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Emphasis Speech-to-Speech Translation Considering
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Do Quoc Truong

Abstract

Speech-to-speech translation (S2ST) systems are capable of breaking language

barriers in cross-lingual communication by translating speech across languages.

Recent studies have introduced many improvements that allow existing S2ST

systems to handle not only linguistic meaning but also paralinguistic information

such as emphasis by proposing additional emphasis estimation and translation

components. However, there are still problems remaining. First, existing empha-

sis modeling techniques assume emphasis speech is expressed at word-level with

binary values indicating the change of acoustic feature. However, depending on

the context and situation, emphasis can be expressed at arbitrary levels. This

assumtion also limit the capability of the model in the way that it can only gen-

erate binary emphasized speech. Second, the existing emphasis S2ST approaches

used for emphasis translation is not optimal for sequence translation tasks and

cannot easily handle the long-term dependencies of words and emphasis levels.

Third, the whole translation pipeline still separates emphasis and standard S2ST

systems, making it not possible to perform joint optimization and inference. And

finally, only binary levels of acoustic feature (emphasis speech) is taken into ac-

count while emphasis can be expressed in many ways including written form at

arbitrary levels. This problem limits the capable of emphasis S2ST system that

it can only translate acoustic features but not linguistic features of emphasis.

This thesis attempts to solve the problems above by (a) proposing an ap-

proach that can handle continuous emphasis levels in both emphasis modeling
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and translation components, and (b), combining machine and emphasis trans-

lation into a single model, which greatly simplifies the translation pipeline and

make it easier to perform joint optimization. And finally, (c), we propose a data-

driven approach on studying correlation of emphasis expressed in both text and

speech as a first step toward acoustic-linguistic emphasis translation.

With regards to the experiments, the results on continuous emphasis model-

ing demonstrated its effectiveness in a emphasis detection task while producing

more natural synthetic speech. Experiments on an emphasis translation task

utilizing sequence-to-sequence approach with continous emphasis levels show a

significant improvement over previous models in both objective and subjective

tests. Moreover, the evaluation on joint translation model also show that our

models can jointly translate words and emphasis with one-word delays instead of

full-sentence delays while preserving the translation performance of both tasks.

Finally, our studies on emphasis representations in both audio and text forms

have investigated the way humans express emphasis in different contexts and

analyzed ambiguities between emphasis levels.

Keywords:

Emphasis estimation, emphasis translation, speech-to-speech translation, joint

optimization of words and emphasis
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Chapter 1

Introduction

1.1. Human-to-Human Multilingual Speech In-

teraction

1.1.1 Human languages

Languages help people to communicate and share knowledge to each other, they

are also the main factors that contribute to the richness and diversity and of

cultures. According to Harald [1] there are about 6,500 spoken languages all over

the world as illustrated in Fig. 1.1, and although this number is approximated,

it showed us the impressiveness of the globe’s linguistic diversity. There are two

type of languages, written and spoken languages, and they are different in many

ways. The written language tends to be more complex than spoken with longer

and more clauses sentence, while spoken language is more casual and very often

contains repetitions and incomplete sentence. In addition, spoken language can

convey more than just the linguistic content, that is, the emotion or traits of

speakers, by utilizing prosodic or paralinguistic information [2].

With the diversity of the language, it is virtually impossible for ones to learn

all languages. However, as the world is all connected, multi-lingual communi-

cation is needed more than ever. With the help of speech-to-speech translation

technologies, it is possible for humans to communicate with others in different

languages without having to learn them in the first place.

1



Figure 1.1. Language distribution

Image by PiMaster3-Wikipedia

1.1.2 Speech-to-Speech Translation

In order to break down the language barrier, speech-to-speech translation (an

example is illustrated in Fig. 1.2) [3] techniques have been studied and developed

for many years. It translates the speech across languages by the combination

of three components: the automatic speech recognition (ASR), which converts

speech into text; machine translation (MT), which translates text across lan-

guages; and finally, speech synthesis (TTS), which synthesizes speech from the

translated text.

����

Figure 1.2. An example of English-Japanese speech-to-speech technologies help

people to communicate without having to learn the other languages

The development of the speech translation technologies has been growing very

rapidly. Since the first version was developed in 1980s with very limited vocab-

ularies and simple rule-based translation, until now with very large vocabularies

and continuous simultaneous speech translation [4, 5]. Some big companies have

2



also launched the speech translation technologies into their services. We can

talk to some extent with other people in different language without learning that

language.

However, as described in the previous section, speech conveys very rich infor-

mation, not only “what” has been said, but also “how” is is expressed, that is,

paralinguistic information. This is the current limitation of most of S2ST sys-

tems that they cannot translate paralinguistic information across languages. In

the next section, we describe in detail about paralinguistic information and why

it is important to be translated.

1.1.3 Paralinguistic information

Paralinguistic information is an interesting and powerful feature of speech, includ-

ing age, gender, emotion, and emphasis [6]. In human–human communication,

it is a valuable piece of information that help to determine speaker’s states or

traits, as people very often adapt their speaking style based on the assessment of

their interlocutors’ intention. Moreover, paralinguistic is also applied in human–

machine communication, Burkhardt et al. [7] utilized paralinguistic information

in detecting anger in call center and Mishne et al. [8] use it to assess quality of

call center agents.

Among many type of paralinguistic, emphasis is an important element that is

often used to distinguish between the focused and unfocused parts of an utterance

[9]. It is particularly useful in misheard situations where speakers need to repeat

the most important words or phrases of sentences, as illustrated in Fig. 1.3. That

kind of situation is more likely to happen in cross-lingual speech communication

using a S2S system. In speech-to-speech translation tasks, Tsiartas et al. [10]

has also conducted a study on multi-lingual speech corpora and argued that

emphasis information is an important factor contributes to the quality of S2ST

performance. Therefore, if emphasis can be incorporated in S2ST systems, multi-

lingual human–human conversation via S2ST will be more fulfilling experience.

3



Figure 1.3. An example of a misheard situation where people put more focus on

the important words.

1.2. Problems and Challenges

Integrating emphasis into S2ST systems is a challenging task. There are 2 main

reasons, first, emphasis can be manipulated by many acoustic features including

duration, power, and F0 [11, 12], and it can be expressed at arbitrary levels. Many

works have been proposed to model and detect emphasis at binary levels using

F0 feature [13, 14], however, this does not reflect the way emphasis expressed in

real situation, where more than one word are emphasized and one can be more

emphasized than the other.

Second, introducing emphasis into S2ST systems can potentially increase the

complexity of the whole model. Kano et al. [15], Aguero et al. [16], and Anu-

manchipalli et al. [17] proposed model to estimate and translate emphasis. Al-

though these approaches can handle emphasis in S2ST systems, they make the

translation pipeline more complex by having 2 more components, emphasis es-

timation, emphasis translation (as illustrated in Fig. 1.4). In addition, Do et

al. [18] requires a separate word alignment models before the emphasis trans-

lation to map the emphasis weights, and Anumanchipalli et al. [17] also needs

phrase alignments to map F0 patterns. However, the word alignment can only

be obtained after word translation, meaning that to translate emphasis, we need

to wait for the machine translation system to predict all of the target language

4



sentences, creating a large delay to get the target output speech.

Figure 1.4. Existing emphasis S2ST systems. Two new components: emphasis

estimation (ES) and emphasis translation (ET) are introduced. This greatly make

the translation pipeline more complex and slow.

And finally, only acoustic feature (emphasis speech) is taken into account

while emphasis can be expressed in many ways including written form at arbitrary

levels. For example, one can add an adverb modifiers to increase the intensity

of a sentence “it is extremely hot today”. As we can see, alongside the main

content of the sentence, which is weather, we can also perceive the intensity of it

(“extremely”). This problem limits the capable of emphasis S2ST system that it

can only translate acoustic features but not linguistic features of emphasis.

1.3. Contribution

As described in the previous section, paralinguistic information consists of many

factors such as age, gender, emphasis and emotion. In this thesis, we focus on

emphasis as it has been suggested having impact on human–human communi-

cation experience via S2ST systems. Other elements also should be taken into

account, however, we leave them for the future work.

In order to address the problem described in Section 1.2, this thesis has pro-

posed the following contribution:

Continuous emphasis modeling: This study proposed a model that can han-

dle continuous emphasis levels in both emphasis modeling and translation.

Resulting in a significant improvement of emphasis detection and transla-

tion result.

5



Word and emphasis joint translation models: Existing models translate em-

phasis and word separately, resulting in a complex model and difficulties in

performing joint optimization. This study proposed an approach that can

unify two models. As the result, we can preserve the performance while

simplify and speedup the translation pipeline.

Translation of emphasis acoustic and linguistic features: Toward develop-

ing an emphasis translation system that can translate both acoustic and

linguistic feature of emphasis, we conducted a data collection task and an-

alyzed human perception of emphasis expressed in both text and speech

form. From the analyzed result, we constructed a emphasis text transfor-

mation that can take a neutral text and transforms it into an intensified

one.

The overall contribution, structure, as well as the difference from the master’s

work is illustrated in Fig. 1.5. The road map of this work is also showed in

Figure. 1.6.

Figure 1.5. Contributions and structure of the thesis.
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Figure 1.6. The road map of this study. The white, yellow, and red boxes

denote existing works, proposed approaches, and the final target of studies on

emphasis speech translation, respectively. The y-axes indicates the amount of

emphasis information can be preserved and the x-axis denotes the complexity of

the translation pipeline.
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1.4. Outline

Chapter 2 gives an overview of the S2S system, and describes how it can trans-

late the speech across languages. The three main components of the S2S system,

speech recognition (ASR), machine translation (MT), and text-to-speech synthe-

sis (TTS) are also described. This chapter points out that in the conventional

speech translation system, the ASR system only recognize the text representing

the meaning of the speech, and the MT and TTS only deal with the text as well.

This is the main reason why the conventional S2S system can not translate the

paralinguistic information.

With regards to the emphasis modeling and translation, Chapter 3 presents

the use of linear regression hidden semi-Markov models (LR-HSMM) and empha-

sis adaptive training to model and estimate a real-numbered value that represents

for word-level emphasis. The basic idea is that we model the emphasized speech

and normal speech models separately, and the word-level emphasis is an interpo-

lation parameter between those two models. If the words are emphasized, they

will have a higher emphasis level than the other words. Chapter 4 our proposed

approaches in emphasis translation including pause prediction, hard-attentional

translation, and joint translation models.

Chapter 5 presents our proposed corpus that contain emphasis expressed in

both speech and text form. The corpus is used to analysis human production

and perception of emphasis. We show the results of experiments on how different

emphasis levels can be expressed by speech and text, as well as the human per-

ception on both acoustic and linguistic feature of emphasis. In addition, we also

describe our proposed approach on transforming a neural text into an intensified

text by utilizing PoS tags and ngram scoring.

Chapter 6 concludes the thesis with an overview of emphasis translation and

the direction for the future research.
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Chapter 2

Speech-to-Speech Translation

2.1. Overview

The conventional speech translation system (S2S) [3] consists of 3 main compo-

nents, ASR, MT, and TTS. As illustrated in Figure 2.1, the work-flow of the

S2S system can be described as follows. First, the ASR module transcribes an

audio from a source language into a transcription. After that, the MT module

translates the transcribed text into a target language. Finally, the TTS module

synthesizes an audio given the target sentence. In the following sections, we give

a short description for each component.

2.2. Automatic Speech Recognition (ASR)

ASR aims to convert the speech signal into the corresponding word sequence.

Let’s first take a look at how it works. The first step of the speech recognition is

to extract speech features o given speech signals x. The standard speech feature

set is mel-frequency cepstral coefficients (MFCCs). The MFCC features contain

the components of the audio signals that are good for identifying the linguistic

content and discard irrelevant information such as paralinguistic information or

noise. After that the ASR predicts the most plausible word sequence consists of

K words w = [w1, w2, · · · , wK ] that maximize the conditional probability,

ŵ = argmax
w

P (w|o). (2.1)

9



Figure 2.1. Conventional speech translation system

Applying the Bayes’s rule we have,

P (w|o) =
P (w)P (o|w)

P (o)
∝ P (w)P (o|w). (2.2)

As we can see, the P (w|o) is factored into two parts. The first part is P (w),

also called language model probability and the second part P (o|w) is acoustic

probability.

