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Unsupervised Representation Learning

and Acoustic Modeling

in the Zero Resource Scenario∗

Michael Heck

Abstract

Automatic speech recognition (ASR) has experienced a remarkable develop-

ment over the decades. Technological advances however have largely been made

on a small subset of all human languages that are rich in resources. This has

two main consequences: Methods for ASR evolved such that they learn best from

massive amounts of data, and the majority of languages, spoken by billions of

speakers, has been neglected for a long time. Moreover, most of the world’s lan-

guages have no written form and are therefore severely under-resourced. If besides

raw speech data no other information about a language is available, we speak of

a zero resource scenario. Inferring models in such a scenario is a challenging task,

which can be compartmentalized into unsupervised learning of lexical units and

unsupervised subword modeling.

This thesis addresses the problem of unsupervised subword modeling in the

zero resource scenario. The two major challenges of unsupervised subword model-

ing are representation learning and model design. Representation learning is the

task to find speaker independent, robust speech features without prior knowledge

that highlight linguistically relevant properties and suppress irrelevant informa-

tions. Model design is the task to develop and infer a structure that approximates

the true distributions of speech better than previous models.

This thesis approaches the representation learning problem by elaborating

a novel framework for unsupervised subword modeling that takes advantage of

automatically estimated feature transformations (Chapter 4). The proposed al-

gorithm jointly learns transformations for the speech input without prior category

∗Doctoral Dissertation, Department of Information Science, Graduate School of Information
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knowledge and infers a Dirichlet process mixture model (DPMM) that represents

sound classes. The incorporation of feature transformations into the unsupervised

subword modeling framework considerably supports finding speaker independent,

robust representations with high class discrimination properties. The proposed

method proved its effectiveness in actual performance evaluations and delivered

state-of-the-art performance in the zero resource challenges 2015 and 2017. The

construction of a functional acoustic unit tokenizer shows that the found acoustic

units carry meaning which can be utilized to solver higher-level problems (Chap-

ter 5).

The model design problem is addressed by the introduction of a novel de-

sign for a Dirichlet process mixture of mixtures model (Chapter 6). Speech is

inherently complex and requires models of appropriate complexity for proper

representation. A long standing assumption in ASR research is that the emission

of speech representations is modeled by multimodal distributions. As opposed to

the unimodal modeling assumption of a standard DPMM, the novel algorithm

proposed in this thesis can infer a mixture of mixtures to discover clusters in raw

data that are made up of multimodal distributions. In experiments, the proposed

design leads to the inference of fewer classes that represent subword units more

consistently and show longer durations, which is a first step towards a fully un-

supervisedly learned model for speech that represents units of appropriate length

and complexity.

The methods presented in this thesis are ultimately designed towards enabling

low and zero resource automatic speech recognition and provide a good basis for

further research on the possibilities of learning acoustic units and acoustic features

from scratch, without any prior category knowledge or other meta information

about the target language.

Keywords:

acoustic unit discovery, Bayesian non-parametrics, Dirichlet process, mixture of

mixtures, representation learning, unsupervised subword modeling
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Chapter 1

Introduction

“Language is the archives of history – Language is fossil poetry.” [38]

– Ralph Waldo Emerson (1803-1882), Philosopher

1.1 Language Acquisition

The early language acquisition of humans is a remarkable process which until

today owes the research community satisfactory answers to the questions of how

exactly it works. Infants leap into learning their future native language in a

pace that is astonishing. In contrast, language learning for adults is a long and

difficult process, and major breakthroughs in language acquisition by machines

are still long in coming. Why is that? The rapid development of competences in

comprehension and speech production in human infants is based on the ability to

detect patterns and a statistical approach to learning [91]. This easily explains

why statistical methods are the predominant approach to machine based speech

processing. Besides – and on the side of – linguists and psychologists, it is the

information scientists who likewise look for answers to the mechanics of language

acquisition from a machine learning perspective.

1.1.1 Human Language Acquisition

During their first year of life, infants construct for themselves models of acoustic

and lexical units in a robust way without any artificial and crafted supervision
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Figure 1.1: The relationship between phones, phonemes and allophones.

such as aligned textual references. Undoubtedly, language acquisition by hu-

mans to the point of mastering a language is a multisensory, multimodal learning

process, but the bulk of subword modeling which happens very early in the de-

velopment is resting on the speech input and starts as early as the time in the

mother’s womb. Equipped with basic pattern recognition abilities, infants learn

from exposure and build up a statistical model of language.

Languages are based on a system of sounds, called phones. Sounds that do

not change the meaning of words when replacing each other are called allophones.

Phonemes as groups of allophones are distinct sound categories that, when replac-

ing each other in a word, change the meaning of a word. For example, the phones

/l/ and /r/ are allophones in Japanese, but instances of different phonemes in

English. Early language acquisition solves the task of detecting phonemic cate-

gories, which is the requirement for building words later on.

Newborn have the ability to perceive the boundaries between phones. This is

known as categorical perception. Interestingly, this ability is language indifferent,

meaning that infants react to category boundaries even in sound systems that dif-

fer from their native language [36, 172]. From birth, infants are in fact equipped

with the talent to discriminate between sounds in any human language [91], with

the constraint that they rely on acoustic cues that are inherent to speech. Cat-

egorization follows the categorical perception and is the process of grouping, or

clustering, of phones into phonemes. Infants naturally discard variance coming

from exposure to different speakers, varying style, or context and are able to

group sounds into categories [89, 90].
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Figure 1.2: Universal speech perception and production development timeline, showing

the stages of development during human infant’s first year of language acquisition [91].

Word discovery and word production starts at the age of around one year.

With one and a half years of age, children already understand about 150 words, a

third of which they can produce themselves [91]. The word segmentation, like the

discovery of sound units, is driven by the statistical learning ability. Infants have

a sense for the probabilities of certain sequences, i.e., the phonotactics of their

surrounding language. This helps them learn boundaries within and across words

of their mother tongue. With the knowledge of words, the learning of meaning

comes soon after.

1.1.2 Machine Language Acquisition

The parallels between the tools of human language acquisition and machine lan-

guage acquisition are apparent. Infants naturally resort to pattern recognition

and statistical models [91] without even knowing. Automatic speech processing

systems similarly rely on these two basic tools [136]. In the context of automatic

speech recognition, the learning of sound units is equivalent to training an acous-

tic model. Phonotactics, words, and linguistic structure is captured by a language

model. As is the case for infants, the concept of words can not be on its own and

presupposes the knowledge of smaller units, i.e., phonemes, phones, or subword
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nings to today.

units in general.

Over the decades, automatic speech recognition (ASR) technology has experi-

enced a remarkable development. From the first model designs for speech analysis

and synthesis in the 1930s [33], the speech recognition research went a long way

from simple systems that can identify isolated sounds, then words, to sophisti-

cated systems that recognize continuous, natural speech by modeling variance in

human language statistically [136]. In the 1980s, major developments in the field

of neural network based methods for ASR emerged [171, 93, 100], which today

dominate the field, allowing for extremely high performing systems that scratch

on the upper bound of human speech perception capacities [175, 63].

In stark contrast to humans, machine learning approaches to learning models

of human speech heavily rely on the availability of labeled training data. Parallel

pairs of speech and text is utilized as training data for supervised model training.

In the past decades, technological advances have been made mostly on a very

small subset of all the human languages. The English language as experimental

subject greatly dominates, followed by very few other world languages such as

Spanish, German, Japanese and Chinese. What all these languages have in com-

mon is that large amounts of data to learn from are available. The development

of speech recognition systems largely relies on the access to transcriptions for

speech recordings to learn acoustics and large quantities of textual data to model
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the lexical characteristics of a language. With the rise of statistical methods for

machine learning, the maxim has always been “there is no better data than more

data”. Today’s ASR giants are trained on tens of thousands of hours of data,

and billions of lines of text.

This development has two main consequences: Machine learning methods for

ASR evolved such that they learn best from massive amounts of data. Super-

vised and unsupervised learning methods go hand in hand, but the paradigm

is the same; more data (almost) never harms. The other consequence is that

the focus has long been fixed on the major languages spoken in the world, to the

great disadvantage of billions of speakers of minority languages, or languages that

are under-resourced or low-resourced, i.e., with limited use in analog and digital

media. For such languages, large corpora do not exist, which often forbids the

use of state-of-the-art methods for ASR system development.

1.2 Under-resourced Languages

The larger part of all human languages do not have a writing system. This not

only means that a unified way of transcribing speech is not available, but also

that a language does not exist outside its spoken form. There is no literature,

no presence in the internet or any other media besides spoken media. Of the

roughly estimated 6000 [112] to 7000 [151] languages in the world, about 50% do

not have a writing system, i.e., they are kept alive and passed on only orally. Of

all the languages, the larger part is spoken by only 10.000 speakers or less each,

and an estimated 50% and 90% might go extinct within the next century [59].

According to Ethnologue [151], about 2500 (or 35%) of all living languages are

currently categorized as being “threatened” or worse. A threatened language

“is used for face-to-face communication within all generations, but it is losing

users” [151].

As of now, high-performance real-time ASR systems are only available for the

top 20 languages of the world, reliable systems for the top 70. As an example we

may look at one of today’s major speech recognition service providers, which cur-

rently supports real-time speech recognition for 63 languages. Ethnologue [151]

defines 6 major and 135 other language families. Of the major families, 5 are

currently covered by this provider with recognizers for 2 or more languages each,

1 family remaining unsupported for the moment. 35 of the supported languages
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Table 1.1: Distribution of all living human languages by the number of first-language

speakers, sorted by number of speakers per language [151].

Speakers Living languages Speakers

per language Count Ratio Cumulative Total Ratio Cumulative

100M - 1B 8 0.1% 0.1% 2.7B 40.8% 40.8%

10M - 100M 82 1.2% 1.3% 2.6B 39.3% 80.1%

1M - 10M 307 4.3% 5.6% 948M 14.3% 94.4%

100k - 1M 956 13.5% 19.1% 305M 4.6% 99%

10k - 100k 1811 25.5% 44.6% 61M 0.9% 99.9%

1k - 10k 1980 27.9% 72.5% 7.6M 0.1% 99.99%

100 - 1k 1064 15.0% 87.4% 470k 0.007% 99.999%

10 - 100 329 4.6% 92.1% 12.2k 0.0002% 99.99999%

1 - 10 144 2.0% 94.1% 584 0.00001% 100%

0 219 3.1% 97.2% - - -

unknown 199 2.8% 100% - - -

Total: 7099 6.6B

are Indo-European, i.e., members of only one major language family, accounting

for more than half of the provider’s language catalogue. Of the other language

families, only 9 are covered, mostly with only 1 language per family being sup-

ported. This leaves a vast majority not only of languages, but indeed entire

language families completely unsupported by speech recognition technology.

From a practical perspective this means that less than 80% of the world’s

population can theoretically make real use from speech recognition applications,

but the other more than 20% remains unattended. This does not only affect

societies that are more remote (from a Western perspective), but also a multitude

of minority groups in countries whose national languages are well supported.

To use a striking example, in the United States of America one can encounter

347 living languages, 220 of which are established, i.e., spoken by the native

populations, and 127 are spoken by immigrant groups [151]. There are obvious

reasons why one would want to develop speech recognition systems for under-

resourced languages or zero resource scenarios. Speech processing technology has

the potential to bridge gaps between peoples, and to provide everyone with access
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to the global community. But even though the consumer/provider perspective of

services is not unimportant, there are much more pressing reasons.

A language is the cultural memory of a society. If a language disappears,

knowledge disappears. Languages can teach us concepts that do not exist in other

language spaces. The two countries with the highest count of living languages

are Indonesia (709 languages) and Papua New Guinea (840 languages) [151].

The Papua New Guinean languages are members of the Trans-New Guinea lan-

guage family, the single group of languages that is not yet covered by the above

mentioned exemplary speech recognition service provider. Suffice it to say that

invaluable knowledge of a tremendous amount of societies and communities is

encapsulated in each and every one of these languages. Sadly, most of them

are facing extinction rather sooner than later. Speech recognition technology for

under-resourced languages could be a big help in the attempt to preserve lan-

guages from going extinct. In the worst case, machine learning methods could

help analyze still-living languages before they might disappear forever. Lastly,

every language that exists can teach us about human language understanding

and language acquisition in general and tell us something about how we – as the

only speaking species on this planet – function.

1.2.1 Speech Recognition for Under-resourced Languages

Despite the heavy focus on the few major languages in the world, it is important to

point out that a considerable amount of research has been conducted for under-

resourced languages across the globe as well [13, 62, 1, 164, 34]. Due to the

fact that the major limiting factor for working with such languages is the data

sparsity, most research efforts evolve around the efficient use of small amounts of

language specific data for model learning. Particularly in recent years research

on under-resourced languages flourishes. Topics of interest expanded to fields

beyond speech recognition, including for instance the study of human language

acquisition from a machine learning perspective, ways to preserve endangered

languages by means of automatic analysis and more.

Generally, two polar trends are observable. One line of research aims at

the utilization of massively multilingual training corpora for the development of

versatile language independent models. Main techniques are bootstrapping and

transfer learning from the so-called rich resource languages, as well as multilin-
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gual training and adaptation. The other line of research focuses on methods for

inference of linguistic knowledge from minimal amounts of language specific data

using the paradigms of semi-supervised and unsupervised learning and Bayesian

inference.

Bootstrapping is the initialization and training of a system or model given

existing systems or models that were trained for different domains, languages,

modalities or conditions. Bootstrapping in automatic speech recognition is a

popular method to initialize models for handling a new language, if not enough

or no data is available for that particular language. This can be done by resorting

to existing models that were trained on related [154] or unrelated [102] languages

and/or by utilizing multilingual models [145, 169, 168]. Transfer learning is a

general term for methods that utilize existing models or sets of parameters to

support the training towards a particular language, domain, etc. Popular usages

are model pre-training on multilingual data [156] or cross-lingual modeling [37]

to compensate for data sparsity.

Multilingual speech recognition systems are systems that rely on language

independent modeling. GlobalPhone is among the prominent long-term projects

striving towards development of language independent acoustic models based on

carefully collected and prepared multilingual training data to support multilin-

gual speech recognition [147, 146, 143, 144]. One of the ideas of the GlobalPhone

project is to circumvent the data shortness of under-resourced languages by re-

lying on universal models for rapid adaptation to new languages. The concept

of rapid language adaptation has already been successfully transferred to deep

learning approaches [119, 114, 113].

The goal of the IARPA Babel program [62] was the development of methods

that allow rapid ASR system development for under-resourced languages with

minimal amounts of training data. The explored approaches lie between the two

above-mentioned research directions and range from investigations of multilin-

gual models [88] to data augmentation and monolingual semi-supervised and un-

supervised learning [51, 94, 50]. The BULB project specifically targets unwritten

languages and aims at supporting their documentation by bringing together lin-

guists and computer scientists [1]. The goal is to develop tools such as language

independent phoneme recognizers to produce universal phonetic transcriptions

and pseudo-word alignments for an arbitrary number of languages.

From multilingual and language independent systems to the development of
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models with as little transcribed data as possible, recent research arrived at the

far end of the machine learning spectrum by shedding light on the zero resource

scenario, which shall be elaborated in the following section.

1.3 The Zero Resource Scenario

The zero resource scenario is an extreme case of resource shortage, where for a

given language no other resources are available besides raw speech recordings (or

the chance to gather recordings in the wild). Learning from speech without the

availability of transcriptions, text corpora, phonetic and other linguistic knowl-

edge is a tough challenge that increasingly draws the attention of the speech

processing community, given the pressing reasons as stated in the previous sec-

tion. The zero resource scenario is not simply a speech research exercise, it is,

unfortunately, a fact for the vast majority of all existing languages that has to

be approached rather sooner than later. The development of speech processing

technologies for zero resource languages is paramount for tackling the manifold

issues listed above, since multilingual or cross-lingual approaches are not always

applicable. One might think of isolated languages or language groups that stretch

less explored regions in the phonetic space. Another important factor to consider

is the demand of multi- and cross-lingual approaches for large quantities of clean

and balanced data, which binds many resources for acquisition. It is therefore

reasonable to assume that methods which do not rely on other out-of-language

resources might be a much needed and at the least beneficial contribution to

technologies for under-resourced and unwritten languages.

Apart from practical reasons, linguistics and the theory of human language ac-

quisition provide another strong motivation for zero resource research. Learning

speech primarily from the auditory input is comparable to the learning challenge

of infants. If the raw speech data of a possibly unknown language is the only avail-

able data, then the task from a machine learning perspective is to learn meaningful

models without any additional knowledge besides the raw speech observations at

hand. This is a fundamentally different view on the machine learning challenges

for under-resourced languages and naturally invokes unsupervised learning meth-

ods. Successful approaches to language acquisition by machines might be able to

help in answering fundamental questions about human language acquisition as

well.
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The challenge of learning linguistic knowledge from raw speech can be gener-

ally divided into two major tasks, unsupervised subword modeling, and unsuper-

vised learning of lexical information. Language learning by machines is therefore

similar to the task of early language acquisition by humans. Learning of phono-

tactic models and discovery of lexical units either relies on the availability of

some sort of sound unit as elemental building blocks or jointly infers subword

and word-like units. If the sound units of a language are unknown or principally

unavailable because it is a newly discovered language, for instance, then unsuper-

vised subword modeling might often be first task that needs to be solved. The

inferred units might then be utilized for unsupervised learning of lexical informa-

tion in the next learning stage. Similar to infant learners, unsupervised subword

modeling is a critical step in the machine language acquisition process.

1.3.1 Unsupervised Learning of Lexical Information

Unsupervised learning of lexical information from speech, also known as spoken

term discovery, is the unsupervised discovery of word-like units, defined as recur-

ring speech signals [164]. A system that performs spoken term discovery takes raw

speech as input and delivers a labeled segmentation of the input into recurring

speech segments which indicates class memberships.

The general task can itself be broken down into smaller sub-tasks, pair match-

ing, segment clustering and parsing [164]. Pair matching uses similarity measures

to find pairs of speech snippets that seem akin. Segment clustering attempts to

group matching pairs into larger categories. This step is equivalent to building

some form of lexicon for speech data. Parsing is the matching of learned cate-

gories to segments in previously unseen data streams. Systems for spoken word

discovery may perform all of those steps, or only parts of it. Sometimes the

segmentation of speech into coherent fragments is prioritized, and parsing is not

required. There has been work for sequential processing as well as joint model

learning (examples for both are introduced in the following paragraph). The per-

formance of spoken term discovery can be assessed by evaluating the matching

quality, the clustering quality, the parsing quality or by using the learned model

to solve a task such as audio document classification, retrieval or recognition.

Unsupervised learning of lexical information from raw speech is a popular

theme since more than two decades. [29] introduces an unsupervised learning al-
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Figure 1.4: Components of a spoken term discovery system.

gorithm that infers a natural-language lexicon from raw speech. Their framework

finds a hierarchical representation of language using the principle of minimum

description length (MDL). The idea is to maximize the likelihood but also to pe-

nalize too complex models. The Bayesian framework by [54] uses Gibbs sampling

to infer a word segmentation. They analyze their model on the background of

human language acquisition theories. Other works try to infer a more fine-grained

segmentation that allows words to be compounds of shorter morphemes [131, 27].

[118, 117] learns an entire language model from speech. They use Bayesian meth-

ods to jointly learn word boundaries and an n-gram language model with no

prior linguistic knowledge from noisy input. The phonological lexicon discovery

approach of [96] combines the unsupervised discovery of phoneme-like units and

word-like units from raw speech. [83, 82] proposes a framework that embeds

variable-length word segments in a fixed-dimensional acoustic space, in which

they perform lexical clustering. The clustering is done by grouping acoustic word

tokens in the new space. Best results were achieved using an infinite Gaussian

mixture model sampler for model inference. [137] exploits a priori knowledge

about the structure of speech signals and perform spoken term discovery based
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on a segmentation of input speech into syllable-like units. Their focus is on find-

ing high quality segmentations that lead to a good clustering of segments into

recurring units. [104] evaluates the performance of a set of graph clustering algo-

rithms to cluster pairwise matches of word-like units into larger classes. [84] uses

an embedded segmental k-means model to represent recurring spoken segments

of arbitrary length as fixed-dimensional acoustic word embeddings.

1.3.2 Unsupervised Subword Modeling

Unsupervised subword modeling is the task of constructing a representation of

speech that is robust to variation within and across speakers and that maximizes

class discriminability [164]. A subword model should emphasize linguistically

relevant informations contained in the original speech signal, and suppress irrel-

evant information such as speaker identity, channel characteristics, the influence

of emotion and other artifacts that are commonly unused for solving the task of

automatic speech recognition by machines.

The output of a system that performs unsupervised subword modeling is not

strictly defined. Any representation that serves the discrimination of sounds may

be a valid output. The simplest form of representation is a sequence of tex-

tual labels that discriminate frames or sequences of frames into distinct units, or

members of unit categories. Other possible representations are lattices, vector

embeddings or posteriorgrams. Subword models can be evaluated by training a

classifier and decoding test data or by solving a higher-level task such as keyword

spotting. One downside of these approaches is that the output quality of classi-

fiers typically depends on several components. A good decoder might be able to

compensate for weaknesses in the subword models and therefore cover up defects.

A more direct way of quality assessment is to perform a discriminability task to

measure the discrimination quality of sounds given the respective speech represen-

tation. Discriminability tests are invariant to feature dimensionality and sparsity

and therefore provide a fair means of evaluating multiple models by comparison

as well.

Research on unsupervised subword modeling goes similarly far back than un-

supervised lexical learning. Unsupervised subword modeling is itself a two-fold

problem. For once, it is a representation learning problem, i.e., the task is to find

suitable features to adequately describe speech data. Besides that, the challenge
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Figure 1.5: Components of an unsupervised subword modeling system.

of unsupervised subword modeling lies in designing a model that can properly rep-

resent the underlying subword units of speech. Systems for representation learn-

ing try to infer features from raw audio, with top-down constraints [139, 160, 81]

or without [8, 183, 22], with no prior knowledge of phonetic categories. [158] de-

scribes a method for feature analysis in ASR systems based on locality preserving

projections, which can be applied as a linear projection and dimensionality re-

duction algorithm to standard ASR features such as MFCC. It is argued that this

method preserves local relations among input features. Similar to the proposed

methods in this thesis, [183] generates new speech representations by computing

posteriorgrams given an inferred model. They developed an unsupervised learn-

ing framework for spoken keyword detection which labels speech frames with

Gaussian posteriorgrams. There are many recent works that utilize some form of

weak automatic supervision from unsupervised term discovery (UTD) systems as

weak top-down constraints to guide the subword modeling. [157] learns an acous-

tic model with no direct supervision. Their method however requires at least

information about speech segments that are known to be similar and speech seg-

ments which are known to be different. An acoustic model is trained with neural

networks which also results in a phonetics embedding. Similarly, [160] proposes a

Siamese DNN training framework that takes the frames of UTD word pairs as in-

put and minimizes the distance between frames of the same class and maximizes

it between frames of different classes. [81] uses a deep auto-encoder neural net-
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work to build an unsupervised feature extractor. Pairs of isolated word examples

are found using unsupervised term discovery (UTD), and their feature frames are

aligned with dynamic programming. These aligned pairs provide weak top-down

supervision by their usage as input output pairs to train the auto-encoder. [139]

likewise applies a correspondence auto-encoder to learn efficient representations

with the help of matched word pairs generated by an unsupervised term discov-

ery system, and [8] makes use of a deep auto-encoder that applies a threshold

at the encoding layer to generate a binary representation of speech frames. The

Bayesian modeling framework by [22] infers a Dirichlet process Gaussian mixture

model (DPGMM) from raw speech. The inference provides a clustering of MFCC

speech features into distinct classes, and posteriorgrams over the inferred GMM

are used as new speech representation. This approach was outperforming neural

net based alternatives by a margin during the zero resource speech challenge (Ze-

roSpeech) [164] and confirms the modeling powers of Bayesian non-parametric

methods as shown by earlier work such as [95]. The submissions for the follow-up

challenge introduce various novel or refined approaches, many of which are multi-

lingual. [127] derives new speech representations by estimating cluster centroids

for zero component analysis (ZCA) transformed feature vectors using k-means

and measuring the distance of each input feature vector to these centroids. [23]

makes use of the DPGMM approach of [22] by clustering speech feature vectors

into classes, which are then used as targets to train a multilingual multi-task

neural network. A new speech representation is extracted from a bottleneck.

Being a multilingual approach as well, [5, 6] trains a DNN with bottleneck, us-

ing posteriors and labels that come from a universal background model. The

bottleneck features are combined with features from an auto-encoder trained on

standard speech feature vectors. Following [160, 139], the system of [180] uses

STD to match acoustic segments that are represented with multilingual bottle-

neck features which were trained in the same way as in [23]. A DNN is trained

on matched frame pairs and a new speech representation is extracted from a hid-

den layer. The winning contribution to the latest ZeroSpeech [34] however was

again a (monolingual) Bayesian modeling framework, which has been developed

by us [69] and which is the central theme of this thesis. The following chapters of

this thesis are dedicated to laying out the foundations and details of our Bayesian

non-parametric approach to unsupervised subword modeling.
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1.4 Scope of this Thesis

This thesis wants to address the task of unsupervised subword modeling in the

zero resource scenario. We consciously chose to tackle this extreme case of data

sparseness for the manifold reasons stated in the previous sections, the most

important of which are that

1. most of the world’s languages do not have a written form, which makes it

impossible to rely on transcriptions,

2. multilingual or cross-lingual approaches are not always applicable or are

simply not desired due to their demand for large quantities of suitable train-

ing data, and

3. inferring the acoustic units of a possibly unknown language from raw speech

is one of the first steps in human language acquisition and therefore a logical

choice for machine learning approaches to language learning as well.

Within the scope of this thesis, the major challenges of unsupervised subword

modeling shall be discussed, and solutions be provided.

There are two major problems concerning the unsupervised learning of speech

representations from raw speech. Today’s speech processing technology is not

capable of imitating the extraordinary process of human language acquisition.

Infant learners of different languages make use of different features when discrim-

inating sounds. This is known as the dimension learning problem. In the machine

learning context this task is also known as representation learning problem and

raises the question how well discriminative speech features can be learned without

prior knowledge, and whether they generalize well across languages. Supervised

methods that heavily rely on large amounts of transcribed training data still

dominate the field. Many advances in supervised learning are difficult to apply

in the absence of supervision, one of which is supervised representation learning

by estimating feature transformations with helpful properties. The second prob-

lem is the model design problem. A model that can be inferred from raw data

should ideally represent categories that have some resemblances to subword units

as defined by humans, e.g., syllables, phones or sub-phones.
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1.4.1 Representation Learning

In linguistics literature, representation learning is also known as dimension learn-

ing. Dimension learning as a process of human language acquisition starts in the

first year of life and continues into the time of early childhood [173, 92]. Speak-

ers differ cross-linguistically in the cues that they use to discriminate phonemes

within their respective languages [35, 45, 103, 179, 101]. It is assumed that the di-

mension learning is governed by the need to properly discriminate phonemes, and

that changes in speech perception are based on developing sound category knowl-

edge [14, 40, 162]. This theory presumes prior knowledge of phonetic categories,

at least to some extent, which is acquired during the first year of life. Dimension

learning by humans is therefore dependent on the knowledge of sound categories.

The alternative hypothesis that dimension learning can happen without category

knowledge has support as well [80].

The idea of representation learning is to transform raw speech features into

a form that has better properties such as increased sound discriminability and

reduced variance in order to be better suited for ASR tasks. Supervisedly trained

ASR systems make extensive use of such feature transformations [44, 56, 49, 4, 48],

often exploiting various forms of category knowledge. Unsupervised systems for

representation learning try to infer good features from raw audio data, with top-

down constraints [139, 160, 81] or without [8, 183, 22], but principally without

any prior knowledge of phonetic categories.

The challenge for representation learning for low resource and zero resource

languages lies in the unavailability of any meta-data. A method for representation

learning should be able to generalize across languages, perform comparably well

for any arbitrary input, and scale with the data. Inferred representations should

be computationally feasible, generalize well across speakers and suppress linguis-

tically irrelevant informations such as channel characteristics, speaker emotion,

and other variance.

1.4.2 Model Design

Sounds of previously unexplored languages are cataloged by phonologists. Their

expert knowledge about perceptual dimensions and phonetic categories allows

them to determine the underlying sound repertoire of a given language. Basic

machine learning approaches to this are pattern matching on raw audio data [124,

16



1.5. Contribution

125] and unsupervised learning of models [163]. These techniques have been

successfully applied to solve tasks such as spoken term detection [183], topic

segmentation [108] or document classification [32].

However, model complexity usually is not known a priori when dealing with

new data sets and where estimation is not possible due to the lack of develop-

ment data. Bayesian non-parametric models can be a good choice in such cases,

as they automatically adjust the model complexity given some data. Bayesian

models have already been successfully applied to other speech processing tasks

such as unsupervised lexical clustering [83]. Bayesian non-parametric models

were already successfully applied to the task of representation learning [22].

There is a discrepancy between the models of supervisedly trained ASR

systems and the models that can be inferred for instance by Bayesian non-

parametrics. The model assumptions in the latter case are often overly sim-

plified. A typical case is that individual categories are modeled as components

in a mixture model, where the components themselves are parametrized as basic

probability distributions such as the Gaussian. ASR systems on the other hand

have long been made extensive use of hidden Markov models with continuous

multimodal emission probabilities to model sounds. One challenge for the design

of novel model inference methods is to reduce the size of this gap between model

structures for the purpose of representation learning. The problem is how to

design a model for inference from data so that it represents units of appropriate

length and complexity.

1.5 Contribution

1.5.1 Tackling the Representation Learning Problem

This thesis addresses the representation learning problem by elaborating a novel

framework for unsupervised subword modeling that takes advantage of methods

commonly used in supervised speech recognition systems. The main representa-

tion learning method is rooted in Bayesian non-parametrics. A Dirichlet process

mixture model (DPMM) is used to infer sound classes from raw speech, but the

learning framework is augmented by the aspect of speech feature transformation

estimation. The proposed algorithm jointly learns useful feature transformations

and an improved class model for the underlying sounds of the input. Feature
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optimization is an integral part of speech processing systems, and methods that

improve class discriminability should naturally be beneficial for solving clustering

problems. The proposed algorithm is able to utilize popular transformations that

are well-established in ASR without supervision. The transformation estimation

is performed without any prior category knowledge by utilizing automatically

generated labels for the data. The learned transformations in turn support the

inference of acoustic units from the data. Posteriorgrams defined over the inferred

mixture model then serve as new speech representation. The proposed method

proved its effectiveness in actual performance evaluations and delivered state-of-

the-art performance on the official data sets for the two most recent ZeroSpeech

challenges 2015 and 2017. Compared to similar methods, the proposed frame-

work proves to generalize well across languages, speakers and speech modalities,

and also scales well with data. The construction of a functional acoustic unit to-

kenizer shows that the found acoustic units carry meaning which can be utilized
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to solver higher-level problems.

