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Hybrid Neural-Symbolic Machine Translation∗

Jingyi Zhang

Abstract

Machine translation (MT) investigates the use of software to translate a source

sentence into the corresponding target sentence. The state-of-the-art MT ap-

proach is statistical MT, which learns statistical models from a parallel bilingual

corpus to model the translation process.

When this thesis started (2015), symbolic MT, which is based on symbolic

translation rules, such as phrase-based MT [32], hierarchical phrase-based MT [8],

and syntax-based MT [36, 43], had the best translation performance. Because

symbolic MT is based on context-free and ambiguous symbolic translation rules,

a log-linear framework and statistical models learned from parallel or monolingual

corpora, such as language models [32], reordering models [63, 14], rule selection

models [35, 10, 23], are exploited to select the most possible translation during

symbolic MT decoding.

Now (2018), neural MT (NMT) [4, 55, 68], which is based on a single large

neural network and does not use any explicit translation rules, has outperformed

symbolic MT on various translation tasks. Compared to symbolic MT, NMT

uses distributed word representations and generally produces more fluent trans-

lations, but often sacrifices adequacy [31], such as NMT is more likely to generate

completely unrelated translations, under and over translations.

This thesis focuses on hybrid neural-symbolic MT methods, which aim to pro-

duce translations that are both fluent and adequate by combining the advantages

of both symbolic and neural MT.

The first part of our contribution is that we develop various neural models

for the log-linear framework of symbolic MT, because neural models learn dis-

tributed representations for words and sentences, which can generalize better
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[66, 54, 17, 73]. In particular, we propose: a neural word reordering model which

outperforms previous word reordering models [63] by adopting a feed-forward neu-

ral network and selecting useful reordering information (i.e. short reorderings);

a binarized neural network joint model (NNJM) which outperforms the original

NNJM [11] by converting the multiclass classification problem of the NNJM into

a binary classification problem and adopting an effective noise sampling method

based on translation probabilities for model training; a neural rule selection model

which performs rule selection based on minimal translation rules [16] for reduc-

ing data sparsity and outperforms previous rule selection models [35] by learning

distributed representations for both translation rules and context words.

The second part of our contribution is that we exploit knowledge from sym-

bolic MT to improve the adequacy of NMT. We propose to perform phrase-based

forced decoding for NMT outputs and rerank NMT outputs with phrase-based

decoding scores. Because the search space of phrase-based MT is limited by

translation rules and the standard phrase-based forced decoding may fail for

some NMT outputs, we propose a phrase-based soft forced decoding algorithm,

which can successfully find a phrase-based decoding path for any NMT outputs.

Keywords:

hybrid neural-symbolic MT, neural reordering model, binarized neural translation

model, neural rule selection model, forced decoding for NMT
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1. Introduction

Machine translation (MT) uses software to translate a source language sentence F

into the corresponding target language sentence E, enabling people to understand

and communicate with each other even if they do not speak the same language.

The state-of-the-art MT approach is statistical MT, which learns statistical mod-

els from parallel bilingual corpora to model the translation process.

When this thesis started (2015), symbolic MT, such as phrase-based MT [32],

hierarchical phrase-based MT [8], and syntax-based MT [36, 43], had the best

translation performance. Symbolic MT is based on context-free and ambiguous

symbolic translation rules. During decoding, a large number of translation rules

can be applied on one input sentence to generate different translations. To select

the most possible translation, symbolic MT exploits a log-linear framework and

various statistical features learned from bilingual or monolingual corpora, such as

rule selection models [35, 10, 23], reordering models [63, 14] and language models

[32].

Now (2018), neural MT (NMT) [61, 4, 55, 68] has outperformed symbolic MT

on various translation tasks. NMT is based on a single large neural network, which

takes the source sentence as input and outputs the target sentence without using

any explicit translation rules. Compared to symbolic MT, NMT learns distributed

representations for both source and target words, which generally generates more

fluent translations, but often sacrifices adequacy, such as, NMT is more likely to

generate completely unrelated translations, over and under translations [31].

This thesis focuses on hybrid neural-symbolic MT methods, which aim to pro-

duce translations that are both fluent and adequate by combining the advantages

of both symbolic and neural MT. Figure 1 is an overview of our contribution.

The first part of our contribution is that we develop neural models for the

log-linear framework of symbolic MT. Traditional features of the log-linear frame-

work in symbolic MT are also based on symbolic representations, such as n-gram

language models [32] or maximum entropy based reordering models [63] or rule

selection models [35]. Neural models, such as neural language models [66] and

translation models [54, 17, 73], which learn distributed representations for words

and phrases, have been proved to achieve better performance than previous sta-

tistical models that use symbolic representations. In this thesis, we propose three

1



2015
Symbolic MT

• Phrase-based MT
• Hierarchical phrase-based MT
• Syntax-based MT

based on context-free symbolic translation rules

2018
NMT
based on a single large neural network
often sacrifices adequacy for fluency

𝑃 𝐸|𝐹 ∝  

𝑚=1

𝑀

𝜆𝑚ℎ𝑚 𝐹, 𝐸

State-of-the-art of MT
Our contribution:
Hybrid neural-symbolic MT

𝑃 𝐸|𝐹 = 

𝑖=1

|𝐸|

𝑃 𝑒𝑖|𝑒1
𝑖−1, 𝐹

Chapter 3: a neural word reordering model based on short reorderings

Chapter 4: a binarized neural network joint model with improved noise sampling
(an alternative to noise contrastive estimation)

Chapter 5: a neural rule selection model based on minimal rules

Neural features

Symbolic MT scores

Chapter 6: reranking NMT outputs with phrase-based soft forced decoding scores

distributed representations

improve adequacy

Figure 1. An overview of the state-of-the-art MT methods and our contribution.

novel neural models for symbolic MT as following,

• We propose a neural word reordering model, which is learned by a feed-

forward neural network and learns reorderings only for short distance re-

orderings, because we find long distance reordering information cannot sig-

nificantly improve the translation performance in our experiments. Com-

pared with previous reordering models [63, 14], our neural reordering model

can more effectively and efficiently exploit helpful word reordering informa-

tion.

2



• We propose a binarized neural network joint model (NNJM), which con-

verts the multiclass classification problem of the original NNJM [11] into

a binary classification problem. The binarized NNJM is an alternative to

noise contrastive estimation (NCE) [66] for solving the high normalization

cost problem of the NNJM. We also propose an effective sampling method

based on translation probabilities for both training the binarized NNJM

and training the NNJM with NCE. We show that the binarized NNJM can

outperform the original NNJM trained by NCE with the proposed noise

sampling method.

• We propose a neural rule selection model for syntax-based MT [36, 43] to

perform context-dependent rule selection. Our neural rule selection model

learns distributed representations for both translation rules and context

words, which outperforms previous maximum entropy based rule selection

models [35] that use symbolic representations. In addition, we propose a

method to train the rule selection models only on minimal rules [16] to

reduce data sparsity, because minimal rules are more frequent and have

richer training data compared to non-minimal rules.

The second part of our contribution is that we exploit knowledge from sym-

bolic MT to improve the adequacy of NMT. There are existing methods that

incorporate knowledge from symbolic MT into NMT, such as lexical translation

probabilities [3, 22], phrase memory [62], and n-gram posterior probabilities based

on syntactic translation lattices [59]. These can improve the adequacy of NMT

outputs, but do not impose hard alignment constraints like symbolic MT and

therefore cannot effectively solve all over-translation or under-translation prob-

lems. There are also methods that use both NMT and symbolic MT decoding

scores for selecting the best translation [46, 60]. However, the search space of

symbolic MT is limited by the translation rule table, compared to NMT which

has unlimited search space. Therefore, using both symbolic MT and NMT de-

coding scores for translation selection also limits the translation search space. We

propose a phrase-based soft forced decoding algorithm to solve the limited search

space problem of phrase-based MT.

The rest of this thesis is organized as following: Section 2 reviews the back-

ground of statistical MT; Section 3, 4 and 5 describe the proposed neural word

3



reordering model, binarized NNJM and neural rule selection model, respectively;

Section 6 describes the proposed phrased-based soft forced decoding method for

reranking NMT outputs; We conclude in Section 7 and discuss future work in

Section 8.
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2. Statistical MT Background

Statistical MT learns statistical translation models from parallel corpora (i.e.

sentence-level aligned bilingual corpus). This section reviews different statistical

MT approaches.

2.1 Word Alignment

IBM models [6] are widely used to learn word-level alignments for parallel corpus.

Figure 2 shows an example of word alignments for an English-to-Chinese sentence

pair.

I submitted the documents for visa application

我 提交 签证 申请 材料了

Figure 2. An example of word alignments.

IBM models learn alignments aJ1 for a source sentence f I1 and a target sentence

eJ1 . That is ej is aligned to faj . IBM models consist of five models.

Model 1 Model 1 only uses lexical translation probabilities. The joint likeli-

hood of a target sentence and an alignment given a source sentence is

Pr
(
eJ1 , a

J
1 |f I1

)
=

ε

(I + 1)J

J∏
j=1

t
(
ej|faj

)
(1)

where t (e|f) is lexical translation probabilities that satisfy,

∑
e

t (e|f) = 1 (2)

Therefore,

Pr
(
eJ1 |f I1

)
=

ε

(I + 1)J

I∑
a1=0

...
I∑

aJ=0

J∏
j=1

t
(
ej|faj

)
(3)

aj = 0 means ej is not aligned to any source word. The parameters t (e|f) are

estimated by maximizing Pr
(
eJ1 |f I1

)
on the training data.

5



Model 2 Model 2 introduces reordering probabilities into the joint likelihood

in Equation 1,

Pr
(
eJ1 , a

J
1 |f I1

)
= ε

J∏
j=1

t
(
ej|faj

)
a (aj|j, J, I) (4)

where a (i|j, J, I) satisfy,
I∑
i=0

a (i|j, J, I) = 1 (5)

Model 3-5 introduce more complicated features.

IBM models align each target word to one source word even if one target

word should be aligned to multiple source words. To solve this problem, a widely

used method is to run bi-directional (source-to-target and target-to-source) IBM

models and then use the grow-diag-final-and heuristic [32] to combine the bi-

directional alignments together for symmetric word alignments.

2.2 Phrase-based MT

Phrase-based MT [32] extracts phrase-based translation rules from the word-

aligned training corpus and then uses them to translate new sentences.

A phrase-based translation rule r includes a source phrase, a target phrase and

several feature scores, such as direct and inverse lexical and phrase translation

probabilities. Table 1 shows some examples of phrase-based translation rules

extracted from the word-aligned sentence pair in Figure 2.

documents→材料(documents)

visa→签证(visa)

application→申请(application)

visa application → 签证(visa) 申请(application)

documents for visa application →签证(visa) 申请(application) 材料(documents)

Table 1. Examples of phrase-based rules.

The translation process of phrase-based MT applies phrase-based translation

rules to source phrases in the input sentence and then reorders target phrases

into the target language word order.

6



nightheadacheahadI last

昨晚(last night)我(I)

nightheadacheahadI last

痛(pain)头(head)昨晚(last night)我(I) 了

nightheadacheahadI last

吃(eat)昨晚(last night)我(I) 了

nightheadacheahadI last

一(one)昨晚(last night)我(I)

r1: I—>我(I)

r5: a—>一(one)

r4: had—>吃(eat) 了

r3: had a headache—>头(head) 痛(pain)了

r2: last night—>昨晚(last night)

H1:

H4:

H3:

H2:

Phrase Table

Figure 3. An example of phrase-based decoding.

Because each source phrase can have different translations and target phrases

can be reordered arbitrarily, one input sentence has a huge number of possible

translations. The phrase-based decoding algorithm aims to find the best transla-

tion E with the highest translation probability for a given input sentence F .

Ê = arg max
E

Pr (E|F ) . (6)

The probability of E given F is computed using a log linear model as shown

in Equation 7. hm can be features calculated by various statistical models, such

as translation models, reordering models and language models. λm are feature

7



weights.

Pr (E|F ) ≈
exp

(
M∑
m=1

λmhm (E,F )

)
∑
E′ exp

(
M∑
m=1

λmhm (E′, F )

) . (7)

The standard phrase-based decoding algorithm generates target phrases from

left to right by applying a list of translation rules to the input sentence. A

basic concept in phrase-based decoding is hypotheses. As shown in Figure 3,

the hypothesis H1 consists of two rules r1 and r2. An existing hypothesis can be

expanded into a new hypothesis by applying a new rule. As shown in Figure 3, H1

can be expanded into H2, H3 and H4. H2 cannot be further expanded, because

it covers all source words, while H3 and H4 can (and must) be further expanded.

The decoder starts with an initial empty hypothesis H0 and selects the hypothesis

with the highest score from all completed hypotheses. The score of a hypothesis

S (H) can be computed as the log sum of weighted feature scores.

During decoding, hypotheses are stored in stacks. For a source sentence with

I words, the decoder builds I stacks. The hypotheses that cover i source words

are stored in stack si. The decoder expands hypotheses in s1, s2, ..., sI in turn as

shown in Algorithm 1. Here, Expand(H) is expanding H to get new hypotheses

and putting the new hypotheses into corresponding stacks. For each stack, a

beam of the best n hypotheses is kept to speed up the decoding process.

Algorithm 1 Standard phrase-based decoding.

Require: Source sentence F with length I

Ensure: Translation E and decoding path D

initialize H0 and s1, s2, ..., sI

Expand(H0)

for i = 1 to I − 1 do

for each hypothesis Hik in si do

Expand(Hik)

end for

end for

select best hypothesis in sI

8



2.3 Hierarchical Phrase-based MT

Hierarchical phrase-based MT [8] introduces non-terminal X and hierarchical

structures into phrase-based MT.

A hierarchical phrase-based translation rule r is defined as:

X →
〈
f̃ , ẽ,∼

〉
,

where X is a nonterminal, f̃ and ẽ are respectively source and target strings of

terminals and nonterminals, and ∼ is the alignment between nonterminals and

terminals in f̃ and ẽ.

Table 2 shows some hierarchical phrase-based rules extracted from the word-

aligned sentence pair in Figure 2.

X → documents, 材料(documents), 0-0

X → application, 申请(application), 0-0

X → visa application, 签证(visa) 申请(application), 0-0 1-1

X → documents for visa X, 签证(visa) X 材料(documents), 0-2 2-0 3-1

X → documents for X, X 材料(documents), 0-1 2-0

Table 2. Examples of hierarchical phrase-based rules.

In hierarchical phrase-based MT, the translation of a new source sentence can

be done by applying a series of hierarchical phrase-based rules, which perform

translating and reordering at the same time via non-terminal X in contrast to

phrase-based MT which does translating and reordering separately.

Like phrase-based MT, hierarchical phrase-based MT can also generate plenty

of translations for one input sentence by applying different rules. The standard

decoding algorithm used to find the most possible translation in hierarchical

phrase-based MT is the bottom-up CKY parsing algorithm with beam search. To

compute probabilities for different translation, hierarchical phrase-based MT uses

the same log-linear model as phrase-based MT with different statistical features.

2.4 Tree-to-String MT

Tree-to-string MT [36] uses a statistical parser to obtain the parse tree for source

sentences and then extract/apply translation rules whose source sides are syntac-
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tic subtrees. Figure 4 shows two translation rule examples extracted in tree-to-

string MT. These two rules have the same source subtree t̃ but different target

translations ẽ, which demonstrates the ambiguous rule selection problem in tree-

to-string MT.

