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Incremental and Parallel Learning Algorithms

for Data Stream Knowledge Discovery*

Lei Zhu

Abstract

Incremental and parallel are two capabilities for machine learning algorithms to
accommodate data from real world applications. Incremental learning addresses
streaming data by constructing a learning model that is updated continuously in
response to newly arrived samples. To solve the computational problems posed
by large data sets, parallel learning distributes the computational efforts among
multiple nodes within a cloud or cluster to speed up the calculation. With the
rise of BigData, data become simultaneously large scale and streaming, which is
the motivation to address incremental and parallel incremental (PI) learning in
this work.

This research first considers the incremental learning alone, in the graph max-
flow /min-cut problem. An augmenting path based incremental max-flow algo-
rithm is proposed. The proposed algorithm handles graph changes in a chunking
manner, updating residual graph via augmentation and de-augmentation in re-
sponse to edge capacity increase, decrease, edge/node adding and removal. The
theoretical guarantee of our algorithm is that incremental max-flow is always
equal to batch retraining. Experiments show the deterministic computational
cost save (i.e., gain) of our algorithm with respect to batch retraining in handling
graph edge adding.

The proposed incremental max-flow is then applied to upgrade an existing
batch semi-supervised learning algorithm known as graph minicuts to be incre-

mental. In batch graph minicuts, a graph is learned from input labeled and
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unlabeled data, and then a min-cut is conducted on that graph to make the
classification decision. In the proposed modification, the graph is updated dy-
namically for accommodating online data adding and retiring. Then the proposed
incremental max-flow algorithm is adopted to learn min-cut from the resulting
non-stationary graph. Empirical evaluation on real world data reveals that the
proposed algorithm outperforms state-of-the-art stream classification algorithms.

In the incremental max-flow, the training speed is not satisfactory when the
data set is huge. A straightforward solution is to combine parallel data processing
with incremental learning. Previously, parallel and incremental learning are often
treated as two separate problems and solved one after another. Alternatively
in this work, these two learning problems are solved in one process (i.e., PI
integration).

To simplify the learning, this research considers a base model in which incre-
mental learning can be implemented by merging knowledge from incoming data
and parallel learning can be performed by merging knowledge from simultaneous
learners (i.e., in knowledge mergeable condition). As a result, this work devel-
ops a parallel incremental wESVM (weighted Extreme Support Vector Machine)
algorithm, in which the parallel incremental learning of the base model is com-
pleted within a single process of knowledge merging. Specifically, the wESVM is
reformulated such that knowledge from subsets of training data can be merged
via simple matrix addition. As such, the proposed algorithm is able to con-
duct parallel incremental learning by merging knowledge from data slices arriv-
ing at each incremental stage. Both theoretical and experimental studies show
the equivalence of the proposed algorithm to batch wESVM in terms of learning
effectiveness. In particular, the algorithm demonstrates desired scalability and
clear speed advantages to batch retraining.

In the field of data stream knowledge discovery, this work investigates incre-
mental machine learning and invents a wESVM-based parallel learning and in-
cremental learning integrated system. The limitation of this work is that PI
integration applies only to models that satisfy the knowledge mergeable condi-
tion. Future work should investigate how to release this constraint and expand

PI integration to other models such as SVM and neural network.
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1 Introduction

1.1 Background

The goal of machine learning can be stated as to build a computational model
from what has been observed in the past [3]. In the early days, research stud-
ies and practices in machine learning focused on batch learning, in which the
complete data set is available at once to the algorithm that generates a decision
model. The assumption behind batch learning is that samples are generated ran-
domly according to a stationary probability distribution. The learning objective
is to estimate this distribution with the samples that are available.

Fast developments in information and communication technologies, data col-
lection and processing methods have introduced dramatic changes. Currently,
data are often presented in continuous streams, representing the current state of
a stationary or non-stationary environment [4]. To learn from these data streams,
incremental learning constructs a learning model that is updated continuously in
response to newly arrived samples [5].

For the incremental model, the input samples x1, xo, ..., x,,... arrive sequen-
tially, item by item (known as online learning) or set by set (known as chunk

learning) [4]. There are two types of incremental models:
1. Insert only model: only adding samples is allowed;
2. Insert-delete model: samples can be both added and retired.

The assumption behind insert only models is that samples are generated sequen-
tially and randomly according to a stationary probability distribution. Thus the
incremental learning of insert only models is to accumulate samples over time
for improving the estimation of the underlying distribution [6]. On the other

hand, insert-delete models assume a shifting probability distribution, and only



the most recent samples are useful for estimating the current distribution [7].
Thus the model is updated by accommodating knowledge from the newly ar-
rived samples, while discarding knowledge from the samples that are no longer
up-to-date.

In the literature, the activity of acquiring knowledge from new samples is also
known as incremental learning (in the narrow sense), as distinguished from decre-
mental learning, which is the operation of retiring knowledge from old samples.

Due to recent developments in data collection technologies, data sets are becom-
ing increasingly larger. Processing these large scale data sets poses considerable
difficulties, especially for computationally expensive machine learning algorithms.
Parallel processing is an attractive technique for scaling up and speeding up al-
gorithms, and this also applies for machine learning algorithms. Parallel learning
accelerates the learning procedure by distributing the large computational efforts

among a set of nodes within a cloud or cluster [8].

1.2 Research Roadmap

Incremental learning (IL) has been extensively studied in the literature and many
approaches have been applied to achieve incremental capability. In general, exist-
ing IL models can be summarized into two categories in terms of the approach to
deriving incremental capability: 1) model updating in which the current model
is modified to incorporate the knowledge from newly appeared data samples, and
2) model ensemble in which a new model is built based on a chunk of incoming
data and the knowledge is combined via an ensemble of individual models. In
real-world application, incremental learning plays a major role in data analytics,
big data processing, robotics, image processing, etc. [9].

In the era of BigData, data are being produced in variety of structured, semi-
structured, and unstructured forms, and being presented as a mixture of nu-
merical records, graphs, XML documents, text files, images, audio, video, etc.
[10] [11]. Among all types of data, it is worth noting that graph data have been
been occurring more frequently, representing communication network, power sup-
ply/consumption network, websites link structure, and users linkage in social
network [12].



For graph modelling, max-flow is a fundamental model for solving many com-
plex graph problems such as maximum cardinality bipartite matching and min-
imum path cover in directed acyclic graph [12]. Also, max-flow has been em-
ployed in variety of applications such as network bottleneck identification, energy
minimization in computer vision, and graph-based clustering. For incremental
learning of max-flow, existing algorithms focus on the push relabel mechanism
which involves a great amount of operations in neighbour search, flow push, and
node relabel, thus push relabel has higher empirical computational complexity.
Augmenting path, the other track of max-flow, is still open for exploration.

For BigData processing, parallel incremental max-flow is a straightforward so-
lution. The difficulty of parallelizing incremental max-flow lies at: 1) For aug-
menting path based incremental max-flow, it is an iterative path searching process
followed by path de-augmentation or augmentation, where there is no existing so-
lutions to parallelize the search for multiple edge disjoint paths; and 2) For push
relabel based incremental max-flow, it is computationally very expensive to iden-
tify neighbour disjoint active nodes for parallel push and relabel. In general, the
difficulty here is lack of sub-problems that one does not affect the other. In other
words, we are not able to merge max-flow knowledge from sub-graphs.

For the parallelization of model-updating-based IL, we consider the following
scenario: given a base model whose knowledge can be merged with that of other
model, then IL can be implemented by merging knowledge from incoming datasets
(each dataset generates one model), and parallel learning can be also performed
by merging knowledge from a set of independent learners that work on different
data slices.

More interestingly, in this scenario both parallel and incremental learning are
achieved via an unified computing process. In other words, parallel and incremen-
tal learning are integrated into one system, a parallel incremental (PI) integrated
system.

The advantage of a PI integrated system lies at:

1. The system is simplified as one data processing routine instead of two, for

parallel and incremental function respectively; and

2. The system supports better distributed learning environment, because knowl-

edge mergable condition ensures that the learning can be carried out with
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Figure 1.1: The research roadmap of this thesis.

no restriction on time and location.

As such, developing PI integrated algorithms is a significant work that we are
going to address in this thesis. As a summary, Figure 1.1 presents the research
roadmap of this thesis.

1.3 Contribution

Our contributions in this thesis are summarized as follows:

1. We derive an incremental max-flow algorithm based on augmenting path
algorithm. The proposed algorithm is capable of handling all possible graph
changes, with a theoretical guarantee that the incremental max-flow equals
always to batch retraining. The proposed algorithm has deterministic com-

putational cost savings with respect to batch retraining in handling graph



edge adding, and gives much faster converging speed compared to incre-

mental push relabel.

2. We apply our incremental max-flow algorithm to upgrade an existing batch
semi-supervised learning algorithm know as graph minicuts to be incremen-
tal. The proposed incremental graph mincuts is capable of accommodating
both addition and retirement of labelel and unlabeled samples. The pro-
posed system is found to be less sensitive to the amount of labelled data (in
terms of the ratio to the whole training data) as compared to K-NN, SVM,
and SVM self-training.

3. We raise PI integration (parallel and incremental integrated learning), a
new concept of parallel incremental learning. PI integration deals with both
parallel and incremental learning as one problem and solves the problem by
applying one characteristic calculator (i.e., base model). The advantage
of PI integration is that it simplifies the design and implementation of
parallel incremental algorithms, and it suits real world distributed learning

environments.

4. We propose a new concept of knowledge mergeable condition to judge if a

learning model can be used as the base model of PI integration.

5. We develop the first PI integration algorithm based on wESVM (weighted
Extreme Support Vector Machine). The proposed parallel incremental
wESVM always gives the exactly same learning result as batch retrain-
ing, it scales well in response to both number of nodes and data size, and

our incremental learning has clear speed advantage to batch learning.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 gives a comprehensive
review the of max-flow problem and existing batch and incremental max-flow
algorithms. Chapter 3 presents the proposed augmenting path based incremental
max-flow algorithm, including algorithm derivation and evaluation. In Chapter

4, the proposed incremental max-flow algorithm is applied to upgrade an existing



batch semi-supervised learning algorithm, graph minicuts, to be incremental.
Chapter 5 identifies a family of knowledge mergeable algorithms. In Chapter 6,
we derive a PI integrated learning system. Chapter 7 contains the conclusions
drawn from this thesis.



2 Max-flow Problem and
Max-flow Algorithms

2.1 Introduction

Incremental max-flow is the first problem we address in this work. In this chapter,
we first give an overview of max-flow, starting with the definition of the max-flow
problem, followed by applications of max-flow. Then we give a comprehensive

review of existing max-flow algorithms including batch and incremental ones.

2.1.1 Definitions and Problem Statement

A directed graph G = (V, E,C) is defined by a set of nodes V', a set of directed
edges F, and a edge capacity function C': E — R™ U {0} which maps each edge
(u,v) to a non-negative capacity value C'(u,v). In the context of max-flow/min-
cut, a graph has two special nodes: source s and sink ¢, which is the start and
end point of flow respectively.

A flow on G is a real valued function f() if the following conditions are satisfied:

flu,v) = =f(v,u), ¥Y(u,v) €V xV; (2.1a)
fu,v) < C(u,v), Y(u,v) €V xV; (2.1b)
> flu,v) =0, YveV\{st} (2.1c)

u

In literature 2.1a, 2.1b and 2.1c are known as flow antisymmetry, edge capacity
and mass balance constraint, respectively. Let net flow F' =Y, oy f(u,t) be the
summation of flows into sink ¢. Then, the max-flow problem is to determine a

flow from s to ¢t with the maximum net flow F.



A s/t cut is a partitioning of the nodes in the graph into two disjoint subsets
S and T, such that s € S, t € V and SUV = (. For simplicity, the s/t cut is
referred to as cut in the rest of this work. The cost of a cut C(S,T) is defined
as the total capacity of all boundary edges (u,v) where u € S and v € T. The
min-cut problem is to find a cut that has the minimum cost among all cuts.

According to the theorem of Ford and Fulkerson [13,14], a max-flow from s
to t saturates a set of edges in the graph dividing the nodes into two disjoint
parts {S, T} corresponding to a min-cut. Also, the flow value of the max-flow is
equal to the cost of the min-cut. Thus, the min-cut and max-flow problems are
equivalent, and the min-cut is normally solved by finding a max-flow.

Incremental max-flow is the incremental learning of max-flow. Given an initial
graph and corresponding max-flow, which is stored in various forms according to
the base algorithm (e.g., residual graph for augmenting path based algorithms,
residual graph plus node distance labeling for push relabel based algorithms), the
incremental max-flow subjects to update max-flow in response to graph changes
in order to obtain the max-flow result for the updated graph. The advantage of
incremental max-flow is to take advantage of the existing max-flow result and
only learning from the graph changes to save computational costs in comparison

with learning max-flow from scratch.

2.1.2 Max-flow Applications

As various real world problems can be abstracted into max-flow problems, or
equivalent problems such as min-cut, there are vast applications of max-flow.
The bottleneck identification for a city traffic network [15] is a known max-flow
application in which a traffic network in a city is abstracted into a road graph.
Applying max-flow computation on the road graph, a road with its total capacity
taken to carry flow is considered as a bottleneck. Similarly, bottleneck identifi-
cation for a power system has been used for computing a power system security
index [16] in which power supply links are represented as edges, and factories or
towns are denoted as nodes. Max-flow is also applied in a wireless mobile envi-
ronment to optimize the association between wireless clients to access points by
maximizing the traffic flow to clients [17] [18] [19].

Max-flow/min-cut has also been widely used in computer vision, particularly



source source

Figure 2.1: An example of graphs min-cut used for computer vision applications.

Left is the graph constructed and the right is the min-cut result. [1]

for energy minimization problems such as image segmentation [20] [21] [22] [23],
restoration [24] [25], stereo image processing [26] [27] [28] [29], shape recon-
struction [30] [31] [32] [33], object recognition [34] [35] [36], augmented real-
ity [37] [38] [39], and texture synthesis [40] [41]. For a comprehensive overview of
max-flow /min-cut applications in computer vision, please refer to [1|. The graphs
used for these typically have a specific structure, and the goal is to assign one of
two labels to every pixel in an image.

The graph in these applications is generated based on a regular 2D grid where
each node, except the source and the sink, represents an image pixel. The adjacent
nodes are usually pixels that are adjacent in the corresponding image, as shown
in the left part of Figure 2.1. The source and sink nodes, which are also known
as the terminal nodes, are two special nodes. They represent the two possible
labels which can be assigned to all the other nodes (i.e., pixels in the image). The
terminal nodes are connected to all the other nodes with varying capacities [29]
42] [43].

The edge capacities between adjacent non-terminal nodes are set according to
a penalty for discontinuity between the pixels associated with these nodes. They
represent how well a label from one pixel would continue into the adjacent pixel.
The edge capacities between the terminal nodes and the non-terminal nodes are
set according to a penalty for assigning the corresponding label to the pixel.

When this graph is generated, the s — t min-cut on the graph is used for label



assignment. As shown in the right side of Figure 2.1, after the min-cut, nodes
(pixels) connected with the source node s are labeled as one class and the others
are labeled as another class.

Similar to its application in computer vision, min-cut is also applied to find
clusters in various types of networks, which can be easily mapped to a graph,
such as biological and sociological networks [44]. The Information Bottleneck
(IB) method [45] [46], developed based on rate distortion theory [47], is represen-
tative of this track. It has been adopted in applications such as clustering word
documents and gene expressions [48] [49], identifying modularity in synthetic
and natural networks [50], classifying galaxies by their spectra formation [51],
and community detection in social networks [52] [53] [54].

The applications of incremental max-flow, on the other hand, focus on learning
in the changing environment. Grundmann et al. adopt incremental max-flow for
image segmentation in continuous video frames [55]. A video can be seen as a
series of images, so that each frame has little difference in comparison with the
last frame. In this case, the graph constructed for image segmentation also has
minor differences between neighboring frames. Thus the incremental learning of
graph G, based on the max-flow result of graph G;, better suits this scenario in
comparison with learning GG;1; from scratch. In this sense, incremental max-flow
can be naturally applied to various computer vision tasks introduced before, for
learning from video frames. Moreover, in the works [56] and [57], incremental
max-flow is employed for graph-based clustering in dynamic settings, in which

the graph represents real-world data that are changing continuously over time.

2.2 Batch Max-flow Algorithms

In solving max-flow problems, existing algorithms fall into two categories, namely
preflow push method and augmenting path method [12]. Existing batch max-flow

algorithms are introduced in this section.

2.2.1 Augmenting Path

Augmenting path [13] algorithm stores information about the distribution of the

current s — t flow ' among the edges of G using a residual graph R = (V, E, R).
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The topology of R is identical to G (i.e., G and R share the same V and E), but
R(e), the capacity of edge e in R, reflects the residual capacity of the same edge
in G given the amount of flow already in the edge. At the initialization, there is
no flow from the source to the sink (F' = 0) and edge capacities in the residual
graph R are equal to the original capacities in G (i.e. R(e) = C(e),Ve € E).

Augmenting path algorithm is an iterative procedure of the following two steps:

1) Find s — ¢ path using Breadth-First Search (BFS). The resulting path P is
a set of edges with positive residual capacity laid end to end connecting s to t,
such as P = {(s,u), (u,v), (v,t) | R(s,u) > 0, R(u,v) >0, R(v,t) > 0}.

2) Augment the s —t path found above. We firstly find the maximum amount
of flow that can go through this path P, which is termed augmentation value
and denoted as Ap in the rest of this work. As it is a bottleneck problem here,
Ap can be calculated as the minimum residual capacity of the whole path Ap =
min(R(u,v) | V(u,v) € P). Next, we send Ap flow through path P in R as,

R(u,v) = R(u,v) — Ap,V(u,v) € P

R(v,u) = R(v,u) + Ap,¥(u,v) € P (2.2)

The above two steps are iteratively executed until no more s — t paths can be
found. Figure 2.2 gives an example of max-flow search through the augmenting

path algorithm.

2.2.2 Boykov-Kolmogorov (BK) Algorithm

The BK algorithm [1] is developed based on the augmenting path method. It has
been extensively utilized by the computer vision community, since it is superior
in practice to others on many vision instances [58].

A difference from standard augmenting path algorithm, which finds the s — ¢
path via a single BF'S search starting from source node s, the BK algorithm seeks
the s — ¢ path in a bi-directional manner.

The BK algorithm maintains two non-overlapping search trees S and T rooted
at s and t respectively. In S, all edges from parents to children have positive
residual capacity; and in 7, all edges from children to parents have positive

residual capacity. Nodes in G but not in S or 7 are termed as free nodes, and
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Figure 2.2: An example of max-flow search through augmenting path. (a) initial
residual graph with the first found s — ¢ path shown in dotted lines;
(b) augmented residual graph with newly found s —¢ path; (c¢) current
augmented residual graph, where augmenting path terminates since

no more s — t path can be found; (d) the obtained actual max-flow.
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Figure 2.3: An example of trees S and 7 in BK algorithm. Non-active and active

nodes are marked as blue and red respectively. [2]

oooooo oo/

Figure 2.4: An example of the search trees S (red nodes) and 7 (blue nodes)

at the end of the growth stage when a path (yellow line) from the
source s to the sink t is found. Active and passive nodes are labeled

by letters A and P, correspondingly. Free nodes appear in black. [1]

the nodes in S and T are either active (the outer boundary of each tree) or passive
(the internal points of each tree). Figure 2.3 gives an example of the trees.

