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Implementation of Convolutional Networks on
Biomedical Images and its Connection to

Genomic Features∗

Antonio Victor Andrew Asuncion

Abstract

A number of advances involving convolutional neural network (CNN) architec-
tures have demonstrated that extracting morphological features from histological
images can be effective for classification of subtypes of various diseases, especially
cancer. On the other hand, varying types of gene expression or mutation data
have been a rich and ubiquitous resource for studies involving cancer prognosis,
survival, and others. In this study, we present a method for classifying transcrip-
tome subtypes of lung adenocarcinoma from slices of pathological images whose
features come from convolutional autoencoders pretrained on smaller images.

We also attempted to provide a stepping stone for whole slide image analysis
by performing classification and correlation analysis. Whole slide images were
processed based on features extracted from Google’s Inception architecture. A
classification was then implemented on the processed images. Furthermore, a
correlation between the image features and their corresponding gene expression
data were investigated.

Variants of autoencoders as building blocks of pretrained convolutional layers
of neural networks were implemented on histological images gathered from the
Cancer Genome Atlas database. From here, a sparse deep autoencoder was pro-
posed and applied to images of size 2048x2048. We applied this model for feature
extraction from pathological images of lung adenocarcinoma, which is comprised
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of three transcriptome subtypes. The sparse autoencoder network provided a
98.9% classification accuracy.

The second part of this study used features extracted from smaller images as
a starting point for whole slide image analysis. We use 512x512 tiles as input
for Google’s Inception architecture, whose output is a 2048-dimensional vector
for each tile. We applied dimension reduction to these vectors and correlated
them with RNA-Seq data. A linear model was then created to further associate
the features extracted from the aforementioned fully-connected layer to the gene
expression values and use it for inference and other analysis.

The results showed that the larger input image that covers a certain area of the
tissue is required to recognize transcriptome subtypes. This study exhibits the
potential of autoencoders as a feature extraction paradigm and paves the way for
a whole slide image analysis tool to predict molecular subtypes of tumors from
pathological features. The analysis following the results of this model serves as a
good starting point for outcome and prognostic predictions.

Keywords:

computer-aided diagnosis, convolutional neural networks, autoencoder, lung ade-
nocarcinoma, gene expression
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1 Introduction

1.1 Background of the Study

Machine learning continues to be a vital innovation used in several fields. Rapid
development of machine learning algorithms brings us a wide range of applications
for image recognition and classification. In particular, a significant advancement
of visual recognition using deep learning architectures has been shown by the
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [4], which has
served as a testbed for a few generations of large-scale image classification sys-
tems. A convolutional neural network (CNN) provides a promising architecture
that can extract features from given images automatically, optimize the manifold
of image space, and show great success in image classification and medical image
analysis [5, 6].

From a biology standpoint, these methods can be used for gene expression in-
terpolation and classification of several data sets. In recent years, a number of
advances involving CNN architectures have been developed and implemented for
computer-aided diagnosis [3]. These studies have demonstrated that extracting
morphological features from histological images can be effective for classification
of subtypes of various diseases, especially cancer. On the other hand, varying
types of gene expression or mutation data have been a rich and ubiquitous re-
source for studies involving cancer prognosis, survival, and others. Furthermore,
it has been an important instrument for image classification and inference as
of late. Image classification and analysis has been an important achievement
of computational systems, and in fact, it is still a growing, revolutionary field.
Specifically, being able to perform analysis on pathological images proves to be
vital for medicine and bioinformatics. Any histological image patch is rich in
content because of several components (cell type, organization, state and health,
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secretion). This can be analyzed manually by pathologists and biologists. (See
Fig. 1.1)

Figure 1.1: Stages of Human Lung Adenocarcinoma [1]

On the other hand, the potential of gene expression profiles as a source of rel-
evant information has already been well documented rich resource for predicting
outcome and treatment [7, 8]. This set of details, combined with other types of
data, like mutation, even allows for an even richer source of information [9]. With
the evolution of methods that extract image features, we now have the resources
for possible connecting information learned from images and information learned
from gene expression data.

1.2 Statement of the Problem

Image processing methods using deep neural networks are emerging very rapidly
and these architectures were developed for general image analysis such as photo
classification, face recognition, among others. However, analysis of biomedical
images requires a more specific viewpoint focusing extensively on their biological
features. So the first aim of this work is to analyze current algorithms for the
classification of biomedical images by extracting useful biological features using
the concept of deep neural networks, one of the classic tools used in machine
learning. Some of the aforementioned features include cell patterns that do not
always appear on general image classification but occurs commonly in the image
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of target organisms. Those features must be extracted effectively from the given
training data in order to classify and analyze the images efficiently. In this study,
we propose an application of CNNs for feature extraction and classification of
lung adenocarcinoma pathological images, and use the learned features for classi-
fication of large image data. Information gathered from these features were used
for the implementation of several experiments involving whole slide image anal-
ysis. These analyses involved not only classification but also an initial approach
to correlation with gene expression profiles. Specifically, our analysis involves
classification of whole slides based on tumor/normal labels, molecular subtypes,
among others. Moreover, we also want to identify how classification is arrived at.
The method proposed here took into consideration the features extracted from
several convolutional neural network architectures to determine some basis for
comparison.

Explicitly, the formulated algorithms were implemented on lung cancer patho-
logical images. These approaches use small images as input, usually less than
300px by 300 px. However, whole slide images gathered by The Cancer Genome
Atlas (TCGA) network are of a much larger magnitude. This study presents an
approach that transfers information learned from small input images to larger
input data. By applying unsupervised learning through autoencoders, we will be
able to extract features that are not heavily reliant on classification information.

Furthermore, we would like to explore the correlation between features ex-
tracted from whole slide images and their corresponding gene expression features.
We would like to determine if features extracted from images include information
about gene expression patterns, mutations, among others. So another aim of this
study is to establish a linear model to determine the correlation between the fea-
tures extracted from histological images through CNNs and their corresponding
gene expression data.

1.3 Significance of the Study

We want to understand the internal mechanisms of several variations of convolu-
tional neural network-based architectures. Specifically, we want to determine the
properties or characteristics emphasized by these networks by looking into the
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features extracted from the convolutional filters. In doing so, we may be able to
understand the underlying properties of biomedical images that will serve some
purpose in distinguishing these images from one another.

