
NAIST-IS-DD1361009

Doctoral Dissertation

Real-time Whole-body Motion Generation

for Humanoid Robots Using Torso Posture

Regression and Center of Mass

Satoki Tsuichihara

June 18, 2018

Graduate School of Information Science

Nara Institute of Science and Technology



A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Satoki Tsuichihara

Thesis Committee:

Professor Tsukasa Ogasawara (Supervisor)

Professor Kenji Sugimoto (Co-supervisor)

Associate Professor Jun Takamatsu (Co-supervisor)

Assistant Professor Ming Ding (Co-supervisor)

Associate Professor Masanao Koeda (Osaka Electro-Communication University)



Real-time Whole-body Motion Generation

for Humanoid Robots Using Torso Posture

Regression and Center of Mass∗

Satoki Tsuichihara

Abstract

For humanoid robots, reaching with their hands as much workspace as possible

is an important issue, since the locations of the target objects are ranging from

the floor to the place above robot’s head. For humanoid robots, it is an important

issue to reach with their hands as much workspace as possible, since the locations

of the target objects are ranging from the floor to the place above robot’s head.

Furthermore, it is necessary to solve inverse kinematics for the whole body in real

time to adapt to the constantly-changing environment.

First, we propose a dual-arm inverse kinematics with a visual feedback mecha-

nism. The proposed solution uses a weighted pseudo inverse matrix and a pipeline

calculation. The weights improve the robot’s balance without significantly in-

creasing the calculation time.

Second, we propose a method to achieve real-time motion generation for a

humanoid robot by separating the inverse kinematics calculation into simpler

problems. Using regression to estimate the torso orientation, we solve the inverse

kinematics for the lower body and both arms independently. Based on the target

pose of both hands as input, we calculate the orientation of the torso and deter-

mine the target position of the center of mass considering the reachability of both

arms. At each control step, we calculate the joint angles of the lower body from

the position of the center of mass, feet poses, and torso orientation. Finally, we

calculate the joint angles of both arms.

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, NAIST-IS-DD1361009, June 18, 2018.
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We experimentally verify the proposed method by generating motions to ap-

proach objects. We verify the effectiveness of the proposed method to keep the

robot’s balance using the ZMP. We also apply the proposed method to a human-

size humanoid robot for reaching low-height positions while hunkering down.

From the experimental results, we prove the following advantages of the pro-

posed method. The proposed inverse kinematics solver is ten times faster than

the numerical solution using the Jacobian matrix. The accuracy of the hand pose

control and the calculation time are better than the conventional method. The

error and the calculation time are lower than with the conventional method. The

error using the proposed method is smaller especially when the target positions

are at the far side in the lateral direction. We verify the applicability of the pro-

posed method by following a sequence of random hands’ target positions and the

precision of the proposed method by comparing to a conventional method which

proposed in these years.

Keywords:

Whole-body motion generation, Humanoid robots, Vision-based feedback, Pos-

ture Estimation
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胴体姿勢推定と重心を用いた

ヒューマノイドロボットのための実時間全身動作生成∗

築地原 里樹

内容梗概

家事を代行するヒューマノイドロボットにとって，自身の手が広い領域に到

達できることは重要な課題である．例えば，物体を操作するような作業において，

対象物の場所は地面から人型ロボットの頭上まで及ぶ．また，環境が常に変化す

るためこれらの変化に適用するためには，全身の逆運動学が実時間で計算できる

ことが必要になる．

本研究では，まず視覚フィードバックを用いた上体の逆運動学について提案

する．上体の運動学に対して，重み付き擬似逆行列を用いて各部の動きやすさを

調整することで，動作の安定性を向上する．重み付き擬似逆行列やOpenRTMに

おけるパイプライン処理を用いることで，実時間性を向上する．各関節に応じた

重みを用いることで，計算時間を多くかけず，安定な動作を獲得する．

次に，実時間の動作生成を達成するために逆運動学を簡素な問題へ分解する

方法を提案する．胴体姿勢の回帰器を利用することで，下半身と双腕の逆運動学

を独立に計算する．入力の両手先位置に対して，胴体姿勢を計算し，双腕の到達

度に基づき目標の重心位置を計算する．ロボットの各制御周期において，重心位

置，足の位置姿勢と胴体姿勢から下半身の関節角を求め，最後に双腕の関節角を

計算する．

実験では，ヒューマノイドロボットが目標位置に手を伸ばす動作に提案手法

を適用する．動作中の ZMPの軌道を評価することで，提案手法を到達運動に適

用した際の安定性を確認する．また，ヒューマノイドロボットに対して，屈伸動

作を伴う低い位置への目標に対する到達運動に本手法を用いた．提案した逆運動

学法は，ヤコビアンを用いた数値的解法よりも 10倍早く動作生成ができることが

∗奈良先端科学技術大学院大学 情報科学研究科 博士論文, NAIST-IS-DD1361009, 2018年 6月

18日.
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確認できた．複数の到達運動での手先の誤差ノルム，計算時間や到達時間を評価

し，従来の数値解法よりも改善できることが確認できた．特に左右に目標位置が

遠い場合に，提案手法が胴体姿勢を事前に獲得できることから精度向上や動作生

成にかかる計算時間が短いことが確認できた．連続的にランダムな目標位置を追

従する動作に適応することで本手法の応用性を，近年用いられる従来手法と比較

することでより高い精度で重心と手先位置を制御できていることが確認できた．

キーワード

全身動作生成, ヒューマノイドロボット, 視覚フィードバック, 胴体姿勢推定
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1. Introduction

1.1 Background

As the aging society grows, service robots are expected to help elderly people to

keep their independence. The service robots can perform household tasks instead

of humans, such as cleaning rooms [1], cooking [2], and bringing tools [3]. Many

types of service robots can work in a specific place. Human-living environments

have many locations to place objects, for example, books in a shelf, dishes in

the sink, and food below the kitchen counter. Recently, to use the human-living

environments, robot motion generation based on human behavior is growing into

a popular research area [4].

Humanoid robots have a human-like shape and a similar structure to a human

body. Recently, humanoid robots have a higher functionality to work in the

human-living environment than other robots. Each manipulator of humanoid’s

body, such as legs and arms, has more than six joints to move the end effector

in 3D space (e.g., six DoFs space of position and orientation). The humanoid

robot’s arms can manipulate tools and reach objects located on the table, shelf,

and so on. The humanoid robot’s legs can manage the balance, and can walk

to many places. Combining these two abilities in the arms and the legs, the

humanoid robots can bring to a far area, for example, move cups from a table to

a shelf, bring coffee from another floor, and can reach all locations in the shelf

using the whole body.