In the initial state, S has only one node s and 7 only contains ¢. Then the BK
algorithm iteratively conducts operations in three stages: growth, augmentation,
and adoption.

At the growth stage, the two search trees are expanded to find the s — ¢ path.
Each active node explores adjacent edge with positive residual capacity (R(u,v) >
0 for u € S, and R(v,u) > 0 for u € 7 ), and adds newly discovered free nodes
into the tree as its children. The newly added nodes are set as active. When

all neighbors of an active node have been scanned, the active node is set to be
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Figure 2.5: An example of adoption step on a node v. An orphan sub-tree is
shown in the triangle. The solid edges are residual edges which are
tree edges and the dashed edges are residual edges which are not tree
edges. Node u can be selected as a parent of v. But w cannot be
selected as a parent for v, because there is no residual path from w
to ¢ (the path terminates at v). |2]

passive. If no active node remains, the whole BK algorithm terminates. If a edge
from S to 7 is found, which means there is a s — t path, the augmentation stage
starts. Figure 2.4 gives an example of when S meets 7 at the end of the growth
stage.

At the augmentation stage, the s — ¢t path found in the growth stage is aug-
mented by sending maximum possible flow through it. After the augmentation,
some edges on the augmenting path become saturated (i.e., residual flow becomes
zero). Thus some nodes in § and 7 become orphans, as the edges linking them
to their parents are saturated. If edge (u, v) becomes saturated and both v and v
are originally in tree S, then v becomes a S-orphan. If both v and v are originally
in tree T, then u becomes a 7 -orphan. If v is in S and v is in T, then no orphan
is created in (u,v) saturation. In the other words, the augmentation operation
may split trees S and 7T into forests, where s and t are still the root of S and T
respectively, and the orphans form the roots of all other trees. Orphans created
in the augmentation stage are placed in a list and handled in the adoption stage.

In the adoption stage, orphans are processed until there are no orphans left.
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The BK algorithm tries to find a new valid parent in S for each S-orphan, and
similarly a parent in T for each T-orphan. For instance, if we have a S-orphan v,
we seek such u that has R(u,v) > 0, u € S and the tree path from s to w is valid
(the whole path has positive residual capacity). If such a u is found, we make u
to be the parent of v. If we can not find a new parent for v, we mark v as a free
node and mark all former children of v as orphans. Then we examine all edges
(u,v) have positive residual capacity, and make each u € S active.

When the adoption stage is complete, the algorithm returns to the growth
stage. The algorithm terminates when S and 7 can not grow (i.e., there are
no active nodes) and the trees are separated by saturated edges (i.e., with zero

residual capacity).

2.2.3 Incremental Breadth First Search (IBFS) Algorithm

The IBFS algorithm [59] [2] is a modification of the BK algorithm, where the S
and T trees are maintained to be always breadth-first trees. As a result, any s—1
path found in the procedure is a shortest path, and the overall running time has
a polynomial bound O(n*m).

The IBFS algorithm also maintains two trees S and 7T, which are rooted at
s and t respectively. At any given moment, a node can be in one of five states:
S-node, T-node, S-orphan, T-orphan, or N-node (which indicates the node is
not in any tree). There is a parent pointer for each node indicating the parent
of this node in the tree, which is empty for A-nodes and orphans. A node u is
called in § if u is a S-node or a S-orphan.

Distance labels dg(u) or d;(u) are maintained for each node u, representing the
distance from s or ¢ to u in the tree. If uw is in S, then only d,(u) is meaningful
and d¢(u) is unused. The situation for nodes in T are symmetric. For some values
D, and Dy, the nodes in tree S have no more than D, from s and the nodes in
tree 7 have up to D, distance to t. Thus L = D, + D; 4+ 1 is the lower bound of
the length of any augmenting path.

Similar to the BK algorithm, IBF'S also has three steps: growth, augmentation,
and adoption. At the initial state, S has only s, 7 has only ¢, ds(s) = d;(t) = 0,
and parent pointers for all nodes are empty.

The IBFS algorithm proceeds in passes. At the beginning of a pass, there are
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Figure 2.6: An example of a forward pass of IBFS. Note that during a forward S

grown pass, active nodes exist only in level Dy of S [2]

no orphans. All nodes in S are S-nodes, all nodes in T are T -nodes, and the rest
nodes are N-nodes. In a pass of the growth stage, IBFS chooses a tree to grow
(forward for S and backward for 7) for one level, this increases D; (or D;) and
L by one. Figure 2.6 gives an example.

Taking a forward growth pass as an example, in which tree S is grown, the
operation for a backward pass is symmetrical. Firstly, all nodes v in § with
ds(u) = Dy are set to be active. The pass then executes growth steps. This
may be interrupted by augmentation steps (when an augmenting path is found)
followed by adoption steps (to fix the invariants violated when some arcs get
saturated). At the end of the pass, if S has any nodes at level Dy + 1, Dj is
incremented by 1; otherwise the algorithm terminates.

The growth step picks an active node v and scans all residual edges (v, w)
leaving v. If w is a S-node, nothing is done about it. If w is a A -node, we
mark w as a S-node, set p(w) = v, and set ds(w) = Ds+ 1. If wisin 7T, an
augmentation step is performed. Once all residual edges leaving v are scanned, v
becomes inactive. If the scan on v is interrupted by augmentation, we record the
outgoing residual edge that triggered the augmentation. If v is still active after
the augmentation, the scan of v is resumed from that edge.

The augmentation step is performed when a residual edge (v, w) is found such
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ds=0 dszl dszz dt=2 dtzl dt=0

Figure 2.7: An example of augmentation step of IBFS [2]. The parent edges
of the orphan nodes are saturated during this augmentation. The
triangles represent the orphan sub trees that are created after the
augmentation. Note the augmenting path is always a shortest s — ¢

path in the residual graph.
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Figure 2.8: An example of adoption step of IBFS [2], in which orphan v is rela-
beled. The solid edges are residual edges which are tree edges. The
dashed edges are residual edges which are not tree edges. The trian-
gles represent orphan sub trees. Node v finds u as the lowest potential
parent and performs a relabel with u as his new parent. The children
of v then become orphans themselves and will be processed later dur-

ing this adoption phase.

that v is in S and w is in S, as shown in Figure 2.7. In such circumstances, the
path P obtained by connecting the s”v path in S, the edge (v, w), and the w"t
path in S is an augmenting path. We conduct augmentation on P, saturating
some of its edges. Saturating any arc (x,y) other than (v,w) creates orphans.
Note that z and y are in the same tree. If they are both in §, y is marked as an
S-orphan, otherwise x is marked as a 7-orphan. At the end of the augmentation
step, there are two sets (possibly empty) of S-orphans and 7-orphans. These
sets are handled during the adoption step.

The adoption step recovers the S and T trees by eliminating orphans, Figure
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2.8 gives an example. Here we assume S is grown thus we have S-orphans to be
processed. The adoption procedures for eliminating 7-orphans are symmetric.
To process an S-orphan v, the edges list is scanned starting from the current
edge and the scan stops when a residual edge (u,v) with ds(u) = ds(v) — 1 is
found. If such a w is found, v is marked as an S-node, the current edge of v is
set to be (v,u), and u is set to be the parent of v. If such a u can not be found,
the orphan relabelling operation is applied to v. This relabel operation scans the
whole edge list to find the u such that ds(u) is minimum and (u,v) has positive
residual capacity. If no such u exists, or if ds(u) > D,, we make v as a S-node
and mark nodes w such that p(w) = v as S-orphans. Otherwise we choose u to
be the first such node and set the current edge of v to be (v,u), set p(v) = u, set
ds(v) = ds(u) + 1, make v an S-node, and mark nodes w such that p(w) = v as

S-orphans. If v was active and now has ds(v) = D, + 1, we make v inactive.

2.2.4 Push Relabel Algorithm

Push relabel algorithm is also known as preflow push algorithm, which is devel-
oped by Goldberg and Tarjan [60]. Different from algorithms in augmenting path
family, push relabel algorithm do not keep the mass balance constraint hold at
all time. The graph is flooded with excess in push relabel algorithm, these excess
are either pushed towards sink ¢ to form actual s — ¢ flow, or pushed back to
source s for those can not reach t to satisfy mass balance constraint at the end
of algorithm execution.

Excess e(v) at a node v is defined as the amount of flow that incoming exceeds

outgoing

e(v)= > fluv)— > flv,w). (2.3)
(uv)eE (v,w)EE
An node with positive excess is termed as active node. In order to estimate the
distance of a node from s or t, distance label d is maintained for each node. For
source s and sink ¢, we have d(s) = n and d(t) = 0. For any edge (u,v) in the
residual graph, have d(u) < d(v) + 1.
Push relabel algorithm consists two basic operations: push and relabel. The

push operation pushes largest possible amount of flow through an admissible
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edge, the procedure of of push operation is given in Algorithm 1. Note that line
1 of Algorithm 1 is the condition test to see if edge (u,v) is admissible for push

operation.

Algorithm 1 Push Operation in Push Relabel Algorithm
Input: Graph G = (V| E,C), residual R, distance labeling d, excess e, and the

edge to push (u,v).
Output: Graph G = (V, E,C), residual R, distance labeling d and excess e.
1: if e(u) > 0, R(u,v) > 0 and d(u) = d(v + 1). then
2:  Send 6 = min(e(u), R(u,v)) amount flow through edge (u,v) as:
R(u,v) + R(u,v) — §; R(v,u) < R(v,u) + 0;
e(u) < e(u) — d; e(v) « e(v) + 9.
3: end if

Relabel is another basic operation in push relabel algorithm. When there is
no admissible edge to push, relabel operation adjusts distance labels to make
push operation possible again. The procedure in relabel operation is stated in
Algorithm 2. Note that line 1 in Algorithm 2 is the applicability test for relabeling

u.

Algorithm 2 Relabel Operation in Push Relabel Algorithm
Input: Graph G = (V, E,C), residual R, distance labeling d, excess e, and the

node to relabel w.
Output: Graph G = (V, E,C), residual R, distance labeling d and excess e.
1: if e(u) > 0 and VR(u,v) > 0 have d(u) < d(v). then
2. Relabel d(u) = min(d(v) : R(u,v) > 0) + 1.
3: end if

At the initial state of push relabel algorithm, the residual graph is identical
to input graph, the distance labeling is n for source s and 0 for all other nodes,
the source node has infinite excess. The algorithm starts with a set of initial
saturating push, in which for each edge (s,u) leaving source s is pushed with
a flow that equals its capacity C(s,u). Then the algorithm repeatedly perform
push and relabel operations to push excess and modify distance labeling. For a

push on (u,v), § = min(e(u), R(u,v)) flow is pushed from wu to v, which increases
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R(v,u) and e(v) by § and decreases R(u,v) and e(u) by the same amount. For
a relabel on u, the distance label d(u) is set to be the largest value allowed by
the valid labeling constraint. The algorithm terminates when there is no active
node left. At this point, none nodes except s and t has excess, thus the mass
balance constraint is satisfied and the preflow becomes flow which is the max-flow
obtained.

An example of push relabel execution is given in Figure 2.9 and 2.10. Figure
2.9a shows the input residual graph and distance labeling, the residual graph is
identical to input graph at this state. In Figure 2.9b, the initial saturating push
is conducted over all edges leaving source s, 20 flow are pushed through (s, u) and
(s,v) respectively. In Figure 2.9¢, active node u is relabeled, so that it can push
its 20 excess towards sink ¢ and node v. The excess on u is pushed through edge
(u,t) and (u,v) in Figure 2.9d and 2.9e, respectively. In Figure 2.9f, active node
v is relabeled, so that it can push excess towards ¢. In Figure 2.9g, 20 excess on
v is pushed to t via (v,t). In Figure 2.9h, active node v is relabeled as d(v) = 2,
so that edge (v, u) becomes admissible.

In Figure 2.10a, the remaining 10 excess on v is pushed to u. At this state,
there are two edges (u, s) and (u, v) leaving active node u with positive capacity.
Since d(s) = 4 and d(v) = 2, u is relabeled as d(u) = 3 in Figure 2.10b. Then
the excess on u is pushed to v via admissible edge (u, v) in Figure 2.10c. Next, in
Figure 2.10d node v is relabeled as d(v) = 4 and the excess on v is pushed to w.

The steps of push relabel algorithm is summarized in Algorithm 3.

2.3 Incremental Max-flow Algorithms

Based on above batch algorithms, some incremental max-flow algorithms are
propose for learning from dynamic graphs. In this section, we review the most

important incremental max-flow algorithms.

2.3.1 Incremental Push Relabel

Kumar and Gupta propose an incremental max-flow algorithm in [61] based on
push relabel mechanism. In their incremental push relabel algorithm, graph

change is considered as inserting and deleting of edge which equivalent to edge
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Figure 2.9: An example of max-flow search through push relabel. Part A
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Figure 2.10: An example of max-flow search through push relabel. Part B
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Algorithm 3 Push Relabel Algorithm
Input: Graph G = (V, E,C).
Output: Graph G = (V, E,C), residual R, distance labeling d and excess e.
1: Initialize residual graph as R(u,v) = C(u,v), V(u,v) € E;
2: Initialize distance label as d(s) =n and d(u) =0, Vu € V' \ {s};
3: Initialize excess as e(s) = oo and e(u) =0, Vu € V' \ {s};
4
)

: for Each (s,u) that C(s,u) > 0 do
Push C(s,u) through (s,u) as:
e(u) = C(s,u), R(s,u) = R(s,u) — C(s,u) and
R(u,s) = C(u,s) + C(s,u);

end for

while There exists a basic operation that applies do
Select a basic operation and perform it;

end while

capacity increase and decrease. These changes are addressed on one edge after
another.

For any edge inserting or deleting, the incremental push relabel algorithm first
finds the set of nodes that are affected by such change. In case of inserting a new
edge u, v, the possible newly formed flow will go through augmenting paths that
from source s to v and then v to sink ¢. The fist set of affected nodes which lie
on the path of s to u are found by Backward Breadth First Search (BBFS) from
u to s, and the second set of affected nodes which lie on the path of v to t are
found by Forward Breadth First Search (FBFS). On the other hand, when a edge
u, v is deleted, some existing augmenting path goes through s —u — v — t may
be affected. Thus the affected nodes are found by BBFS from u to s and FBFS
from t to v. The algorithm of BBFS and FBFS are given in Algorithm 4 and 5
respectively.

Based on the push relabel algorithm discussed in Section 2.2.4, Kumar and

Gupta give two lemmas that are important for helping identify affected nodes:

Lemma 1. For any node u in the result of push relabel algorithm, if have d(u) <

n, then no extra flow can be sent from source s to the node u.
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Algorithm 4 Backward Breadth First Search Algorithm
Input: Graph G = (V, E, (), start node u, end node v.
Output: Affected node set AF'F.

1: Initialize WORKSET = {u};

2: Initialize AFF = {u};

3: while WORKSET # 0 do

4:  Remove an element x from WORKSET

5. if x = v then

6: break

7. else

8: for all edges (y,z) € E do

9: if C(y,z) > 0 then

10: AFF = AFF U {y};

11: WORKSET = WORKSET U {y};
12: end if

13: end for

14:  end if

15: end while

Lemma 2. For any node u in the result of push relabel algorithm, if have d(u) >

n, then no extra flow can be sent from the node u to sink t.

The proof of Lemma 1 and 2 can be found in study [61].

Edge Insertion

For a edge (u, v) newly inserted, Kumar and Gupta’s algorithm firstly find affected
nodes and then use basic push relabel operation within the affected nodes (which
is normally a subset of the whole graph) to find the newly formed s — ¢ flow. In

finding the affected nodes, the following interpretation is given.

1. Each newly formed flow must starts from s and passes v in its way to t.
Flows that do not lead to u and t are useless as they will return to the

source S.
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Algorithm 5 Forward Breadth First Search Algorithm
Input: Graph G = (V, E, (), start node u, end node v.
Output: Affected node set AF'F.

1: Initialize WORKSET = {u};

2: Initialize AFF = {u};

3: while WORKSET # 0 do

4:  Remove an element x from WORKSET

5. if x = v then

6: break

7. else

8: for all edges (z,y) € E do

9: if C(x,y) > 0 then

10: AFF = AFF U {y};

11: WORKSET = WORKSET U {y};
12: end if

13: end for

14:  end if

15: end while

2. According to Lemma 1, on the way from s to u, only the nodes x that has
d(x) > n are the candidates of being affected nodes, because for those nodes

y that have d(y) < n can not receive extra flow from s.

3. According to Lemma 2, on the way from v to ¢, only the nodes x that has
d(x) < n are the candidates of being affected nodes. This is because for

those nodes y that have d(y) > n can not send extra flow to ¢.

4. Only edges (z,y) that have positive residual capacity R(z,y) > 0 can route
extra flow after (u,v) insertion.

Based on above four points, the identification of affected nodes in case of edge

(u,v) insertion consists two steps:

1. Add two extra conditions that d(z) > n and R(z,y) > 0 at line 9 of
Algorithm 4. Call above modified BBFS Algorithm with arguments that

from u to s.
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2. Add two extra conditions that d(x) < n and R(z,y) > 0 at line 9 of
Algorithm 5. Call above modified FBFS Algorithm with arguments that

from v to t.

Having all affected nodes identified, the incremental push relabel algorithm

then initialize the preflow f as:

1. The residual capacity for each edge leaving source node s to an affected
nodes.

2. Zero for any other edges (between affected nodes and sink t).

This preflow initialization is followed by a modified push relabel operation, in
which push and relabel process only applies on those affected nodes.

The incremental push relabel algorithm terminates when there is no more active
nodes in the graph. At this point, if there is any new flow formed due to the
insertion of (u,v), the new flow is found and added into the current flow. The
steps for incremental push relabel algorithm to handle edge insertion are stated
in Algorithm 6.

Algorithm 6 Incremental Push Relabel - Edge Insertion
Input: Graph G = (V, E, (), residual graph R, edge (u,v) to be inserted.
Output: Residual graph R.

1: Call Algorithm 4 to conduct BBFS from u to s;
2: Call Algorithm 5 to conduct FBFS from v to ¢;
3: Initialize distance label as d(s) = n and d(u) =0, Yu € V' \ {s};
4: Initialize excess as e(s) = oo and e(u) =0, Vu € V' \ {s};
5. for Each (s,u) that R(s,u) >0 do
6:  Push R(s,u) through (s,u) as:
e(u) = C(s,u), R(s,u) = R(s,u) — C(s,u) and
R(u,s) = C(u,s) + C(s,u);
7: end for

8: while There exists a basic operation that applies do
9:  Select a basic operation and perform it;
10: end while
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Edge Deletion

For a edge (v, w) removed from the original graph, there is a possibility of chang-
ing the max-flow only when there is flow goes through (v,w). In this case, when
(v,w) is deleted, the flow f(v,w) on this edge becomes zero and this amount of
flow must be pushed back from ¢ to w and then to v. Then the excess on v is
pushed as much as possible towards ¢ using alternate augmenting paths in the
modified graph. If there is some excess on v can not be pushed to ¢, it will be
pushed back to s.

