucent material (in the

orange line) degrades the estimation since it exhibit different response to the

illumination. To deal with these problems, the patterns that is prone to inter-

reflection have been proposed [6], or polarization has been utilized for descattering

1



Scene

Light sources
Photo-detectors

(Camera)

Incident light Outgoing light

Light transport

Figure 1. Illustration of light transport. Light transport describes the relationship

between incident and outgoing light.

[7, 8, 9], however, they have disadvantages that the former only deals with long-

range inter-reflection, and latter tends to be suffered from bad signal-to-noise

ratio. Moreover, the desired light transport is different for its purpose. The

acquisition of desired light transport is always an open problem.

Another problem is how to utilize the acquired light transport for analysis

and application. Since the acquired light transport and its analysis are closely

related, the analysis specific to the light transport is required.

1.2 Contributions

For acquisition of the desired light transport, we focus on a light path of the light

transport. Let us review Fig. 2. Light paths of the light transport are shown in

green, yellow, and orange lines. While all the paths connect the illumination and

the camera, they are different due to the interaction with the scene. This implies

that we can acquire light transport separately if we measure the light along each

path selectively.

In this thesis, we propose a light transport acquisition by measuring

light paths selectively so that we filter desired paths from all the paths involve;

we can analyze the specific behavior of the light, and take away undesired paths.

The methodology of the light transport acquisition depends on the target object

and the characteristic of desired paths. We specify paths by considering the

2



ideal

wall

inter- reflection

scattering

object

camera

illumination

Figure 2. Beside ideal light transport (green), there is undesired light transport

caused by inter-reflections (yellow), or scattering (orange).

geometry and the measurement setup, and selectively acquire the light transport

along the path.

In order to describe our concept, we compare our method with the conven-

tional imaging by a camera as shown in Fig. 3 (a). Since light from multiple

light sources interact with the scene differently, the light travel through different

paths in green, yellow, and orange, and received by the same sensor cell. In the

camera, image is formed by integrating all the light to sensor cells from various

directions during exposure. This means the original information of received light

through each path, such as direction and change of radiation is lost. Therefore,

the light transport along each path is not recovered from the images. In the pres-

ence of inter-reflection and scattering, the active measurement using conventional

imaging fails. In selective path measurement, we specify each path by control-

ling illumination and exposure as illustrated in Fig. 3 (b). The sensor cell only

receives the light from ideal path (green), the desired light transport is acquired.

We tackle two problem setting in this thesis; (1) an optical tomography of the

diffuse surface object and (2) the light transport acquisition in projector-camera

system.

Both types of light transport are illustrated in Fig. 4. A major difference of

two types of light transport is a coordinate system that define the light transport.

3



Ideal

Wall

Inter-reflection

Scattering

Object

Camera

Light sources

Sensor cell

Ideal

Sensor cell

(a) Conventional imaging (b) Selective path measurement

Figure 3. Schematic illustration of selective path measurement. In conventional

imaging (a), different light paths can reach a single sensor cell that output a

single value. We measure a radiance of light through a specific path (b) in our

framework.

In (1), light transport is defined by the incident and outgoing points, which are

defined on the object’s surface as shown in Fig. 4(a). This definition is appropriate

for analyze the light transport in the single object, regardless of the measurement

setup. Our target is called a diffuse surface object who has diffuse surface and

transparent body. We propose a novel acquisition specialized for the diffuse

surface object. In (2), the light transport is defined in a measurement setup as

shown in Fig. 4(b). This definition is appropriate for analyze the light transport

in the scene with multiple objects. It is still usable to analyze the light transport

in the object, however, the geometric relationship must be considered. We acquire

two different types of the light transport, called plane-to-ray light transport and

full light transport, respectively. The acquisitions is made according to the light

transport distance by utilizing a novel synchronized projector camera system.

Another contribution of this thesis is the proposal of the analysis and

the application of the light transport. In (1), the interior of the object is

reconstructed from the light transport. To reconstruct the interior, we propose a

light path model inside the object and the reconstruction algorithm. In (2), we

show various application of plane-to-ray and full light transport. We show the

light transport allows us to visualize and to analyze in efficient way.

4



(a) Light transport defined 

on an object.

(b) Light transport defined 

in measurement setup.

Object

Objects

Illumination Camera

Figure 4. Definition of our target light transport. We focus on light transport in

the objects in (a) and light transport in a measurement setup in (b).

1.3 Structure of the Dissertation

This thesis is organized as follows. Chapter 3 presents the related work to show

our contribution. It includes the acquisition of the various kind of light transport.

It also includes the conventional approach to related applications. Chapter 4

describes the optical tomography of the diffuse surface object. We describe the

measurement, the path model, and the reconstruction of the interior. Chapter 5

describes the light transport acquisition of projector-camera system. We describe

the measurement and show applications of the acquired light transport. Chapter

6 concludes this thesis with future work.

5



2. Theory of light transport

2.1 Plenoptic function

Before considering about the light transport, let us consider about the description

of the light. The plenoptic function [10] is introduced by Adelson and Bergen to

describe all the light in the scene. We define the radiance of the light ray travelling

in the 3D space by 7D plenoptic function

P (x, y, z, θ, ϕ, λ, t), (1)

where (x, y, z) is the 3D location, (θ, ϕ) is the direction as shown in Fig. 5, λ is

wavelength, and t is time. The plenoptic function contains all the information

construct any image of the scene at any time. Image-based rendering [11, 12] is

one of the application of the plenoptic function.

The measurement of the plenoptic function is not a trivial task due to its large

sampling space [13]. In most applications, all the dimensions are not necessary.

The light field [14, 15] is a 4D slice of the plenoptic function. The light field

has been an interest of many studies since the light field can be applied for

view interpolation, confocal imaging [16] and refocusing [17, 18], alongside its

acquisition techniques.

2.2 Light transport and representation

The light transport is a response of the scene to the active illumination. We

have defined the light transport as a response to the incident light of the scene,

in other words, it is a relationship between the incident and the outgoing light.

Therefore, the light transport can be regarded as a function of incident and

outgoing rays. By using plenoptic functions of incident light Pincident and outgoing

light Poutgoing, such as f(Pincident, Poutgoing). However, this expression could have

up to 14 parameters and is very redundant considering possible variation in the

scene.

Now we discuss about the representation of the light transport in an object.

The light transport in an single object have been researched for long decades.

In the context of computer graphics, the light transport is described with re-

6
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Figure 5. Ray representation in 3D space.

duced parameters in order to render the realistic appearance with limited rep-

resentation of the data and the limited sampling cost. Bidirectional Scatter-

ing Surface Reflectance Distribution Function (BSSRDF) [19], Spatially-varying

Bidirectional Reflectance Distribution Function (SVBRDF) [19] and Bidirectional

Texture Function (BTF) [20] are examples of general representation of light trans-

port. While some works tackle with acquisition of high dimensional transport like

SVBRDF [21, 22, 23, 24] and BTF [20], the some works have propose more com-

pact representation and acquisition like reflectance field [25] by the light stage,

incident light field [26], and surface light fields [27]. One of the most popular

compact representations is BRDF. Many BRDF models are proposed for realistic

synthetic images by considering the surface property like diffuse reflection [28],

glossy reflection [29] and normal variation[30]. Many techniques of the acqui-

sition of isotropic BRDF are proposed [31, 32, 33] and some of them provides

the database for the materials. In the contrast of BRDF, BSSRDF is difficult

to model without assumption due to its high dimensionality. To deal with this

problem, some work [34, 35, 36] assume a homogeneous medium. In Sec. 4, we

consider the light transport defined on an object that is specialized for tomo-

graphic reconstruction.

Next, we consider about the representation of the light transport in a mea-

surement system. The measurement system consists of multiple light sources and

multiple photo-detectors. In this case light transport can be defined as a received

7



light of photo-detectors when a specific light source is turned on. Let vector p

denotes a state of light sources and vector c denotes intensities of photo-detectors.

A relationship between two vectors are written as

c = Tp, (2)

where T is a light transport matrix. This representation is applied for the projec-

tor camera system, since the projector can be regarded as multiple illuminations

and the camera as multiple photo-detectors. By considering spatial relationship

of projector and camera pixels, it is also described in four dimensional function

since it is a relationship between incident light represented in 2D projector pixels

and outgoing light represented in 2D sensor pixels. In Sec. 5, we define novel

light transport by considering spatial relationship of projector pixels and camera

pixels.

8



3. Related work

3.1 Light transport acquisition for optical tomography

In chapter 4, we tackle with the diffuse surface object where its surface exhibit

diffusion and its medium exhibit only absorption. Optical tomography [37] is

a technique to inspect an object by light radiation and the measurement from

outside. The optical tomography reconstruct the distribution inside of the object

based on the interaction between the medium of the object and the light. The

interaction such like absorption and scattering occurs everywhere in the medium,

however, what we measure is the light transport.

We define reconstruction as the process to estimate interior from the mea-

surement. In the tomography, the distribution and light transport must be trans-

formed into one another. The method of light transport acquisition must be

designed by considering the reconstruction.

Optical projection tomography (OPT) [38] is a simple technique that is the

same as X-ray computed tomography (CT) except that it uses visible or infrared

light instead of X-rays. It is assumed that light travels in a straight direction in

the object, as for X-rays. This assumption allows us to reconstruct the interior by

Radon transform [39] that gives the relationship between the measurement and

the interior. OPT provides a clear three-dimensional reconstruction of a small

specimen and has contributed to many biological studies; however, it cannot deal

with a diffuse surface.

For the object exhibit scattering, Radon transform is no longer applicable.

Techniques have been proposed to cope with scattering; e.g., techniques for single

scattering [40] and multiple scattering [41, 42, 43]. Scattering in the human

body is approximated as an isotropic diffusion in diffuse optical tomography;

applications of the approximation are mammography [44] and functional imaging

of the brain [45, 46].

Our contribution is to propose a light transport model for the diffuse surface

object and to propose a light transport acquisition and reconstruction method

based on the model.

9



3.2 Light transport acquisition for the projector-camera

system

In chapter 5, we acquire the light transport between projector and camera. The

difficulty of sampling light transport in projector-camera system is its sampling

space due to the high resolution of today’s devices. The efforts have been made

to represent light transport compactly and to acquire it efficiently. In dual-

photography, Sens et al. [47] takes a hierarchical approach by assuming short-

range transport. A sparseness of light transport matrix is assumed in [48, 49]

for compressive sensing and symmetry is assumed in [50]. Under the assumption

of low-rank, the matrix is reconstructed by kernel Nystrom method [51] and

eigenvectors are measured directly by optical computing [52].