For a robot to execute the sequences of reaching motions, these steps are

repeated:

1) determine the target configurations of the hands based on the current status

of the environment,

2) solve the whole body IK to satisfy these configurations,

3) move the robot following the IK solution.

Unlike well-controlled environments in factories, household environments contin-

uously change. Thus, the whole body IK should be solved every time. Since the

1



robot stops moving until finishing the IK calculation, the calculation time can

not be ignored.

To accelerate the calculation of IK, a number of issues must be considered,

including:

i) the large number of DOF of a humanoid robot, and

ii) the robot’s balance during execution.

Furthermore, the target positions to be reached can range from objects on the

floor to those above the robot’s head. As exemplified in Figure 1, many household

tasks require the robot to pick up objects at a very low height. Since it is very

difficult to solve these issues in general, we concentrate on tasks where the robot

keeps standing. Also, we ignore the collision avoidance issue (i.e., the robot

moves around a large free space). We consider that the collision avoidance can

be achieved by inputting appropriate trajectories of hands using a path planning

technique.

Kuffner et al. proposed a motion planner for a humanoid robot in a dynamics

simulation, where the use of a large number of DoF in a humanoid robot can

expand its manipulation space to be like that of a human [5]. Cognetti et al.

proposed whole-body planning for a humanoid robot based on a given task in

a dynamics simulation environment [6]. This planner can generate joint angle

trajectories for the whole body based on the destination of a hand, and the hu-

manoid robot can pick up a ball from the lower shelf and place it in the middle

part of the shelf. These approaches can generate whole-body motion in a simula-

tion environment but for the actual robot implementation additional issues, such

as calculation cost and the accuracy of controlling the end effector.

Moreover, when performing these kinds of household tasks in human envi-

ronments, task completion time should also be considered, since in several tasks

robots including humanoid robots have a time limit to fulfill human expectations.

One difficulty in reducing the task completion time comes from environmental

changes by humans. Even if we ignore the collision avoidance issue (e.g., moving

around the huge free space), robots need to generate the motions to make the

end effectors reach target poses in real time. Unfortunately, a humanoid robot

2



Figure 1. Human (left) and humanoid robot (right) perform a manipulation task

that requires hunkering down to reach the lower shelf in a kitchen.

must decide the movement of a large number of joints to reach target positions

while also considering its balance.
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1.2 Contribution

We consider three problems in this dissertation:

• whole-body balance

• limitation of the manipulation space

• real-time adaptation to environmental changes.

We propose the method to calculate the whole-body inverse kinematics when

inputting the target configurations of both end effectors (i.e., hands). To solve the

first problem, we tune the kinematics in each part using a weight pseudo-inverse

matrix. To solve the second problem, we consider the motion including height

change, (e.g., hunkering down). To solve the third problem, we split the whole-

body inverse kinematics problem into simpler inverse kinematics subproblems.

The idea is that if the torso posture is known, the remaining inverse kinematics

is simpler by separately solving the inverse kinematics for both arms and the

lower body. In our method, first, we use regression to estimate the torso posture

from the input position of the hands. Then, we solve the IK of the lower body

to determine the torso posture and the target CoM. Finally, we solve the IK of

each arm independently. The purpose of the proposed method is to accelerate

the whole body motion generation. We select only the torso without both arms

for the regression.

We perform experiments using the humanoid robot HRP-4 [7] to prove the

effectiveness of the proposed method. We verify that the proposed method cal-

culates the inverse kinematics ten times faster than the numerical solution (i.e.,

Jacobian-based method). In the real-robot experiments, we verify that the pro-

posed method generates whole-body motions to reach low-height positions while

hunkering down and keeping balance. In these experiments, both the inverse

kinematics calculation and the robot’s movement take three seconds in average.

In the dynamics simulation experiments, we additionally verify the applicabil-

ity of the proposed method to several sequential random target positions of the

hands; the humanoid stands and continuously reaches the targets while keeping

its balance. Additionally, we verify the applicability of the proposed method

when target positions are sequentially input. In practice, it is unrealistic for a

4



robot to move to the initial pose after reaching the target position every time.

In that sense, we verified the usefulness of the proposed method in an extreme

condition.

The proposed method assumes that the humanoid robot meets the following

conditions:

1. The robot changes the configuration of the waist by moving the feet.

2. The torso is connected to the waist by two chest joints (in the pitch and

yaw directions).

3. Each arm has at least 6 DoF.

Most human-size humanoid robots satisfy these conditions. To consider the sin-

gularities, we can solve the inverse kinematics of the arms analytically.

1.3 Dissertation layout

The rest of this dissertation is organized as follows:

Chapter 2 This chapter introduces research related to this dissertation.

Chapter 3 This chapter shows how to manage the kinematics of the whole body

in the humanoid robots to keep its balancing.

Chapter 4 This chapter describes a method to speed up the whole-body motion

generation.

Chapter 5 This chapter shows the results and discussion regarding the whole-

body motion generation.

Chapter 6 This chapter concludes this dissertation and summarizes future work.
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2. Related research

Existing research efforts regarding motion generation [8, 9] can be roughly clas-

sified into two categories. The first category includes methods to refine a pre-

defined motion to satisfy the target configuration, while the second category

includes methods to generate the motion from scratch.

2.1 Pre-defined motion generation

In the first category, Vannoy et al. proposed selecting one of multiple pre-defined

motions considering the environment and a criterion of the motion quality [10].

Park et al. presented the use of non-linear optimization to adjust the pre-defined

motions [11]. Otte et al. refined and repaired the pre-defined motions using a

search-graph algorithm [12]. Since it is difficult for pre-defined motions to cover

the whole range of target motions, the main purpose of these methods is real-time

collision avoidance for sudden changes in the environment.

2.2 Motion genration from scratch

In the second category, Fok et al. used a numerical method (i.e., Jacobian-based)

to solve the IK of the whole body [13]. Their main concern was implementing a

middleware structure, not accelerating the calculation. Nishiwaki et al. proposed

whole-body motion generation for reaching an object using one arm [14]. They

tested their method with a real robot grasping an object on the floor. Neverthe-

less, they did not show the applicability of their method to reaching objects using

both arms. Yamane et al. proposed a pin-and-drag interface for a human agent

in a dynamics simulator [15]. They controlled the humanoid robot by pulling

links in the dynamics simulation. Their method is suitable for computer graph-

ics, where the animator controls the kinematics of the animated model. Ferrari et

al. proposed a manipulation movement including locomotion for the humanoid

robot [16]. They plan the CoM trajectory based on the distance to the target

object and use the Jacobian-based whole-body IK to satisfy the planned CoM

trajectory [17]. They tested their method in a dynamics simulation with a mo-

tion of reaching an object on a table. All these methods employ the standard

6



Jacobian-based IK.