The decision to take a Bayesian non-parametric approach is motivated as

follows. Although parametric models such as binarized [8] or correspondence

auto-encoders (cAE) [139] have shown to be effective for the task of represen-

tation learning, the trained models do impose limitations upon the learnable

features by pre-defining their shape. By fixing the model complexity, the repre-

sentation might be inflexible towards differing data sizes or problems of varying

modeling difficulty. A model that was defined for one use case can not be eas-

ily applied to a novel problem and expected to perform equally well without

prior adjustments. Further, the cAE and other such methods that utilize top-

down constraints [139, 160, 81] naturally rely on some form of supervision, such

as word-like acoustic pairs that are inferred or otherwise proposed by already

existing spoken term discovery (STD) systems. Although STD systems can be

trained without supervision as well (see Section 1.3.1), the reliance on top-down

constraints introduces potential sources of uncertainty and error, which can result

in representations that are not optimal given all the available data.

Bayesian non-parametric approaches such as the DPMM on the other hand

leave the estimation of the appropriate model complexity to inference given the

provided data. The advantage of flexible model complexity that depends on the

provided data is that the same model type can be deployed to solve problems that

might greatly differ in their difficulty or data size. Not needing to fix the model

structure a priori reduces the development overhead and the risk of imposing

limiting design decisions. The inference of a descriptive model further holds

the advantage of being a tangible representation of the data, whereas above-

mentioned models purely serve as feature extractors with little descriptive power.

Descriptiveness however might be a desirable trait, especially if the goal is to

represent natural phenomena such as speech not only for tackling downstream

tasks but also for the purpose of analysis. All this is not to say that Bayesian non-

parametric approaches don’t demand some thoughts on model design. Foremost,

the choice of the prior for a DPMM determines the complexity of the individual

model components. For example, a DPMM that utilizes a normal inverse Wishart

(NIW) prior will consist of Gaussian components, therefore constitutes a Dirichlet

process Gaussian mixture model (DPGMM).

In this thesis, raw speech is processed on the level of frames, and unsupervised

subword modeling is approached bottom-up. It is noteworthy that methods such

19



1.5. Contribution

as DPMMs are indifferent to the kind of data being used as input. It would be

straightforward to impose top-down constraints similar to the above mentioned

works by processing the raw input with UTD systems. Any structured output can

be used as input to non-parametric methods, so that whole segments of speech

frames could be processed at once. This, however we deem not desirable due

to two major reasons. Imposing top-down constraints for instance by UTD (1)

introduces new sources of error, and (2) evades the research question whether

sensible acoustic units can be inferred from raw data in a bottom-up fashion.

The first problem can be handled in various ways, for instance by joint modeling

of segments and classes. The second point however is a matter of the chosen

research objective. This thesis focuses on exploring the capacities of bottom-up

learning approaches towards unsupervised subword modeling.

1.5.2 Tackling the Model Design Problem

Speech – the input modality that this thesis focuses on – is an inherently com-

plex signal type and requires models of appropriate complexity to be represented

properly. It is a long standing assumption in ASR research that the emission

of speech representations is modeled by multimodal distributions, as opposed to

the unimodal modeling assumption of a standard DPMM, for instance. A novel

model and inference design for a Dirichlet process mixture of mixtures model

(DPMoMM) presented in this thesis addresses the model design problem. The

DPMoMM allows the distribution of data to be approximated a mixture of mix-

tures. The model inference therefore enables the discovery of clusters in raw data

that are made up of multimodal distributions, a model design that is supposed

to approximate the true distribution of real speech observations more reliably.

In experiments, the proposed design leads to the inference of fewer classes that

represent subword units more consistently and show longer durations, which is a

first step towards a fully unsupervisedly learned model for speech that represents

units of appropriate length and complexity. The methods presented in this thesis

are ultimately designed towards enabling low and zero resource automatic speech

recognition and provide a good basis for further research on the possibilities of

learning acoustic units and acoustic features from scratch.
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1.5.3 Outline

The structure of the rest of this thesis is as follows. Chapter 2 is an introduc-

tion to the general ASR framework, the challenges of ASR system development

with differing levels of supervision and especially in the zero resource scenario.

The chapter closes by putting Bayesian non-parametrics into the context of zero

resource research. Chapter 3 covers the topic of Bayesian non-parametrics by

guiding through the basics of stochastic processes and providing more detailed

informations about the Dirichlet process mixture model as the main technique

used throughout this work. The details of how to incorporate feature transforma-

tions into the DPMM based unsupervised subword modeling framework is laid out

in detail in Chapter 4. The proposed method builds upon the work of [22], which

utilizes the DPMM to learn subword units. With the help of the proposed ex-

pansions, state-of-the-art performance is established. In Chapter 5, experiments

are described which demonstrate that the inferred subword units carry meaning

which can be utilized to solve higher-level problems. The chapter explains how

an acoustic unit tokenizer can be built from scratch without prior knowledge of

sound categories and target language. Evaluation suggests that the tokenizer

produces output that is of higher quality than the output of a DPMM sampler.

Chapter 6 tackles the model design problem by introducing a novel design for a

Dirichlet process mixture of mixtures model (DPMoMM). Inference is done by a

parallelizable Markov chain Monte Carlo split and merge sampler. The sampler

jointly infers a codebook and clusters, where the codebook is a global collection of

components and clusters are mixtures, defined over the codebook. A non-ergodic

Gibbs sampler is combined with two layers of split and merge samplers to form

a valid ergodic chain. An additional switch sampler is introduced to support

convergence. Experimental results show that the proposed model and algorithm

infers complex classes from real speech feature vectors that consistently show

higher quality on several evaluation metrics. At the same time fewer classes rep-

resent subword units more consistently and show longer durations, compared to

a DPMM sampler. Finally, Chapter 7 discusses the overall findings and possible

future research in the area of unsupervised subword modeling and the prospect

of fully unsupervised automatic speech recognition.
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Chapter 2

Automatic Speech Recognition

“Opera naturale è ch’uom favella;

ma cos̀ı o cos̀ı, natura lascia

poi fare a voi secondo che v’abbella.” 1 [3]

– Dante Alighieri (1265-1321), Poet

Automatic speech recognition (ASR), also known as speech-to-text (STT)

conversion is the task of converting spoken language into written form with the

help of a machine. Research interest in ASR is predating the time of personal

computer systems. Since then, the technology has found its way into almost every

conceivable use case. Smart phones, smart homes, embedded systems, industrial,

educational, clinical, office and many other environments are equipped to rec-

ognize speech for purposes such as human-machine interaction, communication,

dictation, entertainment and more. Client-server architectures make it possible

to provide high-performance ASR for any purpose and any place provided with

an internet connection. An increasing number of languages is covered by today’s

providers of high-performance ASR systems, the focus however lies on the world’s

top 50 or top 100 languages, leaving many opportunities for novel developments

to serve the so-called under-resourced languages which number in the thousands

(see Chapter 1).

This chapter introduces the basics of the ASR framework and guides through

1“It is the work of nature man should speak

but, if in this way or in that, nature leaves to you,

allowing you to choose at your own pleasure.”
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Figure 2.1: The automatic speech recognition framework.

the principal components of a statistical speech recognition system. The main

modeling method for the statistical paradigm of speech is the hidden Markov

model (HMM) [79, 98, 135, 134, 75], still being highly relevant in developing

neural network based systems as proto model or prior. Therefore, large parts of

this Chapter are dedicated to the HMM.

2.1 The Statistical Framework

Contrary to the early days where rule-based modeling of human language was the

predominant premise, today’s state-of-the-art ASR systems almost exclusively

define speech as a stochastic process. Modeling and decoding speech rests on

methods of probabilistic modeling and statistical pattern recognition [136]. The

statistical framework describes the task of automatic speech recognition as a

decoding task with the objective to convert an encoded message stream, i.e.,

a sequence W of spoken words w1, . . . , wM , represented by a stream X of real

valued feature vectors x1, . . . , xN into the most likely sequence Ŵ of written

words according to the maximum-likelihood criterion. It is precisely the task of

the decoder to find Ŵ given the sequence of speech representations X of the

original spoken sequence of words W . We can decompose this task into several

sub-problems with the help of mathematical reformulation. Identifying the best

sequence of words Ŵ out of all possible word sequences W given the input can
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be formulated according to Bayes’s law as

Ŵ = argmax
W∈W

P (W |X) (2.1)

= argmax
W∈W

P (X|W )P (W )

P (X)
(2.2)

= argmax
W∈W

P (X|W )P (W ), (2.3)

where P (W |X) is the probability of words W being observed, given X. P (X|W )

is the likelihood of the data given W . P (X) is the a priori probability of observing

X. As W is maximized by the search argmax, P (X) is constant and therefore

negligible in the classification decision [79]. P (X|W ) is the probability that a

stream of feature vectors X is observed, given the input sequence W of spoken

words. This formulation is commonly known as the fundamental equation of

speech recognition.

The component P (X|W ) can be further decomposed the sub-components

P (X|λ) and P (λ|W ), which leads to the following equation:

Ŵ = argmax
W∈W

P (X|λ)P (λ|W )P (W ). (2.4)

Equation (2.4) now models the components of a general ASR system in its

entirety:

1. X is the result of the pre-processing, or feature extraction. The pre-

processing converts an analog signal into a time discrete digital represen-

tation, typically into a stream of multidimensional feature vectors that are

designed to preserve the relevant information of human language.

2. P (X|λ) is known as the acoustic model and estimates the probability that

the stream of observations X was generated by subword models λ.

3. P (λ|W ) is the dictionary, or lexicon, and estimates the probability of sub-

word models λ given the original word sequence W . The lexicon is the link

between the acoustic model and the language model.

4. P (W ) is the language model and estimates the prior probability of observing

the word sequence W .

25



2.2. Pre-processing

5. argmaxW∈W is the search operation and describes the decoding process

which finds the most probable sequence of words Ŵ , given the input X and

the above-mentioned statistical models of speech.

Provided that the acoustic model and language model along with the respec-

tive dictionary are known, the Bayes formula gives us the optimal mathematical

definition for decoding speech [120]. Besides the search itself, the challenge is

in finding the probability distributions in Equation (2.4), for which approxima-

tions are necessary. The major part in training an ASR system is concerned with

computing these approximations.

The acoustic speech signal needs to be transformed into a parametric repre-

sentation for further processing by an ASR system. The digitization results in a

representation of the time domain based continuous wave form as time discrete,

quantized digital signal. Further pre-processing results in a stream of multi-

dimensional feature vectors over time. This conversion process is described in

the following section, before the Chapter proceeds with describing the involved

models of speech.

2.2 Pre-processing

The purpose of pre-processing is to convert an analog signal into a digital rep-

resentation, with the goal to extract relevant information from the speech signal

and to discard information that is not helpful for solving the task of speech recog-

nition. A digital representation of speech for the purpose of ASR would ideally be

independent of speaker identities and characteristics, invariant to channel char-

acteristics such as changing environments or equipment and contain only such

information that is directly related to human speech, as opposed to non-speech

events.

For this reason, the pre-processing step is also known as feature extraction,

and many works have focused on developing efficient feature designs for ASR.

Methods such as linear predictive coding [109] and cepstral analysis [121, 122]

provide a solid basis for advanced techniques such as perceptual linear prediction

(PLP) [72] and Mel-frequency cepstral coefficients (MFCC) [17, 111], which are

the most widely used today.
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The source-filter model of speech is a popular approximation to the nature of

human language which allows for some simplifications that serve as basis for the

principal idea of all pre-processing approaches. Assume that e[n] is the air flow

at the vocal cords, i.e., the source, and h[n] is the resonance of the vocal tract,

i.e., the filter. Then the source-filter model of a speech signal x[n] is

x[n] = e[n] ∗ h[n], (2.5)

where (∗) is the operator for convolution. Most of the relevant information en-

coded in a speech signal is generated by the vocal tract, i.e., the filter h[n],

which changes over time. In order to extract the desired information, one has

to find a method for de-convoluting source and filter [142]. This is precisely

what the above-mentioned methods commonly try to achieve. The general pre-

processing performs some kind of spectral analysis, which is then followed by a

de-convoluting operation. To track temporal changes in the speech signal, the

spectral analysis has to be done on short-term snippets of the speech signal, in

which periodicity is assumed. For that, the pre-processor shifts a window over

the input signal and processes the data frame-wise. A typical window size for

speech recognition would be 25 msec with a shift of 10 msec. This is also known

as short-time spectral analysis. The popular and widely used Fourier analysis,

which makes use of the Fourier transformation is one such method [26].

2.2.1 Fourier Analysis

The Fourier transformation is a method for spectral analysis and effectively trans-

forms a signal by breaking it up into a sum of complex sine and cosine functions

with individual frequencies. The Fourier transformation assumes the input signal

to be infinite and periodic, which is given by the windowing process in form of

quasi-stationary sound snippets.

In practice, the fast Fourier transform (FFT) [26], an efficient algorithm for

the discrete Fourier transform (DFT) is used for the spectral analysis. Applied

to the windowed input, frame-wise power spectra are computed. What follows

after the spectral analysis defines the type of feature vector that is produced.

MFCC and PLP shall be explained exemplarily to lay out the principle idea of

the pre-processing.
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2.2.2 Mel-frequency Cepstral Coefficients (MFCCs)

MFCCs are the most widespread type of features for ASR. They are spectral fea-

tures, warped by a non-linear Mel-scale filterbank to approximate the perceptual

scale of the human ear, and defined over the cepstral domain. MFCCs provide

robustness towards speaker and channel variability by de-emphasizing irrelevant

information with respect to general speech processing tasks. Specifically, the goal

is to preserve the influence of the vocal tract on the speech signal and to re-

move the glottis wave form, i.e., the excitation signal [142]. The pipeline for the

computation of MFCCs is depicted in Figure 2.2.

After windowing the speech signal, FFT is applied to each frame. The result-

ing spectral features are piped through a Mel-scale filterbank. The Mel-scale is

defined as

Mel(f) = 2595 log(1 +
f

700
), (2.6)

where f stands for frequency. The higher frequency bins have a broader band-

width, thereby approximating the auditory properties of the cochlear duct of the

human ear. The inverse discrete cosine transformation (DCT−1) projects the fil-

terbank output into the cepstral space, where the coefficients are “liftered” by

omitting the 0th coefficient and higher-order coefficients. A typical number of

coefficients left after these steps is 13.

2.2.3 Perceptual Linear Predictive (PLP) Features

PLP features are based on the concept of psychophysics of hearing [72]. The

method is identical to LPC with the difference that the spectral features are

transformed to approximate the human auditory system. Similar to the compu-

tation of MFCCs, spectral features are warped with a Bark-scale filterbank. The

Bark-scale can be expressed as [161]

Bark(f) =
26.81

1 + (1960/f)
− 0.53. (2.7)

The filterbank output is weighted by an equal-loudness pre-emphasizer to

account for the human hearing sensitivity. An intensity-loudness pre-emphasizer

transforms the coefficients according to Stevens’ power law.
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Figure 2.2: Pipelines for calculating Mel-frequency cepstral coefficients (MFCCs) and

perceptual linear predictive (PLP) features. The steps marked with dotted frames are

not defining for the respective features, but are commonly used for automatic speech

processing.

Following these transformations, linear prediction is used to compute predictor

coefficients of a (hypothetical) signal that has this warped spectrum as a power

spectrum [73]. The last step is the computation of cepstral coefficients. The full

pipeline is depicted in Figure 2.2.

MFCC and PLP features alike are often further enhanced by additional pro-

cessing steps. To reduce the influence of the channel, cepstral mean variance

normalization (CMVN) is applied by subtracting the average of the cepstral val-

ues. To capture temporal information in form of spectral changes, the first and

second order derivatives of a feature vector, denoted as ∆ and ∆∆, are stacked

on top of it [47].
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2.3. Acoustic Modeling

2.3 Acoustic Modeling

The acoustic model is the sum of all structural and parametric knowledge about

elementary acoustic units of an ASR system. The purpose of the acoustic model

is to provide a method of computing the likelihood of any sequence of feature

vectors, given a specific sequence of words. It is impractical for speech recognition

systems to model words as a single entity. Therefore, words are usually modeled as

a compound of smaller acoustic units such as phones, which themselves are further

decomposed into sub-units. The ideal elementary sub-unit should be defined

so that it can be modeled acoustically precise and statistically robust. Hidden

Markov models (HMMs) are especially useful for modeling dynamic processes

that can be structured into discrete states. The emission of speech observations

is such a process.

2.3.1 Hidden Markov Models

A hidden Markov model is a five-tuple (S, π,A, V,B), where

• S = s1, · · · , sn is the set of all states of the HMM,

• π is the probability distribution of the start states, where π(i) is the prob-

ability of si being the initial state,

• A = (aij) is the state transition matrix, aij being the probability of a

transition from si to sj,

• V is the feature space of bi, where in the discrete case V = v1, v2, · · · ⇒ bi
is a probability, and in the continuous case V = (R)n ⇒ bi is a density, and

• B = b1, · · · , bn is the set of emission probabilities for a discrete V , or emis-

sion densities for a continuous V , where bi(x) is the probability of observing

x when being in state si.

For mathematical correctness the following stochastic constraints must be

satisfied. For start probabilities, it must be
∑n

i=1 π(i) = 1. A common set-up in

practice is π(0) = 1 and π(i) = 0 ∀i > 0. For transition probabilities, it must be

ai,j ≥ 0 ∀i, j and
∑n

j=1 ai,j = 1, i.e., all outgoing transitions of a state si have to

be 1.
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Start Middle End

Figure 2.3: A standard HMM with left-to-right topology.

The AM is comprised of HMMs that each model a particular acoustic unit,

typically a phone, with multiple states to model temporal dependencies. Each

state is considered a sub-unit and is equipped with emission probabilities or den-

sities over possible observations. The AM provides elemental units with which

larger entities such as words and sentences can be constructed by concatenation.

The basic principle of HMM AMs is to approximate P (X|W ) by the concatena-

tion of models in a maximum-likelihood fashion.

The subword based modeling approach, compared to a higher-level modeling

scheme, has several advantages:

• Precision: An acoustic unit is specific to it’s articulation, i.e, elements of the

sound inventory is clearly distinguishable from each other, given appropriate

approximations.

• Robustness: Fewer entities require fewer training data, and smaller units

require less complex models.

• Modularity: With a finite inventory of acoustic units, one can compose

words and sentences of arbitrary length. Ideally, all acts of speech are

derivable by proper concatenation of elemental units, which also guarantees

scalability.

• Transferability: Previously unseen concepts can be modeled by falling back

to elemental units.
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For the purpose of acoustic modeling, we make use of the Markov property

by computing

P (qt+1 = j|qt = i, qt−1 = h, · · · ) = P (qt+1 = j|qt = i), (2.8)

and

aij = P (qt+1 = j|qt = i), 1 ≤ i, j ≤ N. (2.9)

An HMM can be interpreted as a finite state machine that serves as a generator

of vector sequences, where a state qt = i is changed to qt+1 = j once for a

particular point t in time, and a feature vector vt is produced with an emission

probability bj(vt). The joint probability of a feature vector sequence X and the

sequence of visited states S given the HMM λ is calculated as

p(X,S|λ) = aq0q1

T∏
t=1

bqt(xt)aqtqt+1 . (2.10)

The three fundamental problems of HMMs are known as the evaluation prob-

lem, the decoding problem and the optimization problem [134]. Given an existing

HMM, the evaluation problem is the task of computing the probability of how

likely the HMM emits a specific observation. The decoding problem describes how

to compute the most probable sequence of visited states to generate a specific ob-

servation. The optimization problem is also known as the learning problem and

is the task of re-estimating the parameters for a new HMM that emits the given

observation with a higher probability than the initial HMM. The main concern

of HMM AM training is the optimization problem.

The Optimization Problem

The optimization problem raises the question how to adjust the HMM model

parameters (S, π,A, V,B) so that P (O|λ) will be maximized. HMMs can be

optimized iteratively so that for every point i in time Q(λi+1) > Q(λi), where

Q is a pre-defined optimization function. The predominant training strategy is

to maximize the observation probability of the training data, which corresponds

with the evaluation problem for HMMs.

Formally, the optimization problem is to find a λ′ with

32



2.3. Acoustic Modeling

p(X|λ′) > p(X|λ) ,with given λ,X = x1, · · · , xT . (2.11)

There is no known way to analytically solve this training problem, i.e., given

any finite observation sequence as training data, there is no optimal way to esti-

mate the model parameters [134]. It is however possible to choose model parame-

ters that locally maximize the probabilities. With the Baum-Welch rules [11, 10]

and the Expectation-Maximization (EM) algorithm [31] at hand there exist meth-

ods for iterative parameter optimization.

The primary task of training is to optimize all parameters of a state si. For

that, knowledge about the probability of being in a particular state si at time t

when making the observation x1, · · · , xT is required, which is defined as

γt(i) = P (qt = i|X,λ) =
P (qt = i,X|λ)

P (X|λ)
. (2.12)

The numerator of this term is computed by the Forward-Backward algorithm,

which is used to solve the evaluation problem. The probability of being in state

si at time t and making the full observation X can be described as

P (qt = i,X|λ) = P (qt = i, x1, · · · , xt|λ) · P (xt+1, · · · , xT |qt = i, λ) = αt(i) · βt(i),
(2.13)

where αt(i) is the probability of being in state si after having seen the partial

observation x1, · · · , xt, and βt(i) is the probability of being in state si and making

the future partial observation xt+1, · · · , xT . This implies

γt(i) =
P (qt = i,X|λ)

P (X|λ)
=

αt(i) · βt(i)∑
j αt(i) · βt(i)

. (2.14)

According to this formulation it is sufficient for the training algorithm to

know the observation X = x1, · · · , xT and the corresponding γt(i) to optimize

the emission probabilities of an HMM.

The probability of a transition from si to sj when observing X is defined as
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Figure 2.4: Graphical representation of the forward-backward probability computation.

ξt(i, j) = P (qt = i, qt+1 = j|X,λ) (2.15)

=
P (qt = i, qt+1 = j,X|λ)

P (X|λ)
(2.16)

=
αt(i)aijbj(xt + 1)βt+1(j)∑

l αt(l)βt(l)
. (2.17)

Figure 2.4 provides a graphical representation of the forward-backward prob-

ability, i.e., the term in the numerator in Equation (2.17).

By applying the Bayes rule and decomposition by utilization of the α and β

terms, this probability can be expressed as

With α, β, γ and ξ at hand, the Baum-Welch rules can be applied for param-

eter optimization:

a′i,j =

∑T
t=1 ξt(i, j)

γt(i)
(2.18)

is the updated probability for a transition from si to sj, and

π′(i) = γ1(i) (2.19)

is the updated probability of si being the initial state of the HMM.

The update step of the emission probabilities for each state depend on the

nature of the emission probability models. In the continuous case, i.e., when
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using Gaussian mixture models, the EM algorithm is used. In the discrete case,

the Baum-Welch rule

b′i(vk) =

∑T
t=1 γt(i)δ(xt, vk)∑T

t=1 γt(i)
,with δ(xt, vk) =

0 for xt 6= vk

1 for xt = vk
(2.20)

is applicable. In the case of emission probabilities modeled by neural nets,

the Back-Propagation algorithm would be a common choice.

2.3.2 Model Initialization

Several strategies exist for initializing acoustic model training, depending on the

available resources. The three common basic approaches are random initializa-

tion, initialization by parameter transfer, and initialization with labels.

Following the theoretical formulation of the Baum-Welch rules and the EM

algorithm initialization with particular values for parameters is not required. By

definition, HMM training converges to a local optimum with every optimization

step, in strict accordance with mathematical correctness. It is however recom-

mended to choose some start values that pose a good starting point. There are

mainly two reasons for this: The Baum-Welch update rules only guarantee the

convergence to a local optimum, and an unfavorable parameter initialization may

lead to very long optimization cycles. A popular way to initialize parameters is

with a so called flat start, where observations are assigned to HMM states by

distributing them evenly in succession.

Parameter transfer from an existing model to a new model is a form of boot-

strapping. The complexity of a transfer depends on the divergence between the

source and target system. A transfer should be easier if the model structure is

similar. If both models differ significantly, certain parameters might have to be

discarded or modified to fit the new model, if possible.

Initialization with labels is a popular high-level bootstrapping method, where

labels for the training data are typically produced by an existing system for

the target language. Labels are assignments of observations to acoustic units

which can be used to initialize the model of a new system. Automatic labels are

generated by forced-alignment of recordings with matching word based transcrip-

tions. Such transcriptions usually hold a certain level of detail about other speech
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and non-speech events as well, such as articulatory (smacking, breathing, etc.),

linguistic (incomplete words, repetitions, etc.) and environmental noises (back-

ground noise, etc.). Forced-alignment is nothing more than applying the Forward-

Backward or Viterbi algorithm [165, 46] on the transcribed training data using

existing models. Automatic alignments are error-prone or might require map-

pings from one model space to the other, but are typically still good enough for

initializing a new model.

2.3.3 Iterative Optimization

The acoustic model training usually is an iterative process. Phases of parameter

estimation and label writing alternate until convergence or until a stop criterion

is met, such as a flattened out performance curve on a validation set. The iter-

ative process also involves gradual increase of model complexity, for instance by

switching from context independent to context dependent acoustic units or by

increasing the mixture size of the emission probability distributions.

The Forward-Backward algorithm computes the probabilities γt(i) = P (qt =

i|X,λ). This allows a training observation to be assigned to multiple HMM

states at the same time. One downside of the Forward-Backward algorithm is

the increased computational complexity. It is common practice to use the Viterbi

algorithm instead, which computes only the most probable sequence of visited

states:

Q = q1, · · · , qT = argmax
Q

P (Q|X,λ). (2.21)

Consequently, the probabilities γt(i) are approximated by

γt(i) =

0 for i 6= qt

1 for i = qt.
(2.22)

The derivation of EM training for HMM parameter optimization is known as

Viterbi training, which uses the Baum-Welch rules with constraints

γt(i) = δ(qt, si) and ξt(i, j) = δ(qt, si)δ(qt+1, sj). (2.23)

With increasing T , both algorithms result in an almost equally effective train-

ing, with Viterbi training holding the advantage of much faster training and easier
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application of search space restrictions.

2.4 Language Modeling

The language model P (W ) is introducing linguistic constraints into the speech

recognition process. Linguistic constraints are an important factor in recogniz-

ing speech, as the ambiguity of the acoustic signal, or the stream of digitized

observations, is too big, which makes precise recognition a very difficult task.

Language models are estimated from large text corpora written in the target lan-

guage, and typically reflecting the target domain. If a speech recognizer is used

predominantly in the tourism sector, the LM would be trained on tourism related

text data. Optimally P (W ) will give a relatively high probability to likely word

sequences, and a relatively low probability to unlikely or grammatically wrong

word sequences.

The joint probability of a sequence of words (w1, ..., wM) is defined as

P (W ) =
M∏
i=1

P (wi|w1, . . . , wi−1), (2.24)

i.e., for computing the probability of the current word, we consider the context of

the word by going back in time. The issue of this formulation is that seeing the

exact same sequence of words is very unlikely if the size of the context remains

unconstrained. There would simply be no corpus of sufficient size to model all

possible word sequences in a particular language or even just a particular domain.

The most conventional type of LM estimates word sequence probabilities with the

help of n-grams. An n-gram is a count for the occurrence of a specific sequence

of words that has at most a length of n. In other words, n-gram LMs condition

the probability of a word on at most (n − 1) words, instead of considering the

entire context, i.e.,

P (W ) ≈
M∏
i=1

P (wi|wi−n+1, . . . , wi−1), (2.25)

where the conditional word probabilities are computed with the help of n-gram

counts
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P (wi|wi−n+1, . . . , wi−1) =
#(wi−n+1, . . . , wi)

#(wi−n+1, . . . , wi−1)
. (2.26)

Even with a comparatively small value for n, data sparseness remains an is-

sue. Typical values for n range from 2 to 5, where the larger values would require

significantly more data to provide reliable probability estimates. To mitigate the

inevitable data sparseness issue, back-off strategies are used, where the likelihood

computation falls back to lower-order n-grams if higher-order n-grams are un-

available [174, 87]. Smoothing techniques are used to free up a small portion

of the probability mass for unseen words [55, 24]. This is done by discounting

probabilities for seen word sequences.

2.5 Levels of Supervision

Acoustic models, much like any classifier, in practice are trained with varying

levels of supervision, depending on the available data and on the task to solve. A

multitude of raining strategies that rely on different amounts of labeled training

data, on different types of labels or on varying sources. The general scope of

machine learning approaches ranges from fully supervised methods, where the

entirety training data is usually labeled precisely with non to only few errors,

to fully unsupervised methods where no labels of any kind are available a pri-

ori. The range of learning paradigms is illustrated by Figure 2.5. Terms used

to describe the different scenarios between the two extremes are not used consis-

tently throughout literature, the following overview is therefore subject to some

ambiguity.

2.5.1 Supervised Learning

Supervised learning is the learning from data which is properly labeled in its en-

tirety. Most high-performance ASR systems are largely trained with full super-

vision, which makes their development typically expensive and time consuming,

since the producing sufficiently accurate transcriptions requires human workers

with expertise. The objective of supervised training is to maximize the probabil-

ity that the system’s models hypothesize the a priori known reference, or ground

truth.
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Figure 2.5: The zero resource scenario in the context of levels of supervision. The

amount of annotated data refers to the amount of utilized data in the target language.

The amount of human linguistic expertise refers to the amount of utilized expert knowl-

edge such as phone set definitions or hand crafted pronunciation dictionaries.

2.5.2 Semi-supervised Learning

Semi-supervised training is used in cases, where references are only available for a

subset training data and the remainder of the data is without references. Often,

the untranscribed portion of the data is many times larger than the transcribed

one. Whereas manual data transcription is usually very expensive, unlabeled

data is often available in much higher quantities, especially since the advent of

the social web and massive digital online archives. Semi-supervised learning is

a form of inductive learning or self-training [21]. Models that were trained on a

subset of annotated data are used to infer automatic transcriptions of previously

untranscribed data, which is then added into the training process. The objec-

tive is to make the best possible automatic prediction of what was said in the

untranscribed recordings.
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2.5.3 Lightly-supervised Learning

Generally, any kind of data that might serve as reference to the training data can

be exploited for supervision. In ASR, the most common type of light supervi-

sion is inaccurate or fractured transcriptions, which can be useful in combination

with methods such as flexible transcription alignment [43]. Related textual data

is commonly available on a much larger scale than detailed transcriptions, and

loose transcriptions such as closed captions for television broadcasting are pro-

duced with considerably less effort. Non-parallel textual corpora may be utilized

as constraints on the search space during automatic transcription by training a

contextualized language model and dictionary. Multimodal and crossmodal data

has also been shown to be a useful source of information in the absence of true

labels.