In this work, we acquire light transport matrix without the assumption of

neither sparsity nor low-rank. Our method allows us to acquire light transport

according to its transport distance. If the range of the transport distance is

limited, the number of sampling could be reduced.

10



4. Light transport acquisition of diffuse surface

object

4.1 Introduction

The measurement of an object’s interior is important in various applications, such

as the detection of foreign objects in food and the inspection of the human body

in a medical examination. An optical measurement is a safe inspection technology

that does not use X-rays and has no risk posed by a radiation dose. Furthermore,

optical measurement provides functional information on optical properties; e.g.,

blood flow is estimated from spectral absorption. One of the challenging problem

of optical measurement is optical tomography. Like X-ray Computed Tomography

(CT), optical tomography measures an 3-dimensional internal structure or interior

of objects using optics.

In the tomography, the interior is estimated from the transport measured by

sensors surrounding the object, rather than is measured directly. There are two

requirements to reconstruct the distribution from the transport. First, the path

model of the transport is required to transform the measured transport into the

distribution. Second, a measurement technique is required so that the transport

along the specific path considered in the model is measured.

We aim to acquire light transport according to a path model so that the

interior is reconstructed from the acquired light transport. We target objects

that has a diffuse surface and an interior that is assumed transparent, where

light is absorbed but not scattered. Fruits like grapes (Fig. 6), light bulbs with

white glass, and hollow plastic bottles are examples of such objects.

In this section, we propose a shortest path model that assume the light travels

shortest distance in the diffuse surface object as a light path model in the dif-

fuse surface object. We propose selective path measurement for light transport

acquisition according to the model. We also propose a reconstruction method of

interior from acquired light transport. Our contribution also includes coverage

analysis of measurement and a design of measurement setup.

11



Figure 6. Example of diffuse surface object. A grape has a diffuse surface and a

transparent body.

4.2 Acquisition of light transport inside diffuse surface ob-

ject

4.2.1 Distribution of the absorption coefficient and total absorption

We reconstruct a distribution of the absorption coefficient σ of the target’s in-

terior. The absorption coefficient represents how much light is absorbed as light

travels a unit distance. We now define the total absorption A by following

Lambert-Beer law, as the logarithm of Io (the intensity of light after light trav-

els through the target) divided by Ii (the intensity of light before entering the

target):

A = log Io − log Ii. (3)

4.2.2 Radon transform

The relationship between the total absorption and absorption coefficient is de-

scribed by the Radon transform. For a simplicity, we consider the problem in two

dimensions. When a ray propagates through an area Ω, the total absorption is

an integral of the absorption coefficient along the path:

AΩ =

∫∫
x,y∈Ω

σ(x, y)dxdy. (4)

The path of a ray is generally assumed straight in the Radon transform. Let us

describe a straight ray in polar coordinates fixed on the object as illustrated in

12
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Figure 7. Relation between the path and sinogram coordinates. Total attenuation

along a ray is stored in a specific coordinate in sinogram.

Fig. 7. A radon transform about a ray (X, θ) is written as

A(θ,X) =∫ ∞

−∞
σ(z sin θ +X cos θ,−z cos θ +X sin θ)dz.

(5)

We reconstruct a distribution of the absorption coefficient using the inverse

Radon transform that is derived from Eq. (5). The reconstruction of the interior

requires the total absorption of rays passing through the interior (i.e., A(θ,X)) for

all possible θ andX. Ideally, these rays are acquired by measuring the transmitted

rays when parallel rays are cast toward the target from various angles. This

method works well when the paths of rays are not disturbed by the target as in

the case of X-rays. However, as illustrated in Fig. 8, each ray entering the object

spreads when the target has a diffuse surface. The transmitted rays are no longer

parallel and it is difficult to determine paths of the measured rays.

4.2.3 Shortest path model

We model light paths in a diffuse surface object as a first step to determining the

paths of rays. We discuss about the light path model by taking an egg in Fig. 9

as an example. A egg consists of a shell, white and yolk. In order to inspect the

egg, we illuminate the shell with a LED pointer. When the shell is illuminated

from a right side, a silhouette of yolk appears on a left side as shown in Fig. 9(b).

13



Parallel rays

Diffused rays

Transmitted

rays

Figure 8. When parallel rays are cast, they spread at the incident points on the

surface.

(a) (b) (c) (d)

Figure 9. Observation of an egg using LED pointer. The silhouette of yolk

appears on the opposite side of illuminated point.

And the silhouette moves corresponding to the moving illumination as shown

in Fig. 9(b), (c) and (d). We consider how the silhouette appears by using an

illustration of this observation (Fig. 10). When light ray from the pointer hit

surface of the shell, it should diffuse and should form spreading paths from the

incident point. These paths are mostly straight, since the white should be weak

scattering media. Then rays travel through yolk should be attenuated and the

others should not, as a result they make such a silhouette.

We generalize this observation as a model. In this model, we assume light

diffuse at the incident point and travel straight through medium. Therefore,

14



Diffuse 

at surface

Figure 10. Illustration of an egg observation. Spread rays at surface make the

silhouette.

Figure 11. In shortest-path model, the rays are modelled as straight in the body

after diffusion on the incident point.

paths in the object are regarded as a set of straight rays spreading from the

incident point as illustrated in Fig. 11. Since the straight path inside the object

travels shortest distance in the object, the model is called shortest path model.

4.2.4 Model validity in the real situation

In the real situation, the paths in the object do not always follow the shortest-

path. The path in the real situation is illustrated in Fig. 12. One of the difficult

targets could be the object with thick skin. Because the incident point of the

path is determined as a first point where the light from the source hit the surface.

An actual incident point of the path should lie on the inner boundary between

15



Surface Medium

Not applicableApplicable

Figure 12. Applicable and non-applicable material of our model. We assume

diffusion happens at the exact incident point on the surface, and there is no

scattering.

the skin and the body, therefore these two points do not match when the skin is

thick and the light is spread by the diffusion in the skin. Our model is applicable

when the skin is thin enough.

Another factor that could affect the reconstruction is the scattering in the

medium. When the scattering occurs, the path in the medium is no longer

straight. The effect of the scattering is evaluated in Sec. 4.4.4.

4.2.5 Setup of the measurement

Because the light path is modeled as a straight line, a path in the object is

uniquely determined if both ends of the path are specified. If there is light in a

large area, which means many rays are cast as illustrated in Fig. 8, the exact point

that a ray enters is difficult to determine. Incident light should fall in a small

area to avoid this problem. Meanwhile, rays exiting the object are measured by

shooting the surface of the target. The shooting is repeated while the object is

rotated to collect rays entering at and exiting from various points. Accordingly,

a setup will consist of a narrow light source, camera, and rotary stage on which

the target is placed, as shown in Fig. 13.

We assume the orthogonal projection or perspective projection as the projec-

tion model of the camera. In the case of orthogonal projection, point of incident

and outgoing ray are determined with regardless to the placement of the object

and camera. Meanwhile, it requires a special optics like telecentric lens, more-

over, it cannot handle with the objects bigger than the size of the lens. In the
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Figure 13. Setup of the measurement. Light source and camera are pointing to

the center of rotation.

case of the perspective projection, while the placement of the object and camera

must be taken into account, lens is off-the-shelf and it is easier to measure big

object thanks to the wide Field of View (FOV).

4.2.6 Light path alignment

A raw measurement must be converted into light transport to reconstruct interior.

We call this conversion light path alignment. Geometry of light path and change

of intensity are considered in light path alignment.

First, we discuss about the geometry of light path. Paths of a ray in a three-

dimensional scene should be computed because they are required for the recon-

struction. The three-dimensional coordinates of the points at which a ray enters

and exits are determined as follows. The point at which a ray enters is determined

by calculating the intersection of the ray from the light source and a contour of

the target. Similarly, the point at which a ray exits is determined by calculat-

ing the intersection of the ray from the camera and a contour of the target. To

uniquely determine these intersections of the ray and the contour of the target,

all the contours of the target must not be occluded from the light source or the

camera. Therefore, the shape of the object need to be convex in our measure-

17



ment. To obtain a target contour, we compute a visual hull [53] as the shape of

the target in the following steps. In order to capture the silhouette of the target,

we place the diffuse plane behind the target from the camera view and illuminate

the plane so that it looks evenly illuminated. A silhouette is then extracted by

binarization after subtracting the background from the captured image. A visual

hull is finally computed by taking an intersection of the perspective projection of

the silhouette on the object space. Since our measurement needs the shape of the

target to be convex, it is reasonable to utilize a visual hull that is only applicable

for convex shapes.

The geometry of light paths also affects the intensity of rays. A intensity

distribution through the surface is described by the bidirectional transmission

distribution function (BTDF) fT (ωi, ωo), where ωi is the incidence angle and

ωo is the outgoing angle of the light. For accurate reconstruction, the effect at

the surface must be compensated. To compensate this effect, fT (ωi, ωo) within

sampling range must be measured additionally. A intensity of light transport

inside the object is computed by cancelling BTDF. Also, refraction at the surface

also affects the intensity where the effect is governed by Fresnel equation. We

assume this effect is included in BTDF.

After light path alignment, we can employ a sinogram for the representation

of acquired rays. We consider polar coordinates (X, θ) fixed on the target. The

origin is at the center of rotation in the measurement setup. In a 2D representa-

tion of sinogram, horizontal and vertical axes respectively correspond to (X, θ),

and an attenuation of the ray is stored.

For each ray, we define an intersection of the ray and a contour of the object

in Cartesian coordinates (x, y) that share the same origin as the polar coordinates

(X, θ). By denoting the intersection of a ray from the camera and a target by pl

and the intersection of a ray from the camera and a contour by pc, the angle of

a path θ is calculated as

θ = arg(pl − pc), (6)

where arg(·) denotes the angle between a vector and the x-axis. A displacement

of path X is calculated according to

X = p⊤
l ·

[
sin θ

cos θ

]
. (7)
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𝜃𝑙 = 30∘ 60∘ 120∘ Fullset

Figure 14. Missing area of sinogram according to θl. While sides of sinogram are

missing at θl = 30◦, 60◦, central part is missing at 120◦.

4.2.7 Observation rate of the light path

When the surface of the object is measured using a single camera, not all rays in

the object are measured depending on the object’s shape and the optical setup.

We now look at Fig. 13 to understand the unobserved rays. Rays 1 and 2 cast

from the light source enter the object at the same point but exit from different

points, before being measured by the camera on the opposite side of the object.

While ray 1 is observable because it reaches the surface visible from the camera,

ray 2 is unobservable because it reaches the surface unobservable from the camera.