In incremental push relabel algorithm, nodes v and w are set as active. The
algorithm try to push their excess toward s and ¢, in which there are three oper-

ations to be performed:

1. Pushing flow from ¢ to w;
2. Pushing flow from w to v;

3. Pushing flow from v and w towards ¢ and s.

For the first operation which is a preflow push problem is the reversed direction,
a reverse graph G is used. G¥ is obtained by reversing all the residual edges
in graph G. Since not all nodes in G are associated with the flow from t to w,
the FBFS algorithm is called with arguments w and ¢ to find the affected nodes.
Then a standard push relabel algorithm is applied on these nodes to push flow
from t to w.

Once the first operation is finished, f(v,w) amount of excess is pushed from w
to v. After this pushing, edge (v, w) can be safely removed since there is no flow
goes through it.

When first two operation are accomplished, node v has f(v,w) amount of
excess which is pushed from w in step 2 and node w may have some excess as
well. This is because over f(v,w) amount of flow is pushed from ¢ to w in step
1, as push relabel algorithm, different from augmenting path, can not control the
total amount of flow pushed.

For the third operation, the algorithm conducts two separated push relabel
procedure with active nodes v and w, respectively. The complete steps for incre-
mental push relabel algorithm to handle edge deletion are stated in Algorithm
7.
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Algorithm 7 Incremental Push Relabel - Edge Deletion
Input: Graph G = (V, E, (), residual graph R, edge (v, w) to be deleted.
Output: Residual graph R.

1: Reverse residual graph R, obtain G

2: Call Algorithm 5 to conduct FBFS from ¢ to w;

3: Call Algorithm 3 to push from ¢ to w in G¥, with constraint that all operations

are applied in affected nodes;

Push f(v,w) excess from w to v in R

Delete (v, w) from G and R;

Call Algorithm 5 to conduct FBFS from v to t;

Call Algorithm 3 to push from v to ¢ in G¥, with constraint that all operations

are applied in affected nodes;
8: Call Algorithm 5 to conduct FBFS from w to t;
9: Call Algorithm 3 to push from w to ¢ in G, with constraint that all operations

are applied in affected nodes;

2.3.2 Excesses IBFS Algorithm

Excesses IBFS (EIBFS) algorithm [58] is developed based on IBF'S algorithm and

is capable of learning max-flow from the dynamic graphs.

On Static Graphs

Different from IBFS and BK, in which a feasible flow is always maintained, EIBFS
is a generalized IBFS that maintains only a pseudoflow. Pseudoflow is a flow that
follows capacity constraint but not conservation constraints.

A node v is known as an excess if e(v) > 0 and a deficit if e(v) < 0. In EIBFS,
source s and sink ¢ are defined to has infinite excess and deficit, respectively.
EIBFS maintains two of node-disjoint forests S and 7. Each excess is a root of
a tree in S, and a root of tree in & must be an excess. Similarly, each deficit is a
root of a tree in 7, and a root in 7 must be a deficit. For a non-root node v in
S or T, p(v) is the parent of v in its respective forest. A node which is not in S
nor in 7 a is called free node.

EIBFS also maintains distance labels dg(v) and d;(v) for every node v, just as
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in IBFS. The edges in forests S and T are admissible with respect to d, and d;,
respectively.

Initially, every root r in S or in T has ds(r) = 0 or d;(r) = 0, respectively. But
new excesses and deficits formed in the algorithm execution may have arbitrary
distance labels. Thus the roots of a tree do not necessarily have zero distance
label. Similar to that in IBF'S, D, and D, are maintained as

D, = max,cs(ds(v))

Dy = maxe7(ds(v)). (2:4)

At the initial state of EIBFS, S has only s, S has only ¢, ds(s) = d;(t) = 0,
Ds = Dy = 0 and p(v) is empty for every node v. The EIBFS algorithm is
executed in phases. Each phase is either a forward phase (when the S forest
is grown) or a backward phase (when the T forest is grown). Every phase first
performs the growth steps, which may be interrupted by augmentation steps
(when an augmenting path is found) and followed by alternating adoption and
augmentation steps.

Let us take forward phase as an example to describe the procedures of EIBFS,
the procedures in backward phase are symmetric. For a forward phase, the goal
is to grow forest S by one level. If § has nodes at level Dy + 1 at the end of the
phase, D is incremented by one; otherwise the algorithm terminates.

In the forward phase, growth steps are firstly performed. All nodes v in S that
has ds(v) = Dy are marked as active. Then we pick an active node v and scan v
by examining all residual edges (v, w) leaving v. If w € S , we do nothing. If w
is a free node, we add w to S, set p(w) = v, and set dy(w) = Dy + 1. fw € T,
which means an augmentation path from s to t is found, augmentation step is
performed as described later. Edge (v, w) is recorded as the outgoing edge that
triggered the augmentation step. If v is still active after the augmentation step,
the scan of v is resumed from (v, w) to avoid re-scanning the edges processed. If
(v, w) is still residual and connects the forests, we do more augmentation steps
using it. After all edge out of v have been scanned, v becomes inactive. When
all nodes are inactive, the phase ends.

The augmentation steps in EIBFS are different from those in IBFS. When a
connecting edge (v, w) that has v € § and w € S is found, we increase the flow on

(v, w) by any feasible amount without violating the capacity constraint of (v, w).
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As a result of the flow added, an excess may be created in 7 and a deficit may
be created in §. We now alternate between augmentation steps and adoption
steps as we describe below. Once all excesses have been drained or removed from
T and all deficits have been drained or removed from S we continue to perform
growth steps.

We now introduce how to handle excesses created in 7. the deficits in S are
addressed symmetrically. A node v in 7 is called orphan if its parent arc (v, p(v))
is not admissible (possibly saturated) and have e(v) > 0. An augmentation step
is executed by picking an excess v in 7 and pushing flow out of v as described
below. This push may create orphans and more excesses in 7. If orphans are
created, adoption steps are performed to repair them. After orphans are repaired
we execute another augmentation step from another excess. Augmentation and
adoption steps stop when all excesses are drained or removed from 7.

Flow is pushed out of an excess v in T as follows. The tree path from v to
the root r in T are traversed. For every edge (z,y) in this path, we increase its
flow by minR(x,y), e(x). This means that we either drain the entire excess from
x or saturate the edge (z,y), making x an orphan. Root r remains a deficit if
not enough excess is drained into it. Otherwise it has e(r) > 0 and becomes an
orphan, thus it can no longer serve as a root in 7.

In adoption step, an orphan v in 7T is repaired by either setting a new parent
p(v) in T or by removing v from 7. The adjacency list of v is scanned starting
from the current arc and stop when an admissible outgoing edge is found or the
end of the list is reached. If an admissible edge (v, u) is found, we set the current
arc of v to be (v,u) and set p(v) = w. If no such edge can be found, we apply the
orphan relabel operation to v.

The orphan relabel operation scans the adjacency list of v to find a new parent
u for v. A node u is qualified to be a new parent of v if: 1) u is a node with
minimum d;(u) such that (v,u) has positive residual capacity; and 2) d;(u) < D;
for a forward phase, or dt(u) < Dt for a backward phase. If such u is found (may
be more than one), we set the first such node to be u, set the current edge of v
to be (v,u), set p(v) = u and set dy(v) = dy(u) + 1. As a result, every node w
with p(w) = v becomes an orphan. These new orphans need to be repaired by

adoption steps. If no such u is found, we make v a free vertex if e(v) = 0 or add
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v to S as a new root if e(v) > 0.

On Dynamic Graphs

EIBFS algorithm considers graph change as violations to flow feasibility or to the

invariants of the algorithm. The violations are summaries as following types:
(a) An edge (v,w) such that f(v,w) > C(v,w), due to edge capacity reduce;
(b) A new residual edge (v, w) such that v € S and w € T;

(c) A new residual edge (v, w) such that v and w are in § having ds(w) >

ds(v) + 1, or the symmetric case in tree T;

(d) A new residual edge (v,w) such that v and w are in S, ds(w) = dy(v) + 1,

and (v, w) precedes the current arc of v, or the symmetric case in tree T

(e) A new residual edge (v, w) such that v € S, ds(v) < Ds and w not in S,or

the symmetric case in tree 7.

These violations are fixed by some base operations introduced in the static
graph setting. Specifically, (a) is resolved by pushing flow along (w,v); (b), (c)
and (e) are fixed by by saturating edge (v,w). In these cases, new excesses or
deficits are generated. These excesses and deficits are solved by alternating aug-
mentation and adoption steps. The violation (d) is handled by simply reassigning

the current arc of v.

2.4 Summary

Based on above observations, we find that handling edge capacity reduce or edge
remove (i.e. the decremental learning) is the most difficult part for incremental
max-flow. As this operation need to redirect current flow in alternative path or
cancel current flow if it can not be redirected. The performance of an incremental
max-flow is determined, to a large extent, by its decremental operation.

We also found that both existing incremental max-flow algorithms apply push-

relabel style operation in handling edge capacity reduce. This method involves
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great amount of operations in neighbor search, flow push and node relabel, thus
has higher empirical computational complexity.

Alternatively, we decided to derive an incremental max-flow algorithm based
on augmenting path. In the next chapter, we introduce the proposed augmenting

path based incremental max-flow algorithm.
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3 Proposed Incremental
Max-flow Algorithm

3.1 Introduction

In this chapter, we present proposed incremental max-flow algorithm which is
constructed base on augmenting path algorithm. The augmenting path mecha-
nism is firstly introduced. Then we derived the max-flow updating procedures in
response to all possible graph changes.

For the convenience of algorithm derivation and clarity of presentation, we

summarize most notations used in this chapter in Table 3.1.

3.1.1 Motivation

We address max-flow problem because it is a fundamental algorithm in the graph
theory and can be used to solve various problems such as min-cut, multi-source
multi-sink max-flow, maximum edge-disjoint path etc [12]. Up to now, max-flow
has been adopted in vast real-world applications, such as bottleneck identification
for city traffic network [15] and bottleneck identification for power system security
index computation [16]. Also in wireless mobile environment, max-flow is being
applied to optimize the association between wireless clients and access points by
maximizing the traffic flow to clients [17] [18]. In addition, it has been widely
used in computer vision for image segmentation [20] [21] [24], stereo [27] [28] and
shape reconstruction [30].

In big data era, data is becoming available quickly in a sequential manner,
which requires system to process data in real time. For max-flow learning, if
a huge graph changes frequently over time, then it is obviously not efficient to

always retrain max-flow from scratch. Consider incremental max-flow, existing
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Notation | Descriptions

G weighted graph, G = (V, E, ()
V node set

E edge set

C capacity set

u, v node u, node v
, source node, sink node
e edge e
u,v) edge from node u to node v
C(e), C(u,v) | capacity on edge e and (u,v)
R residual graph, R = (V, E, R)
R(e), R(u,v) | residual capacity on edge e and (u,v)

f(u,v) flow value on edge (u,v)
F net flow value, F' =Y ,cv f(u,t)
P path

Table 3.1: Notations

algorithms apply push-relabel style operation in handling edge capacity reduce,
which is the key component that determines the performance. This push-relabel
method involves great amount of operations in neighbor search, flow push and
node relabel, thus has higher empirical computational complexity. Note that max-
flow has the solution of either push relabel or augmenting path [12]. Apparently,

incremental max-flow via augmenting path is still left as an open question.
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3.2 Preliminary

Definition 3.2.1. A flow on G is a real valued function f() if the following

conditions are satisfied:

flu,v) = =f(v,u), V(u,v) €V xXV; (3.1a)
fu,v) < C(u,v), ¥Y(u,v)eV xV; (3.1b)
S flu,v) =0, YveV\({st} (3.1c)

Let net flow F' = Y ,cv f(u,t) be the summation of flows into sink ¢. Then,
the max-flow problem is to determine a flow from s to ¢t with the maximum net
flow F'. In the rest of this work, we denote the direction from s to ¢t as s — t.

Augmenting path algorithm stores information about the distribution of the
current s — ¢ flow F' among the edges of G using a residual graph R = (V, E, R).
The topology of R is identical to G (i.e., G and R share the same V and E), but
R(e) the capacity of edge e in R reflects the residual capacity of the same edge
in G given the amount of flow already in the edge. At the initialization, there is
no flow from the source to the sink (F' = 0) and edge capacities in the residual
graph R are equal to the original capacities in G i.e. R(e) = C(e),Ve € E.

Augmenting path algorithm is an iterative procedure of the following two steps:
1) find s — t path using Breadth-First Search (BFS). The resulting path P is a
set of edges with positive residual capacity laid end to end connecting s to t, such
as P = {(s,u), (u,v), (v,t) | R(s,u) >0, R(u,v) >0, R(v,t) > 0}.

2) augment the s — ¢ path found above. We firstly find the max amount
of flow can go through this path P, which is termed augmentation value and
denoted as Ap in the rest of this work. As it is a bottleneck problem here, Ap
can be calculated as the minimum residual capacity of the whole path Ap =
min(R(u,v) | V(u,v) € P). Next, we send Ap flow through path P in R as,

R(u,v) = R(u,v) — Ap,V(u,v) € P

R(v,u) = R(v,u) + Ap,V(u,v) € P (3.2)

The above two steps are iteratively executed until no more s — ¢ path can be
found. Algorithm 8 gives the pseudo code of batch Augmenting Path.
As a result of max-flow search through Algorithm 8, we obtain a residual graph

R. From max-flow to min-cut, we simply perform BFS or DFS on R to find the
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Algorithm 8 Augmenting Path Max-flow Batch Learning
Input: G = (V,E,C), s and t.
Output: R and F.

. Initialize R(e) = C(e),Ve € E, F =0;

1

2: Find a s — ¢t path P from the initial residual graph R;

3: while There is a s — t path P do

4:  Compute the amount of flow for augmentation: Ap =
min(R(u,v) | Y(u,v) € P);

5. Augment the path P, via updating the residual graph as R(u,v) = R(u,v)—
Ap,¥(u,v) € P and R(v,u) = R(v,u) + Ap,¥(u,v) € P;

6:  Update the flow value as F' = F' + Ap;

7. Find a s — t path P from the updated residual graph R.

8: end while

set of nodes S reachable from s, and define ' = V' \ S, then (S,T') is the s — ¢
min-cut.

Before the further derivation, let’s review some basic property of the residual
graph R. Recall the augmentation procedure in Algorithm 8, for any edge (u,v)
if Ap flow is sent through it, we reduce R(u,v) and increase R(v,u) by Ap which
means Ap capacity is taken from R(u,v) (what left is the capacity available for
later use) and expanded for R(v,u) (available capacity can be used for sending

flow through (u,v)). Thus, in any state of Algorithm 8, have
R(u,v) + R(v,u) = C(u,v) + C(v,u), V(u,v) € E. (3.3)
The flow go through any edge (u,v) can be traced by
f(u,v) = C(u,v) — R(u,v) = R(v,u) — C(v,u), Y(u,v) € E. (3.4)

Note that flow conditions (3.1) holds for (3.4).

Now we can give the condition for R being the residual graph of G.

Theorem 3. Given a graph G = (V, E,C) and a pseudo residual graph R, com-
pute [ through (3.4), if (3.3) and (3.1) are satisfied, R is the residual graph for
G.

Then we give the termination criteria for Algorithm 8 as
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Theorem 4. A flow F stored on R is a maz-flow for G if and only if the residual
graph R contains no s —t path.

The proof of above theorems can be found in [62] and [12].

3.3 Proposed Incremental and Decremental
Max-flow Algorithm

3.3.1 Incremental Max-Flow Setup

According to the batch max-flow stated in Section 3.2, a max-flow model is repre-
sented as a residual graph R. Thus the goal of incremental decremental max-flow
is to update R in response to graph update due to the changes of data.

Given graph G = (V| E, C) and its updated graph G’ = (V' E’, C"). We observe
four types of graph change: edges deleted, nodes deleted, nodes added, and edges
added. For edges deleted, an edge with positive capacity indicates a sequential
graph operation on G: reduce first the capacity of the edge to zero, followed
by the deletion of this edge. Similarly for edges added, an edge with positive
capacity implies a two-step graph operation: 1) add edge with zero capacity and
2) increase edge capacity to C’(e). In general, we summarize the following six

categories graph operation, by which G can be transformed to G’.

(a) a set of edges FE, have capacity C, to be reduced (i.e., C'(e) = C(e) —
C.(e), VeeE,);

(b) a set of edges Ey4 to be deleted (i.e., e € E e¢ E', Vee€ Ey);
(c) a set of nodes V; to be deleted (i.e.,v €V v & V' Vuve V),
(d) a set of nodes V, to be added (i.e, v¢ V veV' Yvel,),
(e) a set of edges E, to be added (i.e.,e ¢ E e€ E', Ve€ E,);

(f) a set of edges E, with each edge e capacity to be increased by Cy(e) (i.e.,
C'(e) =C(e) + Cyle), Vee E,).
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As updating residual graph R in response to all changes of G’ against G, we
combine all above six categories operations into one task list. For each step graph
update, we pick up a set of tasks from the list, apply the tasks to GG, and conduct
the corresponding graph update on R meanwhile always keeping R to be the
residual graph of G. Afterwards, we remove the processed tasks from current
task list. This iteration continues until current task list is empty (i.e., G becomes
G’). Consequently, we obtain the updated residual graph R’. Here, we address
decremental learning first instead of the other way around, because decremental
learning deducts the scale of graph which reduces the complexity of incremental

max-flow learning.

3.3.2 Decremental Max-Flow

In the case a), an edge (u,v) € E, has capacity C.,.(u,v) to be reduced. Consider
edge capacity has non-negativity constraint. Thus C,(u,v) is required to be no
greater than initial capacity C'(u,v).

If R(u,v) > C,.(u,v)) which means there is enough “unused” capacity for this

reduce, then we simply reduce R(u,v) by C,(u,v) and we have R’ as

R'(u,v) = R(u,v) — Cp.(u,v)

(3.5)
R'(e) = R(e) | Ve € E\ (u,v).

Lemma 5. If R(u,v) > C.(u,v), then R' in (3.5) is the residual graph of G' =
(V,E,C"), where C'(u,v) = C(u,v) — C.(u,v) and C'(e) = C(e) | Ve € E'\ (u,v).

In simple capacity reduce, the max-flow value remains F' = F.

Proof. As have R'(u,v) = R(u,v)—C\(u,v), C'(u,v) = C(u,v)—C.(u,v), R'(e) =
R(e) | Ve € E\(u,v)and C'(e) = C(e) | Ve € E\(u,v), thus (3.3) holds for R’ and
G' = (E,V,C"). Also we have fo(u,v) = C'(u,v)—R'(u,v) = C(u,v)— R(u,v) =
fa(u,v), thus fo satisfies (3.1). Applying Theorem3, R’ is the residual graph of
G' = (V,E,C"). As fo(e) = fa(e) | Ve € E, the max-flow value remains. O

If R(u,v) < Cy(u,v), which follows that there is not enough residual capacity
left to be reduced due to some capacity on (u, v) is occupied by the current flows,

then we need to release the occupied capacity before reduce.
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Figure 3.1: An example of cycle flow. (a) the residual graph; (b) the actual flow.

The current flow here can be either cycle flows or existing s — t flows. Figure
3.1 gives an example of cycle flow. It is worth noting that the existence of a
cycle flow may not only due to the input graph has a cycle. It is possible to form
a cycle flow in the flow updating (adding and removing) process due to certain
coincidences. Figure 3.2 gives an example of the formation of a cycle flow during
continuous flow changing.