Whole slides are approximately 40000x40000 pixels large. Difficulties may arise
from analyzing a huge amount of data. Our method can serve as a blueprint for
whole slide image analysis, which gives a more comprehensive view of the image.
The final goal here is to initiate an approach that connects image features to
genomic features like RNA-Seq, mutation, among others. While genomic infor-
mation have been studied widely, studying histological images are still relatively
new. This study contributes to this currently evolving field by first implementing
CNN architectures involving whole slide images and by using information ob-
tained from those architectures for an initial correlation analysis with genomic
data.
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2 Review of Related Literature

2.1 Supervised Learning

Suppose we are given m training examples
(
�x(1), y(1)

)
,
(
�x(2), y(2)

)
,. . .,

(
�x(m), y(m)

)
,

where each �x(i) is an n-dimensional vector representing n features for the training
data, and y(i) is the corresponding output for each sample �x(i). Our goal is
to determine the correlation between the training input and output for either
inference or classification. Specifically, we will represent this correlation through
a function h. For this section, we choose a linear function for h such that our goal
is to find �θ = 〈θ0, θ1, . . . , θn〉 such that for an input vector �x = 〈1, x1, x2, . . . , xn〉,
we have

h�θ (�x) = θ0 + θ1x1 + · · · + θnxn, (2.1)

and h�θ minimizes the standard error function defined by

C
(
�θ

)
= 1

2

m∑
i=1

(
h�θ

(
x(i)

)
− y(i)

)2
. (2.2)

Remark 1. If we define x0 = 1, then we can even say that h�θ (�x) = �θT �x, where
�θT is the matrix transpose of the vector �θ.
Remark 2. Note that Equation Eq. (2.2) is a convex quadratic function, which
means that it will have a local extrema, which consequently is a global extrema.
Specifically, this extreme value will be a minimum.

2.1.1 Gradient Descent Approaches

Batch Gradient Descent

The general method that we will look at is called the batch gradient descent
algorithm.
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We will determine the values of each of the θj’s individually using the method
of steepest descent, or a gradient descent algorithm, whose goal is to minimize
C

(
�θ

)
.

Numerically, this means that we need to produce iterations of �θ such that we
can decrease ∂

∂θj

C
(
�θ

)
.

For the algorithm, we will make use of the notion of the learning rate.

Definition 3. The learning rate, usually denoted by α, is a parameter which
determines how much recent information will affect old information. If α = 0,
then new information will not affect old information. On the other hand, if α = 1,
then only the most recent information will be considered.

So if θ
(k)
j is the current iterate for the jth parameter, then

θ
(k+1)
j := θ

(k)
j − α

∂

∂θj

C
(
�θ

)
.

Here, α is the value of the predetermined learning rate. By convention, we use
α = 0.1.

If we follow the data as in Eq. (2.1) and Eq. (2.2), then for each j,

∂

∂θj

C
(
�θ

)
= ∂

∂θj

[
1
2

m∑
i=1

(
h�θ

(
x(i)

)
− y(i)

)2
]

=
m∑

i=1

1
2 · 2

(
h�θ

(
x(i)

)
− y(i)

) ∂

∂θj

(
θ0 + θ1x

(i)
1 + · · · + θjx

(i)
j + · · · + θnx(i)

n − y(i)
)

=
m∑

i=1

(
h�θ

(
x(i)

)
− y(i)

)
x

(i)
j .

This means that the update algorithm for θj, 0 ≤ j ≤ n, is given by

θ
(k+1)
j := θ

(k)
j − α

m∑
i=1

(
h�θ

(
x(i)

)
− y(i)

)
x

(i)
j . (2.3)

Numerically, we perform the following steps.

1. Provide a required tolerance level ε > 0, and a maximum number of itera-
tions.

2. If C
(
�θ

)
≤ ε, return �θ.
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3. Otherwise, for each j, perform Eq. (2.3) until the maximum number of
iterations is exceeded.

We can perform this algorithm until it converges, that is, if it reaches a value less
than some predetermined tolerance level, or until it achieves a preset number of
iterations, at which point, we say that θ

(k)
j diverges.

Stochastic Gradient Descent

Although the batch gradient descent algorithm generally converges to a minimum,
the computational cost is rather expensive because we have to go through all the
training data before we can update each of the parameters θj. An improvement
of this method is called the stochastic gradient descent algorithm, wherein
we perform the update algorithm after an occurrence of individual data. This
means that our update algorithm, for a specific data point

(
x

(i)
j , y(i)

)
, will just be

θ
(k+1)
j := θ

(k)
j − α

(
h�θ

(
x(i)

)
− y(i)

)
x

(i)
j . (2.4)

We are still following the batch gradient descent approach, but this time, we
follow these steps.

1. Provide a required tolerance level ε > 0, and a maximum number of itera-
tions.

2. If C
(
�θ

)
≤ ε, return �θ.

3. Otherwise, for each j:

a) for each m, perform Eq. (2.4)

b) If C
(
�θ

)
≤ ε, return �θ.

c) Execute until loop is finished.

4. Execute until number of iterations is exceeded.
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2.2 Neural Networks

Our goal here is to apply the concepts in the previous section and develop an al-
gorithm that will work on neural networks. A neural network (NN) is a statistical
model that simulates the movement of individual components, called neurons and
are used to determine a well-defined function h that will best fit the data.

So, much like in the previous section, suppose we are given m training data
points

(
�x(1), y(1)

)
,
(
�x(2), y(2)

)
, . . . ,

(
�x(m), y(m)

)
. This time, we specify the output

values y(i) to either be 0 or 1.
Suppose we have a model where each sample is represented by n features de-

noted by x1,x2,. . .,xn. As in the previous section, we let x0 = 1 be the intercept
term. As a consequence, if we have a specific input vector �x = 〈x1, x2 . . . , xn〉,
then the input of our function can be z = �θT �x = θ0 + θ1x1 + · · · + θnxn.

Remark 4. As a convention that will be used here, for a ∈ R and �v = {v1, v2, . . . , vn} ∈
Rn, we have 〈a,�v〉 = 〈a, v1, v2, . . . , vn〉.

Let the function h�θ (�x) be the nonlinear form of the hypothesis that will be
used for data-fitting, regression, and specifically, for our purposes, classification.

Conventionally, we can choose

f1 (x) = ex − e−x

ex + e−x
,

whose range is [−1, 1], or the sigmoid function defined by

f2 (x) = 1
1 + e−x

,

whose range is [0, 1].
f1 and f2 are examples of activation functions.
For our purpose, we use f (x) := f2 (x), since we want to have our training

output to be either 0 or 1.
This means that we can have

h�θ (�x) = f
(
�θT · 〈x0, �x〉

)
= 1

1 + exp
(
�θT · 〈x0, �x〉

) .
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Initially, the input can proceed directly to activation function, which means
we can just follow the algorithm as in the previous section. However, the main
advantage of utilizing NN is that we can have multiple layers of activation. That
is, instead of proceeding directly to the activation function, we can allow the
input to go through other layers, called hidden layers, as part of the process.
This converts the input into neurons that may be a more viable source of features
for analysis.

Let nl be defined to be the number of layers of the network. sl be the number
of neurons or nodes in layer l. Let a

(l)
i be the output value of unit i in layer l.

This means that, in the input layer, we have a
(1)
i = xi, and in the output layer,

we have a(nl) as the final output value of the network.
Consequently, we now have Θ =

{
Θ(1), Θ(2), . . . , Θ(nl−1)

}
as the set of param-

eters for the network, with each of the Θi the si+1 × si matrix representing the
connection between the input of layer i and the nodes of layer i+1. For example,
Θ(1)�x will be a s2-dimensional vector representing the input for that layer, except
that we retain x0 = 1 for this layer.