On the other hand, Khatib et al. proposed to use a potential field for real-

time motion generation [18]. In this method, at every time step, the control

input is decided from the derivatives of the field. Zucker et al. proposed to use

distance fields for the trajectory formulation by optimizing a function that trades

off between a smoothness component and an obstacle avoidance component [19].

On the other hand, Yang et al. proposed to use deep learning to determine the

control input from an observed image [20]. They applied their proposed method

to folding a towel. Unfortunately, they did not prove the applicability of their

method for whole-body motion generation of humanoid robots. They applied

their method to a 6-DoF manipulator in [18] and upper-body dual-arm robot

in [20].

2.3 Relationship to this dissertation

Our proposed method belongs to the second category. All methods in the second

category use a Jacobian-based numerical method. Unlike all the previous meth-

ods, the proposed method reduces the calculation time by solving the center of

the whole body (e.g., the torso) for managing the redundancy of the whole body

well with a machine learning technique. Also, the methods in the first category

are complementary to the second category. It is possible to use methods from

the second category to modify the pre-defined motion. We expect that combining

methods from the second category with the first category can enable the proposed

method to deal with real-time collision avoidance.

7



3. Building the kinematics for the whole-body

motion generation

3.1 Overview of the manipulation system

Figure 7 shows the structure of the proposed system used to control the whole

body of a humanoid robot for performing household tasks in daily-life environ-

ments. In this figure, the flow of the data goes from left to right. The system

is composed of three major parts, environment recognition, motion generation,

and the robot controller. As shown in the figure, the beginning of the proposed

system consists of two elements for environment recognition: Semantic Map and

ARToolKit. Semantic map includes the object and the method to manipulate

the object. If the type of the object is identified, we obtain the target position

to manipulate in the object from Semantic Map.

We use ARToolKit library [21] to estimate the position of the AR marker

attached on the object as well as ID of the marker. In this chapter, we prove the

effectiveness of the proposed method by controlling the upper-body based on the

position of the objects obtained by ARToolKit library.

8



Figure 2. Overview of the proposed system. This diagram shows the flow (from

left to right) of the data. The system is composed of the environment recognizer,

the motion generator, and the robot controller. In the environment recognizer,

a semantic map provides the robot with the method to manipulate the target

object. ARToolKit estimates scene motion, such as a cup and a pot on the white

table in this case. The whole-body inverse kinematics calculates the joint angles

based on the positions, the objects, and the tasks separated between the upper

body and lower body. Finally, the robot follows the joint angles calculated by

the whole body inverse kinematics.

9



3.2 Measuring 3D position of each object

To manipulate or grasp an object in an unknown location, we calculate each joint

angle by the following steps:

1. estimate the position of each object in the coordinate system of the camera

mounted on the robot

2. translate from the coordinate system of the camera to that of the robot

3. calculate each joint angle using the inverse kinematics of the upper body

for each target position in the coordinate system of the robot

We use the ARToolKit [21] library to acquire the position and orientation of

a known marker attached to the object. Figure 10 shows the three coordinate

systems of the robot ΣR, the camera ΣC, and the marker ΣM. The matrices RT C,
CTM, and

MTO are homogeneous transformations from the coordinate system of

the robot to that of the camera, the camera to that of the marker, and the

marker to that of the object. The homogeneous transformation matrix from the

coordinate system of the robot to that of the object is computed as

RTO =R T C
CTM

MTO. (1)

The matrix RT C is calculated by forward kinematics. We know MTO from where

the marker is on the object.

Marker

Camera

Robot

2

1

Figure 3. The relations between each coordinate system.
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3.3 Inverse kinematics for the upper body

We control the position and orientation of the robot hands using both arms and

the chest joint. Using the chest joint in a typical humanoid robot offers two

advantages:

• expands the reachable area of the hand

• allows adjustment of the orientation of the upper body without using the

lower body

Algorithm 1 Inverse kinematics

Input: p∗
right,R

∗
right,p

∗
left,R

∗
left

Output: q

1: q ← q0

2: for i = 1 to Iter do

3: pright,Rright,pleft,Rleft,J ← FK (q)

4: err ←


p∗
right − pright

LN
(
R⊤

rightR
∗
right

)
p∗
left − pleft

LN
(
R⊤

leftR
⋆
left

)


5: if |err| < tol then

6: break

7: end if

8: q ← q + αJ ♯err

9: end for

Algorithm 1 describes the inverse kinematics algorithm shown in [22]. A vector

q =
(
qchest, qright, qleft

)
represents the upper body joint angles, the joint angles

of the chest, right arm, and left arm. q0 is the current joint angles. p is the

position of the end effector, R is its orientation, and J is the Jacobian matrix in

the upper body. The subscript right or left indicates a right or left hand. The

vector x∗ is the target value of the value x, and Y ♯ is the pseudo-inverse matrix

of the matrix Y . FK is a forward kinematics function. FK’s input values are

the joint angles q and output values are the position p, the orientation R and

11



the Jacobian J . The input value of the function LN is the rotation matrix R,

and the output value is the vector of angular velocities [23]. The value iter is the

number of maximum iterations. The value tol is the tolerance in the norm of the

error vector err. The error vector is 12 dimensions that consist of the positions

(x, y, z) and angular vectors (ϕ, θ, ψ) of each hand. Using the divided Jacobian

J chest, J right and J left for each body part from the Jacobian J , the Jacobian can

be represented as

J =

(
J chest

J right 0

0 J left

)
. (2)

3.4 Generating motions using inverse kinematics

To define the intermediate points from the initial position to the position of the

marker, Algorithm 1 uses the input value the target position and orientation lin-

early interpolated. The fourth line in Algorithm 1 shows that the target position

and orientation are used to linearly interpolate the difference between the target

value and an initial value for execution time. The robot is controlled by the in-

terpolated target position and orientation. The method of interpolation for the

orientation is to multiply the initial rotation matrix and the rotation matrix cal-

culated from the Rodrigues equation using a vector of the angular velocity from

a difference between the target value and the initial value.

3.5 Weighted pseudo-inverse matrix

If a standard pseudo-inverse matrix in the eighth line of Algorithm 1, the joint

angles calculated under the assumption that all joints move equally easily. A

method for solving inverse kinematics with a weight value was referred in [24].