If capacity on (u,v) is occupied by cycle flows, then we release the capacity
by canceling the cycles, for which we firstly find cycles by searching u — v path
with positive residual capacity from the residual graph, then cancel the located
cycles by sending the same amount of flow in a revised direction along the cycles.
Figure 3.3 gives an example of the cycle cancellation. Note that canceling a cycle
flow does not change current s — t flow, as cycle flow has no overlap with current
s —t flow.

In the case that capacity on (u,v) is occupied by s — ¢t flow. Let 3 be the
amount of capacity to be released, clearly ¥ = C,.(u,v) — R(u,v). To release ¥
capacity on (u,v), we send ¥ flow from sink ¢ to source s through a number (i.e.
could be more than one) of paths go through (u,v). Note that a single ¢t — s path
passing (u,v) may not be able to deliver required > flow.

As discussed before, augmentation is about sending flow from s to t. Con-
trarily, sending flow reversely from ¢ to s means a reversed direction augmen-
tation. We name the operation as de-augmentation. Similar to augmentation,
de-augmentation is an iterative process, and each iteration consists of three steps:

a) find at —v —u — s path P (i.e., at — v plus a u — s path); b) determine the
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Figure 3.2: An example of the formation of a cycle flow in flow changing. (a) the
initial s — ¢t flow s —a—b—c—t; (b) anew s — ¢t flow s—c—a —tis
added due to newly inserted edges; (c) flow s —a — ¢ removed due to
edge removal; (d) flow s — ¢ — ¢ removed due to edge removal, what

left is a cycle flow a — b — ¢ — a.

amount of flow to de-augment Q = min({3, R(e) | Ve € P}); and c) sent {2
capacity through ¢t — v — u — s path P by updating residual graph.

The steps of one iteration cycle cancellation and de-augmentation are described
in Algorithm 9.

Lemma 6. Algorithm 9 output R’ is the residual graph of G = (V, E,C), and F’

is the flow value on R'.

Proof. As R’ is initialized by residual R and only edges on path P are updated, so
condition (3.3) and (3.1) hold for all remaining nodes and edges of R’ except those
on path P. As path P edges are updated by R'(u,v) = R'(u,v) — Q,¥(u,v) € P
and R'(v,u) = R'(v,u) + Q,V(u,v) € P, all path P edges lose Q capacity and
their revised edges receive () capacity. This means, the cycle flow is canceled and

the s — t flow remains unchanged for cycle flow case. In de-augmentation case, a
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Figure 3.3: An example of cycle flow cancellation. (a) initial graph; (b) initial
residual graph; (c) initial flow; (d) objective graph, where edge (u,v)
need to be removed from initial graph; (e) a u — v path is found in
current residual graph; (f) the complete cycle u — w — v — u is found;
(g) the residual graph after sending 1 flow along cycle u —w — v — u;

(h) now edge (u,v) can be removed safely.
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Algorithm 9 Cycle Cancellation and De-augmentation
Input: G = (V,E,C), R, F, s, t, (u,v) and X.
Output: R’, I’ and 2.
1: Initialize R’ = R;
2: if A w — v path P,_, can be found from R’ then
3:  Form a complete cycle path as P ={P,_,, (v,u)};
4:  Compute the flow value in the cycle P as 2 = min(R(e) | Ve € P);
5. Cancel the cycle P, via updating the residual graph as R'(u,v) = R'(u,v)—
Q,V(u,v) € Pand R'(v,u) = R'(v,u) + Q,¥(u,v) € P;
6: F'=F;
7: else if At — v path P,_, and a u — s path P,_, can be found from residual
graph R’ then
8:  Form a complete path to de-augment as P = {P,_,, (v,u), P,_s};

9:  Compute the amount of flow to de-augment as Q = min(X, {R(e) | Ve €
P});

10:  De-augment the path P by (2, via updating the residual graph as R'(u,v) =
R'(u,v) — Q,¥(u,v) € P and R (v,u) = R'(v,u) + Q,V(u,v) € P;

11:  Compute F/ = F — Q.

12: end if

Q flow is removed form the original s—t flow, so that F' = F'—. Also, condition
(3.3) and (3.1) are satisfied for these path P nodes and edges. By Theorem 3, R’
is a residual graph of G = (V, E, C). O

Consdier we can only release € capacity on (u,v) by Algorithm 9. To release
Y(X > Q) capacity, we call Algorithm 9 iteratively until ¥ capacity is released in
total. Next we apply simple reduce to R(u,v). The complete procedure is given
in Algorithm 10. Note that Algorithm 9 is called here just once when the graph
is an unit graph. This is because one de-augmentation releases all flow on (u,v).

By Lemmab and 6, we easily know that

Lemma 7. Algorithm 10 output R’ is the residual graph of G' = (V, E,C"), and
F" is the flow value of R'. Here, C'(u,v) = C(u,v) — Cp(u,v) and C'(e) =
Cle) |Ve € E\ (u,v).
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Algorithm 10 Capacity Reduce through Cycle Cancellation and De-
augmentation
Input: G=(V,E,C), R, F, s, t, (u,v) and C,(u,v)
Output: G' = (V. E,C"), R and F".
. Initialize " = R, G' =G, F' = F

1

2: Compute the total amount to de-augment > = C,.(u,v) — R(u,v);

3: while > > 0 do

4:  Conduct de-augmentation through Algorithm 9 to update R’, F’ and cal-

culate €;
5. Update X by ¥ = X — (;
6: end while

7. Apply simple capacity reduce on (u,v) as R'(u,v) = R'(u,v) — C,(u,v) and
C'(u,v) = C'(u,v) — Cp(u,v)

Remind that we have a set of edges E, whose capacity needs to be reduced
for max-flow update. Firstly, we perform simple reduce on those edges that are
applicable and have R(e) > C.(e). For remaining edges, we conduct iteratively
the following two operations until all edges in E, are addressed: a) apply Algo-
rithm 10 on an edge to release its capacity, and b) conduct simple reduce on those
edges that newly become applicable due to operation a). Algorithm 11 presents
the steps of capacity reduce on E,.

In Algorithm 11, simple reduce (i.e., line 9 and 10) is conducted when Algo-
rithm 10 is called. This is because that edges originally not applicable for simple
capacity reduce may become applicable (i.e., satisfy the condition of line 9) after
Algorithm 10 is executed. For instance, we have a s — u — ¢t path that carries
unit flow. Here, neither (s,u) nor (u,t) is applicable for simple reduce because
their capacities are occupied by the flow. When we apply Algorithm 10 to release
residual capacity on (s,u), the algorithm releases actually the residual capacity
of the whole s — u — t path including (s,u) and (u,t). Therefore the capacity
release on (s,u) turns (u,t) into being applicable for simple reduce.

Further based on Lemma 5 and 7, we have

Lemma 8. Algorithm 11 output R’ is the residual graph of G' = (V, E,C"), F' is
the flow value in R'. Here C'(e) = C(e)—C\(e) | Ve € E,. and C'(e) = C(e) | Ve €
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Algorithm 11 Capacity Reduce on E,
Input: G = (V,E,C), R, F, s, t, E. and C,.
Output: G' = (V, E,C"), R and F".
1: Initialize R = R, ' =C, G' = (V,E,C"), F' = F;
2: Find subset E, in E, such that R'(e) > C.,(e) | Ve € E;
3: Conduct simple capacity reduce on each edge in Fy, as R'(e) = R(e) — C,(e),
C'(e) =C(e) — Cy(e) | Ve € Ey;
Delete edges in Ey, from E, as E, = E,. \ E;
while E, is not empty do
Pick the first edge (u,v) from E,;
Apply Algorithm 10 on (u,v) to obtain updated G', R' and F”;
Delete edge (u,v) from E, as E, = E, \ (u,v);
Find subset F,. in FE, such that R'(e) > C.(e) | Ve € Eq;
10:  Conduct simple capacity reduce on each edge in E, as, R'(e) = R(e) —
Cr(e), C'(e) = Cle) = Crle) | Ve € Egr;
11:  Delete edges in Fy, from E, as E, = E, \ E,
12: end while.

E\ E,.

On the other hand, R’ may not carry the max-flow of G’, as new s — ¢ paths
might be formed by newly released edges and those edges originally have no flow
carried. To compute max-flow on G’, according to Theorem 4 we simply augment
s —t paths in R’ until no more s —t paths are found. For simplicity, we postpone
this augmentation until graph G is expanded with new edges and nodes (i.e,
graph update case (d), (e) and (f)), and carry out all augmentation works in one
batch.

Now we address graph update case (b). We can safely delete all E4 edges in
G' and R/, as the capacity of these edges have been reduced to zero. For graph
update case (c), we simply delete all V; nodes in G’ and R’ simultaneously, as
any edge associated with these nodes has already been deleted in case (b).

Figure 3.4 gives an example max-flow decremental learning. Recall the example
in Fig. 2.2. Let Fig. 6.5a be the initial graph, our objective here is to remove edge
(u,v) from Fig.6.5a and find the max-flow of Fig. 3.4a by updating residual graph
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Figure 3.4:

() (f)

An example of decremental max-flow learning through de-
augmentation. (a) objective graph; (b) initial residual graph, a flow
of 10 should be sent from v to w in order to release the capacity on
(u,v); (¢) a t — s path goes through (v,u) shown in dotted lines;
(d) residual graph after de-augmenting the ¢t — s path, now (u, v) has
enough capacity to be reduced; (e) reduce the capacity of (u,v) by 30
and remove the empty edge, and obtain the residual graph of (a); (f)
the actual max-flow on (a).
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Fig. 2.2c. Edge (u,v) has a capacity of 30 in which 10 is occupied by existing
s —t flow. Thus we firstly release 10 capacity on (u,v) through de-augmentation,

then reduce the capacity of (u,v) to zero, finally remove the edge from the graph.

3.3.3 Incremental Max-flow

For graph update case (d), we simply add all V, nodes into G" and R/, respectively.
Similarly for case (e), we expand G’ and R’ with edges in F,. Note that R’ is
the residual graph of G’ holds for case (b), (c), (d) and (e) since no capacity is
changed in these updates and the topology of R’ for all cases is kept the same as
G’
For graph update case (f), the capacity of each edge (u,v) € E, is required to
increase by Cy(u,v). Thus, we increase R(u,v) by Cy(u,v),
R'(u,v) = R(u,v) + Cy(u,v)
R'(e) = R(e) | Ve € E\ (u,v).
Lemma 9. for (3.6) R is the residual graph of G' = (V,E,C"), and the flow
value keeps F' = F. Here C'(u,v) = C(u,v) + Cy(u,v) and C'(e) = C(e) | Ve €
E\ (u,v).

(3.6)

The proof of Lemma 9 is similar to that of Lemma 5, thus is omitted here.

Applying (3.6) to all edges in E,;, we have
R'(u,v) = R(u,v) + Cy(u,v) | V(u,v) € E, (3.7)
R'(e) = R(e) | Ve € E\ E,. '

Based on Lemma 9, we have the following guarantee on R/,

Lemma 10. for (3.7) graph R’ is the residual graph of G' = (V, E,C"), and the
flow value keeps F' = F. Here C'(e) = C(e) + Cyle) | Ve € E, and C'(e) =
C(e) |Vee E\ E,.

As the result of graph update case (a) to (f), we have the updated G’ and R'.
By Lemma 8 and 10, R’ is the residual graph of G'. In finding max-flow on G’,
we augment iteratively any s —t path found on R’ until no more s —t path can be
found. According to Theorem 4, the resulting R’ from the augmentation carries

the max-flow on G’. The complete procedure of incremental max-flow is given in
Algorithm 12.
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Algorithm 12 Incremental and Decremental Augmenting Path algorithm
Input: G = (V,E,C), R, F, s, t, E,, Cy, Eq, Vg, Vo, Eq, E,, C,.
Output: G' = (V' E',C"), R, F'.
1: Apply Algorithm 11 to conduct capacity reduce on FE,, and obtain G' =
(V,E,C"), R and F"
Delete edges in E,; from F as E' = E'\ Ey
Delete nodes in V; from V as V' =V \ Vy;
Add nodes in V,, into V' as V! = V' U V;
Add edges in E, into ' as E' = E' U E,;
Conduct simple capacity increase in E, as (3.7);
Find a s — t path P in the residual graph R,
while There is a s — ¢t path P do
Compute the amount of flow to augment as Ap = min(R'(u,v) | V(u,v) €
P);
Augment the path P, via updating the residual graph as R'(u,v) =
R'(u,v) — Ap,¥(u,v) € P and R'(v,u) = R'(v,u) + Ap,V(u,v) € P;
11:  Update the flow value as F' = F' + Ap;
12:  Find a s — t path P from the updated residual graph R’
13: end while.

[t
<

3.3.4 Complexity Analysis

According to [12], batch augmenting path algorithm takes O(|V||E|?) time to
find a max-flow from a graph. Our graph as defined in Section 4.2.1 is basically
an unit graph with most edges capacity as 1. In this case, batch augmenting
path takes O(F|E|) time for computing a max-flow. Here, F' is the number of
augmentation.

Consider decremental learning of max-flow. Proposed algorithm involves an
iterative de-augmentation plus a followed iterative augmentation. For each de-
augmentation iteration, BFS takes O(|E,|) time to find a ¢t — s path, where
E, is the set of edges occupied by current max-flow. The total number of
de-augmentation is AF, which equals to the amount of flow lost in the de-
augmentation step. In the worest case, the graph after de-augmentation re-

quires additional AF augmentation to find the max-flow. Each augmentation
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takes O(|E|) time. Thus the overall complexity for decremental learning is
O(AF|E,| + AF|E|) = O(AF|E]).

For incremental learning of max-flow, proposed algorithm performs an iterative
graph augmentation in response to newly added edges. The graph after edge
adding has |E’| edges in which |E,| edges are occupied by existing max-flow thus
are not involved in the s — ¢ path search. In this sence, each augmentation
costs O(|E'| — |E,|). Due to new edges added, AF = F’ — F augmentations
are required to caculate emerged flows, and the total cost on updating max-flow
is O(AF(|E'| — |E,|)). As compared to batch retraining whoes complexity is
O(F'|E"]), proposed algorithm saves computational costs in reducing the number

of augmentations and the scale of s — ¢ path search.

3.4 Experiments and Discussions

3.4.1 Experiment Setup

We compare proposed incremental max-flow with the preflow push based incre-
mental max-flow in two scenarios: (1) graph continuously expanding; and (2)
graph continuously shrinking. Meanwhile, we use batch augmenting path and
batch preflow push max-flow as the baselines. All experiments are conducted on
randomly generated unit graphs [12]. All algorithms are coded in Matlab and
executed on a laptop with Intel i7 2.4GHz CPU and 8 MB memory.

For performance evaluation, we measure a set of variables on which we add
“BA”, “OA”.“BP” and “OP” to identify batch augmenting path, incremental
augmenting path, batch preflow push and incremental preflow push algrorithms,

respectively. The list of variable includes,
1. The ratio of edge number to node number in a graph, ENr;
2. The flow value of max-flow F'V;
3. The number of augmentations conducted, nAugBA and nAugOA;

4. The number of active nodes (i.e. the nodes that max-flow goes through)

nAnBA and nAnOA;
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5. The ratio of active node number to total node number, ANrBA and ANrOA;

6. The CPU time (in seconds) cost on finding max-flow tBA, tOA, tBP and
tOP;

7. The Gain of our algorithm with respect to batch augmenting path as

tOA
m=1——; :
Gain BA (3.8)
8. The number of push and relabel operations n PushB P, nRelabel BP, nPushOP

and nRelabelOP.

3.4.2 Results of Learning Graphs Continuously
Expanding

As learning expanding graphs, we start with an initial graph of 500 nodes and 500
edges. For each stage of expanding, additional 500 edges are added to the graph.
Proposed incremental augmenting path and the incremental preflow push [63] are
able to incrementally learn the graph while it is expanding. In contrast, the two
batch max-flow algorithms have to learn from scratch for every stage of graph
expanding.

Table 3.2 gives the comparison results in which the status of max-low lean-
ing is observed in 20 stages of graph expanding. Consider proposed incremental
max-flow is augmenting path based, we compare firstly proposed algorithm with
batch augmenting path max-flow. As seen from the table, flow value (F'V') grows
consistently with the increase of ENr, which indicates more flows can be sent
through the graph while it is expanding. After each stage of expanding, proposed
algorithm identifies only those newly formed flows, whereas batch augmenting
path has to find all flows in the expanded graph. This follows that the num-
ber of augmentations (nAug) for batch augmenting path, equals always to the

accumulative sum of that for proposed incremental augmenting path,
nAugBA; = nAugOA; + nAugOA; + ... nAugOA;. (3.9)

This is shown in column nAugBA and nAugOA of Table 3.2. Hereafter if any two

valuables satisfy (3.9), we say these two valuables are accumulative equivalent.
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Figure 3.5: Gain and ANr for graph expanding

For CPU cost, the number of augmentations determines the running time. Con-
sider nAugBA and nAugOA are accumulative equivalent. A quasi accumulative
equivalence is expected on CPU cost, tBA and tOA. This expectation has been
verified in corresponding columns of Table 3.2. By (3.8), the Gain of our algo-
rithm increases steadily from 0 towards 1. This is demonstrated in both Table 3.2
and Fig. 3.5. However, the achieved Gain is found at the cost of a more complex
max-flow (in terms of active node ratio), since ANTOA in Fig. 3.5 is constantly
higher than ANrBA. This can be explained that our algorithm seeks max-flow
from edges observed so far (i.e., local optimal) at each stage, and combine all
local results into the final max-flow.

Next we consider comparison to preflow push algorithms, we can see that pro-
posed incremental augmenting path runs always faster than incremental preflow
push. Surprisingly, we also find that the incremental preflow push executes even
slower than batch retraining in most of cases. This phenomenon can be explained
by the fact that incremental preflow push handles edge adding in a sequential way,
one edge at a time. Each edge adding leads to a small set of push and relabel
operations. When a large chunk of edges are added, the total number of push and
relabel operations can be greater than that of batch retraining, which is shown

in Table 3.2. This indicates that the incremental preflow push is inefficient when
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ENr FV nAugBA nAugOA nDeAugOA nAnBA nAnOA tBA tOA Gain
20 81 81 81 0 147 147 8.02 8.02 0.00
19 80 80 5 6 149 152 7.76 1.05 0.86
18 74 74 5 11 139 150 7.04 1.27 0.82
17 68 68 4 10 130 131 6.36 0.96 0.85
16 61 61 10 17 122 137 5.52 1.97 0.64
15 54 54 3 10 110 125 4.72 0.87 0.82
14 51 51 1 4 106 108 4.40 0.32 0.93
13 50 50 10 11 108 114 4.26 1.56 0.63
12 44 44 6 12 101 117 3.67 1.12 0.69
11 42 42 6 8 102 109 3.46 0.86 0.75
10 37 37 5 10 93 105 2.98 0.94 0.68
9 32 32 9 14 85 100 2.48 1.36 0.45
8 28 28 9 13 76 97 2.01 1.29 0.36
7 24 24 5 9 71 80 1.60 0.70 0.56
6 23 23 10 11 70 84 1.35 0.99 0.26
5 20 20 5 8 68 70 0.99 0.53 0.47
4 14 14 8 14 49 73 0.48 0.83 -0.75
3 11 11 8 11 50 60 0.32 0.46 -0.43
2 6 6 5 10 35 58 0.12 0.57 -3.81
1 1 1 0 5 0 0 0.00 0.04 -7.87

Table 3.3: Results for graph shrinking on 500 nodes

edges are added in a chunk manner.