S

NP

a thiefcaught

PRP VBD DT NN

NP

VP

I

了 一个抓我 贼

S

NP

a coldcaught

PRP VBD DT NN

NP

VP

I

了 感冒得我

S

NP

caught

VBDNP

VP

x0

了 x1抓x0

x1

S

NP

caught

VBDNP

VP

x0

了 x1得x0

x1

Rule Extraction

Figure 4. Tree-to-string translation rule examples.

Tree-to-string MT decoding exploits the same CKY parsing algorithm and

the log-linear framework as hierarchical pharse-based MT. Because the parsing

errors can hurt the performance of tree-to-string MT, Mi et al. proposed a forest-

to-string MT model [43], which uses n-best parse trees instead of the 1-best parse

tree to reduce the influence of parsing errors.

2.5 Attentional NMT

Attentional NMT [4] uses a single large neural network to model the entire trans-

lation process, which includes an encoder, a decoder and an attention model.

Given a source sentence F = {f1, ..., fI}, the encoder learns an annotation

hi =
[
~hi;

←
hi

]
for fi using a bi-directional recurrent neural network.
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The decoder generates the target translation from left to right. The proba-

bility of generating next word ej is,1

P
(
ej |ej−11 , F

)
= softmax (g (ej−1, tj , sj)) (8)

where tj is a decoding state for time step j, computed by,

tj = f (tj−1, ej−1, sj) (9)

sj is a source representation for time j, calculated as,

sj =
I∑
i=1

αj,i · hi (10)

where αj,i is the attention model that scores how well the inputs around position

i and the output at position j match, computed as,

αj,i =
exp (a (tj−1, hi))
I∑

k=1
exp (a (tj−1, hk))

(11)

As we can see, NMT only learns an attention distribution for each target word

over all source words and does not apply exact mutually-exclusive word or phrase

level alignments. As a result, it is known that attentional NMT systems make

mistakes in over- or under-translation [9, 44]. Besides, without the limitation

of translation rules in symbolic MT, NMT can generate any translation for one

input sentence and is more likely to produce completely unrelated translation.

The NMT training can be done by backpropagation with different optimiza-

tion methods, such as Adam [27]. The decoding process of NMT is to find the

best translation with the highest probability as computed in Equation 12.

P (E|F ) =
J∏
j=1

P
(
ej |ej−11 , F

)
(12)

The standard decoding algorithm for NMT is beam search, that is to keep

n-best hypotheses at each time step j.

1g, f and a in Equation 13, 14 and 11 are nonlinear, potentially multi-layered, functions.
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3. A Neural Word Reordering Model for Hierar-

chical Phrase-based MT

3.1 Introduction

Hierarchical phrase-based MT [8] applies a series of hierarchical phrase-based

translation rules, which can perform both lexical translating and reordering, to

translate a source sentence. However, selecting proper translation rules during

decoding is a major challenge, as a large number of hierarchical rules can be

applied to any source sentence.

Which translation rules should be used on one particular input sentence de-

pends on the sentence context. He et al. [23] and Liu et al. [35] used maximum

entropy approaches to integrate rich contextual information for target side rule

selection. Cui et al. [10] proposed a joint model to select hierarchical rules for

both source and target sides. Wang et al. [67] proposed to estimate the semantic

similarity between nonterminals and their phrasal substitutions during decoding

to award translation rules with high similarities.

In addition, word or phrase reordering models have also been integrated into

hierarchical phrase-based MT for better rule selection [21, 24, 47, 7]. Among

these, Hayashi et al. [21] demonstrated the effectiveness of using word reordering

within hierarchical phrase-based MT by integrating Tromble and Eisner’s word

reordering model [63] into the hierarchical translation model.

The word reordering model helps score the reordering of words during trans-

lation, reducing the number of reordering errors caused by selecting the wrong

translation rules. Figure 5 shows a Chinese-to-English hierarchical phrase-based

MT example that demonstrates how the word reordering model can help hierar-

chical phrase-based MT. In this translation, the rule “X1 X2男生→ X1 guy X2”

is applied to the Chinese input sentence. Alternatively, the rule “X1 X2 男生→
X1 X2 guy” can also be applied to the input sentence but will cause an incorrect

translation in this particular case. If the word pair “眼镜(glasses) 男生(guy)”

can be predicted to be reversed by the reordering model, then the translation

system will prefer the translation rule adopted in Figure 5 that reverses this word

pair.
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那个 戴 眼镜 的 男生 是 詹姆士 

That guy who wears glasses is James 

X X X 

X 

X 

Figure 5. A example of hierarchical phrase-based MT.

Hayashi et al.’s method [21] demonstrated that reordering models can help

resolve this problem, but one deficiency of the method is that the computation

cost is quite expensive, as the model predicts reorderings for all word pairs in the

input sentence. That is, if the input sentence length is n, this model needs to

calculate reorderings for O (n2) word pairs.

In contrast, Feng et al. [14] proposed a word reordering model that only

estimates reorderings for two contiguous source words, and applied their model

to phrase-based MT. Because this limitation of the model results in a complexity

of O (n), it reduces computation cost significantly compared with Tromble and

Eisner’s model [63], and it still achieves significant reordering improvements over

the baseline system.

We strike a balance between these two approaches. Specifically, we incorpo-

rate word reordering information into hierarchical phrase-based MT by training a

series of separate reordering sub-models for word pairs with different distances. In

Chinese-to-English and Japanese-to-English translation experiments, the transla-

tion performance achieved consistent improvements as more sub-models for longer

distance reorderings were integrated, but the improvement levelled off quickly. In

other words, sub-models for reordering distance longer than a given threshold did

not improve translation quality significantly. In the experiments section, we also

give detailed analyses of why reordering sub-models for longer distances were not

as useful for translation quality.

By predicting local reorderings shorter than a given threshold, our model

13



exploits more reordering information than Feng et al. [14], while preventing the

quadratic explosion in computation time of Hayashi et al.’s method [21]. In

addition, our reordering model learned by feed-forward neural network (FNN)

achieves better performance than the previous linear model that uses symbolic

features.

3.2 Related Work

Reordering modeling has been extensively studied for phrase-based MT [32]. Be-

cause it is bilingual phrase pairs that are used as the translation unit for phrase-

based MT, most reordering models used in phrase-based MT learn reordering

of phrase pairs and implicitly make an assumption that word reorderings within

phrase pairs are correct [29, 72, 48, 33].

These existing reordering models are not suitable for hierarchical phrase-based

MT, which does not use phrase pairs as translation units. Huck et al. [24] intro-

duced a reordering model for hierarchical phrase-based translation, which deter-

mines and estimates the orientations of nonterminals in translation rules. Nguyen

and Vogel [47] proposed to integrate phrase-based reordering features into hierar-

chical phrase-based MT by mapping a hierarchical phrase-based derivation into

a discontinuous phrase-based translation path, which enhanced the hierarchical

phrase-based model significantly. However, there are some forms of hierarchical

phrase-based rules which cannot be mapped into a reasonable sequence of phrase

pairs and non-terminals. Cao et al. [7] proposed a lexicalized reordering model

which is built directly on hierarchical phrase-based rules and compatible with any

kind of hierarchical phrase-based rules.

Compared to the proposed word reordering model, these phrase-based re-

ordering models limited to learning the reordering of contiguous phrases. When

phrase length is short, in extreme cases, when phrase length is one, their models

only learn reordering for contiguous word pairs, while our model releases such a

constraint and can be applied to two source words with longer distances. And

our experiments showed that reordering prediction for word pairs with distance

2,3... can improve translation qualities significantly as well.

Bisazza and Federico [5] modelled reordering as the problem of deciding

whether a given input word should be translated after another. However, two

14



source words that are aligned to contiguous target words may have long distance,

which makes this classification task harder than determining local reorderings as

in our model.

There is also some work that exploits syntactic information to help reorderings

in hierarchical phrase-based translation [18, 26, 39]. However, high quality parsers

are not always available and parsing errors can influence the performance of these

methods significantly.

3.3 Modeling

Let eJ1 = e1, . . . , eJ be a target translation of f I1 = f1, . . . , fI and A be word align-

ment links between eJ1 and f I1 . Our model estimates the reordering probability

of the source sentence as follows:

Pr
(
f I1 , e

J
1 , A

)
≈

N∏
n=1

∏
i,i′:1≤i<i′≤I,i′−i=n

Pr
(
f I1 , e

J
1 , A, i, i

′
)

(13)

where Pr
(
f I1 , e

J
1 , A, i, i

′
)

is the reordering probability of the word pair 〈fi, fi′〉
during translation and N is the maximum distance considered by the reordering

model, which is empirically determined by supposing that estimating reorderings

longer than N does not improve translation performance significantly.

Previous word reordering models [63, 14] consider the reordering of a source

word pair to be reversed or not. When a source word is aligned to several dis-

continuous target words, it can be hard to determine if a word pair is reversed or

not as shown in Figure 6. They solved this problem by only using one alignment

from multiple alignment links and ignoring the others. For example, in Figure 6

the alignment between “放弃(give up)” and “up” is ignored. In contrast, our

model handles all alignment links to cover more word reordering patterns.

放弃 它

give it up

Figure 6. Multiple alignment links.
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Suppose that fi is aligned to πi (πi ≥ 0) target words. When πi > 0, we use

{aik|1 ≤ k ≤ πi} ,

to represent the positions of target words aligned to fi. If πi = 0 or πi′ = 0,

Pr
(
f I1 , e

J
1 , A, i, i

′
)

= 1,2 otherwise,

Pr
(
f I1 , e

J
1 , A, i, i

′
)

=
πi∏
u=1

πi′∏
v=1

Pr
(
oii′uv|f i

′+3
i−3 , eaiu , eai′v

)
(14)

where

oii′uv =

 0 (aiu ≤ ai′v)

1 (aiu > ai′v)
. (15)

Here, oii′uv indicates whether the translation eaiu of fi and the translation eai′v
of fi′ should be reversed or not in the target side.

Next, we need a model to estimate the probability of each oii′uv. As mentioned

in the introduction, we train a series of sub-models,

M1,M2, . . . ,MN

to learn reorderings for word pairs with different distances. In other words,

for the word pair 〈fi, fi′〉 with distance i′ − i = n, its reordering probability

Pr
(
oii′uv|f i

′+3
i−3 , eaiu , eai′v

)
is estimated by Mn. Different sub-models are trained

and integrated into the translation system separately.

Each sub-model Mn is implemented by an FNN, which has the same structure

with Vaswani et al.’s neural language model [66]. The input to Mn is a sequence

of n + 9 words: f i
′+3
i−3 , eaiu , eai′v . In Hayashi’s model, only source-side contextual

features were used. Because multiple correct translations may exist for an input

sentence and different translations need different reorderings of the source sen-

tence as shown in Figure 7, our model also integrates target-side features eaiu , eai′v
for reordering.

The input layer projects each word into an embedding vector using a matrix

of input word embeddings. These embeddings are followed by two hidden layers

that combine all of the input embeddings. Thus unlike when using the averaged

2In translation experiments, we also tried adding a new penalty feature (how many source

words in the input sentence are unaligned) to penalize unaligned words. However, this feature

did not influence translation performance significantly.
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cat was bitten by a I 

cat a me bit 

被 我 咬 猫 了 

Figure 7. Different correct translations for one source sentence.

perceptron algorithm of Hayashi et al. [21], we do not need to manually design

features to achieve high accuracy. The output layer has two neurons that calculate

Pr (oii′uv = 1) and Pr (oii′uv = 0).

The backpropagation algorithm [53] is used to train the parameters for each

reordering sub-model. The training instances for each sub-model are extracted

from the word-aligned parallel corpus according to Algorithm 2. For example,

the word pair “戴(wears) 男生(guy)” in Figure 5 will be extracted as a positive

instance for M3. The input of this instance is as follows: “<s> <s> 那个 戴 眼

镜 的 男生 是 詹姆士 </s> wears guy”, where “<s>” and “</s>” represent

the beginning and ending of a sentence. If a word never occurs or only occurs

once in the training corpus, we replace it with a special symbol “<unk>”.

3.4 Decoding

To integrate our model into the hierarchical phrase-based translation system, a

new feature scoren (r) is added to each rule r for each Mn.3

Suppose that r is applied to the input sentence f I1 , where

• r covers the source span [fϕ, fϑ]

• f̃ contains nonterminals {Xk|1 ≤ k ≤ K}

• Xk covers the span [fϕk
, fϑk ]

3Note that these scores are correspondingly calculated for different sub-models Mn and the

sub-model weights are tuned separately.
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Algorithm 2 Extract training instances.

Require: A pair of parallel sentence f I1 and eJ1 with word alignment links.

Ensure: Training examples for M1,M2, . . . ,MN .

for i = 1 to I − 1 do

for i′ = i+ 1 to I do

if i′ − i ≤ N then

for u = 1 to πi do

for v = 1 to πi′ do

if aiu ≤ ai′v then(
f i
′+3
i−3 , eaiu , eai′v , 0

)
is a negative instance for Mi′−i

else(
f i
′+3
i−3 , eaiu , eai′v , 1

)
is a positive instance for Mi′−i

end if

end for

end for

end if

end for

end for

Then,

scoren (r)=
∑

〈i,i′〉∈S−
K⋃

k=1

Sk∧i′−i=n

log
(
Pr
(
f I1 , e

J
1 , A, i, i

′
))

(16)

where
S : {〈i, i′〉 |ϕ ≤ i < i′ ≤ ϑ}
Sk : {〈i, i′〉 |ϕk ≤ i < i′ ≤ ϑk}

For example, in Figure 8, if a rule “X1 X2 男生→ X1 guy X2” is applied to

the source phrase with shade, then

[fϕ, fϑ] = [1, 5] ; [fϕ1 , fϑ1 ] = [1, 1] ; [fϕ2 , fϑ2 ] = [2, 4]

S −
K⋃
k=1

Sk =

 〈1, 2〉 , 〈1, 3〉 , 〈1, 4〉 , 〈1, 5〉 ,〈2, 5〉 , 〈3, 5〉 , 〈4, 5〉
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Figure 8. A example of hierarchical phrase-based MT decoding.

We can see from these reordering features that scoren (r) cannot be calcu-

lated before decoding, because the information about {Xk|1 ≤ k ≤ K} is needed.

And to calculate neural network probabilities, we also need source-side context

information from the input sentence, which means feature scores can be different

for one translation rule when it is applied to different source sentences. Thus,

this new feature must be calculated separately for each input source sentence.

However, since our model does not use target n-gram information, therefore, we

do not need to consider future costs for these reordering features as we do when

using n-gram language models in hierarchical phrase-based system.

One concern in using target features is the computational efficiency, because

reordering probabilities have to be calculated during decoding. However, we can

cache probabilities to reduce the expensive neural network computation using

hash tables. That is, for each sequence
(
f i
′+3
i−3 , eaiu , eai′v , oii′uv

)
, our model only

needs to calculate the reordering probability Pr
(
oii′uv|f i

′+3
i−3 , eaiu , eai′v

)
once. Note

that we clear the cache for each input sentence. This is because the reordering

probabilities calculated for one sentence are seldom used for other sentences, and

the lookup will slow down somewhat as the hash table size grows.4

4As we are using a cache, memory usage is a concern, but the size of the cache for each

sentence is negligible compared to the size of the translation and language models, and thus

the memory footprint is not increased significantly.
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3.5 Experiments

3.5.1 Setting

We evaluated the proposed approach for Chinese-to-English (zh-en) and Japanese-

to-English (ja-en) translation tasks. The official datasets for the patent machine

translation task at NTCIR-9 [19] were used in our experiments. The detailed

statistics for training, development and test sets are given in Table 3.