We still apply the cost function Eq. (2.2), but this time, incorporate a regular-
ization term that will decrease the magnitude of the weights, which consequently
prevents overfitting. We then have

C (Θ) = 1
2

m∑
i=1

(
hΘ

(
x(i)

)
− y(i)

)2
+ λ

2

nl−1∑
l=1

⎛
⎝sl+1∑

i=1

sl∑
j=1

Θ(l)
ij

⎞
⎠ . (2.5)

The goal is to determine Θ such that C (Θ) is a minimum.
We start with random values of Θ(l)

ij ∼ N (0, ε2). Conventionally, ε = 0.1 is
used.

2.3 Convolutional Neural Networks

Definition 5. Convolution describes the use of matrices (convolutional filters)
that can be passed through the image for feature extraction. For example, a
matrix C can be passed through the input such that if �x is the n-dimensional
input vector of the network, then the encoded images (H) is given by

H = Ck×n�x,
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where k is the desired output dimension. To reverse the process, we apply HT to
the encoded images. This process is called deconvolution.

Example 6. Consider the following diagram:

Input (3 layers)

⎡
⎣a

(1)
11 · · ·
... . . .

⎤
⎦

⎡
⎣a

(2)
11 · · ·
... . . .

⎤
⎦

⎡
⎣a

(3)
11 · · ·
... . . .

⎤
⎦

↙↓↘ ↙↓↘ ↙↓↘

Conv. (n layers)

⎡
⎣b

(1)
11 · · ·
... . . .

⎤
⎦ · · ·

⎡
⎣b

(i)
11 · · ·
... . . .

⎤
⎦ · · ·

⎡
⎣b

(n)
11 · · ·
... . . .

⎤
⎦

↘ ↓↘ ↙↓↘ ↙↓ ↙

Deconv. (3 layers)

⎡
⎣c

(1)
11 · · ·
... . . .

⎤
⎦

⎡
⎣c

(2)
11 · · ·
... . . .

⎤
⎦

⎡
⎣c

(3)
11 · · ·
... . . .

⎤
⎦

Definition 7. Pooling: method of combining regions of neurons into a single
layer, mainly used for size reduction, while keeping the important features.

• Max-pooling (standard)⎡
⎣a11 a12

a21 a22

⎤
⎦ =⇒ [max (a11, a12, a21, a22)]

• Mean-pooling ⎡
⎣a11 a12

a21 a22

⎤
⎦ =⇒

[
a11 + a12 + a21 + a22

4

]

To reverse the process, we perform unpooling.

⎡
⎣b11 b12

b21 b22

⎤
⎦ =⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b11

b11 b11

b12 b12

b12 b12

b21 b21

b21 b21

b22 b22

b22 b22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Remark 8. In general, the process would follow this diagram:
⎡
⎣a11 a12

a21 a22

⎤
⎦ Pooling=⇒ [a] Unpooling=⇒

⎡
⎣a a

a a

⎤
⎦

11



2.4 Autoencoders

An autoencoder is an unsupervised machine learning architecture that extracts
characteristic features from given inputs by learning a network which reproduces
input data from those features. Fig. 2.1 shows the basic design of the autoencoder
used in our model. The input data is scanned by a convolutional filter and down-
sampled by a max-pooling layer then passed on to an encoding layer. The output
here can then be used to generate the input data using the reversed network. The
total network is optimized to minimize the difference between input and output
data.

Original
Image

Convolution Pooling

Feature
extraction

Encoding Unpooling

Decoding

Deconvolution

Reconstructed
Image

Figure 2.1: Autoencoder model based on a convolutional neural network

To enhance the efficiency of feature extraction and information compression
in the autoencoder, we introduced a sparsity penalty. We compute information
entropy of the output of the encoding layer and add the penalty for the optimiza-
tion function (L) to minimize the effect of overfitting. The optimization function
is defined as follows:

L = R + λsS, (2.6)

where

R =
N∑
i

(
xoutput

i − xinput
i

)2
(2.7)

and

12



S =
∑

k = 1n
M∑

j=1

(
−rencode

j log rencode
j

)
. (2.8)

Here, rencode
j is the output intensity of filter j in the encoding layer relative their

total summation. N and M are the numbers of nodes in the input and encoding
layers, respectively, and λs is a weight constant.

Stacked autoencoders allow us to extract more complex image features with
higher-order structures, while some detail information will be lost in down-sampling.
It is worth noting that stacked autoencoders can be trained independently. That
is, the network of the first autoencoder can be fixed after training and left aside
when we train the network for the second optimizer. This reduces the number of
trainable parameters and required computation. Special types of autoencoders
have shown to be a good foundation for feature extraction [10]. In this study, a
method that incorporates pretraining of the autoencoder network similar to the
method by Hinton and Salakhutdinov [11] was proposed. Specifically, their pre-
training is composed of learning layers of restricted Boltzmann machines as a way
to efficiently fine-tune a network for reconstruction and classification purposes.

2.5 Reconstruction Independent Subspace
Analysis

Part of the goal of this work is to compare several variants of classifiers. One
specific network that will be used here is based on a specific type of autoencoder.
Le, et al. [12] presented a novel method for automated feature detection and
extraction of unlabeled image patches using a technique called reconstruction in-
dependent subspace analysis (RISA). We will look into incorporating said method
into our classification. Specifically, we will be looking at lung cancer images and
the main goal of the study is to perform analysis on the features gathered from
these images. There is a rising need for algorithms that can address the problems
discussed earlier. And previous work have recurring themes with regard to this.

1. Tumor Grading: segmentation is the answer. Pathologists can assess the
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situation, but it is rather difficult because of mixed grading. Many studies
now use segmentation to address the problem.

2. Region-based analysis is another commonality. The main feature detection
process involves defining color and texture features for different classifica-
tion methods.

2.5.1 Premise

Other than those mentioned above, there is a need for an algorithm that quan-
tifies big datasets quickly. In [12], the main concept is the use of reconstruction
independent subspace analysis (RISA). One of its main features is translation
invariance. That is, if the input data is translated by one or two pixels, the value
of the linear filters change, but the value of the feature that averages their values
will only change slowly. Some of the problems addressed are:

1. does it capture complex tumor signatures that are necessary for tumor
grading?

2. does it remain stable through multiple sets of testing and training data?

2.5.2 Approach

The main notion used is called Reconstruction Independent Subspace Analysis
(RISA).

Basically, RISA is an unsupervised learning algorithm. It is described as a two
layer network (including input) wherein the responses are nonlinear. Specifically,
we have square and square root nonlinear responses for the first and second layer,
respectively.

Two sets of parameters, W and V , are used for feature extraction. W is learned
in the conventional manner, while V is fixed and is used to represent the subspace
structure of the neurons in the first layer.

What is done is each of the hidden units in the second layer pools over a small
neighborhood of adjacent first layer units.
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Let �x(t) be defined as the tth input (out of a group of T ), each of which is an
n-dimensional feature vector. Let there be k neurons in Layer 1, and m neurons
in Layer 2.

As a consequence, we have W ∈ Rk×n, while V ∈ Rm×k.

Wm×k =

⎡
⎢⎢⎢⎢⎢⎢⎣

�wT
1

�wT
2
...