3.4.3 Results of Learning Graphs Continuously Shrinking

As learning from shrinking graphs, we start with an initial graph of 500 nodes and
10,000 edges. For each stage of shrinking, 500 edges are removed from the current
graph. Proposed incremental augmenting path and the incremental preflow push
are able to decrementally learn the graph while it is shrinking, whereas the two
batch algorithms have to learn the shrinked graph from scratch.

Table 3.3 gives the comparison results for 20 stages graph shrinking. We com-
pare firstly proposed algorithm with batch augmenting path max-flow. As seen
from the table, flow value (F'V') reduces consistently with the decrease of ENT,
which indicates fewer flows can be sent through the graph while it is shrinking.
For each stage of shrinking, proposed algorithm conducts first de-augmentation
to remove the flows that go through those s — ¢t paths with at least one edge
removed. This reduces current flow value. Next, augmentation is carried out
to find new s — t paths through which new flows can be sent. This increases
current flow value. Consider the case of unit graph, the actual flow value change
is AFV = —nDeAugOA + nAugOA, since a s — t path carries always unit flow.
Recall that batch augmenting path needs to find all flows, thus nAugBA = FV
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Figure 3.6: Gain and ANr for graph shrinking

holds for every stage of graph shrinking, and have
nAugBA; = FV; = FV;_; — nDeAugOA; + nAugOA,;. (3.10)

This is shown in column F'V to nDeAugOA in Table 3.3.

For CPU cost, the running time for both batch and incremental augmenting
path is mainly determined by the number of augmentation and de-augmentation.
As seen in Table 3.3, nAugOA+nDeAugOA fluctuates over stages, but nAugBA
reduces constantly with ENr. Correspondingly, tOA and tBA show the similar
pattern of fluctuation and decrease, respectively. By (3.8), the Gain of our al-
gorithm decreases as graph shrinking, and become negative in the end. This
is shown in both Table 3.3 and Fig. 3.6. Here, a straightforward conclusion
can be made, proposed incremental augmenting path is effective when a small
proportion of edges are removed from graph. When removal proportion goes
above a certain threshold, incremental learning may take longer time than batch
retraining. Similar to graph expanding, in handling graph shrinking proposed
incremental augmenting path gives often more complex max-flow than that of
batch retraining.

Secondly we compare proposed algorithm with two preflow push approaches.
From our experiences, incremental preflow push converges often extremely slow

on large graph decremental learning. Thus for this comparison, we carry out a
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ENr FV nAugBA nAugOA nDeAugOA nAnBA nAnOA tBA tOA Gain
10 37 37 37 0 39 39 0.29 0.29 0.00
9 36 36 6 7 39 39 0.27 0.10 0.63
8 33 33 5 8 39 39 0.24 0.10 0.59
7 29 29 5 9 37 37 0.20 0.10 0.50
6 24 24 5 10 36 37 0.16 0.10 0.38
5 20 20 4 8 30 35 0.13 0.08 0.37
4 13 13 3 10 23 26 0.08 0.07 0.07
3 10 10 4 7 18 18 0.05 0.06 -0.29
2 8 8 1 3 15 15 0.03 0.02 0.14
1 4 4 0 4 6 6 0.01 0.02 -0.57

ENr FV tBP tOP nPushBP nRelabelBP nPushOP nRelabelOP
10 37 2.73 2.73 2237 1826 2237 1826
9 36 2.50 81.73 2161 1775 66320 58698
8 33 2.47 79.30 2135 1705 64826 56757
7 29 2.31 72.26 2106 1661 59376 51211
6 24 2.11 73.31 2028 1586 60285 50655
5 20 1.89 81.50 1847 1418 66911 54916
4 13 1.52 63.00 1611 1211 53884 42882
3 10 1.27 36.04 1447 1095 31499 24278
2 8 0.37 10.87 468 351 9966 7871
1 4 0.14 0.35 177 148 299 270

Table 3.4: Results for graph shrinking on 50 nodes

simple experiment on 50-node graph. Table 3.4 gives the results. As we can
see, proposed incremental augmenting path excutes over 100 times faster than
the incremental preflow push in handling graph shrinking, and the incremental

preflow push is again found even slower than the batch preflow push retraining.

3.5 Summary

In this chapter, a novel augmenting path based incremental max-flow algorithm is
developed to update max-flow whenever graph changes. The theoretical guaran-
tee of proposed incremental max-flow is the learning effectiveness of incremental
max-flow equals to that of batch max-flow retraining. This equivalence is proved
both theoretically and experimentally. As compared to incremental preflow push,
the converging speed of proposed algorithm is found much faster. This is because
that our algorithm handles multiple graph changes in one batch, whereas incre-

mental preflow push processes merely one graph change at a time.
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4 Implement the Proposed
Incremental Max-flow on

Semi-supervised Learning

4.1 Introduction

In this chapter, the proposed incremental max-flow algorithm is applied to up-
grade an existing batch semi-supervised learning algorithm know as graph mini-
cuts to be an incremental algorithm.

In big data era data volume and velocity increase fast. Labeling a small sam-
ple of data is the only feasible way to learn classification from a real world big
data. This causes that incoming data contains often a large portion of unlabeled
instances. Semi-supervised learning is constructive in that unlabeled data can be

utilized to facilitate machine learning and improve accuracy.

4.1.1 Semi-supervised Learning

In semi-supervised learning, unlabeled data helps modify or reprioritize hypothe-
ses obtained from labeled data alone [64,65]. Provided with the same amount
of labelled data, semi-supervised learning gives often higher learning accuracy
than supervised learning does when assumptions such as smoothness, cluster and
manifold are met [66,67]. On the other hand, labeled instances are often difficult,
expensive, or time consuming to obtain in real world applications, as they re-
quire the efforts of experienced human annotators. In this sense, semi-supervised
learning is capable of enhancing the learning effectiveness with less human efforts.

Semi-supervised learning uses unlabeled data to facilitate learning accuracy.
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This impact works also for incremental learning. Here, we review briefly recent
works with a focus on how unlabeled data is being used for modeling. In [68],
unlabeled samples that have the same distributions with the target domain are
utilized with labeled data to train a transfer semi-supervised SVM. Zhang et
al [6] cluster unlabeled data, then ensemble the obtained clusters with classifiers
built on labeled data to deal with the concept drift of data streams. In [69] unla-
beled data are utilized to train a Gaussian mixture model determining the voting
weight for each weak classifier trained from labeled data received at different
learning stage. Besides, there are also other ways for unlabeled data to be used
in incremental semi-supervised learning [70-75]. All above works set the ratio of
unlabelled data within the range of 90% to 99%, but haven’t yet addressed even
higher ratio.

4.1.2 Graph Mincuts Algorithm

Graph mincuts [76] is a graph based semi-supervised learning algorithm featured
by its non-parametric, discriminative, and transductive nature. The basic as-
sumption of graph mincuts is simple but concrete: samples with smaller distance
are more likely to be in the same class. This is also called smoothness assumption
in literature [65]. In graph mincuts, graph is constructed from both labeled and
unlabeled data according to samples closeness (i.e., similarity). For classification,
min-cut is applied to split the graph into two isolated parts by removing an edge
set with minimum total weight. Here, min-cut ensures that minimized number of
similar sample pairs are classified into distinct classes. Although graph mincuts
shows great performance in learning from datasets with only small portion of
samples labeled, graph mincuts, as a batch learner, can be only used for learning
from static datasets.

Consider incremental learning of graph mincuts, a straightforward solution is
to derive from an existing batch graph mincuts to its corresponding incremental
mincuts.

The graph learned from labeled and unlabeled data is updated dynamically
for accommodating data adding and retiring. For learning such non-stationary
graph, proposed incremental max-flow addresses all possible graph changes in two

categories: capacity decrease and increase on edges. As a response, our algorithm
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de-augments paths to enable capacity decrease and augment paths after capacity
increase to compute the up-to-date max-flow.
For the convenience of algorithm derivation and clarity of presentation, we

summarize most notations used in this chapter in Table 4.1.

Notation | Descriptions

X instance matrix
x; the ¢-th instance

L, L_, U | index set of positive, negative, unlabeled samples

D distance matrix, d; ; = dist(x;, x;)
G weighted graph, G = (V, E,C)
R residual graph, R = (V, E, R)

Table 4.1: Notations

4.2 Preliminary

Graph mincuts has been used for classification learning from both labelled and
unlabelled data [76]. The idea is straightforward but concrete: samples with
smaller distance are more likely to be the same class. Let X be a labeled and
unlabeled dataset. We assume each sample of the dataset has a unique index,
and L, L_ and U be the index set of positive, negative and unlabeled samples,
respectively. Graph mincuts constructs a weighted graph G according to sample
closeness (similarity) and then split G by removing an edge set with minimum to-
tal weight. For semi-supervised learning, min-cut ensures here minimized number

of similar sample pairs are classified into distinct classes.

4.2.1 Graph Construction

We consider learning a weighted graph G from data X. A weight graph G =
(V, E,C') consists of a finite node set V', an edge set E € V x V, and a wight
function C' : E — R7T (called capacity hereafter) which associates a positive

weight value C'(e) with each edge e € E.
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As determining nodes V', each sample x; either labeled or unlabelled is rep-
resented by a vertex v;. To make the min-cut (max-flow) feasible, two virtual
nodes vy and v_ are created for positive and negative class respectively. Thus
V =A{vj,vy,v_|Vie Ly UL_UU}.

As determining edges E and capacity C, two steps are taken in to connect
nodes in V:

Firstly, each labeled node is connected to the virtual node with the same class

label, where the edge has an infinite weight as

C(vi,vy) =00, Vie L,

4.1
Cvj,v_) =00, VieL_. (4.1)

This setup prevents labeled samples from being classified into the opposite class,
as any cut associated with an infinite edge is not a min-cut [76].

Secondly, we calculate the pairwise distance matrix D where d; ; = dist(x;, x;)
to measure the Fuclidean similarity between any of two samples. Then, the
remaining sample nodes are connected by edges of weight 1 according to the one

of the following connecting rules defined on D:

1. Mincut-N, each unlabeled sample is connected to its N nearest neighbors
in terms of pairwise similarity shown in matrix D. To avoid having iso-
lated area in graph, one of the N-nearest neighbors is forced to be labeled.
In other words, each unlabeled sample is connected to its nearest labeled

neighbor and N — 1 nearest unlabeled neighbors;

2. Mincut-d, a pair of samples is connected if their distance d; ; is less than a
given threshold §. Here, § is determined through multiple attempts to meet

one of the following conditions,

(a) Mincut-dy is to choose the maximum ¢ on which graph G has a 0 valued

min-cut;

(b) Mincut-04 5 is to find & forms the largest connected component by 1/2

number of data points.
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4.2.2 Solve Min-Cut

Given G learned from a static dataset X, we consider solving min-cut (i.e., to
find a min-cut splitting ). According to [13] and [14], min-cut is equivalent to
max-flow. Applying any max-flow algorithm such as augmenting path on G, the
max-flow is obtained in form of a residual graph R.

From max-flow to min-cut, we simply perform Width First Search (BFS) or
Depth First Search (DFS) on R to find the set of nodes S that are reachable from
s, and define "=V \ S. Then (S,T) is the s — ¢ min-cut.

Having the min-cut result, the nodes in the graph are splitted into to two
isolated sets, and so for the unlabeled samples. Thus we have all unlabeled

samples classified.

4.3 Implement Incremental Decremental
Max-flow on Incremental Semi-supervised

Learning

Let C, A and R be the set of sample index for current data, data to be added
and removed respectively. Given newly acquired dataset X and dataset X to
be retired from current data X¢. The goal of our work is to develop incremental

decremental function f() capable of updating min-cut on X¢ in response to data
updates X* and X% as

M = f(M, X4 X% (4.2)

where M is current min-cut on X and M’ is updated min-cut computed by
incremental decremental learning on data updates X% and X™. In principle, M’

should be exact same as the batch min-cut on the updated dataset,

f(M, XA XR) = g(X\ XRu X4 (4.3)

where ¢g() is the batch learning system corresponding Algorithm 8.
As described above, a batch graph mincuts system consists of two main steps:

1. construct an undirected graph from the labeled and unlabeled samples based
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on their close neighbor relationship; and 2. conduct min-cut separation on above
such graph through max-flow optimization. The objective of proposed incremen-
tal mincut, namely oMincut, is to update the batch min-cut in response to any
newly acquired samples and/or samples retired. Accordingly, proposed incre-
mental system is about the two steps updating, incremental graph updating and

incremental decremental max-flow.

4.3.1 Graph Updating

The objective of graph updating is to update current graph in response to data
updates. Corresponding to the steps of graph construction for batch min-cut
learning, we update first the pairwise distance matrix.

For removing a subset X~ from current data X¢, we simply calculate the
residual index set C \ R and apply to D, then we have the updated pairwise

distance matrix as
D' = D°® (4.5)

For adding data X* into current data X°, we first calculate X pairwise
distance matrix as D* in which d = dist(z, x'). Next we calculate the
distance matrix in between X¢ and X as D4 in which dSA = dist(xf, z7).
Then, we have the updated pairwise distance matrix computed as

D¢ DCA
oo [ 2] w

In practice, we address data adding and retiring in one batch. In other words,
given data X¢, D¢ X7, and X*, the final updated pairwise distance matrix is
calculated by a) apply (4.5) to remove X™: b) let D¢ = D" and X¢ = X%\ X*;
and c¢) calculate D’ by (4.6) to add X

Having the updated D’, we construct the updated graph G’ according to the

connecting rules described in 4.2.1.

4.3.2 Min-cut Updating

Having the updated graph G’, we compare it with the initial graph G. Then we

obtain the following six categories graph operations, by which G can be trans-
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formed to G/

(a) a set of edges FE, have capacity C, to be reduced (i.e., C'(e) = C(e) —
Cy(e), Vee E,);

(b) a set of edges Ey to be deleted (i.e., e € E e¢ E', Ve € E,);
(c) a set of nodes Vj to be deleted (i.e.,v € V. v & V', Voely);
(d) a set of nodes V, to be added (i.e, vV wveV' Yvel,),
(e) aset of edges E, to be added (i.e.,e ¢ E e€ E', Veec E,);

(f) a set of edges E, with each edge e capacity to be increased by Cy(e) (i.e.,
C'(e) =Cl(e) + Cyle), Vee E,).

Apply our incremental max-flow algorithm proposed in Chapter 7?7, we can
update the max-flow on G into the max-flow on G’. The max-flow on G’ is in
form of a residual graph R’. To obtain the updated min-cut, we also conduct
BFS on R’ from node s and split R’ into s-reachable S and non-reachable T'. The

(S,T) split is the min-cut used for classifying unlabeled samples.

4.4 Experiments and Discussions

In this section, the effectiveness of our algorithms for semi-supervised learning
is testified. We evaluate proposed oMincut algorithms (corresponding to batch
Mincut defined in Section 4.2.1) on both artificial and real world datasets. Details
regarding these datasets, and the performance has been obtained on them are

presented in the following.

4.4.1 Graphical Demonstration

In this section, a graphical demonstration is given to show the incremental graph /model

updating of proposed algorithm.
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Figure 4.2: Graphical demonstration of the proposed algorithm. Part B
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Given a dataset consists of both labeled and unlabeled samples, an initial
min-cut model is trained upon it. When new samples being added and old sam-
ples being retired, our algorithm conducts incremental and decremental learning,
which updates the initial min-cut model to a new state.

Figure 4.1a gives an initial labeled and unlabeled dateset, where cycled points
in red, blue, and green represent positive, negative, and unlabeled samples, and S
and T denote the virtual source and sink nodes respectively. By a max-flow batch
learning, we have Figure 4.1b as the obtained k-NN graph and the corresponding
max-flow. In this figure, edges in red and blue refer to the infinite weighted
edges connecting S to all positive labeled nodes and 7' to all negative labeled
nodes respectively. The remaining edges are all 1 weighted nearest neighbor
connections, in which edges in yellow carry no flow and black edges have the
max-flow going through. As we can see from the figure, the max-flow value is 3,
and the flow goes through: a) S,12,14,17,22, T, b) S,12,15,19,23,26, T, and ¢)
S,12,16,19,26,T. We then have the min-cut {(12,14), (15, 19), (16, 19)}, which
splits the whole graph into two isolated parts. Thus, all unlabeled nodes are
naturally classified into positive and negative classes. Here, we utilize color of
number to differentiate the classification of unlabeled nodes, red as positive and
blue for negative respectively.

Figure 4.1c-4.3c describes how the graph is being updated, when new samples
is added and/or old samples is retired. Consider a set of nodes are required to
be removed and added which are drawn in light blue and purple respectively in
Figure 4.1c. We construct a k-NN graph on the updated dataset, and compare
the graph with the one before update (i.e., Figure 4.1b). Consequently, a set
of edge update is located in Figure 4.2a, as the lines in light blue and purple,
which corresponds to those edges to be removed and added respectively. For
updating the min-cut, we do removal first. For those edges carry no flow, we
simply remove them from the graph, since the removal of these edges causes no
change on current max-flow model. The resulting graph is shown in Figure 4.2b.
For those edges carry flow, such as 15 — 19, 16 — 19, 19 — 23 and 19 — 26, we
de-augment path S, 12,15,19,23,26,7T and S, 12,16, 19,26, T by Algorithm 9 and
set edges free (i.e., edges no longer carry flow), as in Figure 4.2¢, then remove all

together light blue edges and nodes. Figure 4.3a gives the obtained graph from
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removal. Next, we handle adding. We simply include those purple nodes and
edges in Figure 4.3b, and expand them into the graph. To obtain the max-flow
in this expanded graph, we iteratively augment any s — ¢ path found, and result
in the final update max-flow model shown in Figure 4.3c.

4.4.2 Static Classification

In this experiment, we compare classic supervised SVM, semi-supervised SVM
self-training and K Nearest Neighbor with proposed algorithms on a series of
benchmark UCI datasets. Since proposed algorithms are applicable for two-class
problems, several two-class data are selected, and the multiclass datasets in UCI
are converted into two-class datasets by combining several classes into one. The
name of the dataset used, the dimensionality of the dataset, and the number
of instances from positive/negative class are summarized in the first column in
Table 4.2.

For each dataset, we form our training datasets with both labelled and un-
labelled data in which labeled instances are randomly selected from the original
dataset, and unlabeled instances are adopt from those unused instances by hiding
their label information. Here, we intend to explore the effect of label ratio on
semi-supervised learning from 0.1 to 0.01 and further down to the level of 0.001.
Thus, we set label ratio as 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1 and 0.2, which
correspond to the column 3 to 10 in Table 4.2, respectively. In our experiments,
both labeled and unlabeled data are employed to train semi-supervised learners,
and only labeled data are used to train supervised learners. Each learner is tested
by its performance on predicting the labels of all unlabeled instances (i.e., testing
dataset). For each label ratio, 25 rounds independent tests are taken.

For performance evaultation, the mean accuracy and the standard deviation
are caculated and shown in form of mean=+ std. Hypothesis test is also performed,
where p-value is computed for each algorithm with respect to the algorithm that
gives the highest mean accuracy. In Table 4.2, we categorize all p-values into
0.05 > p > 0.01, 0.01 > p > 0.001 and 0.001 > p, and present as *, ** and ***
respectively.