SOURCE TARGET

zh-en

TRAINING #Sents 954K

#Words 37.2M 40.4M

#Vocab 288K 504K

DEV #Sents 2K

#Words 75.4K 77.5K

TEST #Sents 2K

#Words 55.5K 58.1K

ja-en

TRAINING #Sents 3.14M

#Words 118M 104M

#Vocab 150K 273K

DEV #Sents 2K

#Words 74.6K 66.5K

TEST #Sents 2K

#Words 77.8K 69.5K

Table 3. Data sets.

In NTCIR-9, the development and test sets were both provided for the zh-en

task while only the test set was provided for the ja-en task. Therefore, we used

the sentences from the NTCIR-8 ja-en and en-ja test set as the development set

for our ja-en experiments. The word segmentation was done by BaseSeg [75] for

Chinese and Mecab5 for Japanese.

To learn neural reordering models, the training and development sets were

combined to obtain symmetric word alignments using GIZA++ [51] and the grow-

diag-final-and heuristic [32]. The reordering instances extracted from the aligned

5http://sourceforge.net/projects/mecab/files/
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training and development sets were used as the training and validation data for

learning neural reordering models. We trained our model on the training data

iteratively and stopped the training process when validation perplexity stopped

decreasing. The validation data was randomly split into two parts. One part

was used to stop the training process and the other part was used to calculate

accuracies of reordering models. Neural reordering models were trained by the

toolkit NPLM [66]. For the zh-en task, training instances extracted from all

the 954K sentence pairs were used to train neural reordering models and the

numbers of training instances are 40.0M, 38.4M, 37.1M, 36.0M for M1, M2, M3,

M4, respectively. For the ja-en task, training instances are from 1M sentence pairs

that were randomly selected from all the 3.14M sentence pairs and the numbers

of instances are 38.8M, 36.6M, 35.5M, 34.3M for M1, M2, M3, M4, respectively.

We implemented Hayashi et al.’s model [21] to compare with our approach.

The training instances for their model were extracted from the same sentence

pairs as ours and instance sizes are 771.6M and 725.6M for zh-en and ja-en,

respectively. We also implemented Cao et al.’s phrase reordering model [7] for

comparison. The whole rule table extracted from the aligned training set was

used as training data for their model.

For each translation task, a recent version of the Moses hierarchical phrase-

based decoder [30] with the training scripts was used as the baseline system. We

used the default parameters for Moses. A 5-gram language model was trained

on the target side of the training corpus by IRST LM Toolkit6 with improved

Kneser-Ney smoothing. Since both zh-en and ja-en language pairs have quite

different word orders, we set the distortion limit (max chart span) to be 20. The

test set (2K sentences) contains 1.31K and 1.73K sentences with length longer

than 20 for the zh-en and ja-en tasks, respectively.

We integrated our reordering models into Base. Each sub-model weight was

tuned by MERT [49] together with other feature weights (language model, word

penalty, etc.) under the log-linear framework [50].
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Base Hayashi Cao M1
1 M2

1 M3
1 M4

1

zh-en Average 33.14 34.36 34.70 34.66 35.82 35.85 35.93

Deviation 0.19 0.14 0.13 0.09 0.26 0.18 0.20

ja-en Average 30.03 30.92 31.69 31.53 32.11 32.50 32.58

Deviation 0.18 0.21 0.16 0.19 0.18 0.17 0.13

Table 4. Translation results (BLEU).

zh-en Base M1
1 M2

1 M3
1

M1
1 �

M2
1 � �

M3
1 � � −

M4
1 � � − −

ja-en Base M1
1 M2

1 M3
1

M1
1 �

M2
1 � �

M3
1 � � �

M4
1 � � � −

Table 5. Significance test results using bootstrap resampling w.r.t. BLEU scores.

3.5.2 Result and Analysis

Table 4 gives detailed translation results and Table 5 shows significance test

results using bootstrap resampling7 [28]. “Hayashi” represents the method of

Hayashi et al. [21], “Cao” represents the method of Cao et al. [7] and “M j
1

(j = 1, 2, 3, 4)” means that Base was augmented with the reordering scores cal-

cuated from a series of sub-models M1 to Mj. For example, M3
1 means M1, M2

and M3 are integrated; M4
1 means M1, M2, M3 and M4 are integrated. We ran

MERT 4 times for each experiment and show the average BLEU score with the

standard deviation.

We can see that, with 4 sub-models integrated, our method outperformed

both the Hayashi and Cao models significantly. Note that integrating only M1,

which predicts reordering for two contiguous source words, has already given a

BLEU improvement of 1.8% and 1.2% over Base on zh-en and ja-en, respectively.

As more sub-models for longer distance reordering are integrated, the translation

performance improved consistently, although the improvement leveled off quickly.

For the zh-en and ja-en tasks, Mn with n ≥ 3 and n ≥ 4, respectively, did not

6http://hlt.fbk.eu/en/irstlm
7The symbol � represents a significant difference at the p < 0.01 level; − means not

significantly different at p = 0.05.
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give a further performance improvement at a significant level. We also did extra

experiments with much longer reordering sub-models, in which we trained a model

M15 for word pairs with distance 15, then integrated both M15 and M4
1 into Base.

However, the translation results had no significant improvement compared to

Base augmented with M4
1 .

Why did the improvement level off quickly? In other words, why do long

distance reordering models have much less leverage over translation performance

than short ones?

First, the prediction accuracy decreases as the reordering distance increases.

Table 6 gives prediction accuracies on the validation data for each sub-model.

One reason for accuracy decreasing is that the input size of the sub-model grows

as the reordering distance increases. Namely, there is more context information

between words that are farther apart, which is harder to capture with limited

training data and simple models that do not explicitly consider information about

the syntactic structure of the sentence.

Sub-model M1 M2 M3 M4

zh-en 93.9 92.8 92.2 91.2

ja-en 92.9 91.3 90.1 89.3

Table 6. Classification accuracy of our model (%)

Second, we attribute the decrease in influence of the longer reordering models

to the redundancy of the predictions among the reordering sub-models. That is,

a long distance word reordering can often be determined by a series of shorter

word reordering pairs. For example, in Figure 5, if word pairs “男生(guy)是(is)”

and “是(is)詹姆士(James)” are both predicted to be not reversed, the reordering

for “男生(guy) 詹姆士(James)” can be logically determined to be not reversed

without prediction. As a result, sometimes predictions for longer reorderings will

not be useful for the translation process. In fact, although the longest distance of

source words in Figure 5 is 6, the longest distance of word pairs whose reorderings

need to be predicted in order to accurately determine the ordering of all the words

is 4.

But still, some predictions for longer reorderings are useful. For example, the

reordering of “戴(wears) 男生(guy)” cannot be determined when “戴(wears) 眼
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S 该(the) 照 明(lighting) 设 备(device) 1 还(further) 具 有(has) 耦

合(coupled) 到 固态(solid-state) 光源(light source) 4 的 光纤(optical

fiber) 5 。

R the lighting device 1 further has an optical fiber 5 which is coupled to

the solid-state light source 4 .

B the illumination apparatus 1 also has coupled to the optical fiber of the

solid-state light source 4 5 .

M1
1 the illumination apparatus 1 also has a fiber coupled to the solid-state

light source 4 5 .

M2
1 the illumination apparatus 1 also has a fiber coupled to the solid-state

light source 4 5 .

M3
1 the illumination apparatus 1 also has a fiber 5 coupled to the solid-state

light source 4 .

M4
1 the illumination apparatus 1 also has a fiber 5 coupled to the solid-state

light source 4 .

Table 7. Translation examples. S: input sentence, R: reference sentence, B:

translation result of Base, M j
1 (j = 1, 2, 3, 4): translation result with M j

1 being

integrated.

镜(glasses)” is predicted to be not reversed and “眼镜(glasses) 男生(guy)” is

reversed. This is the reason why the translation performance improves as more

sub-models are integrated.

Table 7 gives a translation example to demonstrate how our model improves

the reordering during translating.8 As shown, the distance between source words

“4” and “5” is 3, and after M3 being integrated into Base, this word pair can be

correctly reordered.

Note that if we only integrate M4 into Base, the translation quality of Base

was improved in preliminary experiments. However, M4 cannot predict reorder-

ings for word pairs with distance less than 4. So M3
1 will be still needed for

predicting reorderings of word pairs with distance 1,2,3. But after M3
1 being in-

8Note that “4” and “5” in source and target sentences are original source and target words.

This sentence pair is from a patent translation corpus and there is a figure in the article, where

the light source is labeled as 4 and the optical fiber is labeled as 5.
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Reordering Distance 1 2 3 4

zh-en 90.1 88.3 87.0 85.6

ja-en 85.3 81.9 80.6 78.8

Table 8. Classification accuracy of Hayashi model (%).

Reordering Distance 1 2 3 4

Hayashi zh-en 82.4 76.5 73.6 72.6

ja-en 67.8 60.9 57.0 55.8

Our model zh-en 95.3 93.8 92.7 91.6

ja-en 93.9 91.6 90.3 89.1

Table 9. Classification accuracy for one-to-one alignment links (%).

tegrated, M4 did not provide a large improvement due to the redundancy of the

predictions among different reordering sub-models.

Now we analyze the reasons that our model outperformed the Hayashi and

Cao models, respectively, as shown in Table 4.

Table 8 shows the reordering prediction accuracies of Hayashi model for word

pairs with different distances. Note that Hayashi’s model predicts reorderings

for all word pairs, but only prediction accuracies for word pairs with distance

4 or less are shown. The definitions of classification accuracy for our method

and Hayashi’s model are slightly different. In Hayashi’s model, one word pair

is counted as one reordering instance. In contrast, one word pair with multiple

alignment links may contain several reordering instances for our model, and if one

source word is not aligned to any target word, we do not consider the reordering

about this source word. For a direct comparison, Table 9 shows the reordering

classification accuracy for two words that were both aligned to exactly one target

word. As shown in Table 9, our approach learned reorderings much better than

the Hayashi model. This is easy to understand, since our model was trained by

feed-forward neural networks with distributed representations and incorporated

rich context information, while Hayashi’s model used the averaged perceptron

algorithm and manually crafted symbolic features.

Our model also outperformed Cao’s model, which already had a strong im-

provement compared to Base. Since their model needs to be trained on the

25



whole rule table and the hierarchical translation rule table is quite large, the

training process will be very time-consuming. Thus they only used simply rela-

tive frequency and the add 0.5 smoothing technique to estimate the reordering

probability. In other words, it is hard to use other features in their model due to

efficiency issues. Besides, their model only estimates reorderings for contiguous

phrase pairs.

Efficiency We performed a group of experiments to show how much the caching

strategy can bring about efficiency improvements. We used a computer with Xeon

E5-4650 CPU and CentOS 6.3 to translate all input sentences in the zh-en test

set. Table 10 gives the hit rate (HR) of caching and the average translation time

for one sentence with and without caching. The average translation time for

Base was 3.92 seconds.

HR =
Tcache

Tcache + Tcalculate

Here, Tcache was the number of times that we could find the reordering prob-

ability in the cache; Tcalculate was the number of times that the reordering proba-

bility could not be found in the cache and then had to be calculated by the neural

reordering model.

Sub-models Caching (sec) No Caching (sec) Hit Rate (%)

M1
1 4.60 102.65 99.85

M2
1 6.56 212.95 99.84

M3
1 8.50 330.27 99.86

M4
1 10.11 442.39 99.88

Table 10. Translation time and hit rate.

According to the results in Table 10, we can see that the hit rates were quite

high. Using a cache in decoding, in most cases we just need to perform look up

in hash tables to get the reordering probabilities. This results in high efficiency

as hash table lookup is much faster than calculating neural networks.
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One Model vs. Mutiple Sub-models Different from using one model to

learn reordering for all word pairs, our model learns reordering with several sepa-

rate sub-models. Different sub-models can be trained entirely separately, and we

can take advantage of this easy parallelism to train models in a more reasonable

time.

However, theoretically, one unified model will have better performance since

separate sub-models do not share training instances. Suppose that the training

corpus contains these two sentences “I like sunny days” and “I like sunny and

warm days”. The word pair “I days” occurs twice in the training corpus for the

unified model and once for two separate sub-models, respectively. This indicates

that the unified model suffers less from data sparsity. To test these effects, we

did some extra experiments and let one neural network learn for word pairs with

distance 4 or less. This neural network has the same structure as M4 with 13

inputs. For word pairs with distance 1,2,3,4, the inputs are

fi−3, . . . , fi, f
′
i , . . . , fi′+3, eaiu , eai′v , null, null, null

fi−3, . . . , fi, f
′
i , . . . , fi′+3, eaiu , eai′v , fi+1, null, null

fi−3, . . . , fi, f
′
i , . . . , fi′+3, eaiu , eai′v , fi+1, fi+2, null

fi−3, . . . , fi, f
′
i , . . . , fi′+3, eaiu , eai′v , fi+1, fi+2, fi+3

Here, null is a specific symbol that represents a default position.

Table 11 shows the reordering prediction accuracy of this model for word pairs

with different distances. Table 12 gives the translation result after integrating

this model into Base to predict reordering for word pairs with different distances.

The corresponding original results using multiple sub-models are also shown for

a direct comparison.

Reordering Distance 1 2 3 4

One zh-en 93.9 93.0 92.2 91.3

ja-en 92.8 91.6 90.3 89.2

Multiple zh-en 93.9 92.8 92.2 91.2

ja-en 92.9 91.3 90.1 89.3

Table 11. Classification accuracy of using one unified model (%).

27



Reordering Distance 1 1,2 1,2,3 1,2,3,4

One zh-en 34.50 35.70 35.50 35.74

ja-en 31.42 32.00 32.47 32.54

Multiple zh-en 34.66 35.82 35.85 35.93

ja-en 31.53 32.11 32.50 32.58

Table 12. Translation performance of using one unified model (BLEU).

As can be seen, using one model or using multiple sub-models to learn reorder-

ing have nearly the same classification and translation performance. This shows

that using separate models does not hurt performance while keeping the merit of

training efficiency. This means that although one unified model is theoretically

more robust to sparse data, when the training corpus becomes large, separate

sub-models can also learn the reorderings well, and the performance difference

between one unified model and separate sub-models is negligible.

Comparison of Machine Learning Methods To analyze the influence of

machine learning method choice for our model, we also tried the averaged per-

ceptron (AP) algorithm to learn each sub-model, which was used by Hayashi et

al. [21] for their model training. The features are given in Table 13.

fk, fkeaiu, fkeai′v (i− 3 ≤ k ≤ i′ + 3)

fifi′, fifi′eaiu, fifi′eai′v , fifi′eaiueai′v
fifk, fi′fk, fifkeaiu, fi′fkeai′v ,

fifi′fk, fifi′fkeaiu, fifi′fkeai′v , fifi′fkeaiueai′v
(i− 3 ≤ k ≤ i′ + 3, k 6= i, k 6= i′)

Table 13. Features.

Table 14 and 15 show prediction accuracies and translation performance using

AP algorithm. The corresponding original results using FNN are also shown for

a direct comparison.

As can be seen, classifiers learned by feedforward neural networks perform

better than the averaged perceptron algorithm and the translation performance
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Sub-model M1 M2 M3 M4

AP zh-en 93.4 92.2 90.7 89.7

ja-en 92.3 90.6 89.1 87.7

FNN zh-en 93.9 92.8 92.2 91.2

ja-en 92.9 91.3 90.1 89.3

Table 14. Classification accuracy of using AP for model training (%).