Using a diagonal matrix W with factors to make some joints harder to move than

others, the pseudo-inverse matrix J ♯
W is defined as

J ♯
W = W−1J⊤ (JW−1J⊤)−1

. (3)

Instead of a standard pseudo-inverse matrix in the eighth line of Algorithm 1, we

replace the updating rule of the inverse kinematics

q ← q + αJ ♯
Werr. (4)

12



3.6 Establish the parallelism in whole components

The proposed manipulation system has three components: the image capture

using the HRP-4 camera, the motion generator, and the robot controller. We

establish parallelism of the three components in the middleware OpenRTM [25].

Using this system, to send data between the components via the pipeline process,

a data port is defined for each component. The data port consists of an in-port

to receive the data and an out-port to send data. These connections are defined

below:

Image capture: Camera capture and ARToolKit

Camera capture: capturing an image from the camera mounted on the

HRP-4

• outport: send the captured image (to ARToolKit)

ARToolKit: proceeded by the ARToolKit library

• inport: receive the captured image (from Camera capture)

• outport: send the position of each object (to Motion generator)

Motion generator: generating each joint angle using the proposed inverse kine-

matics system

• inport: receive the position of each object (from ARToolKit)

• outport: send the joint angles (to Robot controller)

Robot controller: controlling the robot with the torque based on the joint an-

gles

• inport: receive the joint angles (from Motion generator)

13



4. Speeding up the whole-body motion genera-

tion

4.1 Estimation of torso posture

We use regression to estimate the orientation of the torso for whole-body motion

generation, The inputs of this regression are the positions of both arms, i.e., (x1,

y1, z1) and (x2, y2, z2). The outputs of this regression are the joint angles of the

chest joint (qpitch, qyaw). If we assume that the orientation of the waist is the same

as in the resting pose, the torso orientation is obtained from the chest joint. We

use the Support Vector Regression (SVR) [26] to calculate the orientation of the

torso. The training dataset generation and the learning process are done offline,

while in the actual robot the motion generator uses this regression online.

We use the Algorithm 2 to generate the dataset, which implements a nu-

merical solution of inverse kinematics. We select the robot’s configurations that

satisfy the positions of both arms and then use only the chest joints’ angles for

the dataset. The height of the torso is fixed during learning and only the chest

joints are learned. In this paper, we assume that the workspace is in front of the

humanoid robot, and define the initial posture for the numerical inverse kinemat-

ics as shown in Figure 4. The robot’s workspace is defined with 0.45, 0.8, and

0.75 m in the x (frontal), y (lateral) and z (vertical) axis from the posture as

shown in the yellow boxes of Figure 4.

Algorithm 2 Dataset generation

Input: q0,p
∗
left,R

∗
left,p

∗
right,R

∗
right

Output: p∗
left,p

∗
right, qchest

1: q ← q0

2: while isSolvable do

3: q, isSolvable

← BothArmsIK
(
q,p∗

left,R
∗
left,p

∗
right,R

∗
right, ω

)
4: ω ← ω + 1.0

5: end while

6: qchest ←
(
qchestpitch , qchestyaw

)
∈ q

14



The numerical method of the inverse kinematics BothArmsIK with the initial

joint angles q0 solves the joint angles in the upper body for the target pose of

both arms. We use the Levenberg–Marquardt (LM) method [24]. In LM, ω

represents the value of the diagonal matrix added to the diagonal elements of the

Jacobian matrix. We improve the solvability of the inverse kinematics near the

singularity points of the end-effector by trying to increase the ω value exploratory.

The boolean value, isSolvable, indicates whether this inverse kinematics solution

converges.

The numerical method of the inverse kinematics BothArmsIK (step 3 of Al-

gorithm 2) with the initial joint angles q0 solves the joint angles in the upper

body for the target pose of both arms using the Levenberg–Marquardt (LM)

method [24]. In LM, ω represents the value of the diagonal matrix added to the

diagonal elements of the Jacobian matrix. We improve the solvability of the in-

verse kinematics near the singularity points of the end-effector by increasing the

ω value in a exploratory way. The boolean value isSolvable indicates whether this

Figure 4. The initial posture of the humanoid robot for the learning procedure,

with yellow boxes indicating the humanoid’s workspace and purple spheres indi-

cating the position of the end effector.

Figure 5. Humanoid’s postures obtained from the SVR and the inverse kinematics

of the arms.
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Table 1. Parameters for the regression algorithm.

Parameter Value

Kernel width 0.1

Constraint 1.0

Slack variable 0.0001

inverse kinematics solution converges.

We apply several target positions for testing the learned regression. Figure 5

shows the postures of the humanoid applied by the generated regression, and

purple spheres indicate the target position of both hands as the input of the re-

gression. Table 1 shows the three parameters we use for the regression algorithm.
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4.2 Target CoM position generation

n a humanoid robot, changing the height of the body using their legs increases the

manipulation area. We select the target position of the CoM of the whole body

from three candidates considering the reachability of both arms for approaching

the objects. Figure 6 shows the three candidates and the overlapping workspace

in order to reduce the calculation cost. The robot can maintain balance by

controlling the CoM in the quasi-static case.

We consider the reachability of humanoid robots using the position of both

hands’ targets (p∗) and both shoulders (pshoulder) in the initial configuration of

the robot. For the reachability, the following condition should be satisfied:

|p∗ − pshoulder| < Larm. (5)

The length Larm represents the length from the shoulder joint to the wrist. If

each arm can not reach the target position in the current configuration, we set

the target position of the CoM (p∗
CoM) as

p∗
CoM ←


pCoMinit

+ b (p∗z − pshoulderz > Larm)

pCoMinit
− b (p∗z − pshoulderz < −Larm)

pCoMinit
(otherwise) .