The standard way to calculate P (w) is to use n–gram language modeling,

where the P (w) is break down into smaller parts,

P (w = [w1, w2, · · · , wK ]) =
K∏
i=1

P (wi|wi−1
i−n+1), (2.3)

where P (wi|wi−1
i−n+1) denotes the probability of the word wi given n− 1 preceding

words (context words). Basically, the higher order of n–gram model will usually

give better results. However, it is also becomes harder to calculate the n–gram

probability for high order n–grams because of the data sparsity problem. The

probability of the n–gram will become smaller when the order becomes higher, and

is not helpful for the ASR system anymore. Usually the 3– or 4–gram language

model is adopted for the standard ASR systems.
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With regards to the acoustic model. The acoustic probability P (o|w) is cal-

culated by

P (o|w) =
∑
Q

P (o|Q)P (Q|w), (2.4)

where Q is all possible phoneme sequences derived from w. As we can see, the

phoneme is used instead of the word. The reason is mainly because we can not

collect enough data for every word for a particular language. P (o|Q) represents

how likely it is that the speech feature o is observed given the phoneme sequence

Q and is typically formulated by Gassian mixture hidden Markov model (GMM-

HMM) [19, 20] as illustrated in Figure 2.2,

Figure 2.2. HMM-based phoneme model with 5 states (3 emitting states: 2,

3, and 4; and 2 non-emitting states: 1 and 5). The parameter αij is the state

transition probability between the state ith and jth, and βi(ok) is the probability

that the observation ok is generated from the ith state.

Recently, the deep neural network (DNN) acoustic modeling has drawn much

attention in speech recognition researchers as an alternative modeling technique

to the GMM model. In the DNN-HMM approach, the DNN aims to calculate

the posterior probability βi(ok) instead of a mixture of Gaussians. The DNN-

HMM outperforms the GMM-HMM when using the same amount of data, and

in experiments in [21] it is required about 7 times larger amount of training data

for the GMM-HMM to have the same performance as the DNN-HMM.
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2.3. Statistical Machine Translation (MT)

The MT system lies in the middle of the S2S system, and has a job to translate the

hypothesis from ASR module to a particular target language. There are many

methods that can be applied to MT task such as tree-based [22] and phrase-

based [23] translation models. This section gives a high-level description for the

phrase-based translation model.

The phrase-based model uses the translation of phrases as atomic units. The

idea is to split a sentence into small phrases and performs the translation as

illustrated in Figure 2.3.

The MT system can be descibed in mathematics as follows. Given a source

language sentence f , the task is to find the best target language sentence e by

applying Bayes’s rule as follows,

ê = argmax
e

P (e|f) = argmax
e

P (e)P (f |e), (2.5)

where the P (e) is the language model for the target sentence e, and the P (f |e)
is decomposed into

P (f |e) =
I∏

i=1

φ(fi|ei)di, (2.6)

where I is number of phrases in source sentence, di is the distance score which is

calculated by a distance-based reordering model [23], and φ(fi|ei) is the phrase

translation probability

φ(fi|ei) = count(ei, fi)∑
f ′
i
count(ei, f ′

i)
. (2.7)

The phrase is extracted from a word alignment which is the output of unsuper-

vised learning methods [24, 25].

The advantages of phrase-based model is it can handle non-compositional

phrases, and the more data we have, the longer phrases can be learned. The

phrase-based translation model is also a successful approach, currently used by

many big companies. This thesis utilized the phrase-based model for the speech

translation system.
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Figure 2.3. Example of phrase-based translation model

2.4. Text-to-speech Synthesis (TTS)

Text-to-speech is the last component in the S2S system, which synthesize the

target audio given the translated hypothesis.

The most three common TTS techniques are unit selection [26], neural-net-

based [27], and hidden semi-Markov model (HSMM) based [28]. In the unit

selection method, the synthetic speech is created by concatenating the pieces of

recorded speech extracted from a speech database. For example, the speech sound

of “hh”, “ah”, “l”, and “ow” are concatenated to form the word “hello”. As a

result, the synthetic speech is very natural and intelligible. However, this method

requires a very large speech corpus to achieve a good performance, and it is also

difficult to control or modify the synthetic speech (e.g., increase the duration of

particular words, or change the speaking style) [29, 30].

The last two approaches, neural-net-based and HSMM-based, are parametric

and generally, produce better prosodic patterns than the concatenation approach.

The neural-net-based method, is, however, requires a large amount of speech data,

which leads to difficulties to apply into expressive speech synthesis tasks, because

the collection of expressive speech are both time and resource consuming. On the

other hand, the HSMM-based approach allows us to modify the synthetic speech

easily and the amount of required training data is also much smaller, say an hour.

It is also possible to rapidly adapt an existing TTS model to a particular speaker

using a limited amount of that speaker’s training data [31] which can not be done

in unit selection methods.

The HSMM is a hidden Markov model (HMM) with explicit state duration

probability distributions as shown in Figure 2.4, which improves the naturalness

of the synthetic speech over the HMM model. The model training consists of

three steps, label analysis, speech parameter extraction, and HMM training. The

13



Figure 2.4. An example of hidden semi-Markov models with 5 states. αij is

the state transition probability from state i to state j, βi(.) is the likelihood

probability, and p′i(.) is the duration probability distribution for state i.

label analysis converts the word sequence into full context labels which represent

many linguistic aspects (e.g., phone identity, accent, stress, location, and part-of-

speech). This information makes it possible to model and synthesize audio more

naturally. The second step is the speech parameter extraction which extracts

acoustic parameters from speech signals. This process is different from ASR

module in the way that it keeps all the information such as duration, speaker

characteristic, emphasis.

Let’s define the TTS in mathematics. The output speech parameter vector

sequence o is determined by maximizing the likelihood function given the state

sequence consists of T states q = [q1, · · · , qT ], and the HSMM model set M

ô = argmax
o

P (Wo|q,M), (2.8)

where W is the weighting matrix for calculating the dynamic features [32].

This thesis adopts the HSMM-based TTS model. The reason is not only to

inherit the advantages of the HSMM-based method, but also the flexibility to

modify it to model the emphasized speech which is described in Section 3.
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Chapter 3

Emphasis Speech Modeling

With regards to speech modeling techniques, DNN-based and hidden semi-Markov

model (HSMM) approaches are most common used. The DNN-based approaches

have recently drawn many attentions and yield better intelligible and natural

sounds than the HSMM. However, it requires a large amount of training samples,

usually more than 10 hours, to outperform the HSMM approach [33] and it is also

not flexible in modeling expressive speech. The HSMM approach, however, re-

quire much less amount of data (1 to 3 hours) and provide flexibility to model the

different varieties of speech [34]. Previous work on word-level emphasis modeling

based on HSMMs has relied on state clustering with emphasis contextual factors.

A simple approach uses emphasis contextual factors indicating whether or not a

word and its neighbor words are emphasized, and creates an emphasis decision

tree [35] or a factorized decision tree [36] with some nodes having an emphasized

question, as illustrated in Fig. 3.2 (a). While these methods are both expressive

and effective, they have a disadvantage in the way that they make a hard zero-

one distinction between unemphasized and emphasized words, or in other words,

they use binary emphasis representation. However, in reality, emphasis is more

subtle, and can be better represented using a continuous variable where a larger

number indicates a higher level of emphasis (as illustrated in Fig. 3.1).

In this section, we describe our approach to improve LR-HSMM-based em-

phasis modeling to solve this problem. First, to adopt continuous emphasis levels

and to improve the parameter optimization process, we make an extension of

cluster adaptive training (CAT) [37] to emphasis adaptive training as illustrated
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Figure 3.1. An example of Word-level emphasis. In this example, the word “very”

and “hot” are emphasized with higher emphasis value.

in Fig. 3.2 (b). Next, to take advantage of both parameter optimization and

expressive decision tree modeling, we propose a hybrid approach that considers

both the state clustering (binary emphasis) using the emphasis contextual factor

and emphasis adaptive training (continuous emphasis), as illustrated in Fig. 3.2

(c).

(a) State clustering with emphasis context

(b) Emphasis adaptive training (c) Hybrid system

Figure 3.2. Emphasis modeling techniques including (a) state clustering using

contextual information, (b ) emphasis adaptive training without emphasis context

(b), and (c) a hybrid system that adopts both s trategies.

3.1. Binary-Level Emphasis Modeling

State clustering is an approach that helps to reduce the number of HSMM states

and the need for a lar ge amount of training data by clustering HSMM states using
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Figure 3.3. An example of full contextual labels for the word “it” and “hot”

where the word “it” is normal and “hot” is emphasized. The context “T:*” is the

additional emphasis factor, and the remaining items are traditional cont extual

information.

some cluster criterion. This clustering is generally performed by using decision

trees, which decide the cluster of HMM states based on a number of contextual

factors. By simply adding an emphasis conte xtual factor to the cluster criterion,

as illustrated in Fig. 3.3, we can model normal and emphasized HSMM states [35]1.

The decision tree constructed by having additional emphasis context (Fig. 3.2 (a))

can separate Gaussians components into normal and emphasized ones. Although

this approach is simple and easy to implement, there are three problems: (1) it

does not guarantee that the emphasis question appears in all paths starting from

the root to leaf nodes, causing a problem that there are some nodes that make no

distinction between emphasized and non-emphasized words; (2) it separates the

training data into normal and emphasized parts, causing emphasized and normal

nodes to only be trained with emphasized and normal data, respectively; and (3)

emphasis is treated as a binary value indicating emphasized or not, and thus it

is not possible to model emphasis at a “medium” level using continuous values.

1Of course, it is possible to use mor e contextual factors, i.e. indicating whether preceding

and succeeding words are emphasized. However, in this work we omit these factors to maintain

comparability of the evaluation with other approaches using the same context factors.
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3.2. Continuous-Level Emphasis Modeling

The state clustering approach described in the previous section can model zero-

one emphasis. However, in reality, emphasis is more subtle. For example, one

sentence might have two emphasized words with one having a smaller level of

emphasis than the other. Therefore, it may be better to represent emphasis as

a continuous variable where a larger number indicates a higher emphasis level.

In this section, we describe continuous word-level emphasis modeling [38] us-

ing linear-regression hidden semi-Markov models (LR-HSMMs) [39] with HSMM

state clustering.

3.2.1 LR-HSMM definition

We assume a word sequence consists of J words w = [w1, · · · , wJ ], and a length

T acoustic feature vector o = [o1, · · · ,oT ]. As the observed feature vector ot at

time t, we use a combination of a spectral feature vector o
(1)
t and F0 feature vector

o
(2)
t as described in [40]. The likelihood function of the LR-HSMMs is given by

P (o|Λ,M) =
∑
all q

P (q|Λ,M)P (o|q,Λ,M) , (3.1)

where q = [q1, · · · , qT ] is the HSMM state sequence, Λ = [λ1, · · · , λj, · · · , λJ ] is

the word-level emphasis sequence, and M is an HSMM parameter set. The LR-

HSMM has two separate Gaussian components, normal and emphasized Gaus-

sians, which are derived by using a decision tree constructed using HSMM state

clustering, which described in the above section.

Because emphasis is defined at the word level, all linear-regression states that

belong to one word will share the same emphasis level, as illustrated in Fig. 3.4.

The state output probability density function modeled by a Gaussian distribu-

tion2 is given by

P (o|q,Λ,M) =
T∏
t=1

P (ot|qt, ωt,M) , (3.2)

2Specifically, a multi-space probability distribution [41] is used for the F0 component in this

paper.
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P (ot|qt = i, ωt,M) =
2∏

s=1

N
(
o
(s)
t ;μ

(s)
n,i + ωtb

(s)
i ,Σ

(s)
i

)
, (3.3)

where μ
(s)
n,i is the normal Gaussian mean vector at state i and stream s, ωt is

frame-level emphasis equivalent to λj if state i ∈ wj; and s is a stream index

(i.e., s = 1 for the spectral features and s = 2 for the F0 features), and b
(s)
i a

vector expressing the difference between the normal and emphasized Gaussian

mean,

b
(s)
i = μ

(s)
e,i − μ

(s)
n,i, (3.4)

where μ
(s)
e,i is the emphasized Gaussian mean vector. The duration probability

P (q|Λ,M) is also derived in a similar way to the state output probability,

P (q|λ,M) =
N∏
i=1

P (di|ωi,M) , (3.5)

P (di|ωi,M) = N
(
di;μ

(d)
i + ωib

(d)
i , σ

(d)
i

2
)
, (3.6)

where μ
(d)
i and b

(d)
i are the normal Gaussian mean and the difference between

emphasized and normal Gaussian means, respectively; di is an HSMM state du-

ration, ωi = λj if di ∈ wj; and N is the number of states in the sentence HSMM

sequence (i.e., the sum of di over N HSMM states is equivalent to T ).