2.5.4 Unsupervised Learning

Methods of unsupervised learning can be used for model training when no labels

for the training data are available a priori. The core principle of these methods

is to find the latent structure in the unlabeled data and represent them in form

of models. In the context of AM training this would be analogous to inferring

some kind of label set for the training data without the help of any other su-

pervisedly trained models or systems. One of the challenges lies in the fact that

quality estimation is difficult, which on the other hand would be helpful in dis-

carding erroneous data or data which is unsuitable for training. Unsupervised

learning often profits from alternating iterations of parameter learning and label

re-estimation due to a self-training effect.

2.5.5 Pushing the Limits: The Zero Resource Scenario

The zero resource scenario is a special case of an unsupervised learning problem,

where the raw input signal is the only available data to learn from. Unsuper-

vised learning in the context of automatic speech recognition still utilizes a priori

knowledge and constraints that are based on such knowledge. For instance, the

number and identity of acoustic units for a given target language would usually be

known, whereas the assignment of training samples to these acoustic units would

be subject to unsupervised learning. In a zero resource scenario, no such prior
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knowledge is available. The unsupervised learning problem is therefore expanded

by the aspect of inferring the model structure and model complexity itself. The

zero resource case of machine language acquisition is to a certain extent artificial,

since humans do not only rely on audio input only. Human language acquisition

is a multimodal process, and as argued in the introductory chapter, humans most

likely do not have to start with zero knowledge about the possible forms and ap-

pearances of human sounds. One might therefore want to argue that some form

of basic information, for instance in form of priors, is sensible to expect as being

available. The zero resource scenario as defined here however is still easily jus-

tified as an important research challenge, since it provokes the question whether

prior category knowledge is actually needed in order to infer sensible, meaningful

and robust acoustic units from raw speech only, a question that is also discussed

in linguistic circles (see Section 1.4.1.

As discussed in Section 1.3.2, various approaches to inferring acoustic models

from raw speech have been explored. To date, the most promising works rely

on Bayesian non-parametric modeling techniques such as [95, 22], where Dirich-

let process mixture models (DPMMs) are inferred to segment raw speech and

to represent the unknown number of classes in the raw data by a dynamically

sized set of model components. Bayesian methods such as the DPMM are espe-

cially useful in cases where the number of expected classes in data is unknown.

This is a frequent case when confronted with unlabeled speech data of a po-

tentially unknown, unfamiliar or unexplored language. Following the arguments

in the introductory chapter, this work’s proposed solutions to the unsupervised

subword modeling problem are built upon a Bayesian non-parametric approach.

The following chapter provides an introduction to Bayesian modeling and to the

Dirichlet process mixture model in particular.
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Chapter 3

The Dirichlet Process Mixture

Model

“Der Geist einer Sprache offenbart sich am deutlichsten in ihren

unübersetzbaren Worten.” 1 [166]

– Marie von Ebner-Eschenbach (1830-1916), Writer

This chapter introduces the Dirichlet process mixture model, which is the

basic model that is used and build upon in this thesis. For understanding the

DPMM, the basics of non-parametric Bayesian statistics have to be laid out.

The explanations in this Chapter neither focus on discrete, nor on continuous

distributions. It shall however be noted that throughout this thesis, heavy use

of continuous distributions is made since they are typically used for modeling

speech.

3.1 Probabilistic Modeling

Speech as a major example is a complex process that is usually observed with

noise, variance and may not be observable in its completeness. Probabilistic

modeling is a powerful tool to handle uncertainties like the ones that frequently

occur in speech processing and many other machine learning problems.

Let us assume we have a data set X = {x1, . . . , xN} that is comprised of N

samples. We further assume that these samples are generated from some distri-

1“The spirit of a language is most clearly revealed in its untranslatable words.”
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bution independently. Let Z = {z1, . . . , zN} further be a set of latent variables

that could for instance determine the membership of samples to classes.

A probabilistic model is then defined as a joint distribution

P (x1, . . . , xN , z1, . . . , zN |θ), (3.1)

where θ is a set of parameters that parametrizes the underlying distribution.

A common interpretation of this is as a generative model of the data, and the

inference of latent variables given the observed data is expressed as

P (z1, . . . , zN |x1, . . . , xN , θ) =
P (x1, . . . , xN , z1, . . . , zN |θ)

P (x1, . . . , xN |θ)
. (3.2)

Probabilistic modeling and inference must solve the question of how to es-

timate the underlying distribution – or more practically the parameters that

describe the distribution – that generated the observed data.

The most common way of estimating θ is by maximum likelihood estimation.

Here, parameters θ are set to maximize the likelihood of the observed data:

θ̂ = argmax
θ

P (x1, . . . , xN |θ). (3.3)

With a probabilistic model like this, we can do prediction, i.e., we can predict

new samples that were not included in the observations used for estimating the

model:

P (xN+1, zN+1|x1, . . . , xN , θ). (3.4)

We can also classify previously unseen observations:

ẑN+1 = argmax
z

P (xN+1|θz). (3.5)

Estimating the distribution is a learning problem, and estimating the latent

variables is an inference. The ways of estimating them are quite different, as can

be seen in Equations (3.3) and (3.5).

Maximum likelihood estimation has two fundamental problems. The first is

that by default it does not use any constraints that would prevent the model pa-

rameters to take on unreasonable values. This is particularly a problem when data

sparseness occurs. Imagine a case where phenomena with a very low probability
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of occurring were simply never observed and are thus not part of the training

data used to estimate the underlying distribution. With maximum likelihood

estimation, the probability of observing such a phenomenon would be estimated

to be zero, which is unreasonably low and does not reflect the true underlying

distribution. The other extreme would be to overestimate the occurrence of a

phenomenon that was over-represented in the training data, assigning it a too

high probability during maximum likelihood estimation. The theme is the same:

The likelihood of the training data will certainly be maximal, but the estimated

model might be a poor image of the reality of the true underlying distribution.

The second problem of maximum likelihood estimation is that only a single

unique solution of θ is produced, even though we can actually not be certain of

the values of θ.

Bayesian modeling handles both problems by doing learning and inference

elegantly in the same way. A Bayesian statistical approach does not just use a

single estimation of θ but considers the entire distribution over the parameter

space of θ, given the data, i.e., P (θ|X,Z). The learning problem in the Bayesian

framework is expressed by the posterior distribution of the parameters and latent

variables given the data, which can be decomposed with the help of Bayes’s

law [12]:

P (z1, . . . , zN , θ|x1, . . . , xN) =
P (x1, . . . , xN , z1, . . . , zN |θ)P (θ)

P (x1, . . . , xN)
. (3.6)

One can see that learning and inference is done in one step. We can calculate

the likelihood of the data given the parameters of the distribution as

P (x1, . . . , xN , z1, . . . , zN |θ) =
N∏
i=1

P (xi, zi = k|θ). (3.7)

The denominator contains the normalization term

P (x1, . . . , xN) =

∫
P (x1, . . . , xN , z1, . . . , zN |θ)P (θ)dθ, (3.8)

which is simply the likelihood of the data given all possible parameter values.

Calculating this term is not trivial since calculating the integral over a possibly

infinite number of distributions is unfeasible. One solution to this problem can
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be the use of conjugate priors for that distribution, which will be discussed in the

following Section.

The formulation according to Equation (3.6) requires a prior distribution over

parameters P (θ), which in the Bayesian framework is an efficient component to

regularize learning. The prior probability over parameters can be set according

to a certain prior belief about the likelihood of specific parameter values.

Coming back to the two problems of maximum likelihood estimation, P (θ)

is a powerful tool to avoid disadvantageous parameter values. With the prior,

we can assign low probabilities to parameter values that seem unreasonable, and

higher probabilities to values that are likely or expected to reasonably represent

the underlying distribution of a data set, according to the prior knowledge that

we might have about said distribution.

In the case of speech data, X might represent the occurrence of acoustic

phenomena, i.e., realizations of sounds, and Z might be labels that identify the

sounds. We would like to model the probabilities such that all actually possible

sounds have a probability larger than zero. We would further want to assign

higher probability to sounds that are more likely to occur than others. For in-

stance, English phones are more likely to occur in an English sentence than ele-

ments of very unrelated phonetic inventories. We would also want to give higher

probabilities to – according to our prior knowledge – the few most frequently

occurring sounds, and low probabilities to the larger group of less commonly

occurring ones.

With Bayesian modeling, prediction is now expressed as

P (xN+1|x1, . . . , xN) =

∫
P (xN+1|θ)P (θ|x1, . . . , xN)dθ, (3.9)

and analogous to the above, classification takes the form

P (xN+1|x1, . . . , xN) =

∫
P (xN+1|θz)P (θz|x1, . . . , xN)dθz. (3.10)

3.2 Stochastic Processes

The normalization term in Equation (3.8) in its current form is typically impossi-

ble to compute. One way to enable a feasible calculation is by the use of conjugate

priors for the distribution that is subject to modeling. A conjugate prior has the
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Figure 3.1: Illustration of a probability simplex with K = 3.

property that the product of the prior probability with the likelihood is of the

same form as the prior itself. This property is very convenient because it al-

lows for analytical calculation of the normalization term, without having to solve

the integral. A whole array of probability distributions exists that have with

conjugate priors and are therefore commonly used in Bayesian frameworks [42].

3.2.1 The Dirichlet Distribution

The multinomial distribution, which is of relevance in this thesis, has a conjugate

prior that is defined by the Dirichlet distribution. Let K be the dimension of the

multinomial distribution. The K-dimensional Dirichlet distribution is defined

over the probability simplex ∆K = (π1, . . . , πK). The πi are probabilities with

0 ≤ πi ≤ 1 ∀i ∈ [1, N ] (3.11)

and

N∑
i=1

πi = 1. (3.12)
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3.2. Stochastic Processes

We then say that (π1, . . . , πK) is Dirichlet distributed, or

(π1, . . . , πK) ∼ Dir(α1, . . . , αK), (3.13)

where the parameters α = (α1, . . . , αK) are proportional to the expected proba-

bilities of elements in π. The Dirichlet distribution is of the form

P (π, α) =
1

B

K∏
k=1

παk−1
k =

Γ(α0)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k , (3.14)

where α0 =
∑K

k=1 αk. The normalization term B is calculated in closed form

following [41]. Γ(·) is the Gamma function, an extension of the factorial function.

Let c = (c1, . . . , cK) be the counts of K possibly observable classes. We

can easily confirm that the Dirichlet distribution is conjugate to likelihoods of

multinomial distributions by multiplying both:

K∏
k=1

πckk ·
1

B

K∏
k=1

παk−1
k =

1

B

K∏
k=1

παk+ck−1
k ∝ 1

B̂

K∏
k=1

πα̂k−1
k , (3.15)

where we update α̂k = αk + ck. Therefore, the product is proportional to a

Dirichlet distribution with updated parameters α̂ of the prior distribution (and

updated normalization term B̂).

3.2.2 The Dirichlet Process

The previous section described the Dirichlet distribution, which can be used as

a conjugate prior for multinomial distributions. So far, the dimensionality K

was assumed to be fixed. One can however think of cases where K is not fixed

and/or possibly even infinite. Imagine a probability distribution over all possible

speech sounds that a human can theoretically produce. While passing through

the process of language acquisition, a limited set of phones that the speaker

regularly uses to form speech in his or her native languages takes shape. This set

is certainly not infinitely large, but its size depends on the speakers exposure to

human languages. Since we can not know how many phones a speaker acquired

covering what amount of languages, it might be a good idea to assign even just

a small amount of the probability mass to every possible sound that a human

might be able to produce.
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3.2. Stochastic Processes

Figure 3.2: Visualization of densities with different Dirichlet priors.

Models that follow this formulation are called non-parametric, which refers to

the fact that the model complexity is not fixed. The model can theoretically have

an infinite number of parameters, because K is not fixed in advance. The Dirich-

let process is a framework which helps to model non-parametric distributions. It

has been formally defined by [41] as a distribution over probability distributions.

The main difference to the standard Dirichlet distribution is the parametrization.

Where the Dirichlet distribution is parametrized with a fixed number of param-

eters α = (α1, . . . , αK), the Dirichlet process uses only a single parameter α0,

called the concentration parameter, and the base measure or base distribution H.

Let S be a measurable space, and G be a probability distribution over a

subset of this measurable space. If G is a distribution over S, then a DP is a

distribution over all such distributions. For the standard Dirichlet distribution,

the dimensionality K is fixed. The DP however can be used to sample G’s that

each use a different K. All distributions G are defined over the same, but different

subsets of measurable space. We say that G is distributed according to a DP with
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3.2. Stochastic Processes

parameters (α0, H), or formally

G ∼ DP(α0, H), (3.16)

which means that

(G(S1), . . . , G(SM)) ∼ Dir(α0H(S1), . . . , α0H(SM)), (3.17)

for every subset (S1, . . . , SM) of S, which means that the probabilities that the

G’s assign to any subset of S are Dirichlet distributed, according to the Dirichlet

distribution parameters (α0H(S1), . . . , α0H(SM)).

Some properties of the DP are important to point out explicitly. The base

measureH is the mean of the DP, i.e., E[G] = H, and the concentration parameter

α0 can be considered the inverse variance of the DP:

E[G(Sm)] = H(Sm), (3.18)

V[G(Sm)] =
H(Sm)(1−H(Sm))

α0 + 1
, (3.19)

which means that on average, distributions drawn from a DP appear like the

base measure H. A large α0 results in a small variance and vice versa. The

concentration parameter is also called strength parameter, which refers to the

strength of the DP as prior in non-parametric modeling.

The DP is the conjugate prior for arbitrary distributions over the measurable

space S. Let G ∼ DP(α0, H). We can sample independent samples (z1, . . . , zN) ∼
G, each taking on a value in S, because G is a distribution over a subset of S.

Then the posterior distribution over G is a DP as well:

G|z1, . . . , zN ∼ DP(α0 +N,
α0

α0 +N
H +

N

α0 +N

∑N
i=1 δzi
N

). (3.20)

As can be seen, the posterior base measure is a weighted average between

the prior base measure and the empirical distribution. If α0 → 0, then the

priors influence diminishes and the DP is dominated by the empirical distribution.

The same happens with growing number of observations, i.e., N � α0. This is

known as the consistency property of the DP which says that the posterior DP

approaches the true underlying distribution of the data.
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The DP has been discovered various times and its model can be derived in

different ways as special cases of various stochastic processes [41, 7, 138]. Different

representations of the DP lead to different algorithmic solutions for the inference.

The following Sections will explain some popular metaphors for the DP, which

are the Pólya urn scheme, the Chinese restaurant process and the stick breaking

construction.

3.2.3 The Pólya Urn Scheme

The Pólya urn scheme is a metaphor for explaining the posterior probability of

the DP. Consider the sampling of distributions and observations

G ∼ DP(α0, H), (3.21)

(z1, . . . , zN) ∼ G. (3.22)

The conditional distribution for a new observation zN+1 could then be ex-

pressed as

zN+1|z1, . . . , zN ∼ GN(zN+1) =
α0H(zN+1) +

∑N
i=1 δzN+1=zi

α0 +N
. (3.23)

That means the posterior base measure given the observations (z1, . . . , zN)

is also the posterior predictive distribution of the new observation zN+1. The

process of how the observations zi are sampled is the Pólya urn scheme, or more

specifically a generalization of it called Blackwell-MacQueen urn scheme [15].

The analogy reads as follows. Suppose you sample balls xi with color zi from

an urn G. Each sampled ball then gets replaced in the urn with two copies in

same color than the sampled ball. As more and more balls of the same color are

sampled, the likelihood of sampling yet another ball of the same color increases,

or in other words, the probability is ∝ N . This is also known as the “rich gets

richer” property of the urn scheme. In addition to that, occasionally a ball from

a different urn H can be sampled with a probability ∝ α0, which has a previously

unseen color. The ball is replaced in H and a copy is put into G (note that in

the beginning, when G is still empty, z1 is sampled from H). It is further

lim
N→∞

GN → G ∼ DP(α0, H), (3.24)
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i.e., if the sampling is continued indefinitely, then GN will converge to a DP-

distributed random distribution G.

The urn scheme has an interesting property, which is the clustering property.

If we have Equations (3.21) and (3.22), then the variables (z1, . . . , zN) can take

on K ≤ N unique values (s1, . . . , sk) of S. The values of (z1, . . . , zN) define a

partition of the observations (x1, . . . , xN) over the values of S, or in other words,

xi is in cluster k if zi = sk. Phrased as urn and ball analogy this means that balls

are grouped by their color. This clustering property is expressed more explicitly

in form of the Chinese restaurant process.

3.2.4 The Chinese Restaurant Process

The Chinese restaurant process [2, 128] is another name for the distribution over

partitions such as the Pólya urn scheme generates. Its metaphor for the gener-

ative process is more explicit. Imagine a Chinese restaurant with a potentially

unlimited number of tables and unlimited seating capacity. The first customer

that enters the restaurant will sit at the first table. The second customer can de-

cide whether to also sit on the first table, or to pick a new table. Each customer

xi that enters the restaurant can decide whether to take a seat at any of the

existing tables T = (t1, . . . , tK), i.e., tables at which at least one other customer

already took a seat, or to sit at a new table tK+1. The probabilities of each of

the possible actions are:

P (tk) =
ctk

α0 +
∑K

m=1 ctm
, (3.25)

P (tK+1) =
α0

α0 +
∑K

m=1 ctm
. (3.26)

with ctk being the number of customers that sit at table tk. All customers

at a particular table share the same type of dish, and the customer that picks a

new table will eat a dish that has not been served to any other table before. This

behavior is exactly what Equation (3.23) describes. The assignment of customers

to tables defines a partition, where the dish at the table identifies the cluster, and

all customers that share a table (that is, meal) are members of the same cluster.

From Equations (3.25) and (3.26) it can be seen that α0 governs the number

of clusters, and that the number follows a logarithmic growth. The larger α0 is,
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Figure 3.3: Illustration of the Chinese restaurant process. Clusters (“tables”) are

gradually generated during the course of the process. Observations (“customers”) are

assigned to clusters in order of their generation (their “entering of the restaurant”).

the more clusters are expected. This property is one of the reasons why DPs

are interesting as priors on the components of mixture models, a concept that

is known as the Dirichlet process mixture model (DPMM). Before we come to

DPMMs in Section 3.3, one more important metaphor for the DP called the

stick-breaking process shall be explained.

3.2.5 The Stick-breaking Process

The metaphor of the stick-breaking process or stick-breaking construction [149]

helps understand how samples from G ∼ DP(α0, H) look like. As a reminder,

if we have Equations (3.21) and (3.22), then the variables (z1, . . . , zN) can take

on K ≤ N unique values (s1, . . . , sk) of S. Therefore, another way to express a

particular G(θ) is

G(z) =
∞∑
k=1

πkδz=ŝk , (3.27)

where

ŝk ∼ H, (3.28)

πk = βk

k−1∏
m=1

(1− βm) with βk ∼ Beta(1, α0). (3.29)

With Equation (3.29), we can generate an infinite sequence of weights πk
where

∑
k πk = 1. According to the stick-breaking process, a DP is comprised

of a weighted sum of point masses. The metaphor goes as follows. Imagine

a stick of length 1. A part of the stick can be broken off at length β1. The

53



3.3. The Dirichlet Process Mixture Model
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Figure 3.4: Illustration of the stick-breaking process. The sum of all stick lengths πk

(denoted by red dotted lines) is 1, and the πk are Dirichlet distributed.

length of the broken off part is remembered as π1. The remaining stick can be

broken again, producing more sticks with lengths (π2, . . . , πK) as K → ∞. As

the stick-breaking continues, the stick lengths will become smaller and smaller.

The concentration parameter α0 regulates how the stick lengths are distributed.

The larger the value, the flatter the distribution will be, which is also expressed

by the expectation E[βk] = 1
1+α0

.

A set of weights π is then distributed according to a Griffiths-Engen-

McCloskey (GEM) process [129], i.e.,

π ∼ GEM(α0), (3.30)

which is also known as the stick-breaking distribution. Its simplicity has made

the stick-breaking construction a popular concept to design efficient inference

methods for the DP [76]. The inference of a DP plays an important role in

solving the clustering problem.

3.3 The Dirichlet Process Mixture Model

The most common application of the DP is in fact clustering data by inferring a

DPMM [115, 138]. The DPMM uses a DP-distributed (discrete) random measure

as prior over the parameters of its mixture components. Formally, the basic

DPMM is defined as
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3.3. The Dirichlet Process Mixture Model

G ∼ DP(α0, H), (3.31)

θi|G ∼ G, (3.32)

xi|θi ∼ F (θi), (3.33)

where the θi are the parameters of the mixture component that xi belongs to. xi
has the distribution F (θi). G is the unknown distribution over the parameters,

sampled from a DP. Multiple θi’s can have the same value, and all xi with the same

value θi are considered to be in the same cluster. The θi can be one parameter

or multiple parameters, such as in the case of Gaussian mixtures, where the

parameters would be the mean and the covariance of a mixture component.

With the stick-breaking representation, we can express G according to Equa-

tion (3.27), and the DPMM can be defined more intuitively and as an alternative

to above as

π|α0 ∼ GEM(α0), (3.34)

θk|H ∼ H, (3.35)

zi|π ∼ Discrete(π), (3.36)

xi|zi, θzi ∼ F (θzi), (3.37)

where zi is a variable that assigns an observation xi to a cluster k with proba-

bility πk. The θk are now the parameters that model the cluster k, F (θk) is the

distribution over the data in cluster k, and πk is the mixing proportion of cluster

k within the mixture. Lastly, the base measure H is the prior over the cluster

parameters. As can be seen, the DPMM is a mixture model with a theoretically

infinite number of mixture components. Inferring a DPMM is a popular method

to cluster data when the number of classes is not known a priori. The notion

of an infinite mixture model does however not mean that the number of clusters

would grow infinitely large. The πk decrease exponentially, so that the expected

number of components is logarithmic in the number of observations. Inference is

generally done using Markov chain Monte Carlo (MCMC) sampling algorithms,

such as Gibbs sampling [52] (see Section 3.5).
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3.4 The Dirichlet Process Gaussian Mixture

Model

The Dirichlet process Gaussian mixture model is the infinite extension of fi-

nite GMMs, enriched by the aspect of automatic model selection. Let X =

{x1, . . . , xn} be a set of observations. The generative process of X given a

DPGMM is as follows:

• Mixing weights π = {π1, . . . , πk} are generated by a stick-breaking process

• GMM parameters θ = {θ1, . . . , θk} are generated according to a Normal-

inverse-Wishart (NIW) distribution NIW(mk, Sk, κk, νk) as prior distribu-

tion

• A label zi is assigned to every data point xi, according to π

• A data point xi is generated according to the zi-th GMM component

Now, θk = {µk,Σk} are Gaussian parameters. µk is the mean vector, and Σk is the

covariance matrix of Gaussian component k. The parameter set of the prior NIW

distribution consists of a prior m0 for µk, a prior S0 for Σk, the belief-strength κ0

in m0 and the belief-strength ν0 in S0. Analogous to Equations (3.31) to (3.33),

the DPGMM then is defined as

π|α0 ∼ GEM(α0), (3.38)

θk|λ ∼ NIW(λ), (3.39)

zi|π ∼ Multi(π), (3.40)

xi|zi, θzi ∼ N (θzi), (3.41)

where the stick-breaking process is denoted as GEM(·). λ = {m0, S0, κ0, ν0}
parametrizes the NIW prior.

3.5 Gibbs Sampling

Until here we described a generative probabilistic process of observations and

possible future, yet unseen, data that have some hidden, unobserved structure.

56



3.5. Gibbs Sampling

Figure 3.5: The DPMM in plate notation.

Besides the distribution over the model parameters, it is often the hidden struc-

ture that is of interest in a Bayesian learning problem. The hidden structure can

be inferred by estimating its posterior distribution given the observations. The

actual computation of the posterior distribution however is the problem that has

to be solved. As the posterior is not available in closed form, an approxima-

tion is needed. MCMC methods provide ways of efficient approximation. The

general idea is to define a Markov chain on the latent variables which has the

posterior distribution as its equilibrium distribution. If samples are drawn for

a long enough time from this chain, one eventually draws samples from the real

posterior distribution. For DPMMs, a particularly popular choice of an MCMC

method is Gibbs sampling [116, 76]. Here, the Markov chain is constructed by

considering the conditional distribution of each latent variable given the other

variables and the observations.

For explanatory reasons consider a finite mixture model with K clusters of

which we observed N data points xi and for which we want to infer the latent

cluster assignments zi. Gibbs sampling will alternatively draw samples from the

cluster labels z, the cluster parameters θ and the mixture weights π in an iterative

fashion. The conditional posterior distributions of each variable given all other

variables are expressed as

p(zi = k|other) ∝ p(zi = k|π)p(xi|θk) = πkF (xi|θk), (3.42)

p(π|other) = p(π|z, α0) = Dir(n1 +
α0

K
, . . . , nK +

α0

K
), (3.43)

p(θk|other) = p(θk|{x}k, λ) ∝ G0(θk|λ)L({x}k|θk), (3.44)

where F (xi|θk) is the probability that xi is produced by θk, nk is the number of

data points assigned to cluster k, G0(λ) is the base measure parametrized by λ,

and L({x}k|θk) is the likelihood of the data currently assigned to cluster k, given

the cluster parameters θk.
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According to Equation (3.42), zi would be directly sampled from a Dirichlet

distribution. This sampling becomes difficult in the case where K → ∞. One

can however integrate out π and reformulate the conditional for zi as

p(zi = k|other) =
nk−i

+ α0

K

n+ α0 − 1
F (xi|θk), (3.45)

and with K → ∞ the conditional posteriors for zi = k and zi = K + 1 are

expressed as

p(zi = k|other) =
nk−i

n+ α0 − 1
F (xi|θk), (3.46)

p(zi = K + 1|other) =
α0

n+ α0 − 1

∫
F (xi|θ)G0(θ|λ)dθ, (3.47)

analogous to Equations (3.25) and (3.26).

The Gibbs sampling is presented in detail in Algorithm 1.
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Algorithm 1 Gibbs sampling for DPMMs following the CRP representation.

Require: {θt−1
k }K , {zt−1

i }N from previous iteration t− 1

Ensure: {θtk}K , {zti}N
1: Set z ← zt−1

2: for i = 1, . . . , N do

3: Remove xi from cluster zi, since a new zi is going to be sampled

4: if Cluster zi is empty then

5: Delete cluster zi, decrease K by 1

6: end if

7: Draw a new sample for zi according to

p(zi = k, k ≤ K) ∝
nk−i

n+ α0 − 1
F (xi|θt−1

k )

p(zi = K + 1) ∝ α0

n+ α0 − 1

∫
F (xi|θ)G0(θ|λ)dθ

8: if zi = K + 1 then

9: Create cluster K + 1, increase K by 1

10: end if

11: end for

12: for k = 1, . . . , K do

13: Draw a new sample for θtk according to

θtk ∝ G0(θk|λ)L({x}tk|θt−1
k )

14: end for

15: Set zt ← z
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Chapter 4

Feature Optimized DPGMM

Clustering

“Keine Sprache schreibt, wie sie spricht, sie macht sich Zeichen und

Laute selber.” 1 [181]

– Joseph Stanislaus Zauper (1784-1850), Premonstratensian

Systems that tackle speech processing tasks such as ASR utilize methods to

improve discriminability by tightly integrating feature optimization techniques.

We propose to make use of such methods for supporting DPGMM clustering

based unsupervised subword modeling. Features that show improved class dis-

criminability should naturally be beneficial for solving clustering problems in

general.

Our approach to improving the quality of DPGMM based speech feature vec-

tor clustering is realized by a multi-stage framework. This framework utilizes

multiple feature transformations in conjunction to benefit from additive effects.

We want to make use of speech feature transformations which are well-established

for rich-resource languages to optimize the input features towards discriminabil-

ity. A wide range of transformations can be applied to features for this purpose,

with favorable effects such as dimensional reduction, feature de-correlation or

adaptation to certain conditions in order to minimize variability. Because we

are situated in a zero-resource scenario, we exploit these transformations in an

1“No language writes how it speaks, it makes signs and sounds by itself.”
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unsupervised fashion.

We utilize a standard pipeline for supervised acoustic model training, where

feature transformations are conveniently estimated during the course of the train-

ing process to obtain the transformations. The advantage of this is that well-

established pipelines already exist and are ready to use. In our case, we specifi-

cally decided to utilize the popular Kaldi speech recognition toolkit [132] recipe

“s5”, which employs feature transformations for improving class discriminability,

reducing variance and counteracting adverse signal properties. The disadvantage

of using such pipelines is the requirement of labels for training.

To overcome the issue of not having labels in a zero-resource scenario, we

propose using a multi-stage strategy that alternates between feature vector clus-

tering, label generation and transformation estimation via model training. We

use the DPGMM sampler to generate initial labels for our untranscribed data

by clustering standard feature vectors. These automatic labels serve as basis for

feature transformation estimation by unsupervised acoustic model training. The

transformations are then applied to the standard feature vectors prior to a sec-

ond run of DPGMM based clustering. We explain the individual stages of our

framework in detail in the following Subsections. A graphical overview is given

in Figure 4.1.

4.1 DPGMM Clustering

Dirichlet process Gaussian mixture models – or infinite Gaussian mixture models

– extend their finite counterparts by the aspect of automatic model selection,

i.e., the model finds its complexity through inference automatically given the

data. Model inference is typically sample based using a Markov chain Monte

Carlo (MCMC) scheme such as Gibbs sampling. The DPGMM and its sampling

are described in Chapter 3. The actual sampler used here combines a restricted

Gibbs sampler with a split/merge sampler in an efficient algorithm for fast parallel

processing. For the sampling to be efficient, the standard DPGMM is extended by

– or augmented – by sub-clusters – The following section briefly outlines the main

mechanics of the utilized model and sampler. For more in-depth informations,

please refer to [18].