Sub-models M1
1 M2

1 M3
1 M4

1

AP zh-en 34.27 34.54 34.47 34.43

ja-en 30.74 31.79 31.60 31.92

FNN zh-en 34.66 35.82 35.85 35.93

ja-en 31.53 32.11 32.50 32.58

Table 15. Translation performance of using AP for model training (BLEU).

with the neural reordering model outperformed that with the reordering model

learned by the AP algorithm, which means the difference of training methods

is an important factor explaining why our model outperformed Hayashi et al.’s

model [21] in Table 4. However, FNNs are not suitable for use in the Hayashi

model since the training and decoding time for FNN is already quite long. Using

FNN for Hayashi et al.’s model will cost nearly one minute to translate one

sentence according to our experiments, while our most complex model took about

10 seconds as shown in Table 10.9

3.6 Conclusion

We adopted a series of separate sub-models to reorder source word pairs with

different distances and integrate this model into hierarchical phrase-based MT.

Experiments and analyses have shown that only reordering predictions for word

pairs with distances less than a specific threshold improved translation perfor-

mance clearly, and longer distance reordering sub-models were not as helpful for

translation quality. With only sub-models for short distance reorderings being

used, training and decoding for our model are much more efficient compared to

9Cache was used in all experiments.
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previous models, while keeping the majority of helpful word reordering infor-

mation. Besides, our reordering model is learned by feed-forward neural net-

works and incorporates rich context information for better performance. On

both Chinese-to-English and Japanese-to-English translation tasks, the proposed

model outperformed the previous models significantly.
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4. A Binarized Neural Network Joint Model for

Hierarchical Phrase-based MT

4.1 Introduction

The neural network joint model (NNJM), which augments the n-gram neural

language model (NLM) with an m-word source context window as shown in Fig-

ure 9a, can be used to guide symbolic MT and had achieved large gains in trans-

lation accuracy [11].

m-word
source context

P(ei=1)

P(ei=2)

P(ei=N)

ei-n+1~ei-1

(a)

m-word
source context

P(ei is correct)

ei-n+1~ei
P(ei is wrong)

(b)

Figure 9. (a) the original NNJM and (b) the proposed BNNJM

While this model is effective, the computation cost of using it in a large-

vocabulary MT task is quite expensive, as probabilities need to be normalized

over the entire vocabulary. To solve this problem, Devlin et al. [11] presented

a technique to train the NNJM to be self-normalized and avoided the expen-

sive normalization cost during decoding. However, they also note that this

self-normalization technique sacrifices neural network accuracy, and the train-

ing process for the self-normalized neural network is very slow, as with standard

maximum likelihood estimation (MLE).
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To remedy the problem of long training times in the context of NLMs, Vaswani

et al. [66] used a method called noise contrastive estimation (NCE). Compared

with MLE, NCE does not require repeated summations over the whole vocabulary

and performs nonlinear logistic regression to discriminate between the observed

data and artificially generated noise.

We proposed an alternative framework of binarized NNJMs (BNNJM), which

are similar to the NNJM, but use the current target word not as the output, but

as the input of the neural network, estimating whether the target word under

examination is correct or not, as shown in Figure 9b. Because the BNNJM uses

the current target word as input, the information about the current target word

can be combined with the context word information and processed in the hidden

layers.

The BNNJM learns a simple binary classifier, given the context and target

words, therefore it can be trained by MLE very efficiently. “Incorrect” target

words for the BNNJM can be generated in the same way as NCE generates

noise for the NNJM. We proposed a novel noise distribution based on translation

probabilities to train the NNJM and the BNNJM effectively and efficiently.

4.2 Related Work

Xu et al. [71] proposed a method to use binary classifiers to learn NNLMs. But

they also used the current target word in the output, similarly to NCE. The

BNNJM uses the current target word as input, so the information about the

current target word can be combined with the context word information and

processed in hidden layers.

Mauser et al. [40] presented discriminative lexicon models to predict target

words. They train a separate classifier for each target word, as these lexicon

models use symbolic representations of words and different classifiers do not share

features. In contrast, the BNNJM uses real-valued vector representations of words

and shares training data, so we train one classifier and can use the similarity

information between words.
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4.3 Neural Network Joint Model

Let E = eJ1 be a translation of F = f I1 . The NNJM [11] defines the following

probability,

P (E|F ) =
∏J

j=1
P
(
ej|f

aj+(m−1)/2
aj−(m−1)/2 , e

j−1
j−n+1

)
(17)

where target word ej is affiliated with source word faj . Affiliation aj is derived

from the word alignments using heuristics. If ej aligns to exactly one source word,

aj is the index of this source word; If ej aligns to multiple source words, aj is

the index of the aligned word in the middle; If ej is unaligned, they inherit its

affiliation from the closest aligned word.

To estimate these probabilities, the NNJM uses m source context words and

n− 1 target history words as input to a neural network and performs estimation

of unnormalized probabilities p (ej|C) before normalizing over all words in the

target vocabulary V ,

P (ej|C) = p(ej |C)

Z(C)

Z (C) =
∑

ej ′∈V
p (ej

′|C) (18)

where C stands for source and target context words as in Equation 17.

The NNJM can be trained on a word-aligned parallel corpus using standard

MLE, but the cost of normalizing over the entire vocabulary to calculate the

denominator in Equation 18 is quite large. Devlin et al. [11]’s self-normalization

technique can avoid normalization cost during decoding, but not during training.

NCE can be used to train NNLM-style models [66] to reduce training times.

NCE creates a noise distribution q (ej), selects K noise samples ej1, ..., ejK for

each ej and introduces a random variable v which is 1 for training examples and

0 for noise samples,

P (v = 1, ej|C) = 1
1+K
· p(ej |C)

Z(C)

P (v = 0, ej|C) = K
1+K
· q (ej) .

(19)

NCE trains the model to distinguish training data from noise by maximize

the conditional likelihood,

L = logP (v = 1|C, ej) +
K∑
k=1

logP (v = 0|C, ejk). (20)
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The normalization cost can be avoided by using p (ej|C) as an approximation

of P (ej|C).10

4.4 Binarized Neural Network Joint Model

We proposed a new framework of the binarized NNJM (BNNJM), which is similar

to the NNJM but learns not to predict the next word given the context, but solves

a binary classification problem by adding a variable v ∈ {0, 1} that stands for

whether the current target word ej is correctly/wrongly produced in terms of

source context words f
aj+(m−1)/2
aj−(m−1)/2 and target history words ej−1j−n+1 ,

P
(
v|faj+(m−1)/2

aj−(m−1)/2 , e
j−1
j−n+1, ej

)
. (21)

The BNNJM is learned by a feed-forward neural network with m + n inputs{
f
aj+(m−1)/2
aj−(m−1)/2 , e

j−1
j−n+1, ej

}
and two outputs for v = 1/0.

Because the BNNJM uses the current target word as input, the information

about the current target word can be combined with the context word information

and processed in the hidden layers. Thus, the hidden layers can be used to learn

the difference between correct target words and noise in the BNNJM, while in

the NNJM the hidden layers just contain information about context words and

only the output layer can be used to discriminate between the training data and

noise, giving the BNNJM more power to learn this classification problem.

We can use the BNNJM probability in translation as an approximation for

the NNJM as below,

P
(
ej|f

aj+(m−1)/2
aj−(m−1)/2 , e

j−1
j−n+1

)
≈ P

(
v = 1|faj+(m−1)/2

aj−(m−1)/2 , e
j−1
j−n+1, ej

)
. (22)

As a binary classifier, the gradient for a single example in the BNNJM can be

calculated efficiently by MLE without it being necessary to calculate the softmax

over the full vocabulary. On the other hand, we need to create “positive” and

“negative” examples for the classifier. Positive examples can be extracted di-

rectly from the word-aligned parallel corpus as
〈
f
aj+(m−1)/2
aj−(m−1)/2 , e

j−1
j−n+1, ej

〉
; Negative

examples can be generated for each positive example in the same way that NCE

generates noise data as
〈
f
aj+(m−1)/2
aj−(m−1)/2 , e

j−1
j−n+1, ej

′
〉
, where ej

′ ∈ V \ {ej}.
10The theoretical properties of self-normalization techniques, including NCE and Devlin et

al. [11]’s method, are investigated by Andreas and Klein [2].
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4.5 Noise Sampling

Unigram Noise Vaswani et al. [66] adopted the unigram probability distribu-

tion (UPD) to sample noise for training NLMs with NCE,

q (ej
′) =

occur (ej
′)∑

ej ′′∈V
occur (ej ′′)

(23)

where occur (ej
′) stands for how many times ej

′ occurs in the training corpus.

Translation Model Noise We proposed a noise distribution specialized for

translation models, such as the NNJM or BNNJM.

Figure 10 gives a Chinese-to-English parallel sentence pair with word align-

ments to demonstrate the intuition behind our method.

I will for someonearrange take youto round

我 会 人 带安排 转转你

Figure 10. A parallel sentence pair.

Focusing on faj=“安排”, this is translated into ej =“arrange”. For this pos-

itive example, UPD is allowed to sample any arbitrary noise, such as ej
′ = “ba-

nana”. However, in this case, noise ej
′ = “banana” is not useful for model

training, as constraints on possible translations given by the phrase table ensure

that “安排” will never be translated into “banana”. On the other hand, noise ej
′

= “arranges” and “arrangement” are both possible translations of “安排” and

therefore useful training data, that we would like our model to penalize.

Based on this intuition, we propose the use of another noise distribution that

only uses ej
′ that are possible translations of faj , i.e., ej

′ ∈ U
(
faj
)
\ {ej}, where

U
(
faj
)

contains all target words aligned to faj in the parallel corpus.

Because U
(
faj
)

may be quite large and contain many wrong translations

caused by wrong alignments, “banana” may actually be included in U(“安排”).

To mitigate the effect of uncommon examples, we use a translation probability
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distribution (TPD) to sample noise ej
′ from U

(
faj
)
\ {ej} as follows,

q
(
ej
′|faj

)
=

align
(
faj , ej

′
)

∑
ej ′′∈U(faj)

align
(
faj , ej

′′
) (24)

where align
(
faj , ej

′
)

is how many times ej
′ is aligned to faj in the parallel corpus.

Note that ej could be unaligned, in which case we assume that it is aligned to

a special null word. Noise for unaligned words is sampled according to the TPD

of the null word. If several target/source words are aligned to one source/target

word, we choose to combine these target/source words as a new target/source

word. The processing for multiple alignments helps sample more useful negative

examples for TPD, and had little effect on the translation performance when

UPD was used as the noise distribution for the NNJM and the BNNJM in our

preliminary experiments.

4.6 Experiments

4.6.1 Setting

We evaluated the effectiveness of the proposed approach for Chinese-to-English

(zh-en), Japanese-to-English (ja-en) and French-to-English (fr-en) translation

tasks. The datasets officially provided for the patent machine translation task at

NTCIR-9 [19] were used for the zh-en and ja-en tasks. The development and test

sets were both provided for the zh-en task while only the test set was provided

for the ja-en task. Therefore, we used the sentences from the NTCIR-8 ja-en and

en-ja test set as the development set. Word segmentation was done by BaseSeg

[75] for Chinese and Mecab11 for Japanese. For the fr-en language pair, we used

standard data for the WMT 2014 translation task. The training sets for zh-en,

ja-en and fr-en tasks contain 1M, 3M and 2M sentence pairs, respectively.

For each translation task, a recent version of Moses hierarchical phrase-based

decoder [30] with the training scripts was used as the baseline (Base). We used

the default parameters for Moses, and a 5-gram language model was trained on

the target side of the training corpus using the IRSTLM Toolkit12 with improved

11http://sourceforge.net/projects/mecab/files/
12http://hlt.fbk.eu/en/irstlm
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zh-en ja-en fr-en

E T E T E T

NNJM
UPD 20

22
19

49
20

28
TPD 4 6 4

BNNJM
UPD 14

16
12

34
11

22
TPD 11 9 9

Table 16. Epochs (E) and time (T) in minutes per epoch for each task.

Kneser-Ney smoothing. Feature weights were tuned by MERT [49].

The word-aligned training set was used to learn the NNJM and the BNNJM.13

For both NNJM and BNNJM, we set m = 7 and n = 5. The NNJM was trained

by NCE using UPD and TPD as noise distributions. The BNNJM was trained

by standard MLE using UPD and TPD to generate negative examples.

The number of noise samples for NCE was set to be 100. For the BNNJM, we

used only one negative example for each positive example in each training epoch,

as the BNNJM needs to calculate the whole neural network (not just the output

layer like the NNJM) for each noise sample and thus noise computation is more

expensive. However, for different epochs, we resampled the negative example

for each positive example, so the BNNJM can make use of different negative

examples.

4.6.2 Result and Analysis

Table 16 shows how many epochs these two models needed and the training time

for each epoch on a 10-core 3.47GHz Xeon X5690 machine.14 Translation results

are shown in Table 1715.

13Both the NNJM and the BNNJM had one hidden layer, 100 hidden nodes, input embedding

dimension 50, output embedding dimension 50. A small set of training data was used as vali-

dation data. The training process was stopped when validation likelihood stopped increasing.
14The decoding time for the NNJM and the BNNJM were similar, since the NNJM trained

by NCE uses p (ej |C) as an approximation of P (ej |C) without normalization and the BNNJM

only needs to be normalized over two output neurons.
15The symbol + and * represent significant differences at the p < 0.01 level against Base and

NNJM+UPD, respectively. Significance tests were conducted using bootstrap resampling [28].
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zh-en ja-en fr-en

Base 32.95 30.13 24.56

NNJM
UPD 34.36+ 31.30+ 24.68

TPD 34.60+ 31.50+ 24.80

BNNJM
UPD 32.89 30.04 24.50

TPD 35.05+* 31.42+ 25.84+*

Table 17. Translation results.

We can see that using TPD instead of UPD as a noise distribution for the

NNJM trained by NCE can speed up the training process significantly, with a

small improvement in performance. But for the BNNJM, using different noise dis-

tributions affects translation performance significantly. The BNNJM with UPD

does not improve over the baseline system, likely due to the small number of noise

samples used in training the BNNJM, while the BNNJM with TPD achieves good

performance, even better than the NNJM with TPD on the Chinese-to-English

and French-to-English translation tasks.

From Table 17, the NNJM does not improve translation performance signifi-

cantly on the fr-en task. Note that the baseline BLEU for the fr-en task is lower

than zh-en and ja-en tasks, indicating that learning is harder for the fr-en task

than zh-en and ja-en tasks. The validation perplexities of the NNJM with UPD

for zh-en, ja-en and fr-en tasks are 4.03, 3.49 and 8.37. Despite these difficult

learning circumstances and lack of large gains for the NNJM, the BNNJM im-

proves translations significantly for the fr-en task, suggesting that the BNNJM is

more robust to difficult translation tasks that are hard for the NNJM.

Table 18 gives Chinese-to-English translation examples to demonstrate how

the BNNJM (with TPD) helps to improve translations over the NNJM (with

TPD). In this case, the BNNJM helps to translate the phrase “该 移动 持续

到” better. Table 19 gives translation scores for these two translations calculated

by the NNJM and the BNNJM. Context words are used for predictions but not

shown in the table.

As can be seen, the BNNJM prefers T2 while the NNJM prefers T1. Among

these predictions, the NNJM and the BNNJM predict the translation for “到”

most differently. The NNJM clearly predicts that in this case “到” should be
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S: 该(this) 移动(movement) 持续(continued) 到(until) 寄生虫(parasite) 由(by)

两(two)个舌(tongues)部 21彼此(each other)接触(contact)时(where)的点(point)

接触(touched) 。

R: this movement is continued until the parasite is touched by the point where the

two tongues 21 contact each other .