3.2.2 Word-level emphasis sequence estimation

Given an observation sequence o, and its transcription, the process to estimate the

word-level emphasis sequence is as follows [38]: first, an LR-HSMM is constructed

by selecting the Gaussian distributions corresponding to the context of the given

transcription. Then, emphasis is estimated by determining maximum likelihood

estimates of the emphasis weight sequence, which is the same as the cluster

weight estimation process in the cluster adaptive training (CAT) algorithm [37].

The word-level emphasis weight sequence is estimated by maximizing the HSMM

likelihood as follows:

λ̂ = argmax
λ

P (o|λ,M) . (3.7)

This maximization process is performed with the EM algorithm [42].
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Figure 3.4. An example of linear-regression HSMMs. Each word has its own

emphasis level λj, and all HMM states that belong to the same word will share

the same emphasis level.

3.3. Emphasis Adaptive Training

First, we make an extension of CAT [37] to allow it to perform emphasis adaptive

training. The idea of the proposed method is to iteratively estimate and update

the word-level emphasis sequences and model parameters, respectively.

Given the estimated word-level emphasis sequence Λ = [λ1, λ2, · · · , λJ ], we

want to find the model parameters that maximize the likelihood function

M̂ = argmax
M

P (o|λ,M) . (3.8)

The maximization process is performed with the EM algorithm as follows:

1. Use the existing model parameters to estimate word-level emphasis se-

quences Λ̂ as described in the previous section. In other words, this step

automatically generates pseudo-labels for the training data.

2. Update the mean of the normal Gaussian component at stream s, μ
(s)
n,m,

and duration state d, μ
(d)
n,m, given estimated word-level emphasis sequences
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Λ̂. Below is the formula used to update μ
(s)
n,m.

μ(s)
n,m = G−1K (3.9)

G =
∑
m′∈m

[
(1− ω(m′))

∑
t

γ
(m′)
t ot

− ω(m′)(1− ω(m′))
∑
t

γ
(m′)
t μ(m)

e

]
, (3.10)

K =
∑
m′∈m

(1− ω(m′))2
∑
t

γ
(m′)
t , (3.11)

where m′ is the untied model of linear Gaussian component m, ω(m′) is

Gaussian-level emphasis that is equivalent to λj if the untied model m′

belongs to the word wj. The mean of emphasis Gaussian μ
(s)
e,m and duration

model μ
(d)
n,m can be updated in a similar way.

3. Go back to step 1 until the model is converged.

Note that in this paper, the covariance matrices of Gaussian components are kept

unchanged for simplification.

Based on emphasis adaptive training, we propose an approach to model em-

phasis without the need of state clustering with emphasis context as illustrated in

Fig. 3.2 (b). In this approach, the decision tree is constructed without any empha-

sis context, as illustrated in Fig. 3.2 (b) – Original. After that, the original leaf

nodes are turned into intermediate nodes by adding an emphasis question split-

ting each of them into normal and emphasized nodes (Fig. 3.2 (b) – Extended).

At this point, the emphasized and normal leaf nodes are equivalent. Then, to

ensure that the parameters of emphasized and normal Gaussians are different, we

add to the emphasized Gaussians a mean difference vector b̄
(s)
, which is calculated

based on the tree created from the state clustering approach. Finally, we adopt

emphasis adaptive training described above to further optimize the parameters.

Unlike the previous approach where emphasized and normal Gaussians are

trained only on emphasized or normal speech respectively, emphasis-adaptive-

training-based approaches are able to utilize all the training data to train the

model parameters. When training on emphasized samples, the emphasized Gaus-

sian components get more weight (emphasis level) than normal Gaussians, and

vice versa.
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However, the simple approach described here also has a weakness in that it

forces emphasis questions to always be asked right before the leaf nodes. This

has the potential to result in sub-optimal decision tree structure. We resolve this

weakness in the following section.

3.4. Hybrid System for Continuous Emphasis Mod-

eling

Next, we propose a hybrid approach that takes advantage of both of the above

approaches. First, a decision tree (the original tree) with emphasis questions

asked at some intermediate nodes is constructed as in Section 3.1. Then, we

extend leaf nodes that belong to paths that do not have an emphasis question

asked in any of the intermediate nodes as shown in Algorithm 1.

Algorithm 1 State splitting algorithm.

1: procedure StateSplitting(s)

2: if s has emphasis question then

3: return

4: else

5: if s is leaf node. then

6: SET s as intermediate node.

7: ADD emphasis question to s.

8: SPLIT s into 2 leaf nodes.

9: return

10: else

11: StateSplitting(left node of s).

12: StateSplitting(right node of s).

The state splitting process 6-8 will duplicate the mean and covariance matrix

of Gaussian components of the state being split. After splitting the tree, every

leaf node is guaranteed to represent either a normal or emphasized Gaussians.

Then, to ensure that emphasized and normal Gaussians are different, the same

procedure as the previous section is applied.
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Finally, we perform emphasis adaptive training with continuous emphasis rep-

resentations to further optimize model parameters for the nodes split by the line 8

of Algorithm 1.

3.5. Emphasis Estimation

Given an observation sequence o, and its transcription, the process to estimate the

word-level emphasis sequence is as follows [38]: first, an LR-HSMM is constructed

by selecting the Gaussian distributions corresponding to the context of the given

transcription. Then, emphasis is estimated by determining maximum likelihood

estimates of the emphasis weight sequence, which is the same as the cluster

weight estimation process in the cluster adaptive training (CAT) algorithm [37].

The word-level emphasis weight sequence is estimated by maximizing the HSMM

likelihood as follows:

λ̂ = argmax
λ

P (o|λ,M) . (3.12)

This maximization process is performed with the EM algorithm [42].

3.6. Experiments

3.6.1 Experimental setup

In this section, we evaluate the performance of emphasized speech modeling using

state clustering, emphasis adaptive training, and the hybrid approach. The ex-

periments were conducted using a bilingual English-Japanese emphasized speech

corpus [11], which has emphasized content words that were carefully selected to

maintain the naturalness of emphasized utterances. The corpus detail is shown

in Table. 3.1.

In the experiments, we selected 2 speakers for each language with 916 utter-

ances for training and 50 utterances for testing. Thus, we have 100 testing samples

in total for each language. The LR-HSMM model was trained for each speaker

separately, resulting in 4 models in total. The speech features were extracted

using 31 mel-cepstral coefficients including 25 dimension spectral parameters, 1
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Table 3.1. The corpus detail.

Bilingual speakers 3

Monolingual speakers 6 Japanese, 1 English

Number of utterances / speaker 966

dimension log-scaled F0, and 5 dimension aperiodic features. Each speech param-

eter vector includes static features and their delta and delta-deltas. The frame

shift was set to 5 ms. Each HSMM model is modeled by 7 HMM states including

initial and final states. We adopt STRAIGHT [43] for speech analysis.

With regards to emphasis adaptive training, we performed the adaptive train-

ing for the first 6 iterations, then re-estimate word-level emphasis sequences.

These are then used to perform emphasis adaptive training until the model con-

verges.

3.6.2 Objective evaluation on word-level emphasis predic-

tion

In the first experiment, we evaluate the performance of the different models in

emphasis prediction, where we are given an input speech signal and would like

to predict whether each word is emphasized. For each system, we estimate the

word-level emphasis sequences for the testing data, then classify them to normal

and emphasized labels using a threshold of 0.5. Then, we calculate the F -measure

for all systems. The result is shown in Fig. 3.5.

As we can see, the model using emphasis adaptive training and the hybrid

approach outperform the state clustering approach in both languages by 2-5%

F -measure3. One possible reason for this is that in state clustering approaches,

emphasis questions do not appear at all paths starting from the root to leaf

nodes, leading to some emphasized words having weak emphasis levels. To test

this hypothesis, we perform an analysis showing the percentage of the number

of decision tree traversing without asking for emphasized questions in the state

3We did not carry out subjective evaluation explicitly, however, our previous work [38] has

shown that the human emphasis prediction has about a 4% reduction of F -measure compared

to objective evaluation due to the lack of pauses in the synthetic speech.
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Figure 3.5. Emphasis prediction accuracy.

clustering approach for both languages. The result shown in Fig. 3.6 indicates

that many times we traverse through the tree to derive emphasized and normal

Gaussian components, emphasis questions are not asked at in all three acoustic

feature streams for 11.37% times in English, and no emphasis question is asked

more than half the time in at least one of the feature streams. On the other hand,

the proposed approach guarantees that we can always derive different emphasized

and normal Gaussian components. This is also one explanation for why the

improvement of the hybrid system compared to other methods is larger in English

than Japanese.

3.6.3 Subjective evaluation of naturalness

In the next experiment, we use the models to synthesize speech of the Japanese

data and perform a preference test evaluation to evaluate the naturalness of the

synthetic speech. 50 utterances in the testing data were synthesized with each

system using the ground-truth emphasis labels (e.g., “it is really hot today” with

emphasis label “0 0 1 0 0”). 7 Japanese native listeners performed a pairwise

evaluation over all pairs of systems.

As shown in Fig. 3.7, the hybrid approach generated more natural audio

compared to all others. We hypothesize the reasons are as follows:

� State clustering: The emphasized and normal Gaussians are trained using

only emphasized or normal speech, respectively. Although emphasis ques-
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Figure 3.6. The percentage of decision tree traversing without asking for em-

phasized questions in the state clustering approach. “All streams” and “Any

stream” indicate situations in which emphasis questions are not asked in all fea-

ture streams (lf0, duration, and spectral) or any of them, respectively.

Figure 3.7. Preference score of synthetic speech for each system.
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tions are placed in the decision tree according to the likelihood function,

due to the limitation of training data, some Gaussian components do not

get a sufficient amount of training samples, leading to low quality synthetic

speech.

� Adaptive training: In this approach, we can utilize all training data to

train Gaussian components. When training on emphasized speech samples,

the emphasized Gaussian components get more weight (emphasis level) than

normal Gaussians, and vice versa, leading to higher quality than the state

clustering approach. However, the emphasis questions are forced to be

asked right before the leaf node (not according to likelihood function), this

potentially makes the audio become unnatural.

� Hybrid approach: This approach inherits advantages from both above

systems. The decision tree has emphasis questions are placed according

to likelihood function, some paths that do not have emphasis questions are

refined using state splitting, and the model parameters are further optimized

using adaptive training.

3.6.4 Effect of ASR Errors on Emphasis Estimation

In this experiment, we investigated the effect of ASR errors on emphasis estima-

tion. The reason why we conducted this experiment is to investigate the effect

of 3 different ASR errors: deletion, insertion, and substitution on the emphasis

estimation. By knowing those effect, we can adjust the ASR system in a way

that has smallest effect on the emphasis estimation. For example, we can adjust

the word insertion penalty of the decoding process to trade off between deletion

and insertion error.

In order to conduct the experiment, we simulated 3 type of ASR errors for

each utterance as follows,

� Deletion: For each utterance, we randomly delete one word.

� Substitution: For each utterance, we randomly substitute one word with

another word that has similar pronunciation. This is usually the case of

substitution error in real ASR system.
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Insertion: For each utterance, we randomly insert one word in an existing

dictionary.

Then, we performed the emphasis estimation on modified transcription, and

calculate the F-measure. The result is shown in Figure 3.8. As we can see, for

both languages, the insertion error has largest effect on emphasis estimation, while

the deletion and substitution errors has smallest effect to English and Japanese,

respectively. The result indicates that when we perform the emphasis translation,

we should adjust the ASR to produce less insertion error by increasing the word

insertion penalty during decode process. Although it will increase the deletion

error, the effect to emphasis estimation can be reduced.