(6)

A vector of the CoM position pCoMinit
is calculated from the initial configuration of

the robot, and a vector b is a pre-defined displacement (0, 0, 0.1) in the coordinate

system of the robot. If the target hand position is set to a location far from the

shoulder, Equation 6 calculates the CoM position (p∗
CoM) in a higher or lower

position. Note that the CoM trajectory is calculated by interpolating the initial

and the target CoM positions.
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Figure 6. Movable areas (yellow boxs) of the proposed method in the three

configuration of CoM.
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Algorithm 3 Inverse Kinematics for both feet

Input: q0,p
∗
CoM,R

∗
torso,p

∗
swing,R

∗
swing

Output: qlegs

1: qlegs, qupperBody ← q0

2: for i = 0 to N do

3: pCoM,Rtorso,pswing,Rswing,J

← FK
(
qlegs, qupperBody

)
4: e←


p∗
CoM − pCoM

LN
(
R⊤

torsoR
∗
torso

)
p∗
swing − pswing

LN
(
R⊤

swingR
⋆
swing

)


5: if |e| < tol then

6: break

7: end if

8: q′
legs ← qlegs + αJ ♯e

9: p′
CoM,R

′
torso,p

′
swing,R

′
swing,J

′

← FK
(
q′
legs, qupperBody

)
10: e′ ←

 LN
(
R′⊤

torsoR
∗
torso

)
p∗
swing − p′

swing

LN
(
R′⊤

swingR
⋆
swing

)


11: qlegs ← q′
legs + βJ ′♯e′

12: end for

4.3 Inverse kinematics for the lower body

We use Algorithm 3 to calculate the joint angles of both feet. We control the

CoM of the whole body, the torso’s orientation and the poses of the legs of the

humanoid robot. The CoM of the whole body is calculated by assuming the

configuration of the upper body (e.g., the configuration in the previous time

step). We use the numerical inverse kinematics to solve the joint angles of the

lower part. Since the number of DoF of the lower body is smaller than the DoF

of the whole body, the calculation is faster than the inverse kinematics of the

whole body.

In Algorithm 3, we assume that the robot’s sole of the support leg is on the
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ground, and the coordinate system of the robot is in the support leg’s sole. If the

robot stands in both legs, we simply choose one of the legs as the support leg,

and define the swing leg as the other leg. A vector qlegs =
(
qright, qleft

)
represents

the lower-body joint angles, that is, the joint angles of the right and left legs. A

vector qupperBody represents the upper-body joint angles, that is, the joint angles

of both arms and the chest. The initial joint angles of the whole body are q0.

pCoM is the position of the CoM of the whole body (See Section 4.2), pswing and

Rswing are the position and the orientation of the foot sole in the swing leg, Rtorso

is the orientation of the torso link, and J is the Jacobian matrix of the lower

body. The vector x∗ is the target value of the value x, and Y ♯ is the pseudo-

inverse of the matrix Y . FK is a forward kinematics function. FK’s input are

the joint angles q and the output are the position p, the orientation R (CoM,

the torso and the swing leg) and the Jacobian of the lower body J . The function

LN converts the rotation matrix R to the angular vector [23]. The value N is

the number of maximum iterations. The value tol is the tolerance for the norm

of the error vector e. The error vector has 12 dimensions that consist of the CoM

positions, the torso orientation, and the position and orientation of the swing leg.

Using the Jacobian JCoM, J torso and J swing for the CoM, the torso and the sole

of the swing leg, the Jacobian can be represented as

J =
[
JCoM J torso J swing

]⊤
. (7)
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Figure 7. Overview of our system. Arrows indicate the data flow. The system

is formed by the online localization, the posture estimator, the whole-body con-

troller, and the robot controller. The environment recognizer estimates scene

configurations using the AR markers. The posture estimator generates the target

angles in the chest joints based on the target configuration of both hands. The

whole-body controller is formed by four parts, the dual-arm controller, the lower-

body controller, the CoM controller, and the swing leg controller. The dual-arm

controller calculates the joint angles for both arms using the analytical solution

of inverse kinematics. To control the coordination of the robot’s height and main-

tain the robot’s balance, the CoM controller and swing leg controller calculate

the joint angles of both legs based on the desired whole CoM value. Finally, the

robot follows the joint angles calculated by the whole body controller.
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4.4 Calculation cost

We describe a mathematical ability of our proposed method using Landau symbol.

We evaluate the computational burden of the proposed method compared to

the conventional method. In the proposed method (Figure 7), there are two

main processes, Dual-arm control which uses analytical Inverse Kinematics and

Lower-body control which uses numerical Inverse Kinematics (including CoM

Control and Swing-leg Control). The analytical Inverse Kinematics uses a simple

linear algebra, i.e. that requires the constant calculation time. The numerical

computation uses an inverse matrix calculation that requires calculation time

with cubic of the matrix dimension. The computational complexity c1 in the

proposed method is described as below,

c1 (M) = O
(
1 + cM3

)
,

= O
(
cM3

)
. (8)

The number of the DoF is M , and the number of an iteration is c.

In the conventional method, the main computation is the inverse matrix calcu-

lation. The computational complexity c2 in the conventional method is described

as below,

c2 (N) = O
(
dN3

)
. (9)

The number of the DoF is N , and the number of an iteration is d.

In the proposed method, we use a machine learning for calculating the chest

joint’s angles, by calculating both arms and legs independently a kinematic chain

of whole body can be divided on the chest joint. The number of the DoF (M)

can write N
2
, and the relationship is M ≃ N

2
. We assume that the number of the

iteration in both proposed and conventional numerical calculation is similar, and

the relationship is c ≃ d. Comparing Equation 8 and 9, the calculation of the

proposed method is roughly 8 times faster than the conventional method.
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Figure 8. The data flow in both the posture estimator and the whole-body con-

troller (the target CoM generator, the posture estimator, the lower-body con-

troller, and the dual-arm controller).

4.5 Implementation

4.5.1 Overview of the manipulation system

Figure 7 shows the software structure of the system. The system is formed by

four major parts: the online localization, the posture estimator, the whole-body

controller, and the robot controller. In this figure, the arrows indicate the data

flow. The object localization and recognition is out of the scope of this paper

and we use AR markers for simplification. We use the ARToolKit library [21] to

estimate the position of the AR marker and their ID’s. Figure 8 shows the data

flow between the posture estimator and elements of the whole-body controller.

First, the target CoM generator determines the target CoM position correspond-

ing to both hands at the target. After updating the value of the chest joint from

the posture estimator, the lower-body controller calculates the joint angles in the

chest and the legs’ joints. Finally, the dual-arm controller calculates the joint

angles of both arms.

4.5.2 Generating motion using inverse kinematics

To make a motion, we define the intermediate hand configurations calculated by

linear interpolation between the initial value and the target value. The method

of interpolation for the orientation is to multiply the initial rotation matrix and

the rotation matrix calculated from the Rodrigues equation using a vector of the

angular velocity from a difference between the target value and the initial value.
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Figure 9. The calculation time of SVR, lower-body IK and both arms IK. The

most part of the total calculation is the SVR calculation.

Figure 10. The relations between each coordinate system.