T1: the mobile continues to the parasite from the two tongue 21 contacts the points

of contact with each other .

T2: this movement is continued until the parasite by two tongue 21 contact points of

contact with each other .

Table 18. Translation examples. Here, S: source; R: reference; T1 uses NNJM; T2

uses BNNJM.

NNJM BNNJM

该− >the 1.681 -0.126

移动− >mobile -4.506 -3.758

持续− >continues -1.550 -0.130

到− >to 2.510 -0.220

SUM -1.865 -4.236

该− >this -2.414 -0.649

移动− >movement -1.527 -0.200

null− >is 0.006 -0.055

持续− >continued -0.292 -0.249

到− >until -6.846 -0.186

SUM -11.075 -1.341

Table 19. Scores for different translations.

translated into “to” more than “until”, likely because this example rarely occurs

in the training corpus. However, the BNNJM prefers “until” more than “to”,

which demonstrates the BNNJM’s robustness to less frequent examples.

Analysis for ja-en Translation Results Finally, we examine the translation

results to explore why the BNNJM with TPD did not outperform the NNJM with

TPD for the ja-en translation task, as it did for the other translation tasks. We

39



found that using the BNNJM instead of the NNJM on the ja-en task did improve

translation quality significantly for infrequent words, but not for frequent words.

First, we describe how we estimate translation quality for infrequent words.

Suppose we have a test set S, a reference set R and a translation set T with I

sentences,

Si (1 ≤ i ≤ I) , Ri (1 ≤ i ≤ I) , Ti (1 ≤ i ≤ I)

Ti contains J individual words,

Wij ∈Words (Ti)

To (Wij) is how many times Wij occurs in Ti and Ro (Wij) is how many times Wij

occurs in Ri.

The general 1-gram translation accuracy [52] is calculated as,

Pg =

I∑
i=1

J∑
j=1

min(To(Wij),Ro(Wij))

I∑
i=1

J∑
j=1

To(Wij)

This general 1-gram translation accuracy does not distinguish word frequency.

We use a modified 1-gram translation accuracy that weights infrequent words

more heavily,

Pc =

I∑
i=1

J∑
j=1

min(To(Wij),Ro(Wij))· 1

Occur(Wij)
I∑

i=1

J∑
j=1

To(Wij)

where Occur (Wij) is how many times Wij occurs in the whole reference set. Note

Pc will not be 1 even in the case of completely accurate translations, but it can

approximately reflect infrequent word translation accuracy, since correct frequent

word translations contribute less to Pc.

Table 20 shows Pg and Pc for different translation tasks. It can be seen that

the BNNJM improves infrequent word translation quality similarly for all trans-

lation tasks, but improves general translation quality less for the ja-en task than

the other translation tasks. We conjecture that the reason why the BNNJM

is less useful for frequent word translations on the ja-en task is the fact that

the ja-en parallel corpus has less accurate function word alignments than other
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zh-en ja-en fr-en

Pg Pc Pg Pc Pg Pc

NNJM 70.3 5.79 68.2 4.15 61.2 6.70

BNNJM 70.9 5.97 68.4 4.30 61.7 6.86

Imp. (%) 0.85 3.1 0.29 3.6 0.81 2.4

Table 20. 1-gram precisions and improvements.

language pairs, as the grammatical features of Japanese and English are quite

different.16 Wrong function word alignments will make noise sampling less effec-

tive and therefore lower the BNNJM performance for function word translations.

Although wrong word alignments will also make noise sampling less effective for

the NNJM, the BNNJM only uses one noise sample for each positive example, so

wrong word alignments affect the BNNJM more than the NNJM.

4.7 Conclusion

We proposed an alternative to the NNJM, the BNNJM, which learns a binary

classifier that takes both the context and target words as input and combines all

useful information in the hidden layers. We also proposed a novel noise distribu-

tion based on translation probabilities to train the BNNJM effectively. With the

improved noise sampling method, the BNNJM achieved comparable performance

with the NNJM and even improved the translation results over the NNJM on

Chinese-to-English and French-to-English translations.

16Infrequent words are usually content words and frequent words are usually function words.
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5. A Neural Rule Selection Model for Tree-to-

String MT

5.1 Introduction

In tree-to-string [36, 20] and forest-to-string [43] MT, a source tree or forest is

used as input and translated into a target sentence by a series of tree-based trans-

lation rules, which can perform reordering and translation jointly. However, like

other symbolic MT approaches, tree-to-string MT also has this ambiguity prob-

lem existing in translation rules and selecting appropriate rules during decoding

is still a major challenge for tree-to-string MT.

Liu et al. [35] proposed a maximum entropy based rule selection (MERS)

model for syntax-based MT, which used contextual information for rule selection,

including both lexical and syntactic features.

We proposed a neural rule selection (NRS) model, which is learned by a feed-

forward neural network and replaces the symbolic features used in the MERS

model with distributed representations for better generalization.

In addition, we proposed a new method, applicable to both the MERS and

NRS models, to train rule selection models only on minimal rules. These minimal

rules are more frequent and have richer training data compared to non-minimal

rules, making it possible to further relieve the data sparsity problem.

5.2 Related Work

The rule selection problem for tree-based MT (hierarchical phrase-based and

syntax-based MT) has received much attention. He et al. [23] proposed a lex-

icalized rule selection model to perform context-sensitive rule selection for hier-

archical phrase-base translation. Cui et al. [10] introduced a joint rule selection

model for hierarchical phrase-based translation, which also approximated the rule

selection problem by a binary classification problem like our approach. However,

these two models adopted linear classifiers similar to those used in the MERS

model [35], which suffers more from the data sparsity problem compared to the

NRS model.

There are also existing works that exploited neural networks to learn transla-
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tion probabilities for translation rules used in the phrase-based translation model.

Namely, these methods estimated translation probabilities for phrase pairs ex-

tracted from the parallel corpus. Schwenk [54] proposed a continuous space trans-

lation model, which calculated the translation probability for each word in the

target phrase and then multiplied the probabilities together as the translation

probability of the phrase pair. Gao et al. [17] and Zhang et al. [73] proposed

methods to learn distributed phrase representations and use the similarity be-

tween the source and target phrases as translation probabilities for phrase pairs.

All these three methods can only be used for the phrase-based translation model,

not for tree-based translation models.

There are also works that used minimal rules for modeling. Vaswani et al.

[65] proposed a rule Markov model using minimal rules for both training and

decoding to achieve a slimmer model, a faster decoder and comparable perfor-

mance with using non-minimal rules. Durrani et al. [12] proposed a method to

model with minimal translation units and decode with phrases for phrase-based

MT to improve translation performances. Both of these two methods do not use

distributed representations as used in our model for better generalization.

In addition, NMT has shown promising results recently [61, 4, 37, 25, 38]. And

there are also other neural translation models [11, 42, 57]. All these models are

trained on plain source and target sentences without considering any syntactic

information while our neural model learns rule selection for tree-based transla-

tion rules and makes use of the tree structure of natural language for better

translation. There is also a new syntactic NMT model [13], which extends the

original sequence-to-sequence NMT model with the source-side phrase structure.

Although this model takes source-side syntax into consideration, it still produces

target words one by one as a sequence. In contrast, the tree-based translation

rules used in our model can take advantage of the hierarchical structures of both

source and target languages.

5.3 Maximum Entropy Based Rule Selection

Liu et al. [35] proposed the MERS model for syntax-based MT to perform

context-dependent rule selection. They built a maximum entropy classifier for

each ambiguous source subtree t̃, which introduced contextual information C and
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estimated the conditional probability using a log-linear model as shown below,

Pr
(
ẽ|t̃, C

)
=

exp

(
K∑
k=1

λkhk (ẽ, C)

)
∑
ẽ′ exp

(
K∑
k=1

λkhk (ẽ′, C)

) . (25)

The target strings ẽ are treated as different classes for the classifier.

Supposing that,

• r covers source span [fϕ, fϑ] and target span [eγ, eσ],

• t̃ contains K nonterminals {Xk|0 ≤ k ≤ K − 1},

• Xk covers source span [fϕk
, fϑk ] and target span [eγk , eσk ],

the MERS model used 5 kinds of source-side features as follows,

1. Lexical features: words around a rule (e.g. fϕ−1) and words covered by

nonterminals in a rule (e.g. fϕ0).

2. Part-of-speech features: part-of-speech (POS) of context words that are

used as lexical features.

3. Span features: span lengths of source phrases covered by nonterminals in r.

4. Parent features: the parent node of t̃ in the parse tree of the source sentence.

5. Sibling features: the siblings of the root of t̃.

Note that the MERS model does not use features of the source subtree t̃,

because the source subtree t̃ is fixed for each classifier.

The MERS model was integrated into the translation system as two addi-

tional features in Equation 26. Supposing that the derivation R contains M rules

r1, ..., rM with ambiguous source subtrees, then these two MERS features are as

follows,

h1 (E,R, F ) =
M∑
m=1

log Pr
(
ẽm|t̃m, Cm

)
h2 (E,R, F ) = M,

(26)

where t̃m and ẽm are the source subtree and the target string contained in rm,

and Cm is the context of rm. h1 is the MERS probability feature, and, h2 is a

penalty feature counting the number of predictions made by the MERS model.
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5.4 Neural Rule Selection

The proposed NRS model differs from the MERS model in three ways.

1. Instead of learning a single classifier for each source subtree t̃, it learns a

single classifier for all rules.

2. Instead of hand-crafted features, it uses a feed-forward neural network to

induce features from context words.

3. Instead of one-hot representations, it uses distributed representations to

exploit similarities between words.

First, with regard to training, our NRS model follows the binarized NNJM (Sec-

tion 4) in approximating the posterior probability by a binary classifier as follows,

Pr
(
ẽ|t̃, C

)
≈ Pr

(
v = 1|ẽ, t̃, C

)
, (27)

where v ∈ {0, 1} is an indicator of whether t̃ is translated into ẽ. This is in

contrast to the MERS model, which treated the rule selection problem as a multi-

class classification task. If instead we attempted to estimate output probabilities

for all different ẽ, the cost of estimating the normalization coefficient would be

prohibitive, as the number of unique output-side word strings ẽ is large. There

are a number of remedies to this, including noise contrastive estimation [66], but

the binary approximation method has been reported to have better performance

(see Section 4).

To learn this model, we use a feed-forward neural network with structure

similar to neural network language models [66]. The input of the neural rule

selection model is a vector representation for t̃, another vector representation

for ẽ, and a set of ξ vector representations for both source-side and target-side

context words of r:

C(r) = w1, ..., wξ (28)

In our model, C (r) is calculated differently depending on the number of non-

terminals included in the rule. Specifically, Equation 29 defines Cout (r, n) to

be context words (n-grams) around r and Cin (r, n,Xk) to be boundary words

45



S

The blue rug on the floor of your apartment is really cute

DT JJ NN IN DT NN IN PRP NN VBZ JJRB

NP NP NP ADJP

VPPP

NP

PP

NP

你 公寓 地板铺 在 蓝色 毛毯 很上 的 可爱

PP

IN NP

on x0

在 x0 上

r:

: area covered by r

: area covered by x0 in r

Figure 11. Context word examples. The red words are contained in Cout (r, 4)

and the blue words are contained in Cin (r, 2, X0).

(n-grams) covered by nonterminal Xk in r.17

Cout (r, n)

= fϕ−1ϕ−n, f
θ+n
θ+1 , e

γ−1
γ−n, e

σ+n
σ+1

Cin (r, n,Xk)

= fϕk+n−1
ϕk

, f θkθk−(n−1), e
γk+n−1
γk

, eσkσk−(n−1)

(29)

The context words used for a translation rule r with K nonterminals are shown

as below.

K C (r)

= 0 Cout (r, 6)

= 1 Cout (r, 4) , Cin (r, 2, X0)

> 1 Cout (r, 2) , Cin (r, 2, X0) , Cin (r, 2, X1)

We can see that rules with different numbers of nonterminals K use different

17Note that when extracting Cout, we use “〈s〉” and “〈/s〉” for context words that exceed the

length of the sentence; When extracting Cin, we use “〈non〉” for context words that exceed the

length of the nonterminal. Words that occur less than twice in the training data are replaced

by “〈unk〉”.
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context words.18 For example, if r does not contain nonterminals, then Cin is not

used. Besides, we use more context words surrounding the rule (Cout (r, 6)) for

rules with K = 0 than rules that contain nonterminals (Cout (r, 4) for K = 1 and

Cout (r, 2) for K > 1). This is based on the intuition that rules with K = 0 can

only use the context words surrounding the rule as information for rule selection,

hence this information is more important than for other rules. Figure 11 gives an

example of context words when applying the rule r to the example sentence.

Note that we use target-side context because source-side context is not enough

for selecting correct rules. Since it is not uncommon for one source sentence to

have different correct translations, a translation rule used in one correct derivation

may be incorrect for other derivations. In these cases, target-side context is useful

for selecting appropriate translation rules. 19

The vector representations for t̃, ẽ and C are obtained by using a projection

matrix to project each one-hot input into a real-valued embedding vector. This

projection is another key advantage over the MERS model. Because the NRS

model learns one unified model for all rules and can share all training data to

learn better vector representations of words and rules, and the similarities between

vectors can be used for better generalization.

After calculating the projections, two hidden layers are used to combine

all inputs. Finally, the neural network has two outputs Pr
(
v = 1|ẽ, t̃, C

)
and

Pr
(
v = 0|ẽ, t̃, C

)
.

To train the NRS model, we need both positive and negative training exam-

ples. Positive examples,
〈
ẽ, t̃, C, 1

〉
, can be extracted directly from the parallel

corpus. For each positive example, we generate one negative example,
〈
ẽ′, t̃, C, 0

〉
.

Here, ẽ′ is randomly generated according to the translation distribution proposed

18In most cases, restrictions on extracted rules will ensure that rules will only contain two

nonterminals. However, when using minimal rules as described in the next section, more than

two nonterminals are possible, and in these cases, only contextual information covered by the

first two nonterminals is used in the input. These cases are sufficiently rare, however, that we

chose to consider only the first two.
19It is also possible to consider target-side context in a framework like the MERS model, but

we show in experiments that a linear model using the same features as the NRS model did not

improve accuracy.
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in Section 4,

Pr
(
ẽ|t̃
)

=
Count

(
ẽ, t̃
)∑

ẽ′ Count
(
ẽ′, t̃

) , (30)

where, Count
(
ẽ, t̃
)

is how many times t̃ is translated into ẽ in the parallel corpus.

During translating, following the MERS model, the NRS model only calculates

probabilities for rules with ambiguous source subtrees. These predictions are

converted into two NRS features for the translation system similar to the two

MERS features in Equation 26: one is the product of probabilities calculated by

the NRS model and the other one is a penalty feature that stands for how many

rules with ambiguous source subtrees are contained in one translation.

5.5 Usage of Minimal Rules

Despite the fact that the NRS model can share information among instances

using distributed word representations, it still poses an extremely sparse learn-

ing problem. Specifically, the numbers of unique subtrees t̃ and strings ẽ are

extremely large, and many may only appear a few times in the corpus. To re-

duce these problems of sparsity, we proposed another improvement to the model,

specifically through the use of minimal rules.