Figure 3.8. Effect of ASR errors on emphasis estimation

3.7. Discussion

In this chapter, we have proposed methods for emphasis adaptive training that

deals with continuous emphasis levels and a hybrid system that combine state

clustering and adaptive training approaches. Experiments showed that the pro-

posed model outperforms other methods by 2-5% F -measure of emphasis estima-

tion accuracy, and produces more natural audio.
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Apart from improving emphasis estimation performance, continuous emphasis

levels also has a major potential advantage against binary emphasis in emphasis

translation. Figure 3.9 and 3.10 respectively show an example of emphasis trans-

lation with binary and continuous values. As we can see, with binary emphasis

values, there are only 2 possible outcomes of translation, the result can be only

either correct or incorrect. However, with continuous values, there are unlim-

ited outcomes and if the system makes a small mistake, it might still be able to

preserve emphasis in the target language. Our work on emphasis translation in

[18], where we evaluated the performance between systems using ground-truth

label (binary values) and estimated emphasis values, has showed that although

the ground-truth labels are used, the emphasis translation performance is still

lower than the system used estimated emphasis values.

Figure 3.9. Emphasis translation with binary values

Figure 3.10. Emphasis translation with continuous values

On the other hand, there are still some limitations remaining. First, the

system is not robust against unknown data, its performance dropped significantly

when an unknown speaker speech is observed. Specifically, on a unknown speaker
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test set, the accuracy on emphasis prediction of the system is only approximately

20%. Second, the approach also has difficulties in handling emphasis words with

the emphasis level just slightly higher than normal words or in case speakers use

pauses rather than acoustic features. In such situation, if we lower the emphasis

detection threshold to have better recall of emphasis detection, the precision will

also drop significantly.

In the future, we plan to incorporate emphasis adaptive training with more

sophisticated clustering such as factorized decision trees, and MLLR adaptation.
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Chapter 4

Translation of Emphasis Acoustic

Features

Previous chapter has shown the way we model all acoustic features of empha-

sis as a single real-numbered emphasis level. In this chapter, we describe our

proposed approaches that take the emphasis level and translate it into a target

language so that people can perceive how source language speech is emphasized

acoustically. Various approaches are proposed including conditional random fields

(CRF), hard-attention sequence-to-sequence, and joint translation models (as il-

lustrated in Fig. 4.1).

Figure 4.1. Proposed approaches on emphasis translation (green boxes).
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4.1. CRF-based Emphasis Translation

4.1.1 Conditional Random Field

Conditional random fields (CRF) [44] are discriminative models which model the

conditional probability P (y|x) directly instead of the join probability P (y,x)

(also known as the generative model). The advantage of the conditional model is

that we do not have to model the P (x) which can include complex dependencies.

This leads to much simpler and compact model than the generative approach

with the ability to incorporating a large number of input feature x.

The linear-chain CRF can be depict as a undirected graph in Figure 4.2. θ

and μ are equivalent to the transition probability and emission probabilities in

the hidden Markov model. Given a training data that consists of T samples

Figure 4.2. The linear-chain conditional random field with the model parameters

{θ, μ}.

D = [(x1, y1), · · · , (xt, yt), · · · , (xT , yT )], the conditional probability is calculated

as,

P (y|x) = 1

Z(x)

T∑
t=1

exp

{∑
i,j∈S

θij1{yt=i}1{yt−1=j} +
∑
i∈S

∑
o∈O

μoi1{yt=i}1{xt=0}

}
(4.1)

where {S,O} are the state and observation space, {i, j, o} denote the states and

observation, respectively.

We can write the Equation 4.1 more compactly by using the concept of fea-

ture function fij(y, y
′,x) = 1{y=i}1{y′=j} and fio(y, y

′, x) = 1{y=i}1{x=o}. The

annotation θk and fk are used for the general model parameter θij and μio and

the feature function that ranges over both fij and fio. Then the Equation 4.1
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becomes

P (y|x) = 1

Z(x)

T∏
t=1

exp

{
K∑
k=1

θkfk(yt, yt−1,xt)

}
, (4.2)

where Z(x) is a normalization function

Z(x) =
∑
y′

T∏
t=1

exp

{
K∑
k=1

θkfk(y
′
t, y

′
t−1,xt)

}
(4.3)

The model parameter θ are optimized by maximizing the conditional proba-

bility

L(θ) = P (y|x). (4.4)

The simplest way to optimize L(θ) is gradient descent, but the convergence speed
is slow [45]. In practice, the common optimization approach is limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [46].

4.1.2 Emphasis Translation with Conditional Random Fields

Our next step is emphasis translation, or to take word-level emphasis estimates

in the source languages λ̂
(f)

, and convert them to emphasis estimates in the

target language λ̂
(e)
. We perform estimation of emphasis in the target language

using the conditional random fields (CRFs) approach. To train CRFs to predict

target side emphasis, we create training data consisting of source and target

words w(f) and w(e), and the corresponding estimated emphasis values. As λ̂
(e)

is a sequence of continuous values, and CRFs requires discrete state sequences,

we first quantize λ̂
(f)

and λ̂
(e)

into buckets, giving us a discrete sequence λ̂
(f)′

and λ̂
(e)′

. We then create CRFs training data that consists of N samples D =

[(x1, λ
(e)′
1 ), · · · , (xn, λ

(e)′
n ), · · · , (xN , λ

(e)′
N )], where xn is a feature vector for each

word in w
(e)
n consisting of:

� source word-level emphasis λ
(f)
j , and its context,

� source word w
(f)
j , and word context,

� source word part of speech (PoS) pos(w
(f)
j ), and PoS context,

� target word w
(e)
n , and word context,

� target word PoS pos(w
(e)
n ), and PoS context,
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where context means the information of one succeeding and one preceding words.

To decide which source features correspond to a target word w
(e)
n , we use one-

to-one word alignments between w
(f)
j and w

(e)
n . The CRFs model parameters are

optimized using Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

approach [46] as implemented in CRFSuite [47].

4.2. Pause prediction

Pause prediction is not a new research field, with a large body of research trying

to tackle this problem [48, 49, 50]. The main distinction between these previous

methods and our work is that while previous methods attempted to predict pauses

from text (linguistic) information only, in our work we are given information about

whether the word in question is emphasized, which gives us a stronger signal

about whether pauses should be inserted or not. In this section, we describe two

approaches that are able to utilize both linguistic and emphasis information to

predict pauses based on CRFs.

The pause prediction problem can be described as follows: Given a word

sequence and its word-level emphasis sequence, we want to predict in which of

the below 4 positions a pause is inserted.

Before : a pause is inserted before the word.

After : a pause is inserted after the word.

Both sides : pauses are inserted before and after the word.

None : there is no pause inserted.

Generally speaking, this is a classification problem with 4 classes.

4.2.1 Pause extraction

The first step is to extract pauses from the training data by 3 steps, first, we train

a speech recognition model on the same data, this step will give us a speaker

dependent acoustic model for each speaker. Then, we perform forced alignment

on the training data to derive audio-text alignments. Finally, from the alignment,

we extract all pause segments that have duration at least 50ms as pauses.
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4.2.2 CRF-based pause prediction

We adopt a CRF model to predict pause position, the input features include

words, part-of-speech tags, emphasis degree, and context information of the pre-

ceding and succeeding units. Table 4.1 shows an example of input features. In

the example, the word hot is the emphasized word, and we can see that a pause

is inserted after the word is and before the word hot. In a standard sentence,

this placement of a pause may seem unnatural. However, because the word hot is

emphasized intentionally, the pause can be inserted to give a sign that the word

hot is important.

Table 4.1. An example of input features for the sentence “it is <p> hot” with

word-level emphasis sequence “0 0.1 0.8”. Note that pauses are represented by

commas, and we also use the context information of the preceding and succeeding

units.
Position Word Part-of-speech Emphasis

None it PRP 0

After is VBZ 0.1

Before hot JJ 0.8

4.3. Hard Attentional Neural Net Based Empha-

sis Translation

Even though a CRF-based ET can preserve emphasis, its major problem is that

it must quantize continuous emphasis levels into discrete labels. Although this

mechanism increases the ratio of the number of labels and their training sam-

ples, the translation model is prone to make very bad predictions. For instance,

instead of predicting 0.9, it might predict 0.1. The reason is it cannot capture

the difference between 0.9 and 0.1 because those values are treated as separate

discrete labels.

Another problem with the CRF-based approach is that although it model local

dependencies well (by adding more feature functions), it has difficulty handling

long-term dependencies. One can use many feature functions to handle this
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problem, but as feature functions increase, more data are required. And since

emphasis translation requires parallel emphasized speech, which is very hard to

collect, this approach is not practical.

In this section, we describe our proposed hard-attentional approach based

on sequence-to-sequence (seq2seq) LSTM models, which are type of recurrent

neural networks (RNNs), that can solve remaining problems exist in CRF-based

approaches.

4.3.1 Sequence-to-sequence LSTM Models

In this section, we introduce sequence-to-sequence (seq2seq) LSTM techniques,

which works best for sequential data such as sequence of words, and is, currently,

considered as standard approach for machine translation. We utilize seq2seq

approaches because they have achieved impressive results for many tasks, such

as speech recognition [51, 52] and machine translation (MT) [53]. Particularly,

attentional-based seq-to-seq [54, 55] achieved state-of-the-art performances for

MT and ASR tasks and can model long-term dependencies, overcoming the prob-

lems of local dependencies in CRFs. In addition, models can be defined that can

simultaneously handle both continuous and discrete variables, as well as cost func-

tions that take into account label distances, for example, mean squared errors.

LSTM [56] is a special kind of recurrent neural network model that can capture

long-term dependencies by special units called memory blocks and also manages

the information going through it using forget, input, and output gates. Given

input vector xt at time t and hidden vector ht−1 and cell state Ct−1 at time t−1,

the information flow can be described:

� Calculate forget gate ft:

ft = σ(Wf × [ht−1,xt] + bf ). (4.5)

� Calculate input gate it and estimate cell state C̃t:

it = σ(Wi × [ht−1,xt] + bi), (4.6)

C̃t = tanh(WC × [ht−1,xt] + bC), (4.7)
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� Update cell state Ct:

Ct = ft ×Ct−1 + it × C̃t, (4.8)

� Calculate output vector ht:

vt = σ(Wv × [ht−1,xt ] + bv), (4.9)

ht = vt × tanh(Ct). (4.10)

Here W and b are the matrix and bias vectors of the neural network layers. The

core component of an LSTM is cell state Ct (Eq. (4.8)), which is controlled by

forget gate ft that is multiplied by the previous cell state values to decide which

history information it should forget, and input gate it, which is multiplied to the

estimated cell state to decide which information is sent to the cell state.

An attention seq-to-seq LSTM model consists of an LSTM encoder, which

encodes the input information, an LSTM decoder, which takes the encoded output

to make a prediction, and an attention layer, which calculates an attention vector.

The seq-to-seq translation model can be written as follows:

� Encode the input features to obtain hidden states h(s):

h
(s)
i = enc(h

(s)
i−1,x). (4.11)

� Compute the attention vector a
(t)
j and context vector cj:

a
(t)
j = att(h

(t)
j ,h

(s)
i ), (4.12)

where j is the prediction time step, and h
(t)
j is the decoder hidden state.

Given a
(t)
j as weights, context vector cj is computed as the weighted average

over all source hidden states h(s).

� Predicts target labels yj,

P (yj|y<j,x) = softmax(Wth̃
(t)
j ), (4.13)

h̃
(t)
j = tanh(Wc[cj;h

(t)
j ]). (4.14)
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Our proposed hard-attentional model for emphasis translation is a modified

version of the seq-to-seq model described in the following section, based on an

assumption that we have a target language word sequence that was predicted from

an external MT model and word alignments from an external word alignment

model.

Figure 4.3. Unfolded hard-attentional encoder-decoder LSTM model for translat-

ing emphasis sequence λ(e) into target output sequence o(f). It considers many

linguistic features including word sequence w
(e,f)
i and part of speech sequence

p
(e,f)
i from both source and target languages.

The whole encoder-decoder process can be written as a function of input

features:

λ(t) = f(x(s)), (4.15)

where λ(t) is the target output emphasis sequence, x(s) is the sequence of the

source-language input features including words w(s), PoS p(s), and emphasis

weights λ(s). The previous work [57] reported that both words and PoS tags

play a crucial role to have a good translation model.
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4.3.2 The encoder

As illustrated in Fig. 4.3, the encoder is a standard LSTM model that takes input

vector x
(e)
i that consists of words (w

(e)
i ), part-of-speech tags (p

(e)
i ), and emphasis

levels (λ
(e)
i ), and encodes them into a single vector that is suitable for predicting

emphasis levels.