62



4.1. DPGMM Clustering

DPGMM
clustering

Scoring

fMLLRMLLTLDA

DPGMM
clustering

DPGMM
clustering

DPGMM
clustering

Scoring Scoring Scoring

Transcriptions

Monophones Triphones Triphones
LDA+MLLT

Triphones
SAT

Supervised acoustic model training

S
ta

g
e
 1

S
ta

g
e
 2

S
ta

g
e
 3

Figure 4.1: Scheme of the multi-stage clustering for acoustic unit discovery. In stage

1, standard features are clustered. From frame based class labels, utterance based

transcriptions are generated. In stage 2, feature transformations are estimated with

the help of an acoustic model training pipeline and the automatic transcriptions. In

stage 3, features are transformed with one or more transformations before clustering

them by sampling a DPGMM.

4.1.1 Augmented DPGMM

Figure 3.5 is a representation of the general DPGMM in plate notation. Its gen-

erative process is explained in Section 3.4. Figure 4.2 shows Chang et al.’s [18]

augmented DPMM that uses auxiliary variables to support the split/merge sam-

pling. Each regular cluster is augmented with two explicit sub-clusters, denoted

as l for “left” and r for “right”. The goal is to design a model that is tailored

toward splitting clusters. By picking suitable distributions for these sub-clusters,

they can provide good split proposals for their regular parent cluster. Each data

point is assigned to either the “left” or “right” sub-cluster with a sub-cluster la-
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Figure 4.2: Augmented DPMM by Chang et al. [18], utilizing sub-clusters and super-

clusters. Auxiliary variables are denoted by dotted circles.

bel z̄i ∈ {l, r}. The naming convention implies that the sub-clusters are designed

towards separating the data points into distinct groups within the parent cluster.

Sub-clusters have their own weights π̄k = {π̄lk, π̄rk} and parameters θ̄k = {θ̄lk, θ̄rk}.
It is important to note that in this auxiliary space the data points xi generate the

labels z̄i, in contrast to the regular space where zi generate xi. A super-cluster

label g can be used to group clusters, given a similarity measure.

4.1.2 Inference

The parallelizable sampler of [18] alternates between a non-ergodic restricted

Gibbs sampler and a split/merge sampler to form an ergodic MCMC sampler

which is capable of fast parallel processing.

Restricted Gibbs sampling allows labels zi to be sampled from a finite

set of labels Z. By definition of the DPGMM, the distribution of the mixture

weights follows a Dirichlet distribution.

Split/merge sampling performs operations on the existing components. To

provide good split candidates, each component is augmented with two sub-clusters

with mixing weights πk,l, πk,r and parameter sets θk,l, θk,r, and each observation

of a component is augmented with a sub-cluster label zsubi ∈ l, r.
The Split/merge sampler proposes split and merge moves in a Metropolis-

Hastings fashion. A Hastings ratio H is computed according to the momentary

assignment of observations of a component to its sub-clusters, and a move is

accepted with a probability min(1, H). For the merge step, merges of randomly
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picked components are proposed.

Super-cluster sampling optionally groups similar clusters into super-cluster

groups g, given a cluster similarity measure. The merge step of the split/merge

sampler can also be conditioned on g to only consider merge candidates within

the same super-cluster that the current sample belongs to.

4.2 Unsupervised Audio Segmentation

The data for the challenge’s unsupervised subword modeling task is provided

without segmentation. Technically, no segmentation is required for our method

to work properly. However, we designed an automatic audio segmenter to pre-

process long audio recordings for practical reasons. Pre-segmentation guarantees

scalability with increasing data size and facilitates the proper termination of our

model trainings and decodings. Our segmenter is in essence a silence detector

that cuts the audio in the center of places of silence, which results in a lossless

segmentation.

The detailed procedure is depicted as flow chart in Figure 4.3. For each

recording, we slide over the data with a 0.05 seconds wide sliding window and

determine the root mean squared decibel (RMS dB) values of the loudest and

the quietest windows as dBpeak and dBthrough. We then calculate an optimistic

signal-to-noise ratio (SNR) value as ŜNR = dBpeak − dBthrough. We set a threshold

for classifying segments in the data as silence so that it lies between −ŜNR and

the mean RMS dB value dBlev:

dBthresh =
dBlev + ŜNR

τ
− ŜNR. (4.1)

To find segments of silence that are as long as possible, we modify the sensi-

tivity of the threshold by adjusting the parameter τ accordingly. The tool we use

for silence detection takes as parameters the silence threshold dBthresh and the

shortest permitted duration of silence silLenmin. We impose restrictions on the

resulting segmentation by defining a desired average segment length segLenavg
and a maximum segment length segLenmax. We initialize dBthresh and silLenmin

and segment the data. If these settings don’t lead to a segmentation that meets

the requirements, we re-do the segmentation while alternatingly reducing the

values of dBthresh and silLenmin until the requirements are met, or until some
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Figure 4.3: Flow chart of the unsupervised audio segmentation.

minimal values for the parameters are undershot.

4.3 Estimating Feature Transformations

Our framework for unsupervised subword modeling is built around the DPGMM.

We utilize the sampler for inferring a DPGMM to automatically generate class

labels for unlabeled training data. These labels are used to learn feature transfor-

mations for optimizing the input to the DPGMM sampler, which leads to better

results in a second DPGMM based clustering. As final step we extract poste-

riorgrams for test data from the latest DPGMM and use these as new speech

representation.

The feature optimizing transformations are unsupervised learned by employ-

ing a Kaldi pipeline for acoustic modeling. The argument for this procedure is

that the methods used in such pipelines are well established in speech process-

ing. Feature transformations are commonly used to boost the relevant portions

of a signal, improve class discriminability, and suppress unwanted channel and

speaker variance. For our experiments, we utilize the Kaldi recipe “s5” due to
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its high popularity particularly in speech recognition setups, which applies the

following transformation methods for the respective purposes:

• Linear discriminant analysis (LDA) for minimizing intra-class discrim-

inability and maximizing inter-class discriminability of speech features, as

well as for dimensional reduction of high-dimensional features spanning

larger contexts [44],

• Maximum likelihood linear transforms (MLLT) to reduce complexity

and to de-correlate features [56, 49],

• Feature-space maximum likelihood linear regression (fMLLR) to

reduce speaker variability within speech features [4, 48],

• basis fMLLR for the same purpose, but in cases the amount of data is

insufficient for standard fMLLR [133].

The motivation of using this design in our setup – but also in speech pro-

cessing in general – is as follows. The LDA transformation is applied early in

the pipeline to improve class discriminability and at the same time to reduce the

input size by dimensional compression. An arbitrary number of stacked feature

vectors can cover any desired temporal context, and dimensional reduction after

de-correlation guarantees manageable input vector sizes with acceptable loss of

relevant information. As can be seen, there is a trade-off, and therefore the LDA

output dimensionality is subject to tuning (in speech recognition, however, some

de-facto standard values have been proved to be working well in most scenarios).

MLLT is a method used for further de-correlating features given a model, and is

applied for instance during the training of GMM-HMM acoustic models. Speaker

adaptive methods such as fMLLR are used late in the pipeline to suppress the

undesired influence of speaker variance and typically and are estimated given ex-

isting models. This particular succession is therefore motivated by practicability

and maximizing the positive effects of each step.

Principally, class discriminating properties are critical for clustering methods,

and adaptive feature transformations can help to further reduce variability, for

instance from various speakers. The above mentioned methods can be applied

in conjunction for additive effects. Because we are situated in a zero-resource

scenario, we have to estimate these transformations without any prior supervision.
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What follows is a guidance through our multi-stage clustering framework that

enables us to learn transformations without prior supervision. The explanations

are accompanied by a graphical overview given in Figure 4.1.

4.3.1 Automatic Labeling

The DPGMM as a Bayesian non-parametric model has the convenient property

to automatically find an optimal number of classes given a set of data during

sampling. We use this property and run an initial clustering on standard feature

vectors with derivatives (x′′i ) to get a set of class labels and the hypothesized class

membership zi for all n speech frames. These classes are simply named with the

numeric ID of the Gaussian distribution that most likely produced the respective

feature vector.

4.3.2 Transformation Estimation

The output of the previous step is frame-wise class labels for the data. We col-

lapse the labels for each utterance by compressing all subsequent tokens of the

same type to a single token, i.e., a sequence of labels 1-1-2-2-2-3-4-4-4 becomes

1-2-3-4. This is done to imitate transcriptions based on phone-like units. We use

these transcriptions for transformation estimation by running an out-of-the-box

acoustic model training pipeline. We use a 3-state HMM topology with a skip

from the first state to the next HMM to guarantee that an alignment is always

found, since we cannot guarantee that every label in the transcription covers at

least 3 frames. The training is initialized with a flat-start, i.e., by context inde-

pendent monophone training starting with an equally spaced alignment. Then

we subsequently train context dependent triphones, where during training we

estimate transformations based on LDA, MLLT and fMLLR.

LDA is a well-known linear transformation that we use to minimize intra-

class discriminability and maximize inter-class discriminability of speech features.

Estimating the LDA transformation requires the feature vectors themselves and

their respective class labels. With our pipeline, we create alignments between

utterance HMMs and the automatic textual labels from the previous step and

use the HMM states as classes for the LDA.

We compute the LDA for stacked feature vectors (x̂i), where we use a context
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of c, meaning that we stack the c left and c right feature vectors on top of the

current vector, which is the center vector. Context is an important source of in-

formation to correctly classify speech features. Feature stacking can cover a much

larger context than appending the first and second derivatives, for instance. Di-

mensional reduction of these high-dimensional vectors is done by omitting lower-

ranked coefficients after applying the transformation. Lower dimensional feature

vectors encapsulate relevant information more efficiently and help keep the clus-

tering feasible.

MLLT is computed for distributions of speech observations in the HMMs

of speech recognizers. The main purpose of MLLT in speech recognition sys-

tems is to force the features into a space where diagonal modeling is suitable,

which greatly reduces complexity and thus simplifies computing the model pa-

rameters [56]. The state-dependent transformations are estimated so that the

likelihood of the adaptation data is maximized. Our motivation to use MLLT is

to capture correlations between feature vector components.

fMLLR is an algorithm for speaker adaptive training (SAT). The idea of SAT

is to capture inter-speaker variability in speaker dependent transformations and to

generate speaker independent state distributions instead. Since the transforma-

tions are applied in the feature space, the resulting feature vectors are expected to

show lower variability across speakers. The transformations are estimated based

on alignments with speaker independent features so that the likelihoods are max-

imized. We apply fMLLR in the zero resource scenario because we expect the

transformations to help eliminate variance caused by multiple speakers, which

should intuitively aid the clustering process.

4.3.3 Optimized Clustering

We extract the transformations learned in the previous step as transformation

matrices, which can be readily applied to the feature vectors x̂i prior to a sec-

ond run of DPGMM based clustering. As illustrated in Figure 4.1, we can ex-

tract new feature vectors yi by using one (LDA) up to three transformations

(LDA+MLLT+fMLLR) in conjunction. After applying one or more transforma-

tions, we perform the frame based DPGMM clustering. We compare the clus-

tering quality using the untransformed features with the clustering quality using

each of the transformed features. For that we first extract m sets of GMM pos-
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teriorgrams pmi for our data given each of the m DPGMMs and then score each

of these posteriorgram sets.

4.3.4 Testing

Once the final DPGMMs are sampled in step 3, posteriorgrams pi can be com-

puted for the test data. We pre-process the input with the same transformations

as above. For fMLLR and basis fMLLR, we need to perform a decoding to es-

timate the transformation parameters. The decoding is done with the existing

acoustic model from step 2 and an n-gram language model that has been trained

on the automatic labels from step 1. The posteriorgrams are then forwarded to

the scoring for evaluating their quality (see Section 4.5).

Basis fMLLR is used for test sets that consist of extremely short recordings.

We make the same assumption for the test data as we do for the training data,

namely that each recording is uttered by exactly one speaker, and no two record-

ings come from the same speaker. Standard fMLLR requires a minimum of around

5 seconds of adaptation data per speaker to show positive effects [133]. In cases

of extreme data shortage, basis fMLLR can still help to achieve some benefits

from speaker adaptation. The proposed framework makes use of the standard

fMLLR by default, as shown in experiments described in Section 4.6. We show

the positive effect of basis fMLLR in a particular set of experiments that are

described in Section 4.7.

4.4 Posteriorgram Combination

In this Section, we describe the method that we developed to combine the

output of multiple clusterings. System combination on hypothesis level is a pop-

ular method in speech processing to further improve the output quality. Inspired

by the idea, we developed a method to combine the output of multiple clusterings

on posteriorgram level. The method is formally expressed in Algorithm 2.

The output of each DPGMM m can be represented as a set of posterior-

grams Pm = {pm1 , . . . , pmn } with one posteriorgram for each of the n speech

frames (see Equation (4.3)). Generally, combining multiple sets of posterior-

grams P = {P1, · · · , Pm} is straightforward. For each frame i, we add together
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Algorithm 2 Posteriorgram combination

Require: Set P = {P1, · · · , Pm} of sets of posteriorgrams

Ensure: Combined set of posteriorgrams P̂

1: Ptgt ← random set from P
2: ltgt ← generate labels from posteriorgrams Ptgt

3: P̂ ← Ptgt

4: for all Psrc ∈ P \ Ptgt do

5: lsrc ← generate labels from posteriorgrams Psrc

6: tcooc ← count label co-occurrences in align(lsrc, ltgt)

7: t1best ← keep 1-best mapping from tcooc
8: P̂src ← {}
9: for all p ∈ Psrc do

10: pmap ← map p to space of Ptgt using t1best
11: add pmap to set P̂src

12: end for

13: P̂ ← add together pair-wise posteriorgrams in P̂src and P̂

14: end for

15: P̂ ← normalize P̂

the m individual posteriorgrams {p1
i , . . . , p

m
i } (Operation 13) and normalize the

new vectors (Operation 15):

p̂i =
1

m

m∑
k=1

pki . (4.2)

The result is a new set of posteriorgrams P̂ = {p̂1, . . . , p̂n}.
However, for the non-parametric DPGMM, the amount of found classes and

thus the dimensionality of posteriorgram vectors differs for each clustering run.

Therefore, a mapping between any two sets of posteriorgrams is needed. Given

m sets of posteriorgrams, we randomly pick one of these sets as target set Ptgt

(Operation 1), and consider all other sets as source sets, each denoted as Psrc

(Operation 4).

The mapping from Psrc to the space of Ptgt for any source/target pair works

as follows: We first convert all frame-wise posteriorgrams in Ptgt into frame-wise

labels ltgt by taking the numeric ID of the class with the highest probability

as label (Operation 2). Knowing the frame-wise labels, we can represent each
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Posteriorgram     from       :
Class IDs:

1-best mapping for each class:

Reordering of posteriors:
Posteriorgram         in space of       :

(0.00, 0.01, 0.15, 0.70, 0.09, 0.00, 0.04)
      0,      1,      2,      3,      4,      5,      6
      2,      0,      1,      1,      3,      5,      4

      0,      1,      2,      3,      4,      5
(0.01, 0.85, 0.00, 0.09, 0.04, 0.00)

Figure 4.4: Example of mapping one posteriorgram p from the source set psrc to the

space of target set Ptgt. The 1-best mappings in the mapping table t1best are used to

re-arrange the posteriorgram vector elements to match the posteriorgram vector layout

of the target set Ptgt. There can be many-to-one mappings in case the posteriorgrams

in Psrc have higher dimensionality than in Ptgt.

utterance in our data as sequences of labels. We do the same given all the pos-

teriorgrams in Psrc (Operation 5). For each utterance we now have a pair of

label sequences, which we align to count the label co-occuences tcooc (Opera-

tion 6). Given the counts we identify the single most probable “translation” for

each class ID, which we keep in a mapping table t1best (Operation 7). With the

mapping table it is possible to re-arrange the posteriorgram vector elements for

all p ∈ Psrc to match the posteriorgram vector layout of Ptgt (Operation 10).

Note that there can be many-to-one mappings in case the posteriorgrams in Psrc

have higher dimensionality than the ones in Ptgt. For an intuitive example of

mapping a single posteriorgram, see Figure 4.4.

4.5 Evaluation Method

The evaluation metric we use to measure the cluster quality is based on the min-

imal pair ABX phone discriminability between phonemic minimal pairs [141],

a method which is related to the ABX task used in psycho-physics [107]. We

score GMM posteriorgrams that are computed for each speech frame after clus-

tering, where the posterior probability of the cluster ck, given an observation xi
is computed as

p(ck|xi) =
πkN (x|θk)∑K
j=1 πjN (x|θj)

, (4.3)

where K is the total number of components in the DPGMM and pi =

(p(c1|xi), . . . , p(cK |xi)) forms the posteriorgram for observation xi. θ are the
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Gaussian parameters, and π are the mixing weights (see Section 3.4).

Let A and X be two speech representations of sound categories a, B a speech

representation of sound category b. The ABX phone discrimination error for

categories a and b is

c(a, b) = 1− 1

|a| · |b| · (|a| − 1)

∑
A∈a

∑
B∈b

∑
X∈a\{A}

(δd(A,X)<d(B,X) +
1

2
δd(A,X)=d(B,X)), (4.4)

where δ(·) is an indicator function that equals to 1 if the condition (·) holds

true and is 0 otherwise, and d(·, ·) is the dynamic time warping (DTW) distance

defined over sequences of frame based speech representations (in this case poste-

riorgrams). As in Schatz et al. [141], we use the Kullback-Leibler divergence to

compute the DTW distances.

The idea of the ABX test is as follows. Given a phone based reference tran-

scription of the test data, and the posteriorgrams coming from the DPGMM

sampler, we can identify sequences of posteriorgrams that represent the same

phone-triplets, between which we can compute distances. For example, if A and

X are two different sequences of posteriorgrams that represent the triplet “b-a-g”,

and B is another sequence that represents “b-e-g”, then the distance between A

and X should be smaller than between B and X. If this is not the case, then this

counts as a discrimination error. We collect the errors for all possible pairings

of central phones. The errors are averaged over all contexts for a given pair of

central phones and then over all pairs of central phones. Moreover, we compute

the errors within speakers (i.e., the average phone discriminability error for each

speaker specific portion of the test data) and across speakers.

The strength of the ABX discriminability task as evaluation method is that

the number of classes does not need to be pre-defined. Scores also do not depend

on the number of ground-truth classes. As long as the assumed classes show good

discriminability from each other, the ABX test will reflect that fact by a low dis-

criminability error. This allows a fair comparison of very different representations

of the same data.
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4.6 Experimental Evaluation (ZeroSpeech 2015)

4.6.1 The Zero Resource Speech Challenge 2015

In this section we address the unsupervised subword modeling task of ZeroSpeech

2015, where the goal is to find an appropriate and ideally robust speech sounds

representation of the underlying language of a dataset [164, 34]. The contribu-

tions to the first installment of the challenge in 2015 were diverse. Renshaw et

al. [139] apply a correspondence auto-encoder to learn efficient representations

with the help of matched word pairs generated by an unsupervised term dis-

covery (UTD) system. Badino et al. [8] make use of a deep auto-encoder that

applies a threshold at the encoding layer to generate a binary representation of

speech frames. Thiolliere et al. [160] propose a Siamese DNN training framework

that takes the frames of UTD word pairs as input and minimizes the distance

between frames of the same class and maximizes it between frames of different

classes. Chen et al. [22] – performing best in ZeroSpeech 2015 – take a Bayesian

non-parametric approach and cluster MFCCs with their derivatives by inferring

a Dirichlet process Gaussian mixture model (DPGMM).

4.6.2 Data

The database for all our experiments are the two official data sets of the In-

terspeech zero resource speech challenge 2015 [164], which greatly vary in size,

language and speaking style. One set contains spontaneous, conversational

interview-style American English (4h 59min), extracted from the Buckeye cor-

pus [130]. The other set contains carefully uttered, read speech in Xitsonga (2h

29min), a southern African Bantu language. The latter is an excerpt of the

NCHLT corpus [30]. All speech segments contain non-overlapping speech of ex-

actly one speaker and are free of non-human noises and pauses. We extract about

1.7M frames for English and 0.8M frames for Xitsonga to cluster.

The references for English and Xitsonga contain 165k and 72k phone-triplet

annotations for 39 and 53 unique center phones, respectively. On average, there

are 4.2k and 1.3k samples for each English and Xitsonga phone, respectively. This

allows reliable discriminability error analyses.
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4.6.3 Setup

We use the Kaldi speech recognition toolkit [132] to extract speech feature vectors

for a frame length of 25 milliseconds and frame shift of 10 milliseconds. We

apply mean variance normalization (MVN) and vocal tract length normalization

(VTLN) to all extracted feature vectors.

The used VTLN method is implemented in Kaldi and is of a similar nature

than the one presented in [86]. To estimate the transformations, first a universal

background model (UBM) is trained using the EM algorithm. We set the size

of the UBM to 256 Gaussians and use up to 2M frames for training. The input

is pre-segmented via energy based voice activity detection. Given the UBM, for

31 warp factors ranging from 0.85 to 1.15, linear feature transformation matrices

are estimated by minimizing the sum-of-squares differences between the original

features of some training data and features that are transformed with conventional

feature-level VTLN. The latter is a linear warping function similar to the one used

in [61] that moves the frequency bins around to ensure that all Mel frequency bins

have reasonable widths. Once having learned the feature transformation matrices,

warp factors can be estimated on a per-utterance basis.

All AMs used in our framework are likewise trained with Kaldi, following a

standard scheme for speaker adaptive training (Kaldi recipe s5). Since we work

in a zero resource scenario, all parameters that can be tuned are set to default

values. We use the same parameters as Chen et al. [22] during the DPGMM

sampling to ensure comparability. The sampling is done for 1500 iterations, and

the priors are set so that m0 is the global mean, S0 is the global covariance,

κ0 = 1, and α = 1. The value of ν0 slightly varies and is set to the toolkit’s

default of ν0 = D + 3, where D is the dimension of the input feature vectors.

4.6.4 Baseline

The baseline discriminability error rates were produced by clustering 39 di-

mensional MFCC or PLP vectors with first and second order derivatives

(MFCC+∆+∆∆) with the DPGMM sampler and extracting the GMM poste-

riorgrams, which is the method of Chen et al. [22] 2.

2Despite using the same setup and input feature types, there is a mismatch between the

results of Chen et al. [22] and our baseline. We believe this is caused by the fact that Chen et

al. reportedly use a custom segmentation of the data, where we use the official segmentation of
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For comparison, we computed another set of baseline discriminability error

rates by using principal component analysis (PCA) [126, 74] to transform the

feature vectors prior to the DPGMM sampling. PCA is an entirely unsupervised

method to de-correlate variables with an orthogonal linear transformation and is

closely related to LDA, which makes it a fair basis of comparison for the effect

of the supervised transformations that we learn without prior supervision. The

baseline numbers are found in Table 4.1.

4.6.5 PCA vs. LDA

Figure 4.5 plots discriminability errors of GMM posteriorgrams that were ex-

tracted after clustering PCA or LDA transformed feature vectors. The graphs

show the performance with regards to the output dimensionality of the trans-

formations, i.e., how many coefficients are used after transforming the features

vectors.

Surprisingly, the use of PCA did not show the desired effect of decreasing the

discriminability error after DPGMM clustering. In fact, the discriminability error

of the GMM posteriorgrams increased on the Xitsonga data. On the English data

only little improvement was achieved. The trend is the same whether MFCC or

PLP features were transformed.

On the other hand, the LDA transformation produced feature vectors that

considerably helped the DPGMM clustering process in finding better clusters, as

the discriminability error rates for both data sets decreased greatly, and especially

across speakers a strong performance boost is observable. Interestingly, using

PLP features for the transformations led to better results than using MFCC

features. This is true for both, PCA and LDA transformations.

By using LDA transformed features we already outperform our own baseline

and we also beat the numbers of Chen et al. [22]. We take this as proof that the

unsupervisedly estimated LDA transformation is the better choice to improve

the input to a DPGMM sampler, even when the labels that are used for the

estimation are imperfect. The class-discriminating properties of LDA are much

more valuable than the simple orthogonalizing that the class-unaware PCA can

provide.

the zero resource challenge 2015. Different segmentations can considerably affect the amount

of data actually being used for training.
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Figure 4.5: Discriminability error rates within and across speakers for DPGMM pos-

teriorgrams after clustering PCA or LDA transformed MFCC or PLP feature vectors.

The stacking context size is fixed to c = 4. The results are plotted as a function of the

output dimensionality d of the transformations. Left: Error rates for English. Right:

Error rates for Xitsonga.

4.6.6 Input and Output Dimensions for LDA

The experiments explained above already show that the choice of the output

dimensionality d of transformations influences the clustering performance. We

exemplarily conducted a grid search on the parameters c and d LDA transforma-

tion of PLP features to find out if this is also true for the input dimensionality.

The results of these experiments are visualized in Figure 4.7.

The graphs suggest that the impact of the LDA transformation does not

depend on the stacking context size c. In our experiments, any context c > 2

was suitable. It seems the largest benefit of the dimensional reduction by LDA

transformation lies in the compression of the de-correlated features and not so

much in the coverage of a larger context.

We see that d ≤ 20 works well for the English data, and best results for

Xitsonga are achieved with d ≥ 20. We believe this might be due to the data sets’
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Figure 4.6: Discriminability error rates for the contrastive English data set for DPGMM

posteriorgrams clustering LDA transformed PLP feature vectors, plotted as a function

of the output dimensionality d of the transformations.

differing speech quality. The English data set consists of conversational speech,

and mapping into a lower dimensional space might lead to more stable features

for the clustering. The Xitsonga data is read speech, thus the higher dimensions

of the transformed feature vectors might still contain distinctive informations.

We conducted additional experiments with a contrastive English data set [34]

where we used 38 hours of very clean English read speech to estimate the LDA

transformation. Figure 4.6 shows the error rates on this data set as a function of

d. The error curve flattens out in a similar range of values than observed for the

Xitsonga data set, which shows comparable speech quality. These results might

indicate that d is mainly affected by the quality of the speech.

In a real zero resource scenario we don’t have the option to tune c and d.

One could therefore try and make an informed guess, or more reasonably use

values that have been shown to work well for known languages. We take the

latter approach and fix the context to c = 4 (i.e., we stack 9 feature vectors)

for the input to the LDA, and set the output dimensionality to d = 20 (i.e., we

keep the first 20 coefficients), according to the best overall performance on our

English data set. By using the parameters we tuned on English, we achieve a

performance on Xitsonga that is only slightly lower than the performance that

could be achieved with an optimal parameter set, as can be seen in Figures 4.5

and 4.7.

4.6.7 MLLT

Applying MLLT to LDA transformed features had little to no effect. When we

estimate MLLT with our pipeline, the likelihood of the training data is maximized,
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Figure 4.7: Discriminability error rates within and across speakers for DPGMM poste-

riorgrams after clustering LDA transformed PLP feature vectors with varying stacking

context size c. The results are plotted as a function of the output dimensionality d of

the transformation. Left: Error rates for English. Right: Error rates for Xitsonga.

given the acoustic model that we train along. With the DPGMM, a different

generative model for the same data is assumed. Intuitively, it is not guaranteed

that MLLT works well in such a cross-model scheme, which our results also show

(see Table 4.1).

4.6.8 fMLLR

When we applied fMLLR transformations to the feature vector input for the

DPGMM sampler, we observed a considerable across speaker discriminability

error reduction of the GMM posteriorgrams extracted after the clustering, as

seen in Table 4.1. The relative across speaker error reductions range from 3% to

6%, depending on the data set and the type of the transformed features (MFCC

or PLP), but the crucial point is that in our experiments the improvements are

independent of data amount, language, and feature types.

Besides doing performance tests, we also analyzed the actual effect of the
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Figure 4.8: The figures exemplarily show the 1st and 2nd dimensions of the feature

vectors belonging to an arbitrary English acoustic unit as detected by the DPGMM

sampler. Left is the feature space before, right after applying fMLLR transformations.

The speaker dependent means (black dots) now cluster in a much smaller area.

fMLLR in the feature space. With the frame based class labels from the clus-

tering, we computed the means of the feature vectors for each class and calcu-

lated their average distance from each other. We compared the distances of the

speaker-dependent means for each class before and after applying fMLLR trans-

formations and found an average distance reduction of 19% and 17% relative for

English and Xitsonga. This shows that the fMLLR causes the speaker depen-

dent means to move closer together, a direct result of removing speaker variance

from the features. Interestingly, the speaker independent means of all the classes

moved further away from each other by about 0.7% to 2% relative for English

and Xitsonga, and the variance of the features was reduced on average by about

1% relative for both data sets. This means that the fMLLR also helps to increase

discriminability between classes. Figure 4.8 shows the effect of fMLLR in the

feature space with an example.

4.6.9 Posteriorgram Combination

We were using the DPGMM clustering with various kinds of input features and

combined the different results with the method from Section 4.4. The expecta-

tion was that GMM posteriorgrams from different DPGMM clusterings contain

different kinds of latent information about the data and could complement each
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Table 4.1: Summary of the experimental results. The table contrasts Chen et al.’s

best performance (row 1), our baseline performance (row 2) (for details about the

differences see Section 4.6.4), results using various feature transformations, and the best

posteriorgram-level combination (Comb. V, see Table 4.2) (row 12). Indices for feature

types denote context size, indices for transformations denote output dimensionality.

Features
English Xitsonga

within across within across

MFCC+∆+∆∆ ([22]) 10.8 16.3 9.6 17.2

MFCC4+∆+∆∆ 12.2 19.5 8.9 14.2

MFCC4+PCA20 11.7 19.2 9.8 16.4

MFCC4+LDA20 11.0 16.6 8.7 13.2

MFCC4+LDA20+MLLT 11.0 16.5 8.7 13.1

MFCC4+LDA20+MLLT+fMLLR 11.0 16.0 8.6 12.7

PLP4+∆+∆∆ 11.8 19.6 8.5 13.9

PLP4+PCA20 11.7 18.4 8.7 14.6

PLP4+LDA20 10.5 16.1 8.3 12.8

PLP4+LDA20+MLLT 10.5 16.2 8.4 12.9

PLP4+LDA20+MLLT+fMLLR 10.5 15.6 8.4 12.2

Posteriorgram combination V 10.0 14.9 8.1 11.7

other in combination. To produce candidate outputs for combination, we sampled

DPGMMs

I multiple times with the same input features,

II for various transformed feature types,

III for transformed MFCC and PLP features,

IV for various LDA output dimensionalities,

V for various LDA input dimensionalities.

Table 4.2 lists the amount of DPGMMs used in each combination, along with

their input features. The discriminability errors of the combined posteriorgrams
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Figure 4.9: Discriminability error rates of various posteriorgram combinations. The

dotted line marks the best performance on each data set before combining multiple

clustering results.

are plotted in Figure 4.9. For the combination experiments we focused on the

transformed PLP features, since they generally showed better performance than

transformed MFCC features.