Let us assess the effect of unobserved rays. We simulate the measurement

for the case where the camera model is perspective and the target is a cylinder

and generate sinograms for different θl in Fig. 13. Figure 14 shows generated

sinograms and the “fullset” sinogram that contains sufficient rays with which to

reconstruct the full interior. There are missing areas in the sinograms owing to

the unobserved rays. In the case of θl = 30◦, there are missing areas on both the

sides of the sinogram. Likewise, in the case of θl = 60◦, there are missing areas

on the sides but the areas are smaller. In contrast, a missing area appears at the

center in the case of θl = 120◦.

We next evaluate the observation rate of rays. Here we measure the obser-

vation rate using coverage—a ratio of missing area to the area of sinogram. To

describe the missing part, we use the distances dmin and dmax as shown in Fig. 15.

From the definition of dmin, dmax, the coverage is given by dmax − dmin.

Case of orthogonal projection
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dmin, dmax are calculated as follows: for the case of 0 ≤ θl ≤ π
2
,

dmin = 0 (8)

dmax = cos

(
π

4
− θl

2

)
, (9)

and for the case of π
2
≤ θl ≤ π,

dmin = sin

(
θl
2
− π

4

)
(10)

dmax = 1. (11)

The coverage takes its maximum at

θl =
π

2
. (12)

Case of perspective projection

Let θFOV denotes FOV. dmin, dmax are calculated as follows: for the case of 0 ≤
θl ≤ π−θFOV

2
,

dmin = 0 (13)

dmax = cos

(
π

4
− θl

2
+

θFOV

4

)
, (14)

for the case of π−θFOV

2
θl ≤ π+θFOV

2
,

dmin = cos

(
3π

4
− θl

2
− θFOV

4

)
(15)

dmax = cos

(
π

4
− θl

2
+

θFOV

4

)
, (16)

and for the case of π+θFOV

2
≤ θl ≤ π,

dmin = cos

(
3π

4
− θl

2
− θFOV

4

)
(17)

dmax = 1. (18)

The coverage takes its maximum at

θl =
π − θFOV

2
. (19)
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Figure 15. A missing area of sinogram. Converage p is defined by the difference

of dmax and dmin.

Fig. 16 shows the relationship between the coverage and θl for the perspective

projection when the FOV is 30◦ and 60◦. It is found that the coverage of FOV

= 60◦ is lower than that of FOV = 30◦ for any θl. In addition, we show coverage

in the cases of the orthogonal projection that were considered in a previous paper

[54]. In the case of orthogonal projection, the coverage is satisfied at θl = 90◦;

hence, a lack of observations can be avoided using this angle. In contrast, the

coverage is never satisfied in the case of perspective projection. The problem of

insufficient observations is inevitable unless a single perspective camera is used.
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Figure 16. Coverage of the measurement vs θl. While coverage can be full at a

specific θl for orthogonal projection, it is never satisfied for perspective projection.

4.3 Reconstruction

When there are insufficient observations, a possible solution is to modify the

setup by adding another light source or camera to complete the observation.

When it is possible to observe all the paths, the interior should be reconstructed

most accurately. One of the difficulties of this approach is that an additional light

source or camera must be precisely aligned because the reconstruction is sensitive

to misalignment. Another difficulty is that the number and the placement of

the light source and the camera depend on the shape of the object. Although

the optimal configuration is difficult to find, it is not usable for other objects.

Moreover, there is no guarantee of the existence of the configuration that makes

the observation complete.

In this paper, we employ numerical optimization to deal with the problem

of incomplete observations. The numerical optimization can be used with the

multiple light sources and camera.

A reconstruction from insufficient observation have been actively studied for

decades in field of medical imaging, since X-ray dose can be reduced by reduc-

ing radiation, however, it sometimes causes insufficient measurement. One of

the problem is called short-scan. To reconstruct exact interior, the observation
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requires a scan over certain angle, however, in short-scan problem, a scan angle

is not sufficient. For this problem, reconstruction using back projection with a

special filter has been proposed [55], however, it is known that the reconstructed

interior is not exact [56]. A approach to such problem is iterative reconstruction

that iteratively update the interior to minimize reprojection error. Algebraic

Reconstruction Technique [57] and Simultaneous Algebraic Reconstruction Tech-

nique [58] has been used for improving reconstruction quality. To deal with

missing angles, iterative methods based on filtered backprojection have been pro-

posed [59, 60]. Our problem is different from short-scan problem, since the scan

angle is sufficient.

Our problem is more similar to so called Region of Interest (ROI) reconstruc-

tion. In this problem, X-ray radiates only to a target region inside the body. As

an analytical approach, methods based on Hilbert transform reconstruct an ex-

act interior from the truncated projection data [61, 62]. However, they requires a

measurement to include a specific boundary of the target, therefore, they cannot

be applied in a straightforward way for our case. Moreover, our problem setting

is different since we are trying to reconstruct whole region of the target.

In our problem, the exact reconstruction should not be possible since the

observation is insufficient as we discuss in a next section. In recent years, nu-

merical optimization has been studied to estimated a realistic interior with prior

knowledge. They formulate optimization problem where prior is included as regu-

larization term or constraint. Especially, convex optimization have been studied

actively since regularization or constraints on the solution can be imposed in

straightforward way. Some works took this advantage to reconstruct from small

number of measurement by minimizing total variation [63], and compressive sens-

ing [64]. We follow these approach to impose constraints that are designed for

our problem.

4.3.1 Formulation as an optimization problem

In the case that the observations are insufficient, the correct reconstruction is

difficult because there are multiple solutions that agree with the observation

mathematically. We introduce two constraints to eliminate solutions that are

not physically correct and to achieve convergence to a more realistic distribution.
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The first constraint is the physical constraint (PC) on the range of the distribu-

tion of the absorption coefficient that is derived from the existing observations.

This constraint rejects solutions that are physically wrong; however, there are

still many possible distributions. The second constraint is regularization based

on the total variation (TV) semi-norm that imposes smoothness on the distribu-

tion. This constraint allows convergence to a realistic solution by reducing the

effect of noise of the observation.

We formulate the reconstruction as an optimization problem:．

arg min
σ

E(σ) + ιC(σ) + λ∥σ∥TV . (20)

The first term is a data-fidelity term that implies that a reprojection of an

estimated distribution by the Radon transform should be close to a sinogram

Aobserved. The second term is the PC on the distribution and the third term rep-

resents TV semi-norm regularization. Because the objective function of Eq. (20)

is convex, we employ the alternating direction method of multipliers to solve the

problem.

Reprojection error of the Radon transform To derive the reprojection error,

we rewrite the Radon transform (Eq. (5)) in matrix form. Let i denote an index

of a cell of a discrete distribution after serialization. A Radon transform of a ray

having index j is written as

Aj =
∑
i

rijσi, (21)

where

rij =

{
1 (if ray j hits σi)

0 (otherwise).
(22)

By combining Eq. (21) for all rays as a linear system,

A = Rσ (23)

is derived. In the optimization problem, reprojection error is computed by taking

the difference betweenA and the projection of estimated σ obtained using matrix

R. We consider reprojection error only for available observations and measure

it using the L− 2 norm. Let Robserved denote the Radon transform for available
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Figure 17. Rays passing thorough a cell of the distribution. Absorption of the

cell must be smaller than the total absorption of all the rays.

observations and Aobserved denote a sinogram of available observations. Finally,

the data fidelity term is derived as

E(σ) = ∥Aobserved −Robservedσ∥22. (24)

Physical conditions of light absorption

The constraint is determined by the existing observations considering a physi-

cal condition of the coefficient of light absorbance. Because light does not increase

in intensity as it travels through an object, the absorbance coefficient cannot be

less than zero. The lower bound of the absorption coefficient σi is written as

σi ≥ 0. (25)

The upper bound of the absorbance coefficient can be determined by consid-

ering the relationship between the total absorption and the distribution of the

absorbance coefficient. As Eq. (21) implies, the total absorption of a ray is the

integral of the absorbance coefficient along the path. In the example presented

in Fig. 17, only three light paths pass through σj. Therefore, σj must not ex-

ceed the total absorptions of the three light paths, and σj is thus constrained as

σj ≤ min(A0, A1, A2). The absorption at a certain pixel must therefore not be

higher than the minimum of all the projections that travel through the pixel. In

the general case, the upper bound is written as

σj ≤ min
i∈χj

(Ai), (26)

where χi is a set of rays that hit σj.
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The lower and upper bounds form the box constraint of the solution. Let a

set C denote the range of absorption:

C = [0,σmax], (27)

where

σmax =

(
min
i∈χ1

(Ai),min
i∈χ2

(Ai), · · ·min
i∈χN

(Ai)

)⊤

. (28)

The constraint is then represented by the indicator function ιC(σ):

ιC(σ) =

{
0 (if σ ∈ C)

∞ (otherwise).
(29)

Constraint about the spatial smoothness of the interior We define the

TV norm ∥ · ∥TV as

∥σ∥TV :=
∑
i,j

√
| (∇1σ) |2 + | (∇2σ) |2, (30)

where ∇1,∇2 are the discrete horizontal and vertical differential operators. The

minimization of the norm forces the distribution to vary gradually while preserv-

ing the edges. This is preferable in most cases, and we can adjust the effect of

the term by choosing a small λ whenever it is not suitable.
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4.4 Experiment

4.4.1 Appropriate setup of the measurement

We determine the appropriate setup before performing an experiment in a real en-

vironment. We first investigate the characteristics of our reconstruction method

based on the optimization by comparing with the conventional filtered back pro-

jection (FBP). Moreover, we compare the reconstructed interiors obtained under

different setups of the measurement to evaluate the effect of the setup on the

accuracy of the reconstruction. Synthetic sinograms are generated by solving the

forward Radon transformation (Eq. (23)) for different θl. We also evaluate the

interiors reconstructed by the FBP and our reconstruction method.

Fig. 18 shows the reconstructed interiors for θl = 0◦, 30◦, 60◦, 90◦, and 120◦.

In the cases of θl = 0◦, 30◦, and 60◦, there are missing areas on both sides of the

sinogram. The outer parts are not correctly estimated owing to the large missing

areas at θl = 0◦, but the central part is estimated correctly. There are similar

tendencies in the results for θl = 30◦ and 60◦, but the errors are smaller because

of the better observation.

It is found that our reconstruction method failed to reconstruct the center of

the interior as for reconstruction by the FBP. This is because of the absence of

observations of the center; no rays passing through the central area are observed,

whereas more than one ray is observed in the previous cases. The whole interior

needs to be reconstructed such that the center of the sinogram is not missing.

In terms of quality, our method provides a better reconstruction than the FBP.