The input PoS tags are converted into one-hot vectors with the size is equal

to PoS vocabulary size. Word embeddings [58] are applied to map words onto

vectors that capture the similarity between words. All these input features are

concatenated into a single vector and fed to the encoder.

The encoder is pre-trained by appending a linear neural-net layer on top of

it with an output size of 1 to predict the emphasis level that is fed into the

input layer, similarly as an auto-encoder model [59] (Fig. 4.4 (a)). We want

output hidden layer h to represent the features that are the most useful to predict

emphasis levels (called “emphasis representations”).

4.3.3 The decoder

The decoder is also a standard LSTM model, and the input layer contains both

linguistic information (words, PoS) and vector representations calculated by the

encoder, based on a novel hard-attentional model.

The name hard-attentional reflects how the decoder calculates the emphasis

representation vectors used as input. The example in Fig. 4.3 demonstrates this

mechanism. Assume that the word pairs w
(t)
1 -w

(s)
2 and w

(t)
3 -w

(s)
1 are aligned based

on word alignments. To generate output λ
(t)
2 , linguistic features w

(t)
2 and p

(t)
2 , and

the previous output λ
(t)
1 , the decoder takes encoded h1 from the encoder output,

because word pair w
(s)
1 -w

(t)
2 is aligned. For unaligned words, we use zero vectors

as the emphasis representation vectors.

We propose 2 decoders as follows:

� LSTM emph: The model directly predicts target emphasis sequence λ(t).

� LSTM diff : The output of the model is considered as the difference from

the input emphasis level. The target emphasis level of the j-th word is

calculated by, λ
(t)
j = f(x(s)) + λ

(s)
i , where the model gets “attention” from

word w
(s)
i .
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The intuition behind the LSTM diff is an intention to put stronger weight on

the corresponding source-language emphasis when predicting target emphasis.

Figure 4.4. Training procedure for the hard-attentional model.

4.4. Joint Words and Emphasis Translation

4.4.1 Limitation of Complex Translation Pipeline

To translate emphasis, the translation pipeline requires ES and ET components

in addition to the S2ST system. It is now very complex with 5 components, and

6 internal dependencies (represents by black arrows) (Fig. 4.5). All downstream

components have to wait for upstream outputs, resulting in large translation de-

lays. Moreover, each component uses very different techniques, causing difficulties

to perform joint training and decoding.

Even though the hard-attention seq-to-seq model solves the problems of the

CRF-based, the problem with a complex translation pipeline remains. In this

section, we propose a joint translation framework based on an attentional NMT

that simultaneously combines MT and ET to translate words and emphasis at

the same time. Our approach is also based on seq-to-seq approaches as the hard-

attention approach. The difference is that we do not require external MT or

word alignment models anymore. All components are combined into a single

joint translation model, allowing us to perform joint optimization and inference.
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Figure 4.5. Existing emphasis speech translation model that consists of many

separate components and dependencies. It also requires emphasis quantization

(Q) before the translation.

The major difficulty when integrating emphasis with word translation is that

the amount of text data usually overwhelms the amount of emphasis data. This

is because the emphasis data are derived from parallel emphasized speech that is

much harder to collect than parallel text data, which can be massively collected

by crawling websites [60].

4.4.2 Overview

Figure 4.6. Proposed joint model simplifies translation pipeline and can jointly

translate words and emphasis with one-word delay.

We define the joint translation model as follows. Given a source language

word and an emphasis sequence are denoted as W (s) and e(s), respectively. The

model predicts one target word w(t) at a time followed by a prediction of its

emphasis weight e(t). Next, we detail how the encoder and decoder handle both

words and emphasis weights.

41



4.4.3 Encoder with emphasis weights

One way to embed emphasis weights into the encoder is to concatenate them with

word representation to form an input vector [w
(s)
i , e

(s)
i ] of the encoder (Emp-Enc)

and compute the hidden unit:

h
(s)
i = enc([w

(s)
i , e

(s)
i ]). (4.16)

By doing this, we ensure that the emphasis weights are also encoded with

words. However, since the effect of emphasis on MT remains unknown, we need

to explore alternative ways to incorporate emphasis into the encoder to analyze

such an effect. Therefore, we propose adding emphasis after encoding words

(SkipEnc) as follows:

h
(s)
i = [enc(w

(s)
i ), e

(s)
i ] (4.17)

The idea of SkipEnc is that if emphasis weights negatively affect machine

translation, adding them after the encoder might weaken the effect.

4.4.4 Decoder with emphasis weights

As illustrated in Fig. 4.7, the decoder has two components. A word prediction

layer follows the standard NMT, and emphasis prediction layer W e that takes

input is the combined vector of the predicted word and the decoder hidden acti-

vation as follows:

e
(t)
i = W e([h̃

(t)

i , w
(t)
i ]). (4.18)

However, as described above, the lack of emphasis data compared with the

text data might saturate the effect of the source emphasis when going through

many hidden layers. To overcome this problem, we utilize residual connection

in the way that the source emphasis weight is also used when predicting target

emphasis weights (Fig. 4.7),

e
(t)
i = W e([h̃

(t)

i , w
(t)
i ]) + e

(s)
id(ai)

, (4.19)

where function id(ai) returns the index of the largest value of weighted vector ai

that indicates the source aligned word.
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Figure 4.7. Joint word-emphasis translation framework with word dependencies

and residual connection.

4.4.5 Training procedure

To train our model, we utilize two objective functions, cross entropy (CE) for

word prediction and mean square error (MSE) for emphasis prediction, because

the CE function greatly outperforms MSE with discrete labels, which is the case of

word prediction. Since emphasis weights are continuous, the CE function cannot

be utilized as the objective function for emphasis prediction.

The training algorithm is standard back propagation through time (BPTT)

in which the errors from the machine and emphasis translations are sequentially

back–propagated. Note that the errors are not joint because their scales are

different.

4.5. Experiments

In our experiment, we first evaluated the effectiveness of using continuous em-

phasis level in a translation model and the ability to handle the long-term depen-

dencies of the proposed hard-attentional seq-to-seq model against the previous

CRF-based approach.
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Regarding the evaluation of the joint translation model, since our proposed

model is our first attempt, to the best of our knowledge, for integrating emphasis

and word features in a single model, analysis must be conducted on the effect

of emphasis on the standard MT translation model (Section 4.5.6). This critical

step not only shows the effect of emphasis as a feature, but also provides some

vital cues for optimally joining ET and MT.

Moreover, to further reduce the complexity of the input features and network

structure, we also evaluated the effect of PoS tags on the ET and MT models

(Section 4.5.7). Do et al. [57] argued that PoS tags are crucial features that can

boost the ET performance by 4% F -measure. However, it creates another depen-

dency for the translation model. On the other hand, the seq-to-seq translation

model is capable of not only learn how to translate but also be able to learn the

semantic meaning of words, and since the semantic meaning are closely related

to syntactic meaning (PoS tags) [61], we expect that it can avoid the need of the

PoS tag feature.

Finally, based on the analysis result, we conduct experiments with the joint

translation model in comparison with both hard-attention and CRF-based ap-

proaches (Section 4.5.8).

4.5.1 Experimental setup

Corpus

The corpus consists of emphasis and machine translation data. The former con-

tain 966 parallel English and Japanese utterances [62]. In each language, at

least one of the content words in the sentence is emphasized, and the number of

emphasized words is identical between languages. The number of speakers is 8,

including 3 native English (En{1,2,3}) and 5 native Japanese (Ja{1,2,3,4,5}) speakers.

To create training and testing data for our emphasis translation evaluation,

we divided 966 utterances of each speaker into 2 sets of 866 and 100 samples

such that the same sentences are used for all speakers. We then paired the 866

utterances of each English speaker with those of all 5 Japanese speakers, resulting

in 4330 (866 ∗ 5) training, and 100 testing samples for each English speaker. The

testing data consist of 157 emphasized words, in which 30 exist in the training
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data and 127 do not.

Regarding to the machine translation data, we utilized 2 sets, the BTEC and

BTEC+TED corpora, which contain ∼450k and ∼670k parallel sentences, re-

spectively. We created 2 training MT datasets to evaluate the effectiveness of the

emphasis information on the MT task with more varieties of testing conditions.

The overall data used for experiments is shown in Table. 4.2

Table 4.2. Experimental data detail.

ET training data 4330 samples

MT training data 450k samples (BTEC) and 670k (BTEC+TED)

ET evaluation data 300 samples

MT evaluation data 5000 samples

Emphasis translation procedure & measurement

In this paper, to evaluate the performance of the emphasis translation in isolation,

we assumed that the MT system produces 100% correct translation outputs.

Word alignments

To measure the emphasis translation accuracy, we first performed emphasis

translation to derive the target emphasis sequences and then measured its ac-

curacy in the target language both objectively or subjectively (Fig. 4.8). In the

objective evaluation, the target emphasis values are classified as “emphasized” or

“not emphasized” using a threshold of 0.51 and compared them with true values.

In the subjective evaluation, we first synthesized the audio from the translated

emphasis sequences, and gave the output audio to 7 Japanese native listeners

to predict the emphasized words2. In both evaluations, we calculated the F -

measure, which ranged from 0 to 100 representing how accurately the system

preserved emphasis in the target language.

1This has been reported in the previous work [18] as having the best performance to classify

emphasized and normal words.
2There is no constraint on how emphasized words are expressed, it is up to the listeners to

make a binary decision on whether a word is emphasized.
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Figure 4.8. Example of the emphasis translation procedure and measurement

methods.

CRFs

In the CRF model, the word-level emphasis was quantized to the closest {0,
0.3, 0.6, 0.9}3, the input features are words, PoS tags, and PoS contexts in

the target language side. The model directly predicts the target side emphasis

sequence. This setting achieved the best performance compared to other features

combinations.

Hard-attentional model

The encoder: The encoder input consists of words, PoS tags, and emphasis

levels. The input layer has 138 dimensions including 100 word embeddings,

37 one-hot PoS tags, and the emphasis levels. The hidden layer has 100

dimensions.

The decoder: The input gate consists of 100 word embedding dimensions

and 17 one-hot PoS dimensions. The attentional vector taken from the

encoder was added to the input gate’s output. The input words and PoS

3The buckets yield the best performance among other buckets
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are also respectively converted into word-embedding and one-hot vectors.

The word embeddings for both the encoder and decoder were pre-trained using

the BTEC travel conversation corpus [63] using word2vec toolkit [58].

Joint translation model

Our encoder and decoder models have 1 layer (unless stated otherwise), 512

cells, and 512-dimensional word embeddings. We trained for a maximum of 20

epochs using the RMSprop algorithm [51]. Emphasis prediction layer W e was

frozen when trained with fake emphasis data to avoid learning from unrealistic

emphasis weights.

When trained with text data, the learning rate was set to 1e − 4 and 5e − 5

when trained with emphasis data. We employed an early stop learning rate

schedule and reduced the learning by a factor of 2 whenever loss increased on the

development set and stopped the training when the learning rate fell below 1e-5.

Our mini-batches were 128 and 10 for the word translation and the emphasis

translation task, respectively. The batches were shuffled before every training

epoch.

4.5.2 Pause prediction evaluation

In this experiment, we evaluate the performance of pause prediction models based

on CRFs. 4 classes were used, they are “none”, “before”, “after”, and “both

sides”.

We evaluate the performance of the CRF-based pause prediction model using

different combination of input features, which includes words, part-of-speech tags,

word-level emphasis degree, and information of preceding and succeeding units.

The measurement metric is F -measure, which is the harmonic mean of precision

and recall. The result is shown in Table 4.3.

First, by comparing the 1st line with the 2nd and 3rd line. We can see that em-

phasis information is important for pause prediction, improving 3% F -measure.

Second, the last line that shows the input feature without context information

has lower accuracy compared to the 1st line, which has context information, indi-
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Table 4.3. Pause prediction performance using different combination of input

features. “ctx” denotes context information of a preceding and succeeding units.

Emph.Emph.

ctx.