4.5.3 Posture estimator

We select the Gaussian kernel as the kernel function in the SVR. In this research,

we use the regression once when inputting the target position of the end effectors

and interpolate the results instead of calculating the regression in every control

step. For the actual robot implementation, the robot’s CPU (Intel Pentium M

Processor 1.6 GHz) has a very low clock frequency, so it is slow to calculate the

regression. Figure 9 shows the calculation times for the regression, the lower-

body calculation, the analytical inverse kinematics for both arms and the total

calculation time. The mean values of the calculation times in 100 samples are:
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SVR, 66.4 ms; lower body, 6.8 ms; analytical inverse kinematics, 0.2 ms; and

total, 75.5 ms. It turns out that the most time-consuming process is the SVR

calculation.

4.5.4 Measuring the 3D position of each object

To manipulate an object located by the ARToolKit, we determine the hand pose

by the following steps:

1. estimate the position of each object in the coordinate system of the camera

mounted on the robot.

2. translate from the coordinate system of the camera to that of the robot.

Figure 10 shows the three coordinate systems of the robot ΣR, the camera ΣC,

and the marker ΣM. The matrices RT C,
CTM, and

MTO are homogeneous trans-

formations from the coordinate system of the robot to the camera, from the

camera to the marker, and from the marker to the object, respectively. The ho-

mogeneous transformation matrix from the coordinate system of the robot to the

object is computed as

RTO =R T C
CTM

MTO. (10)

The matrix RT C is calculated using forward kinematics. We know MTO from the

location of the marker on the object.
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5. Experiments

5.1 Evaluation of a weighted pseudo-inverse matrix

5.1.1 Testbed

In this research, we used the human size humanoid robot HRP-4 shown in the

robot controller part of Figure 7. This robot is produced by KAWADA Robotics

Corporation [7]. The robot specifications are: 1.514 [m] height, 39 [kg] weight,

and 34 DoF (each leg: 6, chest: 2, each arm: 7, each hand: 2, neck: 2). For the

motion generated by the proposed inverse kinematics, we use 16 DoF (each arm:

7, chest: 2), and for grasping objects, we use 2 DoF in each finger. The HRP-4’s

camera is connected to its internal PC and has a resolution of two mega-pixels

(1600 × 1200).

5.1.2 Objective

In this section, we describe two experiments:

• Vision-based manipulation of the HRP-4

• Motion generation using the manipulation system on a dynamic simulator

On the real robot HRP-4, we investigated the trajectory of the chest joint angle

and the Zero Moment Point (ZMP) [27] to check the stability of the motion

using this manipulation system. Then, to verify the movable area of the motion

generator in detail, we used the dynamic simulator OpenHRP [28].

To control both hands simultaneously on the real robot, we implemented

tracking of two target positions. As shown in Figure 12, there are two markers

on a gray board and HRP-4 in the experimental space. In this experiment,

HRP-4 moves both hands to the two markers on the board. We evaluated the

effectiveness of the proposed method from the two aspects:

• the trajectory of the ZMP

• the movable area of the motion generated by inverse kinematics
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(a) The image captured

from HRP–4’s camera

(b) Blue cubes rendered

at the estimated positions

Figure 11. The results of estimated marker positions using the ARToolKit library.

Using a weighted pseudo-inverse matrix restricted the chest joint angle. This was

proposed to improve the stability of the motion. To verify the stability, we used

the stability index ZMP. We also verified whether the manipulation system could

generate the motion needed to approach the object detected by a camera.

Figure 11 shows the images used for the proposed manipulation system. Fig-

ure 11 (a) shows the image as captured by the HRP-4 camera. Figure 11 (b)

displays the estimated positions of the AR markers and rendered virtual objects.

Using the estimated positions shown in Figure 11 (b), we generate the necessary

motion.

We also showed the chest pitch joint angle and the ZMP in the frontal direction

when controlling both hands to point at the AR markers. Since the chest joint of

the humanoid robot can move the entire upper body, controlling the chest joint

tends to affects the stability of the whole body. We compared the following two

inverse kinematics to verify which motion is more stable:

• using the standard pseudo-inverse matrix JW

• using the weighted pseudo-inverse matrix J ♯
W

In the weighting matrix of Equation (3), the diagonal elements corresponding to

the chest joint are equal to 0.1, and the other elements are equal to 1.0.
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5.1.3 Result

Figures 12 and 13 show the robot performing motions generated using the two

method. As shown in Figure 12(c) and 13(c), the robot can move both two hands

to the position of each marker. The axis of rotation in the frontal direction of

HRP-4 chest joints is regarded as the y axis. When the chest joint is at zero

rotation in the y axis, HRP-4 is in an upright stance. The origin of the ZMP in

the sole of both feet is the middle point between each the ZMP. From Figures 12(c)

and 13(c), there might seem to be no difference between the motion generated

using the two methods. However, as can be seen by comparing Figures 12(b)

and 13(b), when using the standard pseudo-inverse matrix in 12(b), the chest of

HRP-4 seems to bend backward, which indicates a loss of stability.

Figure 14 shows comparisons of the trajectories of the chest pitch joint angle

and the ZMP values using the two methods. Figure 14(a) shows a comparison

(a) Start movement: 0.0 s (b) 2.2 s (c) End movement: 3.9 s

Figure 12. Standard pseudo-inverse matrix controls HRP–4’s hand to the target

position of AR marker.

(a) Start movement: 0.0 s (b) 2.2 s (c) End movement: 3.4 s

Figure 13. Weighted pseudo-inverse matrix controls HRP–4’s hand to the target

position of AR marker.
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of the trajectories of the chest y joint angle. Figure 14(b) shows a comparison of

the trajectories of the ZMP in the frontal direction. In the chest y joint angle, a

positive means the robot is bent forward and a negative means the robot is bent

backward. In Figure 14(a), there is a large gap between the trajectories of the

chest y joint produced using the two methods.

In Figure 14(b), there is also a small gap in the ZMP values in the frontal

direction produced by the two methods. When the chest joint moves away from

its initial value in the negative direction, the ZMP also moves away from its initial

value in the negative direction. This is visible at 2.2 s in Figure 14(a) and 14(b).

Using the standard pseudo-inverse matrix, in Figure 14 (b) from 1.0 s to 5.0 s,

the trajectory of the ZMP vibrates because of large movement in the chest joint.

On the other hand, using the weighted pseudo-inverse matrix in Figure 14 (b),

the trajectory of the ZMP moves with stability to the converged value. Though

HRP-4 is stable in an upright stance, and the motion is quasi-static, large values

of motion of the ZMP may cause falling. The results shown in 14(a) and 14(b)

support the stability of the motion generated using the weighted pseudo-inverse

matrix.