Whereas the result of the FBP has line artifacts and blurring, a clear shape is

reconstructed without artifacts using our method.

For quantitative evaluation, the Root Mean Squared Error(RSME) and the

maximum of the absolute error are shown in Table 1. Note that the original

distribution is varied in the range between 0 to 0.2. The RSME reflects the

correctness of the reconstruction, which is discussed above. They are small at

θl = 30◦ and 60◦, and increase as the number of failure pixels increases. The

maximum of the absolute error reflects how the worst pixel is reconstructed.

Referring to an absolute error in Fig. 18, the worst pixels are reconstructed from

the missing area of the sinogram. It is confirmed that the absolute error is
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Figure 18. Sinogram and reconstructed interior by FBP and proposed method

according to setup. When sides of sinogram are missing, optimization method

reconstructs all the interior which FBP fails.
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Light angle θ [◦] RSME Max. of Absolute Error

0 3.15× 10−3 1.32× 10−1

30 2.57× 10−4 0.24× 10−1

60 1.32× 10−4 0.60× 10−1

90 2.31× 10−3 2.00× 10−1

120 7.55× 10−3 2.00× 10−1

Table 1. RSME and Max of Absolute Error versus the light angle. Small RSME

reflects the correctness of the reconstruction, and the maximum of the absolute

error reflects how the worst pixel is reconstructed.

Collimated
light

Pinhole

Target

Camera

Setup of experiment Target

Figure 19. Optical setup for the real world experiment. Collimated light is cast

through pinhole on target on rotary stage. Camera captures images from opposite

side. Our target is a plastic bin filled with gelatin. A blue plastic is stuck.

bounded by the physical constraint of the reconstruction.

We now look for an appropriate setup such that the coverage of the observation

is high, while the center of the sinogram remains filled. From the discussion

in Sec. 4.2.7, the coverage takes its maximum at θl = π−θFOV

2
in the case of

perspective projection, however，in the case of θl >
π−θFOV

2
, the center of the

sinogram is missing. For these reasons, the appropriate setup is θl =
π−θFOV

2
;

however, care needs to be taken that θl does not exceed the angle.
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4.4.2 Experiment on a real object

In this section, we perform an experiment in a real environment to confirm the

validity of the shortest-path measurement by comparing the result with a mea-

surement made under a parallel lighting setting.

The setup is shown in Fig. 19 for the shortest-path measurement; the target

on the rotary stage is illuminated by the light source and captured by the camera

from various angles. The target of the experiment is a bin filled with gelatin

and blue transparent plastic struck at some distance from the center of the bin.

The light is collimated with a lens and is narrowed by an aperture. θl is fixed to

45◦. We chose the angle such that the center of the sinogram is filled while the

observed intensity is high enough for a quick measurement.

To calculate the total absorption, a reference object without a plastic stick

is measured in addition to the target; the total absorption is then calculated by

Eq. (3). Note that this calculation also cancels out the angular nonuniformity of

diffusion, or BTDF of the surface. Because st and sr have ωi and ωo in common,

the bidirectional transmission distribution function fT of the surface of the target

is cancelled out.

The next step is alignment of the light path. After a contour of the target is

estimated considering the visual hull of silhouettes from various views, the light

path is aligned with the contour estimated and a sinogram is generated. The

interior is reconstructed from the sinogram.

For the comparison, we measure the same target under a parallel light setting.

The same setup is used except that a parallel light source is cast directly and θl

is set to 0◦. The sinogram is generated directly from captured images under the

assumption that rays travel straight in the target and measured transmitted rays

remain parallel to each other.

Figure 20 shows sinograms of the parallel light setting and the shortest-path

measurement. We cannot see an effect of plastic in the sinogram of the parallel

light setting. This is because the parallel rays once diffuse at the surface when

entering the target and light paths are mixed as illustrated in Fig. 12; therefore,

rays passing through the plastic are no longer distinguished. In contrast, we

see a clear trajectory through the plastic in the sinogram of the shortest-path

measurement. There is also blurring along the trajectory and non-zero values
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Figure 20. Acquired sinogram under parallel lighting and proposed measurement.

We clearly see the trajectory of the plastic stuck in shortest-path measurement,

which is hardly seen in parallel lighting.

outside the trajectory. This should be a result of corruption of the path due

to scattering in the media and reflection and refraction at the plastic’s surface.

We can also see small missing areas on both sides in the sinogram owing to the

limitation of the measurement.

The result of reconstruction is shown in Fig. 21. From the top view of the

target, the distribution of the absorption is expected as shown at top right. The

red and blue lines in the figure respectively indicate the contour and the boundary

between observed and unobserved areas of the sinogram.

We now look at the reconstruction of the parallel light setting that is recon-

structed by the FBP. The distribution is almost uniform and we can hardly tell

the area of the plastic stick. For the shortest-path measurement, we show two

results of reconstruction obtained without optimization (i.e., the FBP) and with

our optimization method. In contrast to the case for the parallel light setting,

the proposed method successfully reconstructs the area of plastic stick regardless

of the reconstruction method. This suggests that our path model approximates

the actual paths well therefore the paths are converted to parallel by the align-

ment process. This confirms the validity of our assumption on light paths. There

are blurry artifacts outside the plastic area that should be associated with the

corrupted paths described above.

We now compare the results of the reconstruction methods. In the result of

the FBP, the distribution outside the blue circle is not reconstructed and it corre-

sponds to the missing area in the sinogram. In contrast, our optimization method
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Figure 21. Expected distribution and reconstructed interior. While the interior

is not reconstructed by measurement under parallel lighting, it is reconstructed

with many artifacts by proposed measurement and reconstruction method with-

out optimization. Reconstruction method with optimization successfully reduce

artifacts significantly.
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Ground-truth Estimated shape Reconstruction

Figure 22. Measurement of the object with triangle shape. Our method is appli-

cable to any convex shape.

is able to reconstruct the distribution where there are insufficient observations.

It is confirmed that our method has an advantage over the FBP method.

4.4.3 Measurement of arbitrary convex shape

We perform a simulation experiment to show our framework works with an arbi-

trary convex shape. In this experiment, we simulate a measurement of a triangle

pole. θl is set to 30◦. Figure 22 shows the ground-truth, the estimated contour,

and the reconstructed interior with optimization. A blue line shows the ground-

truth contour of the object. In the estimated contour, the contour of the triangle

is estimated almost correctly. Also, from the reconstructed interior, we can see

the circular area at the center is reconstructed without a significant artifact.

4.4.4 Effect of scattering

Our method is based on the assumption of the shortest-path model that only the

absorption of light in the object need be considered. However, as we found in the

experiment for the real object, scattering in the medium may not be negligible

in a practical measurement. It is expected that if the scattering of the medium

is strong, our model is no longer a good approximation of paths of rays. In this

section, we confirm the effect of scattering in a simulation environment.

In this experiment, the CT measurement is simulated with physically correct

light transport. Synthetic data are generated by rendering with photon mapping

algorithm[65]. The scene is shown in Fig. 23; i.e., a cylinder is illuminated by
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Figure 23. Illustration of the rendered scene. In this scene, we imitate the real-

world experiment.

collimated light as in the experiment on the real object in Sec. 4.4.2. The cylinder

is filled with the participating medium and there is another cylinder inside. The

scattering of the media is isotropic and is parameterized with scattering coefficient

σs and absorption coefficient σ. σ is set to zero in the outer cylinder and 10.0 in

the inner cylinder. The refractive index of the media is set to 1.0.

CT measurements are performed for various scattering coefficients σs. Note

that the radius of the cylinder is 1 and σs decides the mean free path of the

ray according to 1/σs. Figure 24 shows the top view and the projections on

the camera for scattering coefficients σs of (i)1.0, (ii)2.0, (iii)3.0, and (iv)5.0.

It is found that the projection is clear in (i), where most rays scatter once or

twice, and the scattering degrades the projection as σs increases to 5.0, where

rays scatter more than five times on average. The degradation of the projection

directly reflects the quality of the raw and aligned sinograms as shown in Fig. 25.

The bottom row shows the reconstruction from the aligned sinogram. We see

that the degradation of the sinogram affects the reconstruction. While the highly

absorbing part has a clear shape in (i), the shape is more blurry in (ii), (iii), and

(iv).

The results show that our measurement is degraded by scattering; however,

this can possibly be overcome using descattering techniques [66, 67].
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Top

Projection

(i) 𝜎𝑠 = 1.0 (ii) 𝜎𝑠 = 2.0 (iii) 𝜎𝑠 = 3.0 (iv) 𝜎𝑠 = 5.0

Figure 24. Top views and projections for different types of scattering. Because

of the scattering, the projection of the inner obstacle is blurred.

Raw

sinogram

Aligned 

sinogram

Reconstruction

(i) 𝜎𝑠 = 1.0 (ii) 𝜎𝑠 = 2.0 (iii) 𝜎𝑠 = 3.0 (iv) 𝜎𝑠 = 5.0

Figure 25. Sinogram and reconstruction for different scattering coefficients. The

stronger scattering blurs measurement, resulting in degrading reconstruction.
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4.5 Conclusion

We investigated the optical measurement of the internal structure of a diffuse-

surface object. Our framework is built on the shortest-path model that assumes

a ray only diffuses on the surface and travels straight inside an object. Our

measurement is realized with a simple setup with a rotary stage, light source, and

off-the-shelf perspective camera. It was found that the observation of light rays is

never sufficient with this setup for the conventional reconstruction method. We

solved this problem by introducing a reconstruction method based on numerical

optimization. Because of the physical constraint on the light absorption and TV

semi-norm regularization, the full interior could be reconstructed. Our method

was shown to be able to reconstruct the interior of an object in a real world

experiment. Furthermore, we evaluated the reconstruction with respect to the

measurement setup. It was found that the reconstruction is not perfect if rays

vital to the reconstruction are not observed. We also confirmed that scattering

degrades the measurement; however, the measurement is still useful for a weakly

scattering medium.

Currently, it is not easy to measure objects around us such like grapes that we

took as an example in the Sec. 4.1. One of the difficulties is that a measurement of

the surface BTDF requires additional measurement that is not always possible.

Another problem is that amount of transmitted light is not enough for highly

absorbing target. Both a measurement and a prototype need further improvement

for more practical measurement.
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5. Light transport acquisition of projector cam-

era system

5.1 Introduction

In this chapter, we acquire the light transport in the projector-camera system.

The projector camera system is one of the common system for the active mea-

surement in the computer vision, used for tasks such as 3D triangulation, super-

resolution, and projection-mapping.

As we discussed in Sec. 2, light transport in projector camera system is re-

ceived light of camera pixels when each projector pixel is turned on. Since today’s

projector and camera have high resolution, the number of sampling is enormous.