Word Word

ctx.

Tag Tag

ctx.

F -

measure

� � � � � � 88.76

� � � � 85.38

� � 84.81

� � � 85.71

cating that the context information is also very important because it gives more

information for pause prediction.

4.5.3 Emphasis translation with pause evaluation

In the final experiment, we evaluate the S2S translation system integrating with

the CRF-based pause prediction model. Four systems were:

No-emphasis : A speech translation system without emphasis translation as

described in [38].

Baseline : An emphasis translation system (CRF-based) without pause predic-

tion as described in [38].

+Pause : The baseline system with the CRF-based pause prediction model.

Natural : Natural speech by native Japanese speaker.

First, we synthesize audios from each system. Then, we asked 6 native

Japanese listeners to listen to the synthesized audio and identify the emphasized

word. Finally, we score each system with F -measure. In addition, we perform

an objective evaluation where the emphasized word is detected by an emphasis

threshold of 0.54 yielding 91.6% F -measure. Note that it is not possible that the

subjective result is better than the objective result, because there is a chance

that text-to-speech systems make mistakes in synthesizing emphasized audios.

The result is shown in Fig. 4.9.

4This value is an optimized value that has been tested in [38].
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As reported in [38], the baseline system outperforms No-emphasis system in

conveying emphasis across languages. However, it is still 4% lower accuracy than

the objective evaluation. By integrating the pause prediction model, we gain

2% F -measure, which is closer to the objective result. The result indicates that

pauses are an important type of information that helps listeners perceive the

focus of speech better, and also prove our conjecture that pause might be used

to indicate that upcoming words are important.

Figure 4.9. Subjective evaluation of emphasis translation with pause insertion.

4.5.4 Hard-attentional models: objective evaluation

We performed a preliminary experiment using the same corpus as in a previ-

ous work [18] with 916 training samples and 50 testing samples. The results

showed that our proposed method achieved a 92.6% F -measure, which exceeds

the previous work by 1%. Although the dataset was too small to conclude that

the proposed method is better than CRFs by such a small margin, it demon-

strates that the proposed method performs comparably with the previous work

on the same corpus. To make the result more reliable, we conducted larger scale

experiments with the dataset described in the Section 4.5.1.

Fig. 4.10 shows the objective F -measure for emphasis prediction on this larger

amount of data. In all 3 test sets and on average, the proposed methods outper-

formed the CRFs. According to the bootstrap resampling significance test [64],
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Figure 4.10. Objective emphasis prediction of hard-attentional enc-dec with

LSTM diff and LSTM emph architectures.

both results are significant at the p < 0.01 level. On the other hand, the dif-

ference between LSTM diff and LSTM emph was not significant, demonstrating

that the LSTM model can learn emphasis level differences between aligned words

without explicitly defining them in the equations.

Furthermore, we scrutinized the advantage of the proposed model with respect

to using continuous variables. If they are useful, we expect that the emphasis val-

ues in the middle of the range will be modeled better by the proposed method. To

test this hypothesis, we split the input emphasis levels into 3 sets based on the em-

phasis level of the word: < 0.3, 0.3–0.6, > 0.6. Then we calculated F -measure for

the CRFs and LSTM emph on individual sets5. The result in Table 4.4 indicates

that both systems have equivalent performance when a word is considered normal

or emphasized (emphasis levels below 0.3 or over 0.6), but when the emphasis

levels fall between 0.3-0.6, LSTM emph outperformed the CRFs. This demon-

strates the limitation of the CRFs, which require emphasis level quantization to

handle continuous variables, but LSTMs do not.

5Because the accuracies of LSTM diff and LSTM emph are similar, below we only show the

results of CRFs and LSTM emph.
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Table 4.4. F -measure for CRF and LSTM emph emphasis translation on different

input emphasis levels.

<0.3 0.3–0.6 >0.6

CRF LSTM CRF LSTM CRF LSTM

88.05 87.69 70.85 81.41 92.53 92.75

4.5.5 Hard-attentional models: subjective evaluation

Finally, we performed a subjective evaluation to verify whether human listeners

can perceive the same improvement between CRFs and LSTM emph as in the

objective evaluation. We used the “En1” test set for this evaluation.

We obtained a result of 83.0% for LSTM emph and 81.0% for CRFs indicating

that humans perceived a slightly smaller improvement compared to the objective

result. Moreover, the CRF system’s performance dropped with a smaller mar-

gin (3.70%) than the proposed method (5.82%). The reason is because in the

LSTM emph approach, 268 emphasized words were recognized correctly in the

objective evaluation, but 14 of them having emphasis levels fall between 0.5-0.8

are mis-recognized by human listeners while this does not happen in the CRF

approach since these emphasis levels are just slightly higher than the threshold,

leading to slightly emphasized synthetic speech that is hard to perceive by human

listeners. In the CRF approach, the emphasis levels are quantized into buckets of

{0, 0.3, 0.6, 0.9, . . . }, so when a word is considered as emphasized (larger than

the threshold 0.5), the distance to the threshold is usually large.

4.5.6 Effect of using emphasis as additional features on

standard NMT systems

Even though previous works translated emphasis weights separately from NMT,

no analysis has addressed whether emphasis weights in NMT have a positive or

negative effect. Such analysis, however, is important before integrating empha-

sis translation into NMTs. To address ths oversight, we explored the effect of

emphasis as an input feature on machine translation performance.

We kept the same decoder structure like standard NMT systems so that no em-
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Figure 4.11. Effect of emphasis on standard NMT systems. The solid and dash

lines denote MT performance on development and the training sets, respectively.

phasis prediction is performed and evaluated two encoders with emphasis weights

added in different positions as described in Section 4.4.3. The baseline is the

standard NMT system without emphasis weights (Std. NMT). Fig. 4.11 shows

the result of the cross entropy loss of word prediction performance on the train-

ing and development sets. The loss is higher in both approaches (SkipEnc and

Emp-Enc) than Std. NMT, indicating that emphasis did not improve the NMT

performance. We hypothesize that such a negative effect is due to the fact that

emphasis weights are paralinguistic while NMT is translating linguistic informa-

tion. Only using emphasis weights as an additional feature without translating

is insufficient for the model to learn anything useful from emphasis.

Although the NMT performance was degraded when using emphasis weight

features, SkipEnc has a minimal effect compared with Emp-Enc. This is because

in SkipEnc, the encoder avoids excessive influence from the negative effect of

the faked emphasis weights; therefore, we can preserve the performance of the

standard NMT. The rest of our experiments used the SkipEnc model.
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4.5.7 Joint translation models: Effect of PoS tags on ET

and MT models

Figure 4.12 shows the performance of the ET model using the EmpEnc join

translation approach with and without the PoS tag feature. With PoS tags, the

model converges faster and provides better performance in the first 10 iterations.

But both systems eventually converge to a similar point when we train them for

15 iterations. We also observed the same tendency in the MT task (Fig. 4.13).

The result indicates that PoS tags still help the translation model, but if we train

it on a sufficient amount of iterations, its help is minimalized. We hypothesize

that this is because the model can learn semantic meaning of a word that is

similar to what the PoS tags represent.

Figure 4.12. ET performance in joint translation models on a development set

with/without PoS tags.

4.5.8 Joint translation models: Emphasis translation per-

formance

From the result of the above sections, we conducted the following experiments

using SkipEnc architecture without PoS tag features and completely trained the

model for both emphasis and word prediction. Fig. 4.14 shows the F -measure,
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Figure 4.13. MT performance in joint translation models with/without PoS tags.

precision, and recall for emphasis prediction using the SkipEnc encoder with

baseline and residual decoders.

Looking at the F -measure, the residual decoder outperformed the baseline

decoder by a 2.7% F -mesure. The baseline decoder’s precision, however, is higher

than of the residual one, indicating that the residual connection makes more

mistakes that predict high emphasis weights for normal words. Similarly, the high

score for the residual decoder’s recall indicates that it preserves more emphasized

words than the baseline system.

The contrastive precision and recall performance of the two systems indicates

that better performance can be gained by combining them. In the next section, we

describe our combination technique and compare its result with previous works.

4.5.9 Joint translation models: model combination for em-

phasis translation

The model combination works as follows. First, we performed emphasis transla-

tion on the development set and calculated the precision and recall scores. Then,

for content words, we selected the emphasis weights predicted from the system

with higher recall, and for the non-content words, we selected emphasis weights

with lower recall.
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Figure 4.14. Emphasis translation performance in joint translation model

We also performed emphasis translation using previous approaches based on

conditional random fields (CRFs) [18] and LSTM hard-attention models [65]. The

input features for these approaches are words and emphasis weights that resemble

the proposed approach. The result is shown in Fig. 4.15. Compared with CRFs,

our proposed approaches perform bettered with a ∼5% F -measure and have a

closed performance with the LSTM hard-attention approach with a ∼2% lower

F -measure.

The result matches our expectation because both the CRFs and LSTM hard-

attention approaches use ground-truth one-to-one word alignments and have in-

dependent words and emphasis translation models. On the other hand, our pro-

posed approaches do not require word alignment models and can translate words

and emphasis twice as fast as hard-attention models.

4.5.10 Joint translation models: machine translation per-

formance

We evaluated the machine translation performance with various depths of hidden

layers. The baseline system is the standard NMT without emphasis weights used

in both the encoder and decoder. As shown in Table 4.5, with hidden layer depths

of 1 and 2, the performance different of the proposed approach and the baseline

is negligible, indicating that optimizing the model with emphasis weights can

compensate for the negative effect of emphasis found in Section 4.5.6.

With a hidden layer depth of 3, all of the models seem to be over-fitted with

the training samples, resulting in the loss of performance. However, interest-
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Figure 4.15. Comparison of emphasis translation performance of proposed and

previous approaches. Graph also shows differences in terms of translation archi-

tecture (Arch.), word alignment requirement (Align.), and the translation delay

(Delay).
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ingly, the proposed approaches have smaller drops in performance. Specifically,

the SkipEnc-Residual approach only dropped ∼1% of BLEU, while the baseline

system without emphasis weights dropped ∼3% of BLEU.

We hypothesize that emphasis weights work as regulation parameters that

help preventing over-fitting. In particular, they might help to enhance the atten-

tion vectors during the decoding process. The intuition is that a pair of content

words in the source and target languages that have the same meaning are often

also having the high values of emphasis (this is by the design of the corpus). To

support this hypothesis, we conducted an analysis on the content words between

references,the result is shown in Figure. 4.16. As we can see, the NMT system

trained with emphasis (red boxes) have closer number of content words to the

references compared with the one trained without emphasis.

Table 4.5. Machine translation performance in joint translation model. Various

depths of hidden layers denoted as d(1,2,3) were evaluated.

System BLEU

Baseline (d1) 27.67

SkipEnc-Base (d1) 27.25

SkipEnc-Residual (d1) 27.19

Baseline (d2) 27.44

SkipEnc-Base (d2) 27.70

SkipEnc-Residual (d2) 27.72

Baseline (d3) 23.68

SkipEnc-Base (d3) 25.41

SkipEnc-Residual (d3) 26.36

4.6. Discussion

In this chapter, we proposed methods to accurately translate emphasis, and re-

duce translation complexity. Unlike previous work where emphasis is considered

to be discrete labels and has difficulty handling long-term dependencies, our pro-

posed hard-attention seq-to-seq model can solve both problems in a single model
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Figure 4.16. Content words counts comparison between references and hypothe-

ses. The NMT system trained with emphasis (red boxes) have closer number of

content words to the references compared with the one trained without empha-

sis. This give a hint that emphasis help to enhance the attention vectors between

content words.

by utilizing the LSTM-based encoder-decoder that can capture long-term depen-

dencies and handle continuous emphasis in its objective function. The evaluation

on emphasis translation task demonstrates that our model can translate emphasis

significantly better than previous work.

With regards to effect emphasis and PoS tags on a machine translation task,

we discovered that emphasis does not help standard MT systems if it is simply

used as an additional feature. Experiments with PoS tags also showed that it

helps the model converge faster, but it does not help improve the accuracy if

the model is well-trained. Another important outcome of our result is that our

proposed model can learn good features from words and emphasis without PoS

tag dependencies.