In Figure 15, we generated six example motion with the dynamic simulator

OpenHRP. In this experiment, we defined the motion as towards target positions

and orientations from the HRP-4 state of Figure 12 (a):

(a) Rotation
(
0.0, 0.0, π

4

)
rad

(b) Rotation
(
0.0, 0.0,−π

4

)
rad

(c) Translation (0.25, 0.0, 0.0) m

(d) Translation (−0.25, 0.0, 0.0) m

(e) Translation (0.0, 0.25, 0.0) m

(f) Translation (0.0, 0.0,−0.25) m

We select these six examples to test whether the humanoid robot can be in these

postures. In Figure 15, the three color (red, green, and blue) lines represent the

coordinate systems (x-, y-, and z-axis). As shown in Figure 15, we can check

whether both the HRP-4’s hands moved to the arbitrary target position in front
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of its body. We made a trial of these motion samples within the range of positions

and orientations needed to manipulate the objects. This simulation supports the

effectiveness of the manipulation system.
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(a) Rotation
(
0.0, 0.0, π

4

)
rad

(b) Rotation(
0.0, 0.0,−π

4

)
rad

(c) Translation

(0.25, 0.0, 0.0) m

(d) Translation

(−0.25, 0.0, 0.0) m
(e) Translation

(0.0, 0.25, 0.0) m

(f) Translation

(0.0, 0.0,−0.25) m

Figure 15. Six examples of the target position of both hand using Inverse Kine-

matics with weighted pseudo-inverse matrix.
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5.2 Evaluation of the whole-body controller

5.2.1 Comparing the calculation times using dynamics simulation

We show the effectiveness of the whole-body controller using the humanoid robot

HRP-4 in the dynamics simulator OpenHRP [28]. We use the LM method for

the numerical solution of inverse kinematics as a conventional method [24], as

mentioned in Section 3. In the conventional method, the Jacobian matrix has

28 rows corresponding to the DoF and 24 columns corresponding to the position

of both hands, the CoM, and the orientation of both hands, the torso, and the

swing leg. The target position of both hands is in front of a table as shown in

Figure 16.

Figure 16 shows the postures of the HRP-4: the initial posture (a), the in-

terpolated posture (b), and the posture after the movement (c). We apply the

proposed and conventional methods for 200 interpolated points from the initial

to the final configurations. In the setting of Figure 16, the length between the

initial configuration (a) and the final configuration (c) is 0.4 m, and the distance

between each intermediate position is 1.9 mm. The number of the intermediate

points are calculated from an acceptable speed of both of the end effector and

CoM of 0.38 m/s, assuming that the control cycle is 5 ms.

Figure 17 shows the comparison of the calculation times. The mean of the

calculation times using the proposed method is 1.8 ms and using the conventional

method is 38.8 ms. Since the target position of both hands is further from the

singularities than in the upper body experiments, the calculation time of the con-

ventional method is smaller. We also verified that the calculation of the proposed

method was faster than the conventional method in general. As shown in Figure

17, from control step 10 to 30, the conventional method rapidly calculates the

joint angles. As can be seen in Figure 16, the postures (a) and (b) are very similar

(near the half sitting pose), so the conventional controller only takes a short time.

The maximum value of the calculation time is 9.5 ms in the proposed method,

74.8 ms in the conventional method. The proposed method is around eight times

faster than the conventional method. This result proves the relationship between

Equation 8 and 9 which express the computation order using Landau symbol.

Figure 18 shows the Zero Moment Point (ZMP) using a moving average filter
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(a) Start movement (b) The interpolated posture (c) End movement

Figure 16. The posture of HRP-4 generated by the proposed method. HRP-4

completely reaches the target poses (three-colored frames) with the end effectors.

and the CoM position when moving to a hunkering-down posture. The upper

blue line shows the position of the toe, and the lower blue line represents the

heel. The area between the two lines represents the support region of the HRP-

4’s feet. The trajectory of the ZMP is always inside of the support region during

this movement. This result shows that the movement generated by our method

is well balanced. We also show the current and desired values of the CoM used

in the proposed method. The trajectories of the CoM are the same during this

movement, so the proposed controller is accurate.

We evaluate the accuracy of the proposed method with the error of the CoM

position and the end effector, as shown in Figure 19. In this experiment, the

velocity of the CoM is larger in the first half of the movement. Because of the

CoM behavior, the error norm increases. In the second half, when approaching

the target value, the velocity of the CoM decreases, and the CoM converges to

the target value. The error of the end effector position is less than 1× 10−15 m.
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5.2.2 Real-robot experiments

We also verify the effectiveness of the proposed whole-body controller using an

actual HRP-4. The target positions of both hands are obtained from the AR

markers, which are observed from the camera mounted on the head of the HRP-

4. Figure 20 shows the images captured from the HRP-4’s camera and processed

by the ARToolKit.

Figure 21 shows the generated movement of the HRP-4 in the initial posture

(a), the interpolated postures (b) and (c), and the posture after the movement

(d). The HRP-4 reaches the two AR markers with both hands, while maintaining

balance. This movement takes 3 s.

(a) The input image

from HRP-4’s camera

(b) Rendered blue cubes

at the estimated position

Figure 20. The result of the marker positions estimated using the ARToolKit

library (left: the input image from HRP-4’s camera, right: rendered blue cubes

at the estimated position).
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(a) Initial state: 0 s (b) 1 s (c) 2 s (d) Final state: 3 s

Figure 21. The proposed method generates whole-body motion to make the

HRP-4 reach with both hands the target positions indicated with AR markers.

By managing the CoM in the center of the foot’s soles, the robot can keep the

balance while hunkering down.
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5.2.3 Accuracy and calculation speed

We evaluate the applicability of the proposed method for the whole-body move-

ment by using a numerical method as conventional method. We test both methods

with 729 (27 poses for each hand) random target poses in the workspace, as shown

in the Figure 5. Table 2 shows the results using both methods for all target poses.

The error norm is the average norm of the difference vector between the target

pose and the current pose. Calculation time is the average time to calculate the

whole-joint angles at each control step. Total time is the average time for moving

the whole body in the dynamics simulator.

The results of the error norm and the calculation time are better than with

the conventional method. The error norm using the conventional method is large

when the target position are the far side in the lateral direction. The conventional

method can solve the whole-joint angles including the chest joint but it is difficult

to reduce the error norm with the torso posture. The proposed method is faster in

such cases because it uses the train data for the calculation of the torso posture.

The total movement using the proposed method is around 2.6 times faster than

the conventional method.