As seen from the table, oMincut learners outperform others on 4 out of 6

datasets at the level of 0.1 label ratio, which indicates that proposed learners are
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competitive to benchmark learners if no less than 10% data are labeled. When the
label ratio is 10 times smaller, proposed learners achieve the best performance
for 5 out of 6 datasets. It is worth noting that at the lowest level of 0.001,
proposed learners are giving consistently the highest prediction accuracy for all
applicable datasets. This follows that given 0.1% of data labelled, proposed leaner
is still giving the best performance. Further, the oMincut-3’s superiority on class-
imbalanced classification is demonstrated in Table 4.3 in which recall is evaluated

on each of the binary classes.

4.4.3 Drifting Concept Tracing

In this experiment, we demonstrate how proposed algorithm handles drifting
concepts while incremental and decremental learning in Figure 4.4.

Figure 4.4a shows the initial learning stage. In a two-dimensional feature space,
there are two opposite concepts (i.e., data distribution) identified in blue and red
colors respectively. Each concept consists of two sub-concepts with their data
distribution bounded by circles. In this figure, dots and stars represent labeled
and unlabeled samples respectively; and the color of symbols shows the class label
of labeled samples or predicted label of unlabeled sample.

Let two concepts start drifting by rotating all four sub-concepts against (0, 0)
for 5 stages. For each step rotation, we keep constant the scale of each sub-
concept (i.e., the radius) and its distance to to (0,0), then turn all circles around
(0,0) for 18 degrees. Consequently, all sub-concepts rotate 90 degrees, which
follows that the two concepts exchange their positions. Figure 4.4b-4.4e show the
procedure of concept drifting in which solid circles represent current and dashed
ones represent the past sub-concepts. As the result of concept drifting, we thus
form a dynamic data stream, whose samples that are no longer in the scope of
current concept are being removed; and new samples fall into current concept are
being added in.

Through five stages concept drift, we trace the error rate of oMincut at each
stage, and compare the final stage rate with that of batch learning. As seen
from the parentheses below the plots, the transductive error rates of oMincut are
smaller than 7% for all five stages, and the final stage rate is exactly the same as

the rate from the batch learning.
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)

(e) Stageb (f) Batch Learning on Stage 5

Figure 4.4: oMincut incremental and decremental learning on five stages concept
drift, with the final stage compared to batch learning. The transduc-
tive performance in terms of classification error rate is given at each
stage in parentheses as (a) (6.43 percent), (b) (3.59 percent), (c) (4.46
percent), (d) (3.20 percent), (e) (4.40 percent) and (f) (4.40 percent).
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4.4.4 Stream Learning

In this section, we compare proposed algorithms with SVM, SVM self-training
and K-NN on a real-world data stream learning. The data used here is the
KDD99 Intrusion Detection stream, which consists of 122 features and over 125k
samples. Each sample corresponds to a TCP connection, which is either a normal
connection or an attack. In this experiment, two incremental learning scenarios

are adopted :

a) Sliding Window Snapshot. Consider learning from a data stream with con-
cept drifts, we let algorithms learn at each stage from only a segment of
data stream bounded by a sliding window. Thus, all learners retain at all
time an up-to-date view of the drifting concepts. Figure 4.5a illustrates the
setup of this stream learning, where the size of sliding window is 4000 and
the length of sliding step is 2000.

b) Data Accumulation. Assume the class concepts are constant for the entire
data stream, we conduct only incremental learning at each stage to reinforce
learning effectiveness by accommodating new chunk of data. The training

data is fed as in Figure 4.5b, where we set the chunk size as 4000.

For each scenario, we conduct experiments with the same label ratios as the
ones used in Section 4.4.2; and we use the testing accuracy as performance mea-
surement.

For sliding window snapshot scenario, Figure 4.6 compares all learners perfor-
mance under the label ratio of 0.001, 0.01 and 0.1, respectively. As seen from the
figure, the superiority of proposed oMincut-3 is observed across all three label
ratios. When the ratio is 0.1, oMincut-3 has visible superiority at 16 out of total
40 stages. Such superiority become apparent in the case of lower ratio 0.01. The
absolute superiority occurs when the ratio is further 10 times lower. Apparently,
all learners perform sensitive to the label ratio. Figure 4.7 shows the performance
(in terms of accuracy mean and standard deviation) variation of learners against
the label ratio. We can see that with the decrease of label ratio, all learners lose
classification capability performing with lower accuracy meanwhile higher vari-

ance (indicating system stability reduced). However, proposed oMincut-3 gives
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Stage 1 Stage 3 Stage 5
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Samples | Samples | Samples | Samples [Samples | Samples | Samples

Stage 2 Stage 4

(a) Sliding Window Snapshot

Stage 4
Stage 3

Stage 2
Stage 1

4000 4000 4000 4000 4000 4000 4000
Samples | Samples | Samples | Samples | Samples | Samples | Samples

(b) Data Accumulation

Figure 4.5: Two stream learning scenarios

the slowest performance reduction in terms of both accuracy and stability, when
the label ratio decreases.

In the mode of data accumulation learning, learners are trained incrementally
from an accumulating dataset. We measure learner performance as stage mean ac-
curacy and final stage accuracy. Figure 4.8 compares the performance of learners
at different label ratios. Similar to the result from the above snapshot learning,
proposed oMincut-3 gives the lowest performance reduction to the decrease of

label ratio.

4.5 Summary

For learning from data streams with both labeled and unlabeled samples, an incre-
mental decremental max-flow based incremental semi-supervised learning system
is proposed. The basic assumption for this work is that samples with smaller
distance are more likely to be in the same class. To conduct semi-supervised
learning, a K-NN based sample network is built based on both labeled and un-
labeled data to describe the “close to” relationship between samples. Then a

min-cut is applied to split the whole set into two classes by removing the mini-
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Figure 4.6: Sliding window snapshot learning on KDD streams
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mal number of “close to” relation. To find such min-cut, the max-flow problem
is required to be solved on the sample network.

In this work, we derive incremental max-flow for semi-supervised learning by
proposing 1) an incremental sample network whose pair-wised sample distance
matrix is being updated for every sample adding/retiring, and more importantly
2) our incremental/decremental max-flow algorithm is applied to update the
max-flow whenever the sample network changes. Proposed incremental semi-
supervised learning system is demonstrated capable of accommodating new sam-
ples adding and old samples retiring, with a theoretical guarantee that incremen-
tal learning result equals always that of batch retraining. Experiments on UCI
benchmark datasets and KDD data stream show that proposed system is less sen-
sitive to the amount of labelled data (in terms of the ratio to the whole training
data) as compared to K-NN, SVM and SVM self-training. Actually, with only
0.1% training data labelled, our algorithm still be able to achieve relatively high
accuracy.

The proposed algorithm is able to retire unwanted samples, but in real-world
application it is rare to have the priori knowledge of which set of data is no
longer needed [6] [69]. Thus, incorporating concept drift detection mechanism is

an interesting work.
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5 Parallel Incremental Learning

Integration

5.1 Introduction

In our study of incremental max-flow and graph mincuts, we found that the
training speed is not in good satisfactory when data is huge. A straightforward
solution is to combine parallel data processing with incremental learning.

We attempt to parallelize incremental max-flow, and find the difficulty lies at
1) For the augmenting path mechanism, the augmentation and de-augmentation
can be done in parallel, if we can find a set of paths that are edge disjoint.
However, there is no existing solutions for parallelizing the search for such paths.
Moreover, such edge disjoint paths may even not exists, such as in a graph with
bottleneck edge where most flows go through that bottleneck. 2) For the push
relabel mechanism, the push and relabel operation can be parallelized if we can
identify a set of active nodes that are neighbor disjoint. But it is computationally
very expensive for such identification. Similarly, in case of graph with bottleneck,
such neighbor disjoint active nodes can not be found in certain stage. All in all,

we are not able to merge max-flow knowledge from sub-graphs.

5.2 Motivation: PI Integration via Knowledge
Merging

For developing parallel incremental learning algorithm, three straightforward
route maps are considered: a) parallelize an existing incremental algorithm, for

example [77] recently proposed recently a gossip-based approach that parallelizes
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online prediction and stochastic optimization; b) renovate an existing parallel al-
gorithm to be incremental, but few research study can be found in this category;
and c) derive a parallel incremental algorithm from scratch. In this category,
existing works normally treat incremental and parallel learning as two separate
problems. One either first parallelizes learning then designs the incremental rule
(e.g., [78], [79], [80]), or the other way around (e.g., [81], [82], [83], [84]). Alter-

natively, we intend to solve these two learning problems in one process.

Definition 5.2.1. Knowledge mergeable condition: Given dataset D, and D,
such that D = D, U Dy, a learning model T is knowledge mergeable if Kp =
M(Kp,,Kp,), where M() is the merging rule and Kp = T(D) is the learning
knowledge from D.

Based on a knowledge mergeable learning model, the incremental learning of
the model can be implemented as updating current model through continuously
adding new knowledge from incoming data. Similarly, parallel learning can be
seen as parallel knowledge extraction on data slices followed by adding up knowl-
edge from all data slices. In this sense, parallel and incremental learning can
be unified by a knowledge merging process running over temporal and spatial

domains. Therefore, we have

Definition 5.2.2. Pl integration: If base modell" satisfies the knowledge merge-
able condition; the parallel learning of T, Pr(D) = M(Kp,,...,Kp,) where
D = Dy U...UD,; and the incremental learning of T, Ir(D') = M(Kp, Kp/)
where D' is the data newly arrived, then the parallel learning and incremental

learning of T' forms a PI integration, where M() is the common core operation.

by which, parallel learning and incremental learning of T" are encapsulated into
one PI integrated system. In the remaining chapter, we review a family of algo-

rithms that satisfy the knowledge mergeable condition.

5.3 Knowledge Mergeable Algorithms

5.3.1 LPSVM

Given a training set & = {(x1,y1),..., (®n,ys)}, having instance matrix X =
/ /

[a:l Ty - a:n} € R™ 4 and label vector Y = [yl Yy - yn} € {+1,—1}”X1.
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A classic Support Vector Machine (SVM) [85] solves the following optimization

n 2
min C Z &+ ”wzH
i=1
5.1
st yi@w+0)+§ =1 (5:1)
& >0 Vie{l,--- n},
in order to learn a separation plane
z'w+b=0, (5.2)
which located in midway of two bounding planes
! b=+1
TwEh= (5.3)
rdw+b=—1.

Training samples from two classes are bounded by (5.3) with some non-negative
slacks &;

Tw+b+¢& >+1 for y; =+1

)
/

row+b—¢§ < -1 for y;=—1

7

(5.4)

WzH is the distance between bounding planes in (5.3), also know as margin in
literature [86]. In optimization (5.1), the margin is maximized by minimizing
Jw|?

=, the total slacks is minimized by minimizing >, &, and the importance

of margin maximization and total slacks minimization is balanced by parameter
C [87,88].

Unlike classic SVM [85], Linear Proximal SVM (LPSVM) simplifies above bi-
nary classification as an regularized least square problem, thus the training of
LPSVM becomes more efficient [89] than the classic SVM. Specifically, LPSVM
solves the following optimization

.1 C
min S ([wl?+ 1) + = €]

st. D(Xw—eb)+€&=e,

(5.5)

where £ is a n x 1 slack vector, n x n diagonal matrix D = diag(Y’) represents
class labels, and e is a n x 1 vector of ones. Through solving (5.5), LPSVM
obtains a separating plane

w—0b=0 (5.6)
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which lies in the middle of two proximal planes

rdw—b=+1

5.7
rw—b=-—1. (5:7)

As compared to the classic SVM optimization (5.1) which has inequality con-
straint, LPSVM applies in (5.5) an equality constraint. As a result, the planes
(5.7) no longer bound training samples, but become the proximal planes with
data points of each class clustered around. In LPSVM optimization (5.5), mar-
gin between proximal planes are maximized by minimizing term (||w||* +2), the
total slack is minimized by minimizing ||€]|*, and the importance of these two
objectives are balanced by parameter C.

The solution of LPSVM can be given explicitly as

-1
w X' X'De

For the derivation of (5.8), please refer to the work of [89] Let F' = [X —e}, we

have (5.8) simplified as

I
Z+

= (é + F'F)"'F'De, (5.9)

w

b

where I is a (d+ 1) x (d + 1) identity matrix.
The steps of batch LPSVM training is summarized in Algorithm 13.

Once 'w] is computed, classification decision is made by
flx)=a'w—1b
[ , 1} w > (0 then y=+1 (5.10)
== m —
b <0 then y=-1.
5.3.2 ESVM

Extreme SVM (ESVM) [90] is essentially an LPSVM in Extreme Learning Ma-
chine (ELM) [91,92] feature space. For nonlinear classification, ESVM introduces

a nonlinear mapping function ®(x), through which d dimensional input samples
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Algorithm 13 LPSVM
Input: X € R4 Y e {+1,-1}"' C e R*.

Output: [Q:

1: Generate e € R™*!;

2: Generate F', as F' = {X —e};

3: Transform Y into D, as D = diag(Y );
4: Generate I € R@TDx(d+1),

5. Compute [1;] as (5.9).

are mapped explicitly into a d dimensional feature space, so that an LPSVM linear
separation can be conducted in feature space to achieve nonlinear classification
of input space.

The mapping ®(x) : RY — R? is performed as
d(x) =G(Wz')

d
:(Q(Z Wz, + W1(d+1)), ceey

2 (5.11)
d
/
9(2 Wiz + Wd'(d+1))) .
i=1
where € R%! is the sample of input space, &' = [&/,1), W € R jg

a weighting matrix whose elements are randomly generated, and ®(x) is the
projection of x in RY. Here, G(-) stands for a mapping function that projects
each element z; of input matrix Z into corresponding ¢(z;;) of output matrix
G(Z), where g(-) is an activation function specified by user such as sigmoidal
function. From the view point of ELM, ®(x) can be seen as the output of x
through the hidden layer, also W and x! can be taken as the input weights and
vector of the hidden Layer respectively.

Applying (5.11) to every instance x; of X, we have the projection of the entire

instance matrix X as

B(X) = [@(z}), ..., o). (5.12)
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Having samples mapped into feature space by (5.12), ESVM proceeds with an
LPSVM linear separation on projected samples in feature space. Mathematically,
the optimization of ESVM is formulated as

. C 2 1 / 2
min — + —(ww+b
5 €l + G (w'w + 7 519
st. D(®(X)w —eb) + & =e.

Solving (5.13) as in LPSVM [89], the following solution is obtained for nonlinear

ESVM
wl _ (1, [®(X) 0(x) e  |®(X)De (5.14)
b © —e —e'De |
Let E = [@(X) —e} € R™ @+ (5.14) can be simplified as
w I 1 —1 g
)| = (5 + E'E)E'De. (5.15)

The steps of nonlinear ESVM training is stated in Algorithm 14.

Algorithm 14 ESVM
Input: X € R4 Y e {+1,-1}"' C e R*.

Output: [’L:

1: Generate e € R™*!;

2: Compute ®(X) as (5.11) and (5.12);

3: Generate E, as E = {CID(X) —e};

4: Transform Y into D, as D = diag(Y );
5: Generate I € RAFDx(d+D).

6: Compute [1;] as (5.15).

For any incoming unseen sample &, ESVM classification is conducted as

f(@) = (x)w —b

w| | >0 =y=+1 (5.16)
<0 =y=-1.
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5.3.3 wLPSVM and wESVM

Class imbalance harms the classification capability when the size of one class
known as the minority class is much smaller than that of the other class, which
is known as majority class. Recall the optimization for LPSVM (5.5), in which
margin is maximized by minimizing ||w||* + b* and proximal planes is drawn
respectively to the center of classes by minimizing total slacks [|€]|°. When class
imbalance exists, the total slacks from minority (positive) class is much smaller
than from majority (negative) class, i.e., ||€4]|> << [|€—||>. Thus the force of
drawing proximal planes towards class centers is much stronger for negative class.
As a result, the proximal plane for negative class tends to stay at the center of the
class, the plane for minority class however is pushed away by the force of margin
maximization. Consequently, the separating plane which lies in the middle of two
proximal planes is biased to the minority class, which results in low recall for the
minority (positive) class.

To mitigate the class imbalance problem discussed above, [93] and [94] propose
weighted LPSVM (wLPSVM), in which the optimization (5.5) is revised as

1
min §£/N€ + §(w'w + b%)

(5.17)
st. D(Xw—eb)+E&=ce,
where N is a diagonal weighting matrix
if y; = +1
Ny= |7 tui=T (5.18)
o_ ify, =—-1.

According to the level of imbalance [95], class weights o, and o_ are determined
as
or=1_/(l; +1.)
o =1 /(ls + 1),

where [, and [_ are the number of instances from positive and negative class

(5.19)

respectively.
Similar to (5.13), (5.17) can be solved as in LPSVM [89], and the solution of
wLPSVM is given as
w
b

I
= (5 + F NF)'F'DNe, (5.20)
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where F' = [X —e} .

For nonlinear case, above weighting scheme can be easily adopted into ESVM
to facilitate it with class imbalance robustness. Simply replacing X with ®(X)
in (5.17), we have the optimization for wESVM

. C / 1 / 2
min 55 N£+§(ww+b ) (5.21)
st. D(@®(X)w—eb)+&=e.

Again solving (5.21) as in LPSVM [89], we have the solution of wESVM as

.

where E = {@(X ) —e} . For simplicity, we let

I
= (5 +E'NE)'E'DNe, (5.22)

M =FENE
(5.23)
v=EDNe,
then (5.22) can be written as
w I
=(5+M) v 5.24
[b (5 +M) (5.24

Note that wLPSVM is formulated very similar to wESVM, where the only
difference is that wLPSVM uses original input data X instead of data projection
®(X). For the rest of this work, we address only nonlinear wESVM without loss
of generality.

The complete procedure of batch wESVM training is stated in Algorithm 15.

5.4 Summary

Based on above observation, we found that ESVM is essentially an LPSVM in
ELM feature space, thus ESVM is a more generalized LPSVM. We also found
that, wESVM is a more generalized ESVM because ESVM can be seen as a special
case of wESVM in which the two classes are always equally weighted.

Thus in the following Chapter, we intend to conduct our PI integration study
on the most generalized model, the wESVM.
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Algorithm 15 Batch wESVM Algorithm

Input: X € R4 Y € {+1,-1}"' C e R*.
Output:

Count the number of instances [, and [_ for both classes;
Compute o, and o_ as (5.19);

Generate N as (5.18);

Compute ®(X) as (5.11) and (5.12);

Generate F, as E = {(ID(X) —e};

Transform Y into D, as D = diag(Y);

Generate I € R(@+D)x(d+1),

Compute M and v as (5.23)

@

Compute 1: as (H.24).
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6 Proposed PI integrated

algorithm

6.1 Introduction

In this chapter, we apply the knowledge merging on wESVM to develop a PI
integrated system. The idea is to enable merging of wESVMs on subsets of data
into one model whose learning result equals that from the whole dataset. In doing
that, we derive a new formula of wESVM in which knowledge is represented as
a set of class-wised matrices, and we prove that the merging of wESVMs can be
performed through simple matrix addition. Through such knowledge merging,
parallel learning can be implemented by letting multiple nodes learning simulta-
neously from data slices, then combining knowledge obtained; also incremental
learning can be carried out by adding up knowledge acquired at different incre-
mental stages. Thus, wESVM is transformed without information lost for PI
integration.