Minimal rules [16] are translation rules that cannot be split into two smaller

rules. For example, in Figure 12, Rule2 is not a minimal rule, since Rule2 can be

split into Rule1 and Rule3. In the same way, Rule4 and Rule6 are not minimal

while Rule1, Rule3 and Rule5 are minimal.

Minimal rules are more frequent than non-minimal rules and have richer train-

ing data. Hence, we can expect that a rule selection model trained on minimal

rules will suffer less from data sparsity problems. Besides, without non-minimal

rules, the rule selection model will need less memory and can be trained faster.

To take advantage of this fact, we train another version of the NRS model

(NRS-MINI) over only minimal rules. The probability of a non-minimal rule is

then calculated using the product of the probability of minimal rules contained

therein.

Note that for both the standard NRS and NRS-MINI models, we use the

same baseline translation system which can use non-minimal translation rules.

48



Source tree Target string

PP

IN DT

NP

on the

NN

table

NN

table 桌子

DT

NP

the 桌子

NN

table

DT

NP

the x0

NN

x0

在 桌子 上
PP

IN NP

on x0 在 x0 上

PP

IN DT

NP

on the

NN

x0 在 x0 上

Rule1

Rule2

Rule3

Rule4

Rule5

Rule6

PP

IN DT NN

NP

on the table

在 桌子 上

extract

Figure 12. Examples of tree-to-string MT rules.

The NRS-MINI model will break translation rules used in translations down into

minimal rules and multiply all probabilities to calculate the necessary features.
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5.6 Experiments

5.6.1 Setting

We evaluated the proposed approach for English-to-German (en-de), English-to-

French (en-fr), English-to-Chinese (en-zh) and English-to-Japanese (en-ja) trans-

lation tasks. For the en-de and en-fr tasks, the translation systems are trained on

Europarl v7 parallel corpus and tested on the WMT 2015 translation task.20 The

test sets for the WMT 2014 translation task were used as development sets in our

experiments. For the en-zh and en-ja tasks, we used datasets provided for the

patent machine translation task at NTCIR-9 [19].21 The detailed statistics for

training, development and test sets are given in Table 21. The word segmentation

was done by BaseSeg [75] for Chinese and Mecab22 for Japanese.

For each translation task, we used Travatar [45] to train a forest-to-string

translation system. GIZA++ [51] was used for word alignment. A 5-gram lan-

guage model was trained on the target side of the training corpus using the

IRST-LM Toolkit23 with modified Kneser-Ney smoothing. Rule extraction was

performed using the GHKM algorithm [15] and the maximum numbers of non-

terminals and terminals contained in one rule were set to 2 and 10 respectively.

Note that when extracting minimal rules, we release this limit. The decoding

algorithm is the bottom-up forest-to-string decoding algorithm of Mi et al. [43].

For English parsing, we used Egret24, which is able to output packed forests for

decoding.

We trained the NRS models (NRS and NRS-MINI) on translation rules ex-

20The WMT tasks provided other training corpora. We used only the Europarl corpus,

because training a large-scale system on the whole data set requires large amounts of time and

computational resources.
21Note that NTCIR-9 only contained a Chinese-to-English translation task. Because we want

to test the proposed approach with a similarly accurate parsing model across our tasks, we used

English as the source language in our experiments. In NTCIR-9, the development and test sets

were both provided for the zh-en task while only the test set was provided for the en-ja task.

Therefore, we used the sentences from the NTCIR-8 en-ja and ja-en test sets as the development

set in our experiments.
22http://sourceforge.net/projects/mecab/files/
23http://hlt.fbk.eu/en/irstlm
24https://code.google.com/archive/p/egret-parser
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SOURCE TARGET

en-de

TRAIN #Sents 1.90M

#Words 52.2M 49.7M

#Vocab 113K 376K

DEV #Sents 3,003

#Words 67.6K 63.0K

TEST #Sents 2,169

#Words 46.8K 44.0K

en-fr

TRAIN #Sents 1.99M

#Words 54.4M 60.4M

#Vocab 114K 137K

DEV #Sents 3,003

#Words 71.1K 81.1K

TEST #Sents 1.5K

#Words 27.1K 29.8K

en-zh

TRAIN #Sents 954K

#Words 40.4M 37.2M

#Vocab 504K 288K

DEV #Sents 2K

#Words 77.5K 75.4K

TEST #Sents 2K

#Words 58.1K 55.5K

en-ja

TRAIN #Sents 3.14M

#Words 104M 118M

#Vocab 273K 150K

DEV #Sents 2K

#Words 66.5K 74.6K

TEST #Sents 2K

#Words 70.6K 78.5K

Table 21. Data sets.

tracted from the training set. Translation rules extracted from the development

set were used as validation data for model training to avoid over-fitting. For dif-

ferent training epochs, we resample negative examples for each positive example

to make use of different negative examples. The embedding dimension was set

51



en-de en-fr en-zh en-ja

Base 15.00 26.76 29.42 37.10

MERS 15.62 27.33 29.75 37.76

NRS 16.15 28.05 30.12 37.83

MERS-MINI 15.77 28.13 30.53 38.14

NRS-MINI 16.49 28.30 31.63 38.32

Table 22. Translation results. The bold numbers stand for the best systems.

en-de en-fr en-zh en-ja

NRS vs. MERS >> >> > −
NRS-MINI vs. MERS-MINI >> − >> −
MERS-MINI vs. MERS − >> >> >>

NRS-MINI vs. NRS > − >> >>

Table 23. Significance test results.

to be 50 and the number of hidden nodes was 100. The initial learning rate was

set to be 0.1. The learning rate was halved each time the validation likelihood

decreased. The number of epoches was set to be 20. A model was saved af-

ter each epoch and the model with highest validation likelihood was used in the

translation system.

We implemented Liu et al. [35]’s MERS model to compare with our approach.

The training instances for their model were extracted from the training set. Fol-

lowing their work, the iteration number was set to be 100 and the Gaussian prior

was set to be 1. We also compared the original MERS model and the MERS

model trained only on minimal rules (MERS-MINI) to test the benefit of using

minimal rules for model training.

The MERS and NRS models were both used to calculate features used to

rerank unique 1,000-best outputs of the baseline system. Tuning is performed to

maximize BLEU score using minimum error rate training [49].
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Source: typical dynamic response rate of an optical gap sensor as described above

is approximately 2 khz , or 0.5 milliseconds .

Reference:上述(described above) 光光光学学学(optical) 间间间隙隙隙(gap) 传传传感感感器器器(sensor) 的 典

型(typical) 动态(dynamic) 响应(response) 率(rate) 约(approximately) 为(is) 2KHz

或(or) 为 0.5 毫秒(milliseconds) 。

TBase: 典型(typical) 的 动态(dynamic) 响应(response) 速率(rate) 间间间隙隙隙(gap)

传传传 感感感 器器器(sensor) 的 光光光 学学学(optical) 如 上(above) 描 述(described) 的 是(is)

约(approximately) 2 千赫(khz) 兹 ， 或(or) 0.5 毫秒(milliseconds) 。

TMERS: 典型(typical) 的 动态(dynamic) 响应(response) 率(rate) 光光光学学学(optical)

传传传 感感感 器器器(sensor) ， 如(as) 以 上(above) 所 述(described) 间间间 隙隙隙(gap) 的

约(approximately) 2 千赫(khz) ， 或(or) 0.5 毫秒(milliseconds) 。

TNRS: 光光光学学学(optical) 传传传感感感器器器(sensor) ， 如(as) 以上(above) 所 述(described)

间间间隙隙隙(gap) 的 典型(typical) 的 动态(dynamic) 响应(response) 速率(rate) 为(is)

约(approximately) 2 千赫(khz) 兹 ， 或(or) 0.5 毫秒(milliseconds) 。

TMERS−MINI : 典 型(typical) 的 动 态(dynamic) 响 应(response) 率(rate) 间间间

隙隙隙(gap) 传传传感感感器器器(sensor) 的 光光光学学学(optical) 如上(above) 描述(described) 的 是(is)

约(approximately) 2 千赫(khz) 兹 ， 或(or) 0.5 毫秒(milliseconds) 。

TNRS−MINI : 如上(above) 描述(described) 的 光光光学学学(optical) 间间间隙隙隙(gap) 传传传感感感

器器器(sensor) 典型(typical) 的 动态(dynamic) 响应(response) 速率(rate) 为(is)

约(approximately) 2 千赫(khz) 兹 ， 或(or) 0.5 毫秒(milliseconds) 。

Table 24. Translation examples.

5.6.2 Result and Analysis

Table 22 shows the translation results and Table 23 shows significance test results

using bootstrap resampling25 [28]: “Base” stands for the baseline system without

any; “MERS”, “NRS”, “MERS-MINI” and “NRS-MINI” means the outputs of

the baseline system were reranked using features from the MERS, NRS, MERS-

MINI and NRS-MINI models respectively. Generally, the NRS model outper-

formed the MERS model and the NRS-MINI model outperformed the MERS-

MINI model on different translation tasks. In addition, using minimal rules for

model training benefitted both the MERS and NRS models.

25The symbol >> (>) represents a significant difference at the p < 0.01 (p < 0.05) level and

the symbol - represents no significant difference at the p < 0.05 level.
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R1: TMERS&TNRS PP ( IN ( “of” ) NP ( NP ( DT ( “an” ) NP’ ( JJ ( “optical”

) x0:NN ) ) x1:NP’ ) ) → “光学(optical)” x1 x0 “的”

R2: TMERS−MINI PP ( IN ( “of” ) NP ( NP ( DT ( “an” ) NP’ ( JJ ( “optical”

) x0:NP’ ) ) x1:SBAR ) ) → x0 “的” “光学(optical)” x1 “的”

R3 : TNRS−MINI NP’ ( JJ ( “optical” ) x0:NP’ ) → “光学(optical)” x0

Table 25. Rules used to translate the source word “optical” in different transla-

tions. Shadows (R3) stand for ambiguous rules.

Table 24 shows translation examples in the en-zh task to demonstrate the rea-

son why our approach improved accuracy. Among all translations, TNRS−MINI is

basically the same as the reference with only a few paraphrases that do not alter

the meaning of the sentence. In contrast, TBase, TMERS, TNRS and TMERS−MINI

all contain apparent mistakes. For example, the source phrase “optical gap sen-

sor” (covered by gray shadows in Table 24) is wrongly translated in TBase, TMERS,

TNRS and TMERS−MINI due to incorrect reorderings.

Table 25 shows rules used to translate the source word “optical” in different

translations: R1 is used in TMERS and TNRS; R2 is used in TMERS−MINI ; R3 is

used in TNRS−MINI . Although the source word “optical” is translated to the cor-

rect translation “光学(optical)” in all translations, R1, R2 and R3 cause different

reorderings for the source phrase “optical gap sensor”. R3 reorders this source

phrase correctly while R1 and R2 cause wrong reorderings for this source phrase.

We can see that R1 is unambiguous, so the MERS and NRS models will give

probability 1 to R1, which could make the MERS and NRS models prefer TMERS

and TNRS. This is a typical translation error caused by sparse rules since the

source subtree in R1 does not have other translations in the training corpus.

To compare the MERS-MINI and NRS-MINI models, Table 26 shows minimal

rules (R2a, R2b, R3a and R3b) contained in R2 and R3. Table 27 shows probabilities

of these minimal rules calculated by the MERS-MINI and NRS-MINI models

respectively. We can see that the NRS-MINI model gave higher scores for the

correct translation rules R3a and R3b than the MERS-MINI model, while the

MERS-MINI model gave a higher score to the incorrect rule R2b than the NRS-

MINI model.
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R2a PP ( IN ( “of” ) NP ( NP ( DT ( “an” ) NP’ ( x0:JJ x1:NP’ ) ) x2:SBAR ) )

→ x1 “的” x0 x2 “的”

R2b JJ ( “optical” ) → “光学(optical)”

R3a NP’ ( x0:JJ x1:NP’ ) → x0 x1

R3b JJ ( “optical” ) → “光学(optical)”

Table 26. Minimal rules contained in R2 and R3. Shadows (R2b, R3a and R3b)

stand for ambiguous rules.

MERS-MINI NRS-MINI

R2a 1 1

R2b 0.5441 0.09632

R3a 0.9943 0.9987

R3b 0.5441 0.7317

Table 27. Scores of minimal rules.

Note that R2b and R3b are the same rule, but the target-side context in

TMERS−MINI and TNRS−MINI is different. The NRS-MINI model will give R2b

and R3b different scores because the NRS-MINI model used target-side context.

However, the MERS-MINI model only used source-side features and gave R2b

and R3b the same score. The fact that the NRS-MINI model gave a higher

score for R3b than R2b means that the NRS-MINI model predicted the target

string in R2b and R3b is a good translation in the context of TNRS−MINI but

not so good in the context of TMERS−MINI . As we can see, the target phrase

“如上(above) 描述(described) 的(of) 光学(optical) 间隙(gap) 传感器(sensor)”

around “光学(optical)” in TNRS−MINI is a reasonable Chinese phrase while the

target phrase “间隙(gap) 传感器(sensor) 的(of) 光学(optical) 如上(above) 描

述(described) 的(of)” around “光学(optical)” in TMERS−MINI does not make

sense. Namely, the NRS model trained with target-side context can perform rule

selection considering target sentence fluency, which is the reason why target-side

context can help in the rule selection task.

To analyze the influence of different features, we trained the MERS model us-

ing source-side and target-side n-gram lexical features similar to the NRS model.
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When using this feature set, the performance of the MERS model dropped sig-

nificantly. This indicates that the syntactic, POS and span features used in the

original MERS model are important for their model, since these features can gen-

eralize better. Purely lexical features are less effective due to sparsity problems

when training one maximum entropy based classifier for each ambiguous source

subtree and training data for each classifier is quite limited. In contrast, the

NRS model is trained with distributed representations and does not split train-

ing data, which relieves the sparsity problem of lexical features. As a result, the

NRS model achieved better performance using only lexical features compared to

the MERS model. We also tried to use pre-trained word embedding features for

the MERS model, but it did not improve the performance of the MERS model,

which indicates that the log-linear model is not able to benefit from distributed

representations as well as the non-linear neural network model.

We also tried reranking with both the NRS and MERS models added as

features, but it did not achieve further improvement compared to only using the

NRS model. This indicates that although these two models use different type of

features, the information contained in these features are similar. For example,

the POS features used in the MERS model and the distributed representations

used in the NRS model are both used for better generalization.

In addition, using both the NRS and NRS-MINI models did not improve

over using only the NRS-MINI model in our experiments. There are two main

differences between the NRS and NRS-MINI models. First, minimal rules are

more frequent and have more training data than non-minimal rules, which is why

the NRS-MINI model is more robust than the NRS model. Second, non-minimal

rules contain more information than minimal rules. For example, in Figure 33,

Rule4 contains more information than Rule1, which could be an advantage for

rule selection. However, the information contained in Rule4 will be considered

as context features for Rule1. Therefore, this is no longer an advantage for the

NRS model as long as we use rich enough context features, which could be the

reason why using both the NRS and NRS-MINI models cannot further improve

the translation quality compared to using only the NRS-MINI model.
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5.7 Conclusion

We proposed an NRS model for syntax-based MT, which is learned by a feed-

forward neural network with distributed representations and hence can generalize

better compared to the previous MERS model that uses symbolic features. In

addition, we proposed to use only minimal rules for rule selection to further relieve

the data sparsity problem, since minimal rules are more frequent and have richer

training data. In our experiments, the NRS model outperformed the previous

MERS model and the usage of minimal rules benefitted both NRS and MERS

models on different translation tasks.
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6. Improving NMT through Phrase-based Forced

Decoding

6.1 Introduction

Neural machine translation (NMT) [4], which uses a single large neural network

to model the entire translation process, has recently been shown to outperform

symbolic MT such as phrase-based MT [32] on several translation tasks [55, 68].