Combining the posteriorgrams of 5 DPGMMs that were sampled on the same

input features (I ) only had a small positive effect on the English data set where

the discriminability errors were reduced slightly, compared to the best single

DPGMM output. We take this as a sign that the DPGMM sampler generally

leads to consistent output, which is why combining results of multiple runs on

identical data is particularly helpful. Combination II showed similar results.

For combinations III, IV and V we combine the posteriorgrams of DPGMMs

that were sampled given more diverse features. The results show that sufficient

diversity is critical for the combination to produce better posteriorgrams. In

all cases, the combined outputs show lower discriminability errors on the English

data set, and can at least match the best single DPGMM output for the Xitsonga

data set.

We achieved best results with combination V, where we combine posteri-

orgrams from DPGMMs that were sampled on transformed PLP features with

varying context size c. The context size governs the stacked PLP feature vector

size prior to the LDA transformation. While it seems that an increased context
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Table 4.2: DPGMMs used for each posteriorgram combination (Comb.). The number

in brackets behind LDA denotes the used output dimension d. For combination V,

eight models were combined, one for each context size c between 1 and 8. The context

size governs the stacked PLP feature vector size prior to the LDA transformation.

Indices for feature types denote context size, indices for transformations denote output

dimensionality.

Combination #DPGMMs Clustered features

I 5 PLP4+LDA20+MLLT+FMLLR

II

PLP4+LDA20

3 PLP4+LDA20+MLLT

PLP4+LDA20+MLLT+FMLLR

III 2
PLP4+LDA20+MLLT+FMLLR

MFCC4+LDA20+MLLT+FMLLR

IV 4

PLP4+LDA16+MLLT+FMLLR

PLP4+LDA20+MLLT+FMLLR

PLP4+LDA23+MLLT+FMLLR

PLP4+LDA26+MLLT+FMLLR

V 8 PLP1≤c≤8+LDA20+MLLT+FMLLR

size does not necessarily help the individual DPGMM sampling in particular (as

can be seen in Figure 4.7), we observed considerable improvements by combining

the posteriorgrams produced by these models (see Figure 4.9). To ensure that

the performance gain is not governed by the choice of the target for the pos-

teriorgram mapping (see Section 4.4), we ran combination V multiple times –

once for each set of posteriorgrams as target – and averaged the discriminability

errors. We found that the average standard deviation across the data is low with

0.05, confirming that the improvements are independent from the choice of the

mapping target. The numbers of this best performing combination are found in

Table 4.1, which summarizes our experimental results.
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4.6.10 Analysis

The improvements we have seen after each step in the pipeline are mostly con-

sistent across the two data sets, with the exception of the improvements by LDA

(see Table 4.1). The reductions by fMLLR (0% within and 3.1% to 4.6% across

speakers) and by posteriorgram combination (3.5% to 4.7% within and 4% to

4.4% across speakers) are comparable across languages. The improvements by

LDA however range from 2.3% to 11% within and 7.8% to 17.8% across speakers,

where the larger improvements were observed on English. We believe this is again

attributable to the conversational nature of the English data, which provides more

room for improvements by LDA. In preliminary experiments on the very clean

contrastive English data set mentioned in Section 4.6.6 we observed lower ranges

of improvement by LDA (1.5% within and 3% across speakers), which supports

our assumption that LDA has more impact on difficult data.

4.7 Experimental Evaluation (ZeroSpeech 2017)

This section describes our contribution to the unsupervised subword modeling

task of ZeroSpeech 2017. We generalize our feature optimized DPGMM cluster-

ing approach by learning feature transformations and inferring subword models

from separate training data and applying these to entirely new data from new

speakers. This is done in a multi-stage clustering framework, where we unsuper-

visedly learn transformations using LDA, MLLT and (basis) fMLLR to reduce

variance in the features. The overview of the refined framework is given by Fig-

ure 4.10. We show in our experiments that our method generalizes well to many

languages and previously unseen data and scales well with increasing (or decreas-

ing) data size. We achieve speaker robustness by blind speaker adaptation even

with extremely few adaptation data. Furthermore, our framework has very little

need for hyper-parameter adjustment and is entirely unsupervised, i.e., it only

takes raw audio recordings as input, without requiring any pre-defined segmen-

tation, explicit speaker IDs or other meta data.
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4.7.1 The Zero Resource Speech Challenge 2017

In ZeroSpeech 2017, the newest installment of the challenge, the focus shifts to

unsupervised subword modeling for previously unseen data, i.e., representations

that were inferred on a training dataset must demonstrate their performance for

a test set that contains unseen data from a new set of speakers. Moreover, it

was the goal to develop methods that generalize well to any dataset in any lan-

guage. To tackle this demanding task, we expanded our previous work that we

started in the aftermath of the first zero resource speech challenge [68, 67, 66],

which in turn drew from the findings of Chen et al. [22]. Specifically, we extended

their idea by introducing a way to automatically learn feature transformations

for unsupervised feature optimization supporting the DPGMM sampler to find

better clusters, which in turn leads to a better subword modeling quality. The

motivation for this is that standard features such as MFCC are not explicitly de-

signed to maximize class discriminability and to minimize the effects for instance

of speaker variability.

4.7.2 Data

The challenge organizers provided five language datasets, three sets of known

languages – English, French and Mandarin – for system development, and two

surprise language sets – LANG1 and LANG2 – for testing. The language sets

vary in data size so that methods can be tested for scalability. Each set is split

into a training portion and three test portions. The training data consists of

unsegmented audio recordings. The test data comes as recordings of 120s, 10s

or 1s length. All files contain speech of exactly one speaker. The speakers

in the test set are unseen, i.e., they are not part of any of the training sets.

No other information about speaker identities is provided. The test sets for the

development data come with references for the ABX discriminability test. Details

of all datasets are provided in [34].
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Figure 4.10: Scheme of the multi-stage framework for unsupervised subword modeling in previously unseen data.
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4.7.3 Setup

For our experiments we only use freely available tools. To extract the different

types of feature vectors, we again use the Kaldi speech recognition toolkit [132].

The specifics are the same as in previous experiments (see Section 4.6.3). For

feature vector stacking we use Kaldi’s default context size c = 4.

The VTLN is done by learning a universal background model on the full train-

ing dataset for each language and subsequent training of a model for extracting

warp factors. The training provides us with warp factors for the training data.

For the test data, we use the trained models to extract warp factors without the

overhead of any re-training.

All AMs used in our refined framework are also trained with Kaldi recipe

s5, with the modification that we train 1-state HMMs. All parameters of this

pipeline are kept at their default values as they come with the recipe. For n-

gram LM training, we use the SRILM toolkit [155] with n = 3 and Witten-Bell

discounting [174].

Our unsupervised audio segmentation method uses SoX and FFmpeg3. We

set segLenavg and segLenmax to 30 seconds. We segment the training portions of

each language dataset, and the recordings of the 120s test sets.

For DPGMM sampling, we use the Dirichlet process mixture sampler by

Chang et al.4, as described in [18, 19]. We use default parameters for the priors

and set the concentration parameter α to 1.

4.7.4 Baseline

The baseline and topline discriminability error rates for all datasets were estab-

lished by the challenge organizers. The former is produced scoring standard 39

dimensional MFCC feature vectors with first and second order derivatives. The

latter is produced by extracting and scoring posteriorgrams from a supervisedly

trained language specific phone recognition pipeline using Kaldi.

The reference point for evaluating the impact of our proposed feature opti-

mization approach is the performance of posteriorgrams that were extracted from

a DPGMM that was sampled given standard 39 dimensional PLP feature vectors

3http://sox.sourceforge.net, http://ffmpeg.org
4http://people.csail.mit.edu/jchang7/code.php
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with first and second order derivatives (PLP+∆+∆∆), i.e., without using any

feature optimization.

All baseline and topline numbers as well as all results from the following

experiments are listed in Table 4.3.

4.7.5 Parameter Tuning

Our pipeline has very little need for parameter tuning. For many parameters

we expected widely used default values to be sufficiently optimized, such as the

ones for the Kaldi model training or the DPGMM sampling. In the case of

the concentration parameter α, Chen et al. [22] have demonstrated that with

increasing complexity of the input features, the influence of particular values

diminishes.

For the feature optimization specifically, we identified the LDA output dimen-

sionality d to be most influential on the performance of the extracted posterior-

grams after clustering transformed feature vectors. For the LDA input dimen-

sionality, which is determined by the feature vector stacking context size c, we

found that any value of c > 2 produces optimal results already. In comparative

tests, results for using c ranging from 3 to 8 were very similar to the default

(c = 4).

Therefore, the only parameter in our entire framework subject to tuning is

the LDA output dimensionality d. We tuned on the development languages by

checking the performances for d ∈ {20, 23, 26, 30, 33, 36, 39}, where the highest

dimensionality is the size of the default PLP+∆+∆∆. The results of these tests

are plotted in Figure 4.11. The graphs show a correlation between increasing

dimensionality, ABX discriminability error of the posteriorgrams extracted after

clustering and number of found DPGMM classes. The error reductions tend

to flatten out with d around 33 for all development sets, which is also when the

number of classes flattens out. To keep computational costs as low as possible, but

still maintaining optimal performance we fixed the LDA output dimensionality

to 33 for all five language datasets.
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Figure 4.11: Errors (primary y axis) and DPGMM classes (secondary y axis) as a

function of feature dimensionality (x axis).
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Table 4.3: Summary of the experimental results. Combination marks the official results for our contribution to ZeroSpeech

2017. Indices for feature types denote context size, indices for transformations denote output dimensionality.

Systems
English French Mandarin LANG1 LANG2

1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s

ABX discriminability errors across speakers

Baseline 23.4 23.4 23.4 25.2 25.5 25.2 21.3 21.3 21.3 23.6 23.2 23.0 30.0 29.5 29.5

Topline 8.6 6.9 6.7 10.6 9.1 8.9 12.0 5.7 5.1 12.8 10.5 10.4 7.1 3.6 4.3

PLP+∆+∆∆ 10.7 9.7 9.8 15.4 13.3 13.2 9.9 8.9 8.9 - - - - - -

PLP4+LDA33 10.3 9.4 9.5 14.4 12.8 12.7 9.6 8.4 8.5 - - - - - -

+MLLT 10.3 9.4 9.5 14.1 12.7 12.6 9.5 8.4 8.4 - - - - - -

+fMLLR 10.0 9.2 8.8 13.9 12.2 11.8 9.2 7.7 7.5 - - - - - -

Combination 10.1 8.7 8.5 13.5 11.6 11.3 8.8 7.4 7.3 11.8 10.0 9.7 13.0 10.0 9.8

ABX discriminability errors within speakers

Baseline 12.0 12.1 12.1 12.5 12.6 12.6 11.5 11.5 11.5 10.3 9.3 9.4 14.1 14.3 14.1

Topline 6.5 5.3 5.1 8.0 6.8 6.8 9.5 4.2 4.0 8.7 7.1 7.0 6.6 4.6 3.4

PLP+∆+∆∆ 7.3 6.3 6.4 10.6 9.3 9.0 9.1 8.2 8.1 - - - - - -

PLP4+LDA33 7.1 6.3 6.3 10.1 9.2 9.0 9.1 8.2 8.3 - - - - - -

+MLLT 7.1 6.4 6.3 10.2 9.2 9.3 9.3 8.1 8.1 - - - - - -

+fMLLR 6.9 6.4 6.1 10.3 9.0 8.6 9.0 8.2 7.8 - - - - - -

Combination 6.8 6.1 6.0 9.7 8.7 8.4 8.8 7.8 7.7 6.4 5.6 5.2 10.8 8.8 8.3
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4.7.6 Handling Very Short Utterances

We found that to reduce the discriminability errors across speakers, the speaker

adaptive treatment of the input features to the DPGMM sampler is crucial. While

the application of LDA and MLLT already lead to improved performance within

as well as across speakers, it is the fMLLR transformations that lead to major

performance gains of up to 12% relative.

Since standard fMLLR is not performing well on very short utterances, which

is especially critical for the 1s test sets, our pipeline automatically falls back to

basis fMLLR for these datasets. We can see that even though the improvements

by basis fMLLR tend to be somewhat smaller, they still contribute considerably

to achieve a better performance.

Although the relative error reductions vary between the datasets, the improve-

ments achieved by applying fMLLR are comprehensive and consistent across the

board, which proves that the speaker adaptation is absolutely vital for producing

high quality results.

4.7.7 Posteriorgram Combination

In previous experiments, we found that the outcomes of different DPGMM clus-

terings can contain latent information about the data that complement each other

in combination. We therefore applied the same combination scheme as in Sec-

tion 4.6.9. The details are as follows.

To generate candidates for posteriorgram level model combination we sample

multiple DPGMMs for input features that vary in the LDA input dimensionality.

This choice of candidates is supported by our earlier findings. The dimensionality

of the input to the LDA is governed by the stacking context size parameter c. We

sample one DPGMM for each c in the range from 2 to 8, compute posteriorgrams

for the test sets with each of the DPGMMs and combine the different results. On

average, the errors are reduced by 3.3% across speakers and 3.0% within speakers

for the development language test sets, compared to using the posteriorgrams for

features that use the default context stacking size c = 4. The error rates after

combination as listed in Table 4.3 are the final and also the official results for our

contribution to ZeroSpeech 2017.
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4.8 Analysis

This year’s challenge also aimed at the ability of methods to scale with increasing

amounts data. We conducted a real time factor (RTF) analysis of the DPGMM

inference (being the critical component in the framework) and found that the run

time increases roughly linearly with the data. The RTFs in ascending order of

the training data size are 0.57 for Mandarin 0.49 for French and 0.56 for English.

Our results show that the benefits from feature optimization also scale well with

the data. Regardless of training data size, test set size and utterance lengths,

we observed consistent and considerable improvements especially by applying

fMLLR even in the extreme cases of the 1s test sets.

4.8.1 Conclusions

We presented a novel approach to optimizing the input of a DPGMM sampler to

improve acoustic unit discovery. We evaluated the quality of acoustic unit discov-

ery by computing ABX discriminability errors for posteriorgrams that were ex-

tracted from DPGMMs. To substantiate the strengths of our method, we demon-

strated its effectiveness on two very different data sets that vary in size, language

and speech quality. We demonstrated that it is possible to estimate supervised

feature transformations without prior supervision, and that these transforma-

tions considerably improve clustering performance. Posteriorgrams of DPGMMs

that were sampled given transformed features showed drastically reduced dis-

criminability errors. The use of multiple transformations at once produced better

results. A method we introduced for combining the results of multiple DPGMM

samplings boosts sound class discriminability even further.

The lowest discriminability errors we achieved are 10% within and 14.9%

across speakers for English, and 8.1% within and 11.7% across speakers for Xit-

songa. Our proposed framework clearly outperforms our own baseline, as well

as the previous state-of-the-art [22]. We believe our approach to optimizing fea-

ture vectors for clustering is universal and will be helpful for other zero and low

resource tasks as well. In future work we will explore the applicability of our

method to other tasks beyond improving automatic unit discovery.

We have shown that our approach to unsupervised subword modeling meets

all the requirements that were imposed for ZeroSpeech. Our results demonstrate
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that our method scales well with increasing (or decreasing) amounts of data.

We have also shown that our framework generalizes well across various datasets

covering many different languages, with very little need for parameter adjustment.

Most importantly, the entire framework is completely unsupervised, requiring no

labels, segmentations or any other meta data to perform subword modeling for

raw speech.
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Chapter 5

Training an Acoustic Unit

Tokenizer

“Jedem Worte klingt

Der Ursprung nach, wo es sich her bedingt.” 1 [167]

– Johann Wolfgang von Goethe (1749-1832), Poet

In this chapter we further expand our unsupervised learning scheme in the

zero resource scenario of our previous studies. We propose to build a full-fledged

acoustic unit tokenizer without prior labels. For that, we combine our iterative

DPGMM clustering framework with a standard pipeline for supervised GMM-

HMM acoustic model (AM) and n-gram language model (LM) training, along

with a scheme for iterative model re-training. Specifically, we sample a DPGMM

to find a dynamically sized set of acoustic units that are optimized with respect to

sound class discriminability. These acoustic units are used to initialize a context

dependent speaker adaptive AM and an acoustic unit based n-gram LM. Similar

to [152, 25] we follow an iterative approach attempting to gradually improve the

trained models by decoding and re-training, but we let the DPGMM sampler

decide the amount and structure of the used sounds.

With our proposed framework it is possible to build a DPGMM-HMM acous-

tic unit tokenizer that is competitive with supervisedly trained phone recognizers,

1“In each word there rings

An echo of the source from which it springs.”
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according to the performance on the ABX sound class discriminability task [141].

The ABX test based evaluation measures class discriminability of posteriorgrams.

This allows a direct comparison of the decoding quality with the clustering qual-

ity of the DPGMM. We show that our DPGMM-HMM recognizer can beat the

baseline set by our previous studies on DPGMMs. We also show that the model

re-training helps improve performance even over multiple iterations. Our re-

sults indicate that the contextual information encapsulated in the LM consid-

erably helps the sound class discriminability. Useful models can be unsupervis-

edly learned even on minimal amounts of data. We argue that by utilizing the

DPGMM-HMM framework it is possible to build a state-of-the-art acoustic unit

tokenizer without any prior supervision.

5.1 Acoustic Unit Recognition

The automatic labels generated with the method described in the previous chapter

can be used to train acoustic and language models fit for decoding. This step

uses the same standard pipeline for supervised training as for estimating the

feature transformation, now with the objective to decode the target data with

the resulting model in combination with the LM. The acoustic unit recognition

scheme is depicted in Figure 5.1. The data sets we use in this zero resource setting

are the only resources we have for training and testing, thus the entire training

and decoding pipeline is designed for x-fold cross-validation.

5.2 Training

5.2.1 Acoustic Unit Discovery

To solve the task of acoustic unit discovery, we utilize a DPGMM sampler to

cluster extracted speech features into various sound classes. The set size is deter-

mined dynamically by the Bayesian approach. Our method is based on [22], but

has been modified by us in previous work to incorporate automatically estimated

linear feature transformations which proved to be very helpful in constructing

good features for boosting the clustering quality (see Chapter 4). Because many

useful feature transformations need labels for estimation, we use a multi-staged

clustering framework that automatically finds frame-based class labels in a first
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Figure 5.1: Scheme of the DPGMM-HMM acoustic unit recognition framework.

x1 · · ·xn denotes the input feature vectors. The model training for acoustic unit recog-

nition is iterative, where the models of iteration i = 1 are trained on the initial labels

from the acoustic unit discovery step, and the models of iteration i ∈ {2, . . . , imax} are

trained on the hypotheses of iteration i− 1. p̂1 · · · p̂n denotes the posteriorgrams after

DPGMM sampling. pi1 · · · pin denotes the posteriorgrams after decoding in iteration i.

run of clustering standard speech features, estimates feature transformations to

transform these features and re-clusters the transformed input in a second run.

The clustering scheme is depicted in Figure 5.1.

Speech feature transformations used by our framework help to project feature

vectors into a more suitable sub-space for sound class discrimination by feature

de-correlation and speaker adaptation. To estimate various transformations we

train an AM by exploiting a standard pipeline for supervised training. During

the course of the training we learn transformations via linear discriminant analy-

sis (LDA), estimating maximum likelihood linear transforms (MLLT) and using

feature-space maximum likelihood linear regression (fMLLR). LDA helps to min-
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imize intra-class discriminability and maximize inter-class discriminability of the

speech features and to enable dimensional reduction of high-dimensional stacked

feature vectors. The state-dependent MLLTs maximize the likelihood of the tar-

get data. fMLLR helps to capture inter-speaker variability in speaker dependent

transforms and to generate speaker independent state distributions instead.

We produce automatic labels by sampling an initial DPGMM given standard

feature vectors with their derivatives. The output consists of generic class labels

and the hypothesized class membership of every speech frame. Each class is

simply named with the numeric ID of the Gaussian that most likely produces the

respective feature vector.

The frame-wise labels serve as basis for the subsequent transformation estima-

tion. We collapse the labels for each utterance to emulate a more natural textual

reference by compressing all subsequent tokens of the same type to a single to-

ken. We initialize an AM by context independent monophone training. Then we

subsequently train context dependent triphones on untransformed standard fea-

tures. During this model training we automatically learn LDA transformations

using the acoustic states as classes. The MLLTs are learned given the initialized

HMMs, and fMLLR is based on alignments with speaker independent features.

5.2.2 Acoustic Model Training

The acoustic model training makes use of automatic transcriptions that are

produced by collapsing the class label output from the multi-stage DPGMM

clustering. The transcriptions are used to initialize context and speaker in-

dependent GMM-HMM monophone models, see Figure 5.2. Multiple itera-

tions of increasingly complex training followed by label writing result in speaker

adaptively trained context dependent triphones. The pre-processing produces

LDA+MLLT+fMLLR transformed feature vectors.

A commonly used topology for acoustic modeling is left-to-right 3-state HMMs

with or without skip states because of its suitability to model phone inventories

crafted by linguists. It is not guaranteed, however, that automatically discovered

acoustic units share the temporal properties of phones in the linguistic sense.

Thus, our setup is designed to also operate with alternative HMM topologies.

The language model training produces an n-gram LM on the same automatic

transcriptions, where the transcriptions are used as-is, i.e., no additional filtering
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Figure 5.2: Left: Scheme of a sampled DPGMM. Super-clusters are visualized with

different line styles. Each Gaussian represents one sound class, denoted by a generic

ID. Right: DGPMM-HMMs trained on the DPGMM label output.

or cleaning is performed prior to training. The LM is based on the class labels,

thus captures the phonotactics of the data, given the generic acoustic units.

The DPGMM sampler used to generate the automatic labels can sample labels

that group several clusters according to some cluster similarity measure. These

super-cluster labels can be used as an alternative to the normal cluster labels, thus

effectively reducing the amount of potential acoustic units to be trained. Making

use of this reduced set of classes makes sense when the amount of clusters found

during DPGMM sampling is considerably higher than the size of commonly used

phone or sound inventories.

5.2.3 Decoding

The decoding is performed with the generic acoustic unit based AM and LM,

and in turn produces acoustic unit based hypotheses, i.e., essentially resembling

a “phone” recognizer. Because naturally we do not have a development data set

at hand, we use default values for all parameters that might be subject to tuning,

such as beam sizes and model weights.

5.2.4 Iterative Re-training

A first system sys1 is initialized with the help of the transcriptions that were

produced by formatting the DPGMM output. By default, we iteratively re-train

AM and LM simultaneously by using the hypotheses produced with system sysi−1

to build system sysi in iteration i ∈ {2, . . . , imax}. The iterations after building

system sys1 can alternatively be restricted to one model type, i.e., either the AM
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Table 5.1: The baseline results provided by the DPGMM clustering (DPGMM ), the

top-line result provided by the supervisedly trained phone recognizer, and the optimal

results for each condition given our proposed setup (both DPGMM-HMM ).

Features
English Xitsonga

within across within across

DPGMM ([22]) 10.8 16.3 9.6 17.2

DPGMM ([67]) 10.6 15.7 8.4 12.2

DPGMM-HMM (supervised) 12.5 16.6 6.7 11.2

DPGMM-HMM 11.1 15.1 8.2 11.6

or the LM is the sole subject of iterative re-training.

It is straightforward to replace the transcriptions of the previous training step

with the hypotheses. After each iteration, we evaluate the system performance

by extracting frame-wise acoustic unit posteriorgrams and measuring their ABX

sound class discriminability.

5.3 Testing

The evaluation metric we use to measure the cluster quality and the decoding

quality is the ABX phone discriminability between phonemic minimal pairs [141],

as described in Section 4.5. The provided toolkit allows the easy evaluation of

posteriorgrams which we can extract after DPGMM clustering as well as after

decoding.

Each acoustic unit being found via DPGMM clustering (and used for acoustic

modeling for the decoding approach) is considered a phone in the context of

the evaluation. We compute GMM posteriorgrams for each speech frame after

clustering as described in Section 5.2.1 and acoustic unit posteriorgrams after

decoding as described in Section 5.1, and score them in the same manner. Both

types of posteriorgrams share the same structure due to the fact that the sound

units of the AM are identical with the DPGMM classes.
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5.4 Experimental Evaluation

5.4.1 Data

We use the official test sets of the Interspeech zero resource speech challenge [164]

for all our experiments, as described in Section 4.6.2. These are data sets for

American English (4h 59min) and Xitsonga (2h 29min).

5.4.2 Setup

For the feature vector clustering via DPGMM sampling, we use the same initial-

ization and parameters than in [68, 67].

We use the Kaldi speech recognition toolkit [132] to extract PLP speech fea-

ture vectors for a frame length of 25 milliseconds and frame shift of 10 millisec-

onds. Mean variance normalization (MVN) and vocal tract length normalization

(VTLN) is applied. All AMs used in our framework are likewise trained with

Kaldi, following a standard scheme for speaker adaptive training (Kaldi recipe

s5). All parameters that can be tuned are set to default values. To form the

input for LDA estimation, we stack the standard PLP features with a context of

4, meaning that the 4 left and 4 right feature vectors are stacked on top of the

current vector, which is the center vector. The LDA output dimensionality is 20

for feature transformation prior to DPGMM clustering, and set to the default

value 40 for the decoding. We use a either a modified 3-state HMM topology

with a skip from the first state to the next HMM, or a 1-state HMM topology.

To train the n-gram LMs for our experiments, we use the SRILM toolkit [155]

with Witten-Bell discounting [174] and no pruning. We set n = 4 for all decoding

experiments.

5.4.3 Baseline

The baseline for the DPGMM based feature vector clustering performance was

set by Chen et al. [22], which won track one of ZeroSpeech 2015 [164]. This sys-

tem has been outperformed by our clustering setup using feature transformations

as described in Chapter 4. We found that PLP feature vectors are consistently

leading to a higher clustering quality than MFCC feature vectors. We also found

that the stacking context parameter c = 4 prior to LDA transformation and LDA
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output dimensionality d = 20 are good values to work with. With the applica-

tion of LDA we were able to produce feature vectors that considerably helped

the DPGMM clustering process to find better clusters. Further, the transforma-

tions learned with fMLLR during the speaker adaptive training helped boost the

discrimination capabilities across speakers.The performance of Chen et al.’s and

our setup is listed in Table 5.1.

5.4.4 Decoding with Acoustic Units

We trained an AM and a 4-gram LM given the classes discovered during the

DPGMM clustering. Because training and test data are identical in our scenario,

we use 12-fold cross-validation for training the models for decoding. The cross-

validation ensures that the measured performance is an indicator of how well

the learned models generalize, besides showing that they are generally capable of

representing the training data. The models are used to decode the cross-validation

left-out portion of the data. The decoding hypotheses were subsequently used

to re-train the models for another iteration of decoding. This was done multiple

times to measure a potentially positive effect of iterative unsupervised re-training

on the decoder performance.

To get a top-line performance for the decoding with acoustic units, i.e., the

kind of performance we can expect if we had an optimal set of acoustic units and

(near) perfect transcriptions to learn models, we also trained a normal AM and

phone-based 4-gram LM with the same setup given the original references and

decoded the target data with 12-fold cross-validation. All results are listed in

Table 5.1.

The performance of the DPGMM-HMM acoustic unit recognizers is depicted

in Figure 5.3. Even though a general tendency to convergence is not observable,

one can see that multiple iterations of model re-training tend to have a positive

effect. The error across speakers drops for the recognizers for both languages even

after 3 or more iterations, whereas the positive effect diminishes more rapidly

within speakers.

The acoustic unit recognizers are competitive when compared to the super-

visedly trained phone recognizers. For English, our proposed setup can even beat

the supervised system according to ABX discriminability within speakers.

The posteriorgrams after decoding start off with a higher discriminability error
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than the posteriorgrams after DPGMM sampling, which were used to generate

the labels for the decoder training in the first place. In other words, a performance

loss is observable by attempting to train more complex models. However, a steady

performance improvement is observable for the discriminability across speakers,

while the error rate within speakers remains relatively stable. We take this as an

indicator that the models do have the capacities of still learning more from the

data.

5.4.5 Using Super-cluster Labels

The DPGMM sampler can sample labels that group several clusters according to

some cluster similarity measure, in this case the J-Divergence [99]. We used the

super-cluster labels as an alternative to the normal cluster labels to effectively

reduce the amount of potential acoustic units. The number of clusters found

during DPGMM sampling usually is in the hundreds, whereas the sampled super-

clusters are in the range of tens, raising the hope that they resemble more phone-

like units. As can be seen in Figure 5.3 we indeed observed a performance gain

when training the models on super-cluster labels, supporting our assumption that

the super-clusters might be more suitable to describe the target data.

5.4.6 Modeling Sounds with Single States

The fact that we were not able to beat the DPGMM clustering in the ABX

task led us to assume that the acoustic units we found might not quite resemble

phones as defined by linguistics. An analysis has shown that the average length

of our automatically inferred units by DPGMM clustering is 2.3 frames, whereas

the average length of the ground-truth phone classes for the used test data is

around 8 frames. Due to the Gaussian approximation of the mixture model,

inferred units resemble relatively short, stationary sound phenomena. Therefore,

the found units are potentially too short to be modeled accurately with 3 states,

resulting in poor or even failing alignments of audio sequences to 3-state HMM

sequences. Thus we also conducted decoding experiments with 1-state HMMs

instead of 3-state HMMs. By simplifying the models in this way we observed a

considerable performance gain. Apparently, the data can be represented more

accurately with chained single state HMMs.
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The posteriorgrams after decoding with 1-state HMMs outperform the

DPGMM posteriorgrams in all but the within speaker discriminability test for

English. It is also noteworthy that the model training seems to saturate after

fewer iterations than before, possibly due to the reduced complexity of the AM.

We now see optimal performance after the third iteration at the latest. The pro-

posed system also clearly outperforms the supervisedly trained phone recognizer

for English by showing a relative improvement of 9% to 11% in sound class dis-

criminability performance. For Xitsonga, the performance of the automatic sound

units is fairly close to the performance of the supervisedly trained recognizer.

5.4.7 Selective Re-training

We conducted experiments to analyze the isolated effects of AM and LM re-

training. In two lines of experiments we only re-trained one of the two model

types each. The results that are depicted in Figure 5.3 allow conclusions re-

garding the importance of the amount of available data: For English we see an

improvement when simultaneously re-training AM and LM. If both model types

are re-trained exclusively, with the other model kept fix after iteration 1, the per-

formance remains suboptimal. If the same test is done for Xitsonga however, one

can see that the AM tends to deteriorate very quickly with new iterations of re-

training. This is a strong indicator that the amount of training data is insufficient

to reliably estimate models with multiple iterations. The LM re-training seems

more robust but also suffers from multiple iterations. The combined re-training

of both model types yields suboptimal performance compared to re-training the

LM exclusively. The deteriorating AM is simply overpowering the benefits of an

LM.