�wT
k

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

w11 w12 · · · w1n

w21 w22 · · · w2n

... . . . ...
wk1 wk2 · · · wkn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

On the other hand,

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

v11 v12 · · · v1k

v21 v22 · · · v2k

... . . . ...
vm1 vm2 · · · vmk

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Recall that we want our responses to be nonlinear. Specifically, in the first
layer, we want a square response, while in the second layer, we have a square root
response. This means that in Layer 1, if we define the response to the sample �x(t)

to be given by the k-dimensional vector �p, we then have

�p
(
�x(t); W

)
= W�x(t) ◦ W�x(t) (element-wise multiplication)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
n∑

l=1
w1l�x

(t)
l

)2

(
n∑

l=1
w2l�x

(t)
l

)2

...(
n∑

l=1
wkl�x

(t)
l

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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That means if we want to extract the jth term, we have

�pj

(
x(t); W

)
=

(
n∑

l=1
wjlx

(t)
l

)2

.

Now, for the second layer, we want a square root response represented by an
m-dimensional vector, which we denote by �q. This means that

�q
(
x(t); W, V

)
= V �p

(
x(t); W

)
.1/2 (element-wise square root)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√√√√ k∑
r=1

v1r�pr (x(t); W )√√√√ k∑
r=1

v2r�pr (x(t); W )

...√√√√ k∑
r=1

vmr�pr (x(t); W )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.6 Image Classification (Softmax Regression)

2.6.1 Softmax regression

The main advantage of using softmax regression is that we can now determine
the probability of our image being in each of the different classes, rather than
simply classifying it in a single class.

Definition 9. Cross-entropy:

Hy′ (y) = − ∑
i

y′
i log (yi)

where y is the predicted probability distribution, y′ is the true distribution.
This is a scheme used to evaluate the accuracy of the prediction scheme.

We apply a linear operator Wm×n on an input vector �x, where n is the dimension
of �x, and m is the dimension of the one-hot vector y corresponding to the input.

An m-dimensional vector �b will also be added similar to the standard NN
approach.
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Then the actual input in the regression will then be �e = W�x +�b.
The actual softmax function will then be

�y = softmax (Wx + b)

2.6.2 MNIST Data

MNIST is an image dataset consisting of handwritten digits.

Figure 2.2: Sample of MNIST dataset [2]

The MNIST dataset has been used as one of the standard input for bench-
marking of new networks, which was initiated by LeCun et al. [2].

This study relies on an investigation conducted by Masci, et al. to determine
the ability of standard CNNs to extract features using an unsupervised learning
method [13]. They used the MNIST dataset, which has been the standard for
this type of testing. We see in this work the ability of pre-training a network for
reconstruction to still be capable of performing classification. They were able to
extract features from unlabeled data, which when combined with backpropagation
algorithms can still become efficient classifiers.

2.7 Classification of Lung Adenocarcinoma
Transcriptome Subtypes

Lung cancer is the leading cause of cancer-related mortality, and adenocarcinoma
is its most common histological subtype [14, 15]. The overall prognosis for lung
cancer remains poor, despite recent advances in molecular targeted therapies.
Several cancer genome projects have analyzed cohorts of lung cancer patients
and revealed genome and transcriptome alterations. Most recently, the Cancer
Genome Atlas (TCGA) has described the comprehensive genomic landscape of
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lung adenocarcinoma in a large cohort [16]. These studies not only elucidated
oncogenic mechanisms but also shed light on previously unappreciated hetero-
geneity of gene expression profiles. As a consequence of genomic alterations and
gene mutations in cancer cells, aberrant patterns of gene expression profiles occur,
which eventually determine cancer cell behaviors. In line with this, it is worth
noting that the aforementioned TCGA study has identified three transcriptome
subtypes of lung adenocarcinoma: the terminal respiratory unit (TRU, formerly
bronchioid), the proximal-proliferative (PP, formerly magnoid), and the proximal-
inflammatory (PI, formerly squamoid) transcriptional subtypes [17]. It has been
further demonstrated that this classification is associated with clinical features
and gene mutation profiles. In terms of morphological features, lung adenocar-
cinomas display high inter-individual and intra-tumoral heterogeneity. However,
it remains undetermined whether the transcriptome subtypes are associated with
distinctive patterns of pathological findings. If it is the case, image analyses on
biopsy of resected tissue samples will be helpful to infer transcriptional changes in
tumor tissues, which can assist precise diagnosis and clinical decision making. In
this study, we propose a model to classify three lung adenocarcinoma transcrip-
tome subtypes from their pathological images using a deep learning approach.
Fig. 2.3 shows a sample of each of the three subtypes alongside four different
samples of normal images.
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Terminal Respiratory Unit Proximal-Proliferative

Proximal-Inflammatory Normal

Figure 2.3: Pathological images of lung adenocarcinoma subtypes and normal

2.8 Medical Image Analysis

2.8.1 Medical Imaging and Computer-aided Diagnosis

Medical image interpretation is a crucial part of the diagnostic process. Current
advances in artificial intelligence [18] can now automate the process of providing
assistance to radiologists and pathologists in this light.

By combining these innovations with imaging techniques like X-ray and MRI,
computer-aided diagnosis (CAD) proves to be a vital contributor in the field of
cancer detection, disease assessment, among others [19].

An article by Doi [20] provides a detailed history of medical imaging in CAD.
It mentions how the implementation of CAD schemes that use medical images
improves the assessment performance in several detection problems such as lung
nodules and vertebral fractures. Moreover, studies that involve automatic pattern
recognition or classification from various types of images [21,22] contribute to an
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effective and more efficient disease evaluation and analysis.

2.8.2 Image Processing via CNNs

Machine learning continues to be a vital innovation used in several fields. From
a biology standpoint, it can be used for gene expression interpolation and clas-
sification of several data sets. Moreover, it has been an important instrument
for image classification and inference in recent years. On the other hand, image
classification and analysis has been an important achievement of computational
systems in recent times, and in fact, it is still a growing, revolutionary field.
Specifically, being able to perform analysis on pathological images proves to be
vital for medicine and bioinformatics. Image processing methods using deep neu-
ral networks are currently developing very rapidly. However, those approaches
mainly target general image analysis such as photo classification, face recogni-
tion, among others. An analysis of biomedical images requires a more specific
viewpoint focusing extensively on their biological features [23–26].

We see from [12] a specific type of CNN using the notion of a reconstruction
independent subspace analysis (RISA). This is an unsupervised learning method
for the reconstruction of images that emphasizes the invariance between the ex-
tracted features, which means that neighboring filters are designed to share the
same property. They were able to show that these invariant features are vital in
the classification of images if we attach a supervised layer to the pretrained RISA
network.

Since part of our goal is an understanding of the internal architectures of several
CNN variations, we also look at [27]. Their work provides a number of visualiza-
tion experiments for this purpose, and we can follow a similar approach for our
data.

We also constructed a deep learning model of the sparse autoencoder (SAE) for
the differentiation of the distinct types of lung adenocarcinoma from pathological
images [28,29].