5.1.1 Distance of light transport

The light transport is characterized by the transport distance or the distance the

light travels in the scene as illustrated in Fig. 26. Direct transport, that is shown

in red line, is the transport of the light that bounce only once in the surface of

the object as with diffuse reflections. In short range transport, that are shown

in orange lines, the light that travels short distance as a result of subsurface

scattering or diffuse inter-reflections. The light that travels long distance as with

specular inter-reflections is considered as long range transport, that is shown in

yellow line in the figure.

In this chapter, we aim to acquire the light transport according to its dis-

tance to analyze the light behavior in the scene. While the transport distance is

meaningful information, it is difficult to acquire the light transport of the spe-

cific distance efficiently under spatially varying illumination. Let us explain this

problem using Fig. 27. For the point CA in the scene, the illumination IA corre-

sponds to the specific transport distance d. And for the different point CB, the

illumination IB corresponds to the same distance. Therefore, two measurements

are required to acquire the transport of the same distance for two points.

Reddy et al.[68] show the light transport can be decomposed into direct,

near-range, and far-range transport (which corresponds to direct, short, and long

transport respectively in our notation) components. They decompose the light
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Projector Camera

Figure 26. The light transport is characterized by the transport distance. The

transport distance depends on optical behaviours, such like diffuse reflections,

diffuse inter-reflections, subsurface scattering, and specular inter-reflections.

𝐼𝐴

𝐼𝐵 𝐶𝐵

𝐶𝐴

Projector Camera

Scene 𝑑

Figure 27. Corresponding illumination for the same transport distance at different

points. To acquire the light transport of the same distance at two different points,

two measurements are required.
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Figure 28. Full light Transport between projector and camera is described in 4D

function.

transport into three components by high- and low- frequency patterns, however,

their method does not acquire the light transport of the specific distance.

5.1.2 Light transport in projector camera system

In projector camera system shown in Fig. 28, light cast from the projector inter-

acts with the scene, then received by the camera sensor. Projector send a ray

to a specific pixel which is expressed as (u, v) in a projector plane and camera

receive a ray through a specific pixel which is expressed as (s, t) in a sensor plane.

Therefore, the light transport between projector and camera is fully expressed by

4D function Tfull(u, v, s, t).

In this chapter, the light transport distance is defined in a camera plane where

3D scene is projected. Therefore, short light transport in our measurement does

not always mean short distance in 3D coordinate. For instance, pixels which

are located in close distance could point to far 3D locations at different depths.

Note that short distance is 3D coordinates always satisfies short distance in our

measurement unless Cartesian distance is used.

5.1.3 Our contribution

In this chapter, we propose the efficient acquisition that the light transport of

the specific distance is acquired for all the sensor pixels by small number of
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measurements. Such acquisition is made by utilizing using synchronized projector

camera system without any computation. We propose new imaging technique

which exploits the light transport between the illumination plane and camera

pixels, called plane-to-ray light transport. Then, we extend it to acquisition of

full light transport.

We explain the acquisition of plane-to-ray light transport in Sec. 5.2 and

acquisition of full transport in Sec. 5.3. We show acquired light transport and

applications for both light transport in Sec. 5.4, and concludes in Sec. 5.5.
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5.2 Acquisition of plane-to-ray light transport

5.2.1 Epipolar geometry and light transport

We utilize the setup of synchronized projector camera system [69], that consists of

a raster-scan projector and a rolling-shutter camera. The projector illuminates

the scene with a plane that is swept vertically. The camera synchronizes its

rolling shutter to a fixed row-offset from the illumination plane. Each camera

row exposes as projector row advances, so that a single image is formed.

The Projector and camera are rectified so that their rows are aligned on the

same epipolar plane. In [69], the direct and indirect transport is acquired using

this alignment. Since direct light, that bounce only once in the scene, must travel

through the same epipolar plane, it can only travel from projector row i to camera

row i. In contrast, indirect light, that multiple times, can travel from projector

row i to any camera row j except i.

This alignment also allows us to acquire the light goes through the epipolar

plane which contains the projector row v and that returns through the another

epipolar plane contains the camera row s. We propose a new light transport,

called plane-to-ray light transport, characterized by the relative row offset between

projector row v and camera row s.

We illustrate plane-to-ray light transport in Fig. 29. Plane-to-ray light trans-

port is transport between the projector row v and a sensor pixel (s, t) in camera

row t, that is expressed as 3D function TPTR(v, s, t). The row offset between

projector row v and camera row s is controlled by the synchronization delay,

the timing difference between the synchronized projector scanning and camera

rolling shutter. In addition, the exposure of the camera row determines the width

of illuminated area.

We show the effect of delay and exposure in Fig. 30. A regular image of the

scene is shown in (Fig. 30(a)). When td = 0, the image is identical to epipolar

image in [69] so that only direct light is captured. When td = 1200us, te = 450us,

the indirect light (inter-reflections caused by mirror-ball) is captured(Fig. 30(c)).

The band increases as exposure is increased to te = 2000us(Fig. 30(d)).

In an ideal planar illumination system, one could capture the light transport

by projecting one line at a time and taking an image. However, this impulse
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Figure 29. We define plane-to-ray Light Transport as transport between an illu-

minated row and a camera pixel.

(a) regular (b) td = 0us, te = 300us

(c) td = 1200us, te = 450us (d) td = 1200us, te = 2000us

Figure 30. Indirect image captured with various delay and exposure. (b) At

td = 0us direct reflections are captured (epipolar imaging). (c) At td = 1200us,

light transport of specific distance is captured, (d) and its bandwidth is widen by

choosing longer exposure te.
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scanning suffers from low SNR due to low light levels [70]. This would particularly

affect the capture of light paths such as subsurface scattering and long-range

indirect light. In addition, in a real system, the laser itself has a temporal jitter,

which may cause light to leak into neighboring rows as noticed in [69]. To solve

these issues, we use light multiplexing as a way to increase the SNR for light

transport acquisition.

In our imaging system, we utilize a rolling shutter camera to capture these

planes of light. Our key insight is that this rolling shutter, synchronized to the

projector, performs light multiplexing for planar illumination. We now proceed

to describe this light multiplexing using the parameters of delay and exposure in

a rolling shutter system.

5.2.2 Light Multiplexing using Delay and Exposure

For a rolling shutter camera synchronized to the epipolar illumination of the

projector, we can control the delay and exposure of this shutter to perform light

multiplexing. The exposure determines the number of rows being exposed with

larger exposures leading to larger sets of rows being exposed. The delay is the

distance between the illuminated projector row and the center of the exposed

rows.

The rolling shutter of the camera can be synchronized to the projector illu-

mination, as described in [69]. In particular, this means the pixel clock is fixed

and focal length of the lens adjusted so that the projector rows and camera rows

change with the same vertical velocity. In epipolar imaging mode, the delay is

zero, so that the band of exposed camera rows is on the same epipolar plane

as the light being projected, while in non-epipolar mode, the band of exposed

camera rows does not include the epipolar plane where the light is. Light multi-

plexing occurs since each row gets light from multiple projector lines due to the

width of the exposure and the value of the delay. To describe the demultiplex-

ing algorithm necessary to estimate 3D light transport, we first must derive the

relationship between delay and exposure, and use it to model the illumination.

Relationship between delay and exposure: We use the same notation as

[69] to parametrize delay and exposure in a rolling shutter system. Let tp denote
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the amount of time for which the projector illuminates a single scanline (with

some finite band width), te be the exposure time which corresponds to a contigu-

ous block of rows being exposed, and to denote the time offset of synchronization

between the projector and camera. Additionally, we denote t′o as the time differ-

ence between the start of exposure and when the projector illuminates that row

of pixels. Please see Figure 31 for a visual description of these parameters.

As we change to, this changes t
′
o, and thus we express delay: td as the difference

between the center times of exposure and illumination, as following:

td =
1

2
te −

1

2
t′o. (31)

Positive td > te/2 means the camera row receives light from a vertically lower

epipolar plane. Similarly, negative td < −te/2 means the light arrives from a

vertically higher epipolar plane. If 0 ≤ |td| ≤ te/2, then the exposed row receives

a majority of illuminated light from the same epipolar plane. Typically, epipolar

imaging operates with td = 0 and te as short as possible (as shown in Fig. 31(c)).

Illumination Model: We formulate a model for the illumination as a function

of delay and exposure. Using calibration, we obtain the speed of the projector

scanline vp sec/line in the scene. Given this, we express illumination band width

Iw and its center location Id by the following equations:

Iw(te) = vpte, Id(td) = vptd. (32)

Let v denote a row of the projector plane. We then define the illumination

function L(v, td, te):

L(v, td, te) =

1, if ∥v − Id(td)∥ < 1
2
Iw(te);

0, otherwise.
(33)

Note that we define the maximum intensity of the projector as 1.

Demultiplexing: Now, we perform illumination demultiplexing and estimate

3D light transport in the scene. For given td and te, the observation I at pixel (s, t)

is given by a convolution of the illumination with the light transport operator:

I(s, t) = L(v, td, te) ∗ T (v, s, t). (34)
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(a) The projector illuminates a single row for a time

tp in orange. At the same time, the rolling shutter

exposes a single row for length te. Light from a single

row (orange) will be captured not just by the same

camera row, but rows above and below it that are

being exposed (white). Delay td is the distance from

center of exposure to the center of illumination. t′o is

the time between start of exposure and illumination

in a row, and to is the synchronization offset from

projector to camera.

(b) As the delay is increased, the illuminated projec-

tor row sends light to camera rows that are at least

one row above it. This corresponds to short range

non-epipolar light paths in the scene.

(c) As the exposure is decreased, the illuminated pro-

jector row leaks less light into neighboring rows, re-

sulting in a majority of epipolar light paths captured.

Figure 31. Timing diagram of projector illumination and camera rolling shutter

for epipolar imaging.

45



Note that, T (v, s, t) is 3D light transport from row v to a pixel(s, t). This rela-

tionship is illustrated in Fig. 29. We note that this equation can be discretized

to the standard matrix-vector product of light transport.

We can write the epipolar and non-epipolar images by the following convolu-

tional equations:

Ie(s, t) = δ(t− v) ∗ T (v, s, t), (35)

In(s, t) = (1− δ(t− v)) ∗ T (v, s, t). (36)

Hence, if we can estimate T from the image stack of varying td and te, we can

synthesize epipolar and non-epipolar images. We denote the i-th image with delay

td,i and exposure te,i. Thus we estimate the light transport T ∗ as the solution to

the following optimization problem:

min
T (v,s,t)

N∑
i

∥Ii − {L(v, td,i, te,i) ∗ T (v, s, t)}∥22 + αEc + βEs,

subject to T ≥ 0, ∀v, Ec = ∥ ∂

∂v
T∥22, Es = ∥T∥1.