5.5 Conclusions

We proposed to build an acoustic unit recognizer without any provided labels by

utilizing a Bayesian DPGMM sampler to unsupervisedly discover acoustic units in

the target data for subsequent acoustic and language model training on automat-

ically generated labels. The resulting DPGMM-HMM acoustic unit recognizer

was used to solve the ABX sound class discriminability task. Multiple iterations

of decoding and model re-training proved to be suitable to boost performance.
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We showed that the automatically discovered acoustic units differ from phones in

the sense that they seem generally shorter and resemble more stationary sound

phenomena, which can be attributed to the Gaussian approximation of clusters

by the DPGMM. We demonstrated that the contextual informations modeled by

the LM considerably help discriminating sounds and that the sound class dis-

criminability after DGPMM clustering can be outperformed by introducing such

contextual knowledge. With our proposed framework it is possible to build a

DPGMM-HMM acoustic unit recognizer that is competitive with supervisedly

trained phone recognizers. Useful models can be unsupervisedly learned even

on minimal amounts of data. A recognizer build in this way without any prior

supervision can serve as basis for further and more sophisticated system devel-

opment. In future work we plan to utilize such initialized systems to also infer

lexical knowledge from the data to boost recognition performance and to enable

automatic generation of lexica for new languages.
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Figure 5.3: Error rates within and across speakers for both languages in dependency

of the model training iteration. The black horizontal line marks the baseline set by

the best DPGMM clustering. AM re-training and LM re-training denote systems with

exclusively re-trained AM or LM, respectively. 1-state HMMs denotes systems that use

the single state topology instead of the default. Systems have been trained either on

the normal DPGMM label output or on the super-cluster labels.
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Chapter 6

Dirichlet Process Mixture of

Mixtures Model

“Les langues, comme les arts, n’ont point de bornes connues.” 1 [58]

– Antoine François Prévost (1697-1763), Novelist

Dirichlet process mixture models (DPMMs) [41, 7] are firmly established in

pattern recognition and machine learning. Also known as infinite mixture mod-

els [138], they elegantly extend finite mixture models by the aspect of automatic

model selection. This property makes them a popular tool for solving clustering

tasks that are challenging with regards to estimating model complexity a pri-

ori. Several extensions to the original concept have been introduced over time,

most notably hierarchical models [159, 20] and Dirichlet processes (DPs) with

dependencies [105, 106].

DPMMs with Gaussian components gained increased interest in the field of

low resource automatic speech processing, particularly as method for tackling the

task of unsupervised subword modeling. The task is to infer acoustic units from

raw audio data that are suitable to reliably represent human speech, i.e., that

show low discriminability errors. DPMM samplers were used for subword model

inference in an array of works related to the zero resource speech challenge [164,

34, 22, 23]. The idea is that each Gaussian in a mixture model that was inferred

from speech data is considered a separate acoustic class. The method introduced

in Chapter 4 of this thesis improved unsupervised subword modeling via DPMM

1“Languages, like the arts, have no known limits.”
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sampling by unsupervisedly transforming the sampler’s input.

A major impediment for producing better subword models however is the

simplicity of the inferred model. It is a long standing modeling assumption

that speech observations, i.e., feature vectors that belong to specific sound cate-

gories, are multimodally distributed [136]. In practice, Gaussian mixture models

(GMMs) are well established to model acoustic units such as phones [148, 97],

and methods such as continuous hidden Markov models (HMMs) make use of

state-dependent GMMs as multimodal distributions to model emission probabil-

ities of speech observations [170, 136]. It seems therefore an oversimplification to

assume single unimodal distributions to be a good model representation for in-

dividual sounds. This assumption limits the inferred units to represent generally

very short stationary sound phenomena (see Chapter 5).

DPMMs work very well when the clusters in a data set are unimodally dis-

tributed. But problems arise when clusters follow more complex, e.g., multi-

modal, distributions. In such cases, a model that fits unimodal distributions

(e.g., single Gaussians) to clusters tends to over-fragment the feature space and

to suggest more clusters than actually present. In other words, real clusters

tend to be represented by multiple components, i.e., “sub-clusters”. However,

without dependency modeling in DPMMs, inferred “sub-clusters” are considered

independent and the relations between them are lost. The consequence is that

the inferred clusters do not reflect the actual structure in the data. To more

accurately approximate multimodally distributed clusters, a model that assigns

multiple mixture components to each cluster would be required [178].

We consider unsupervised subword modeling to be such a problem where the

ability to infer multimodal clusters from a data set can provide models that

represent the real underlying data distribution more accurately. The expectation

is that a mixture of clusters, where each cluster is a mixture itself, should be a

better representation of acoustic units with favorable characteristics. Specifically,

one would expect the number of inferred classes to be lowered, the overall model

size therefore be reduced. At the same time, average durations when classifying

sequences of sounds should be longer. Sound representations should also be more

robust across data of different speakers and show higher discriminability due to

more natural modeling.

We develop a sampler for a Dirichlet process mixture of mixtures model (DP-

MoMM) to overcome the limitations of DPMMs and to enable the inference of
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a mixture of multimodal clusters. In our proposed DPMoMM, each cluster is a

mixture of components, and the collection of clusters forms a global mixture of

mixtures. Throughout this chapter, we will use the following terms to describe our

model. Each mixture in the global mixture of mixtures is called a cluster. Each

cluster is a mixture of cluster components. Cluster components can be shared

across clusters, which is why they exist on a global level. We borrow a term from

automatic speech recognition and call the global collection of components that

can be part of a cluster a codebook. When we speak of codebook components or

simply components, we refer to the global components that make up the code-

book. A codebook component is a cluster component (i.e., a member) in at least

one cluster, and each cluster component is identical with exactly one codebook

component. The difference is that the same component has different weights in

different clusters (if it belongs to more than one). Besides that, each codebook

component has a global weight. An intuitive illustration of this model is provided

in Figure 6.1. The detailed description of the model and its parameters is given

in Section 6.2.

We build on the idea of Chang et al. [18] and develop a split, merge and switch

sampler with the following characteristics: (1) our sampler jointly infers a global

codebook of components, and clusters which are mixtures that are defined over

this codebook; (2) split and merge moves modify codebook components; (3) split,

merge and switch moves modify cluster components; (4) all sampling steps can be

parallelized across clusters and components; (5) the jointly inferred codebook and

the mixture of mixtures provide two alternatives to model the same underlying

data.

We demonstrate in unsupervised subword modeling use case experiments on

real speech data that our DPMoMM sampler is superior to a DPMM in terms

of inferring models that are better representations of the underlying data struc-

ture. Specifically, with our method we infer mixtures of Gaussian mixtures from

real speech observations that consistently show higher quality on several subword

model evaluation metrics. For that, we extract frame-wise speech feature vectors

from a data set and use our proposed sampler to cluster these speech observations

into classes. In a standard DPMM, each class is represented by a single Gaus-

sian, whereas with our proposed DPMoMM, each class is represented with its own

GMM. This way we infer fewer clusters that represent subword units more con-

sistently across speakers and that show longer average durations. We also show
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Figure 6.1: Illustration of the mixture of mixtures model. The codebook is a global

collection of components. Clusters are mixtures, defined over the codebook.

that an additional switch sampler supports the convergence of the algorithm.

6.1 Related Work

The hierarchical Dirichlet process (HDP) is a well-known method for sampling

mixture models that employ a hierarchy [159, 20]. The HDP can be used to

infer topics that are shared between multiple documents, i.e., groups of data. An

analogy between HDP and DPMoMM can be drawn to the following extent. A

document in the HDP is a mixture of topics, just as a cluster in the DPMoMM

is a mixture of components. Documents in the HDP share topics from a global

set, just as clusters in the DPMoMM can share components from the codebook.

The similarities between the models end at this point, however. The HDP differs

greatly from the DPMoMM by assuming that a particular grouping of data into a

finite set of documents is known a priori. Topics are assumed to be shared across

documents, and each document is assumed to have its own particular distribution
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of these topics. Topic mixtures that describe individual documents can heavily

overlap each other if they have many topics in common. In contrast, our proposed

model does not assume a pre-defined grouping of data into document-like clusters.

Instead, the DPMoMM sampler infers an unknown number of clusters within

ungrouped data, comprised of an unknown number of components each. Our

method infers a mixture of mixtures, i.e., a group of clusters which itself forms

a mixture model with explicit mixture weights. In the DPMoMM, clusters are

groups of neighboring components, and clusters do not tend to occupy the same

regions in the feature space.

More related to our DPMoMM is the infinite mixture of infinite Gaussian

mixtures (I2GMM) by Yerebakan et al. [178]. The I2GMM is a generative model

that represents each cluster within a data set with its own mixture model. Here, a

top layer DP defines meta-clusters, and lower layer DPs model the cluster data as

a mixture of components. The top layer generates cluster parameters according

to a base distribution H and defines the number and local expansion of clusters.

The cluster parameters in turn define base distributions Hk for the lower layer

which control the number and local expansion of cluster components. Covariance

matrices are shared across components within the same cluster, leaving compo-

nents to only differ in their means. In contrast to the I2GMM, our proposed

model does not define a prior over cluster appearances in form of meta-clusters.

Instead, DPMoMM clusters can take on any structure that the data might in-

form. DPMoMM components also have their own covariance matrix each, which

allows more natural approximations to the data. Further, unlike the I2GMM, the

DPMoMM supports the sharing of components across clusters, which enables the

sharing of statistical strength [159].

Dependent Dirichlet processes are suitable to capture time dependencies be-

tween clusters or samples [184, 57, 16]. Temporal dependencies might in certain

cases be reflected by locality in the feature space. With the DPMoMM, we pro-

pose a new kind of model sampler that explicitly infers a mixture of multimodal

distributions to handle dependencies that are reflected by locality in the feature

space.

Split and merge samplers are thoroughly discussed in an array of publica-

tions [28, 77, 78]. The DPMM sub-cluster algorithm of Chang et al. [18] addresses

several issues that previous approaches coped with. Their sampler combines a

non-ergodic restricted Gibbs sampler and split and merge samplers into a valid
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Markov chain. The Gibbs sampler is restricted to non-empty clusters. Splits are

proposed from sub-clusters that are learned jointly by deferred sampling. Moves

are proposed with a Metropolis-Hastings (MH) algorithm. As instantiated-weight

(IW) sampler, cluster weights are explicitly represented, as opposed to collapsed-

weight (CW) samplers. Like in [123, 39], no finite approximations are used for

the Dirichlet process, contrary to [39, 76]. The authors see the advantage of IW

samplers in the possibility to parallelize across data points (which they refer to

“inter-cluster parallelizable”) and propose to use global split and merge moves to

counter convergence issues. Inspired by these works, Chang et al. [18] propose

moves that rely on jointly learned sub-clusters to reduce computational overhead

during the MH steps.

This algorithm was used with success for unsupervised subword modeling

in the scope of the zero resource challenge [164]. Chen et al. [22] inferred a

DPMM from raw speech, with Gaussians as components, and used the Gaussian

posteriorgrams extracted after sampling as new speech representation. In our own

work, we extended this approach by developing a framework that unsupervisedly

learns feature transformations from inferred classes (see Chapter 4). We showed

that these transformations in turn improve the input to the DPMM sampler so

that even better classes can be inferred, according to a sound class discriminability

measure. We further demonstrated that the inferred classes can be used to model

sounds for speech recognition purposes (see Chapter 5). However, we found there

is need for a method to find more complex classes that are generalizing across

speakers and that cover consistent sequences with longer durations. We show in

this Chapter how we enhance the DPMM to be a DPMoMM that jointly learns

components and mixtures of components and how we successfully use our model

to improve unsupervised subword modeling.

Discriminative (as alternative to generative) non-parametric models such as

infinite (structured) support vector machines (i(S)SVMs) [176, 177] have also been

successfully applied in the ASR domain to dynamically model speech concepts.

The idea of the iSVM and iSSVM is to divide the feature space into regions to be

handled by a mixture of experts, i.e., specialized sub-models, where the number of

experts is inferred from the data and the mixture underlies a DP prior. However,

the number of actual concepts to be modeled is known beforehand, and the SVM

training is supervised and relies on labels. In contrast, our DPMoMM infers

concepts from data only without prior knowledge of any sort.
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6.2 DP Mixture of Mixtures Model

In this section, we develop our DP mixture of mixtures model (DPMoMM). Def-

initions and mathematical expressions are kept general and are not restricted to

a specific type of mixture components. Within the scope of this chapter, we use

our sampling algorithm to infer mixtures of Gaussian mixtures in the use case of

unsupervised subword modeling, for which we originally developed this method

(see Section 6.7). We begin by reviewing the standard DPMM and the augmented

DPMM of Chang et al. [18].

6.2.1 Graphical Representation

For the sake of clarity, we repeat the descriptions of the general DPMM and Chang

et al.’s augmented DPMM [18] within this section to point out the differences to

our proposed DPMoMM. Figure 6.2a is the representation of the general DPMM

in plate notation. xi is an observed data point i out of N data points, and zi is

the corresponding discrete label for that data point. π denotes the theoretically

infinite dimensional vector of mixture weights. α is commonly referred to as the

concentration parameter for the Dirichlet process, which governs the likelihood

for new classes to be generated during sampling, and λ is the hyper-parameter

for the Dirichlet process base measure. θk denotes the parameters of cluster k,

e.g., mean and covariance in the case of Gaussians.

The generative process of the DPMM is expressed as follows:

xi ∼ p(xi|θzi), θk ∼ H(λ), (6.1)

zi ∼ Discrete(π), π ∼ GEM(α), (6.2)

where GEM(·) denotes the stick-breaking process, and H is the DP base measure.

The generative story of a data point xi is this. A discrete cluster label zi is sampled

from the set of all possible clusters, which are distributed according to the weights

in π. Given the cluster label, xi is drawn from the cluster with parameters θzi .

Figure 6.3a is Chang et al.’s [18] augmented DPMM using auxiliary variables.

Each regular cluster is augmented with two explicit sub-clusters, denoted as l for

“left” and r for “right”. The goal is to design a model that is tailored toward

splitting clusters. By picking suitable distributions for these sub-clusters, they

can provide good split proposals for their regular parent cluster. Each data point
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Figure 6.2: Standard DPMM.

Figure 6.3: Augmented DPMM by Chang et al. [18]. Auxiliary variables are denoted

by dotted circles.

is assigned to either the “left” or “right” sub-cluster with a sub-cluster label

z̄i ∈ {l, r}. The naming convention implies that the sub-clusters are designed

towards separating the data points into distinct groups within the parent cluster.

Sub-clusters have their own weights π̄k = {π̄lk, π̄rk} and parameters θ̄k = {θ̄lk, θ̄rk}.
It is important to note that in this auxiliary space the data points xi generate

the labels z̄i, in contrast to the regular space where zi generate xi.

Our proposed DPMoMM is depicted in Figure 6.4. As before, xi is an observed

data point i out of N data points that belong to a cluster k. β governs the

global mixture proportions, and π is the vector of weights for clusters, sampled

according to a stick-breaking process. zi denotes the cluster assignment label for

the corresponding data point. In our model, clusters are composed of components,

which are represented by the following variables. c̃ki is the label of the cluster

component conditioned on cluster k that the corresponding data point is assigned

to. π̃k are the cluster component weights, governed by β and conditioned on

cluster k. θc are the parameters for the component that generated xi. All cluster

components are defined globally in the codebook. The codebook is the weighted

collection of all existing components in the DPMoMM, i.e., it is a global mixture of

components. Given the codebook – which is itself a global mixture of components

– sampling operations can be performed on component level, independent of their
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Figure 6.4: Proposed DP mixture of mixtures model (DPMoMM). Auxiliary variables

are denoted by dotted circles.

respective cluster memberships. ċi assigns a data point i to a codebook component

and is derived from the cluster component label c̃ki. Codebook components have

global weights π̇, governed by a separate concentration parameter α. λ is again

the hyper-parameter for the DP base measure.

The generative process of the DPMoMM is formally expressed as follows:

xi ∼ p(xi|θc̃zii), θc ∼ H(λ), (6.3)

zi ∼ Discrete(π), π ∼ GEM(β), (6.4)

c̃ki ∼ Discrete(π̃k), π̃k ∼ GEM(β), (6.5)

ċi = c̃zii, π̇ ∼ GEM(α). (6.6)

The generative story for any data point xi in a DPMoMM is as follows. A clus-

ter label zi is sampled from the set of all possible clusters, which are distributed

according to the weights in π. Then, a component label c̃zii is sampled from the

set of components that belong to the cluster with label zi, which are distributed

according to the weights in π̃zi . Given the cluster and cluster component labels,

xi is drawn from the cluster component with parameters θc̃zii . The codebook is a

by-product of this generative process. The codebook component labels are copies
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of the cluster component labels according to Equation (6.6), and the weights of

the codebook components are conditioned on these labels. Figure 6.1 is an illus-

tration of the hierarchy within a DPMoMM. The sampling of the full model is

described in detail in Section 6.3.

An intuition of what the DPMoMM represents can be given as follows. Assum-

ing the tackled task is topic clustering, one can view DPMoMM clusters as groups

of closely related topics (modeled by cluster components). If for instance there are

three components modeling the topics “cars”, “trucks” and “motorbikes”, then

a cluster that contains these components would model the meta-topic “personal

vehicles”.

Similar to the augmented DPMM, we define an auxiliary space to enable a split

and merge sampling approach. Each component in the DPMoMM is augmented

with two sub-components, parametrized by θ̄c = {θ̄lc, θ̄rc}, to provide good split

candidates for a component split move proposal. c̄ki ∈ {l, r} is the label that

assigns the corresponding data point to a sub-component of c̃ki within cluster

k, and π̄kc = {π̄lkc, π̄rkc} denotes the weights for sub-components of component c

within cluster k. On codebook level, sub-component labels ˙̄ci are derived from

the cluster sub-component labels c̄ki, i.e., ˙̄ci = c̄zii. ˙̄πc = { ˙̄πlc, ˙̄πrc} are the sub-

component weights for each codebook component, governed by α. The choice of

the auxiliary parameter distributions follows Chang et al. [18], which is reflected

in the way we sample these variables in Section 6.3.

6.2.2 Sampling Algorithm

Chang et al.’s DPMM sampler [18] is an instantiated-weight sampler that com-

bines non-ergodic Markov chains into an ergodic chain and proposes splits from

learned sub-clusters and merges of clusters. Their algorithm runs a Gibbs sam-

pler, which samples the parameters and weights of each cluster and its sub-

clusters, followed by sampling the cluster and sub-cluster labels for each data

point. The Gibbs sampler is restricted to non-empty clusters. After Gibbs sam-

pling, a split and merge sampler proposes with an MH algorithm to either split or

merge clusters into new clusters. Gibbs sampling and split and merge sampling

iterate until convergence or until a stop criterion is fulfilled.

Our proposed sampler uses a similar structure. Algorithm 3 is an outline of

our algorithm in pseudo-code. We combine a restricted Gibbs sampler with a
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Algorithm 3 DPMoMM sampling algorithm

Randomly initialize Kinit clusters with 1 component each

while stop criterion not met do

Propose cluster merges and splits . Section 6.5

Propose cluster component switches . Section 6.5

Propose component merges and splits . Section 6.4

for all clusters with split components do

Duplicate and update . Section 6.4

end for

Sample parameters and labels . Section 6.3

end while

split, merge and switch sampler for clusters and a split and merge sampler for

components. The Gibbs sampler samples the parameters and weights of each

codebook component and its sub-components, the weights of each cluster, and

the weights of each cluster component. This is followed by sampling the cluster,

component and sub-component labels for each data point. A split, merge and

switch sampler proposes to either split or merge clusters or to move a cluster

component from one cluster to another. A split and merge sampler for compo-

nents proposes to either split or merge codebook components. Illustrations of the

possible component and cluster moves are given in Figure 6.6. Gibbs sampling,

split, merge and switch sampling for clusters, and split and merge sampling for

components iterate until convergence or until a stop criterion is fulfilled.

The Gibbs sampling steps and the split and merge moves for the codebook

components are equivalent to the original DPMM sampler of Chang et al. [18],

and the codebook together with the global component weights is exactly the

model that the original sampler would infer.

The following sections explain in detail the individual non-ergodic samplers

that make up our proposed algorithm. The non-restricted Gibbs sampler is ex-

plained in Section 6.3. Section 6.4 explains the component split and merge sam-

pler which are technically identical with the sampler in [18], but applied to the

codebook components. Because changes of the codebook components lead to

changes of the clusters, we introduce novel update steps for clusters. These are

explained accordingly in the respective subsections. Lastly, we propose cluster

split, merge and switch moves in Section 6.5. Figure 6.5 is an illustration of how
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our proposed DPMoMM algorithm behaves, compared to a DPMM.

6.3 Restricted Gibbs Sampling

In this section we lay out the details of the restricted Gibbs sampler that we

employ. The Dirichlet process uses an infinite length prior on the cluster labels

zi, cluster component labels c̃ki and codebook component labels ċi. However,

any label can only point to a finite number of entities, i.e., the clusters and the

components that exist in any current state of the model. Because the restricted

Gibbs sampler does not create new clusters and components itself, the dimensions

of the infinite vectors π, π̃k, π̇ and θ are technically finite during Gibbs sampling.

Posterior distributions of weights are conditioned on the assignments of data

points. The restricted conditional distributions of the DPMoMM are

p(π|z, β) = Dir(N1, . . . , NK , β), (6.7)

p(π̃k|z, c̃, α, β) = Dir(B1
k, . . . , B

C
k , α), (6.8)

p(π̇|ċ, α) = Dir(Ṅ1, . . . , ṄC , α), (6.9)

p(θc|x, ċ, λ) ∝ f({x}c, θc)f(θc, λ), (6.10)

p(zi = k|x, π, θ) ∝ πk

C∑
c=1

π̃ckf(xi, θc), (6.11)

p(c̃ki = c|x, z, π̃, θ) ∝ π̃czif(xi, θc), (6.12)

p(ċi = c|x, π̇, θ) ∝ π̇cf(xi, θc), (6.13)

with

Nk =
N∑
i=1

1zi=k, N c
k =

N∑
i=1

1 zi=k
c̃ki=c

, (6.14)

Ṅc =
K∑
k=1

N c
k , Bc

k =


Nc

k+β

Ck
if N c

k > 0,

0 else,
(6.15)

where K is the current number of non-empty clusters, C is the current number

of non-empty codebook components and Ck is the current number of non-empty

cluster components in cluster k. x is the vector of data points, z is the vector

of cluster labels, c̃ is the vector of cluster component labels, ċ is the vector of
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codebook component labels, and π̃ = {π̃1, . . . , π̃K}. {x}c denotes all data points

assigned to the global codebook component c. f(·) is a particular parametrized

probability density function. E.g., f({x}c, θc) is the likelihood of the data subset

{x}c given the cluster parameters θc, and f(xi, θc) is the likelihood of the single

data point xi given θc. 1(·) is an indicator function that equals to 1 if the condition

(·) holds true and is 0 otherwise.

Given these probabilities, the sampling is as follows. Conditioned on the la-

bels in the current state, sample the parameters of each codebook component,

and all cluster and component weights. Conditioned on all cluster and component

parameters in the current state, for each data point, sample a label for a cluster,

then sample a label for a component within the cluster. The conditional distri-

bution in Equation (6.11) shows that the generative process described further

above prefers cluster components to be neighbors in the feature space. During

the model sampling described in this and the following sections, the algorithm

will cause the clusters to be groups of nearby components so as to maximize the

likelihood of the data.

For our proposed algorithm, we lay out the Gibbs sampler as follows. Given

Equations (6.7)-(6.13), the posterior distributions of weights, labels and compo-

nent parameters are expressed as

(π1, . . . , πK , πK+1) ∼ Dir(N1, . . . , NK , β), (6.16)

(π̃1
k, . . . , π̃

C
k , π̃

C+1
k ) ∼ Dir(B1

k, . . . , B
C
k , α), (6.17)

(π̇1, . . . , π̇C , π̇C+1) ∼ Dir(Ṅ1, . . . , ṄC , α), (6.18)

θc
∝∼ f({x}c, θc)f(θc, λ), (6.19)

zi
∝∼

K∑
k=1

πk

(
C∑
c=1

πckf(xi, θc)

)
1zi=k, (6.20)

c̃ki
∝∼

C∑
c=1

πckf(xi, θc)1c̃ki=c, (6.21)

ċi = c̃zii, (6.22)
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(c)

Figure 6.5: Illustration of the algorithm. Components are drawn with solid lines, sub-

components with dotted lines. Only some exemplary sub-components are illustrated.

(a): Single component clusters inferred by a DPMM. This also corresponds to the code-

book of the DPMoMM; (b). Clusters inferred by a DPMoMM, where components of

the same color belong to the same cluster; (c): The same DPMoMM after a component

split in the upper right cluster and a component merge in the lower right cluster. The

original clusters are duplicated, and the bi-colored components are now shared across

clusters.

with

πK+1 = 1−
K∑
k=1

πk, (6.23)

π̃C+1
k = 1−

C∑
c=1

π̃ck, (6.24)

π̇C+1 = 1−
C∑
c=1

π̇c. (6.25)

Note that the codebook component labels ċi are not sampled explicitly but

derived from the cluster component labels. This is done to not break the as-

signment of data points to components on the global level; a data point that is

assigned to component c within a cluster must also belong to component c within

the codebook for the split and merge sampling logic to work properly.

For the split and merge sampling steps described in Section 6.4, we make use

of auxiliary variables that are jointly sampled with the regular variables. These

auxiliary variables describe the sub-components which augment all the regular

components. The sampled sub-components serve as good split candidates for
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component split
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cluster merge
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Section 6.4.1
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Section 6.5.2
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Figure 6.6: Overview of the component moves (top) and cluster moves (bottom).

eventual component splits. The auxiliary variables are sampled as follows:

(π̄lkc, π̄
r
kc) ∼ Dir(

N c,l
k + α

2
,
N c,r
k + α

2
), (6.26)

( ˙̄πlc, ˙̄πrc) ∼ Dir(
Ṅ l
c + α

2
,
Ṅ r
c + α

2
), (6.27)

θ̄lc
∝∼ f({x}lc, θ̄lc)f(θ̄lc, λ), (6.28)

θ̄rc
∝∼ f({x}rc, θ̄rc)f(θ̄rc , λ), (6.29)

c̄ki
∝∼
∑
s∈{l,r}

π̄sc̃kif(xi, θ̄
s
c̃ki

)1c̄ki=s, (6.30)

˙̄ci = c̄zii, (6.31)

with

N c,s
k =

N∑
i=1

1 zi=k
c̃ki=c
c̄ki=s

, Ṅ s
c =

K∑
k=1

N c,s
k , (6.32)

where {x}lc and {x}rc denote the subsets of data points that are assigned to the

left and right sub-components of c. Note that, analogous to Equation (6.22), the

labels ˙̄ci are not sampled explicitly to not break the assignment of data points to

sub-components on the global level.
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6.4 Component Split and Merge Sampler

The split and merge moves for components are performed on the global code-

book level and therefore rely on the codebook level variables that are jointly

sampled with the other model variables. The moves are designed for efficiency by

reducing the overhead of computational costs during the MH step and enabling

parallelization across components. Components are equipped with auxiliary vari-

ables for sub-components. The parameters of the sub-components are sampled in

the same fashion as the parameters for the regular “parent” components. Conve-

niently, samples for the variables of the regular components can be obtained by

sampling the auxiliary variables, since we draw from a joint parameter space.

For performing split and merge moves for components with an MH-MCMC

method, candidate moves, or proposals are required. Let O = {π̇, θ, ċ} be the

set of component variables and Ō = { ˙̄π, θ̄, ˙̄c} be the set of sub-component vari-

ables. We propose a new set of random variables {Ô, ˆ̄O} for components and

sub-components and compute the Hastings ratio of the form

HR =
p(Ô, x)p( ˆ̄O|x, ˆ̇c)
p(O, x)p(Ō|x, ċ)

q(O, Ō|Ô, ˆ̄O)

q(Ô, ˆ̄O|O, Ō)
, (6.33)

where q is called the proposal distribution and x denotes the collection of all

observations. The Hastings ratio weights the state of the model before and after

actually performing a move, with the numerator standing for the post-move state

and the denominator the pre-move state. As can be seen requires the Hastings

ratio a reverse proposal to the proposed move. In the case of proposing a split

move, that would be a merge, and vice versa.

A proposed move is accepted with the probability

min(1, HR). (6.34)

6.4.1 Split Moves

The sub-components are utilized as good split move candidates for the MH algo-

rithm. Proposing a split move is typically a non-trivial task. The construction

of a prospective move is necessary for an MH framework, where a proposal is

weighed against the status quo and accepted or rejected with a certain probabil-

ity. Theoretically, any kind of split proposal can lead to an ergodic chain [18].
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However, proposals with low probability of being accepted unnecessarily increase

the computational load, since in case of a rejection, all previous computational ef-

forts are in vain. Iterative fitting of sub-components with the help of the auxiliary

variables introduced above circumvents the risk of wasted computational time.

The sub-components are sampled jointly with the normal components. During

the MH-step, sub-components pose good proposals for split moves. Moreover,

split move computations can be parallelized across components.

The proposal distribution for proposing a component split move with the

help of the auxiliary variables is defined as follows. First, a split or merge move

Q ∈ {Qc
c-split, Q

m,n
c-merge} is selected randomly. Qc

c-split denotes a move for splitting

component c into m,n, and Qm,n
c-merge is a merge of components m,n into c. New

sets of model variables are sampled as follows, each conditioned on Q.

If Q = Qc
c-split:

({ˆ̇c}m, {ˆ̇c}n) = splitc(ċ, ˙̄c), (6.35)

(ˆ̇πm, ˆ̇πn) = π̇c · ( ˙̄πlc, ˙̄πrc), (6.36)

(θ̂m, θ̂n) ∼ q(θ̂m, θ̂n|x, ˆ̇c, ˆ̄̇c), (6.37)

( ˆ̄Om,
ˆ̄On) ∼ p( ˆ̄Om,

ˆ̄On|x, ˆ̇c), (6.38)

with ( ˙̄πlc, ˙̄πrc) ∼ Dir( ˆ̇Nm,
ˆ̇Nn).