Furthermore, machine learning and computer vision has provided us powerful
methods to improve accuracy and efficiency of image classification. These meth-
ods rely upon manually curated image features to characterize specific features
of tumors. However, recent development of approaches like deep neural networks
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allows us to extract image features from given data automatically, without using
hand-made features. Using pretrained neural networks, we can extract features
of tumors and distinguish them according to their shapes. However, when we ad-
dress the classification of adenocarcinoma subtypes, local features of cell shapes
are not enough to describe the variation and distribution of various cells in the
tissue [30]. In this paper, we propose varations of CNNs that uses multiple re-
duction layers in order to evaluate a large area of pathological images and classify
lung adenocarcinoma subtypes.

Finally, one of the major breakthroughs in image processing is the Inception [3]
architecture, whose computational graph is shown below:

Figure 2.4: Inception-v3 computational graph [3]

Fig. 2.4 shows an intricate image processing network, composed of several stacks
of standard convolution and pooling, interspersed between concatenation and
partition layers. It is composed of 48 layers and around 25 million parameters.
This will be used as a basis for feature extraction in this study.
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3 Materials and Methods

3.1 Classifier Variants

In the first part of this study, we implemented three types of classifiers and
compared their corresponding results. These networks can be distinguished based
on how the convolutional filters were learned and extracted.

We call the first network a direct classifier and it is described by a convolutional
network attached to a softmax classification layer. The features were extracted
according to optimal classification. Softmax cross-entropy was used as the loss
function.

On the other hand, the subsequent networks are pretrained autoencoder CNNs.
The final layers of these networks were attached to a softmax classification layer,
and the features for these specifc part of the network were extracted similar to
the direct classifier.

In particular, the second network is a pretrained autoencoder whose features
are extracted following the reconstruction paradigm R from Eq. (2.7).

On the other hand, the third network is a pretrained reconstruction indepen-
dent subspace analysis (RISA) network. It is a two-layer autoencoder variant
composed of convolution and pooling layers. The main distinction of a RISA
network is that it emphasizes minimal translational invariance [12]. If we denote
the learned matrix from the convolutional layer as C, and the fixed matrix for
the pooling layer as H, then for an input vector �x, the second layer output is

pi (�x; C, H) =

√√√√√ k∑
m=1

Him

⎛
⎝ n∑

j=1
Cmj�xj

⎞
⎠

2

.

The features extracted from a RISA network will be learned through the following
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heuristic:

arg min
C

T∑
t=1

(
1
T

∥∥∥CCT �x(t) − �x(t)
∥∥∥2

+ λ
k∑

i=1
pi

(
�x(t); C, H

))
,

where
{
�x(t)

}T

t=1
is the input dataset, and λ a weight constant.

This rule extracts features less expensively than manually-designed feature ex-
traction methods.

Fig. 3.1 shows an overview of the different pipelines for the three variants.
Here, the softmax classifier takes logistic outputs.
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Figure 3.1: Pipelines for classifier variants

3.2 Towards Classification of Larger Images

In the second part of this study, we constructed a model based on three autoen-
coders and one classification reducer that takes logistic outputs. Fig. 3.2 shows
the structure of the network. 2048px ×2048px slices from the pathological images
were used as input for the first autoencoder. For an initial feature extraction,
we first pretrain three stages of convolutional autoencoder. The output from the
encoding layer of the third autoencoder is passed to the reduction classifier. Since
the size of the third encoding layer is still large, we divided it into 16×16 sub-
panes, and in each subpane, the input from the encoding layer is reduced to 24
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Figure 3.2: Structure of the whole network

output nodes through fully connected layers. Note that all the subpanes share the
same reduction network, in other words, it is also a convolution without overlap
between windows. Finally, the output of the reduction layer is reduced again into
three nodes which represent the three classes of lung adenocarcinoma subtypes.
Using multiple reduction layers, we can evaluate larger pathological images in
order to recognize the features based from cell distribution in the cancer tumor
and classify their transcriptome subtypes. The network in this model is composed
of 11 layers and 97227 nodes in total. We implemented these networks based on
python using TensorFlow [31] libraries, which provides various basic functions for
neural networks and machine learning algorithms. This time we incorporate the
sparsity penalty as described in Equation Eq. (2.8) to extract features.

The actual dataset is composed of pathological images of lung adenocarcinoma
from The Cancer Genome Atlas (TCGA) [32, 33]. There are 409 whole slides
from 230 cancer patients which are classified into three transcriptome subtypes
according to their gene expression patterns. The original pathological slide images
have a resolution of 20000–40000 pixels, whose actual sizes are approximately 1–2
cm2. We randomly clipped the original images into 2048px×2048px slices and
obtained 106505 slices as the input data for our models.

3.3 Whole Slide Image Analysis

For this section, we now change the dataset to prostate adenocarcinoma whole
slide images, still extracted from the TCGA collection [33].
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3.3.1 Transition from tiles to whole slides

As input, we use 704 whole slide images from TCGA-PRAD, 60% of which goes
to training. Because of the small number of input data, We also implement some
data augmentation as part of the preprocessing (like rotations and flips), which
results to having four times the original amount of input.

Fig. 3.3 describes an example of the process that the whole slides will go through
for analysis. Fig. 3.3a is a sample whole slide, while Fig. 3.3b shows the standard
division into tiles. Finally, Fig. 3.3c is a visualization of the probability matrix
emanating from the tumor probability of each tile.

(a) Original Image (b) Tiling of Image (c) Probability Matrix

Figure 3.3: Processing of Whole Slide Images

We then use a convolutional network attached to a softmax classifier that will
label each whole slide with its corresponding annotation.

The architecture of the whole slide network, consisting of 4 stages of convo-
lution, followed by fully-connected and softmax classification layers, is shown
below:

Input:n × 512 × 512 × 3(RGB)
⇓

Deep Conv. Network
⇓

Fully-Connected:n × 2048
⇓

Output:n × [pnorm, ptumor]
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3.3.2 Error Computation per sample

We then compute several values for each sample as seen in Table 3.1. The first
three columns indicate the patient ID, actual tumor percentage, and actual an-
notation gathered from the database, respectively.

The “Mean p” column indicates the mean tumor probability of the tiles for
each whole slide.

The last two columns are computed from the convolutional classifier.
The “Pred. Label” column indicates the label predicted by the convolutional

classifier for each whole slide.
Finally, the “Pred. p” column indicates the probability of the whole slide being

a tumor image, as computed by the classifier.

Table 3.1: Sample error computation
Patient Tumor % Actual Label Mean p Pred. Label Pred. p

1 50 1 (Tumor) 0.4 1 0.8
2 90 1 (Tumor) 0.95 1 0.99
... ... ... ... ... ...
n 0 0 (Normal) 0.1 0 0.005

3.4 Interpretation of Features from CNN

As mentioned in the previous chapter, we would also like to determine some basis
that can help determine how the network is able to classify a whole slide image as
tumor or normal. Here, two approaches are proposed. The first involves a visual
test on the distribution of tiles classified as tumor or normal in the whole slide.
Following the process described in Fig. 3.3, a heatmap can be generated to have
a picture of the scattering of tumor tiles. An example is shown below:
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Figure 3.4: Image heatmap of whole slide

Fig. 3.4 shows the heatmap for the whole slide image following Fig. 3.3. Red
signifies tumor, while blue signifies normal.

