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Learning Lexical Representations for Neural Machine Translation*

Philip Arthur

Abstract

Words are the most natural unit of meaning with which most people think about lan-
guage. Humans understand language by combining together spoken sounds, forming
words. Different senses of words can totally change the meaning of the whole sentence
thus it is important to represent words robustly in a computer. In order for computers
to process words, it is important to study some various ways of representation so that
we know which representation is better for NMT. In particular, this thesis focuses on
representation of individual tokens in the computer, called the lexical representation.

Up to this point, there have been several different computational representations
of words proposed. For example, the earliest natural language processing (NLP) work
uses the word string itself to represent words. While simple and effective, this approach
has several drawbacks. String is not a robust representation of the meaning which is
contained inside a word, because words that are close in meaning but with slightly
different surface forms (e.g. eats vs ate) to be treated as entirely different words. Thus
it is hard to model the similarities or differences between words because all words
in the corpus are treated as distinct entities and assigned to different parameters. A
remedy to this problem is using continuous representations, which treat words as a
vector in a continuous space. Continuous representations are better because meaning
can now be represented as some degrees of magnitude and can be composed with many
factors (represented as dimension).

However, in these continuous representations, while meaning is modeled more ap-
propriately, there still exist some problems and dilemmas that are hard to deal with.
This thesis attempts to study the better computational lexical representations of words,
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specifically focused on the continuous representations in the task of end-to-end neu-
ral machine translation (NMT). Sub-optimal representations of word units can make
learning slow or even worse, make it fail to learn the patterns of the language in a gen-
eralizable way. This generalization failure can cause the translation systems to fail to
learn and produce certain words. These failed words are often rare entities which are
important to translate (e.g. political entities, races, religions, etc.).

Our first study proposes a better way of representing continuous word representa-
tions in the target side of NMT. The vectors that represent words (embeddings) tend
to be similar for words that are infrequent in the training corpus, making it difficult
for the translation system to precisely generate the words and entities. We use part of
the previous count-based MT systems, the lexical translation probabilities, to provide a
strong prior for the NMT system. Our experiments showed a significant improvement
in rare-word translation over the NMT baseline.

The second study investigates better ways of representing the source words of
NMT. NMT works on the set of lexical units that are defined using either full words
or subwords. While using the full words form, there exist words that occur more often
than the others. This implies that variants of machine learning algorithms that use a
unique parameter for different words will update some word parameters more often
than the others. This is the “rare word” problem, where it is hard to model and pro-
duce words that appear in the training corpus only a few times. Using subword units
is a natural remedy to this problem. However, subword units also delete the natural
segmentation of full word units, exchanging context for flexibilities. There also exist
multiple ways in representing each token as a continuous vector. These are the dilem-
mas in representing each lexical unit with a vector in a continuous space. Despite a fair
amount of previous work on this subject, because no systematic comparison between
the various methods has been performed, there is no clear answer which combina-
tion works better. In this study, we tried to (1) compare each of the combinations of
lexical unit and composition function, (2) combine the composition functions together.
Experiments show that a composition function using character bag-of-ngrams informa-
tion achieved the best accuracy when using the natural word segmentation. Moreover
we find that by simply adding character embeddings information to the subword based
systems also increased the system accuracy.

The third study proposed an automatic way of determining the most optimal set of
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lexical units for NMT. These lexical units are in the form of subwords that are opti-
mized jointly with NMT. The subwords are latent variables that need to be discovered
on-the-fly while also maximizing the potential of NMT system in producing better
translation quality. Preliminary experiments show that the system is able to generate a
set of meaningful lexical units, but also that stabilizing training is a major challenge.
Qualitatively, the produced segmentation is somewhat intuitive and there are some
consistent linguistic patterns being discovered.

Together, these three main components of the thesis, each studies better ways of
representing lexical units for better NMT.1

Keywords:

Neural Machine Translation, Lexicon, Representation Learning, Reinforcement Learn-
ing, Hybrid Method, Embedding, Compositional Model, Computational Linguistic

1There is an updated version of this thesis available at http://arthur91.com/work/dthesis/
dthesis.pdf
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Chapter 1

Introduction

Understanding natural language is a problem of understanding sentence that are com-
posed by words. Words are the smallest elementary units possible to carry semantics.
The process of performing some natural language processing task, such as automati-
cally translating a sentence, begins with capturing a robust representation of an input
sentence in a computer-processable data structure. These words themselves are not
necessarily stored as-is, but it can be decomposed as smaller lexical units that are more
efficient for learning and storing the whole data. This learned lexical representation is
one of the essential step toward adaptive NMT systems that are robust in learning and
dealing with difficult and unseen words on the fly.

1.1. Lexical Unit Acquisition for NMT

The process of translating a sentence in natural language starts with understanding the
smallest parts from which it is composed (lexical units) [70]. For English, spaces are
natural delimiters of words in sentences that can be used as semantic boundaries. This
natural segmentation on space boundaries can serve as a definition of “words”. How-
ever, for some languages such as Japanese and Chinese, where words can be defined
in multiple ways [67], the process of choosing the lexical units is not trivial.

There have been several attempts to define what lexical units are the best to be
processed for NMT systems. Some use plain whole words that are segmented us-
ing a segmenter or tokenizer according to intuitive human-defined boundaries. Some
[48, 80] instead use characters. In most cases, the word-based systems using human-
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defined boundaries tend to beat the character-based systems given enough training data
to ensure that the parameters of the words are well trained, but in some cases we don’t
have such data. On the other hand, character based models are very robust in handling
unknown or unseen words, especially for languages with a big word vocabulary units
[40]. However, it also means that the other parameters of the system, need to model
the sequence of characters better, and usually makes the sequence longer and harder
to learn. As a remedy to this problem, [75, 46] propose intermediate representations
using subwords that can compromise between two approaches while taking the good
aspects of both.

This thesis studies about the good representation of lexical units. Before describ-
ing the problem of the current state of the art and answering the question of what is
a good way of representing them computationally, first we describe two main data
representation formats for these units.

Discrete Representation of Lexical Units

In the framework of traditional statistical machine translation [45], words are treated
as the atomic units, and sentence are broken down into rules for the translation engine
[12]. However, because of this discrete representation, there exists a problem of dis-
tinguishing between words that should be close in proximity (e.g. “eat” and “ate”) and
words that are totally different (“eat” and “tree”). The system should be intelligent
enough to distinguish them, which is a non-trivial task.

Given that the system is robust enough in distinguishing between words that are
similar and dissimilar, we also have a problem in storing them in a computationally
tractable way. For example let us examine the rule in Figure 1.1. There we have
three different rules for translating the elementary word “eat”, but because the tenses
are different, we need to enumerate every verb in English with verbose string rules.
Moreover it is difficult to store the translation model on limited-resource devices such
as mobile phones for offline processing that can be used in remote areas. We will
discuss this further in Chapter 2.

There are several drawbacks in representing word as the most basic units. First,
we are treating words that should convey closer meaning (e.g. boy and man) equally
different to the words that are vastly different in meaning (e.g. boy and tree). This is
suboptimal because the context indicating similarities of words boy and man can not

2



English Grammar Japanese Grammar
X0 eats X1 X0 wa X1 wo taberu
X0 eating X1 X0 wa X1 wo tabeteiru
X0 ate X1 X0 wa X1 wo tabeta

Figure 1.1: Syntax-based translation rules for the word “eat”. In the “Hiero” syntax-
based translation model [12], these are the most elementary rules to model this phe-
nomenon in a natural way.

be modeled. Second, for words that have the same lemmas, but are lexically different
because of the conjugation, are also treated as equally different (e.g. eat vs ate and
eat vs country). There were many works on character-based models for SMT and
morphology in SMT, (e.g. the factored translation model [43]), but solutions to the
problems remain elusive. In phrase-based and syntax-based systems, the actual rule
table should be constructed with a combination of several words together, forming rule
tables with sizes that exponentially increase as more words are added to the system.
This leads to the third problem of the discrete word based systems, the computationally
intractable problem.

Continuous Representation of Lexical Units

Continuous lexical unit representations are becoming more popular with the break-
throughs in the computational linguistic research area involving neural networks (NN)
and long short term memory networks (LSTM) [7, 78, 5, 60, 59]. Most of the tradi-
tional discrete lexical modeling systems are continuously being outperformed by the
new end-to-end systems that are purely built using NNs.

In the new NN end-to-end architecture, words are modeled using a real-valued
multi-dimensional vector, which we call the continuous representation. This is the
generalization of the discrete modeling, as we can also achieve the discrete modeling
by a one-hot distribution that has the size of the vocabulary (further in Chapter 2). As
the concept of the meaning itself is abstract, we argue that it is better to model that
with a continuous representation. In this system, we use words as the input of the NNs
and the representation of words is learned by a gradient flow from back-propagation.
This learned representation of words in forms of continuous vector is called the “word

3



embedding”.

Figure 1.2: The example of word embeddings learned by the end-to-end neural net-
work. The multi-dimensional words are plotted using principal component analysis to
reduce high dimensional vectors into lower dimensional vectors. The words that are
close in proximity should be close to each other. The image was taken directly from
the word2vec data and visualized by using word2vec-web-visualization.

1.2. Improving Continuous Lexical Representation in NMT

In this section we discuss storing and representing sentences in NMT. Let us consider
the sentence “今日私は最終試験をする” which means that “I have a final examination
today.” Based on this particular example, we list some problems that we attempt to
solve in this thesis.

1. The first problem is that continuous representations make rare word (the words
that have low counts in the training corpus) translation harder. Because of the
low counts, the embedding parameters that are trained by using the general
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lookup function will not be updated as much as the other non-rare words. This
makes some words that are close to each other to be mistakenly generated. From
the example we know that words such as “試験” which means an “examination”
tends to be rarer than “今日” which means “today”. In general the vanilla NMT
systems tend to fail in translating these kinds of words. More will be discussed
in Chapter 3.

2. The second problem is that of how we properly model a particular word or lexical
unit in a computer? The most basic modeling function is the lookup function
that assigns a different vector to each lexical unit. This results in a massive
vocabulary that usually needs to be pruned by discarding all rare words and
replacing them with unknown words. This happens because words are being
chosen to be the most basic units in the system. As the matter of fact, some of
the complex words in a sentence can be represented or deduced by the smaller
parts of lexical units from which it is composed. For example let us examine
the word “今日”. Examining the character “今” which means “now” and “日”
which means “day”, we can train a compositional embedding that deduce “now”
and “day” are “today”.

In addition, neural systems need to adapt to generate a special token that rep-
resents unknown words. This is done by replacing rare words with a special
unknown token to simulate unknown words.l However, this reduces the amount
of training data and systems are generating tokens that need to be processed
further for the final output. In many cases, the neural machine translation sys-
tem can not generate a continuous representation for an unknown word and just
generalizes everything into the embedding of the special unknown token. Such
embeddings can be properly deduced by looking at the constituent characters of
the lexical unit. We will discuss this further in Chapter 4.

3. What are the best atomic units for representing a lexical unit in a language? Is
it the word? Or the character? Or the subword? Subwords are designed to over-
come the problems of the other choices. This is an interesting problem that we
seek to solve in this thesis. While we have explained some pros and cons of
using each variety of basic atomic unit, all of these were assumptions. First, let
us define the variable that splits a stream of contiguous inputs into parts as seg-
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mentation. All of the basic operations in the current neural machine translation
systems operate on the segmented text (whether it is segmented into characters
or some subwords). We are interested in discovering a segmentation that can
further maximized the accuracy of the neural systems. The motivation of this
study is that, we believe that there exist some segmentation that can be learned
directly from parallel sentences. This will be further discussed in Chapter 5.

This thesis focuses on learning a good lexical representation for neural machine
translation. We will start with the background theory of previous studies in the next
chapter, and attempt to answer all the research questions on the previous sections in
the chapters after that. Finally Chapter 6 will conclude the study and discuss what
have we learned and what problems still remain. As was said in the abstract, there
are three main components of the thesis, in each of which we study the better way
of representing lexical units. Towards better NLP technology where words are not
bounded by predefined vocabulary, we attempt to discover the lexical units in the third
experiment. However, this is one first step toward open NLP system that can recognize
and learn unknown words on the fly, with better estimation of meaning and boundaries,
just like human adults when trying to guess the meaning of a sentence full of unknown
vocabulary.
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Chapter 2

Background

In this chapter, we describe all background technologies that support the main methods
presented in this thesis. Some technologies are dated more than a decade ago, but are
still used as the main foundation of Statistical Machine Translation (SMT) systems.

2.1. Discrete and Continuous Lexical Representation

As mentioned in Chapter 1, there are two ways to represent lexical units in computer
systems. The first representation is a discrete character string (Section 2.1.1). The
alternate representation is a dense continuous representation in the form of multi di-
mensional vectors (Section 2.1.2).

2.1.1 Word as Discrete Representation

Words are natural units of meaning. In the early days of SMT [9], SMT systems
performed word]-level translation. SMT systems translate the source sentence (input)
f into target sentence (output) e. This translation model is one of the most earliest
data-driven translation models, and is based on the co-occurrence between source and
target words in a sentence pair. The basis of this translation model is modeled by the
following equation which is also the basis of all IBM translation models [9]:

p(e|f) =
∑
a

p(e, a|f). (2.1)
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Word
Features

Is a Noun Is a past tense? Is a Verb?
eat -1 -1 1
ate -1 1 1
tree 1 -1 -1

Table 2.1: Example of representing words with feature structures. Here words are
represented as a multidimensional vector where each dimension represents a particular
feature value. Value 1 represents the value of “Yes” and -1 represents the value of
“No.”

Here a is the alignment of the words between e and f. The IBM models go all the
way up to IBM model 5, which takes into account not only word alignments, but also
other properties of word occurrence such as word fertility (IBM Model 3) and relative
alignment (IBM model 4). All of these models operate on the word level. Based on the
IBM models, the phrase-based [45] and syntax-based [27, 26, 14] translation systems
were invented and became the state-of-the-art machine translation systems in industry.
These systems treat words as the atomic units, and probabilities are counted based on
their co-occurrences in the parallel corpus.

As discussed in Chapter 1, using a word string as the basic unit of NMT systems
leads to the rare word problem. Each lexical unit should be trained enough so the
NN parameters of NMT are robust in representing and generating it. Unfortunately,
the frequency of occurrence of words in natural language follows Zipf’s law. Indeed,
infrequent words are learned only few times compared to that of the higher rank.