If Q = Qm,n
c-merge:

{ˆ̇c}c = mergem,n(ċ), (6.39)

ˆ̇πc = π̇m + π̇n, (6.40)

θ̂c ∼ q(θ̂c|x, ˆ̇c, ˆ̄̇c), (6.41)

ˆ̄Oc ∼ p( ˆ̄Oc|x, ˆ̇c). (6.42)

The function splitc(·) splits the label assignments of component c so that la-

bels are assigned to the two new components m and n, whereas the function

mergem,n(·) does the reverse move and merges the label assignments of compo-

nents m and n so that the respective data points are assigned to a new component

c. Sampling new parameters given the new label assignments is done with the

restricted Gibbs sampler. The sub-component auxiliary variables are sampled

jointly with the variables for the regular components. This specific joint sampler is

also called deferred MH sampler [18] and conveniently sets q( ˆ̄O|x, Ô) = p( ˆ̄O|x, Ô).
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Components are marked as “splittable” after the variables show signs of a burn-

in, which is the case when the likelihood f({x}lc, θlc)f({x}rc, θrc) for all data points

assigned to component c begins to oscillate with the iterations.

It can be shown [18] that the Hastings ratio for a component split can be

expressed as

HRc-split =
p(x|ˆ̇c)
p(x|ċ)

p(ˆ̇c)

p(ċ)

αΓ( ˆ̇Nm)Γ( ˆ̇Nn)

Γ(Ṅc)

=
f(x|ˆ̇c, θ̂m)f(x|ˆ̇c, θ̂n)

f(x|ċ, θc)
αΓ( ˆ̇Nm)Γ( ˆ̇Nn)

Γ(Nc)
. (6.43)

Splits of codebook components affect the clusters that contain them as cluster

components. All clusters that contain a split component require an update of their

variables. The update step for clusters is subject to design, as there are various

ways to execute it. The naive approach is to split the affected component within

each cluster and update the corresponding variables. We opted for an update

scheme that keeps the cluster sizes unchanged so as to separate codebook growth

and mixture of mixtures growth entirely.

After performing a component split, we proceed as follows. All clusters that

contain the respective component are duplicated with a function

({ˆ̃ck}c, {ˆ̃ck′}c) = duplicateck(c̃, c̄), (6.44)

where c̄ is the vector of cluster sub-component labels.

The original cluster k keeps all unchanged components and the “left” split

result. The duplicate k′ also keeps all unchanged components and the “right”

split result. Data points with zi = k that are assigned to the split component

can be reassigned so that the ones labeled with c̄ki = l belong to cluster k, and

data points with and c̄ki = r now belong to cluster k′. Data points that are

assigned to unchanged components within the duplicated cluster however can

not be reassigned unambiguously. Because a data point can never belong to two

clusters at the same time, the duplication automatically invalidates the labels zi
and weights π. To re-establish a valid state for the sampler, we re-sample all

variables. Therefore, the split sampler for components is the last step before the

next iteration of the restricted Gibbs sampling in our implementation, as can be

seen in Algorithm 3. Figures 6.5b and 6.5c illustrate this step.
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6.4.2 Merge Moves

The Hastings ratio for a proposed component merge also requires a reverse pro-

posal. Where there is only one way to merge two sets of label assignments, there

are 2Ṅc−1 − 1 ways to split a set of labels into non-empty partitions. However,

since split proposals in this algorithm are determined by the sub-components,

the Hastings ratio will be zero if the labels after a proposed reverse split do not

match the pre-merge labels. Therefore, the probability for accepting a component

merge rapidly diminishes with increasing number of assigned data points. This

behavior is approximated by automatically rejecting all component merges.

In order to mitigate for slow convergence in certain situations, a random merge

sampler is introduced instead to propose component merge moves whose reverse

move is a random split, in contrast to the sub-component based deterministic

split proposals. Two random components are sampled and a merge proposal is

computed. The reverse split proposal is generated by a random partitioning of

the data points assigned to the respective component. The split proposal will

generally have a diminishing acceptance probability, whereas the corresponding

merge move is much more likely to be sensible.

The Hastings ratio for a random merge proposal is as follows:

HRc-merge =
p(x|ˆ̇c)
p(x|ċ)

p(ˆ̇c)

p(ċ)

Γ(α)Γ(Ṅm)Γ(Ṅn)

Γ(α + ˆ̇Nc)Γ(α
2
)2

=
p(x|ˆ̇c)
p(x|ċ)

Γ( ˆ̇Nc)

αΓ(Ṅm)Γ(Ṅn)

Γ(α)Γ(Ṅm)Γ(Ṅn)

Γ(α + ˆ̇Nc)Γ(α
2
)2

=
f(x|ˆ̇c, θ̂c)

f(x|ċ, θm)f(x|ċ, θn)

Γ(α)Γ( ˆ̇Nc)

αΓ(α + ˆ̇Nc)Γ(α
2
)2
. (6.45)

A random split of component ˆ̇c is sampled for the reverse split proposal,

therefore the weights for the split results are Dirichlet distributed.

Analogous to the split moves, all clusters that contain a merged component

need to be updated. Fortunately, the cluster updates after component merges

are much simpler. All clusters that contained any of the two merged components

replaces the respective component with the merge result. Cluster labels zi and

weights π remain unchanged. Cluster component labels c̃ki and weights π̃k are
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6.5. Cluster Split, Merge and Switch Sampler

updated if cluster k contains both components involved in the merge:

{ˆ̃ck}c = mergem,n(c̃k), (6.46)

ˆ̃πck = ˆ̃πmk + ˆ̃πnk . (6.47)

New values for cluster sub-component auxiliary variables Ōk = {π̄k, c̄k} are

sampled for all clusters to be updated according to

ˆ̄Oc
k ∼ p( ˆ̄Oc

k|x, ˆ̃ck). (6.48)

Again, Figures 6.5b and 6.5c illustrate the outcome of this step.

6.5 Cluster Split, Merge and Switch Sampler

Cluster split, merge and switch moves modify the assignments of components to

clusters. A split move splits a cluster – which is a mixture of components – into

two smaller mixtures. A merge move merges two clusters into one larger mixture.

A switch move moves one component from one cluster to another cluster. In all

these cases the components themselves, i.e., their parameters, are not modified.

Cluster moves rely on the local, cluster dependent component parameters to

produce good move proposals for a MH step. Cluster moves are efficient because

they can be easily computed based on the existing data partitions.

Let M = {π, π̃, z, c̃} be the set of cluster and cluster component variables and

M̄ = {π̄, c̄} be the set of cluster sub-component variables. A new set of random

variables {M̂, ˆ̄M} is proposed by any of the possible moves. The Hastings ratio

for a move is of the form

HR =
p(M̂, x)p( ˆ̄M |x, ˆ̃c)
p(M,x)p(M̄ |x, c̃)

q(M, M̄ |M̂, ˆ̄M)

q(M̂, ˆ̄M |M, M̄)
. (6.49)

As before, a proposed move is accepted with the probability defined in Equa-

tion (6.34). Note that the component parameters θc are not subject to updates

during cluster moves. That is because neither assignments of data points to

codebook components nor codebook component parameters are modified.
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6.5.1 Split Moves

Analogous to component splits, where good split candidates are provided by

auxiliary sub-components, we resort to the cluster components themselves as

support for producing good proposals. To generate a good split proposal for

cluster k, we consider all 2Ck−1−1 possible non-empty partitions into two separate

mixtures and propose the most promising split, according to the Hastings ratio.

The computational overhead grows with the number of components in a clus-

ter. For instance, a cluster with 16 components can be partitioned into two

clusters in 32.767 different ways, which would require a same amount of compu-

tations for Hastings ratios. In order to control the expected maximum compu-

tational load for splits, we introduce a parameter cmax into the algorithm which

caps the maximum size of clusters. Setting this parameter accordingly prevents

clusters to grow too large. By setting the value arbitrarily high, mixtures may

grow to any size. To maintain computation feasible for very large clusters as well,

we could also limit the considered partitions to a random subset of possibilities

smaller than the Stirling number above.

The cluster split sampler’s design essentially follows the considerations of the

component split sampler in Section 6.4.1. As is the case for components, we can

also parallelize the cluster split move computations. The proposal distribution

for a cluster split move is defined as follows. First, we randomly select a split

move or a merge move Q ∈ {Qm
k-split, Q

a,b
k-merge}, where Qm

k-split denotes a move for

splitting cluster m into a, b, and Qa,b
k-merge is a merge of clusters a, b into m. New

sets of model variables are sampled as follows, conditioned on Q. If Q = Qm
k-split:

({ẑ}a, {ẑ}b) = splitm(z, c̃), (6.50)

(π̂a, π̂b) = πm · (πam, πbm), (6.51)

(ˆ̃π1
a, . . . , ˆ̃π

C
a ) ∼ Dir(B̂1

a, . . . , B̂
C
a ), (6.52)

(ˆ̃π1
b , . . . , ˆ̃π

C
b ) ∼ Dir(B̂1

b , . . . , B̂
C
b ), (6.53)

where (πam, π
b
n) ∼ Dir(N̂a

m, N̂
b
m). If Q = Qa,b

k-merge:

{ẑ}m = mergea,b(z, c̃), (6.54)

π̂m = πa + πb, (6.55)

(ˆ̃π1
m, . . . , ˆ̃π

C
m) ∼ Dir(B̂1

m, . . . , B̂
C
m), (6.56)
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with

B̂c
k =


N̂c

k+β

Ck
if N̂ c

k > 0,

0 else.
(6.57)

The function splitm(·) splits the label assignments of cluster m so that labels

are assigned to the two new clusters a and b, whereas the function mergea,b(·) does

the reverse move and merges the label assignments of clusters a and b so that the

respective data points are assigned to a new cluster m. The component labels c̃ki
do not require an update since component IDs are valid globally. To promote a

more stable splitting behavior, clusters are marked “splittable” if all components

within the respective clusters are also marked “splittable” (see Section 6.4.1).

We express the Hastings ratio for a cluster split proposal as follows:

HRk-split =
p(x|ẑ)

p(x|c̃)
p(ẑ)

p(z)

Γ(β +Nm)Γ(β N̂a

Nm
)Γ(β N̂b

Nm
)

Γ(β)Γ(N̂a)Γ(N̂b)

=
p(x|ẑ)

p(x|c̃)
βΓ(N̂a)Γ(N̂b)

Γ(Nm)

Γ(β +Nm)Γ(β N̂a

Nm
)Γ(β N̂b

Nm
)

Γ(β)Γ(N̂a)Γ(N̂b)

=
f(x|ˆ̃c, Θ̂a)f(x|ˆ̃c, Θ̂b)

f(x|c̃,Θm)

βΓ(β +Nm)Γ(β N̂a

Nm
)Γ(β N̂b

Nm
)

Γ(Nm)Γ(β)
, (6.58)

with Θ̂k = {π̂k, {θ}k}, and {θ}k being the parameters of all codebook components

that are also cluster components in k.

6.5.2 Merge Moves

For a prospective merge, two random clusters are sampled and a merge proposal

is computed. A cluster merge is only permitted if the component size of the

merge result is not exceeding cmax. The reverse proposal is a random partition of

the cluster components into two separate mixtures.

Analogous to the cluster split proposal above, the Hastings ratio for a cluster

merge proposal is expressed as follows:

HRk-merge =
f(x|ẑ, Θ̂m)

f(x|z,Θa)f(x|z,Θb)

× Γ(Na +Nb)Γ(β)

βΓ(β +Na +Nb)Γ(β Na

N̂m
)Γ(β Nb

N̂m
)
. (6.59)
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As mentioned earlier, Equation (6.11) suggests that the likelihood of a clus-

ter is higher if the components of the respective cluster are located closer to

each other in the feature space. During inference, β controls the importance of

proximity for grouping nearby components into clusters. The Hastings ratios in

Equations (6.58) and (6.59) suggest that with larger β the probability of accept-

ing a split proposal becomes higher, and the probability of the reverse merge

move becomes smaller.

6.5.3 Switch Moves

The component split and merge moves (see Section 6.4) produce clusters with

shared components due to the specifics of the cluster update steps. After a

component split, all clusters that contain the split component are duplicated.

After a component merge, all clusters who contained the previous components

now share the new component (unless a cluster already contained both original

components).

The number of clusters that share the same component can grow very quickly

if the algorithm decides to perform many component splits. Another factor is the

maximal cluster size cmax. The larger clusters can get, the more likely they dupli-

cate due to eventual component splits. In cases where a large amount of clusters

overlap (that is, many clusters share the same components) and therefore cover

the same region in the feature space, the algorithm can suffer from convergence

issues due to high ambiguity during label sampling.

To mitigate this issue, we developed a switch move sampler that supports

algorithm convergence. A switch move is an operation, where all data points that

are assigned to component a in cluster m are re-assigned to the same component

a in cluster n. Given a pair of clusters, we consider a switch move for a in both

directions and propose the direction which is most promising, according to the

Hastings ratio. Switch move proposals are sampled by a random switch sampler,

where for a prospective move, two random clusters are sampled and the proposal

is computed.
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New sets of model variables are sampled as follows:

({ẑ}m, {ẑ}n, {ˆ̃c}m, {ˆ̃c}n) = switcham,n(z, c̃), (6.60)

(π̂m, π̂n) = (πm−πmπ̃am, πn + πmπ̃
a
m), (6.61)

(ˆ̃π1
m, . . . , ˆ̃π

C
m) ∼ Dir(B̂1

m, . . . , B̂
C
m), (6.62)

(ˆ̃π1
n, . . . , ˆ̃π

C
n ) ∼ Dir(B̂1

n, . . . , B̂
C
n ). (6.63)

The function switcham,n(·) re-assigns all data points in component a of cluster

m to component a of cluster n by updating the component labels c̃ki and the

cluster labels zi.

A switch move can be interpreted as splitting one component a off of a cluster

m and merging a single-component cluster with a cluster n that already contains

a as component. The Hastings ratio for a switch proposal is therefore expressed

as follows:

HRswitch

=
p(x|ẑ)

p(x|z)

βΓ(Na
m)Γ(N̂m)Γ(Nn)

Γ(Nm)Γ(Nn)

Γ(β +Nm)Γ(β +Nn)

Γ(β)

×
Γ(β Na

m

Nm+Nn
)Γ(β N̂m

Nm+Nn
)Γ(β Nn

Nm+Nn
)

Γ(Na
m)Γ(N̂m)Γ(Nn)

× Γ(N̂m)Γ(N̂n)

βΓ(Na
m)Γ(N̂m)Γ(Nn)

Γ(β)

Γ(β + N̂m)Γ(β + N̂n)

× Γ(Na
m)Γ(N̂m)Γ(Nn)

Γ(β N̂n

Nm+Nn
)Γ(β N̂m

Nm+Nn
)

=
p(x|ẑ)

p(x|z)

Γ(N̂m)Γ(N̂n)

Γ(Nm)Γ(Nn)

Γ(β +Nm)Γ(β +Nn)

Γ(β + N̂m)Γ(β + N̂n)

×
Γ(β Na

m

Nm+Nn
)Γ(β Nn

Nm+Nn
)

Γ(β N̂n

Nm+Nn
)

. (6.64)

The reverse move requires to split the data points that are assigned to com-

ponent a in cluster n and assign these data points to cluster m. For the same

reasons than in the case of normal component merges (see Section 6.4.2), the

probability for the reverse proposal quickly approaches zero with increasing data

size and the reverse move will be rejected. We approximate this behavior by

automatically rejecting all reverse switch moves.
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6.6 Use Case: Unsupervised Subword Modeling

In the following section, we will demonstrate the benefits of our DPMoMM sam-

pler on real speech data in the use case of unsupervised subword modeling.

The objective of unsupervised subword modeling is to construct a representa-

tion of speech sounds that is robust to variation within and across speakers and

that maximizes class discrimination [164]. Previous work of Chen et al. [22, 23]

and ourselves [68, 67, 69] already achieved good results using a DPMM sampler

to tackle this task in the context of the zero resource speech challenges [164, 34].

The general procedure is to cluster speech feature vectors into classes by sampling

a Dirichlet process Gaussian mixture model (DPGMM) [20], which is an infinite

Gaussian mixture model (IGMM) [138]. Speech would then be represented by

frame-level posteriorgrams, for instance, or simply by a sequence of textual class

labels, where the classes are the components in the sampled mixture.

The official evaluation metric for the zero resource speech challenge is the

minimal pair ABX phone discriminability between phonemic minimal pairs [141]

(see Section 4.5). Another popular metric for evaluating speech representations

especially with respect to information and sequentiality is the normalized mutual

information (NMI). We use both metrics to evaluate the output of our sampler

in the following section. The details of the evaluation measures are explained in

this section.

6.6.1 ABX Phone Discriminability

The ABX phone discrimination error is computed according to Equation (4.4).

As a reminder, d(·, ·) in this equation is the DTW distance defined over sequences

of frame based speech representations (posteriorgrams, textual labels, etc.). Any

proper distance measure can be used for computing the DTW distance. For the

experiments in this Chapter, we evaluate two types of representations, textual

labels and posteriorgrams. For the comparison of label sequences, we use the

Levenshtein distance (ABXls). For evaluating posteriorgram sequences, we use

the Kullback-Leibler divergence (ABXkl). We collect discrimination errors for all

possible pairings of phone triplets and average them over all contexts for a given

pair of central phones, over all pairs of central phones and over all speakers.

In Section 4.5, we argued that the strength of the ABX discriminability task
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as evaluation method is that any number of inferred classes can be evaluated such

that the quality of very different representations of the same underlying data can

be compared fairly. In other words, the ABX test is indifferent to the amount of

inferred classes and therefore neither rewards reasonably sized, nor penalizes ex-

cessively large class inventories. If for instance an inferred speech representation

is defined over tens of thousands of classes, the ABX discriminability error will be

low as long as these classes are discriminable from each other. In the context of

modeling speech, it might however be desired to find a more reasonable number

of classes, for instance in the size of phone sets. The symmetric normalized mu-

tual information criterion introduced in the following subsection is an alternative

metric that can be used to consider the aspect of vastly different inventory sizes.

6.6.2 Symmetric Normalized Mutual Information

The mutual information of two random variables is a measure for mutual depen-

dence. Normalized mutual information is defined as

NMI(X;Y ) =
H(X)−H(X|Y )

H(X)
(6.65)

and gives a measure of how good X can be predicted, given the knowledge about

Y . In our use case, X corresponds to the random variable over the “true” dis-

tribution of sounds, approximated by the sequence of phones for any target data

set. Y is the random variable over the estimated distribution of sounds, given

for instance by the label output of a DPMM sampler for the same data. H(X)

is the entropy of the true transcription and is used as normalizing factor in the

denominator.

NMI(·) is not symmetric, which makes the comparison of random variables

that are defined over very different inventory sizes difficult. To guarantee a fair

comparison, we suggest to use a symmetric NMI [110] of the form

NMImax(X;Y ) =
H(X)−H(X|Y )

max(H(X), H(Y ))
(6.66)

The inventory sizes of the compared representations directly affect the metric.

When comparing sequences defined over any newly defined set of classes to se-

quences of phone labels, the symmetric NMI score gives an intuition of the quality

of the new representations in terms of being “phone-like”. With this, we have a
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fair measure of comparability at hand for the frame-level phone transcriptions of

any target data and the frame-level label output of a DPMM or DPMoMM.

6.7 Experimental Evaluation

6.7.1 Data

We use two separate data sets for American English and for Xitsonga known from

the zero resource speech challenge [164], as described in Section 4.6.2. Because the

sets vary in size, language and speech quality, comparable experimental results

should be a good indicator for the robustness of our sampler.

From each of the two data sets, we extract two sets of speech observations.

Specifically, from each data set, we extract two types of frame-wise feature vec-

tors using the Kaldi speech recognition toolkit [132]. We can use about 1.7M

frames for English and 0.8M frames for Xitsonga as input to the DPMM and

DPMoMM samplers. The frame width is 25 milliseconds and the frame shift is

10 milliseconds. The first type of features is perceptual linear predictive (PLP)

speech feature vectors [72] with first and second order derivatives (PLP+∆+∆∆).

The second type is stacked PLP vectors that were transformed unsupervisedly

by linear discriminant analysis (PLP+LDA) with the method described in Chap-

ter 4. LDA is commonly used in speech recognition to optimize speech features

towards discriminability [60]. We conduct experiments for each of the two input

feature vector types. Overall, we conduct all our experiments four times, once

for each data set and feature vector type.

6.7.2 Procedure

We use our DPMoMM sampler to cluster a set of speech feature vectors into

classes. In our use case, our algorithm jointly samples Gaussian mixtures as well

as a global codebook of Gaussians. This codebook is precisely what the original

DPMM sampler of Chang et al. [18] would infer. Due to the joint sampling we

can directly compare the modeling quality of inferred Gaussian mixtures and

the single Gaussians, or in other words the DPMoMM and the codebook, i.e., a

DPGMM/IGMM.

After sampling the DPMoMM, the data can be represented by frame-wise
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labels. We use the symmetric NMI to compare the quality of label sequences. For

that, we compute the symmetric NMI once using the labels for clusters and once

using the labels for codebook components and calculate the relative improvement.

In the same way, we also compare the ABX phone discriminability using the

frame-wise labels as representation and calculate the relative improvement from

using cluster labels instead of codebook component labels.

The ABX phone discriminability can also be computed for posteriorgrams as

representation for the data. In that case, either a posteriorgram over clusters or

over codebook components is computed for each speech frame. The two kinds of

posteriorgrams are scored and compared to get a value for the relative improve-

ment by using cluster posteriorgrams instead of component posteriorgrams.

We run every sampling for 1000 iterations. Each sampling step is parallelized

across 30 threads. For all conducted experiments we sample each model 5 times,

score each output and average the results. It is known that the influence of α

diminishes in very high data regimes [18]. Chen et al. [22] conducted an expe-

rience study and confirmed that the value of α does not impact the outcome of

sampling a DPMM given high dimensional speech feature vectors. Their sam-

ples are extracted from the same data sets that we use for our experiments and

are similar in nature. In several informal experiments in we also observed this

behavior and therefore set α = 1 for all our experiments.

6.7.3 The Impact of β

We compare the use of clusters versus using the codebook components as model

for the underlying data. The latter corresponds to output that the original sam-

pler of Chang et al. [18] produces. We test on both data sets, English and Xit-

songa, and use either PLP+LDA features or PLP+∆+∆∆ as input. Figures 6.9

and 6.10 show the relative improvements that our proposed method achieved as

contour plots.

We observed that using a very small value for the mixture concentration pa-

rameter β tends to result in few sampled mixtures that each contain a maximum

amount of components. In other words, the sampler is over-confident in grouping

components together based on minimal proximity. In contrast to synthetic data,

real data tends to be comprised of overlapping classes. The aggressive grouping

is one of the consequences of this fact. With larger β, we observed that fewer
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Figure 6.7: Distribution of cluster sizes by the example of sampling Xitsonga data for

500 iterations. Higher β values lead to more clusters with fewer components. The same

behavior was observed on the English data set.

components are grouped together to form mixtures, which results in a larger

number of clusters that contain fewer components. Figure 6.7 exemplarily plots

the distribution of cluster sizes for the Xitsonga data with different values for β.

Figures 6.9e, 6.9j and 6.10e, 6.10j show that the number of clusters approximates

the number of codebook components as β increases.

The behavior of the cluster inference dependent on β is best explained by ana-

lyzing the sampling of weights during restricted Gibbs sampling and the Hastings

ratio for cluster split and merge moves. According to Equations (6.4)-(6.5), (6.7)-

(6.8) and (6.16)-(6.17), the distributions of cluster and cluster component weights

are governed by β, whose impact is twofold. Its value determines the probabil-

ity mass that is reserved for generating a new cluster by the split sampler, and

it regulates the weights of the cluster components. A large β will motivate the

generation of more clusters and cause cluster component weights to take on more

similar values, therefore keeping more cluster components alive for a longer time.

This in turn encourages more cluster splits, which is also reflected in the Hast-

ings ratios for cluster moves. With larger β, Equation (6.58) takes on a larger

value, i.e., the probability of accepting a split proposal becomes higher, and Equa-

tion (6.59) takes on a smaller value, i.e., the probability of the reverse merge move

becomes smaller. Intuitively, the effect is that only closely related components
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Figure 6.8: Sampling behavior on Xitsonga data when (a) not using switch moves for

cluster components, and (b) using switch moves. Without switch moves, the number of

clusters might grow fast, and convergence is slow. With switch moves, this issue does

not occur. The same behavior was also observed on the English data set.

remain grouped in form of a cluster, and less dense clusters are likely to be split

to form new clusters with less components. The resulting DPMoMM tends to

be made up by many clusters with mostly low amounts of components, and only

few clusters with higher amounts of components, if the data suggests so. A small

value for β has the exact opposite effect and a sampled DPMoMM will have few

clusters with mostly large amounts of cluster components.

6.7.4 Convergence and the Switch Sampler

During our experiments, we found that under certain conditions, the number of

clusters can grow rapidly and stay large for a long stretch of iterations. This

is the case when the allowed cluster size cmax is large and β is set to facilitate

many clusters with a large number of components. Under such circumstances,

the duplication of clusters during the cluster update step in the component split

sampler (see Section 6.4.1) becomes more likely and more frequent, especially if

multiple components in the same cluster are subject to splitting.

We developed the switch move sampler to mitigate this issue and support con-

vergence. Figure 6.8 exemplarily shows the sampling behavior of our DPMoMM

sampler on Xitsonga data with and without using switch moves for cluster com-
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ponents. As can be seen, the number of clusters might grow fast without switch

moves, and convergence is slow. With switch moves, however, this issue does not

occur. The same behavior was observable for both of our data sets. Without

switch moves, a considerably larger amount of time would be required by the

sampler to converge. With switch moves, convergence is fast.

6.7.5 Use Case Performance

Figures 6.9a, 6.9f and 6.10a, 6.10f show the relative improvements of cluster label

sequences over codebook component label sequences on the symmetric NMI met-

ric. The best results are always achieved by allowing larger clusters. The optimal

value for β seems to lie within a certain range. This range is the same for our

two data sets, English and Xitsonga, but it seems to be input feature dependent.

Sampling from PLP+∆+∆∆ features benefits from a β value between 100 and

300, where sampling from PLP+LDA features might even benefit from a β larger

than 400, which during our experiments was the highest value that we tested.

These observations transfer to the evaluation of cluster and component labels

with the ABX phone discriminability test, as can be seen in Figures 6.9b, 6.9g

and 6.10b, 6.10g.

Interestingly, we observed considerable performance improvements when we

extracted cluster posteriorgrams and compared them to component posterior-

grams with the ABX discriminability test, especially with PLP+∆+∆∆ as input

(see Figures 6.9c, 6.9h and 6.10c, 6.10h). This is noteworthy because despite

the much lower dimensionality of cluster posteriorgrams, performance not just

equals, but even increases, compared to the component posteriorgrams. This is

an indicator that the clusters inferred by our proposed DPMoMM are not just

accumulations of related classes, but in fact a better approximation to the real

underlying multimodal distributions of more complex classes in the data.

The number of inferred clusters does not necessarily correlate with the average

length of sample sequences that use the clusters as classes. Figures 6.9d, 6.9i

and 6.10d, 6.10i show that it is the maximum number of allowed components per

cluster cmax that governs the average unit length, rather than β. The average

unit lengths is higher if the clusters are allowed to grow larger. A too large β

somewhat slows down this trend. The increased unit lengths for larger clusters is
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Figure 6.9: Relative performance improvements when interpreting clusters instead of codebook components as acoustic

classes. The inputs are 39 dimensional PLP+∆+∆∆ speech features. (a)-(e): Results on Xitsonga; (f)-(j): Results on

English; (a),(f) Relative improvement of NMImax, (b),(g) Relative improvement of ABXls, (c),(h) Relative improvement

of ABXkl, (d),(i) Relative unit length increase, (e),(j) Cluster to component amount ratio. Paired t-tests on all ABX task

outputs yield p� 0.0001.
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Figure 6.10: Relative performance improvements when interpreting clusters instead of codebook components as acoustic

classes. The inputs are 20 dimensional PLP+LDA speech features. (a)-(e): Results on Xitsonga; (f)-(j): Results on

English; (a),(f) Relative improvement of NMImax, (b),(g) Relative improvement of ABXls, (c),(h) Relative improvement

of ABXkl, (d),(i) Relative unit length increase, (e),(j) Cluster to component amount ratio. Paired t-tests on all ABX task

outputs yield p� 0.0001.
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an indicator that the grouping of components into mixtures allows the mixture

of mixtures model to capture wider acoustic phenomena, an ability that is highly

valued in unsupervised subword modeling.

Overall, our results as depicted in Figures 6.9 and 6.10 reveal that with some

tuning of β and cmax, relative improvements on all evaluation metrics can be as

high as 13.5%. The contour plots also suggest that larger mixtures might result

in even larger improvements. It is a strong support for our initial motivation

for this work that good results can be achieved with settings that lead to the

inference of as little as 27% of the amount of clusters than there are codebook

components, which considerably reduces model complexity. At the same time,

the found clusters can serve as models with average durations of sound instances

that are up to 31% longer. Table 6.1 compares the performance of standard

DPMMs and good DPMoMMs that we sampled in absolute numbers. During

our experiments we sampled models that are best on one metric, but sub-optimal

on others. The exemplary DPMoMMs perform reasonably well on all evaluation

metrics and give a good impression of what can be expected if the parameters

are tuned reasonably. Note that we did not yet exhaust the exploration of the

hyper-parameter space. We expect that even better results are possible with

larger values for β and especially cmax.

6.7.6 State-of-the-art ZeroSpeech Performance

In Chapter 4, we transformed PLP features with LDA, maximum likelihood linear

transforms (MLLT) [56, 49] and feature-space maximum likelihood linear regres-

sion (fMLLR) [4, 48] – a method commonly used for speaker adaptation – to

improve the input to a DPMM sampler. The extracted posteriorgrams achieved

the to-date best results on the zero resource speech challenge 2015 Xitsonga and

English data sets.

We repeated these experiments with our novel sampler, using the hyper-

parameters that we tuned for the PLP+LDA features. Table 6.1 compares the

previously published performance of [67] (as in Chapter 4) with using a DPMoMM

for sampling instead. We could infer more compact models having fewer clusters

and at the same time reduce the discriminability errors – the official evaluation

method of the challenge – even further, thus establishing a new state-of-the-art

with our proposed method.
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Table 6.1: Performance comparison of standard DPMMs and proposed DPMoMMs applied to both data sets. K and C are

annotated with the standard deviation over 5 samplings for each model type. It can be seen that the standard deviation

correlates with the quality of the speech data. Indices for feature types denote context size, indices for transformations

denote output dimensionality. Paired t-tests on all ABX task outputs yield p� 0.0001.

Features Sampler Clusters modeled by β cmax K C K/C NMImax ABXls ABXkl avg. seg. len.