We use additional regularization for smoothness and sparsity in the light trans-

port: α and β are coefficients of smoothness and sparsity respectively. This helps

with the optimization to reduce noise and other image artifacts. The total num-

ber of images in the stack is N . In practice, we utilize α = 0.01, β = 0.01, and

N = 75.

Since the formulation is per-pixel, the optimization is easily parallelizable. We

use the CVXPY framework for convex optimization to solve this [71]. We feed

most delay-exposure images to the solver except for those delay images which

lie on the boundary between epipolar and non-epipolar imaging (td ≈ te/2),

which have significant horizontal artifacts due to synchronization problems. One

limitation of our algorithm is the sparsity condition prevents recovering dense

light transport effects.

5.2.3 Delay-Exposure Image Stacks

We thus capture a series of images while varying delay td and exposure te. We

typically use uniformly sampled points between minimum and maximum values

for both delay and exposure as part of our sweep.
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(-750, 600) (-375, 600) ( 0, 600) (375, 600) (750, 600)

(-750, 750) (-375, 750) ( 0, 750) (375, 750) (750, 750)

(-750, 900) (-375, 900) ( 0, 900) (375, 900) (750, 900)

(-750, 1050) (-375, 1050) ( 0, 1050) (375, 1050) (750, 1050)

(-750, 1200) (-375, 1200) ( 0, 1200) (375, 1200) (750, 1200)

Figure 32. An image stack. Transport distance depends on delay, and bandwidth

depends on exposure.

By controlling the delay and exposure, we have the ability to capture short and

long-range non-epipolar light. As the delay increases, light from the illumination

plane has to travel a longer vertical distance to reach the camera row. This

gives a minimum bound of the optical path length traveled by the indirect light.

By controlling the exposure, we can allow more or less amount of light that

has traveled this minimum bound, thus creating a band of non-epipolar light.

This corresponds to banded diagonals off the main diagonal in a light transport

matrix [69, 72].

An example of image stack is shown in Fig. 32. We visualize the specular

inter-reflections of a disco ball shifting vertically as the delay changes.

Noise is primarily determined by the amount of light reaching the pixels (al-

though there are synchronization artifacts at very short exposure times due to

jitter in the laser raster scan). For indirect imaging, specular inter-reflections

(such as the disco-ball reflections) are brighter and thus less noisy than diffuse

inter-reflection or subsurface scattering effects. Since exposure is coupled to the

band of light received by the rolling shutter, there is a trade-off between integrat-

ing more light and the tightness of the band of indirect light (i.e. the resolution

of the illumination function).
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5.2.4 Efficiency of light transport acquisition for limited range

The light transport can expressed as a light transport matrix whose row corre-

sponds to the sensor index and column corresponds to the illumination index.

We discuss about the efficiency for limited range transport, by taking an example

of short-range light transport.

First, we explain the order of the acquisition using a sub-matrix of the light

transport matrix. In Fig. 33, we visualize the sub-matrix of the light transport

matrix, where each column of the matrix is the projector row and each row is

the sensor row. The diagonal elements are the direct component where the light

from a row of the projector reaches the same row of the sensor. The adjacent

elements in the row direction are the short-range transport.

Now, we assume the scene have the direct and short range transport that is

expressed as Fig. 33(a). To explain the effectiveness of the measurement, fist, let

us consider about how the transport is acquired by pixel-to-pixel measurement.

In pixel-to-pixel measurement, a pixel of the projector is turned on, and all the

sensor pixel is exposed with global-shutter. Each acquisition fills a column of the

matrix (Fig. 33(b)). Therefore, it requires all the rows to be acquired to obtain

the direct and the short-range transport. In contrast, our method acquires an

oblique elements in each capture (Fig. 33(c)). It requires only few captures to

acquire the direct and the short-range transport.

There is a trade-off between the range of transport captured at once and the

number of captures. In short, both methods require the same number of captures

to acquire all the element of the matrix. Our method is beneficial when the range

of the transport is limited as for short-range transport.

Short-range transport is also assumed in [47]. They parallelized the acquisition

by subdividing the projector pixels into blocks to make sure a sensor pixel is

affected by only one illumination block. In our method, there is always only one

illuminated row, thus no need to subdivide the projector rows.

5.3 Acquisition of full light transport

We extend acquisition of plane-to-ray light transport to the acquisition of the full

light transport. In the acquisition of plane-to-ray light transport, a white pattern
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Figure 33. Light transport matrix and the order of the acquisition. For the

acquisition of light transport in scene (a), pixel-to-pixel measurement (b) is not

efficient because it acquires light transport from a specific illumination row to all

sensor rows at a single frame.. In contrast, proposed measurement acquires light

transport from illumination rows to sensor rows of the specific transport distance

at a single frame.

is projected to illuminate all the pixels in the projector row. To acquire the light

transport from a pixel from the projector instead of a projector row, we project

a vertical line instead of the white pattern as shown in Fig. 34. Since a pixel

is only illuminated during exposing a camera row as shown in Fig. 35, the light

transport Tfull(u, v, s, t) from a projector pixel (u, v) to a camera pixel (s, t) is

acquired.

5.3.1 Illumination multiplexing

For fine acquisition of the light transport, the width of the illumination should

be small. The illumination with a too small width causes low SNR. To avoid

this problem, we acquire the transport with larger width and demultiplex to

reconstruct the transport with a smaller width.

We formulate the illumination function. The illumination function is defined

on the projector plane as shown in Fig. 36. The illumination is modeled as a

function of synchronization delay td and exposure te. Let vp be the speed of

the projector scanline. The center of the illumination along v-axis Id and the
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Figure 34. Illustration of full light transport acquisition. A vertical stripe is

employed to limit the illumination area to the certain pixel.

projector plane camera plane

𝑢

𝑣

𝑠

𝑡

𝑠, 𝑡

𝑢, 𝑣

illuminated area

exposed area

Figure 35. Full Light Transport is defined as transport an illuminated pixel to a

sensor pixel.
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Figure 36. Illustration of illumination function.

illumination width along v-axis Iw are given by

Id = vptd, Iw = vpte. (37)

Similarly, we introduce center location of line along u-axis lp and line width

along u-axis lw to control a vertical line. We define the illumination function

L(u, v; lp, lw, td, te) as

L(u, v; lp, lw, td, te) =

{
1, if ∥u− lp∥ < 1

2
lw and ∥v − Id∥ < 1

2
Iw

0, otherwise.
(38)

Let I(s, t) denote the observation at a sensor pixel (s, t). The observation

is a convolution the light transport T (u, v, s, t) with the illumination function

L(u, v; td, te, ld, lw), then is expressed by

I(s, t) = {L(u, v; td, te, ld, lw) ∗ T (u, v, s, t)}u,v . (39)

Since the illumination function is known, the light transport T̂ is reconstructed

by

arg min
T (u,v,s,t)

∥∥∥I(s, t)− {L(u, v; td, te, ld, lw) ∗ T (u, v, s, t)}u,v
∥∥∥ . (40)
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rolling shutter camera laser projector

sync circuit

Figure 37. Prototype. Rolling shutter of the camera and the raster-scan of the

projector is synchronized by sync circuit.

5.3.2 Hardware

We use a prototype as shown in Fig. 37. A Celluon PicoPro projector (resolution

1280 × 720) and an IDS UI-3250CP (resolution 1600 × 1200) are aligned on the

same plane in parallel with a baseline of 50 mm. The rolling shutter is triggered

by the VSYNC signal generated by the projector after being processed by the

sync circuit. The speed of the projector scanline vp = 5.89 × 103 is obtained by

counting a number of illuminated rows during fixed exposure.

5.4 Experiments

5.4.1 Analysis of light behavior

Analysis using plane-to-ray light transport For each pixel, we can plot

the pixel intensity as a function of the delay td. We call this a delay profile,

and it yields information about the scattering of light with respect to the planar

illumination of the projector. Delay profiles look qualitatively different for sub-

surface scattering and diffuse interreflections, which are short-range indirect light

effects, versus specular interreflection that has long range. We note that Wu et al.
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performed a similar analysis using temporal delay for time-of-flight imaging [73].

In Figure 38, we image a scene with a variety of these effects and show their

delay profiles. Note how subsurface scattering material like the candle has a wide

broadening profile (orange), while diffuse interreflection in the near corner has

a steeper profile (red). The diffuse reflection from the book page itself has an

unimodal peak (green), but the specular interreflection has a bimodal peak (blue).

Note how specular interreflections from the mirror ball (blue) have two peaks in

their delay profile. This is due to a diffuse reflection from the page at td = 0

coupled with a peak from the specular reflection of the mirror ball. For the near

corner of the book (red) and candle (yellow), their broadened delay profiles are

due to subsurface scattering. The more translucent the object, the more broader

its delay profile (see also milk results in Section 5.4.9). Note that the delay

profiles are not symmetric around zero as one would expect, but are affected by

the surface geometry/surface normal at those points. This relationship between

symmetry and surface normal is a subject of further investigation.

Analysis using full light transport Using full light transport, we can per-

form more detailed analysis. In the case of full light transport, the profile at each

pixel is two dimensional since it is a slice of Tfull(u, v, s0, t0), where s0, t0 are fixed

to camera pixel. In Fig. 39, we show the profile of the different light transport in

the scene. The diffuse reflection from the book has clear rectangle shape (blue),

since it is almost an impulse response to the rectangle illumination; Note that

the delay profile has a clear unimodal peak. The subsurface scattering from wax

candle (yellow) has larger extent compared with the surface of the book, and

is isotropic. In the profile of diffuse inter-reflection from the corner of the book

(green), we can see the advantage of the full light transport. It has large extent in

the horizontal direction since the inter-reflection takes place between the left and

right pages, therefore we can know the direction of inter-reflection. Also, the value

of profile gradually decreases according to the distance from the center because

the effect of the diffuse inter-reflections is depend on the distance between the

surface. Finally, the specular inter-reflection from the disco-ball (purple) shows

two independent clear peaks in the profile. From the profile, we can know the

spatial relationship of the source of inter-reflection.
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(b) delay sweep profile

Figure 38. Delay sweep profiles of various kinds of light behavior. While the book

(green) has only one peak, the reflection on book (blue) has two peaks due to

inter-reflection. Candle (orange) has wider profile due to subsurface scattering,

and there is effect of diffuse inter-reflection between pages near corner (red).
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(b) Acquired profile(a) Scene

Projector Camera

Scene

Figure 39. Two dimensional profiles for various kinds of light behavior. They

provides a spatial response that is useful for detailed analysis.