Ideally, SMT systems need to be robust and general enough in modeling the parallel
corpus, and we can start with a better representation of words. We will discuss this
further in the next section.

2.1.2 Word as Continuous Representation

Continuous representations are the better choice of representing meanings of words in
a computer. This concept of meaning can be also composed by a few other concepts.
For example, let us examine the word “ate”, which is the past tense of the word eat.
The meaning of this word can be composed by several defined attributes such as: (1)
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word
a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

Table 2.2: One hot word distribution for discrete representation. Each element is a 1.0
probability distribution in its index.

is past tense (yes=1), (2) related to human need (yes=1), (3) positive word (70%). This
is the example of representing meaning with a multidimensional vector. Each value of
the attribute should thus be mapped to a real value, so it is easier to use this continuous
meaning representation in neural models. The more dimensions we use to represent
words, the more information can be stored inside the representation.

Before further describing the continuous representation of words, first let us revisit
the discrete representation of a word. We can actually see the discrete representations
as a one-hot vector with dimensions equal to the vocabulary size (Table 2.2). In that
table, we use a total of 4 words as our vocabulary: {“a”, “b”, “c”, “d” }. Each of the
element in the Table 2.2 is represented as a vector of dimension H . We usually call
H the feature dimension or embedding dimension of a word. We can define H as a
number of handmade features we used to represent a word, or H as simply embedding
dimension that can be learned from the end-to-end neural network systems. There are
few ways to build a features and we will describe it in the following subsections.

Defined Features

In Table 2.1, there are 3 words, the example used in the Section 2.1.1, but here we
preserve the semantic of the word by factorizing the word as feature vectors. We use 3
features “is the word a noun?”, “is the word a past tense?”, and “is the word a verb?”
and assign the value accordingly. Based on these features we can model the close
proximity of words “eat” and “ate”, as opposed to the words “eat” and “tree”.

Measuring the relationship of words can be done by measuring the distance of the
vectors that represent it. Table 2.3 shows the comparison of the words using several
vector distance comparison metrics. The equation for calculating the distance can be
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Comparison Cosine Hamilton Euclidean
eat & ate 0.33 2.00 2.00
eat & tree -0.33 4.00 2.82
ate & tree -1.00 6.00 3.46

Table 2.3: The comparison of words that are represented as vectors in Table 2.1. Here
the Hamilton and Euclidean distance show a contrast different between words that are
related or not.

seen in Equation 2.3, 2.4, and 2.4. It can be seen that “eat & ate” are closely related
compared to “eat & tree,” and “ate & tree.” This is an example of using defined feature
to represent words in a continuous representation. It is always possible to represent
words with more features, so the representation of the word can be more robust. We
can also use some non-binary features other than that of the examples in Table 2.3
such as probabilities of word appearing in a sentence to better represent the concept of
meaning.

cosine(x, y) =
x · y
|x||y|

(2.2)

hamilton(x, y) =
N∑
i=1

|xi − yi| (2.3)

euclidean(x, y) =

√√√√ N∑
i=1

(xi − yi)2 (2.4)

Word Embedding

The defined features are easy to be understood by humans, however there are several
problems in using the defined features. First it is expensive to annotate all the words
in particular language with a set of defined features. These need to be annotated by a
linguist with knowledge of the annotation standard, and it is of course time consuming.
Next, we do not know whether a feature is needed in a particular problem or not.
In machine learning, it is more beneficial if the machine can learn with the minimal
amount of human supervision possible.
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Word Cosine Distance Euclidean Distance
audio 0.704 1.187
videos 0.759 1.232
dvd 0.826 1.285
footage 0.869 1.318
console 0.875 1.323
consoles 0.890 1.334
picture 0.920 1.357
cd 0.922 1.358
computer 0.924 1.360
display 0.931 1.365
tv 0.934 1.367
playstation 0.936 1.368
broadcast 0.937 1.369
graphics 0.941 1.372

Table 2.4: Examples of closely related words of “video” in the learned embedding
space.

Even though words in languages are abstract, there are still patterns the machine
can extract given there are enough data and a good learning strategy. Previous stud-
ies [37, 29, 25, 13, 83] have shown that automatically learned continuous representa-
tions can be quite successful in extracting and representing patterns in some languages.
Learning a word representation from a data produces automatically learned word em-
beddings. There are many method of learning word embeddings. With enough data
and correct learning method, one can learn word embedding and visualize it1. We show
the example of a closely related words of “video” from word2vec [59] embedding in
Table 2.4.

In NMT systems, word embedding parameters are usually learned in an end-to-end
fashion. Each discrete word in the training data is mapped into a vector of dimension
H with a function embed(.):

1https://projector.tensorflow.org/
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embed(x) = lookup[x]. (2.5)

Here the lookup is a usually a hash map of word into a vector of dimension H . The
number of parameters of embedding is usually H × |V |, where |V | is the total number
of words in the vocabulary. This simple embedding function is usually used to power
the architecture of the NMT and we will describe in on the next section.

2.2. Constructing Statistical Machine Translation Sys-
tems with Neural Networks

In this section we describe the new state of the art SMT systems that are constructed
with an end-to-end neural network (NMT) [78]. Unlike the traditional SMT systems
that consists of several separated components, the NMT systems are trained in single
connected components of a neural network.

2.2.1 Recurrent Neural Networks

In particular, NMT often utilizes recurrent neural networks (RNNs) which also takes
the last output of the network as an input (or state) to calculate the output at the next
time-step. This property makes it convenient to model sequences, as we can model the
probability of generating a particular token conditioned on the previously generated
tokens

p(s) =
|s|∏
i=1

p(si|s1...si−1) (2.6)

softmax(x)j =
exj∑
i e

xi
. (2.7)

Here we can model the probability of a word si using a softmax function (Equation
2.7 over a vocabulary sized vector that is calculated using RNNs. Let hi be an inter-
mediate value that is calculated from the previous inputs. We define the probability of
generating particular sequence with RNNs as below:
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hi ← RNN(hi−1, si) (2.8)

p(si|s1...si−1) = softmax(hi). (2.9)

The choice of RNN is a problem of substituting the RNN function with an explicit
instantiation in Equation 2.8. The most basic function will be using a concatenated
input of a multi-layered perceptron (MLP) [24]. However, previous studies [33] has
shown that this type of RNN suffered from modeling long distance sequences because
of vanishing and exploding gradient problems.

In particular, some varieties of NMTs use Long Short Term Memory (LSTM) cells
[33] to handle the long distance dependency problem. LSTM cells consists of 4 gates
(input, output, forget, and cell) that control which information should flow through.
This cell will also remember the previous information of a sequence in the LSTM state
by preserving the cell state and the output state of the current time-step. Both of this
states are used as the context of the next time-step. To put it formally, we define the
calculation of both LSTM states (ct & ht) with input xt by this LSTM cell formula:

ft =σ(Wfxt + Ufht−1 + bf )

it =σ(Wixt + Uiht−1 + bi)

ot =σ(Woxt + Uoht−1 + bo)

ct =ft ◦ ct−1 + it ◦ σ(Wcxt + Ucht−1 + bc)

ht =ot ◦ σ(ct). (2.10)

This LSTM is particularly resilient toward the gradient vanishing or explosion
problem. The problems of the previous RNN was that the gradients will become expo-
nentially smaller or bigger overtime, depending on whether the value being multiplied
is > 1 or < 1. The LSTM solved this problem by having a gated multiplication with
the previous state. Particularly, it uses the sigmoid function which will squash the
value of the multiplication to be in the range of 0 and 1.

2.2.2 Neural Machine Translation

The goal of machine translation is to translate a sequence of source words F = f
|F |
1

into a sequence of target words E = e
|E|
1 . These words belong to the source vocabu-
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lary Vf , and the target vocabulary Ve respectively. NMT performs this translation by
calculating the conditional probability pm(ei|F, ei−1

1 ) of the ith target word ei based on
the source F and the preceding target words ei−1

1 . This is done by encoding the con-
text ⟨F, ei−1

1 ⟩ a fixed-width vector ηi, and calculating the probability as follows (bold
means a list of elements of the relevant type):

pm(ei|F, ei−1
1 ) = softmax(Wsηi + bs), (2.11)

where Ws and bs are respectively weight matrix and bias vector parameters.
The exact variety of the NMT model depends on how we calculate ηi used as input.

While there are many methods to perform this modeling, we opt to use attentional
models [5], which focus on particular words in the source sentence when calculating
the probability of ei. These models represent the current state of the art in NMT, and
are also convenient for use in our proposed method. Specifically, we use the method of
[53], which we describe briefly here and refer readers to the original paper for details.

Figure 2.1: The bidirectional LSTM topology for transducing sequences. The input
sentence is encoded twice from the forward LSTM and the backward LSTM, and
their information is combined using an MLP layer. yi is the encoded representation
at timestep i.

First, an encoder converts the source sentence F into a matrix R where each col-
umn represents a single word in the input sentence as a continuous vector. This repre-
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sentation is generated using a bidirectional encoder (Figure 2.12)

−→r j = enc(embed(fj),−→r j−1)

←−r j = enc(embed(fj),←−r j+1)

rj = [←−r j;
−→r j].

Here the embed(·) (Equation 2.5) function maps the words into a representation [6],
and enc(·) is a stacking long short term memory (LSTM) neural network [33, 28, 78].
Finally we concatenate the two vectors −→r j and←−r j into a bidirectional representation
rj . These vectors are concatenated into the matrix R where the jth column corresponds
to rj .

Next, we generate the output one word at a time while referencing this encoded
input sentence and tracking progress with a decoder LSTM. The decoder’s hidden
state hi is a fixed-length continuous vector representing the previous target words ei−1

1 ,
initialized as h0 = 0. Based on this hi, we calculate a similarity vector αi, with each
element equal to

αi,j = sim(hi, rj). (2.12)

sim(·) can be an arbitrary similarity function. Following [53, 5] we list some possible
attention functions

• dot(hi, rj) = hT
i rj

• general(hi, rj) = hT
i Warj

• MLP(hi, rj) = tanh(hT
i Wa + ba)rj

Once the attention is calculated, we then normalize this into an attention vector α,
which weights the amount of focus that we put on each word in the source sentence

ai = softmax(αi). (2.13)

This attention vector is then used to weight the encoded representation R to create a
context vector ci for the current timestep

c = Ra.

2https://stackoverflow.com/questions/42151994/use-stateful-lstm-with-mini-batching-and-input-with-
variable-time-steps-in-kera
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Finally, we create ηi by concatenating the previous hidden state hi−1 with the context
vector, and performing an affine transform

ηi = Wη[hi−1; ci] + bη,

Once we have this representation of the current state, we can calculate pm(ei|F, ei−1
1 )

according to Equation (2.11). The next word ei is chosen according to this probability,
and we update the hidden state by inputting the chosen word into the decoder LSTM
(slightly modify Equation 2.8)

hi = enc(embed(ei),hi−1). (2.14)

2.2.3 Learning NMT with Maximum Likelihood Estimation

To train the NMT system we usually use maximum likelihood estimation. At each
time-step of decoding, a word that has the highest probability is chosen from Equation
2.11. During training, we do not usually produce the real outputs which require us to
calculate the softmax of a big vector.

Equation 2.11 produces a probability distribution at decoding time and this proba-
bility can be compared to the gold-standard probability (i.e. the one hot word vector
distribution of the correct word). Finally, if we define the NMT system’s parameters
θ with a parallel corpus D, we can then train the model by minimizing the negative
log-likelihood of the training data:

θ̂ = argmin
θ

∑
⟨F, E⟩∈D

∑
i

− log(pm(ei|F, ei−1
1 ; θ)). (2.15)

2.3. Learning Discrete Decisions with Reinforcement Learn-
ing

In the previous sections we have an assumption that our network is fully connected and
every part is differentiable, thus the learning of the network can be done by backprop-
agating the gradient through the network with some learning equations such as MLE
(Section 2.2.3). However, there is a case where discrete decisions need to be made
in the middle, as in cases such as predicting the segmentation of words and making a
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network in accordance to the discrete decision (will be discussed in Chapter 5). The
part where such a discrete decision is made is usually using a non backpropagateable
function such as “argmax”. The learning of this part of the network should be done
directly from the environment and thus we use reinforcement learning.

Reinforcement learning has been proven [22] successful to train neural network
agents where such agents need to make some discrete decision (action a) from its
policy network π. The agent is trying to maximize the reward that reflects how well the
agents perform at that time, and the reward is directly received from the environment.

One procedure of learning a policy network is the policy gradient method [?]. In the
policy gradient method, we estimate the gradient of the network by trying to maximize
the expectation of the reward functionR(x) from the trainable policy network π(x):

∇θEx[R(x)] = ∇θ

∑
x

π(x)R(x)

=
∑
x

∇θπ(x)R(x)

=
∑
x

π(x)
∇θπ(x)

π(x)
R(x)

=
∑

π(x)∇θ log π(x)R(x)

= Ex[R(x)∇θ log π(x)], , (2.16)

For each data point, first we sample a sequence of actions (the sample) from π(x).
From each sample, we calculate the reward function R which is the reward of gener-
ating some sample (discrete actions) that should be a scalar value. This equation tells
us how we should update the network parameter θ, scaled by the reward value. The
second term of the equation (the ∇θ part is the direction onto which we should update
the parameter θ. After the update of the policy network π, the probability of generating
samples that yield better reward will be slightly increased.

In the policy gradient method (Figure 2.2), it is important to encourage the network
to do enough exploration. This is also the reason why we sample some actions from
the policy network, instead of using greedy search. In some situation, we also need to
prevent the early convergence of the network. The network that is too sharp (approach-
ing the 1-hot distribution) will make reinforcement learning fail because no different
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Initialize θ randomly
repeat

Sample a ∼ π(x)

CalculateR← R(a, x) from the environment
Calculate∇θEx[R(x)] according to Equation 2.16
Update θ ← θ + α∇θEx[R(x)]

until converge

Figure 2.2: The REINFORCE algorithm implementation of policy gradient method.
Note that this algorithm does not sample the actions several states ahead such as is
done in Monte Carlo tree search.

action can be created by the policy network. Methods such as label smoothing and
adding entropy to the distribution were highly successful in the previous studies [72].