Table 2. Comparison of results in both methods.

Error norm Calculation time Total time

Proposed 0.62 mm 1.1 ms 1.0 s

Conventional 9.99 mm 46.4 ms 2.6 s
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5.2.4 Comparing the accuracy to a conventional method

For the evaluation of the accuracy in the proposed method, we compare our

method to a conventional method using a same target pose. We use the inverse

kinematics in the whole body motion generation for the humanoid robot con-

ducted by Caron et al. [29] as the conventional method which proposed in two

years. Figure 22 shows the error of the CoM and both hand’s positions comparing

to the each target position. We configure the 200 interpolated position between

the initial and the target position as same as the proposed method. In the con-

ventional method , the mean of the CoM’s error is 1.4×10−3m, the mean of both

hands’ position are 3.8× 10−4m (in the left hand), and 4.0× 10−4m (in the right

hand). In the proposed method , the mean of the CoM’s error is 5.1 × 10−5m,

the mean of both hands’ position are 4.9 × 10−5m. Comparing these two result

using both method, our proposed method can perform more precise control than

the conventional method.
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Figure 22. The error norm of the CoM position and the end effector during the

whole-body movement using a conventional method.
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5.3 Following markers

We apply the proposed method to the HRP-4 in the dynamics simulator for

following the AR markers. Figure 23 shows the poses of the humanoid robot in

following the markers. HRP-4 can follow the every marker pose captured by the

camera mounted on the head.

5.4 Sequential whole-body control

We apply the proposed method to the HRP-4 in the dynamics simulator for

approaching several positions sequentially. Figure 24 shows the poses of the

humanoid robot approaching target positions generated randomly. The three

color arrows in Figure 24 indicate the target positions inputted to the HRP-4. In

this figure, the HRP-4 successfully reaches three target positions using its whole

body, while maintaining balance. Figure 24 (a) depicts the motion of the HRP-4

to reach target positions above the humanoid’s head. Figure 24 (b) and (c) show

cases where one of the hands is reaching a high position and the other is reaching

a low position. These figures and verify the applicability of the proposed method

to whole-body control with sequentially random inputs.

In Figure 6, we can see the movable area using the proposed method. Com-

paring both of Figure 6 and 24, large workspace and the applicability of the

proposed method is verified.

Figure 23. From a camera input, HRP-4 can follow the target position of AR

markers using the proposed method.
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Figure 24. The simulation result when approaching random target positions.

These movements include the whole-body motion in the vertical direction and

the arms in the vertical and diagonal direction.

5.5 Application to a living environment

We also apply the proposed method to a human living environment using a dy-

namics simulator. Figure 25 shows the pose of the humanoid robot approaching

two target positions on a table and a shelf. In this experiment, we solve the colli-

sion avoidance issue by assigning waypoints to the hands’ trajectories. Figure 25

(a) shows the initial pose of the HRP-4. Figures 25 (c) and (f) show the HRP-4

approaching the objects with both hands. In Figure 25 (d), the HRP-4 is moving

to the next target position on the upper shelf.

It takes 3 s to approach the position on the table and 5 s to approach the

position on the upper shelf. Because we set the waypoints for each target config-

uration, it takes longer to approach the position than using the motion planning

without a waypoint. Multiple movements including chest rotation and squat-

ting are successfully generated using the proposed method, and the time of the

movement is reasonable for users.

Our proposed method uses only the CoM for keeping the robot’s balance.

Using our method, the robot can not reach an edge of the ZMP’s support polygon

with a fast whole-body movement. However, when the robot’s balance is close
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Figure 25. The simulation results when approaching both hands to target po-

sitions in a living environment. There is a table and a shelf in the dynamics

simulation environment. To avoid collisions, we set waypoints when approaching

the target positions of each object (parts (b) and (e) in this figure). First, the

HRP-4 approaches the target objects on the table. Then, after approaching, the

HRP-4 moves to the target objects on the shelf.

to this edge, the robot should move slowly in the last part of the motion. In the

case of our proposed method, we should add a threshold of a horizontal CoM

to avoid falling down. After approaching this threshold, the robot should move

slowly. Another option is including a locomotion for approaching the whole body

out of this threshold to our proposed method.
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6. Conclusion

6.1 Contribution

We proposed a method of whole-body motion generation to reach objects in real

time. First, we proposed a system for controlling humanoid robots to allow ma-

nipulation of objects with the necessary quickness for daily life environment. We

constructed a manipulation system on the middleware OpenRTM that could con-

trol both hands of HRP-4 in moving to positions detected by ARToolKit. Using

a weighted pseudo-inverse matrix corresponding to each joint in inverse kinemat-

ics, we implemented stable control of both hands. We verified the effectiveness

of the weighted pseudo-inverse matrix in achieving stability by evaluating the

trajectories of the ZMP during the motion. Second, we proposed a method for

whole-body motion generation for humanoid robots in household environments

to reach objects with their hands in real time. To reduce the calculation time of

motion generation, we estimated the torso posture using SVR before calculating

the joint angles. Using the estimated torso posture, we can separate the IK for

the whole body into simpler, independent IK for the arms and the lower body.

We solve the IK of both arms analytically and solve the IK of the lower body nu-

merically. To sequentially reach multiple targets for the hands, we built a target

position generator for the CoM considering the reachability of both arms.

In terms of calculation time, the proposed method is faster than the conven-

tional Jacobian-based numerical method, while achieving better accuracy. To ver-

ify the effectiveness of the proposed method, we implemented it on a human-sized

humanoid robot, the HRP-4. In experiments, we successfully generated reach-

ing motions for lower positions, which included hunkering motion while keeping

the balance. In these experiments, it took 3 s to both generate and execute the

target motion. We also showed the applicability of the proposed method to a

step-by-step manipulation by sequentially inputting random targets. In experi-

ments using a dynamics simulation, HRP-4 could approach the target positions

smoothly. Finally, we also applied the proposed method to a kitchen environment,

by generating a whole-body motion to approach a table and an upper shelf.
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6.2 Future work

In this dissertation, we only generated motions when the humanoid’s feet were

fixed. Since the proposed lower-body controller manages the configuration of

the swing leg, the proposed method has the potential to expand the reachable

area by stepping. Further, in the posture estimation, we employed SVR as the

regression method to simplify implementation, but we could investigate using

other regression methods such as random forest regression and neural networks.

Though we did not test our method with the inertial changes present when

grasping an object, we are planning to do it as future work. The proposed method

should be able to adapt to these changes if the physical properties of the grasped

object are known a priori.
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