(a) (b) (c) (d) (e)

Figure 40. We show relit images under virtual single line illumination sweeping

from up (a) to bottom (d). The regular image is shown in (e).

5.4.2 Relighting

Relighting using plane-to-ray light transport Plane-to-ray light transport

allows us to synthesize novel images. For instance, we can render a new image

with a novel illumination pattern of any linear combination of projector rows

using the T operator. In Figure 40, we synthesize relighting from a single line

illumination for the imaged rose.

Relighting using full light transport The full light transport also allow us

to relight the scene with arbitrary illumination pattern that is not limited to

horizontal line in the case of plane-to-ray light transport. In this experiment,

we light the scene using the full light transport to evaluate the acquisition, by
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comparing with pixel-to-pixel measurement.

In Fig. 41, we synthesize the relit image with a checkerboard pattern illumina-

tion. In pixel-to-pixel measurement, rectangle patterns are projected sequentially

and captured by the global shutter camera. We use exposure te = 170µs for both

cases. For our method, we use ld = 0px to ld = 900px at every 20px, lw = 40px,

−1, 700µs to 1, 700µs at every 170µs. Correspondingly, for the näıve method,

a rectangle pattern (20 × 20px) is projected repeatedly with the shift of 20px

along u and v axes. We show the relit results of pixel-to-pixel and proposed

measurement in Fig. 41(b) and Fig. 41(c), respectively. Both methods produce

almost the same relit images, even at refracted light in glass ball or at subsurface

scattering on the marble. Note that pixel-to-pixel measurement requires 3,726

measurements while our method requires only 506 measurements.

5.4.3 Improving SNR by Multiplexing

Case of plane-to-ray light transport In this experiment, we validate the

effect of illumination multiplexing. For this single line relighting of the same

scene of Sec. 5.4.2, we compare our method in Fig. 42(a) versus conventional

imaging techniques. We show the comparison against a single projected line

with exposure of 16ms in Fig. 42(b), and a single line projection with exposure of

800ms in Fig. 42(c). Note that our method achieves better noise performance than

Fig. 42(b) since we utilize multiplexed illumination to capture our delay-exposure

stack. Our method achieves similar performance to Fig. 42(c) in terms of noise,

but requires multiple images and does not capture the long range light transport

effects for far away rows due to the sparsity assumption in our optimization.

Case of full light transport We evaluate the effect of the illumination mul-

tiplexing for the case of the full light transport. In this experiment, we acquire

the light transport under high-frequency illumination (square illuminations with

the size of 10px in projector plane). For measurement without multiplexing (sim-

plex measurement), we use lw = 10px, ld = 5px to ld = 1, 275px at every 10px,

te = 170µs, and td = −850µs to td = 850µs at every 170µs. In relighting re-

sults with checkerboard pattern (Fig. 43(a)) and with floodlit in which all the

noises contribute (Fig. 43(b)), colored granular noises appear everywhere since
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(a) Scene

(b) pixel-to-pixel

(c) Proposed

Figure 41. Relighting under virtual checkerboard pattern illuminations from full

light transport. Proposed method successfully relights the scene with less num-

ber of measurement, even the refraction in glass or subsurface scattering on the

marble.
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(a) Synthesized Result (b) Actual single light pro-

jection at 16ms

(c) Actual single line projec-

tion at 800ms

Figure 42. Effect of illumination multiplexing for relighting with virtual single

line. Synthesized result contains less noise while actual single light projection at

short exposure is noisy.

the sensor noise is amplified.

For multiplexed measurement, we use lw = 50px and te = 850µs, which are

five times larger than the simplex measurement, and ld and td are set to the same

value as the simplex measurement. In the relighting results with checkerboard

pattern (Fig. 43(c)) and with floodlit (Fig. 43(d)), the noises are clearly reduced.

The amount of light is 25 times larger in each capture while the number of

captures is the same for both measurements. Since the sensor noise is constant

for each capture, the multiplexing improves SNR.

5.4.4 Efficient Acquisition of Short Range Transport

In this experiment, we evaluate a transport range covered in our measurement

by changing the delay range. We acquire the full light transport for this evalu-

ation. We capture the scene with a disco-ball, a glass ball, and marble, where

each of them contributes to inter-reflection, refraction and subsurface scattering

respectively. We use |Td| < Tdmax at every 170µs. We render the floodlit images

for the cases of Tdmax = 0, 850, 1700, and 2550µs as shown in Fig. 45. The inter-

reflections appear on the wall are increasing, according to Tdmax. Also, we can see

that the illumination on the wall that is seen through the glass ball is changing.

The appearance of the marble looks almost same except for Tdmax = 0.
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(a) Simplex (high frequency) (b) Simplex (floodlit)

(c) Multiplex (high frequency) (d) Multiplex (floodlit)

Figure 43. Effect of illumination multiplexing for relighting with virtual pat-

terns. While simplex measurement is suffered by noisy measurement, multiplex

measurement successfully reduce the noise.
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We visualize the light transport in the scene (Fig. 44) between the columns 1,

2, and 3 of the projector to the corresponding column of the camera in Fig. 46. In

the matrix of the column 1, the diagonal elements have high value because most of

the light is reflected directly on the wall. In the row corresponding to r1, however,

the highest value is not in the diagonal elements since the inter-reflection due to

the disco ball appears at this pixel. The high value appears in the row close to

the diagonal line since this inter-reflection is a relatively short range transport.

In the matrix of the column 2, we can see the effect of refraction. r2 and r3 are

the pixel of the top and the bottom of the glass ball. In the rows between r2 and

r3, it takes high value along a line from left-bottom to right-top since the incident

light that enters the ball at the upper part reaches the lower part at the opposite

side due to the refraction. In the matrix of the column 3, we can see the effect

of subsurface scattering. r4 and r5 are the pixel of the top and the bottom of

the marble. While the diagonal elements take high value in the matrix, adjacent

several rows also have a relatively high value. This is because some light travels

inside the object and reaches a different point of the surface due to subsurface

scattering.

The parameter of the measurement Tdmax decides how many adjacent rows

of the diagonal elements are acquired. Setting Tdmax to small value means the

elements only close rows to the diagonal elements are acquired and the far range

transport is not acquired.

5.4.5 Sharpening epipolar imaging

Demultiplexing to plane-to-ray light transport allows us to shapen epipolar imag-

ing. In epipolar imaging, there is an inherent trade off between the amount of

non-epipolar light that leaks into the signal and exposure te. Thus it is difficult

to capture epipolar images with large exposure as the amount of non-epipolar

light inside the epipolar image scales with te − tp.

However, as noted in Equation 36, if we can resolve light transport to a fine

resolution in projector rows v, we can synthesize a “sharper” epipolar image. We

can computationally render an epipolar image to the limit of the light’s illumi-

nation width Iw.

In Figure 47, we image a rose candle made of translucent wax. We synthesize
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r1
r3 r5

r2 r4

col. 1 col. 2 col. 3

Figure 44. Scene with wide range of light transport, including inter-reflections,

refraction, and subsurface scattering.

(a) 𝑇𝑑𝑚𝑎𝑥 = 0μs (b) 𝑇𝑑𝑚𝑎𝑥 = 850μs

(c) 𝑇𝑑𝑚𝑎𝑥 = 1700μs (d) 𝑇𝑑𝑚𝑎𝑥 = 2550μs

Figure 45. Appearance according to Delay Range. Range of transport distance

of captured light transport increases according to delay range.
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Figure 46. Light Transport Matrix. In contrast of most of light transport in col.1

is direct transport, there is short range light transport caused by refraction and

subsurface scattering in col.2 and col.3.

in Figure 47(c) a tighter epipolar image than a regular epipolar image with ex-

posure te = 600µs shown in Figure 47(b). Note how the regular epipolar image

cannot remove the subsurface scattering of the candle, but the sharpened epipolar

image removes all these effects. Looking at the cross-section pixel values in Fig-

ure 47(d), the sharper epipolar image has more contrast amongst its rose petals.

This sharpening has applications for when the system has a large exposure, and

thus needs computation to generate a tighter epipolar image.

5.4.6 Epipolar direct/global separation

In this experiment, we show direct/global separation using plane-to-ray light

transport. One of the disadvantages of epipolar imaging in this configuration is

that it is difficult to separate epipolar indirect light from the image, and thus

achieve true direct/global separation. To solve this, we thus apply the method

from Nayar et al. [74] on the epipolar images alone. We used 128 shifting patterns

of 24×24 pixel checkerboard for our implementation.

In Figure 48, we perform direct/global separation on a scene consisting of a

wax bowl and disco ball. We note that the method from Nayar et al. fails on

removing the specular interreflections of the disco ball as shown in Figure 48(b).

Epipolar imaging thus improves upon Nayar et al. by removing these highlights in

Figure 48(c). Combining the two methods results in an epipolar-direct image in

Figure 48(d) and an epipolar-global image in Figure 48(e). Note that the epipolar-

62



(a) regular image (b) epipolar image (c) tighter epipolar (scaled

×8 compared to (b))
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Figure 47. Imaging a wax rose candle in epipolar mode (b) with an exposure of

600µs does not remove the subsurface scattering. Demultiplexing the image stack

to recover 3D light transport, we synthesize a tighter epipolar image in (c) which

preserves sharp features and highlights while removing the subsurface scattering

from the epipolar image. In (d), we plot pixel values for a single scan line for

comparison, note how the tighter epipolar image has larger contrast.
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direct image is improved over each method alone, but still cannot completely

remove all the specular interreflections on the epipolar plane. This is still an

open problem for direct/global separation and warrants further study.

5.4.7 Visualization of vein

By acquiring an appropriate indirect plane-to-ray transport, the hidden structure

can be visualized. In this experiment, we visualize the human vein under the skin.

Parameter setting The vein is difficult to find in the regular image (Fig. 49(a))

since the diffuse reflection from the skin surface is usually dominant so that it

hides the reflection from the vein. In order to remove the direct reflection, delay

should be more than half of exposure, therefore, it should satisfy td ≤ 1
2
te. The

vein is most clearly visualized when only the reflection from the vein is captured.

Fig. 49(b) shows an indirect image with large td. We can see the direct reflection

from the skin surface is removed, however, the reflection from vein is also removed.

With the delay td which is chosen carefully, the vein is clearly visualized as shown

in Fig. 49(c). An appropriate delay depends on the distance to the arm, a depth

of the vein, and a speed of raster-scan of the projector. Relationship between

delay and visualization quality, and optimization of parameters require further

study.