In Figure 2.2, not only a single action is sampled from the policy network. Previous
studies have shown that sampling multiple actions from the same policy network can
encourage exploration and can further stabilize the training. There are some techniques
to stabilize the training such as using the actor-critic methods [81], z-normalization
[47], and baselines. We are not going into the details one-by-one, but in this thesis we
use a baseline, which is basically a function that tries to estimate the expected future
reward directly from the input using a single layered perceptron.

β(x) = Wβx+ bβ (2.17)
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Chapter 3

Generating Better Lexical Distribution
using Lexicon

Neural machine translation (NMT) often makes mistakes in translating low-frequency
content words that are essential to understanding the meaning of the sentence. This
chapter describes a method to alleviate this problem by augmenting NMT systems with
discrete translation lexicons that efficiently encode translations of these low-frequency
words. We describe a method to calculate the lexicon probability of the next word
in the translation candidate by using the attention vector of the NMT model to select
which source word lexical probabilities the model should focus on. We test two meth-
ods to combine this probability with the standard NMT probability: (1) using it as a
bias, and (2) linear interpolation. Experiments on two corpora show an improvement
of 2.0-2.3 BLEU and 0.13-0.44 NIST score, and faster convergence time [3].1

3.1. Introduction

NMT has recently gained popularity due to its ability to model the translation process
end-to-end using a single probabilistic model, and for its state-of-the-art performance
on several language pairs [53, 74].

One feature of NMT systems is that they treat each word in the vocabulary as a
vector of continuous-valued numbers (Section 2.1.2). This is in contrast to more tra-

1Tools to replicate our experiments can be found at http://isw3.naist.jp/~philip-a/emnlp2016/index.html
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Input: I come from Tunisia.
Reference: チュニジアの出身です。

Chunisia no shusshindesu.

(I’m from Tunisia.)
System: ノルウェーの出身です。

Noruue- no shusshindesu.

(I’m from Norway.)

Figure 3.1: An example of a mistake made by NMT on low-frequency content words.

ditional SMT methods such as phrase-based machine translation (PBMT; [45]), which
represent translations as discrete pairs of word strings in the source and target lan-
guages. The use of continuous representations is a major advantage, allowing NMT to
share statistical power between similar words (e.g. “dog” and “cat”) or contexts (e.g.
“this is” and “that is”). However, this property also has a drawback in that NMT sys-
tems often mistranslate into words that seem natural in the context, but do not reflect
the content of the source sentence. For example, Figure 3.1 is a sentence from our data
where the NMT system mistakenly translated “Tunisia” into the word for “Norway.”
This variety of error is particularly serious because the content words that are often
mistranslated by NMT are also the words that play a key role in determining the whole
meaning of the sentence.

In contrast, PBMT and other traditional SMT methods tend to rarely make this kind
of mistake. This is because they base their translations on discrete phrase mappings,
which ensure that source words will be translated into a target word that has been
observed as a translation at least once in the training data. In addition, because the
discrete mappings are memorized explicitly, they can be learned efficiently from as
little as a single instance (barring errors in word alignments). Thus we hypothesize that
if we can incorporate a similar variety of information into NMT, this has the potential to
alleviate problems with the previously mentioned fatal errors on low-frequency words.

In this chapter, we propose a simple, yet effective method to incorporate discrete,
probabilistic lexicons as an additional information source in NMT (Section 3.2). First
we demonstrate how to transform lexical translation probabilities (Section 3.2.1) into a
predictive probability for the next word by utilizing attention vectors from attentional
NMT models [5]. We then describe methods to incorporate this probability into NMT,
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either through linear interpolation with the NMT probabilities (Section 3.2.2) or as
the bias to the NMT predictive distribution (Section 3.2.2). We construct these lexicon
probabilities by using traditional word alignment methods on the training data (Section
3.2.3), other external parallel data resources such as a handmade dictionary (Section
3.2.3), or using a hybrid between the two (Section 3.2.3).

We perform experiments (Section 3.3) on two English-Japanese translation corpora
to evaluate the method’s utility in improving translation accuracy and reducing the time
required for training.

3.2. Integrating Lexicons into NMT

In Section 2.2.2 we described how traditional NMT models calculate the probability of
the next target word pm(ei|ei−1

1 , F ). Our goal in this chapter is to improve the accuracy
of this probability estimate by incorporating information from discrete probabilistic
lexicons. We assume that we have a lexicon that, given a source word f , assigns a
probability pl(e|f) to target word e. For a source word f , this probability will gener-
ally be non-zero for a small number of translation candidates, and zero for the majority
of words in the target vocabulary unit Ve. In this section, we first describe how we in-
corporate these probabilities into NMT, and explain how we actually obtain the pl(e|f)
probabilities in Section 3.2.3.

3.2.1 Converting Lexicon Probabilities into Conditioned Predictive
Probabilities

First, we need to convert lexical probabilities pl(e|f) for the individual words in the
source sentence F to a form that can be used together with pm(ei|ei−1

1 , F ). Given input
sentence F , we can construct a matrix in which each column corresponds to a word in
the input sentence, each row corresponds to a word in the Ve, and the entry corresponds
to the appropriate lexical probability:

LF =

 pl(e = 1|f1) · · · pl(e = 1|f|F |)
... . . . ...

pl(e = |Ve||f1) · · · pl(e = |Ve||f|F |)

 . (3.1)
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This matrix can be precomputed during the encoding stage because it only requires
information about the source sentence F .

Next we convert this matrix into a predictive probability over the next word: pl(ei|F, ei−1
1 ).

To do so we use the alignment probability a from Equation (2.13) to weight each col-
umn of the LF matrix:

pl(ei|F, ei−1
1 ) = LFai =

 pl(e = 1|f1) · · · plex(e = 1|f|F |)
... . . . ...

pl(e = Ve|f1) · · · plex(e = Ve|f|F |)


 ai,1

...
ai,|F |

 . (3.2)

This calculation is similar to the way how attentional models calculate the context
vector ci, but over a vector representing the probabilities of the target vocabulary, in-
stead of the distributed representations of the source words. The process of involving
ai is important because at every time step i, the lexical probability pl(ei|ei−1

1 , F ) will
be influenced by different source words.

3.2.2 Combining Predictive Probabilities

After calculating the lexicon predictive probability pl(ei|ei−1
1 , F ), next we need to in-

tegrate this probability with the NMT model probability pm(ei|ei−1
1 , F ). To do so, we

examine two methods: (1) adding it as a bias, and (2) linear interpolation.

Model Bias

In our first bias method, we use pl(·) to bias the probability distribution calculated
by the vanilla NMT model. Specifically, we add a small constant ϵ to pl(·), take the
logarithm, and add this adjusted log probability to the input of the softmax as follows:

pb(ei|F, ei−1
1 ) = softmax(Wsηi + bs + log(pl(ei|F, ei−1

1 ) + ϵ)). (3.3)

We take the logarithm of pl(·) so that the values will still be in the probability domain
after the softmax is calculated, and add the hyper-parameter ϵ to prevent zero probabil-
ities from becoming −∞ after taking the log. When ϵ is small, the model will be more
heavily biased towards using the lexicon, and when ϵ is larger the lexicon probabilities
will be given less weight. We use ϵ = 0.001 for this experiment.
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Linear Interpolation

We also attempt to incorporate the two probabilities through linear interpolation be-
tween the standard NMT probability model probability pm(·) and the lexicon proba-
bility pl(·). We will call this the linear method, and define it as follows:

po(ei|F, ei−1
1 ) =

 pl(ei = 1|F, ei−1
1 ) pm(e = 1|F, ei−1

1 )
...

...
pl(ei = |Ve||F, ei−1

1 ) pm(e = |Ve||F, ei−1
1 )

[
λ

1− λ

]
, (3.4)

where λ is an interpolation coefficient that is the result of the sigmoid function
λ = sig(x) = 1

1+e−x . x is a learnable parameter, and the sigmoid function ensures that
the final interpolation level falls between 0 and 1. We choose x = 0 (λ = 0.5) at the
beginning of training.

This notation is partly inspired by [2] and [31] who use linear interpolation to
merge a standard attentional model with a “copy” operator that copies a source word
as-is into the target sentence. The main difference is that they use this to copy words
into the output while our method uses it to influence the probabilities of all target
words.2

3.2.3 Constructing Lexicon Probabilities

In the previous section, we have defined some ways to use predictive probabilities
pl(ei|F, ei−1

1 ) based on word-to-word lexical probabilities pl(e|f). Next, we define
three ways to construct these lexical probabilities using automatically learned lexicons,
handmade lexicons, or a combination of both.

Automatically Learned Lexicons

In traditional SMT systems, lexical translation probabilities are generally learned di-
rectly from parallel data in an unsupervised fashion using a model such as the IBM
models [9, 68]. These models can be used to estimate the alignments and lexical

2Note that while we are only using two distributions here, in general, if we have a normalized interpo-
lation parameters λ1, · · · , λn where

∑
i λi = 1, we can merge n probability distributions.
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translation probabilities pl(e|f) between the tokens of the two languages using the
expectation maximization (EM) algorithm.

First in the expectation step, the algorithm estimates the expected count c(e, f).
In the maximization step, lexical probabilities are calculated by dividing the expected
count by all possible counts:

pl,a(e|f) =
c(f, e)∑
ẽ c(f, ẽ)

,

The IBM models vary in level of refinement, with Model 1 relying solely on these
lexical probabilities, and latter IBM models (Models 2, 3, 4, 5) introducing more so-
phisticated models of fertility and relative alignment. Even though IBM models also
occasionally have problems when dealing with the rare words (e.g. “garbage collect-
ing” effects [50]), traditional SMT systems generally achieve better translation accu-
racies of low-frequency words than NMT systems [78], indicating that these problems
are less prominent than they are in NMT.

Note that in many cases, NMT limits the target vocabulary [35] for training speed or
memory constraints, resulting in rare words not being covered by the NMT vocabulary
Ve. Accordingly, we allocate the remaining probability assigned by the lexicon to the
unknown word symbol ⟨unk⟩:

pl,a(e = ⟨unk⟩|f) = 1−
∑
i∈Ve

pl,a(e = i|f). (3.5)

Manual Lexicons

In addition, for many language pairs, broad-coverage handmade dictionaries exist, and
it is desirable that we be able to use the information included in them as well. Unlike
automatically learned lexicons, however, handmade dictionaries generally do not con-
tain translation probabilities. To construct the probability pl(e|f), we define the set of
translations Kf existing in the dictionary for particular source word f , and assume a
uniform distribution over these words:

pl,m(e|f) =

 1
|Kf |

if e ∈ Kf

0 otherwise
.

Following Equation (3.5), unknown source words will assign their probability mass to
the ⟨unk⟩ tag.
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Hybrid Lexicons

Handmade lexicons have broad coverage of words but their probabilities might not be
as accurate as the learned ones, particularly if the automatic lexicon is constructed on
in-domain data. Thus, we also test a hybrid method where we use the handmade
lexicons to complement the automatically learned lexicon.3 4 Specifically, inspired by
phrase table fill-up used in PBMT systems [8], we use the probability of the automati-
cally learned lexicons pl,a by default, and fall back to the handmade lexicons pl,m only
for uncovered words:

pl,h(e|f) =

pl,a(e|f) if f is covered

pl,m(e|f) otherwise
(3.6)

3.3. Experiment & Result

In this section we first describe the setting of the NMT systems and the results of the
experiment.

3.3.1 Settings

• Dataset: We perform experiments on two widely-used tasks for the English-to-
Japanese language pair: KFTT [62] and BTEC [38]. KFTT is a collection of
Wikipedia article about city of Kyoto and BTEC is a travel conversation corpus.
BTEC is an easier translation task than KFTT, because KFTT covers a broader
domain, has a larger vocabulary of rare words, and has relatively long sentences.
The details of each corpus are depicted in Table 3.1.

We tokenize English according to the Penn Treebank standard [56] and lower-
case, and tokenize Japanese using KyTea [65]. We limit training sentence length
up to 50 in both experiments and keep the test data at the original length. We
replace words of frequency less than or equal to a threshold u in both languages

3Alternatively, we could imagine a method where we combined the training data and dictionary before
training the word alignments to create the lexicon. We attempted this, and results were comparable to
or worse than the fill-up method, so we use the fill-up method for the remainder of the chapter.

4While most words in the Vf will be covered by the learned lexicon, many words (13% in experiments)
are still left uncovered due to alignment failures or other factors.
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Data Corpus Sentence
Tokens

En Ja

Train
BTEC 464K 3.60M 4.97M
KFTT 377K 7.77M 8.04M

Dev
BTEC 510 3.8K 5.3K
KFTT 1160 24.3K 26.8K

Test
BTEC 508 3.8K 5.5K
KFTT 1169 26.0K 28.4K

Table 3.1: Corpus details.

with the ⟨unk⟩ symbol and exclude them from our vocabulary. We choose u = 1

for BTEC and u = 3 for KFTT, resulting in |Vf | = 17.8k, |Ve| = 21.8k for
BTEC and |Vf | = 48.2k, |Ve| = 49.1k for KFTT.

• NMT Systems: We build the described models using the Chainer5 toolkit. The
depth of the stacking LSTM is d = 4 and hidden node size h = 800. We
concatenate the forward and backward encodings (resulting in a 1600 dimension
vector) and then perform a linear transformation to 800 dimensions.

We train the system using the Adam [40] optimization method with the default
settings: α = 1e−3, β1 = 0.9, β2 = 0.999, ϵ = 1e−8. Additionally, we add
dropout [77] with drop rate r = 0.2 at the last layer of each stacking LSTM
unit to prevent overfitting. We use a batch size of B = 64 and we run a total of
N = 14 epochs for all data sets. We also use a “dot” attention as described in
[53] because it is the simplest one. All of the experiments are conducted on a
single GeForce GTX TITAN X GPU with a 12 GB memory cache.