Compared to symbolic MT, NMT generally produces more fluent translations,

but often sacrifices adequacy, such as translating source words into completely

unrelated target words, over-translation or under-translation [31].

There are a number of methods that combine the two paradigms to address

their respective weaknesses. For example, it is possible to incorporate NMT

as features into symbolic MT to disambiguate hypotheses [46, 60]. However, the

search space of symbolic MT is usually limited by translation rule tables, reducing

the ability of symbolic MT to generate hypotheses on the same level of fluency

as NMT, even after reranking.

There are also methods that incorporate knowledge from symbolic MT into

NMT, such as lexical translation probabilities [3, 22], phrase memory [62], and

n-gram posterior probabilities based on symbolic MT translation lattices [59].

These improve the adequacy of NMT output, but do not impose hard alignment

constraints like symbolic MT systems and therefore cannot effectively solve all

over-translation or under-translation problems.

We proposed a method that exploits an existing phrase-based translation

model to compute the phrase-based decoding cost for a given NMT translation.26

That is, we force a phrase-based translation system to take in the source sen-

tence and generate an NMT translation. Then we use the cost of this phrase-

based forced decoding to rerank the NMT outputs. The phrase-based decoding

cost will heavily punish completely unrelated translations, over-translations, and

under-translations, as they will not be able to be found in the translation phrase

table.

26In fact, our method can take in the output of any up-stream system, but we experiment

exclusively with using it to rerank NMT output.
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One challenge in implementing this method is that the NMT output may not

be in the search space of the phrase-based translation model, which is limited by

the phrase-based translation rule table. To solve this problem, we proposed a soft

forced decoding algorithm, which is based on the standard phrase-based decoding

algorithm and integrates new types of translation rules (deleting a source word

or inserting a target word). The proposed forced decoding algorithm can always

successfully find a decoding path and compute a phrase-based decoding cost for

any NMT output. Another challenge is that we need a diverse NMT n-best list

for reranking. Because beam search for NMT often lacks diversity in the beam –

candidates only have slight differences, with most of the words overlapping – we

used a random sampling method to obtain a more diverse n-best list.

We tested the proposed method on English-to-Chinese, English-to-Japanese,

English-to-German and English-to-French translation tasks, obtaining large im-

provements over a strong NMT baseline that already incorporates symbolic lexi-

con features.

6.2 Related Work

Wuebker et al. [70, 69] applied forced decoding on the training set to improve

the training process of phrase-based MT and prune the phrase-based rule table.

They also used word insertions and deletions for forced decoding, but they used

a high penalty for all insertions and deletions. In contrast, our forced decoding

algorithm for NMT outputs uses a small penalty for function words and a high

penalty for content words, because function words are usually translated very

flexibly and more likely to be inserted or deleted. The different penalties come

from that our method is used for reranking NMT outputs while their method was

used for improving the training process of phrase-based MT.

A major difference of symbolic MT and NMT is that the alignment model in

symbolic MT provides exact word or phrase level alignments between the source

and target sentences while the attention model in NMT only computes an align-

ment probability distribution for each target word over all source words, which is

the main reason why NMT is more likely to produce completely unrelated transla-

tions, over-translation or under-translation compared to symbolic MT. To relieve

these problems of NMT, there are methods that modify the NMT neural network
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structure [64, 41, 1] while we rerank NMT outputs by exploiting knowledge from

symbolic MT.

There are also existing methods that rerank NMT outputs by using target-

bidirectional NMT models [34]. Their reranking method aims to overcome the

issue of unbalanced accuracy in NMT outputs while our reranking method aims

to solve the inadequacy problem of NMT.

6.3 Phrase-based Forced Decoding for NMT

As stated before, our goal is not to generate new hypotheses with phrase-based

MT, but instead use the phrase-based model to calculate scores for NMT output.

In order to do so, we can perform forced decoding, which is very similar to the

standard phrase-based decoding algorithm but discards all partial hypotheses

that do not match the NMT output. However, the NMT output is not limited by

the phrase-based rule table, so there may be no decoding path that completely

matches the NMT output when using only the phrase-based rules.

To remedy this problem, inspired by previous work in forced decoding for

training phrase-based MT systems [70, 69] we proposed a soft forced decoding

algorithm that can always successfully find a decoding path for a source sentence

F and an NMT translation E.

First, we introduce two new types of rules R1 and R2.

R1 A source word f can be translated into a special word null. This corre-

sponds to deleting f during translation. The score of deleting f is calculated

as,

s (f → null) =
unalign (f)

|T |
(31)

where unalign (f) is how many times f is unaligned in the word-aligned training

set T and |T | is the number of sentence pairs in T .

R2 A target word e can be translated from a special word null, which corre-

sponds to inserting e during translation. The score of inserting e is calculated

as,

s (null→ e) =
unalign (e)

|T |
(32)
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where unalign (e) is how many times e is unaligned in T .

One motivation for Equations 31 and 32 is that function words usually have

high frequencies, but do not have as clear a correspondence with a word in the

other language as content words. As a result, function words are more often

unaligned than content words in the training set. As an example, Table 28 shows

the occurring and unaligned times for different words counted on the word-aligned

training set of English-to-Chinese task in our experiments, which contains 953K

sentence pairs. Based on the equations above, the scores of deleting or inserting

“of” and “a” will be higher.

Words of a temperature water

Occur 1,352K 1,019K 35K 29K

Unaligned 513K 412K 4K 3K

Table 28. Number of times words occur in the training corpus and number of

times unaligned.

In our forced decoding, we choose to model the score of each translation

rule that exists in the phrase table as the product of direct and inverse phrase

translation probabilities.27 To make sure that the scale of the scores for R1 and

R2 match the other phrase (which are the product of two probabilities), we use

the square of the score in Equation 31/32 as the rule score for R1/R2.

Algorithm 3 shows the forced decoding algorithm that integrates the new

rules. Because the translation E is given for the forced decoding algorithm, the

proposed forced decoding algorithm keeps J stacks, where J is the length of E.

In other words, the stack size is corresponding to the target word size during

forced decoding while the stack size is corresponding to the source word size

during standard phrase-based decoding. The stack s′j in Algorithm 3 contains all

hypotheses in which the first j target words have been generated. We expand

hypotheses in s′1, s
′
2, ..., s

′
J in turn. When expanding a hypothesis Hold in s′j,

besides expanding it using the original rule table Expand(Hold), we also expand

27In standard phrase-based decoding it is common to integrate reordering probabilities in the

decoding cost. However, because NMT generally produces more properly ordered sentences than

symbolic MT, in this work we do not consider reordering probabilities in our forced decoding

algorithm.
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Hold by inserting the next target word ej+1 at the end of Hold to get an additional

hypothesis Hnew and put Hnew into s′j+1. For a final hypothesis in stack s′J , it

may not cover all source words. We update its score by translating uncovered

words into null.

Algorithm 3 Forced phrase-based decoding.

Require: Source sentence F with length I and translation E with length J

Ensure: Decoding path D

initialize H0 and s′1, s
′
2, ..., s

′
J

Expand(H0)

expand H0 with rule null→ e1

for j = 1 to J − 1 do

for each hypothesis Hjk in s′j do

Expand(Hjk)

expand Hjk with rule null→ ej+1

end for

end for

for each hypothesis HJk in s′J do

updata S (HJk) for uncovered source words

end for

select best hypothesis in s′J

Because different decoding paths can generate the same final translation, there

can be different decoding paths that fit the NMT translation E. We use the score

of the single decoding path with the highest decoding score as the forced decoding

score for E.

6.4 Reranking NMT Outputs

We reranked the n-best NMT outputs using Equation 33.

logP (E|F ) = w1 · logPn (E|F ) + w2 · logSd (E|F ) (33)

where Pn (E|F ) is the original NMT translation probability, Sd (E|F ) is the forced

decoding probability, w1 and w2 are weights that can be tuned on the n-best list

of the development set.
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The easiest way to get an n-best list for NMT is by using the n-best trans-

lations from beam search, which is the standard decoding algorithm for NMT.

While beam search is likely to find the highest-scoring hypothesis, it often lacks

diversity in the beam: candidates only have slight differences, with most of the

words overlapping. In order to obtain a more diverse list of hypotheses for rerank-

ing, we additionally augment the 1-best hypothesis discovered by beam search

with translations sampled from the NMT conditional probability distribution.

The standard method for sampling hypotheses in NMT is ancestral sampling,

where we randomly select a word from the vocabulary according to the NMT

probability distribution P
(
ej|ej−11 , F

)
[58]. This will make a diverse list of hy-

potheses, but may reduce the probability of selecting a highly scoring hypothesis,

and the whole n-best list may not contain any translation that is better than the

standard beam search output.

Instead, we take an alternative approach that proved empirically better in our

experiments: at each time step j, we use sampling to randomly select the next

word from e′ and e′′ according to Equation 34. Here, e′ and e′′ are the two target

words with the highest probability according to Equation 8.

Prdm (e′) =
P(e′|ej−11 ,F)

P(e′|ej−11 ,F)+P(e′′|ej−11 ,F)

Prdm (e′′) =
P(e′′|ej−11 ,F)

P(e′|ej−11 ,F)+P(e′′|ej−11 ,F)

(34)

The sampling process ends when 〈/s〉 is selected as the next word.

We repeat the decoding process 1, 000 times to sample 1, 000 outputs for each

source sentence. We additionally add the 1-best output of standard beam search,

making the size of the list used for reranking is 1, 001.

6.5 Experiments

6.5.1 Setting

We evaluated the proposed approach for English-to-Chinese (en-zh), English-to-

Japanese (en-ja), English-to-German (en-de) and English-to-French (en-fr) trans-

lation tasks. For the en-zh and en-ja tasks, we used datasets provided for the
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SOURCE TARGET

en-de

TRAIN #Sents 1.90M

#Words 52.2M 49.7M

#Vocab 113K 376K

DEV #Sents 3,003

#Words 67.6K 63.0K

TEST #Sents 2,169

#Words 46.8K 44.0K

en-fr

TRAIN #Sents 1.99M

#Words 54.4M 60.4M

#Vocab 114K 137K

DEV #Sents 3,003

#Words 71.1K 81.1K

TEST #Sents 1.5K

#Words 27.1K 29.8K

en-zh

TRAIN #Sents 954K

#Words 40.4M 37.2M

#Vocab 504K 288K

DEV #Sents 2K

#Words 77.5K 75.4K

TEST #Sents 2K

#Words 58.1K 55.5K

en-ja

TRAIN #Sents 3.14M

#Words 104M 118M

#Vocab 273K 150K

DEV #Sents 2K

#Words 66.5K 74.6K

TEST #Sents 2K

#Words 70.6K 78.5K

Table 29. Data sets.

patent machine translation task at NTCIR-9 [19].28 For the en-de and en-fr tasks,

28Note that NTCIR-9 only contained a Chinese-to-English translation task, we used English

as the source language in our experiments. In NTCIR-9, the development and test sets were

both provided for the zh-en task while only the test set was provided for the en-ja task. We
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en-zh en-ja en-de en-fr

dev test dev test dev test dev test

PBMT 30.73 27.72 35.67 33.46 12.37 13.95 25.96 27.50

NMT 34.60 32.71 41.67 39.00 12.52 14.05 23.63 23.99

NMT+lex 36.06 34.80 44.47 41.09 13.36 15.60 24.00 24.91

Our(Pn) 34.38 33.23 38.92 34.18 12.34 13.59 23.13 23.61

Our(Sd) 36.17 34.09 42.91 40.16 13.08 15.29 24.28 25.71

Our(Pn+Sd) 37.94 35.59 45.34 41.75 14.56 16.61 25.96 27.12

Our(Pn+WP) 37.44 34.93 45.81 41.90 13.75 15.46 24.47 25.09

Our(Sd+WP) 36.44 33.73 43.52 40.49 13.39 15.71 24.74 26.25

Our(Pn+Sd+WP) 38.69 35.75 46.92 43.17 14.61 16.65 25.98 27.15

Table 30. Translation results (BLEU). NMT+lex: [3]; Our: NMT+lex+rerank,

i.e. we rerank the n-best outputs of [3] using different features (Pn, Sd and WP).

we used version 7 of the Europarl corpus as training data, WMT 2014 test sets

as our development sets and WMT 2015 test sets as our test sets. The detailed

statistics for training, development and test sets are given in Table 29. The word

segmentation was done by BaseSeg [75] for Chinese and Mecab29 for Japanese.

We built attentional NMT systems with Lamtram30. Word embedding size

and hidden layer size are both 512. We used Byte-pair encoding (BPE) [56] and

set the vocabulary size to be 50K. We used the Adam algorithm for optimization.

To obtain a phrase-based translation rule table for our forced decoding al-

gorithm, we used GIZA++ [51] and grow-diag-final-and heuristic [32] to obtain

symmetric word alignments for the training set. Then we extracted the rule table

using Moses [30].

6.5.2 Result and Analysis

Table 30 shows results of the phrase-based MT system31, the baseline NMT sys-

tem, the lexicon integration method [3] and the proposed reranking method. We

used the sentences from the NTCIR-8 en-ja and ja-en test sets as the development set in our

experiments.
29http://sourceforge.net/projects/mecab/files/
30https://github.com/neubig/lamtram
31We used the default Moses settings for phrase-based MT.
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en-zh en-ja en-de en-fr

dev test dev test dev test dev test

PBMT 1.008 1.018 1.005 0.998 1.077 1.069 0.986 1.004

NMT 0.953 0.954 0.960 0.961 1.059 1.038 0.985 0.977

NMT+lex 0.936 0.966 0.955 0.963 1.054 1.019 1.030 0.977

Our(Pn) 0.875 0.898 0.814 0.775 0.874 0.854 0.904 0.900

Our(Sd) 0.973 0.989 0.985 0.981 1.062 1.060 1.030 1.031

Our(Pn+Sd) 0.949 0.965 0.945 0.936 1.000 0.992 0.999 0.992

Our(Pn+WP) 0.996 1.019 0.999 0.983 1.000 0.975 0.998 1.001

Our(Sd+WP) 1.000 1.024 1.001 1.001 1.011 1.007 0.999 0.989

Our(Pn+Sd+WP) 0.990 1.014 1.000 0.986 1.000 0.989 1.000 0.992

Table 31. Ratio of translation length to reference length for different system

outputs in Table 30.

tested three features for reranking: the NMT score Pn, the forced decoding score

Sd and a word penalty (WP) feature, which is the length of the translation. The

best NMT system and the systems that have no significant difference from the

best NMT system at the p < 0.05 level using bootstrap resampling [28] are shown

in bold font.

As we can see, integrating lexical translation probabilities improved the base-

line NMT system and reranking with both three features achieved further im-

provements for all four language pairs. Even on English-to-Chinese and English-

to-Japanese tasks, where the NMT system outperformed the phrase-based MT

system 7-8 BLEU scores, using the forced decoding score for reranking NMT

outputs can still achieve significant improvements. With or without the word

penalty feature, using both Pn and Sd for reranking gave better results than only

using Pn or Sd alone.

The Word Penalty Feature The word penalty feature generally improved the

reranking results, especially when only the NMT score Pn was used for reranking.