Results for the Xitsonga data set

PLP+∆+∆∆ DPMoMM
Single Gaussians - - 154±5 - 1.0 0.275 21.31% 14.03% 2.16 frames

Gaussian Mixtures 200 8 114±4 154±5 0.74 0.302 18.44% 12% 2.76 frames

PLP4+LDA20 DPMoMM
Single Gaussians - - 142±5 - 1.0 0.283 20.29% 13.15% 2.22 frames

Gaussian Mixtures 400 8 120±4 142±5 0.848 0.31 18.74% 12.47% 2.68 frames

PLP4+LDA20
DPMM [67] Single Gaussians - - 139 - - - - 12.2% -

+MLLT+fMLLR
DPMoMM Single Gaussians - - 144±3 - 1.0 0.293 19.33% 12.44% 2.29 frames

DPMoMM Gaussian Mixtures 400 8 126±4 144±3 0.876 0.315 18.06% 11.93% 2.7 frames

Results for the English data set

PLP+∆+∆∆ DPMoMM
Single Gaussians - - 232±10 - 1.0 0.232 28.85% 18.99% 2.06 frames

Gaussian Mixtures 100 4 110±11 232±10 0.473 0.241 25.65% 17.61% 2.37 frames

PLP4+LDA20 DPMoMM
Single Gaussians - - 152±7 - 1.0 0.248 25.88% 16.18% 2.33 frames

Gaussian Mixtures 300 4 98±8 152±7 0.649 0.262 23.74% 15.99% 2.73 frames

PLP4+LDA20
DPMM [67] Single Gaussians - - 156 - - - - 15.7% -

+MLLT+fMLLR
DPMoMM Single Gaussians - - 157±6 - 1.0 0.253 25.28% 15.84% 2.31 frames

DPMoMM Gaussian Mixtures 300 4 93±8 157±6 0.591 0.266 23.28% 15.47% 2.64 frames
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6.7.7 Acoustic Unit Recognition Performance

In Chapter 5, we conducted experiments where the output of a DPMM sam-

pler served as labels for training a context dependent “triphone” acoustic unit

recognizer. In the proposed framework, the DPMM defines the number and dis-

tributions of units dynamically and without any prior supervision, given only

extracted speech observations, i.e., frame-based feature vectors. We trained an

HMM acoustic model and n-gram language model using collapsed DPMM compo-

nent labels. The resulting DPMM-HMM acoustic unit recognizer was evaluated

by solving the ABX sound class discriminability task. Our results showed that it

is possible to build a DPMM-HMM acoustic unit recognizer that is competitive

with supervisedly trained phone recognizers.

Here, we conducted experiments with a comparable setup, but using the DP-

MoMM for subword modeling instead. The labels that we used come from the

models that were inferred from PLP+fMLLR-transformed features as listed in

Table 6.1. We trained language-dependent acoustic unit recognizers given the

DPMoMM cluster labels. We then compared the performance to recognizers that

were trained on the DPMoMM component labels instead, which correspond to

standard DPMM labels. Since we sampled each DPMoMM five times, we also

trained each recognizer five times, scored five times and averaged the results. In

addition to the ABX test, we also evaluated the NMI scores. Training and test-

ing was done with 12-fold cross-validation. Table 6.2 compares the results of the

trained acoustic unit recognizers using cluster labels vs. using single component

labels as training references. The recognizers trained on cluster labels perform

significantly better across data sets and across all evaluation metrics.

6.8 Conclusion

We developed a Dirichlet process mixture of mixtures model (DPMoMM) sam-

pler that jointly infers a codebook of global components and a mixture of clusters.

The clusters are themselves mixtures that are defined over the codebook com-

ponents. Split and merge samplers for modifying codebook components were

complemented with split and merge samplers for modifying clusters. We in-

troduced an additional switch sampler for cluster components to support and

accelerate convergence, which has shown to be effective in experiments on real
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Table 6.2: Performance comparison of acoustic unit recognizers trained on DPMM and

DPMoMM labels. Paired t-tests on all ABX task outputs yield p� 0.0001.

Label type Units NMImax ABXls ABXkl avg. seg. len.

Results for the Xitsonga data set

Gaussians 144 0.319 18.06% 12.09% 2.59 frames

Mixtures 126 0.327 16.45% 11.17% 2.95 frames

Results for the English data set

Gaussians 157 0.263 24.48% 16.5% 2.77 frames

Mixtures 93 0.278 22.21% 15.76% 3.12 frames

data. We demonstrated in the use case of unsupervised subword modeling on

two separate data sets, that classes represented by a mixture of mixtures model

reliably outperform the output of a standard DPMM. For both data sets and on

all our evaluation metrics, the models inferred with our proposed DPMoMM sam-

pler consistently achieved significant performance improvements of up to 13.5%

relative. At the same time, considerably fewer classes that show longer aver-

age durations were sampled, a behavior that is desired for unsupervised subword

modeling. Our experiments suggest that the inferred mixture of mixtures approx-

imates the true underlying distributions of our experimental data much better

than a standard DPMM. Lastly, parallelization of sampling steps allows the algo-

rithm to work well even on larger data sets in higher data regimes. Although we

originally developed the DPMoMM for improving unsupervised subword model-

ing, we think that our sampler will be useful not only for handling speech data,

but for many tasks where classes are defined by multimodal distributions.
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Chapter 7

Conclusion and Future Work

“Alle Sprache ist Bezeichnung der Gedanken, und umgekehrt die

vorzüglichste Art der Gedankenbezeichnung ist die durch Sprache,

dieses größte Mittel, sich selbst und andere zu verstehen.” 1 [85]

– Immanuel Kant (1724-1804), Philosopher

7.1 Conclusion

This thesis addressed the problem of unsupervised subword modeling in the zero

resource scenario. This work has been motivated by the need of novel meth-

ods for handling speech data from severely under-resourced languages, such as

non-written languages and languages without significant digital presence. The

unsupervised subword modeling problem was divided into the sub-tasks of repre-

sentation learning and model design.

The representation learning problem was addressed by proposing a feature-

optimized Bayesian non-parametric clustering method to infer a dynamic set of

speech sound classes from raw data. The introduced method utilizes the Dirichlet

process Gaussian mixture model and exploits a supervised training framework for

learning useful feature transformations without prior supervision. These trans-

formations reduce variance and dimensionality of the raw data and improve class

1“All language is expression of thought, and conversely, the most excellent way of expressing

thought is through language, this greatest means of understanding oneself and others.”
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discriminability of the inferred speech sound classes.

The successful construction of an acoustic unit tokenizer showed that the

inferred sound classes carry meaning and can be used to solve higher-level tasks.

Analyzing the nature of the inferred classes pointed towards the model design

problem.

The model design was improved by developing a novel Bayesian non-

parametric model and sampler, called the Dirichlet process mixture of mixtures

model (DPMoMM). The DPMoMM is a hierarchical model whose sampler in-

fers a mixture of multimodal distributions. In the case of unsupervised subword

modeling, this model enables the inference of complex acoustic classes that are

represented by multimodal distributions, an approach that is closer to the practice

in automatic speech recognition. The proposed DPMoMM is a general method

that could also be applied to solve other tasks involving data that is modeled by

multimodal distributions.

Posteriorgram representations of speech constructed by the feature optimized

DPGMM clustering achieved considerably higher phone discriminability accura-

cies than all established baselines. The DPMoMM method improved discrim-

inability of the unsupervisedly learned classes even further by inferring more

complex models from acoustic data, which results in a better posteriorgram rep-

resentation. In experiments, the proposed design led to the inference of fewer

classes that represent subword units more consistently and show longer durations,

which is a first step towards a fully unsupervisedly learned model for speech that

represents units of appropriate length and complexity. The proposed methods

set the state-of-the-art in the ZeroSpeech challenges 2015 and 2017.

The results presented in this work provide a good basis for further research

on the possibilities of learning acoustic units and acoustic features from scratch,

without any prior category knowledge or other meta information about the tar-

get language. Figure 7.1 illustrates the scope of this thesis with regards to the

addressed problems. This larger perspective shows that there are still problems

to solve, especially related to context coverage by inferred acoustic units and the

explicit handling of sequentiality in speech data.
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Figure 7.1: Larger perspective on unsupervised subword modeling in the zero resource

scenario and its hierarchy of problems. The green boxes denote the contributions of

this thesis towards solving the stated problems. Yet unsolved or only partially solved

problems provide opportunities for future work.

7.2 Future Work

Although this thesis covers all aspects of the unsupervised subword modeling

problem, there are certain sub-tasks that remain challenging and provide many

possibilities for further refinement of developed methods. The following three

challenges are particularly interesting and their tackling would be a logical con-

tinuation of the presented work.

7.2.1 Context Information for Unsupervised Subword

Modeling

The research conducted within the frame of this thesis has shown that units

which are inferred by Dirichlet process mixture model samplers show very short

durations, compared to sound categories that were defined by human experts.

This can be attributed to two causes, the model design and the method that

is being used for model inference. Using a DPGMM to cluster speech features

and interpreting the inferred GMM as modeling a set of acoustic categories is
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an expression of a fairly simple modeling assumption for speech data. Single

Gaussians can not adequately approximate more complex speech sounds in a

way that would result in models that cover a larger context in the temporal

domain. Because of its simplicity, Dirichlet process mixture models in general

tend to overestimate the fragmentation of the feature space. The DPMoMM was

proposed to mitigate the over-simplification and managed to find clusters that

represent more complex acoustic phenomena that show longer durations in the

temporal space.

One unresolved issue that still persists is that neither the models proposed

and utilized here, nor their inference consider the sequential nature of speech yet.

Methods such as Dirichlet processes with dependencies [105, 106, 184, 57, 16]

do account for temporal relations in data, but the problem of the model design

still remains. The ability to account for temporal information and to handle

sequential input with at the same time sufficient model complexity might help to

infer more natural units with more complex distributions and longer durations.

One possible way to enable sequential modeling could be to utilize depen-

dent non-parametric processes as priors. For instance, the dependent processes

of [105, 106] generalize the standard DP to allow for a collection of non-parametric

distributions, where their realizations are dependent, and the time-sensitive DP-

MMs of [184] define the prior probability of assigning observations to clusters,

given the history of previous assignments. Another possibility could be to de-

fine sequential models as components in a DPMM or as clusters in a DPMoMM.

Lee et al. [96] jointly infer a segmentation of data and HMMs to approximate

groups of segments, thereby implicitly modeling sequentiality within classes. Siu

at al. [152] propose building ASR systems given raw speech data only by for-

mulating the HMM acoustic model training as optimization problem over the

parameter as well as the transcription sequence space. One possible extension to

Dirichlet processes one might think of are mixture models with HMMs instead

of Gaussians as components, which would similarly enable intra-class sequential

modeling.
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7.2.2 Context Aware Joint Model for Subword and Word-

like Units

Once acoustic units are inferred from raw data, one could proceed by further

grouping these units into categories that span larger regions in the feature space

or the temporal space. Successive clustering could be used to group acoustic

units into more general sound categories (e.g., context dependent units to context

independent units) or more complex sound categories (sub-phone like units to

phone-like units). Successive clustering however has the disadvantage that it

provides an opportunity for new errors to be introduced into the final models.

With joint modeling however there exists a more elegant method to learn more

complex units on the basis of simpler ones.

In light of this work, the next challenge could therefore be to formulate a

context aware joint model for subword and word-like units. Work such as [27,

131, 96] already learn word-like units that are made up by shorter morphemes.

The goal of these models however usually is to provide a lexicon of word-like

tokens, and explicitly modeling subword units remains unaddressed. A promising

future direction is to define a joint model that can capture subword units and

word-like entities alike. One key property of such joint models would have to be

context awareness to the extent that sequential lexical information is captured

and modeled jointly with the inferred subword and lexical units, which evades

some of the problems that arise in concatenated processing of models that become

more complex over time.

7.2.3 Fully Unsupervised Automatic Speech Recognition

The main research question that still stands is, can we teach machines to learn

languages from raw speech only, without any supervision at all? The context-

aware joint model mentioned above would provide a good starting point for the

overarching challenge of building a fully functioning automatic speech recognizer

without any prior supervision, nor knowledge (or with extremely little knowledge)

about target data, expected sound categories and lexical characteristics. This task

lies at the extreme end of unsupervised speech processing and could be considered

the best match to the challenge of human language acquisition [53]. Language

acquisition by humans is a multimodal learning process, and it would therefore

149



7.2. Future Work

be natural to extend machine language acquisition frameworks by incorporating

multiple modalities, i.e., sensory inputs into the learning process, similar to works

such as [140, 65, 64].

The zero resource scenario has seen steadily increasing interest in recent years,

and first major contributions have laid the foundations for many interesting fu-

ture works. With new evaluations, workshops and special sessions added to the

roster each new year, the zero resource scenario will stay challenging and be the

motivation for a manifold of contributions to the speech processing and linguistic

research community in the years to come.
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Appendix

A Results of the Zero Resource Challenge 2015

This appendix lists the official results for track 1 of the zero resource speech

challenge (ZeroSpeech) 2015 [164]. The numbers for the official submissions are

complemented by performance evaluations of methods that were published during

the post-challenge time, i.e., after conducting the official evaluation as part of

Interspeech 2015.

The goal for track 1 of ZeroSpeech 2015 was to discover subword units from

raw speech. The provision of unified and open source suite of evaluation metrics

as well as data sets supports fair comparisons of unsupervised linguistic unit

discovery algorithms.

The metric used for evaluation and comparison is the ABX phone discrimi-

nation error rate (see Section 4.5 for details). The used data sets are the ones

described in Section 4.6.2. The baseline was provided by raw MFCC speech fea-

tures as speech representations. The topline was established by extracting poste-

riorgrams from supervisedly trained language dependent GMM-HMM based ASR

systems [164].

Overall, there were 10 officially submitted unsupervised systems. 7 supervised

systems were also listed in the leaderboard1. The official submissions are by (in

alphabetical order) Badino et al. [8], Baljekar et al. [9], Chen et al. [22], Renshaw

et al. [139] and Thiolliere et al. [160]. Post-challenge publications are by Heck et

al. [68, 71, 66], Srivastava et al. [153] and Zeghidour et al. [182].

1http://www.zerospeech.com/2015
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Table A.1: ABX discriminability errors across and within speakers for the track 1 sub-

missions of ZeroSpeech 2015. Overall, there were 10 officially submitted unsupervised

systems. 7 supervised systems are listed separately at the bottom of the table. The

table further includes various systems that were published post-challenge (post-ch.).

Systems
English Xitsonga

unsup. post-ch.
across within across within

Baseline 28.1 15.6 33.8 19.1 - -

Topline 16.0 12.1 4.5 3.5 - -

Badino et al. [8] 26.3 17.3 23.6 14.1 3 7

Badino et al. [8] 26.8 16.7 27.4 16.0 3 7

Badino et al. [8] 28.7 19.7 26.4 17.1 3 7

Baljekar et al. [9] 29.5 16.7 33.9 19.7 3 7

Baljekar et al. [9] 28 17 30.7 19.7 3 7

Chen et al. [22] 26.8 17.2 30.8 19.6 3 7

Chen et al. [22] 16.3 10.8 17.2 9.6 3 7

Heck et al. [68] (Ch. 4) 16.0 10.6 12.6 8.0 3 3

Heck et al. [71] (Ch. 4) 15.6 10.5 12.2 8.4 3 3

Heck et al. [71] (Ch. 4) 14.9 10.0 11.7 8.1 3 3

Heck et al. [66] (Ch. 5) 15.1 11.1 11.6 8.2 3 3

Heck et al. [70] (Ch. 6) 15.4 10.5 11.9 8.0 3 3

Heck et al. [70] (Ch. 6) 15.7 11.3 11.1 7.8 3 3

Renshaw et al. [139] 21.1 13.5 19.3 11.9 3 7

Renshaw et al. [139] N/A N/A 18.5 11.6 3 7

Srivastava et al. [153] 28 15.5 30 19 3 3

Srivastava et al. [153] 24 14 30 19 3 3

Thiolliere et al. [160] 17.9 12.0 16.6 11.7 3 7

Zeghidour et al. [182] 17 11 15.8 12 3 3

Baljekar et al. [9] 29.8 18.4 29.7 18.1 7 7

Baljekar et al. [9] N/A N/A 46.0 42.8 7 7

Baljekar et al. [9] N/A N/A 46.4 44.1 7 7

Chen et al. [22] 15.8 10.4 15.5 12.0 7 7

Chen et al. [22] 14.9 9.7 15.0 9.5 7 7

Renshaw et al. [139] 18.1 12.8 19.3 14.4 7 7

Renshaw et al. [139] 19.3 14.0 18.2 13.0 7 7
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B Results of the Zero Resource Challenge 2017

This appendix lists the official results for track 1 of the zero resource speech

challenge (ZeroSpeech) 2017 [34]. Track 1 of the follow-up challenge to the Ze-

roSpeech 2015 aimed at constructing systems for subword unit discovery that

generalize across languages and adapt to new speakers.

Specifically, the two main innovations in 2017 were that the evaluation tests

how well (1) systems and hyper-parameters generalize to new, unseen languages,

and (2) how well the trained systems, i.e., their parameters adapt to new, unseen

speakers [34]. In addition to that, data sets were designed to reveal whether

systems scale well with their sizes.

The metric used for evaluation and comparison is again the ABX phone dis-

crimination error rate (see Section 4.5 for details) to maintain consistency with

the previous challenge. The used data sets are the ones described in Section 4.7.2.

The challenge data comes as a training/test split, but on a higher level, which is

the level of languages; three language sets serve as development sets to train sys-

tems and their hyper-parameters, another two surprise language sets serve as test

sets. Each language set is split in train and test portions on the speaker level. The

surprise language data sets are provided with no meta information at all. Each

test set comes in three variants that differ in the length per utterance, which are

1 second, 10 seconds or 120 seconds. The baseline was provided by raw MFCC

speech features as speech representations. The topline was established by extract-

ing posteriorgrams from supervisedly trained language dependent GMM-HMM

based phone recognizers (using 2-gram language models during decoding) [34].

Overall, there were 11 officially submitted unsupervised systems considered for

the final ranking. 3 supervised systems were also listed in the leaderboard2, but

without being officially ranked. The submissions are by (in alphabetical order)

Ansari et al. [5], Chen et al. [23], Heck et al. [69], Pellegrini et al. [127], Shibata

et al. [150] and Yuan et al. [180].

2http://www.zerospeech.com/2017
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Table B.1: ABX discriminability errors across speakers for the track 1 submissions of ZeroSpeech 2017. Scores are computed

for three test file durations for the development languages and surprise languages. Overall, there were 11 unsupervised

systems. 3 supervised systems which were excluded from the official ranking are listed separately at the bottom of the

table.

Systems
English French Mandarin LANG1 LANG2

1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s

Baseline 23.4 23.4 23.4 25.2 25.5 25.2 21.3 21.3 21.3 23.6 23.2 23.0 30.0 29.5 29.5

Topline 8.6 6.9 6.7 10.6 9.1 8.9 12.0 5.7 5.1 12.8 10.5 10.4 7.1 3.6 4.3

Ansari et al. [5] 14.5 N/A 13.2 17.8 N/A 16.2 13.2 N/A 12.7 16.9 14.7 14.7 18.8 17.7 17.7

Ansari et al. [5] 13.7 N/A 12.4 17.2 N/A 15.6 12.6 N/A 12.0 16.0 14.0 13.9 17.9 16.9 16.6

Ansari et al. [5] 13.2 12.0 N/A 17.2 N/A 15.4 13.0 12.2 12.3 15.5 13.5 13.4 17.6 16.0 16.0

Ansari et al. [5] N/A N/A N/A N/A N/A N/A N/A N/A N/A 15.7 13.7 13.5 17.5 16.1 16.1

Chen et al. [23] 13.7 12.1 12.0 17.6 15.6 14.8 12.3 10.8 10.7 15.5 12.9 12.7 17.6 16.9 16.3

Chen et al. [23] 12.7 11.0 10.8 17.0 14.5 14.1 11.9 10.3 10.1 14.7 11.7 11.6 16.9 14.7 14.4

Heck et al. [69] (Ch. 4) 10.1 8.7 8.5 13.6 11.7 11.3 8.8 7.4 7.3 11.9 10.0 9.7 13.0 10.0 9.9

Pellegrini et al. [127] 17.6 16.3 16.4 20.3 17.6 17.3 14.7 13.5 13.4 19.4 16.2 15.9 22.8 23.1 23.1

Pellegrini et al. [127] 17.6 16.2 16.3 20.1 17.7 17.3 14.7 13.5 13.4 19.2 16.3 16.0 23.3 23.3 23.1

Yuan et al. [180] 14.2 12.1 11.8 18.9 15.8 15.2 12.8 11.1 10.9 16.4 13.3 13.0 19.2 17.3 16.7

Yuan et al. [180] 14.0 11.9 11.7 18.6 15.5 14.9 12.7 10.8 10.7 16.2 12.9 12.6 19.5 17.1 16.6

Shibata et al. [150] 10.1 9.2 8.2 13.7 12.4 10.8 10.4 9.5 8.0 11.6 9.9 8.7 11.5 10.2 8.6

Shibata et al. [150] 7.9 7.4 6.9 11.2 10.8 9.8 7.8 7.5 6.7 9.3 8.6 7.8 8.3 7.9 7.2

Yuan et al. [180] 13.6 11.5 11.3 17.7 14.8 14.4 12.9 10.7 10.5 15.8 12.4 12.3 18.7 17.4 17.0
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Table B.2: ABX discriminability errors within speakers for the track 1 submissions of ZeroSpeech 2017. Scores are computed

for three test file durations for the development languages and surprise languages. Overall, there were 11 unsupervised

systems. 3 supervised systems which were excluded from the official ranking are listed separately at the bottom of the

table.

Systems
English French Mandarin LANG1 LANG2

1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s

Baseline 12.0 12.1 12.1 12.5 12.6 12.6 11.5 11.5 11.5 10.3 9.3 9.4 14.1 14.3 14.1

Topline 6.5 5.3 5.1 8.0 6.8 6.8 9.5 4.2 4.0 8.7 7.1 7.0 6.6 4.6 3.4

Ansari et al. [5] 7.4 N/A 6.6 9.8 N/A 8.5 9.3 N/A 8.3 6.9 6.1 6.0 9.9 9.2 9.1

Ansari et al. [5] 7.4 N/A 6.6 9.8 N/A 8.4 9.2 N/A 8.2 6.8 6.0 6.0 10.1 9.6 9.6

Ansari et al. [5] 7.7 6.8 N/A 10.4 N/A 8.8 10.4 9.3 9.1 7.3 6.2 6.1 11.1 10.3 10.2

Ansari et al. [5] N/A N/A N/A N/A N/A N/A N/A N/A N/A 7.6 6.4 6.2 11.6 10.9 10.7

Chen et al. [23] 8.5 7.3 7.2 11.1 9.5 9.4 10.5 8.5 8.4 7.6 6.2 6.3 11.7 9.9 9.8

Chen et al. [23] 8.5 7.3 7.2 11.2 9.4 9.4 10.5 8.7 8.5 7.6 6.2 6.1 11.6 9.8 9.6

Heck et al. [69] (Ch. 4) 6.9 6.2 6.0 9.7 8.7 8.4 8.8 7.9 7.8 6.5 5.6 5.3 10.9 8.8 8.4

Pellegrini et al. [127] 9.9 8.2 8.3 11.8 9.7 9.6 11.0 8.5 8.2 8.9 6.7 6.4 13.3 11.9 11.8

Pellegrini et al. [127] 9.8 8.1 8.2 11.6 9.5 9.3 10.9 8.4 8.1 8.8 6.6 6.3 13.1 11.7 11.7

Yuan et al. [180] 8.9 7.1 7.1 12.2 9.6 9.7 11.3 8.6 8.3 8.2 6.2 6.2 12.7 10.1 9.9

Yuan et al. [180] 9.0 7.1 7.0 11.9 9.5 9.5 11.1 8.5 8.2 8.1 6.0 6.0 12.6 10.0 9.9

Shibata et al. [150] 6.7 6.5 5.7 9.7 9.2 7.9 9.8 9.2 8.2 6.3 5.8 5.0 9.0 8.7 7.2

Shibata et al. [150] 5.5 5.2 4.9 7.9 7.4 6.9 7.9 7.7 7.0 5.2 4.9 4.5 6.9 7.0 6.3

Yuan et al. [180] 8.9 7.1 7.0 12.0 9.3 9.2 11.3 8.6 8.2 8.0 6.0 5.9 12.9 10.8 10.6
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C DPMoMM Performance on ZeroSpeech 2017

Data

This appendix describes additional experiments that we conducted using the

Dirichlet process mixture of mixtures model (DPMoMM) as introduced in Chap-

ter 6. We perform the same kind of experiments as in Section 6.7, but on the

data of the zero resource challenge 2017 [34].

C.1 Data

We sample multiple DPMoMMs separately for each of the ZeroSpeech 2017 devel-

opment language data sets, which are English, French and Mandarin. The data is

described in 4.7.2 and in [34]. Since the references for ABX scoring are not made

public for the surprise languages, we refrained from running our experiments for

the “LANG1” and “LANG2” data sets, as scoring would not have been possible.

Since the data is not accompanied by plain textual references as well, we could

not use the NMI criterion (see Section 6.6.2) for evaluation.

We are further only using the test set portions of the data sets for model

sampling. For the challenge, each test set came in three versions which differ in

their utterance lengths. Utterances are either all cut to 1 second, 10 seconds or

120 seconds of length. We used the test data sets with utterance length of 120

seconds for our experiments.

The details of the used data portions are listed in Table C.1.

Table C.1: Used portions of the language specific data sets.

Language set #files duration

English 260 8.6h

French 118 3.9h

Mandarin 262 8.7h

C.2 Procedure

Analogous to Section 6.7.2, for each of the data sets, we separately cluster ex-

tracted PLP+LDA+MLLT+fMLLR speech feature vectors by sampling a DP-
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MoMM, where the algorithm jointly samples the Gaussian mixtures as well as a

global codebook of Gaussians, which corresponds to a standard DPMM. We com-

pare the modeling quality of the DPMoMM to the jointly sampled codebook, i.e,

the DPMM, by computing the relative performance improvements of extracted

posteriorgrams or textual labels on the ABX task. We also compute the ratio

of components to clusters, and the relative length increase of the inferred units.

The results are presented as contour plots in Figure C.1.

As before, we run every sampling for 1000 iterations. Due to the larger

amounts of data, we sampled each model one time for each configuration of hyper-

parameters. α is fixed to 1, and β can take on the values {100, 200, 300, 400}.
For cmax, we tested the values {2, 4, 8}. Note that the results presented here are

not comparable to the performance reported in Appendix B due to differences in

the setup. For one, the sampling iterations are fewer in order to handle time con-

straints. We also applied system combination in previous experiments, which was

not utilized here because the focus of the experiments was to compare DPMoMM

and DPMM performance. Most importantly, the scoring setup in Appendix B

applies a normalization operation during DTW distance computations, which in-

validates the comparison of jointly inferred DPMoMM and DPMM. The scoring

setup used here is a variant which does not use this normalization. This leads

to scores being located in a slightly shifted range of values, but which guarantee

proper comparison of DPMoMM and DPMM outputs.

C.3 Analysis

The outcome of our experiments on the new ZeroSpeech 2017 data sets confirm

the superior performance of the DPMoMM over the DPMM and the findings that

we made before as laid out in detail in Section 6.7. With the proper parametriza-

tion, the DPMoMM achieves better performance according to all applied criteria,

while at the same time resulting in a more compact model with fewer clusters,

which is desired.

Considerable performance improvements are observable for the ABXls discrim-

inability. Here, the best results are always achieved by allowing larger clusters.

The optimal value for β seems to be found at the lower end of the parameter

range, with 100 being the smallest value that we tested performing best during

our experiments. For the ABXkl discriminability, i.e., the performance of the ex-

157



C. DPMoMM Performance on ZeroSpeech 2017 Data

tracted frame-wise posteriorgrams, we did not expect to see major performance

improvements. Interestingly, we made the same observations than in the original

experiments in Chapter 6 and witnessed measurable performance improvements.

With a slightly larger value for β within the range from 100 to 200, and cmax set

to 4, we have seen moderate performance improvements on all test sets. Other

parameter settings lead to minor improvements or result in models that are com-

parable in performance to the DPMM.

Overall, we were able to demonstrate the effectiveness of the DPMoMM on

five distinct data sets (two data sets from ZeroSpeech 205, three from ZeroSpeech

2017) that cover very different languages, data sizes and show varying quality,

which naturally impacts the difficulty of the clustering problem. We could show

that with some tuning of β and cmax, considerable relative improvements on all

evaluation metrics can be achieved. For the purpose of demonstration, Table C.2

lists the absolute numbers of our performance measures when fixing β = 200 and

cmax = 4, values that seem to work well for all of the three new test sets and

ABX discriminability tasks. Using a single parameter pair, we would not achieve

optimal performance on all data sets, but we see a reasonably good and, more

importantly, consistent improvement over DPMM by using DPMoMM.

Table C.2: Performance comparison of standard DPMMs (K modeled by single Gaus-

sians) and proposed DPMoMMs (K modeled by Gaussian mixtures). As a parameter

pair that fares reasonably well on all data sets, β is fixed to 200 and cmax is fixed to 4.

Paired t-tests on all ABX task outputs yield p� 0.001.

K modeled by β cmax K C K/C ABXls ABXkl avg. seg. len.

Results for the English test set

Single Gaussians - - 443 - 1.0 10.64% 17.77% 2.17 frames

Gaussian Mixtures 200 4 380 443 0.857 10.26% 16.45% 2.36 frames

Results for the French test set

Single Gaussians - - 365 - 1.0 15.47% 22.17% 2.51 frames

Gaussian Mixtures 200 4 347 365 0.95 15.22% 21.47% 2.7 frames

Results for the Mandarin test set

Single Gaussians - - 498 - 1.0 7.94% 13.37% 2.2 frames

Gaussian Mixtures 200 4 458 498 0.919 7.85% 12.83% 2.3 frames
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Figure C.1: Relative performance improvements when interpreting clusters instead of codebook components as acoustic

classes. The inputs are 33 dimensional PLP+LDA+MLLT+fMLLR speech features. (a)-(d): Results on English; (e)-

(h): Results on French; (i)-(l): Results on Mandarin; (a),(e),(i) Relative improvement of ABXls, (b),(f),(j) Relative

improvement of ABXkl, (c),(g),(k) Relative unit length increase, (d),(h),(l) Cluster to component amount ratio. Paired

t-tests on ABX task outputs with relative improvements > 0 yield p� 0.001.
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