At test time, we use beam search with beam size b = 5. We follow [54] in
replacing every unknown token at position i with the target token that maximizes
the probability pl,a(ei|fj). We choose source word fj according to the highest
alignment score in Equation (2.13). This unknown word replacement is applied
to both baseline and proposed systems. Finally, because NMT models tend to
give higher probabilities to shorter sentences [15], we discount the probability

5http://chainer.org/index.html
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System
BTEC KFTT

BLEU NIST RECALL BLEU NIST RECALL
pbmt 48.18 6.05 27.03 22.62 5.79 13.88
hiero 52.27 6.34 24.32 22.54 5.82 12.83
attn 48.31 5.98 17.39 20.86 5.15 17.68
auto-bias 49.74∗ 6.11∗ 50.00 23.20† 5.59† 19.32
hyb-bias 50.34† 6.10∗ 41.67 22.80† 5.55† 16.67

Table 3.2: Accuracies for the baseline attentional NMT (attn) and the proposed bias-
based method using the automatic (auto-bias) or hybrid (hyb-bias) dictionaries. Bold
indicates a gain over the attn baseline, † indicates a significant increase at p < 0.05,
and ∗ indicates p < 0.10. Traditional phrase-based (pbmt) and hierarchical phrase
based (hiero) systems are shown for reference.

of ⟨EOS⟩ token by 10% to correct for this bias.

• Traditional SMT Systems: We also prepare two traditional SMT systems for
comparison: a PBMT system [45] using Moses6 [44], and a hierarchical phrase-
based MT system [14] using Travatar7 [63], Systems are built using the default
settings, with models trained on the training data, and weights tuned on the de-
velopment data.

• Lexicons: We use a total of 3 lexicons for the proposed method, and apply
bias and linear method for all of them, totaling 6 experiments. The first
lexicon (auto) is built on the training data using the automatically learned lex-
icon method of Section 3.2.3 separately for both the BTEC and KFTT experi-
ments. Automatic alignment is performed using GIZA++ [68]. The second lexi-
con (man) is built using the popular English-Japanese dictionary Eijiro8 with the
manual lexicon method of Section 3.2.3. Eijiro contains 104K distinct word-to-
word translation entries. The third lexicon (hyb) is built by combining the first
and second lexicon with the hybrid method of Section 3.2.3.

6http://www.statmt.org/moses/
7http://www.phontron.com/travatar/
8http://eijiro.jp
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• Evaluation: We use standard single reference BLEU-4 [69] to evaluate the
translation performance. Additionally, we also use NIST [21], which is a mea-
sure that puts a particular focus on low-frequency word strings, and thus is sensi-
tive to the low-frequency words we are focusing on in this chapter. We measure
the statistical significant differences between systems using paired bootstrap re-
sampling [42] with 10,000 iterations and measure statistical significance at the
p < 0.05 and p < 0.10 levels.

Additionally, we also calculate the recall of rare words from the references. We
define “rare words” as words that appear less than eight times in the target train-
ing corpus or references, and measure the percentage of time they are recovered
by each translation system.

Input Do you have an opinion regarding extramarital affairs?
Reference 不倫に関して意見がありますか。

Furin ni kanshite iken ga arimasu ka.

attn サッカーに関する意見はありますか。

Sakkā ni kansuru iken wa arimasu ka. (Do you have an opinion about soccer?)

auto-bias 不倫に関して意見がありますか。

Furin ni kanshite iken ga arimasu ka. (Do you have an opinion about extramarital affairs?)

Input Could you put these fragile things in a safe place?
Reference この壊れ物を安全な場所に置いてもらえませんか。

Kono kowaremono o anzen’na basho ni oite moraemasen ka.

attn 貴重品を安全に出したいのですが。

Kichō-hin o anzen ni dashitai nodesuga. (I’d like to safely put out these valuables.)

auto-bias この壊れ物を安全な場所に置いてもらえませんか。

Kono kowaremono o anzen’na basho ni oite moraemasen ka.

(Could you put these fragile things in a safe place?)

Table 3.3: Examples where the proposed auto-bias improved over the baseline
system attn. Underlines indicate words were mistaken in the baseline output but
correct in the proposed model’s output.

In this section, we first a detailed examination of the utility of the proposed bias
method when used with the auto or hyb lexicons, which empirically gave the best
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results, and perform a comparison among the other lexicon integration methods in
the following section. Table 3.2 shows the results of these methods, along with the
corresponding baselines.

3.3.2 Effect of Integrating Lexicons

0 1000 2000 3000 4000
time (minutes)

5

10

15

20

BL
EU

attn
auto-bias
hyb-bias

Figure 3.2: Training curves for the baseline attn and the proposed bias method.

First, compared to the baseline attn, our bias method achieved consistently
higher scores on both test sets. In particular, the gains on the more difficult KFTT set
are large, up to 2.3 BLEU, 0.44 NIST, and 30% Recall, demonstrating the utility of the
proposed method in the face of more diverse content and fewer high-frequency words.

Compared to the traditional pbmt systems hiero, particularly on KFTT we can
see that the proposed method allows the NMT system to exceed the traditional SMT
methods in BLEU. This is despite the fact that we are not performing ensembling,
which has proven to be essential to exceed traditional systems in several previous
works [78, 53, 74]. Interestingly, despite gains in BLEU, the NMT methods still fall
behind in NIST score on the KFTT data set, demonstrating that traditional SMT sys-
tems still tend to have a small advantage in translating lower-frequency words, despite
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the gains made by the proposed method.
In Table 3.3, we show some illustrative examples where the proposed method

(auto-bias) was able to obtain a correct translation while the normal attentional
model was not. The first example is a mistake in translating “extramarital affairs” into
the Japanese equivalent of “soccer,” entirely changing the main topic of the sentence.
This is typical of the errors that we have observed NMT systems make (the mistake
from Figure 3.1 is also from attn, and was fixed by our proposed method). The sec-
ond example demonstrates how these mistakes can then affect the process of choosing
the remaining words, propagating the error through the whole sentence.

Next, we examine the effect of the proposed method on the training time for each
neural MT method, drawing training curves for the KFTT data in Figure 3.2. Here
we can see that the proposed bias training methods achieve reasonable BLEU scores
in the upper 10s even after the first iteration. In contrast, the baseline attn method
has a BLEU score of around 5 after the first iteration, and takes significantly longer
to approach values close to its maximal accuracy. This shows that by incorporating
lexical probabilities, we can effectively bootstrap the learning of the NMT system,
allowing it to approach an appropriate answer in a more timely fashion. 9

It is also interesting to examine the alignment vectors produced by the baseline
and proposed methods, a visualization of which we show in Figure 3.3. For this sen-
tence, the outputs of both methods were both identical and correct, but we can see
that the proposed method (right) placed sharper attention on the actual source word
corresponding to content words in the target sentence. This trend of peakier attention
distributions in the proposed method held throughout the corpus, with the per-word
entropy of the attention vectors being 3.23 bits for auto-bias, compared with 3.81
bits for attn, indicating that the auto-bias method places more certainty in its
attention decisions.

We realize that our baseline systems are slightly lower than PBMT and Hiero, as
in [78] reported that their NMT systems are better than PBMT baseline. The reason
behind this is that we have a lower settings of systems (h = 800 vs h = 1000, b = 5 vs
b = 12, and no assembling vs 5 systems assembling). While we think it is important

9Note that these gains are despite the fact that one iteration of the proposed method takes a longer (167
minutes for attn vs. 275 minutes for auto-bias) due to the necessity to calculate and use the
lexical probability matrix for each sentence. It also takes an additional 297 minutes to train the lexicon
with GIZA++, but this can be greatly reduced with more efficient training methods [23].
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Figure 3.3: Attention matrices for baseline attn and proposed bias methods.
Lighter colors indicate stronger attention between the words, and boxes surrounding
words indicate the correct alignments.

that our baseline accuracies should be at least the same as PBMT baseline (which we
achieved only in BTEC corpora), but we feel that it needs a great amount of engineering
effort to do so. In general, however, we are certain that our baseline is comparable to
the other systems, such systems described in [5] and [53].10

3.3.3 Comparison of Integration Methods

Finally, we perform a full comparison between the various methods for integrating
lexicons into the translation process, with results shown in Table 3.4. In general the
bias method improves accuracy for the auto and hyb lexicon, but is less effective
for the man lexicon. This is likely due to the fact that the manual lexicon, despite
having broad coverage, did not sufficiently cover target-domain words (coverage of
unique words in the source vocabulary was 35.3% and 9.7% for BTEC and KFTT
respectively).

Interestingly, the trend is reversed for the linear method, with it improving man
systems, but causing decreases when using the auto and hyb lexicons. This indicates

10Note that the implementation of this work is using old technology and there might be a possible bugs.
As of 2018, we find that the newest implementation of our NMT baseline is far better than the Hiero
and PBMT system. The results of this method still show the same trend as shown in [64].

33



(a) BTEC

Lexicon
BLEU NIST

bias linear bias linear

- 48.31 5.98
auto 49.74∗ 47.97 6.11 5.90
man 49.08 51.04† 6.03∗ 6.14†

hyb 50.34† 49.27 6.10∗ 5.94
(b) KFTT

Lexicon
BLEU NIST

bias linear bias linear

- 20.86 5.15
auto 23.20† 18.19 5.59† 4.61
man 20.78 20.88 5.12 5.11
hyb 22.80† 20.33 5.55† 5.03

Table 3.4: A comparison of the bias and linear lexicon integration methods on the
automatic, manual, and hybrid lexicons. The first line without lexicon is the traditional
attentional NMT.

that the linear method is more suited for cases where the lexicon does not closely
match the target domain, and plays a more complementary role. Compared to the log-
linear modeling of bias, which strictly enforces constraints imposed by the lexicon
distribution [41], linear interpolation is intuitively more appropriate for integrating this
type of complimentary information.

On the other hand, the performance of linear interpolation was generally lower
than that of the bias method. One potential reason for this is the fact that we use a
constant interpolation coefficient that was set fixed in every context. [31] have re-
cently developed methods to use the context information from the decoder to calculate
the different interpolation coefficients for every decoding step, and it is possible that
introducing these methods would improve our results.

We additionally train the baseline attn and auto-bias systems with a parallel
data that is created by combining the manual dictionary Eijiro and training data to-
gether as complimentary comparison. This scenario will train an NMT system with
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bigger vocabulary and with more training examples. The results of this experiment
(attn/auto-bias) are 48.11/49.71 BLEU for BTEC and 18.75/20.54 BLEU for
KFTT, which are comparable but sligthly lower to that of the original training sce-
nario, showing that our method is better than the standard way of using dictionary in
training SMT systems.

To test whether the proposed method is useful on larger data sets, we also per-
formed follow-up experiments on the larger Japanese-English ASPEC dataset [61]
that consist of 2 million training examples, 63 million tokens, and 81,000 vocabulary
size. We gained an improvement in BLEU score from 20.82 using the attn baseline
to 22.66 using the auto-bias proposed method. This experiment shows that our
method scales to larger datasets.

3.3.4 Result Analysis

We add an additional analysis using [1] toolkit to further analyze the results of gen-
erated 4-gram as additional to our recall metrics over the rare words translation. The
results is shown in Figure 3.4. The results in the table further confirm our claim that
the lexicon can increase not only the recall over the rare word translation, but also the
overall ngram count F-measure, and thus benefiting the BLEU score.

3.4. Related Work

From the beginning of work on NMT, unknown words that do not exist in the system
vocabulary have been focused on as a weakness of these systems. Early methods to
handle these unknown words replaced them with appropriate words in the target vocab-
ulary [35, 54] according to a lexicon similar to the one used in this work. In contrast to
our work, these only handle unknown words and do not incorporate information from
the lexicon in the learning procedure.

There have also been other approaches that incorporate models that learn when to
copy words as-is into the target language [2, 31, 32]. These models are similar to the
linear approach of Section 3.2.2, but are only applicable to words that can be copied
as-is into the target language. In fact, these models can be thought of as a subclass of
the proposed approach that use a lexicon that assigns a all its probability to target words
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Figure 3.4: The F-measure comparison of the proposed method vs the traditional at-
tention method on BTEC dataset. At the low count unigram (rare words), the proposed
system is better at generating than that of the traditional attentional method. The x-axis
indicates the count of a word in the source corpus, indicating how rare the word is.

that are the same as the source. On the other hand, while we are simply using a static
interpolation coefficient λ, these works generally have a more sophisticated method
for choosing the interpolation between the standard and “copy” models. Incorporating
these into our linear method is a promising avenue for future work.

In addition [58] have also recently proposed a similar approach by limiting the
number of vocabulary being predicted by each batch or sentence. This vocabulary is
made by considering the original HMM alignments gathered from the training corpus.
Basically, this method is a specific version of our bias method that gives some of the
vocabulary a bias of negative infinity and all other vocabulary a uniform distribution.
Our method improves over this by considering actual translation probabilities, and also
considering the attention vector when deciding how to combine these probabilities.

Finally, there have been a number of recent works that improve accuracy of low-
frequency words using character-based translation models [51, 18, 16]. However, [52]
have found that even when using character-based models, incorporating information
about words allows for gains in translation accuracy, and it is likely that our lexicon-
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based method could result in improvements in these hybrid systems as well.

3.5. Conclusion & Future Work

In this chapter, we have proposed a method to incorporate discrete probabilistic lexi-
cons into NMT systems to solve the difficulties that NMT systems have demonstrated
with low-frequency words. As a result, we achieved substantial increases in BLEU
(2.0-2.3) and NIST (0.13-0.44) scores, and observed qualitative improvements in the
translations of content words. This further strengthen the claim of the thesis that we
have improved the ability of NMT system to represent/producing words, especially un-
known words. As we can see that the representation of the target word can be further
be more accurate by adding a prior predictive probabilities from the traditional SMT
systems.

For future work, we are interested in conducting the experiments on larger-scale
translation tasks. We also plan to do subjective evaluation, as we expect that improve-
ments in content word translation are critical to subjective impressions of translation
results. Finally, we are also interested in improvements to the linear method where
λ is calculated based on the context, instead of using a fixed value.
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Chapter 4

An Investigation of Lexical
Representations for Neural Machine
Translation

There are now a plethora of ways to represent source words in neural machine trans-
lation (NMT) systems, leading to a wide variety of design decisions and combinations
thereof for NMT system builders. These choices include: (1) tokenization granularity
– whether to represent words themselves or split into subword units, (2) embedding
granularity – whether to simply look up token representations or use a character based
composition function to capture regularities in spelling, (3) embedding method – if
using character-based composition functions, what method should be used. However,
while many options exist for each of these questions, they are largely evaluated in
isolation, and thus it is unclear which formula is most effective for this task. In this
paper we perform a comparison of various ways to represent source language words in
neural machine translation, and find that over three language pairs, methods that sum
word or subword embeddings with character-derived embeddings consistently lead to
significant gains in accuracy over other options.
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Figure 4.1: Composing word representation from its character distributed representa-
tion. Here the Japanese word ‘meal’ (食) is combined with both Japanese words for
‘morning’ (朝) and ‘evening’ (夕), yielding a correct Japanese words for ‘breakfast’
and ‘dinner.’