As we can see, using only Pn for reranking decreased the translation quality

compared to the standard beam search result of NMT. This is because the search

spaces of beam search and random sampling are quite different, the best beam

search output does not necessarily have the highest NMT score compared to
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Source

for hypophysectomized (hypop hy sec to mized) rats , the drinking water addition-

ally contains 5 % glucose .

Reference

对于(for) 去(remove) 垂体(hypophysis) 大(big) 鼠(rat) ， 饮用水(drinking water)

中(in) 另外(also) 含有(contain) 5 ％ 葡萄糖(glucose) 。

PBMT

用 于(for) 大(big) 鼠(rat) 垂体(hypophysis) HySecto，(Hy Sec to ，) 饮 用

水(drinking water) 另外(also) 含有(contain) 5 ％ 葡萄糖(glucose) 。

NMT

对于(for) 过(pass) 盲肠(cecum) 的(of) 大(big) 鼠(rat) ， 饮用水(drinking water)

另外(also) 含有(contain) 5 ％ 葡萄糖(glucose) 。

NMT+lex/NMT+lex+Pn/NMT+lex+Pn+WP

对于(for) 低(low) 酪(cheese) 蛋白(protein) 切除(remove) 的(of) 大(big) 鼠(rat) ，

饮用水(drinking water) 另外(also) 含有(contain) 5 ％ 葡萄糖(glucose) 。

NMT+lex+Sd/NMT+lex+Sd+WP

对于(for) 垂体(hypophysis) 在(is) 切除(remove) 大(big) 鼠(rat) 中(in) ， 饮用

水(drinking water) 另外(also) 含有(contain) 5 ％ 葡萄糖(glucose) 。

NMT+lex+Pn+Sd/NMT+lex+Pn+Sd+WP

对于(for) 垂体(hypophysis) 在(is) 切除(remove) 的(of) 大(big) 鼠(rat) 中(in) ， 饮

用水(drinking water) 另外(also) 含有(contain) 5 ％ 葡萄糖(glucose) 。

Table 32. An example of improving inaccurate rare word translation by using Sd

for reranking.

random sampling outputs. Therefore, even the Pn reranking results do have

higher NMT scores, but have lower BLEU scores according to Table 30. To

explain why this happened, we show the ratio of translation length to reference

length in Table 31. As we can see, the Pn reranking outputs are much shorter.

This is because NMT generally prefers shorter translations, because Equation 12

multiplies all target word probabilities together. So the word penalty feature can

improve the Pn reranking results a lot, by preferring longer sentences. Because

the forced decoding score Sd does not obviously prefer shorter or longer sentences,

so when Sd was used for reranking, the word penalty feature became less helpful.

When both Pn and Sd were used for reranking, the word penalty feature only
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achieved further significant improvement on the English-to-Japanese task.

Table 32 gives translation examples of our reranking method from the English-

to-Chinese task. The source English word “hypophysectomized” is an unknown

word which does not occur in the training set. By doing BPE, this word is split

into “hypop”, “hy”, “sec”, “to” and “mized”. The correct translation for “hy-

pophysectomized” is “去(remove) 垂体(hypophysis)” as shown in the reference

sentence. The original attentional NMT translated it into incorrect translation

“过(pass) 盲肠(cecum)”. After integrating lexicons, the NMT system translated

it into “低(low) 酪(cheese) 蛋白(protein) 切除(remove)”. The last word “切

除(remove)” is correct, but the rest of the translation is still wrong. Only by

using the forced decoding score Sd for reranking, we get the more accurate trans-

lation “垂体(hypophysis) 在(is) 切除(remove)”.

To further demonstrate how the reranking method works, Table 33 shows

translation rules and their log-scores contained in the forced decoding paths found

for T1, the NMT translation without reranking and T2, the NMT translation

using both Pn and Sd for reranking. As we can see, the four rules ra, rb, rc

and rd used for T1 have low scores. ra is an unlikely translation. In rb, rc

and rd, “酪(cheese)”, “蛋白(protein)” and “hypop” are content words, which

are unlikely to be deleted or inserted during translation. Table 33 also shows

that the translation of function words is very flexible. The score of inserting a

function word “的(of)” is very high. The translation rule “the →在(is)” used

for T2 is incorrect, but its score is relatively high, because function words are

often incorrectly aligned in the training set. The reason why function words are

more likely to be incorrectly aligned to each other is that they usually have high

frequencies and do not have clear correspondences between different languages.

In T1, “hypophysectomized (hypop hy sec to mized)” is incorrectly trans-

lated into “低(low) 酪(cheese) 蛋白(protein) 切除(remove)”. However, from Ta-

ble 33, we can see that the forced decoding algorithm learns it as unlikely trans-

lation (hy→低(low)), over-translation (null→酪(cheese), null→蛋白(protein))

and under-translation (hypop→null, sec→null), because there is no translation

rule between “hypop” “sec” and “酪(cheese)” “蛋白(protein)”. Because content

words are unlikely to be deleted or inserted during translation, they have low

forced decoding scores. So using the forced decoding score for reranking NMT
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T1 (NMT+lex):

for →对于(for) -3.04

ra: hy →低(low) -12.19

rb: null→酪(cheese) -21.99

rc: null→蛋白(protein) -13.83

to mized →切除(remove) -6.22

null→的(of) -1.53

rats →大(big) 鼠(rat) -1.52

, the drinking water →， 饮用水(drinking water) -1.38

additionally contains →另外(also) 含有(contain) -3.68

5 % →5 ％ -0.51

glucose . →葡萄糖(glucose) 。 -0.60

rd: hypop→null -25.33

sec→null -20.66

T2 (NMT+lex+Pn+Sd):

for →对于(for) -3.04

hypop hy →垂体(hypophysis) -5.09

the →在(is) -5.32

to mized →切除(remove) -6.22

null→的(of) -1.53

rats →大(big) 鼠(rat) -1.52

, →中(in) ， -4.11

drinking water →饮用水(drinking water) -1.03

additionally contains →另外(also) 含有(contain) -3.68

5 % →5 ％ -0.51

glucose . →葡萄糖(glucose) 。 -0.60

sec→null -20.66

Table 33. Forced decoding paths for T1 and T2: used rules and log scores. The

translation rules with shade are used only for T1 or T2.

outputs can naturally improve over-translation or under-translation as shown in

Table 34. As we can see, without using Sd for reranking, NMT under-translated

“temperature” and over-translated “ph” twice, which will be assigned low scores

by forced decoding. By using Sd for reranking, the correct translation was se-
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lected.

Source: such changes in reaction conditions include , but are not limited to , an

increase in temperature or change in ph .

Reference: 所(such)述(said)反应(reaction)条件(condition)的(of)改变(change)包

括(include)但(but)不(not)限于(limit)温温温度度度(temperature) 的的的(of) 增增增加加加(increase)

或或或(or) pH 值值值(value) 的的的(of) 改改改变变变(change) 。

PBMT:中(in)的(of)这种(such)变化(change)的(of)反应(reaction)条件(condition)

包括(include) ， 但(but) 不(not) 限于(limit) ， 增增增加加加(increase) 的的的(of) 温温温

度度度(temperature) 或或或(or) pH 变变变化化化(change) 。

NMT: 这种(such) 反应(reaction) 条件(condition) 的(of) 变化(change) 包括(include)

但(but) 不(not) 限于(limit) pH 或或或(or) pH 的的的(of) 变变变化化化(change) 。

NMT+lex/NMT+lex+Pn: 这种(such) 反应(reaction) 条件(condition) 的(of)

变化(change) 包括(include) ， 但(but) 不(not) 限于(limit) ， pH 的的的(of) 升升升

高高高(increase) 或或或(or) pH 变变变化化化(change) 。

NMT+lex+Sd: 这种(such) 反应(reaction) 条件(condition) 的(of) 变化(change)

包括(include) 但(but) 不(not) 限于(limit) ， 温温温度度度(temperature) 的的的(of) 升升升

高高高(increase) 或或或(or) 改改改变变变(change) pH 值值值(value) 。

NMT+lex+Pn+Sd: 这种(such)反应(reaction)条件(condition)的(of)变化(change)

包括(include) ， 但(but) 不(not) 限于(limit) ， 温温温度度度(temperature) 的的的(of) 升升升

高高高(increase) 或或或(or) 改改改变变变(change) pH 值值值(value) 。

NMT+lex+Pn+WP: 这 种(such) 反 应(reaction) 条 件(condition) 的(of) 变

化(change) 包 括(include) ， 但(but) 不(not) 限 于(limit) ， pH 的的的(of) 升升升

高高高(increase) 或或或(or) 改改改变变变(change) pH 值值值(value) 。

NMT+lex+Sd+WP/ NMT+lex+Pn+Sd+WP: 这种(such) 反应(reaction) 条

件(condition)的(of)变化(change)包括(include)，但(but)不(not)限于(limit)，温温温

度度度(temperature) 的的的(of) 升升升高高高(increase) 或或或(or) 改改改变变变(change) pH 值值值(value) 。

Table 34. An example of improving under-translation and over-translation by

using Sd for reranking.

Reranking PBMT outputs with NMT We also did experiments that use

the NMT score as an additional feature to rerank PBMT outputs (unique 1, 000-

best list). The results are shown in Table 35. We also copy results of baseline

PBMT and NMT from Table 30 for direct comparison. As we can see, using
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NMT to rerank PBMT outputs achieved improvements over the baseline PBMT

system. However, when the baseline NMT system is significantly better than the

baseline PBMT system (en-zh, en-ja), even using NMT to rerank PBMT outputs

still achieved lower translation quality compared to the baseline NMT system.

en-zh en-ja en-de en-fr

PBMT+rerank 32.77 37.68 14.23 28.86

PBMT dev 30.73 35.67 12.37 25.96

NMT 34.60 41.67 12.52 23.63

PBMT+rerank 30.04 35.14 15.89 29.77

PBMT test 27.72 33.46 13.95 27.50

NMT 32.71 39.00 14.05 23.99

Table 35. Results of using NMT for reranking PBMT outputs.

6.6 Conclusion

We proposed to exploit an existing phrase-based MT model to compute the

phrase-based decoding cost for NMT outputs and then use the phrase-based

decoding cost to rerank the n-best NMT outputs, so that we can combine the

advantages of both PBMT and NMT. Because an NMT output may not be in the

search space of standard phrase-based MT, we propose a soft forced decoding al-

gorithm, which can always successfully find a decoding path for any NMT output

by deleting source words and inserting target words. Results showed that using

the forced decoding cost to rerank NMT outputs improved translation quality on

four different language pairs.
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7. Conclusions

This thesis started in 2015 when symbolic MT had the state-of-the-art transla-

tion performance and continues until now when NMT outperforms symbolic MT

on various translation tasks [55, 68]. Compared to symbolic MT, NMT uses dis-

tributed word representations and generally generates more fluent translations,

but often sacrifices adequacy, such as NMT is more likely to generate over, under

or completely unrelated translations [31].

Both fluency and adequacy are important for the translation quality: fluency

makes the translations understandable for human and adequacy makes sure the

translations contain the same information as the original source sentences. The

goal of machine translation is to replace human translation and generate good

translations that are both fluent and adequate. Because NMT and symbolic

MT have their own respective advantages, i.e. NMT is better at fluency while

symbolic MT is better at adequacy, this thesis focuses on hybrid neural-symbolic

MT to combine the advantages of both symbolic and neural MT for generating

translations that are both fluent and adequate. The contribution of this thesis

mainly consists of two parts as below.

First, we developed various neural models for the log-linear framework of

symbolic MT to improve the fluency of symbolic MT. In particular, we proposed:

a neural word reordering model which learned word reorderings more effectively

and efficiently compared to previous word reordering models by exploiting a feed-

forward neural network and selecting useful reordering information, i.e. short re-

orderings; a binarized NNJM which converted the multiclass classification prob-

lem of the original NNJM into a binary classification problem and outperformed

the NNJM by adopting an effective noise sampling method based on translation

probabilities for model training; a neural rule selection model which performed

rule selection based on minimal translation rules for reducing data sparsity and

outperformed previous rule selection models by learning distributed representa-

tions for both translation rules and context words. All these three proposed neural

models were proved to be useful and improved the translation quality, specially

the fluency of symbolic MT significantly.

Second, we exploited knowledge from symbolic MT to improve the adequacy

of NMT. We proposed to perform phrase-based forced decoding for NMT out-
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puts and rerank NMT outputs with phrase-based decoding scores. Because the

search space of phrase-based MT is limited by translation rules and the standard

phrase-based forced decoding may fail for some NMT outputs, we proposed a

phrase-based soft forced decoding algorithm, which can successfully find a phrase-

based decoding path for any NMT outputs by introducing two new types of rules,

source word deletion and target word insertion rules. We assigned high proba-

bilities to function word deletion/insertion and low probabilities to content word

deletion/insertion, because unlike content words, function words do not have clear

correspondence between different languages. Therefore, similar with the standard

phrase-based decoding score, the phrase-based soft forced decoding score can also

heavily punish over, under and completely unrelated translations to improve the

adequacy of NMT. In our experiments, the adequacy of NMT achieved signifi-

cant improvement after being reranked by our proposed phrase-based soft forced

decoding scores.

8. Future Work

Our hybrid neural-symbolic MT methods, i.e. developing neural features for the

log-linear framework of symbolic MT; reranking NMT outputs with the proposed

phrase-based soft forced decoding scores, which aim to combine the advantages of

both NMT and symbolic MT for generating translations that are both fluent and

adequate, are proved to be useful, but still have some limitations. First, incor-

porating neural features into symbolic MT leads to a limited translation search

space, because the search space of symbolic MT is limited by translation rules.

The proposed phrase-based soft forced decoding algorithm can solve the limited

search space problem of phrase-based MT, however, it was used for reranking

n-best NMT outputs, which are only a small part of all the possible translations.

Using a larger n-best list can improve the reranking result, but then the time cost

will increase for both NMT decoding and phrase-based soft forced decoding.

In the future, our work will focus on overcoming the limitations of the current

hybrid neural-symbolic MT methods and developing more effective and efficient

joint neural-symbolic decoding algorithms to further improve both the fluency

and adequacy of MT.
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One way to improve our current hybrid neural-symbolic MT methods is to

incorporate the proposed phrase-based soft forced decoding scores into the NMT

decoding process as neural-symbolic joint decoding instead of reranking to further

improve the translation quality. Because the proposed phrase-based soft forced

decoding algorithm also computes decoding scores for incomplete hypotheses from

left to right similar with NMT decoding as shown in Figure 13, it is straightfor-

ward to incorporate the phrase-based decoding scores into NMT decoding.

H3
I: 我(I)的(of)头(head)疼(pain)
O: I have a

H4
I: 我(I)的(of)头(head)疼(pain)
O: I have a headache

H5
I: 我(I)的(of)头(head)疼(pain)
O: I have a headache

H2
I: 我(I)的(of)头(head)疼(pain)
O: I have 

H1
I: 我(I)的(of)头(head)疼(pain)
O: I

H0
I: 我(I)的(of)头(head)疼(pain)
O: 

Figure 13. An example of the proposed phrase-based soft forced decoding path.

A major challenge in incorporating phrase-based soft forced decoding into

NMT decoding is that the source word deletion rules in our phrase-based soft

forced decoding algorithm are only applied after the target sentence generation

is completed. Therefore, our method can only punish under translations for com-

plete hypotheses, not for incomplete hypotheses during decoding. Because NMT

usually keeps a small beam size during decoding due to computational and mem-

ory costs, it is very likely that all complete translations have under translation

problems. To relief this problem, we can award more diverse hypotheses during

decoding and use a larger beam size as the computer power grows.
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