The proposed algorithm is implemented in MapReduce environment. The cor-
rectness, efficiency and effectiveness of our algorithm is evaluated in experiment.
Our algorithm is also compared with other parallel and parallel incremental al-

gorithms in terms of of classification capability and training time.

6.2 Preliminary

MapReduce is a state of the art framework designed for parallel computation
196,97]. It is originally developed by Google as a platform for processing very
large scale data such as web pages obtained by crawlers and logs of web search

request [98]. MapReduce supports parallelism by dealing with some common
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Figure 6.1: MapRedce work flow

issues related to distributed and parallel programming such as load balancing,
network communication, fault tolerance etc. Thus programmers can abstract
from these issues and concentrate on data processing design. Figure 6.1 presents
the work flow for a standard MapReduce execution.

There are three major phases in a MapReduce program execution: Map, Shuffle
and Reduce. At the Map phase, input data are firstly splitted into several slices
and each slice is then processed independently by a Map task. Each Map task
takes one input record at a time and generates one or a group of intermediate
key/value < k;,v; > pairs as a part of the Map phase output. The processing
within the Map task is specified by user written Map function. In the Shuf-
fle phase, all works are conducted by MapReduce framework. All intermediate
key /value pairs are firstly sorted by their keys, then all values associated with
the same key are grouped together. The output of Shuffle phase is in form of
set of unique keys and each of which is followed by a list of values that the key
is associated with < k;,V; >. At the Reduce phase, one Reduce task picks one
key at a time and the list of values associated with that key, and then merges
all these values into the final result. The merging process is defined in Reduce

function, which is also specified by user.
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MapReduce applications are executed completely in parallel at two phases.
At the Map phase, it is executed independently for all map tasks, since each of
Map tasks works on its own input data slice. At Reduce phase, all Reduce tasks
are still executed independently, although one Reduce task may depend on the
outputs from various Map tasks. This is explained that each Reduce task works
on one key at a time, and all values associated with that key have already been

grouped at the Shuffle phase.

6.3 Proposed PI Integrated wESVM

Recall that training a batch wESVM involves two steps: the calculation of M and
v, and (5.24) execution. According to (5.23), the computational complexities of
M and v increase linearly to the number of samples. The execution of (5.24) has
the complexity of O(ci:g) which is fixed for any given d. Thus, the computational
cost on calculating M and v is dominant, given a large scale dataset for wESVM
training. Therefore, we address only the parallel updating of M and v for the
derivation of PI integrated wESVM.

As discussed before, we intend to formulate the parallel and incremental learn-
ing of M and v as a knowledge merging problem. Let us take learning M as
an example. Assume that we have dataset S,, S, and § = S, U S;,, M, and
M, learned from S, and S, respectively. If we can merge M, and M, into M
that equals to M learned directly from data &, then we have both incremental
and parallel learning problem solved. This is because, for incremental learning
we can always have the updated M by merging current M with M, which is
the learning result from newly arrived dataset &;. Also, for parallel learning we
can obtain M by merging all {M,... M, ... M y} learned simultaneously from
data slices. Note that the above principle also applies to the learning of v. Thus
for developing PI integrated wESVM, we turn to merge M and v obtained from

different datasets.

6.3.1 wESVM Reformulation for Merging

Consider merging M and v. We have the following knowledge merging rules
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Xa Ya Ea o Xa -
Lemmall.Let[X Y}: , E = = (Xo) e,D:
Xb Yb Eb @(Xb) —e
D, 0 N, 0
and N = . Then,
0 Db 0 Nb
M =FENE
= E.N,E, + E,N,E,
=M,+M
’ (6.1)
v=EDNe
= E.D,N,e + E,D,Ne,
= v, + Uy
EFE=FEE,+EE
ata T By (6.2)

E'e=FE\e+ Eje

O

Note that (6.1) holds only when weighting matrix IN,, IN, and IN share the
same class weights. This implies that each class weight must be a constant for
merging multiple M or v terms, which is problematic for either incremental or
parallel learning of wESVM.

Consider incremental learning. The level of imbalance varies over time, since
new data are being presented continuously. Then class weights must be changing
accordingly, as class weight by (5.19) is a function of class imbalance. Thus |,
Knowledge merging via (6.1) is not a solution to incremental wESVM.

Consider parallel learning. If we put slave nodes on learning local data which
normally has different class imbalance, then we are not able to merge the knowl-
edge (i.e., M and v) from individual slave nodes as the knowledge on those nodes
are with different weights. Alternatively, if we force all slave nodes to use the
same class weights, then the only option is to use the weights calculated from the
global imbalance (i.e., the class imbalance of whole dataset). Consider the global
imbalance is unknown for individual slave node, since each node has only access

to local data. Thus knowledge merging via (6.1) is also problematic for parallel
learning of wESVM.
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Now, we seek an alternative solution to enable both knowledge merging and
weight updating. In doing so, we reformulate the original wESVM (i.e., (5.22))
as follows.

Let partition a consist of one sample. We apply Lemma 11 to split partition b

iteratively until only one sample is left. Then, we have

Lemma 12.

E'NE =E,N\E, + ...+ E'N,,E,

=3 Nufot@) 1] [o) -1

6.3
E/DNB = EllDllNll + ...+ E;DnnNnn ( )
= Z.%Nu [(I)(%) —1},,
=1
EE=E\E +.. . +EE, =Y [0) —1] [d@) —1
1=1
) (6.4

Ee=E\+.. . +E,=Y [d@) -1 .

i=1

0
For terms on the right-hand side of (6.3), if we group all terms that have
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y; = +1 and y; = —1 respectively, then have

ENE=Y Nylo(x) 1 [o@) —1]+

ZN 0ay) 1] [o(ay) 1]
:alyzl [@(z;) 1] [®(z) —1]+
o ;1 @(z;) 1] [0(;) 1
E'DNe = ZiyiN“ [@(z;) 1] +
:z;lyijj [@(z;) —1]
_a:yzily,- [@(z;) 1] +
U—y::z_lyj |®(z;) —1]/,

since by (5.18) INy; equals to o when y; = +1 and o_ when y; = —1. Applying

(6.4) to (6.5), we reformulate M and v as

Lemma 13. Let X and X_ be the instance matriz of positive and negative

class respectively, E, = {CD(X_,_) —e}, E_= {CD(X_) —e}, then

M=ENE=0, Y [d@) —1] [®() -1]+

yi=+1
7 ¥ [0y 1] o) -]
yj=—
:U+E+/E+ + o E_'E_
U:E/DNB =0, Z {CI)(I‘Z) —1}/4‘

yi=+1

o Y | ®(y) —1},

yj=—1

=o,E,'e—0_E_'e
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Let M, =E,'E, M_=E'E_ v, =E,'eand v_ = E_"e, we reformu-
late the original wESVM solution (5.22) as

.

As a result, My, M_, vy and v_ can be merged according to (6.2). Also,

I

= (5 +o M+ M) (oyvy —0-v). (6.7)

the class weights o, and o_ can be updated in response to current global class
imbalance since they are now real value coefficients.
In above reformulated wESVM, we let

K= {M_|_,M_,’U+,’U_,l+,l_} (68)

be the knowledge of wESVM on &. Algorithm 16 gives the steps of wESVM

knowledge extraction.

Algorithm 16 wESVM Knowledge Extraction

Input: § ={X,Y}.

Output: K ={M, , M_ vy, v_,l;,1_}.

Split X into X, and X _ according to Y

Count the number of instances [, and [_ in X, and X _ respectively;
Compute ¢(X ) and ¢(X_) as (5.11) and (5.12);

Generate Ey and E_ as E = [(P(X) —e};

Compute My =E,/E,, M_=E 'E_ v, =E,'eand v_ = E_'e;
Return K = {My M _ vy, v_, 1,1 }.

Given IC on 8, Algorithm 17 describes the steps of wESVM classifier {w]

calculation.

Algorithm 17 wESVM Knowledge to Solution
Input: K={M, M_ v, v_ 1,10}

Output: {l:
1: Compute weights o, and o_ as (5.19);

2: Compute {z;)] as (6.7).
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6.3.2 Incremental and Decremental wESVM

In this section, we discuss the wESVM updating according to newly arrived sam-
ples and samples no longer useful, respectively.

Given dataset & and its wESVM knowledge IC. Let &, be the set of data to
be retired and &; be the remaining data such that

S=8US,. (6.9)

Let S, denotes the newly arrived data to be added into the training set, S denotes
the data after adding and retiring. We have

S=8US,. (6.10)

Thus given IC on 8, we update IC = {My, M_,v,,v_,l,,l_} in response to data
updates &, and S,, respectively. The objective of incremental and decremental
wESVM is to obtain updated wESVM knowledge that equals the batch wESVM
K={M, M_ 4%, 6_1.,_}onS.
For updating M and vy, we have the following according to Lemma 11,
M, =E,/E, =E,'Ey + E.['E,,

(6.11)
V4 = E+/€ = El+/€ + Er+/€,

M+ = E+1E+ = EH-/EH- -+ Ea+/Ea+ (6 12)
’5+ = E+/e = EH_’e -+ Ea+/€, '

since (6.9) and (6.10) applies for both positive and negative classes. Substituting
(6.11) into (6.12), we have the updating rule for My and v as

M;=M; —E. /B, + E,\'Eqy
=My — M, + Eqy

(6.13)
’l‘}_|_ = V4 — Er+,€ -+ Ea+/€

= V4 — Upy + Va+-
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Similar to (6.11) to (6.13), we have the updating rule for M_ and v_ as

M =M_ —-E,'E,_+E,'E,_
-M_—-M, +E,_

(6.14)
v_=v_—FE,_'e+ E, e
=V_ —Vyp_ +Vq_.
For updating [, and [_, by (6.9) and (6.10) we naturally have
Ly =1 — by + 1,
o= T ey g (6.15)

lo=1_—l_+1,.

In (6.13)-(6.15), My, M,_, v,y, v._, L1, l,_ are obtained from K, (WESVM
knowledge on S, ), and My4, M,_, oy, Vo, lot, lo— are from IC,. K, and IC,
are the result of Algorithm 16 execution with S, and S, as input respectively.
Applying knowledge merging rule (6.13)-(6.15), we have the updated knowledge
K by merging K with /C, and KC,. Consequently, we obtain the corresponding

updated wESVM classifier ’%) by executing Algorithm 17 on /. The steps for

proposed incremental /decremental wESVM is shown in Algorithm 18.
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Algorithm 18 Proposed Incremental /Decremental wESVM Algorithm
Input: Initial dataset S = {X,Y } and C for the first batch.

Or, initial model { 1;) , K}, S, ={X,, Y.} to be retired, S, = {X,,Y .}
to be added, and C' for the rest stages.

Output: Initial model { [1;:] , IC} for the first batch,

or updated model { ltg] , IC} for the rest stages.

1: if there is no initial model (this is the first batch) then
2:  Call Algorithm 16 with & = {X,Y } as input, obtain IC

@

Call Algorithm 17 with IC as input, obtain ’ZJ ;

4:  Return { [1:] , IC}

5: else

6:  Call Algorithm 16 with S, = {X,., Y.} as input, obtain IC,;
7. Call Algorithm 16 with S, = {X,, Y.} as input, obtain ICg;
8 Merge K with IC, and IC, using (6.13) to (6.15), obtain K;

9:  Call Algorithm 17 with & as input, obtain Qg ;

10:  Return { [%)] KL

11: end if

6.3.3 PI Integrated wESVM

The idea of our parallelization of incremental wESVM is to parallelize Algorithm
18 via knowledge merging. To be more specific, we parallelize the knowledge ex-
traction step, Algorithm 16, as it shares the biggest portion of total computational
costs.

Let &1,...,8; be the t slices of data & such that S = §; U ... US;. Then
the parallelization of Algorithm 16 consists of two steps: execute in parallel mul-

tiple instances of Algorithm 16 on different data slice §;, and merge knowledge
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obtained IC; to generate the global knowledge IC on S.

Given IC; = {M;y, M; v,y ,v;_,l;y,l;_} for i = 1...t, by Lemma 11 we

merge M and v terms as

t t
M+:ZMH— v+:Zvi+
=1

=1

t t
M_:ZM-_ v_:Z'vi_.
i=1 i=1

Naturally, the class sizes can be merged as
¢
Iy = Z liv
i=1
¢
l, - Z li*‘
i=1

(6.16)

(6.17)

The steps for extracting KC; and merging all IC; into IC are summarized in Al-

gorithm 19 and 20, respectively. Next, we form the parallel wESVM algorithm

as parallel knowledge extraction by Algorithm 19 - 20, followed by wESVM clas-

sifier calculation via Algorithm 17. The steps of parallel wESVM algorithm is

summarized in Algorithm 21. Replacing Algorithm 16 step in Algorithm 18 with

Algorithm 19 - 20, we have our PI integrated wESVM algorithm, whose steps are

summarized in Algorithm 22.

Algorithm 19 Extracting wESVM Knowledge from Data Slices at Slave Nodes

Input: S; ={X,,Y,}.
Output: ’Cz = {MZ+7 Mi—; Uiy, UVi—, li+7 ll*}
1. Call Algorithm 16) with 8; as input, obtain 1C;;

2: Return IC; to master node.

Algorithm 20 Merging wESVM Knowledge from Data Slices at Master Node

Input: IC; from all slave nodes.

Output: K
1. Compute M, M _ v, ,v_ as (6.16);
2: Compute I, as (6.17);
3: Return K ={M M_ vy, v_, 1,1 }.
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Algorithm 21 Proposed Parallel wESVM Algorithm
Input: Data slices S; ={X;,Y;} i=1,...,tand C.

Output: { ’l: , IC}.

1: Call Algorithm 19 in parallel with 8; = { X, Y;} as input, obtain IC;;
2: Call Algorithm 20 with all &C; as input, obtain IC;

3: Call Algorithm 17 with IC as input, obtain 1;] ;

4: Return {[1:] , IC}

Algorithm 22 Proposed PI integrated wESVM Algorithm

Input: Initial model { rl: , K}, Sir = { X, Y} i =1,...,t to be retired,
Sio = {Xia,Yia} i=1,...,ttobeadded, and C.
Output: Updated model { Ig K}

1: Call Algorithm 19 in parallel with S;, = { Xy, Y3} as input, obtain IC;;;
2: Call Algorithm 20 with all /C;,. as input, obtain IC,;

3: Call Algorithm 19 in parallel with 8;, = { X4, Yia} as input, obtain IC;,;
4: Call Algorithm 20 with all IC;, as input, obtain ICyg;

5: Merge KC with IC, and ’C, using (6.13) to (6.15), obtain K;

6: Call Algorithm 17 with I as input, obtain zg ;

7: Return {[g}], K}.

In our PI integrated learning algorithm, the knowledge of each slice of new
data is represented by IC;., whose size is independent from the data size. Thus
our algorithm is suitable for distributed stream learning, when the training data
are in multiple distributed streams. In this scenario, we can allocate one learner

(running Algorithm 19) at each data source to obtain the local knowledge, and
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then transmit the local knowledge, with very low bandwidth cost, to the master
learner to obtain a global classifier (using Algorithms 20 and 22).

We also notice that different streams may lead to independent models in the
context of distributed stream learning. For instance, assume we have streams A -
E where streams A and C belong to the same model and the other three streams
lead to another model. In this case, our algorithm can aggregate streams (A, C)
and (B, D, E') respectively using the mechanism mentioned above to obtain two
independent models. But we still need prior knowledge or another detection
algorithm to help determine that (A, C) and (B, D, E) belong to two different

models.

6.3.4 MapReduce based Implementation

In this section, we implement proposed PI integrated wESVM in MapReduce
environment. To be more specific, we implement in Hadoop parallel wESVM
knowledge extraction, which includs Algorithm 19 and 20.

Given dataset S stored on Hadoop distributed file system (HDFS) as a sequence
of < key,value > pairs, where each pair stands for one record (x;,y;). Here key
is the offset of record to the start point of data file, and value is the (x;,y;) in
string format.

As introduced before, each Map function processes only one record at a time.
To extract knowledge IC = {M,, M_ v, v_,l,,[_} from the entire dataset S,
we extract knowledge from each individual sample, and merge the knowledge
obtained as follows.

For M and v, by (6.4) we have

M+:E+/E+: Z [@(a:l)’ —1}/[(1)(171)/ —1} = Z Ml

yi=+1 yi=+1
MoBB = X sy 1oy 1= ¥ M
yi=—1 / yi=-1 (6.18)
vp=Ele= Y [0@) 1] = X v
yi=+1 yi=+1
v_ :E_’e: Z [@(azz)’ —1}/: Z V;.
yi=—1 yi=—1
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For [, and [_, we have

L= > L =Y 1, (6.19)
yi=+1 yi=—1

where [; = 1. The Hadoop implementation of (6.18) and (6.19) includes three

phases: Map, Shuffle and Reduce.

At Map phase, for each input sample (x;,y;), we compute M, and v; as

M; = [b(e;) 1] [0(z,) —1]

, (6.20)
v; = [Cb(wi)’ —1}

and set [; = 1. To transmit square matrix M, column vector v; and count
number [; = 1 from Map to Shuffle phase, we define two types of < key, value >

pair as

1. Vector pair in which the key is (y;, vector,idx) where vector indicates this
pair transmits a column vector and idzx is the index of the column trans-
mitted; and the value is a (d+1) x 1 column vector which equals the idz-th
column of M; € RV for 1 < jde < (d+ 1) or v; € REFD*L for
ide = d + 2.

2. Count pair in which the key is (y;, count) where count indicates that this

pair transmits a count number; and the value is an integer 1.

Note that y; is inserted in the key here, because M;, v; and [; by (6.18) and
(6.19) are summed according to y;.

The steps of Map function are shown in Algorithm 23, through which d + 2
< key,value > vector pairs and 1 count pair are generated for each (x;, v;).
Thus for the entire dataset S = {(x;, ;) },, we have the output of Map phase
as n(d + 3) < key,value > pairs with 2d + 6 unique keys.
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Algorithm 23 MapReduce Implementation of Algorithm 7 - Map Function
Input: The offset key, the sample (x;, y;) value.

Output: Vector type < key, value > pairs, count type < key, value > pair.
Compute ®(x;) as (5.11);
Compute M; = [@(azi)’ —1}/ [CI)(CBZ')/ —1} and v; = [CID(:IJZ»)’ —1}/;
for idr =1:(d+1) do

Set key as (y;, vector, idx);

Set value as the idz-th column of M ;

Emit < key,value > pair;
end for
Set key as (y;, vector, (d + 2));

Set value as the v;;

—_
o

: Emit < key, value > pair;

—_
—_

. Set key as (y;, count);

[
N

: Set value as 1;

—
w

. Emit < key, value > pair.

At shuffle phase, the < key,value > pairs from Map phase are grouped ac-
cording to their key by Hadoop framework. As a result, 2d + 6 < key, V > pairs
are forwarded to Reduce phase as the output of shuffle phase, where V' is the set
of value that associated with the key.