The second approach involves a comparison involving Table 3.1. We can then
check the values for each column and determine some connection between these
values and the classification.

3.5 Connecting Image Features to Genomic
Features

We want to determine any correlation between image features gathered from
whole slide analysis to genomic features such as mutation status and RNA-Seq
values.

• For mutation status, we gather driver genes for prostate adenocarcinoma
(as described in [34]),and check samples whose driver genes are mutated

• For RNA-Seq, we use HTSeq reads (60483 transcripts per sample) from
Genomic Data Commons.

To make sure that we only consider relevant transcripts, and as a way to per-
form some dimensionality reduction, we reduce the 60483 transcripts by filtering
those whose percentage of gene expression counts fall below some threshold. As
an example, we look at the RNA-Seq data for 551 TCGA-PRAD cases. We dic-
tate the minimum inclusion percentage count to be 70%, and the minimum log
value to be -20. We see the result in Fig. 3.5.
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Figure 3.5: (Top) original histogram for RNA-Seq Data (Bottom) Histogram for
remaining transcripts

We present and implement two methods for connecting image data with genetic
information whose details are summarized below:

1. We implement a linear model whose details are given below.

Figure 3.6: Linear model pipeline

2. We reduce the dimension of the image features using t-distributed stochastic
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neighbor embedding (t-SNE) and use the reduced information for mutation
status analysis.

Prostate adenocarcinoma (PRAD) whole slide images from The Cancer Genome
Atlas (TCGA) database were gathered. Because of their size, these images were
tiled into 512x512 subregions and used as input for the Inception-v3 architecture.
The features were extracted based on a tumor-normal classification. The correct
labels for the tiles were defined by some predefined threshold which depended on
the tumor percent annotation from TCGA.

The probabilities from the softmax layer of this network were then collated and
used as input for a multi-stage convolutional network; each stage is composed of
convolutional, pooling, and normalization layers. A fully-connected and a softmax
layer were then attached to the final stage and the features were learned based
on a tumor-normal-metastatic classification.

For the linear model, HTSeq-FPKM data was used for quantifying gene ex-
pression. Each patient has expression values for 60483 transcripts. Data from
patients in the TCGA-PRAD study were collated, and these reads were screened
to remove non-essential transcripts as defined by some minimum threshold. A
principal component analysis was performed on the remaining values to reduce
the dimension to 200 principal components (PCs). A linear model was then car-
ried out to associate the features extracted from the fully-connected layer of the
CNN pipeline to the 200 PCs.

The second method that we applied to connect the image feature t-SNE to
mutation status is described as follows:

From the t-SNE plot, we manually choose regions of interest that has a signif-
icant visual characteristic like morphology. Then, for each whole slide, we count
the number of tiles belonging to that slide in each cluster. Because there is a huge
variance in the number of tiles per slide, we make the data uniform by turning
them into percentages.

In general, if we have manually chosen k clusters, then each each whole slide
will now be represented by a k-dimensional vector from which analysis can be
performed.

Example 10. Here we have two patients. If we choose to have k clusters, then
we will have a total of k + 1 groups (the last group represents the region outside

29



of our manually chosen clusters).

Patient 0 1 · · · k Total
1 15 25 · · · 90 180
2 26 8 · · · 66 120

Patient 0 1 · · · k

1 0.083 0.139 · · · 0.5
2 0.217 0.067 · · · 0.55
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4 Results and Discussion

We first verify the effect of having convolution on the accuracy of the classifier.
The results are shown in Table 4.1.

It can be seen here that performing convolution before the softmax layer en-
hances the accuracy of the classification. This has to do with the fact that per-
forming convolutions enables the emergence of patterns that the standard RGB
input may not describe.
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Table 4.1: Confusion Matrices for Varying Networks
NO Convolution

subtype
Prediction

Total Accuracy (%)
PI PP TRU

PI 16 0 34 50 32
PP 21 19 10 50 38

TRU 3 0 47 50 98
Total 40 19 91 150 54.7

Convolution Only

subtype
Prediction

Total Accuracy (%)
PI PP TRU

PI 32 0 18 50 64
PP 14 35 1 50 70

TRU 1 0 49 50 98
Total 47 35 68 150 77.3

Mean-pooling CNN

subtype
Prediction

Total Accuracy (%)
PI PP TRU

PI 26 2 22 50 52
PP 8 41 1 50 82

TRU 3 0 47 50 94
Total 37 43 70 150 76.0

Max-pooling CNN

subtype
Prediction

Total Accuracy (%)
PI PP TRU

PI 43 0 7 50 86
PP 14 33 3 50 66

TRU 0 0 50 50 100
Total 57 33 60 150 84.0
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Now we look at the performance of the RISA network under similar conditions.
The results are shown in Table 4.2.

Table 4.2: Confusion Matrix for RISA
RISA

subtype
Prediction

Total Accuracy (%)
PI PP TRU

PI 20 2 28 50 40
PP 25 17 8 50 34

TRU 0 0 50 50 100
Total 45 19 86 150 58.0

4.1 Visualization of Filters

We then look at the results of the reconstruction algorithm. While the actual
slides are paired with their respective transcriptome subtypes, we use the unla-
beled tiles for the autoencoder, and apply the labeling for the classifier. Now, we
trained three stages of autoencoder as pretraining. Fig. 4.1 shows an example of
the output of the first stage of the autoencoder. The original images here come
from the general collection of images.

Original Images

Reconstructed Images

Figure 4.1: Example of the output of the autoencoder

We now look into some of the activations of the autoencoder. Though some
color hue changed after reconstruction, the structural detail of the original input
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was recovered from compressed information of encoded layers whose resolution is
one fourth of the original image, as shown in Fig. 4.2.

Figure 4.2: Left: input image, Right: output of some encoding layers in the
second autoencoder. The gradient from red to blue represents increase
in signal intensity.

In order to understand how the network extracts features after training, we
randomly clipped the original images to generate 10000 sample input of size 32
×32 pixels. Then, we computed the output of the encoding layer and sorted them
according to the value of one node in the encoding layer of the third stage. The
goal of Fig. 4.3 is to emphasize a specific feature extracted by the autoencoder.
We take the average of the pixel intensities of the top 100 encoded images based
on the sorted feature activation. A sample image is then obtained representing the
activation in one of the encoding layers. This represents a feature of the training
image patterns. It seems that the figure exhibits different local structures of cell
boundaries such as stripe- or target-like patterns.

Figure 4.3: Examples of optimized local image for encoded outputs
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4.2 Internetwork Comparison

We want to determine if the convolutional filter size has an effect on the recon-
struction outputs and the classification accuracy of the networks.

For the following experiments, we used 64×64 images as input, and the net-
works follow the pipeline described in Fig. 3.1. First, we take a look at the
reconstruction. Here we vary the convolution filter size on a standard convolu-
tional autoencoder and a RISA network.

Figure 4.4: Comparison of AE and RISA training.