Our work on the joint translation of words and emphasis demonstrated that

our proposed joint translation model can accurately translate emphasis and words

with one-word delay, but the previous work requires a full-sentence delay. The

model significantly reduced the complexity by removing word alignments and PoS

tag features. We also found that emphasis can help MT performance prevent
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over-fitting.

Future work will integrate ES and ASR to completely remove any dependen-

cies introduced by adding emphasis translation to standard S2ST systems. Joint

training the whole system is another very interesting topic. Thanks to the seq-

to-seq model, we can apply it to all components to seamlessly integrate them into

a joint translation model. In addition, recent works on speech recognition have

shown that TDNN is comparable (or even better in certain cases) with LSTM.

Integrating these models into emphasis estimation and translation will further

reduce the model complexity and potentially speed up the translation pipeline.
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Chapter 5

Translation of Emphasis Acoustic

and Linguistic Features

Previous sections have described emphasis speech translation systems taking into

account acoustic features. However, their limitation is that they are oblivious

to the emphasis-to-text translation scenario (linguistic features), where emphasis

can be preserved in the text form in the target language instead of speech.

An example of 2 ways emphasis translation is shown in Fig. 5.1 where the

source language speaker expressed a very strong feeling in the word “atsui”,

which means hot. One possible way to translate such information is translating

the acoustic information of the word “atsui” to the word “hot”, or even better,

adding the word “totemo” which means “very” to express the strong feeling. This

is the situation where the system takes into account linguistic features.

To model such E-S2ST systems, it is important to understand how emphasis is

expressed in both text and speech. However, most of studies related to emphasis

analyses and modeling focus on only either speech or text. Su [66] and Bennett

et al. [67] conducted studies on the use of different intensifiers, while the works

in [68] and [69] used speech corpora to assess emotion and personality. Most of

emphasis speech corpora also contains emphasis expressed in binary values only

[62, 36, 14]. This is the main reason for the lack of emphasis analyses with both

text and speech.

In an attempt to tackle the problem, this section presents an effort to design a

text corpus that contains various emphasis levels manually annotated by humans.
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Speech data is also recorded by participants to reflect the same emphasis levels as

the perceived in the text. The corpus is later used to conduct human evaluations

where we evaluate their perception of different levels of emphasis in both speech

and text. We are particularly interested in the ambiguities of the boundaries

between these levels. In addition, we also evaluate whether participants can

perceive the same emphasis level across text and speech.

Figure 5.1. An example illustrating various ways to translate emphasis informa-

tion from one language to another.

5.1. Emphasis in Text

Emphasis in text (a.k.a intensities) is manifested by using intensifiers [70, 71]. For

instance, the sentence “it is hot today,” does not contain any other information

rather than the temperature. However, if we use adverbs to modify the meaning

of the word “hot”, for example, “it is very hot today”, then readers can perceive

not only temperature information but also the feeling of the writer. These adverbs

are also known as intensifiers used to scale the meaning of a sentence upwards or

downwards in term of degrees of emphasis [72]. Su [66] conducted experiments on

the practical use and the semantic meaning of the 4 commons intensifiers including

quite, pretty, rather, and fairly. While Ito et al. [73] examined intensifiers in a

corpus from a socially and generationally stratified community.

According to Kirk [70], intensifiers are classified into 3 categories including

“doubtful” (using diminisher adverbs such as slightly, a bit), “strong” (using

moderato words such as quite), and “very strong” (using booster words such as

extremely). Examples are shown in Table 5.1. The intensifiers are often used

to modified the meaning of nouns, verbs, and adjectives with one condition that
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those words must be gradable or be measurable in terms of quantity [72, 74]. For

example, words such as “hot”, “cold”, “hurt” are gradable while “I”, “you”, or

“house” are non-gradable and cannot be emphasized.

Table 5.1. Examples of different level of emphasis in text using intensifiers.

Level Example sentence

Doubtful It is a little bit hot

Neutral It is hot

Strong It is quite hot

Very strong It is extremely hot

Table 5.2. Examples of emphasis expressed in text form

Level Example Perception

Doubtful This is a tiny bit unreasonable. Doubtful

Yes, it has shown a mildly remarkable

increase in population during the last

ten years

Somewhat-strong

Somewhat-strong The doctor’s quick arrival brought

about her fairly speedy recovery.

Somewhat-strong

I was significantly distressed to be sus-

pected of wrongdoing when I was inno-

cent.

Very strong

Strong We are very busy and considerably

short-handed.

Strong

Super short man of about thirty. Very strong

Very strong I think the bill is perfectly accurate. Very strong

He is an unforgivably tight-lipped man. Strong

5.2. Emphasis in Speech

Unlike emphasis in the text that has been classified into 3 classes, studies of

emphasis in speech are often consider it as binary values and is produced at word-
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level [36, 35]. Many analyses and corpus collection have also been conducted to

find how humans produce emphasis by changing pitch, duration, and power. Do

et al. [62] has designed a corpus by asking speakers to utter an utterance with a

pre-defined word that is marked to be emphasized and all other words are marked

as neutral. The corpus is suitable to study emphasis in misheard situations where

only one word is emphasized. However, in normal conversation, emphasis might

be expressed in various degrees depending on how speakers want to express their

idea. It is also possible that not only the important word but also the adjacent

words should be emphasized to preserve the naturalness. Therefore, constraining

speakers to put emphasis on a single word does not reflect real conversation

scenarios.

5.3. Correlation of Intensity and Emphasis: A

Data-driven Approach

As described above, emphasis has been studied separately between text and

speech representations. However, it is crucial to understand humans perception

of emphasis in both forms in order to accurately translate it across languages.

To do that, we need a corpus with emphasis speech expressed in the same way

in both text and speech.

5.3.1 Text design

The text data is constructed from a large amount of sentences. We first perform

part-of-speech tagging to find sentences with at least one adjective. In this paper,

we focus on adjectives because it is easier to find gradable adjectives than nouns

or verbs. After filters out sentences without adjectives, we manually select a set

of 1050 sentences for annotators to create their emphasized version.

As described in the previous section that 3 levels of emphasis in text including

“doubtful”, “strong” and “very strong”. However, because the emphasis levels in

speech have not defined yet, it is possible that in speech emphasis can be expressed

at finer levels. Therefore, we added another level called “somewhat-strong” that

is a bit stronger than neutral but less than “strong” levels.
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To created emphasized text sentences, annotators are asked intensifying the

original sentence to a certain level. We also ask them to be creative and use as

many as possible intensifiers to produce more varieties of emphasis.

5.3.2 Audio recording

Similar to the text data collection, speakers need to record audio of the same

utterance but with different emphasis expressed on a marked word. However,

unlike the text collection, the speakers do not know which emphasis level they

need to express, this is to mitigate any bias that speaker will be forced to expressed

exactly the same emphasis degrees as in text. They are instead given a pair of

text sentences including an original sentence and its emphasized version, and are

instructed to figure out the emphasis level from the emphasized text and utter

the original sentence with the same emphasis level they perceived (as illustrated

in Fig. 5.2).

Figure 5.2. An example of audio recording without pre-defined emphasis levels.

The reason why we asked speakers to utter the original instead of the empha-

sized sentence is because we want human perception of emphasis on speech will

not be influenced by text. This is important because if emphasis is expressed in

both text and audio forms in the same sentence, humans perception will be af-

fected by both, leading to the difficulties in analyzing the correlation of emphasis

in text and speech.
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5.3.3 Experiments

The corpus

We have collected 1050 original (neutral emphasis level) and 4200 emphasized

(1050 x 4 levels) English sentences annotated by a native English speaker. A total

of 7750 audio files expressing different emphasis degrees of the same sentence have

been recorded by 2 native English speakers. This corpus is used for the following

emphasis perception evaluations in text and speech.

Additionally, we have also collected Japanese translated version of the 5250

English sentences for the purpose of analyzing emphasis linguistic features across

languages.

Human Perception Evaluation Approach

To analyze the change of acoustic features when humans produce different empha-

sis levels, we first perform automatic audio-text alignment to get word boundaries

information. The, we calculate acoustic features including F0, duration, power,

and pauses used before and after important words.

Then, to evaluate human perception on emphasis expressed in text and audio,

we conducted three crowded-source evaluation tasks as follows,

� The audio task: only audios with different emphasis levels are given to

participants. The participants, then, select an emphasis level that they

perceived in the audio. The goal of this experiment is to find out to what

extent human can correctly perceive emphasis levels and also to investigate

the emphasis perception ambiguities.

� The text task: the task description and goal are similar to the audio task

except we only give texts with different emphasis levels to participants.

� The audio & text task: in this task, we give participants both audio and text

and they will decide whether or not they can perceive the same emphasis

level. We hypothesize that when the same emphasis level between speech

and text is given, participants can perceive the similarity. However, there

might be also ambiguities among different emphasis levels as well.
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We utilized the crowdflower platform to run our crowded-source evaluation,

participants are selected from English speaking countries and with a minimum

quality level of 21. All results presented in the following subsections are calculated

using samples that have a confidence score equal or higher than 0.62

With regards to the instruction of each task, we gave to the participants the

same guideline for both the audio task and text task with a definition of 5 emphasis

levels and their audio and text examples, respectively. In the audio & text task,

we did not give participants examples of the same or different emphasis in audio

and text. Instead, we gave them separate examples as in the audio task and text

task. By doing this, participants will have some knowledge of emphasis in audio

and text separately (the purpose is to mitigate any bias) and it is up to them to

figure out what is similar and different emphasis levels in speech and text.

Figure 5.3. Human perception on emphasis with only text clues. The horizontal

axis shows the ground-truth labels while the bars show human perception for

each emphasis level.

1The quality level is given to participants based on their experience and performance in the

past. It ranges from 1 to 3 with 1 is the beginner and 3 is the advanced level.
2Each sentence is judged by 3 participants, a confidence score above 0.6 means at least 2

participants made the same decision.
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Acoustic Features Analyses

Figure 5.4. Duration distribution of the important words

Figures 5.4, 5.5, and 5.6 show the distribution of words F0, duration, and

power. As we can see, the duration and power distribution shows a very clear

distinction between emphasis levels. It is interesting to see the duration distri-

bution of the “doubtful” and “somewhat strong” levels look alike. The reason is

that when expressing hesitation as in the “doubtful” level, speakers often stretch

the duration of the word a bit longer than normal. This behavior is similar with

the “somewhat strong” level where we want to express something just a little bit

stronger than normal.

The F0 distributions are, however, similar between levels. This observation

surprised us as we expected to see differences here. By manually listening to

audio samples, we found that the F0 patterns are indeed different across levels

but at phrase or sentence levels, not very clear at the word level.

Figures 5.7 and 5.8 shows the preceding and succeeding pauses duration dis-

tributions. Generally speaking, to decrease or increase the emphasis level, there

is a short pause inserted on both side of a word, and its duration becomes longer
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Figure 5.5. Power distribution of the important words.

Figure 5.6. Average F0 distribution of the important words.
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as the emphasis level increased. The result also showed an interesting charac-

teristic of the “doubtful” level as its preceding pauses duration is exceptionally

much longer than other levels and its succeeding level. This long preceding pause

play an important role to express “doubtful” feeling as a signal that tell other

interlocutors in a conversation that next word (information) is uncertain.

Figure 5.7. Preceding Pauses Duration Distribution

Emphasis perception with text clues

The result in Fig. 5.3 showed that participants can perceive emphasis accurately

when doubtful, somewhat-strong and very strong emphasis texts are presented

(column 1, 2 and 4). In particular, 82.18% doubtful, 60.12% somewhat-strong

and 71.57% very strong texts are predicted correctly. The strong emphasis level

(column 3), however, poses more difficulties and ambiguities to participants as

they made more mistakes. We observed more than 50% strong texts are predicted

as somewhat-strong and very strong.

Table 5.2 shows examples of each emphasis level as well as the correct and

incorrect perception. As we can see, the second sentence of the somewhat-strong
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Figure 5.8. Succeeding Pauses Duration Distribution

and strong levels, where participants perception is very strong, are more likely a

very strong level. This observation indicates that the low prediction performance

on the strong level is not only due to human perception but also because of the

way annotators emphasize a neutral sentence. In other words, it is not always

possible to express a certain emphasis level by adding adverbs to the sentence.