4.1. Background

Neural machine translation (NMT; Section 4.2, [36, 78, 5]) is now the de-facto state-of-
the-art in machine translation (MT) technology, generally achieving superior accuracy
compared to that of its predecessors, phrase-based and syntax-based SMT. There are a
large number of ways to construct NMT systems, but all have one thing in common:
treating the input tokens as multi-dimensional vectors. This is conducive to further
processing within the neural net, and also allows for natural modeling of similarity of
words along multiple dimensions, aiding generality.

Originally, the NMT systems were based on word-level input where we choose the
input units were full words in the predefined vocabulary [78]. However, these kind of
NMT systems were not able to handle unknown/rare words properly due to problems
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of sparsity and computational infeasibility of prediction over large output spaces. As
a remedy to this, it is common to alter the granularity of segmenting the MT input or
output into tokens, using sub-word units derived through unsupervised methods [?], or
in the extreme case characters [49].

However, this does not change the fact that words are natural units of meaning and
space markers often delimit these semantically meaningful word boundaries1. From
a practical perspective, previous work has demonstrated that operating on the word
level is preferable, given that some intelligent method of handling the sparsity caused
thereby is used [57].

Once we decide the unit with which we model words in NLP applications such as
NMT, there is also the question of how we turn each word into a distributed represen-
tation. The standard way of doing so is to simply have a single embedding vector for
each token. However, the characters inside words are often highly indicative of the
meaning of the words themselves [17, 48, 4], and several works have noted that we
can gain by creating word representations from the constituent characters, as shown
in Figure 4.1 [51]. Alternatively, [52] propose a method that uses word embeddings
for high-frequency words, and character-derived embeddings for low-frequency words,
falling back to characters only when sparsity entails that we should do so.

Finally, given that we use a character-derived representation in some part of our
model, it becomes necessary to choose exactly which method we use for this purpose.
There are a number of methods to do so, which we describe further in Section 4.5.

In summary, there are three major design decisions that go into how we repre-
sent words in neural MT: (1) tokenization granularity – whether to represent words
themselves or split into subword units, (2) embedding granularity – whether to simply
look up token representations or use a character based composition function to capture
regularities in spelling, (3) embedding method – if using character-based composition
functions, what method should be used. The major objective of this work is to perform
a comprehensive investigation of the effect of these design choices, and how they inter-
act, with the goal of providing recommendations for how words should be represented
in NMT going forward.2

1This is not true for every language in the world, but for languages where word boundaries are not clear
(e.g. Chinese or Japanese), supervised word segmenters are often available.

2Specifically, we focus on representing words on the source side of NMT systems, which precludes
the computational considerations of predicting target-side words based on composed representations,
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Experiments (Section 4.6) over three language pairs demonstrate that the NMT
systems that make use of both word embeddings and character-derived information
achieve the best performance in most of the language pairs. We also found that incor-
porating character information to baseline systems almost never hurts overall system
performance, and often leads to significant gains. In addition we also find that on
average the best composition function is one that makes use of the character bag of
n-grams information [82], a method that is well known for being useful for training
word embeddings, but seldom used in NMT.

4.2. Embedding in NMT

The goal of machine translation is to translate a sequence of source words F = f
|F |
1

into a sequence of target words E = e
|E|
1 . These words belong to the source vocabulary

Vf , and the target vocabulary Ve respectively.
First we need to convert each lexical unit fj in the input sentence F into their

continuous representations. Each lexical unit fj in Vf is assigned to a continuous
vector of fixed size f j , which is the word embedding. Let “embed” be a function that
performs word embedding. There are many different implementations of the function
“embed” and we will discuss each of them in the next section.

f j = embed(fj) (4.1)

After embedding the words we use the bidirectional encoder to produce the con-
textualized word representations in both directions.

−→r j = enc(f j,
−→r j−1)

←−r j = enc(f j,
←−r j+1)

rj = [←−r j;
−→r j]. (4.2)

enc(·) is a usually a stacked long short term memory (LSTM) neural network [33, 28,
78]. Finally we concatenate the two vectors−→r j and←−r j into a bidirectional representa-
tion rj . These vectors rj are the contextual informations that contain the information
of the source sentence and are used to initialize and generate words using the NMT
decoder.

which is computationally more difficult than simply encoding words on the source side [79].
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4.3. Choosing Lexical Units

The choice of lexical units of vocabulary Vf is one of the challenge that can define
whether an NMT model is robust in handling unknown word or not. As mentioned in
Section 1, the main purpose of modifying the lexical units of a sentence is to overcome
the low counts data problem that is created because there are so many unique words in
one language. For example, let us examine the word “study” and “studies”. In NMT,
they are represented by two different set of parameters. Even their meaning could be
captured during training and there is a high possibility that they will be clustered in
the same category, but this still creates a problem that we also need to learn the same
representation for other correlated words such as “studied” and “studying.”

To overcome this problem, a set of fixed size lexical units Vf are chosen using
some unsupervised segmentation algorithm. BPE/The BPE algorithm [?] is based on
merging two lexical units that has the highest occurrences. On the other hand, [46]’s
segmentation algorithm is finding a set of lexical units that maximizes the unigram
likelihood of the training corpus. Let x be a subword that is composed by several
character x1, x2, ..., xn. The probability of subword x is a unigram probability of each
lexical units.

P (x) =
N∏
i=1

p(xi) (4.3)

∀ixi ∈ Vf ,
∑
x∈Vf

p(x) = 1

The segmentation algorithm starts from the character tokens (subword of size one).
At each iteration, a new subword that maximizes Equation 4.3 if formed by merging
two subwords together. We stop after we reach some number of merge operations or
we have reached the desired vocabulary size. In this paper, we use the segmentation
algorithm of [46] as our choice of subword based system to define the lexical units of
the vocabulary Vf although other choices such as byte-pair encoding would be equally
appropriate.
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4.4. Embedding Granularity

The word embedding function is a function that maps a single string (word) into a
continuous representation (a vector). The most common embedding function in NMT
is the lookup embedding which assign a different set of continuous parameters to a
different lexical unit.

embed lookup(fj) = lookup[fj] (4.4)

The lookup embedding function only looks at the whole word only. On the other
hand there are other composition functions that compose characters into word. Com-
posing word from characters is inspired by the fact that the meaning of a certain word
(lexical unit) can be derived by looking at the elements that are composing it [70]. In
languages with many different character units such as Japanese and Chinese that have
several thousand characters, the information of the character units can become a strong
context to predict the meaning of the words.

We go back to the description of Figure 4.1. There we compose “朝食” which
means “breakfast” from the word “朝” which means morning and “食” which means
meal. In the English language, we can associate that “morning meal” is a breakfast.
Same goes for the “dinner” example.

4.5. Composing Word Embedding From Character In-
formation

In this section we will describe several ways to implement the word embedding func-
tion at Equation 4.1 using character information. A number of previous studies have
proposed several composition functions that model the word representation f j given
the character embeddings of token f j,k and its surface form fj . For example k is the
counter for the character in word/subword. we list below several methods that we use
in our empirical comparison below.3

3There are other ways of turning characters into words e.g. methods that use explicit morphology [55].
However, we do not cover this on our paper because using morphological information is out of this
paper’s scope.
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4.5.1 Basic Composition Function

The basic composition functions are only a mathematical operator to reduce a list of
vectors into a single vector. These composition functions have no parameters and are
relatively cheap to compute. By using this, we are relying more on the encoder to learn
the understand the representation of the composed lexical units.

Sum: This embedding function is simply summing all the character embedding inputs.

embed sum(fj) =

|fj |∑
k=1

f j,k (4.5)

Average: This composition function has been used in a previous study [34]. It simply
calculates the normalized sum of character embeddings.

embed avg(fj) =
embed sum(fj)

|fj|
(4.6)

Max: This embedding function constructs a word embedding by taking the maximum
of each dimension over all the character embeddings. Let n be a counter that runs
over the vector dimension. We construct the element of the produced embedding one
dimension at one time.

embed max(fj)[n] = max
k

f j,k[n] (4.7)

4.5.2 Learnable Composition Function

This type of composition functions have some learning capabilities and become a spe-
cial part of the NMT system that model the word embedding given the characters em-
bedding as an input. The learnable composition function is basically more expensive
to compute, but more robust in modeling the lexical units.

BiLSTM: Bidirectional LSTMs have been widely used to model a sequence. Follow-
ing Equation 4.2, first we encode the character embeddings f j,1..|fj | using a recurrent
LSTM network. Then, we take the last step of forward and backward encodings, con-
catenate them together, and project them using affine transformation [51]

embed bilstm(fj) = tanh(W ∗
[−→r |fj |,

←−r 1

]
+ b). (4.8)
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CNN: Convolutional neural networks, firstly designed for images, now have been
widely used to model a sentence [39, 84]. CNN is useful to capture the relationship
between adjacent inputs. First we treat every hidden dimension of the input embedding
as the input channels of the convolution neural network. We then construct a filter of
1×K with K the window size that slides from the beginning of the sentence until the
end of the sentence (and 1 is used as clarity purpose only because sentence/word has
only 1 dimension and ). Each element xj at the input channel n is extracted from the
filter starting from the position j, and taking up to K elements (K-1 zero padding are
appended at the right of the input sentence).

xj[n] = tanh(

[
j+K∑
l=j

Wlf j,l[n]

]
+ b[n])

Then we apply a single pooling layer to choose the best filtered value xi over all strides,
for every input channel:

embed cnn(fj)[n] = max
j

xj[n] (4.9)

CharNGram: This composition function takes a bag of characters n-grams into con-
sideration by first collecting the counts, and takes in a linear projection onto the de-
sired embedding dimension with σ non-linearity transformation [82]. Previously it
was employed to capture the embedding of a sentence, but like the other composition
functions, we can also use this to capture the embedding of a word from its characters.

First we need to define the vocabulary Vfc of the character n-grams by decomposing
every word in the source corpus. Then, we map every word into a count vector with a
fixed dimension of |Vfc |. Let cf be a count of character n-grams in a sparse vector of
dimension |Vfc| and N be the n-gram size.

cf (fj) = bag of ngrams(fj, N, |Vfc|)

Then we can use a tanh non-linearity to produce the composed word embedding.

embed charngram(fj) = tanh(W ∗ cf (fj) + b) (4.10)
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Dataset Src Train Dev Test
KFTT ja ∼440K 1166 ∼1.1K
IWSLT cs ∼122K 480 ∼5.2K

ar ∼239K 887 ∼5.6K

Table 4.1: The number of sentences in the corpus. All experiments are translating into
English (en). There are a total of 4 different test sets for IWSLT, so we are showinga
the total number of sentences for IWSLT.

4.6. Experiments

Following from our discussion in Section 1, there are three effects that we want to
closely take a look on. Before, going into the details, first we describe all the settings
we use in this experiments.

4.6.1 Settings

Dataset: In this experiment, we use 3 language pairs that are all translating into
English from 2 different corpora. The first and second source languages are Czech
(cs) and Arabic (ar) from the IWSLT corpus [11], a collections of news articles. The
third source language is Japanese (ja) from KFTT corpus [62], a corpus crawled from
Wikipedia in mainly article about Kyoto city. The details of the corpora can be seen in
Table 4.1.
Preprocessing: We prepare the data as needed. To summarize, we are doing the to-
kenization, lowercasing, and the filtering process. First we run 3 different types of
tokenizers for 4 different languages. To preprocess the English and Czech data we run
the Moses tokenizer. For Arabic, we use the Stanford NLP tokenizer for Arabic tokens
[30]. For Japanese, we use the KyTea tokenizer [65]. We remove all sentences that
have 50 words or more from the training data.

We prepare the subword data that are trained jointly from both source and target
training texts using [46]’s unigram-based algorithm. Note that we have a choice of
source lexical units which is either full word (W) or subword (SW), but we always
translate into subwords, which mitigates problems of generating unknown words and
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also reduces computational burden for calculating softmaxes over large vocabularies.4

We set the joint vocabulary size to be 32,000. We choose 32,000 after finding that it
yields the best overall translation qualities after doing preliminary experiments with
8K, 16K, and 32K settings. After subwords/full-words are generated on both sides, we
replace every lexical units whose occurrence is less than 2 in the whole corpus with
a special unknown token. We want to emphasize that we also do the same procedure
on the source side. The reason is that when we get an unknown test word, we want
to be able to calculate its representation from the characters. We append a special
end-of-sentence token at the end of each sentence and do not append a special begin-
of-sentence, or any token that marks the start/end of a word.
Baseline NMT Systems: We build LSTM-based attentional NMT systems [5, 53]
with the XNMT [66] toolkit, using the default settings of the toolkit unless otherwise
specified. The model has a single layer bidirectional LSTM encoder with a single layer
LSTM decoder. We use 512 hidden dimension for all layers. We use the multi-layered
perceptron attention as specified in [5]. Dropout of 50% is employed in the output
LSTM layer to make the network more robust.

To train the system, we use the batch size of 2048 words, counting the total number
of words on both source and target sides. We use Adam [40] trainer with an initial
learning rate of 0.001, and halve the learning rate every epoch the model loss (Equation
2.15) goes up on the development set. We observe the number of decays the system
made, and stop the system immediately at the 4th decay, rolling back to the model with
the lowest development loss before performing testing.
Composition Functions: It is our interest to see which character composition func-
tions produce the best translation results. As a representative of the de-facto standard
in current NMT systems, we compare with SW-SW NMT systems using the lookup
composition function (Equation 4.4). We additionally try all 6 composition functions
in Section 4.5: sum (Equation 4.5), avg (Equation 4.6), max (Equation 4.7), bilstm
(Equation 4.8), conv (Equation 4.9), and finally charngram (Equation 4.10). We
use a window size and n-gram size of 4 for both convolution and charngram composi-
tion functions.