The results are shown in Fig. 4.4. We take the natural logarithm of the re-
construction error over the number of training steps. Here, 3×3, 4×4, and 5×5
are the convolutional window sizes. It can be observed that performance does
not vary significantly as we change the filter size. However, it can be seen, espe-
cially in the RISA network experiment, that a slight increase in reconstruction
performance is brought about by a decrease in the filter size. This implies that a
smaller receptive field works better for this type of task.

Next, we performed a comparison between the activated filters of each of the
networks that we are working on. We take the activations of the first layer of
the direct classifier, the first stage of the autoencoder, and the lone convolutional
layer of the RISA network. The goal here is to determine and hopefully interpret
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Figure 4.5: Comparison Between Filters and Output of Networks

the features extracted from each of the networks.
In Fig. 4.5, we can observe several differences in the types of filters extracted.

We observe that the output for the direct classifier shows some edge detection
scheme through the contours in some of the filters. On the other hand, the
standard autoencoder seems to emphasize shape and hue. The RISA network
shows features similar to the standard autoencoder, but we also observe that some
of them have paired up as part of the underlying architecture of RISA. (Note that
the RISA filters were scaled to match the filters of the other networks.)

In the interest of finding the most accurate implementation of the convolutional
classifier, we continue the experiment of varying the size of the input along with
the convolutional filter size of the network variants. Specifically, we incorporate
32 ×32, 64 ×64, and 128 ×128 experiments. Table 4.3 summarize the accuracy of
the different convolution models. In this table, we can see that, in general, there
is some slight improvement in performance when we increase the filter window
size. However, if we look at the accuracies of the RISA network, we see a different
result. This can be attributed to the fact that as we increase the filter size, we
have a relatively significant drop in reconstruction performance. It must be said
that the effect doesn’t seem to be drastic for the standard AE.
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Table 4.3: Subtype classification accuracy tables for varying networks and filter
sizes

(#) - number of test images
Window 32×32 (12000)

Size Direct Class. AE+Class. RISA+Class.
3×3 73.6 76.4 52.5
4×4 74.1 65.9 50.9
5×5 80.5 68.8 71.3

64×64 (3000)
Direct Class. AE+Class. RISA+Class.

82.9 74.7 89.2
87.8 79.5 62.5
89.0 82.2 71.2

128×128 (750)
Direct Class. AE+Class. RISA+Class.

68.4 73.3 56.7
86.4 74.3 35.9
89.1 54.9 72.1
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4.3 Deeper Networks

Using a pretrained three-stage sparse autoencoder network, we trained to classify
the transcriptome subtypes. First we confirmed the effect of block reduction. We
evaluated the accuracy of the network by changing the input image size. This
time, we used 128 × 128, 512 × 512 and 2048 × 2048 images as input. From the
results described in the previous section, we see that there is some advantage to
altering the filter size of the autoencoder. As such, we use 7×7, 5×5, and 3×3
for the filter sizes of the three stages of the autoencoder, respectively, and 16×16
for the classifier.

To actually perform the classification on the 2048×2048 images, we first divide
them into smaller tiles on which to apply the pre-trained convolutional autoen-
coder. We then concatenate the output of the final stage of the autoencoder and
use it as input for the convolutional classifier.

Table 4.4 shows that when the input size was small, the network could not
learn the difference between transcriptome subtypes very well. But as we increase
the input size, more information is being read by the network, and hence, more
complex features are extracted. Accordingly, the accuracy increases. It is worth
noting that the number of nodes were not changed for the three experiments.
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Table 4.4: Confusion matrices and accuracy for 128px, 512px, and 2048px ex-
periments

128px
prediction

subtype TRU PP PI Total Accuracy (%)

diagnosis
TRU 47 32 1 80 58.8
PP 20 64 11 95 67.4
PI 16 21 44 81 54.3

Total 83 117 56 256 60.5

512px
prediction

subtype TRU PP PI Total Accuracy (%)

diagnosis
TRU 54 32 0 86 62.8
PP 15 48 15 78 61.5
PI 17 16 59 92 64.1

Total 86 96 74 256 62.9

1024
prediction

subtype TRU PP PI Total Accuracy (%)

diagnosis
TRU 75 1 9 85 88.2
PP 2 59 11 72 81.9
PI 0 0 99 99 100.0

Total 77 60 119 256 91.0

2048px
prediction

subtype TRU PP PI Total Accuracy (%)

diagnosis
TRU 60 0 0 60 100.0
PP 0 49 1 50 98.0
PI 1 0 65 66 98.5

Total 61 49 66 176 98.9
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4.4 Whole Slide Image Analysis

This section is dedicated to our approach on connecting gene expression data to
our image features. Here we use 704 TCGA-PRAD whole slide images consisting
of normal, tumor, and metastatic images.

4.4.1 Classification of Whole Slides

Initial implementation suggests that the performance of the convolutional classi-
fier fairs similarly to the mean probability taken from the tiles of each whole slide.
We also introduce an analysis of decile threshold to determine if some threshold
better classifies the images.

Further analysis shows that the convolutional classifier amplifies the mean prob-
abilities gathered from the Inception architecture

The process of gathering the basic input for the whole slide convolutional net-
work was presented in Fig. 3.3. The goal of the network is to classify the an-
notation of the image, with possible options being Solid Tissue Normal (STN),
Primary Tumor (PT), and Metastatic (M).

Fig. 4.6 and Table 4.5 shows the training and testing performances of the
network, respectively.

Figure 4.6: Training Accuracy for whole slide network
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Table 4.5: Testing Accuracy for whole slide network
prediction

subtype STN PT M Total Acc. (%)

diag.
STN 133 87 0 220 66.5
PT 19 1181 0 1200 98.4
M 0 5 0 5 0.00

Total 152 1273 0 1425 92.2

We now compare the performance with the mean inception probability as de-
scribed in Table 3.1.

Figure 4.7: Error boxplots with Inception-v3 probabilities (left) and predicted
probabilities (right)

The plots on the left of Fig. 4.7 involve mean probabilities obtained from the
Inception-v3 architecture. The blue, orange, and green plots represent the dif-
ferences between the mean probabilities and the actual slide labels, actual tumor
percentages, and the predicted probabilities, respectively.

On the other hand, the plots on right focus on the probabilities obtained from
the whole slide classification network. The blue, orange, and green plots represent
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the differences between those probabilities and the actual labels, actual tumor
percentages, and predicted labels, respectively.

One of the main observations that can be made here is the notion that the
convolutional network amplifies whatever decision was made by the mean Incep-
tion probabilities. This is represented by the drop in the distributions of the
blue boxplots. However, it can also been that the distribution increased for the
error between the probabilities and the tumor percentages (orange plot). Both
of these findings go hand-in-hand because the task of the network is to perform
classification using features from Inception.

We then proceed with plotting ROC curves as another basis for comparison
between Inception and the whole slide image network.

Figure 4.8: ROC Comparison

The left plot in Fig. 4.8 shows the comparison between the ROC curves obtained
from the mean Inception probabilities and the convolutional classifier.

We also implement create ROC curves where several decile bounds were used.
This is done in order to see whether there will be a critical decile bound that can
be used for a more accurate classification. The plot on the right visualizes this
experiment.

Overall, we see that the classification is decent, but further improvements to
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the whole slide image network may be necessary.