Emphasis perception with audio clues

In this experiment, only audios with emphasis are presented to participants. The

data consists of 5000 audio files including 5 emphasis levels spoken by 2 native

English speakers. The result is shown in Fig. 5.9. As we can see, the ambiguity

when using audio to express emphasis is generally less than using text. In par-

ticular, 54.46% of strong and more than 70% of other emphasis levels audios are

perceived correctly by participants.

However, although the strong emphasis level is perceived better using audio

clues, there are still 46.54% are misrecognized, mostly to the adjacent levels

including somewhat strong and very strong.
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Figure 5.9. Human perception on emphasis with only audio clues

Figure 5.10. Human perception on emphasis with both audio and text clues
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Emphasis perception with both text and audio clues

In this experiment, we focus deeper on the correlation of emphasis perception in

text and audio. We gave participants pairs of audio and text and they decide

whether or not they perceive the same emphasis level.

To capture more information and varieties, we build the dataset to include

not only the same but also different emphasis levels between text and audio.

For example, the doubtful level text is paired with doubtful, neutral, somewhat

strong, strong and very strong audios, and so on. In total, we produced 5000

text-audio pairs spoken by 2 native speakers. The results are shown in Fig. 5.10

(a, b, c, d) with each sub-figure shows the result of one specific text type paired

with all other audio types. From Fig. 5.10 (a) we can see that participants can

perceive the same emphasis level most of the time when both doubtful text and

audios are given. We also observed the same tendency for other emphasis levels

as well in sub-figures b, c, and d. These observations support our hypothesis that

the same emphasis levels should be perceived in the same way.

Moreover, we are also interested in the emphasis perception ambiguities. In

Fig. 5.10 (a), we can see that participants not only perceive similar emphasis

level for doubtful texts and doubtful audios, but also think doubtful texts and

somewhat strong audios are quite similar. In particular, 58.70% of this pair are

perceived as similar. Looking back at the results in Fig. 5.9 (first column) and

Fig. 5.3 (third column) we hypothesize that this ambiguities is more likely due

to the difficulty in expressing doubtful text as participants classified 13.22% of

doubtful text as somewhat strong while only 8.74% of somewhat-strong audio are

missed classified as doubtful.

The sub-figures b and c also show ambiguities between somewhat strong and

strong emphasis levels. This is consistent with the result of the previous evalu-

ations. Moreover, participants also think the strong text and very strong audios

are similar (sub-figure d). We hypothesize that this is due to the number of em-

phasis levels in speech are too high that cause difficulties for speakers to produce

significant difference emphasis between strong and very strong levels. To mitigate

ambiguities, the number of emphasis levels in speech should also be 3 as in the

text.

72



5.4. Acoustic-to-linguistic emphasis translation

In this section, we describe our approach to translate emphasis acoustic features

into linguistic features within a language. As illustrated in Fig. 5.11, the pro-

posed system consists of 2 components, an acoustic emphasis classification, which

predict an emphasis level of given input speech; and an emphasis linguistic trans-

formation, which takes a “neutral” sentence and the predicted emphasis level to

generate an “emphasized” text sentence.

Figure 5.11. Emphasis acoustic-to-linguistic translation system.

5.4.1 Acoustic emphasis classification

The design of the acoustic emphasis classification depends on the result of the

analysis on how human produce and perceive emphasis different emphasis levels

described in Section 5.3.

We first focus on emphasis levels which have the least emphasis perception

and production ambiguities, which are “doubtful”, “somewhat strong”, and “very

strong”. As we can see in the power distribution of emphasis words shown in

Fig. 5.5, the “very strong” level is clearly distinguished from the “somewhat

strong” and “doubtful” levels. The preceding pause distribution shown in Fig. 5.7,

on the other hand, differentiates the “doubtful” from others. These analysis re-

sults gave us a crucial piece of information that just by using power and preceding

pause duration, we might be able to train a system that can accurately predict

emphasis levels given an input speech.

5.4.2 Emphasis linguistic transformation

The next step is to take the predicted emphasis level generated from the system

described above and a “neutral” text output from an ASR system to generate
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Figure 5.12. An example illustrating emphasis text transformation.
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an “emphasized” (or “intensified”) sentence. An example illustrating how the

method works is showed in Fig. 5.12.

The idea of intensifying a neutral text is to add modifiers to the sentence that

express the intensity of a certain emphasis level. The whole process is described

as follows,

� Modifier extraction: the first step is extracting a list of modifiers (ad-

verbs) with their corresponding emphasis classes. We do so by performing

part-of-speech tagging using the Stanford PoS tagger toolkit [75] and ex-

tracting words with the adverb PoS tag.

� Text generation: given an input sentence and a target emphasis level,

we generate all possible intensified sentences by adding modifiers before an

adjective word. The modifiers are taken from the list of the input target

emphasis level that is extracted in the previous step.

� Ngram scoring: the final step is to select the best sentence from the list of

all possible intensified sentences. We do so by using a pre-trained n-gram

model to calculate the perplexity of each sentence. Since the perplexity

score represent for the “realistic” of the sentence, we simply pick the one

with lowest perplexity.

5.4.3 Experiments

We conducted our experiments with the data collected that has been described in

section 5.3. To reduce the ambiguities discovered in the previous section, the ex-

periments are conducted with 3 emphasis levels including “doubtful”, “neutral”,

and “very-strong”.

With regards to emphasis classification task, we chose SVM to perform the

task. The reason is we have seen from the analyses in the section 5.3.3 that

power, word duration, and preceding pauses duration are pretty distinguish across

emphasis levels, this is a hint for us that the margin maximization algorithm of

SVM will perform good on this data set. While neural net based approaches can

also be used, it might not perform well with a limited amount of data that we

have collected.
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Emphasis classification performance

To evaluate the accuracy of the emphasis classification task, we calculated F-score

for each emphasis levels, which represent how accurate the system can predict the

level given input acoustic features. The result is showed in Figure 5.13. Overall,

the system perform pretty good with an average F-score of 87%. The very-strong

level is the most easy level to predict while the doubtful level seems to be more

difficult to handle.

Figure 5.13. Emphasis classification performance.

Emphasis text transformation evaluation

To evaluate how well the system can generate an intensified sentence given a

neutral sentence and the predicted emphasis level, we ran a crowded-source eval-

uation task where each participants read a pair of sentences, which includes a

generated and reference sentences, and decide if they perceive the same intensity

levels between them.

The number of evaluated pair of sentences are 100. We chose crowflower to run

the evaluation task with participants selected from English speaking countries.

The result is shown in Figure 5.14. As we can see, participants can perceive the

same emphasis levels most of the time (93%). The 7% of error mainly comes from

the error of the emphasis classification task.
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Figure 5.14. Emphasis text transformation performance. The result shown here

is the human perception of emphasis between a generated sentence and the cor-

responding reference sentence.

5.5. Discussion

In this chapter, we presented the first English corpus that contains emphasis in

both text and speech representation. Emphasis is expressed not with just binary

values but with various levels. We also conducted human emphasis perception on

the corpus to find out to what extent humans can clearly distinguish emphasis

levels and whether they can perceive the same emphasis level in both text and

speech. The results indicate that although humans can distinguish emphasis

levels most of the time, there is high ambiguities of the “somewhat-strong” and

“strong” emphasis levels in text, this supports the definition of 3 levels emphasis

in [70] instead of 4. The analysis on speech emphasis shows less ambiguities than

in text, indicating that it is easier for speakers to express emphasis in speech.

Analyses on emphasis with both text and speech clues show that humans can

perceive the same emphasis level between both representation, although there

are still ambiguities between the “somewhat-strong” and “strong” levels.

In future, we will extend the corpus to include other languages and utilize

it and the result found in this study to construct emphasis speech translation

systems that can translate emphasis in both speech and text representation. By
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doing so, we can handle a wider scenarios including low-resource languages where

it is not feasible to collect emphasized speech data or in lecture translation where

students might prefer to read instead of listen to audios.
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Chapter 6

Conclusion and Future Work

6.1. Conclusion

The work presented here has addressed a number of existing emphasis model-

ing and translation problems and has conducted the first attempt to study the

correlation of acoustic and linguistic features of emphasis considering human per-

ception.

� The proposed continuous emphasis level modeling technique has showed

the effectiveness in emphasis prediction and synthesis tasks. Specifically,

our approaches outperform existing works by 2-5% F -measure of emphasis

prediction and produce more natural synthetic speech. This improvement

is not only important for emphasis modeling, but also help to improve

the overall emphasis translation, because errors from this component will

be cascaded into all downstream components in the emphasis translation

system.

� With regards to emphasis translation, our proposed approaches based on

seq2seq techniques can handle continuous emphasis levels and be able to

jointly translate word and emphasis in a unified model. Moreover, the

approach also greatly simplify the translation pipeline while still preserve

the performance as in the previous complex translation model.

� The study on correlation of acoustic and linguistic features of emphasis
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has discovered the patterns on how different emphasis levels are expressed

with linguistic and acoustic features, as well as the ambiguities on human

perceived them. These clues are important to construct a translation system

that can flexibly translate emphasis expressed in different form.

6.2. Future work

Figure 6.1. The road map for emphasis translation of this study including what

has not been done (red boxes).

80



6.2.1 Combining emphasis estimation and speech recogni-

tion

Although our proposed joint translation model has combined machine and em-

phasis translation models into a single component, the emphasis estimation and

speech recognition are still separated. Recent studies on machine translation have

proposed approaches for real-time translation [76], which means, we can perform

translation of speech in real-time with partial ASR results. If we can also com-

bine emphasis estimation process and ASR together, we can not only further

simplify the translation pipeline, but also be able to translate emphasis speech in

real-time.

6.2.2 Emphasis translation considering both acoustic and

linguistic feature

This thesis has handled acoustic emphasis, or emphasis that is expressed by

changing acoustic features including power, duration, and F0. However, there is

another way to express the emphasis, that is changing the linguistic information.

For instance, adding adverbs words to emphasize the meaning of the utterances.

For instance, we can say “it is really hot today” instead of “it is hot today” to

emphasize the more intensified feeling about the weather’s temperature. By using

the linguistic emphasis, the translation model can express the emphasis in more

flexible ways.

6.2.3 Multi-speaker Emphasis Estimation

Although the approaches proposed in this work can translate emphasis across

languages, they are still speaker-dependent. That means, given an unknown

speaker, the error rate on emphasis estimation will be high, this error will also be

cascaded into all downstream components, degrading the whole system perfor-

mance. Developing a speaker-independent emphasis estimation system will allow

the translation system handles more realistic scenarios.
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6.2.4 Handling emphasis in natural conversation

The works presented in this thesis have handled emphasis used misheard scenar-

ios where people often exaggerate acoustic features of words or phrases in order to

express emphasis. However, in normal conversations, emphasis is also often used

to convey the most important information of an utterance. In such scenarios,

people do not intentionally exaggerate the word, but instead tend to use softer

acoustic features so that it is just enough to let other listeners perceive the infor-

mation while not affecting the naturalness of the sentence. It is also possible that

more than one word are emphasized within a single utterance. It is important

to take into account these use cases of emphasis to have an emphasis translation

system that can fulfilling user experiences in all scenarios.

6.2.5 Incorporating more paralinguistic information

The final goal of this study is to translate all aspects of paralinguistic information,

and it can not be completed without emotion, accent, and gender. Emotion is

a very interesting but also difficult to handle type of paralinguistic information.

The reason is the emotion can be expressed in very different way among people

and also across languages, cultures. It is also sometime even hard for human

to find out the emotion of the other in a conversation. Accent and gender are,

generally, easier to recognize than emotion. And if we can incorporate these

features into the translation system, user experiences can be taken to a new level

as target language listeners might feel that they are talking to the same source

language speaker.

6.2.6 Non-parallel data

Although the current system can preserve emphasis across languages, it still need

parallel data to train the system. The parallel data is required for all components

including ASR, MT, and TTS. This requirement leads to the problem of lack of

training data. On the other hand, many researches have been conducted on

utilizing non-parallel data to train the system and if we can incorporate such

studies, we can utilize a large amount of training data without spending resources

in collecting them.
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6.2.7 Emphasis on All Content Words

This study has focused on emphasis on adjectives as it is the most frequent word

that is emphasized among all other content words. However, it does not cover all

usage scenarios where nouns and verbs can be emphasized, too. It is necessary

to incorporate all content words in the translation system so that we can handle

a wider use cases.
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