At Reduce phase, the sum operation of (6.18) and (6.19) is conducted to obtain
K={M; M_ vy ,v_,l 1 }. Foreachinput < key,V >, all values in V are
summed up as the output value. The steps of Reduce function are stated in
Algorithm 24. The output of Reduce phase consists of 2 count pairs which output
[, and [_, and 2d + 4 column pairs which give M, M_, v, and v_.
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Algorithm 24 MapReduce Implementation of Algorithm 8 - Reduce Function
Input: Vector or count key, value set V with the same key.

Output: Vector or count < key,value > pairs, where value is either a sample
count number, a colume of M matrix or a v vector.

1: if key is vector type then

2 Initialize a vector temp;

3: else if key is count type then

4:  Initialize an integer temp;

5: end if

6: while V.hasNext() do

7. Compute temp = temp + V.next();

8: end while

9: Set value as temp;

10: Emit < key, value > pair.

6.3.5 Speedup Analysis

In this section, we estimate the training time and speedup of our MapReduce im-
plementation of proposed algorithms in response to different number of nodes and
data sizes. This estimation is based on pure computational complexity analysis,
where time costs on nodes communication and coordination are not counted.

The computation at Map phase includes mapping all x; into ®(x;) which takes
2d(d + 1)n operations, and computing M for all &; which has the complexity of
(d+1)*n. Here n is the number of sample, d and d is the dimensionality of a; and
®(x;) respectively. The computation at Reduce phase is about the summing of
M ; and v; which takes (CZ +1)%n and (cz + 1)n operations respectively. Consider
d < nand d < n. The cost for both Map (Algorithm 23) and Reduce (Algorithm
24) phase is O(n). For serial part (Algorithm 17) which includes (d+ 1) x (d+ 1)
matrix addition and inversion, the cost is O(d%).

Let T'(n,t) be the total execution time for learning a dataset with n samples

using ¢ nodes, then we have

T(n,t) =Ty(n,t) + Tr(n,t)+ Ts, (6.21)
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where T (n,t), Tr(n,t) and Ty are the execution time for Map, Reduce and serial
part respectively.

Let Sys(n,t) and Sg(n,t) be the speedup at Map and Reduce phase execution.
The computational cost of Map and Reduce phase is evenly distributed on all

nodes, thus we have linear speedup against number of nodes

o TR(“a 1) _ .
SR<n7t) - TR(TL t) -

As discussed above, the complexity of both Map and Reduce phases is O(n),
then we have linear execution time against data size
Ta(n,t)
Ta(1,t)
Tr(n,t)
Tr(1,t)

Let S(n,t) be the overall speedup for learning n samples using ¢ nodes, then

(6.23)

we have

T(n,1)  Ty(n,1)+Tg(n,1)+Ts
T(n,t)  Ty(n,t)+ Tr(n,t) + T
According to (6.22) and (6.24), it is easy to know that

Tar(n, 1) + Tr(n, 1) + tTs
Tar(n,t) + Tr(n,t) + Tser
 ATar(n,t) + tTr(n,t) +tTs
 Ty(n,t) + Tr(n,t) +Tg
when ¢t > 1. This indicates the overall speedup is less than linear against t.
Given t; and ty with 1 < t; < t5. According to (6.22) and (6.24), we know that

S(n,t1)  Ty(n,1) +Tr(n,1)+Ts , Ty(n,1) +Tg(n,1) + Ty
S(n,ta)  Tar(n,ty) + Tr(n, ty) + Ts' Tar(n,ta) + Tr(n, ta) + Ts
TM(n to) + Tr(n,t2) + Ts
)+ Tr(n,t1) + Ts
1)+ Tr(n, 1) + toTs
)+ Tr(n, 1) + 02T
)+ Tr(n, 1) +t,Ts
) (n,1) +t:Ts

(6.24)

S(n,t) =

S(n,t) <
(6.25)

(6.26)

t
=251,
3]

~— | — — [ —

n,1
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showing that the overall speedup decreases when the number of nodes grows.
According to (6.21) and (6.23), we know that

T(n,t)  Ty(n,t)+Tr(n,t) + Ty
T(1,t)  Ty(1,t) +Tr(1,t) + Ts
_ nTy(1,t) +nTr(1,t) +Ts (6.27)
Tar(1,t) + Tr(1,t) + Ts ’
nTa(1,t) +nTr(1,t) +nTs

= ’]’L7
Ty (1,t) + Tr(1,t) + Ts

indicating a less than linear ratio between the overall training time and data size

n. In other words, learning a n times larger dataset costs less than n times of

training duration.

Given data sizes ny > n; > 1, according to (6.24) and (6.23) we have

S(ng,t)  Tar(ng, 1) +Tr(ng, 1) + Ty TM(nl7 1)+ Tr(n1, 1)+ Ts

S(ni,t)  Ta(ng,t) + Tr(ng,t) + Ts' Tar(ny, t) + Tr(ng, t) + Ts
= no(Ty(1,1) + Tr(1,1)) + Ts ny (T (1,8) + Tr(1,t)) + Ts
 ng(Tar(1,t) + Tr(1,t)) +Ts ny(Tar(1,1) + Tr(1,1)) + T
~ np(Tu(1,1) + Tr(1,1)) + Ts "+ (Ta(1,1) + Tr(1,1)) + Ts
2 (Ty(1,1) + Tr(1,1) 4+ Ts nl(TM(l, 1)+ Tgr(1,1)) + Ty
- (T (1,1) +Tr(1,1)) + Ts ny(Ta(1,t) + Tr(1, 1)) + Ty
~ no(Tar(1,8) + Tr(1,t)) + tTs ny (Tar(1,1) + Tr(1,1)) + Ty
nna(Tar(1,1) + Tr(1,1))% + (ot + n)(Tar(1, 1) + Tr(1,1))Ts + T
~ na(Tyr(L 1) + Ta(L )2 + (it + n9)(Tar(1,1) + T(1, 1) Ts + 157
>1,

(6.28)

since nat + ny > nit + ne when ¢t > 1. This indicates the higher speedup is

obtained for larger datasets learning.

6.4 Experiments

In the experiments, we evaluate the correctness, efficiency and effectiveness of

the proposed algorithms. Our algorithm is also compared with other parallel

and parallel incremental algorithms in terms of of classification capability and

training time.
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Our experiments are conducted on a cluster of 4 computers. Each computer
is equipped with 8 GB memory and four 2.8 GHz cores. For MapReduce envi-
ronment, we have Hadoop version 2.7.2 installed on top of Java 1.8.0_91. The
datasets used are downloaded from the public UCI repository [99], where those
multi-class datasets are transformed into binary in one-class-against-rest manner

since proposed classifiers are binary.

6.4.1 Equivalence to Batch Retraining

To verify proposed parallel and incremental learning equivalence to batch retrain-
ing, we compare respectively the learning outcomes of proposed incremental, par-
allel, and PI integrated algorithm with that of batch retraining. Consider in (6.7)
the learning outcome of wESVM is a column vector. We measure the learning
outcome differences by calculating the Euclidean distance between two vectors,
one from proposed algorithm and the other from batch retraining. Without loss
of generality, we simply set the number of incremental stages as 2 and utilize
2 nodes for parallel computing. All learning differences are measured over four
datasets with varied scales and dimensionalities, and the results are shown in
Table 6.1. As we can see, no learning outcome differences are found among three
algorithms for all four datasets. This indicates that proposed incremental, par-
allel and PI integrated wESVM is identical to batch retraining in terms of final

learning outcomes.

Table 6.1: Incremental (Inc), parallel (Par) and PI integrated (PI) wESVM learn-
ing outcome differences against that of batch wESVM.

Dataset # Feature # Instance | Inc Par PI
Heart 75 303 0 0 0
Breast Wisconsin 32 569 0 0 0
AnonymousWeb 294 37,711 0 0 0
CoverType 54 581,012 0 0 0
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6.4.2 Parallel Efficiency Evaluation

In order to evaluate the efficiency of proposed parallelization, we measure the
variation of time cost against the number of nodes utilized and data sizes. We
set the number of nodes varies from one to four. For data size, we duplicate the
CoverType dataset up to three times to obtain four training datasets in the size
of 1x, 2x, 3x and 4x of original dataset, respectively. For each combination
of data size and number of nodes, we perform parallel wESVM training for 10
times, and record the time costs.

Consider the MapReduce implementation of our algorithm consists of three
steps: Map, Reduce and serial part. For performance evaluation, we adopt from
Hadoop JobTrackers [100] four basic measurements: max Map time, mean Map
time, max Reduce time and mean Reduce time, where max Map time represents
the longest execution time of all Map nodes, mean Map time calculates the av-
erage execution time of all Map nodes, and so for max Reduce time and mean
Reduce time, respectively. Further for this experiment, we define total execution
time as the sum of max Map time, max Reduce time and serial execution time,
and define node average time as the sum of mean Map time, mean Reduce time

and serial execution time.

Response to Data Size

To evaluate the parallel efficiency of our implementation, we observe the running
time variation to data size. We set training time on 1x dataset as the basis,
and calculate how many times longer the system costs to learn 2x, 3x and 4x
datasets. We plot the curve of the total execution and node average time to data
size in Figure 6.2.

As seen from the figure, t-times bigger dataset consumes less than t-times train-
ing time no matter how many nodes are used. This agrees with our estimation in
(6.27), showing that the running time is sub-linear to data size. Also we can see
that the more nodes we use, the fewer times of time spent on learning the same
size data. This indicates that learning efficiency of our implementation increases
with the number of nodes.

105



w
w in S
w
w in S

Running Time
o
m
Running Time
o
m

—&— 1 node —&— 1 node
15F —— 2 nades 151 —— 2 nades
3 nodes 3 nodes
—— 4 nodes —— 4 nodes
11 X 2x 3x 4x 11 X 2x 3x 4x
Data Size Data Size
(a) Total execution time (b) Node average time

Figure 6.2: Running time against data size

Response to Number of Nodes

To observe system speedup response to number of nodes, we have the curve of
speedup to number of nodes shown in Figure 6.3a and 6.3b. As we can see, the
training is accelerated by investing more nodes. The speedup is shown sub-linear
to the number of nodes, which means t-node gives less than ¢ times speedup. This
result again agrees with our estimation in (6.25). Further as predicted in (6.28),
the larger dataset is seen giving the better speedup, which indicates proposed
algorithm is more sustainable for large dataset learning.

In checking the stability of our Hadoop implementation, we calculate the mean
and variation (minimum and maximum) of speedup in terms of total execution
time and node average time, respectively. Figure 6.3c to 6.3f give the comparison
results. As seen, the speedup in terms of node average time is constantly higher
than that of total execution time. This is because total execution time is deter-
mined by the time cost of slowest node, not the average node execution time.
Also, the above speedup difference is seen increasing with the number of nodes,
and so for the speedup variance in terms of total execution time. This indicates
that the more nodes in use the more likely to have slow node, and the longer
delay is caused by those slow nodes. In other word, our Hadoop implementation

is more stable for smaller number of nodes.
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Table 6.2: Training time of batch, incremental (Inc), iarallel (Par) and PI inte-
grated (PI) wESVM algorithm

Stage | # New Instances # Accumulated Instances | Batch  Inc Par PI
1 300 K 300 K 41.35s 41.33s 19.98s 19.96s
2 150 K 450 K 62.55s 21.19s 29.94s 11.03s
3 75 K 525 K 74.63s 11.19s 35.46s 5.47s
4 37.5 K 562.5 K 80.23s  5.58s 37.72s  2.27s

To further discover the speedup contribution of individual phases, we calcu-
late speedup in terms of max Map, mean Map, max Reduce and mean Reduce
time, and give the results in Figure 6.4a to 6.4d respectively. As seen from the
figures, the speedup of Map and Reduce phase are both sub-linear to number of
nodes, which is lower than our estimation in (6.22). This is because that Hadoop
introduces extra time cost (beyond computation) on nodes communication and
coordination, and this cost increases with the number of nodes utilized. Also, the
larger data leads to the better speedup at both Map and Reduce phases. This
can be explained that the extra time cost increases sub-linearly to data size, thus
less speedup is neutralized for larger size dataset. Figure 6.5 discloses the fraction

of total execution time taken by Map and Reduce phase, respectively.

6.4.3 Incremental Effectiveness

In this experiment, we expand the training set progressively by adding a set of
samples at every incremental stage, meanwhile record the time consumed by the
batch and proposed algorithms. We split CoverType dataset into four chunks,
and we add one chunk data at each stage into the training set. Here, parallel
and PI integrated wESVM are executed on a cluster of four nodes. Table 6.2
gives the number of samples added and training time costs for each algorithm in
comparison.

As seen in Table 6.2, the training time for proposed incremental and PI in-
tegrated wESVM decreases consistently when incoming data size reduces over
stages. As a reference, batch and parallel algorithms increases over incremental

data size because non-incremental algorithms have to train all data arrived so
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far. Specifically at stage 4, there are 37.5K samples newly arrived. Proposed
incremental and PI integrated wESVM costs 5.58s and 2.27s respectively to learn
the data. In contrast, batch and parallel wESVM spends 80.23s and 37.72s for
stage 4 learning, which is far more than that of the two incremental algorithms.
This is because that batch and parallel algorithms have to learn the total 562.5K

instances, which is an accumulation of all incremental stages.

6.4.4 Comparison with Other Algorithms

In this experiment, we compare our PI integrated algorithm (PI) with parallel in-
cremental ESVM (PIESVM) [101], Bagging SVM (Bagging) [102] and Distributed
SMO (DSMO) [103] in terms of classification capability and training time.

Classification Capability

The four datasets we used and their characteristics are listed in Table 6.3. For
each dataset, we conduct two experiments to test the performance of all algo-
rithms with and without class-imbalance. The classification capability is mea-

sured by testing accuracy and G-mean, where G-mean is defined as

G-mean = \/ Sensitivity x Specificity. (6.29)

The results of the two experiments are shown in Tables 6.4 and 6.5 respectively,
where performance on each measurement is shown as ’average value £ standard
division” Table 6.4 shows that when there is no class-imbalance, all four algo-
rithms show similar performance. When there is heavy class-imbalance, in Exp. 2
shown in Table 6.5, the classification capability decreases for all four algorithms,
resulting in a lower G-mean. This is due to algorithms tend to classify most
samples as the majority class to increase the training accuracy. However, the
proposed algorithm has a much smaller performance decrease in comparison with
other algorithms, thus it always gives the highest accuracy and G-mean. This

indicates the robustness of our algorithm against class-imbalance.
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In this comparison, all four algorithms learn the 4x CoverType dataset with a
different number of nodes involved. The training time is reported in Figure 6.6.

Figure 6.6 shows that our algorithm runs much faster than the Bagging and
DSMO algorithms. This can be explained by the simplicity nature of ESVM
compared with standard SVM. PIESVM consumes about the same amount of
time as our proposed algorithm. This is because these two algorithms share some
similar operations and, as we mentioned before, PIESVM can be seen as a special

case of our algorithm.

6.5 Summary

In this work, we propose PI integrated wESVM. To enable wESVM knowledge
merging, we reformulate wESVM such that knowledge from each class is rep-
resented as two class-wised matrices, and each class weight is formulated as a
real value coefficient multiplying its corresponding class-wised matrices. As a

result, knowledge merging can be performed through simple matrix addition and
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class weights are updated easily by renewing the coefficients in response to class-
imbalance. Based on this, we developed the PI integrated wESVM, in which
incremental learning is achieved via merging knowledge from different incremen-
tal stages, and the parallel learning is implemented as merging knowledge from
multiple data slices.

We implement the proposed algorithms in MapReduce environment. Experi-
mental results show that proposed algorithms give always the exactly same learn-
ing result as batch retraining, our parallel learning scales well in response to both
number of nodes and data size, and our incremental learning has clear speed ad-
vantage to batch learning. In comparison with other algorithms, the proposed

algorithm also show advantages in classification capability and training time.
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7 Conclusion and Future Works

7.1 Conclusion

In developing parallel incremental learning for BigData processing, we address
first the incremental learning of max-flow in that max-flow has wide applications
to the analysis of the Internet and social networks. The challenges of incremental
max-flow modeling includes: the graph changes are dynamic, the dilemma of edge
delete request and edge occupied by existing flows, and how to handle the cycle
flow is another difficulty.

In the proposed incremental max-flow algorithm, all possible graph changes
are abstracted into two key changes: edge capacity increase and decrease. To
handle edge capacity decrease, we enable the decrease by releasing the capacity
occupied by existing flows. When the capacity is occupied by cycle flow, we
release the capacity by cancelling the cycle. When the capacity is occupied by
s — t flow, we release the capacity by de-augmenting the s — ¢t path. To handle
edge capacity increase, we conduct path searching and augmentation to identify
the newly emerged flow. The theoretical guarantee of the proposed algorithm is
that incremental max-flow is always equal to that of batch retraining.

We apply the proposed incremental max-flow to graph minicuts, an existing
batch semi-supervised learning algorithm, and develop the incremental graph
minicuts. In batch graph minicuts, the input labeled and unlabeled samples are
first represented as a graph, in which each sample is denoted by a node and the
similarity of two samples determines the edge capacity between two corresponding
nodes. The classification decision is then made by conducting a min-cut, which
can be easily computed from the max-flow on the graph. In our incremental graph
minicuts, we update the graph dynamically to accommodate sample adding and

retiring. Then we employ the proposed incremental max-flow algorithm to learn
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the max-flow from the resulting non-stationary graph. In the end, we compute
the min-cut from the max-flow to make the classification decision on the updated
labeled and unlabeled dataset.

As compared to incremental learning, parallel incremental learning presents
the advantage of speed acceleration. The traditional approach achieves this by
either developing parallel learning of an incremental learning model, or the other
way around, which is developing incremental learning on top of a parallel learning
model. Alternatively, we propose the concept of PI integration, in which paral-
lel and incremental learning are merged by interpolating two different types of
learning as the same knowledge merging process.

To achieve PI integration, we define a knowledge mergeable condition, which
requires the base learning model knowledge from one dataset can be merged with
that of another. As such, incremental learning can be implemented by merging
knowledge from data that arrived at different learning stages, and parallel learning
can be performed by merging knowledge from simultaneous learners on different
data slices. For algorithm implementation, we identify a family of algorithms
that satisfy the knowledge mergeable condition. These include LPSVM, ESVM,
wLPSVM, and wESVM, where wESVM is a type of generalized weighted kernel
LPSVM and the remaining algorithms are just special cases of wESVM.

As the first PI integrated learning system, we develop the PI integrated wESVM,
where the wESVM is reformulated to enable learning knowledge to be mergable.
Because the knowledge from one dataset can be merged with that from another
dataset via simple matrix addition, the proposed PI integrated wESVM is capable
of conducting parallel incremental learning by continuously merging knowledge
from data slices arriving at each incremental stage, and instantly merging knowl-

edge from data slices partitioned for parallel calculation.

7.2 Future Works

To achieve PI integration, the base model is required to satisfy the knowledge
mergeable condition. This gives the limitation that PI integration can be only
applicable to a set of models whose learning knowledge is mergable among dif-
ferent datasets. So far, the proposed PI integrated wESVM gives an example
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implementation of PI integration.

For our future works, we consider:

1. To further explore the knowledge mergeable condition, and discover other
base learning models for PI integration. As the wESVM family is not
likely to be the only set of knowledge mergeable algorithms; and more

interestingly,

2. To relax the constraint of the knowledge mergeable condition and discover
other potential mechanisms for PI integration, so that PI integration can

be generalized to work among an extensive scope of algorithms.
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