It is known that the vein is clearly visualized by near-infrared (NIR) imaging,

and products called vein finder [75, 76] are commercially available. NIR light

penetrates a skin well since reflection from the skin is weak, however, it is absorbed

by haemoglobin in the blood. As a result, reflection from other tissue around a

vein is stronger than the reflection from the vein, thus the vein is visualized.

Since proposed method remove the reflection based on the light paths, it does

not depend on the transmittance of the skin. It should be meaningful to compare

these two methods to clarify their ability to visualize depending on colors and

thickness of the skin for future study. Finally, it is noteworthy to mention that

these two methods can be used at the same time if it produce a clearer image.

5.4.8 Appearance capture for graphics

Acquire light transport can be applied for graphics rendering. In this experiment,

we acquire the plane-to-ray light transport of soap (Fig. 50(a)), that exhibit
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(a) Regular image (b) Direct image using Nayar et al. [74] applied

to (a)

(c) Epipolar image [69] (d) Epipolar-direct image

(e) Epipolar-global image (scaled x18 for visu-

alization)

Figure 48. We show the results of two direct/global separation methods on our

scene (a): Nayar et al. [74] in (b), and epipolar imaging [69] in (c). By combining

the two methods, we are able to visualize (d) epipolar-direct only light, and (e)

epipolar-global light. Notice how the specular interreflections are only removed

in epipolar imaging, and the remaining subsurface scattering light in the epipolar

image is separated by combining both algorithms.

65



(a) regular image

(b) far range indirect

(c) indirect with appropriate delay

Figure 49. Visualization of vein. In regular image (a), veins are hidden under the

reflection on the skin. (b) Direct reflection is removed by using far range indirect,

however, reflection from the vein is also removed. (c) Using appropriate delay,

the reflection from vein is visualized.
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spatially-varying subsurface scattering. We render the models with the effect

of subsurface scattering, and without the effect for the comparison. Specular

reflection is attached as a post process for better perception. We assume the

effect of subsurface scattering depends only on the transport distance, and the

effect can be approximated by the delay sweep profile.

The result of teapot and bunny are shown in Fig. 50(a), (c) (with subsurface

effect), and (b), (d) (without effect) respectively. The object is lit with a point

light at left top. We can see the light blooming due to the effect of subsurface

scattering, which is significant in the right half of teapot, and ears of the bunny.

5.4.9 Material Recognition of Subsurface Scattering

The use of delay and exposure can yield fundamental new information about light

scattering in materials, particularly subsurface scattering. Previous researchers

have used time-of-flight measurements to achieve a similar result [77, 73]. Con-

sider the delay profile for a given material. We expect the maximum of this plot

to be at td = 0. However, our intuition is that the more subsurface scattering

present in the material, the more spread out the delay profile will be.

In Fig. 51(a), we tested this hypothesis and its usefulness for material recog-

nition of subsurface scattering in common household items. We imaged hand

soap, fat free, 2%, and whole milk, and toothpaste. All of these items were white

in color, and difficult to identify with RGB information alone. We plotted their

average delay profiles for a set of their pixels shown in Fig. 51(b). We normalized

these delay profiles using the area under the curve to cancel out the effects of

albedo.

Using training and test images, we trained a support vector machine (SVM)

with nonlinear kernel (radial Gaussian basis function) to get a per-pixel semantic

segmentation of the materials (Fig. 51(c)) and a confusion matrix (Fig. 52). We

achieved over 90% recognition for all the materials. We note that the only errors

occurred for pixels near the edge of the container, where possibly the scattering

profile changes for the materials due to the asymmetry of a boundary condition.

This is an interesting avenue of future research to use delay profiles to better

model or inverse render subsurface scattering. This application is not meant for

robust instance-level material recognition, but highlights the usefulness of delay
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(a) Source material (soap)

(b) Teapot with subsurface effect (c) Teapot without subsurface effect

(d) Bunny with subsurface effect (e) Bunny without subsurface effect

Figure 50. Appearance capture for graphics. We transfer source material (a)

to teapot and bunny models. Directional light is cast from left side in teapot

scene, and from top-right in bunny scene. By including subsurface effect (b), (d),

the areas which are not directly illuminated became brighter compared to image

rendered without the effect (c), (e).
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profiles for understanding subsurface scattering in materials.

5.4.10 Acquired materials

Finally, we acquire the full light transport profile of several materials in Fig. 53.

We use lw = 10px, ld = 5px to ld = 995px at every 1px, te = 170µs, and

td = −340µs to td = 340µs at every 17µs. Each profile describes the transport to

pixels shown in the appearance, from the relative illumination positions. Profiles

have 41 columns and 41 rows that correspond to approximately 10mm × 10mm

in physical size. Profile values are normalized by its maximum after adjusting

the white balance.

Let us take a look at the profile of materials shown in Fig. 53. (a) is the

profile of a wooden ball that is considered to have Lambertian surface. The

profile is isotropic and has small extent. (b) candle are the examples of subsurface

scattering materials. It has a larger extent than the that of the wooden ball. (c) is

a cube whose surface exhibit a diffuse reflection and little specular reflection. The

profiles are similar to diffuse surface at (c1) and (c2), and at (c) we can see a effect

of inter-reflection between floor. (d) is a fake apple that is made of Styrofoam and

covered with the surface with texture. We can see the shape of the profiles are the

same at (d1), (d2), and (d3), beside the colors are different. (e) sponge and (f)

marble are the examples of heterogeneous materials. In the profile of sponge, the

profiles of pink (d1) and red (d2) pixels have similar extent because the scattering

property of the material are same, while the color are different from each other.

In the profile of marble, the pixel (f1) has slightly wider extent compared to (f2)

since the each composition has different scattering property. Finally, (g) is the

example of inhomogeneous materials. A miniature of the Jedite Cabbage is made

of plastic whose color are gradually changing from green to white (left to right).

At (g1) almost all the pixels are green and at (g3) all the pixels are white. The

profile at (g2) is the mixture of the green and the white pixel since the incident

light reached in both green and white surfaces contribute to the pixel (g2).
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Figure 51. Material classification using plane-to-ray light transport. We hardly

classify the materials from the color image (a). However, delay profiles are clearly

different (b), therefore, they are classified at the most pixels (c).
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Figure 52. Confusion matrix (Non-linear SVM). We achieved over 90% recogni-

tion for all the materials.
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Figure 53. Appearance and profiles of various materials. Profiles shows difference

due to light behavior such like diffuse reflections, or subsurface scattering, and

spatial variation.
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5.5 Conclusion

We have proposed a measurement method of 4D light transport using the syn-

chronized projector camera system. In this method, we project a vertical line

to control illumination along the horizontal axis, while delay and exposure are

changed to control illumination along the vertical axis. We performed the illumi-

nation multiplexing to increase the amount of light for each measurement. We

showed the reconstructed light transport via demultiplexing has better quality

than simplex measurement.

One of the limitations is that we cannot increase exposure to accumulate more

light. This could be a problem when the only little light returns from the scene.

Possible extension of this work is to find more efficient ways of illumination

multiplexing. For example, a technique based on Hadamard codes [70, 78] may

efficiently improve SNR.
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6. Conclusions and Future work

6.1 Conclusions

In this thesis, we discussed about the light transport acquisition and the applica-

tion of acquired light transport. Light transport is complicating process relating

to the geometry of the scene and light behavior. The problem is how we acquire

desired light transport in the presence of undesired light transport. To deal with

this problem, we propose the selective path measurement. We specify paths by

considering the geometry and the measurement setup, and selectively acquire the

light transport along the path. Also proposal of analysis and application of light

transport is our contribution. In Sec. 2, we have explained basic theory of light

transport and representation of light transport. In Sec. 3, we have introduced

related work to show our contributions.

We tackle two problem settings. In Sec. 4, we tackle an optical tomography

of diffuse surface object that has a diffuse surface and a transparent body. To

reconstruct the interior of the object, light paths are required to be specified. We

have proposed the shortest path model to represent light path in diffuse surface

object. We have proposed the acquisition of light transport along shortest path

and the reconstruction algorithm. We have discussed about the observation rate,

the optimal setup, and robustness to scattering. We have demonstrated that the

interior of a real object is successfully reconstructed by our framework. In Sec. 5,

we tackle light transport acquisition of projector camera system. The difficulty

of this problem is that it requires a numerous number of sampling due to the res-

olutions of projector and camera. For the efficient acquisition of light transport,

we have proposed acquisition according to transport distance using synchronized

projector camera system. We have proposed plane-to-ray light transport that is

closely related to the synchronized system. The plane-to-ray light transport is

acquired efficiently by synchronizing the rolling-shutter of a camera to a fixed off-

set of the raster-scan of projector in vertical direction. The acquisition have been

extended to the acquisition of the full light transport by projecting a vertical line

to acquire light transport in horizontal direction. We have shown visualization

and application using the acquired light transport. We have shown analysis of

light behavior, relighting, illumination multiplexing, direct/global separation, vi-
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sualization of vein, material classification, and appearance capture for computer

graphics.

Our proposal of light transport acquisition via light path measurement allows

us to visualize the interior of the object, visualize and analyze the scene in the

presence of complicated light transport. However, there are some limitations in

our methods. For the problem of optical tomography, we have assumed the diffuse

surface object. From the discussion, the effect of scattering and inter-reflection in

the object degrades the reconstruction. Also, a shape of the object is limited to

convex. For the acquisition in projector-camera system, the projector and camera

are in rectified stereo setup. It results in the difficulty to acquire transport with

angular variations.

6.2 Future work

Finally, we would like to show future direction of our work.

We acquire the light transport by actual measurement. One possible way to

reduce the cost of the measurement is to measure only part of the light transport

and to estimate remaining part. For example, compressive sensing[79] can be

applied for the case the data is assumed sparse. Also, machine learning techniques

can be applied for designing optimal measurement like in [22, 80].

Another direction is to explore the other dimensions of the plenoptic function.

We have only considered the location and the angular of the light. A wavelength is

interesting domain since the spectral response is related to the chemical substance

and fluorescence that could found practical applications in the medical inspection

or the food production. A time domain is also interesting since the temporal

response is a great cue of scene understanding as some recent work reveal.

Like we utilized synchronized projector camera in Sec. 5, light transport acqui-

sition is closely related to hardware. There are lot of conventional and emerging

hardware to combine, such like MEMS mirror, multi-bucket sensor [81], and angle

sensitive pixel [82, 83]. The utilization of such hardware may allow us to novel

acquisition of light transport.

We believe our concept of selective path measurement is a general framework

that extends the possibility of scene analysis and further applications.
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