4Noteably, [?] find that joint training of subword units is highly advantageous as it leads to consistently
sized units over the input and output languages. This advantage will be lost in methods that use word-
sized units on the input side, so any gains achieved by the methods that use word-based encoding on
the source side will be in spite of losing this inherent advantage.
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Composition Function
cs-en ar-en ja-en

W-SW SW-SW W-SW SW-SW W-SW SW-SW
lookup 21.12 23.24 29.52 30.27 22.78 22.54
avg 18.05 18.91 24.03 25.07 21.35 21.28
max 18.56 19.59 24.37 24.14 21.85 21.54
sum 18.77 19.29 24.79 25.06 21.59 21.62
bilstm 22.27† 21.26 28.11 28.00 21.57 21.42
conv 21.11 21.39 28.24 28.22 22.20 20.50
charngram 23.50† 22.89† 29.93† 29.35 22.35 22.51
lookup+avg 21.84† 23.91†‡ 29.96† 30.55† 22.67 22.78
lookup+max 21.89† 23.68†‡ 30.06† 30.36† 22.28 23.18‡
lookup+sum 22.53† 23.60†‡ 29.98† 30.13† 22.76 22.33
lookup+bilstm 22.72† 23.62†‡ 30.05† 30.37† 22.97 22.47
lookup+conv 21.32 23.47† 30.05† 30.28† 22.27 22.80
lookup+charngram 23.99†‡ 23.78†‡ 30.46† 30.37† 21.89 22.77

Table 4.2: The main results of the experiments. Numbers are the percentage of the
BLEU score. Here bold means the best performance on particular language pair. Un-
derline means the best BLEU scores on that column. † indicates a statistical signifi-
cance [42] with p < 0.01 compared to the W-SW lookup baseline. ‡ indicates the same
statistical significance but against the SW-SW baseline.

Additionally, for all 6 character composition functions, we combine them with the
lookup word composition function by simply adding the embeddings together.
Evaluation: We use standard single reference BLEU-4 [69] to measure the translation
accuracy.

4.6.2 Effect of Combining Character Models into Word Lookup
Models

The full result of the experiments can be seen in Table 4.2, where we can observe the
effects of different segmentation granularities, representation granularities, and com-
position functions.

First, comparing the lookup function with the character only composition func-
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tions, we can see that the results are mixed, with word-based composition function
achieving the best results in ja-en, and the charngram and bilstm achieving better
results in cs-en and charngram achieving better results in the ar-en experiments.

When we combine the character composition functions with the lookup composi-
tion function by simply adding the embeddings together, we can see that almost all
experiments in the cs-en and ar-en settings show positive results, with only one exper-
iment (lookup+sum for ar-en) achieving worse results than the lookup. This results
show that adding character embedding information to the existing baseline does not
hurt the accuracy, but can contribute significant gains in many cases.

The gains when using the W-SW lookup function are larger, with increases of up
to 2.87 for cs-en, and 0.94 for ar-en. Interestingly, even when using subwords on the
source side in the SW-SW model, we can still see gains of up to 0.75 and 0.19 for cs-en
and ar-en respectively. This indicates that the use of subwords do not entirely alleviate
the problems of sparsity, and there is still significant potential for improvement through
the incorporation of character-level information when using subword representations.

However we do not see similar gains in the Japanese language experiments. One
possible reason that the character informations does not yield large gains in the Japanese
language experiments is the low average number of characters in a word in Japanese
language. To be precise, there are in average 4.30 characters per word in the Czech,
3.43 characters per word in the Arabic, and only 1.41 characters per word in the
Japanese.5 This indicates that in our Japanese language experiment, the composed
method is comparable to using character based translation. Thus, it is likely the case
that incorporation of character-based representations will yield larger gains in lan-
guages with longer words, and fewer gains in languages with shorter words.

4.6.3 Effect of Choosing Different Lexical Representations

From the same Table 4.2 we can see that going from the word lexical representation
into subword lexical representation already gave us big gain as reported in the previous
studies of [?, 46]. This is actually expected because subword units are robust in han-
dling unknown words in general, and can generally mitigates when unknown words

5It should be noted that the KyTea segmenter that we used in our experiments produces a relatively
fine-grained segmentation, and other segmenters may yield different results. However the scope of
comparing different segmenters is out of the scope for this paper.
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appear. Moreover the subword units are relatively more stable due to overall number
of characters per word to be not very short or very long, compared to that of the word
lexical representation.

The same effect can be seen in the Japanese language. Overall, by using the sub-
word units, gains are relatively more stable if we compared the composite systems
with the lookup baseline with the same inputs. The best accuracies are gained by the
lookup+max baseline with 0.64 BLEU score improvement and 90% statistical signifi-
cant against the best lookup baseline.

4.6.4 Parameter Size vs. Translation Accuracy

As noted previously, for each composition function, the level of parameterization6 dif-
fers. Here we are referring to the total size of the actual NMT model parameters. In
Table 4.3, we provide statistics about the number of parameters in each model with
respect to the translation accuracy.

First we look at the first part of the table where systems are using purely character-
based embeddings to estimate the word embeddings. From this table we can see that
in the SW-SW experiments, The models that use character embeddings are practically
much smaller than the lookup baselines, but there can be a significant BLEU penalty
incurred by decomposing the word model into a character-based model. The BiL-
STM and the Convolution composition functions used in previous studies give a better
estimate of word embeddings but still are inferior to that of the lookup method. The
charngram model is the only exception, as it needs to store a different parameter vector
for a different character ngram (part of words), so the charngram model is significantly
bigger than that of the other character composition models.

On the other hand, by purely using the simple avg, max, and sum, composition
functions with the lookup embedding, we consistently gain accuracy if we are using
subwords as the lexical unit of our models. These composition functions add few
additional parameters to the model and relatively cheap to calculate, so systems this
represents a cheap yet effective way to improve accuracy of systems.

However, the best accuracy is achieved by the lookup & charngram system with

6Note that the lookup baseline parameter should actually have a tiny lesser parameter, our actual imple-
mentation includes some unused character embedding parameters and made the actual parameters size
to be a bit bigger than it actually is.
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System #params Ratio ∆BLEU
lookup 32.3M 1.00 -
avg 19.2M 0.59 -4.33
max 19.2M 0.59 -3.65
sum 19.2M 0.59 -3.95
bilstm 20.8M 0.64 -2.36
conv 20.3M 0.63 -1.85
charngram 39.3M 1.22 -0.36
lookup+avg 32.3M 1.00 0.66
lookup+max 32.3M 1.00 0.44
lookup+sum 32.3M 1.00 0.36
lookup+bilstm 33.9M 1.05 0.38
lookup+conv 33.4M 1.03 0.23
lookup+charngram 52.4M 1.62 0.54

Table 4.3: The relationship between the number of parameters, model ratio size (com-
pared to lookup baseline) and the gain/loss of BLEU scores. These are the numbers
for the SW-SW en-cs IWSLT experiment.

word input. This is the most highly parameterized model, which also gives it room to
more capture regularities in the spelling of words, and thus the fact that it achieves the
highest accuracy is understandable.

From the parameter count to accuracy tradeoff point of view, there is no clear win-
ner in the choosing the composition functions. The most effective is the lookup &
charngram combination, but for models that require extremely small model size, purely
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Min Length
Max Count 1 5 10 15
all 56.67/58.67/59.51 47.09/49.48/50.24 28.87/33.82/35.49 24.65/31.65/34.36
100 48.86/51.13/51.97 45.21/47.67/48.45 28.87/33.82/35.49 24.65/31.65/34.36
5 33.25/37.24/38.32 32.12/36.23/37.22 22.51/28.70/30.98 21.96/29.10/32.70
1 19.87/25.29/26.62 19.27/24.75/26.13 13.90/20.58/22.94 13.61/21.11/24.75

Table 4.4: The word F-Measure accuracies from W-SW, SW-SW lookup baseline and
the W-SW lookup+charngram systems in the IWSLT cs-en experiment across different
word lengths and rarities. It can be seen that the lookup+charngram is robust in han-
dling very long rare words translations as the gain is much higher as the words become
rarer and longer.

character-based methods may also be an option. 7

4.6.5 Translating Rare and Long Input Words

As one of the potential merits of using character-based representations is the ability
to model low-frequency words where data sparsity is a problem, we also measure the
F-measure of rare and long words. To measure this we use the simple word aligner
of [23] to retrieve the word alignment between the reference and the source of the
test sentence. Then for every word in the reference sentence, we retrieve the aligned
source words from the input. We do the same procedure for the hypotheses from all
the systems. Then we calculate the F-measure of each bucket of source words, treating
source words as matched if the hypothesis matches the reference translation.

Table 4.4 shows an experiment of 3 different systems (from left-to-right) the W-
SW lookup baseline, the SW-SW lookup baseline and the W-SW charngram composite
system. Going down the row indicates the rarer the words being measured, while going
right through the column indicates the longer the words being measured. Experiments
shows that the charngram systems are by far the most robust system in handling the
rare and longer words. The changram composite system is 1% better translating words
with frequency one (the rarest words to appear in the training corpus), 2.7% better at

7The same trends also happen to the W-SW baseline with ∆ BLEU scores are a bit toward to a more
positive numbers, but providing almost the same insights as the SW-SW experiments.
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the long words (length 15) and 3.6% better at the combination of these compared to
the de-facto standard SW-SW lookup baseline.

The real example is shown in the Table 4.5. Here we show two cases where input
tokens are very difficult to translate. We include Google Translate results for refer-
ence as well8. The first input is the misspelled word “Californii” which should be
California. The vanilla lookup NMT failed in translating this, making a copy of the
previously generated output, a mistake that is common in poorly performing NMT
systems. The SW-SW lookup baseline produce unrecognizable entities. However the
composite charngram system predicts the output of the word correctly. The Google
Translate system was able to generate a sensible and smart output by disregarding the
mistaken word and produce the abbreviation of “California” instead.

The next example is translating a very long Czech input word nejsurrealističtějšı́.
Here the correct translation for this 20 character word is “surreal.” The vanilla baseline,
once again failed badly by producing a nonsense “cado-ro-ro-like” like. The SW-SW
baseline and Google Translate (they presumably use a similar lexical units) were able
to predict a close words but not the precise translation. Finally, the composite charn-
gram system, once again showed its ability to translate difficult words by correctly
predicting the “surreal” output.

4.7. Conclusion

In conclusion we have investigated a number of choices in representing source-side
lexical units for NMT. We compared 13 ways to create token representation from char-
acters combined with two types of inputs (word and subword). We believe our findings
to be useful in suggesting best practices for modeling words in NMT systems.

First, when aiming for the best accuracy, we suggest to build composite NMT
system that is based on the charngram composition method (Equation 4.10), combined
with word-based input. For languages that have no natural segmentation, we suggest
to first split the sentence into words by using a supervised segmenter.

Second, if we aim to quickly increase the current recipe for subword based NMT
system, we can quickly train the system jointly with the character embeddings that are
composed using the average composition function. Incorporating other composition

8Taken on July 2018 from https://translate.google.com/
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functions also will provide comparable results.
Third, using subword units as the input of NMT systems overall yields much robust

NMT system. We suggest to follow the common practice of using subword as inputs.
Fourth, we find that using the basic lookup composition function already provide NMT
with a strong results. However, it does take up significant memory. If our concern is
the memory, we would suggest to train the bidirectional LSTM or convolution based
composition functions. They are weaker than the lookup composition function (with
subword input) but the number of parameters is greatly reduced.

For future work, we might want to investigate other ways to incorporate the char-
acter and word embeddings together (currently it is just summing the embedding to-
gether). It would also be interesting to perform a similar examination on target-side
word embeddings, such as those proposed by [79, 71]. We also think that a further in-
vestigation of incorporating the morphology of a language and type of segmentation of
the source sentence can also further affect the overall ability of the system in modeling
the source language.
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Input Měl jsem jen 85 dolaru a skončil jsem v San Franciscu, Californii - tam jsem
potkal přı́tele – a v 80. letech jsem začal pracovat pro organizace zabývajı́cı́ se AIDS.

Reference I had a thumb, I had 85 dollars, and I ended up in San Francisco, California –
met a lover – and back in the ’80s, found it necessary to begin work on AIDS
organizations.

W-SW lookup I had only 85 dollars, and I ended up in San Francisco – I met a friend –
I met a friend – and in the 1980s, I started working for AIDS organizations.

SW-SW lookup I had just about 85 dollars, and I ended up in San Francisco, Calinidi –
I met a friend there – and in the 1980s, I started working for AIDS organizations.

W-SW charngram I had only about 85 bucks, and I ended up in San Francisco, California –
composite I met a friend – and in the 1980s, I started working for AIDS organizations.
Google Translate I had only $ 85, and I ended up in San Francisco, Calif. - I met a friend there -

and in the 1980s I started working for organizations dealing with AIDS.

Input Byl to nejsurrealističtějšı́ druh deja vu, jaké jsem kdy měl, protože
jsem věděl předem, co je za rohem, ještě než jsem tam zatočil a
světla to odhalila, jelikož jsem strávil měsı́ce mezi kulisami, když jsme film natáčeli.

Reference And it was the most surreal kind of deja vu experience I’ve ever had,
because I would know before I turned a corner what was going to be there
before the lights of the vehicle actually revealed it, because I had walked
the set for months when we were making the movie.

W-SW lookup This was a kind of cado-ro-ro-like kind of speaker I’ve ever known,
because I knew what was around the corner, even before I’d returned that,
because I spent months amongst the moon when we filmed the film.

SW-SW lookup It was an unreal species where I had ever been, because I knew what
was around the corner, even before i turned there and light that revealed,
because i spent months between alisa, when we filmed films.

W-SW charngram It was the most surreal species upon what I’ve ever had, because I knew what
composite was in the corner, until I knew what was happening there, and the lights revealed,

because I spent the thousands of months when we filmed the film.
Google Translate It was the most realistic type of deja vu I ever had because I knew in advance what

was around the corner before I turned and the lights revealed it because I spent
the months between the scenes when we were filming the film.