4.4.2 Interpretation of Classified and Misclassified Slides

We now follow the full error computation analysis described in Table 3.1. From
Table 4.6, we list the information for some slides and determine some details about
the corresponding tumor percentage and mean tumor probabilities of correctly
classified and misclassified slides. We can supplement this with the concentration
of tumor images via a heatmap, as seen in Fig. 4.9. Essentially, this method can be
used to determine whether images, despite having the same tumor percentage,
might have different classification based on their concentration or density. In
Fig. 4.9, for example, patients EJ-5502-01A-01-TS1 (left) and G9-6347-01A-01-
TS1 (right) might have both been classified as PRAD because of some significant
scattering of tumor cells, or some other similar characteristic. It is worth noting
that EJ-5502-01A-01-TS1 was correctly classified, while G9-6347-01A-01-TS1 was
not.

Table 4.6: Slide Information
Patient Tumor % Diag. Pred. Mean p Pred. p

EJ-5502-01A-01-TS1 55 PRAD PRAD 0.532 1.000
G9-6385-11A-01-TS1 None NORM NORM 0.307 0.212
G9-6347-01A-01-TS1 70 PRAD NORM 0.161 0.0002
EJ-8474-11A-01-TS1 None NORM PRAD 0.512 0.998
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Figure 4.9: Whole Slide and Corresponding Probability Visualization

4.4.3 Connecting Image and Genomic Features

We want to determine any correlation between image features gathered from
convolutional classifiers to genomic features such as mutation status and RNA-
Seq values. Specifically, for mutation status, we gather driver genes for prostate
adenocarcinoma, and check samples whose driver genes are mutated. For RNA-
Seq, we use HTSeq reads (60483 transcripts per sample) from Genomic Data
Commons (GDC).

We highlight the mutation status of several driver genes with the most frequent
somatic mutations based from the GDC database. Ultimately, we want to be able
to establish a correlation between the image and genomic features.

Fig. 4.10 visualizes the result of the linear model, whose process was described
in Fig. 3.6. Each graph here is composed of the actual expression values of the
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indicated gene, and the samples were separated based on whether the patients
has that specific gene mutated or not. The value enclosed in the parentheses
represents that p-value representing whether there’s a difference between the mu-
tated and non-mutated samples. The black line represents the mean value of
the predicted gene expression from the linear model. Even though the overall
performance of the linear model is poor (coefficient of determination=0.56), we
can see that the prediction is decent by focusing on the driver genes for PRAD.

Figure 4.10: Gene expression boxplot with predicted expression overlay

Finally, we go back to the output of the fully-connected layer of Inception-v3.
We perform t-SNE on the 2048-dimensional vectors to reduce it to two dimensions.
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Figure 4.11: t-SNE plot for output of fully-connected layer

We see from Fig. 4.11 that there is a specific region where most of the normal
tiles lie.

We now perform the analysis as described in Exp. 10. 8 clusters were manually
chosen based on morphology. We see the result in Fig. 4.12.

Figure 4.12: t-SNE plot with clusters and samples
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The tiles on the lower left, upper right, and lower right portions of the figure
represent a sample for clusters 2, 3, and 0, respectively. Cluster 0 seems to contain
tiles with a high amount of dysplasia. On the other hand, cluster 2 is an island
of normal tiles.

After computing the proportion vector for each sample, we visualize the pro-
portions per cluster via boxplots, as shown in Fig. 4.13a. We can gather vital
information with regard to mutation status by also focusing on some specific
genes. We use TP53 here as an example. Samples which have a mutated TP53
gene were gathered. The boxplot for these samples are shown in Fig. 4.13b.

(a) Proportion boxplot for general dataset

(b) Proportion boxplot for TP53-mutated samples
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The boxplots were then made for 15 driver genes. This time, we use driver
genes based on [34].

Figure 4.14: t-SNE boxplot for general dataset and 15 driver genes

Fig. 4.14 can be used as a reference for relating image features with mutation
status. For example, if we look at PIK3CA, we can see that there is a signif-
icant visual difference between its boxplot and the general dataset, specifically
for cluster 5. This tells us that cluster 5 contains a high number of tiles whose
PIK3CA gene is mutated. The plot for SPOP is also worth noting because of the
difference in the boxplots for clusters 1 and 6. This means that clusters 1 and 6
may contain a significantly high number of tiles whose SPOP gene is mutated. A
more technical test should be applied to verify these notions.
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5 Summary, Conclusions, and
Recommendations

This study had two general goals. Firstly, we aimed to implement models in-
volving CNNs for the reconstruction of lung adenocarcinoma images and the
classification of transcriptome subtypes for this specific type of cancer. Secondly,
we aimed to establish a connection between image features extracted from CNN
architectures and genomic features.

The experiments using different input size indicate that the network requires a
certain numbers of cells in the input images to recognize the difference between
transcriptome subtypes. Looking at the differences of the convolutional filter
output of each of the networks, we can see the features emphasized by the three
variants. The direct convolutional classifier outperforms the other two networks
and it can be seen that the important features relate to some combination of edge
and hue detection. On the other hand, the autoencoder network emphasizes hue
above all else. A deeper analysis of these filters is worth pursuing. Moreover, the
pretraining implemented on the autoencoder-classifier networks provides several
advantages like lower computational cost without a drastic effect on accuracy.

Using the pretrained autoencoder as a feature extraction mechanism for a con-
volutional classifier and tiling the 2048×2048 images into individual and indepen-
dent tiles paved the way for a classification algorithm involving large image input,
having a 98.89% test accuracy. Even though they belong to different clusters in
gene expression profiles, it was difficult to distinguish them from their morpho-
logical phenotypes since their local cell structures were not so different. In order
to distinguish statistical distribution of cellular features in larger tissue images,
we introduced multiple reduction layers and succeeded to classify transcriptome
subtypes correctly.
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This new approach will be helpful for differentiation of various tissue types,
not clearly different in cell morphology, but different in cellular distribution in
the tissue. This result will help the diagnosis of lung cancer for appropriate
treatment, and further applications will provide us useful tools for diagnosis of
various tumor types.

We also implemented some analysis that could serve as a starting point for
correlation with certain genomic datasets like gene expression profiles or mutation
status. As such, information obtained from the whole slide image network was
used for a number of experiments. One of the analyses involved the comparison
of classified and misclassified whole slides. Having a deeper understanding of the
mechanics of the classification could give us a better grasp of how the network
performs the labeling and the specific features that it looks for in the images. In
addition, a similar analysis could also be performed on the network with 2048px
images as input.

The analysis following the results of the whole slide image model serves as a
good starting point for outcome and prognostic predictions. Developments in the
starting CNN architecture (Inception-v4, et al.) and the convolutional classifier
can prove beneficial for connecting the image clusters formed by the overlays and
those formed by gene expression. We also plan to implement the architecture
to other classification schemes (like specific subtypes for certain cancers) and
compare results with our current schemes.

Further improvements are necessary for whole slide classification. Some anal-
ysis can be performed to determine features and patterns to distinguish normal
and tumor slides. Work still needs to be done to have a more decent correlation
between image features and other established data.
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