Table 4.5: The comparison of translating “difficult” words across several NMT sys-
tems. The first input is a mismatch input where word “California” was spelled wrongly
in the test set. The second example is an example of translating 20 characters word that
does not appear in the source corpus. The composite changram system with word in-
puts successfully retrieved the correct target word “surreal,” showing the success of
the bag-of-ngrams composition function to correctly guess the meaning of the difficult
input word.
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Chapter 5

Discovering Optimizing Lexical Units
For Neural Machine Translation

We propose a novel model and method to discover a hidden segmentation from a par-
allel texts. Our approach is purely unsupervised and able to exploit hidden linguistic
properties from a stream of unsegmented inputs to learn and improve the accuracy of
the translation systems. We also able to purely learn some linguistically intelligent seg-
mentation without any prior supervision which is very promising to salvage language
properties from extinct and endangered languages. These segmentations are modeled
as discrete decisions that are learned from an end-to-end neural network. We model a
segmentation as a sequence of discrete decision made when reading an input from left
to right and use reinforcement learning to directly learn it from the data. This was our
first attempt to learn segmentation purely unsupervised from the NMT, there are still
further room for improvement and further studies are needed.

5.1. Introduction

Word units are the basic input of the state-of-the-art neural machine translation (NMT)
systems [5, 78, 53, 52]. Starting from the word inputs, the state-of-the-art NMT sys-
tems read the input from left-to-right with a gated recurrent neural network [78] that
uses a memory cells such as long short term memory [33] to remember long depen-
dencies. Previous studies show that NMT systems are able to surpass the accuracy of
its predecessor phrase-based & syntax based statistical machine translation systems by
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こ       れ       は       ペ        ン       で       す     </s> 

こ れ           は            ペン             で す       </s> 

}
}
Char
Encoder

Segmenter

       This           is                a              pen        </s> 

Word
Encoder}
}
}
Attender

Decoder

Figure 5.1: The segmenting encoder. The bottom 3 components are the basic NMT
system. The segmenter will produce a single segmentation decision at every timestep.
Then, the composer will compose the sequence of character embedding to a word
embedding. The learning is done by reinforcement learning.

a quite far margins.
However, the most basic NMT system suffer from input sparsity. [74, 46] alleviates

this problem by combining the most basic units (character) from a text into subwords.
Here, we can control the sparsity of the input space for the system. While effective,
this approach has a drawback because the produced subwords are uninterpretable by
most humans. This makes that this approach can not be applied to the discovery of
words unit in rare, endangered, and extinct languages.

Since babies, human are trained to identify words from sequence of speech. To do
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so infants must uncover at least some of the units that belong to their native language
from a largely continuous stream of sounds in which words are seldom surrounded
by pauses [73]. After these units are discovered, the acquisition of language starts
with discovering a more complex linguistic properties such as entities, particles, and
pronouns.

Based on that, this paper is motivated by mimicking the ability of language ac-
quisition by infants. The most simplest task can be by discovering a hidden linguis-
tic properties such as segmentation from parallel texts. Such texts/transcriptions are
commonly made by recording speeches from native speakers that can still speak the
language. Mostly, these languages are not well documented and it is somehow difficult
to identify words from within the texts. In this paper, we propose a method to discover
a hidden segmentation from a parallel texts.

On the other hand, segmentation has been one of the most prominent first step in
the translation task. Previous studies [65, 12] showed the importance of segmentation
toward the translation qualities. In this paper, we showed that the learned segmentation
is more optimal than that of the unsupervised segmentation or even the resource heavy
supervised segmentation.

Section 5.2 describes our proposed encoder that can perform and learn segmenta-
tion from parallel texts as depicted in Figure 5.1. Section 5.3 describes the detailed
reinforcement learning process of the proposed model. Section 5.4 shows the gener-
ated segmentation results with addition translation and Section 5.6 finally concludes
this paper.

5.2. The Segmenting Encoder

Our proposed segmentation model is a single decoder that both encodes and segments
an unsegmented input embedding F into a segmented input F with a latent segmen-
tation S. Figure 5.1 illustrates the proposed segmenting encoder. First, on the char
encoder module we project each token of the input F into its embedding space and
run the bidirectional LSTM over the embedded input to get the positional encoding F̂i

which is a projection of the concatenation of both forward and backward encoding of
the input token at time step i. The segmentation model (the black-red part of the seg-
menter) is a straightforward binary linear regression that takes the positional encoding
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F̂i as an input and outputs black decision (not segment) or red decision (segment):

P (Si|F ) = softmax(Ws ∗ F̂i + bs) (5.1)

The derived segmentation decisions S are used to segment and encode the input
accordingly with F = segment(F,S) Each element of the segmented Fj represents a
word that is produced by the segmentation S .

Conversely, we can calculate the probability of generating particular word from the
segmenter P (Fj) as a probability of emitting the word Fj given the segmentation S
that follows the Bernoulli distribution. This is because there should be several events
of “non-segment” and followed by a single “segment” event to produce a single word.

Here, we pick all the character embeddings (i as a counter) starting from the last
segmentation dj−1 decision until reaches the point of segmentation (Si =“segment”)
dj:

P (Fj|S) =
dj∏

i=dj−1

P (Si|F ) (5.2)

The encoding of the segmented word F̂j is composed based on the composition of
the character encodings [F̂dj−1

...F̂dj ]. Figure 5.1 shows this process at the segmenter
part. The Japanese characters (transliterated) [ko, re, wa, pe, n, de, su] are segmented
into [kore, wa, pen, desu], which is the correct segmentation of this Japanese sentence.
As there are many ways to compose the F̂j , we currently simply run an additional
stack LSTM over the character encodings [F̂dj−1

...F̂dj ] and get the last encoding states
to represent the word representation F̂j .

Finally, we run a separate stack LSTM over the word representation [F̂1, ... ˆF|F|]

to learn the relationship between each produced word vectors. This final results will
be the final output of the segmenting encoder as shown in the “word encoder” part of
Figure 5.1.
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5.3. Joint Learning Segmentation and Translation with
Reinforcement Learning

In order to learn a good and robust segmentation model, here we use reinforcement
learning to train the binary classifier while also learning the translation model. We
model the segmentation learning as a multi task learning whose objective is to find the
best segmentation that yields the best translation. Equation 5.3 denotes the genera-
tive process of finding the best segmentation S given the the input sentence F and its
reference E.

argmax
S
{P (S|F,E)}

= argmax
S

{
P (F,E|S)P (S)

P (F,E)

}
= argmax

S
{P (E|F,S)P (F |S)P (S)}

= argmax
S

{
P (E|F,S)P (S|F )P (F )

P (S)
P (S)

}
= argmax

S
{P (E|F,S)P (S|F )}

(5.3)

In details, the joint learning of the model is composed by two separates models:
(1) segmentation model P (S|F ) that produce the segmentations S given the input
sentence F and (2) translation model P (E|F,S) that use both the segmentation S
onto the input sentence F to find the best translation E.

Before going into the detail to the technique of learning the segmentation S , first
we will describe and denote all the notations for the state of the art neural machine
translation systems in Section 2.2.3 and finally the method of learning the segmentation
in Section 5.3.1.

θ̂MLE = argmin
θ̂

∑
⟨E,F ⟩

LMLE(F,E) (5.4)

5.3.1 Learning the Segmentation Decision

Because the segmentation discrete decisions parameters cannot be learned with the
end-to-end back propagation, we use the reinforcement learning technique that collect
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the rewards from the environment and learn the segmentation. As we are interested in
a purely unsupervised training, we construct the reward purely based on the system.
We treated the system as an environment that provide feedback to the reinforcement
learning agent.

One way to construct reward will be using the evaluation measure of the translation
outputs whenever systems produce translations based on some produced segmentation
(e.g. BLEU) as done in some evaluation-metrics training for NMT [76]. However, this
has a drawback on sacrificing parallelism as decoding of the NMT needs to be done
per sentence basis and the calculation of the evaluation metric such as BLEU cannot
be parallelized in GPU.

For the sake of maintaining efficiency and speed, we use the likelihood of the model
as it is the most direct reward that is also being optimized by the system in Equation
5.4. We define the reward of generating target sentence E with a source sentence F as
the normalized likelihood of the model1:

R(F,E) =
log(PMLE(E|F ))

|E|
(5.5)

Next, we describe how we properly learn the best segmentation S from the system.
First let us define S as a binary random variable with members {0, 1} with 0 represents
“no segmentation” and 1 represents “segmentation”. Like most common practice in re-
inforcement learning, we sample the segmentation S directly from the policy network,
given the source sentence F as an input:

[S1, ...,S|F |] ∼ P (S|F ) (5.6)

.
Following the REINFOCE algorithm, we collect all the probability of the sampled

segmentation and calculate their gradients in respective to the cumulative rewards. In
formal, let π(Si) = P (S = Si|F ), the loss of the policy network π is calculated as
follow:

LR(F,S, E) = −
|F |∑
i=1

π(Si)[R(F,E)− β(F̂i)] (5.7)

1We normalize the likelihood because it is easier to control the number of the normalized version.
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Here we subtract the reward with a baseline to reduce the variance of the reward.
We calculate the baseline as a the expected cumulative future reward. To do so, we
simply perform a linear regression from the encoded input (before segmentations take
place):

β(Fi) = Wβ ∗ F̂i + bβ (5.8)

The parameter of the baseline is trained by directly calculating the squared distance
of the actual reward with the predicted reward:

Lβ(F,E) =

|F |∑
i=1

||R(F,E)− β(Fi)||2 (5.9)

It is important to make sure that we sever the connection of the main network and
the baseline network when doing the join training. This is to prevent the network to
overly trivialize the reward. The baseline value should be output as a constant that
contains no gradient flow.

Finally, the final losses are composed by joining all the losses together:

Lθ =
∑
⟨F,E⟩

LMLE(F,E) + LR(F,S, E) + Lβ(F,E), (5.10)

and the parameter learning is simply search of parameters that minimizes the cu-
mulative losses on Equation 5.10. In practice, we assign some scaling weight γR to the
LR to control its strength.

5.3.2 Priors and Tricks for Helping Reinforcement Learning

Reinforcement learning is notoriously difficult and sometimes needs proper sets of
settings and tricks in order to make it work. In this paper, we introduce several priors
and tricks for learning the segmentation. These priors are usually added as additional
rewards and also used as additional losses (with the opposite sign) whenever possible.2

• Length Prior λ is the expected number of characters in a word. We can use this
prior to control how many expected characters in the resulting segmentations.

2We assign a proper scaling factor γ to each of the prior so we can control its strength.
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Normally we can calculate this from the known target corpus, given our input is
a mystery language.

Given a stream of unsegmented input F and the length prior λ, we calculate the
expected number of words in a sentence by simply taking a fraction of the total
number of characters and λ.

µλ =
|F |
λ

(5.11)

This expected prior is then used to calculate the probability of some segmen-
tation S happening, calculated based on the number of words produced by S.
Simply, we can use the Poisson distribution that contains the similar property:

Pλ(S|F ) ≈ POISSON(|F|, k = µλ) (5.12)

Integrating this probability is simply multiplying the reward with the prior with
some scaling factor γλ:

R(F,E) = R(F,E) ∗ Pλ(S|F )γλ (5.13)

• Global Fertility is a measurement of proper number of produced target words
given a particular source words. The proper global fertility is a single source
word will contribute to also a single target word production. So we can calculate
this by summing the attention value of all target words, and inspect the value
of the fertility of each source words. This is to make sure that there is a proper
amount segmentations given the total target words.

LF (F,E, α) = −
|F |∑
i=1

(1− |E|∑
j=1

αi,j)
2

 (5.14)

• Confidence Penalty: Following [72], we add additional penalty to the network
with high confidence. This is an important penalty as the reinforcement learning
usually tends to trivialize the discrete decision in the early iterations because the
translation model that provide the reward is not trained yet. We basically sum
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the entropy of each probability distribution produced by the policy network, and
turns the entropy into additional loss by adding the negative sign.3

LCP (F ) = −
|F |∑
i=1

∑
Si∈[0,1]

−π(Si) log π(Si) (5.15)

• Epsilon Greedy: A simple procedure to sample action spaces from a prior dis-
tribution. Here we use the same length prior λ to determine the average number
of characters in a word. We sample a random number k from a poisson distribu-
tion and segment a k length character from the source input. This procedure is
repeated until all characters are segmented.

a ∼

P (S|F ) if uniform(ϵ) > 0.5

Poisson(S|F, λ) otherwise

The Poisson distribution is built on the probability of some event k occurring
on the specific rate of occurrence λ:

Poisson(λ, k) =
λke−λ

k!

• Z Normalization: It is a common reinforcement learning tricks that normalize
the rewards across all the items in the batch. We assume that the rewards in the
batch has a 0 mean and variance of 1.

R =
R− µ(R)

σ(R)
(5.16)

• Multiple Segmentations Decoding: Because the segmentation model P (S|F )

is a probability distribution, we can sample a segmentation S during the decod-
ing. This allow us to perform decoding with multiple segmentation candidate
and pick a hypothesis that yields the best translation from the translation model
P (E|F,S).

3Following from the Equation 5.10, we add 2 more weighted loss LF ,LC to the sum of the losses,
resulting that the final loss is composed by 5 separate losses if all the priors are used.
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Experiments Configuration BLEU Loss KyTea MECAB
cbaseline - 21.2378 2.669 0.81539 0.77870
wbaseline - 22.0218 2.631 1.00000 0.93329
presegment - 21.0659 2.638 1.00000 0.93329
segment lp=3.3 19.9132 2.693 0.55087 0.56665

cp weight=0.1 7.4752 3.570 0.56241 0.57745
scale reinf 19.6457 2.723 0.23295 0.24126
eps greedy 11.6760 3.111 0.54252 0.56060
cp weight=1 9.3456 3.411 0.63707 0.62509
lp=2.0 20.0097 2.687 0.23802 0.24515
lp=1.25 19.7998 2.673 0.75217 0.75887
z norm 18.2747 2.731 0.81119 0.77634
compose char 18.9114 2.763 0.52800 0.53789
lp weight=0.05 18.9735 2.698 0.52798 0.53402

Table 5.1: The results of the segmentation experiment on the KFTT corpus. We use
the Gold segmentation from KyTea and Mecab as the standard gold segmentation on
Japanese texts. Here we tried several different settings but unfortunately the evaluation
results are not good yet. Here we explain the abbreviation of the settings: (1) lp is the
length prior, (2) cp is the confidence penalty, (3) z norm is the z-normalization, and
(4) compose char is to use the character embedding instead of states from bidirectional
LSTM.

5.4. Experiments Setup

Here we describe all the settings we use for this experiment. Unless otherwise speci-
fied, we use the most basic settings of hyperparameters for the external toolkit that we
use.

• Corpus: We perform experiments on KFTT [62] dataset on Japanese to English
translation tasks. KFTT is a collection of Wikipedia article about city of Kyoto.
In total there is 440K training example with 1169 development sets and 1160
test sets.

67



• Preprocessing: We tokenize English according to the Penn Treebank standard.
[56] and lowercase, and tokenize Japanese using KyTea [65] and MeCab4. We
limit training sentence length up to 50 tokens and keep the test data at the original
length.

• Baseline NMT Systems: Similar to chapter 4, we build the NMT systems based
on the system specifications of [5] and [53] with the XNMT [66] toolkit. The
model is a single layer bidirectional LSTM encoder with a single layer LSTM
decoder. We use 512 hidden dimension for all the parameters. We use the multi-
layered perceptron attention as specified in [5]. The dropout of 50% is employed
in the output LSTM layer to make the network more robust.

To train the system, we use the batch size of 2048 words. This is counting the
total words in both source and target sides. We use the Adam [40] trainer with
the initial learning rate of 0.001, and halving the learning rate every time the
MLE loss improved. We observe the number of decay the system made, and
stop the system immediately at the 4th decay. Then we choose the model that
has the best development perplexity across the training epochs. Unless otherwise
specified, we are using the default setting of the XNMT toolkit [66]. Please note
that the baseline systems are using the lookup embedding functions.

There are three baseline systems that we prepare. The first two baseline are using
the lookup embedding function and the third baseline is built using bidirectional
composition function with the proposed segmenting encoder framework (pre-
segment). The first baseline is using character based input (cbaseline), and the
second baseline is using word based inputs (wbaseline). All of the baseline has a
knowledge about the gold segmentation with character baseline being the merely
baseline that make no use of segmentation.

• Evaluation: We use standard single reference BLEU-4 [69] to evaluate the
translation performance. Additionally, we also measure the F-measure of the
segmentation being produced by the systems toward the heavily supervised Japanese
gold segmentation that is built using KyTea [65].

• Heuristic Segmentation: Additionally we also prepare 2 heuristic segmenta-

4https://github.com/taku910/mecab
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Experiments Configuration
Heuristic 1 Heuristic 2

Punc NoPunc Punc NoPunc
cbaseline - 0.84410 0.83316 0.68836 0.65560
wbaseline - 0.68149 0.64637 0.65015 0.60434
presegment - 0.67435 0.63684 0.66532 0.61888
segment lp=3.3 0.56860 0.61389 0.60908 0.67165

cp weight=0.1 0.26674 0.28971 0.25164 0.28050
scale reinf 0.53376 0.57674 0.60327 0.66712
eps greedy 0.68306 0.69948 0.57352 0.58057
cp weight=1 0.25155 0.27875 0.23309 0.26738
lp=2.0 0.66041 0.66412 0.64351 0.64572
lp=1.25 0.83460 0.82538 0.68980 0.66127
z norm 0.43042 0.47606 0.40716 0.46224
compose char 0.46761 0.48814 0.55933 0.59913
lp weight=0.05 0.82706 0.81466 0.68761 0.65489

Table 5.2: The segmentation F1 accuracy compared to the segmentation that is based
on heuristic. The abbreviations of the settings follow from Table 5.1
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tion baseline. These heuristics are based on a simple segmentation of Japanese
language. We prepare these heuristics to show that the proposed systems are
able to learn something that require some prior knowledge of a language. The
first heuristic is to join the function words that have POS tags of ‘助詞’, ‘語尾’,
‘助動詞’, and also joining the ‘する’ together (Heuristic 1). These are the most
common function words in Japanese language. The second heuristic is to also
learn the noun phrase (Heuristic 2). To do this we simply join the consecutive
‘名詞’ POS tag together.

Figure 5.2: The example of learned segmentation compared to the KyTea gold baseline
segmentation. The generated segmentation (GEN) was able to learn some meaningful
words such as years and noun phrases.

5.5. Preliminary Results

First we discuss the overall translation quality on Section 5.5.1 and we discuss the
produced segmentation accuracy on Section 5.5.2.

70



5.5.1 Analysis on the Translation Results

First we examine the results on Table 5.1 clearly it is shown that our proposed method
are able to learn some translations but still can not beat the character baseline. We tried
several settings and did a grid search to some hyper parameters such as the weight, and
tried to scale it over the epochs, however, so far, we were not able to beat the char-
acter and word baseline. Next we show that when we run our proposed segmentation
framework with the bidirectional LSTM composition function, we are still behind the
character and word baseline. This would further suggest that maybe one of the problem
that the learning did not go well was because of the wrong choice of the composition
function.

Of all the results on Table 5.1, the best accuracies of the proposed systems achieved
by setting length prior to 2.0. It means that the system will be heavily biased toward
producing words that have around 2 characters. Actually, the results almost tied with
the length prior that is calculated on the English corpus (3.3). Still, the optimization
problems are very difficult and it is harder to learn from inputs that changed from time
to time.

One of the culprit of the failed learning is that the reward is calculated directly from
the maximum likelihood. At the first iteration, this rewards are still untrained. Thus
leading to a bad segmentation and making learning of the translation more difficult.
We tried to include the scaling of weight of the reinforce loss overtime, but the results
on “scale reinf” settings showed that this has no effect in overall learning. We tried to
learn the learn the segmentation after having several iterations, but this leads to several
problems. First is to use the segmentation prior to the learning

5.5.2 Analysis on the Segmentation Results

The preliminary results of the segmentation can be seen in Table 5.1 and Table 5.2.
There the character baseline already has a respectable F1 accuracies baseline of 81% in
Japanese and 77% in English. This was due to that Japanese language has a low num-
ber of characters/words (around 1.7 characters per words), compared to our method
that use a bias from the English language (3.3 characters per words). The resulting
segmentation has fewer segmentation and number of words as can be seen in Table
5.2.
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However, we argue that our proposed framework was also able to learn some mean-
ingful words. These results can be seen in Figure 5.2. In this table the systems actually
were able to discover:

1. Parentheses boundaries. It is always putting space after the open bracket, and
the closing bracket.

2. Joining most of the numbers forming years together.

3. Was able to detect and extract some multilingual terms. Though it is still hard to
correctly predict rare multilingual terms.

4. Joining most of the particle boundaries to the previous noun phrase. This is not
favored by the gold segmentation, but we discover that the discovered segmen-
tation are quite consistent in making these decision.

The biggest help comes from the length prior. We tried not including any priors
and the learning failed to discover any meaningful segmentation. Even though we
are using prior, but the resulting segmentation are not highly randomized following
the given prior, for example, it is not always random to segment years, whereas if
the system are following the poisson distribution with some priors, the segmentation
should be more randomized.

5.5.3 Difficulties in Learning Discrete Decision

As it has been discussed in the previous sections. We are still facing the problem of
unfinished/failed learning using the proposed learning scheme. Here we outline several
analysis and remedies that can be done to make the learning works.

1. Currently the rewards are being given from the environment that is all being
optimized (the MLE loss). We know that the neural machine translation is not
good at adapting with unknown words. Sampling a new set of segmentation is
the same as introducing new words. Even though the sampled segmentation is
the correct one, but if the system has not seen the segmentation yet, the loss of
MLE is still big and thus the reward will decrease. In most cases, the system
will every time try to sample the same decision so the learning will become
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more stable. This leads to the problem of not having enough exploration and no
real guidance to guide the exploration. We might need to design the new reward
function.

2. Currently we are using only one sample and not doing monte carlo tree search
from the softmax and this is probably not the standard way of training the seg-
mentation method. Currently the architecture to include multiple samples are
still being developed in the translation toolkit that we use.

3. We might want to training the system in turn. First we train the decoder only
using some samples of the segmentations that can be generated from the current
system. Next we train the segmentation based on the fixed parameter decoder.
This might help to stabilize the training because the previous problem was that
it is hard to jointly train the segmentation and maximum likelihood together.
This training scheme was actually close to that of generative adversarial network
where the decoder is used as generator, but now, we also want to optimize jointly
with the segmentation model.

4. On Chapter 4 we noted that using the character based composition model are
not very good even when we know the gold segmentation. We might argue that
the character based baseline here is already very strong because characters in
Japanese language have rich contents in it might not be necessary to define what
words are [65]. We might need to switch to other dataset to further demonstrate
the effectiveness of our proposed method, for example the IWSLT, as used in
Chapter 4.

5.6. Conclusion

In conclusion, we have presented a novel framework to unsupervisedly learn the seg-
mentation from parallel texts. While the motivation is ambitious and justified, we are
not still able to achieve the ideal translation results that we aim for. These was due to
several reasons. However, we are able to produce some segmentation that are meaning-
ful to some extents, and looks promising. Further studies and investigation are required
in order to stabilize the training of the systems.
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Chapter 6

Conclusion and Future Work

We summarize all the contents of Chapter 3, 4, and 5 to answer the problems we posed
in Chapter 1.

6.1. Conclusion

Even though ambiguities are inevitable and there are many choices in choosing lex-
ical representation for computer systems, this thesis has provided survey and several
suggestions in attempting to solve these problems. The conclusion will be written as
paragraphs of the chapter contents.

First, we discover that it is possible to better represent the output probability dis-
tribution with addition of a lexicon that is trained with traditional statistical machine
translation systems. We have successfully combined the good features of the old count
based conditional probability systems with the naturalness of the newer neural network
models. This leads into a system that is more capable in generating rare words and bet-
ter in correlating the output with the input by the attention matrix. This hybrid system
has also proven to be effective in other recent works [64] .

Second, we discover that using the combination of embedding words and their
constituent characters improves the overall robustness of NMT Systems. This effect
can be directly seen by the improvement of the BLEU score of the systems and the
ability of the system to generate translations for rare words. We might argue that
the systems that benefit from character embeddings are also able to better generate
unknown word embeddings. We also discover that by using the natural segmentation
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of words in some languages improve the performance of NMTs.
Third, we have attempted to build an unsupervised framework that is able to learn

segmentation of source languages with the objective to maximize the accuracy of NMT.
The system was also able to generate segmentations which are correlated to the natural
segmentation to some extent. Even though our tricks and attempts to make the method
work are still not enough and we are only seeing moderately good results. As a result,
we have not yet able to answer the question which atomic input forms are the best,
but we hypothesize that further study on this topic can reveal the answer that we have
pursued.

This thesis has given us some motivation and hope, advancing us one step forward
in understanding better representations and also choosing lexical units for natural lan-
guage in computational models. This thesis can also be seen as one case study that
attempts to uncover what inside the representation of the neural “black box” (in this
case, the lexical representation) in the most appropriate sense possible. This is one of
the first step toward the open NLP system that can recognize and learn unknown words
on the fly, with better estimation of meaning and boundaries.

6.2. Future Work

Every chapter of the thesis has given us a clue of a possible future directions. Here
we list some of questions and problems that emerge from this study and also are still
unsolved.

6.2.1 Investigation of Lexicon for Subword Models

In Chapter 3, we proposed the use of lexicons to generate better rare word translations.
Dated back when this method was developed, the subword models had not been in-
vented yet. With the increasing of data sparsity of using neural network for building
the NMT systems, the subword models now have become the basic component and a
must-do element in state-of-the-art NMT systems.

We have not pursued the direction of using the lexicon for the subword models.
While it is intuitive enough to make use of the lexicon to help generate rare words, it
is still a mystery if such effect can be achieved with the subword models. Even though
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some studies have reported gain of the accuracies in using the lexicon on subword
inputs [20], we have not yet uncover why such effects occur and how well it can impact
the subword based systems.

6.2.2 Real World Experiments on Endangered Languages

Chapter 4 and 5 have given us motivation that lexical representation can be learned
from an unsegmented input of tokens. Chapter 4 provided us some insights in choosing
the best way in composing sequences of characters into a word. This knowledge is very
important for Chapter 5 where we want to be able to discover the best lexical units in
representing a language.

This framework should be applied to real world scenarios. There are thousands
of endangered languages that are still unsupported by good tokenization tools such as
Stanford Core NLP, KyTea, or NLTK. This makes it hard to do analysis on the lan-
guages when word boundaries are not clear. For humans, words make more sense
than strings of characters. Fortunately there have been many corpora collections that
collect sentences in spoken languages from people who speak languages without con-
crete documentation [10, 19]. These corpora can be processed further into parallel
corpora and our discovery method can further extract meaningful language properties
that can be used to further understanding of the language. Unfortunately due to our
time constraint, we were not able to perform such experiments.

6.2.3 Better Reinforcement Learning Technique for Learning Seg-
mentation

In Chapter 5, we just partially succeeded in learning the lexical units from unsegmented
inputs. We believe that there is much room for improvement in stabilizing the methods,
or there are other tricks to be applied to make the methods work. As we know that
the reinforcement learning is difficult to optimize, and researchers have been using
numerous tricks to make it work and it also needs to a correct set of hyper parameters.

We also think that the reward function that is mainly scored by using the likelihood
of the models can be made even better. Though, constructing a reward function is
always the main secret of successful reinforcement learning. At first we are using the
maximum likelihood so that part of the reward computation can be calculated in a
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parallel manner and there is no decoding needed. However, using BLEU score of the
immediate translation can be one potential dire
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[81] WAWRZYŃSKI, P. Real-time reinforcement learning by sequential actor–critics
and experience replay. Neural Networks 22, 10 (2009), 1484–1497.

[82] WIETING, J., BANSAL, M., GIMPEL, K., AND LIVESCU, K. Charagram: Em-
bedding words and sentences via character n-grams. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing (Austin,
Texas, November 2016), Association for Computational Linguistics, pp. 1504–
1515.

[83] YAMADA, I., SHINDO, H., TAKEDA, H., AND TAKEFUJI, Y. Joint learning
of the embedding of words and entities for named entity disambiguation. arXiv
preprint arXiv:1601.01343 (2016).

[84] YONATAN BELINKOV, Y. B. Synthetic and natural noise both break neural ma-
chine translation. In Proceedings of the 6th International Conference on Learning
Representations (ICLR) (2018).

92


