
NAIST-IS-DD1561036

Doctoral Dissertation

Dependable and Scalable FPGA Computing

Using HDL-based Checkpointing

Hoang-Gia Vu

February 01, 2018

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Hoang-Gia Vu

Thesis Committee:

Professor Yasuhiko Nakashima (Supervisor)

Professor Michiko Inoue (Co-supervisor)

Associate Professor Takashi Nakada (Co-supervisor)

Assistant Professor Renyuan Zhang (Co-supervisor)

Assistant Professor Tran Thi Hong (Co-supervisor)

Dependable and Scalable FPGA Computing

Using HDL-based Checkpointing∗

Hoang-Gia Vu

Abstract

Thanks to high computational capabilities, reconfigurability, power efficiency,

and the great advantages of customizing hardware for domain-specific applica-

tions, Field Programmable Gate Arrays (FPGAs) are now widely deployed in

modern datacenters and high-performance computing systems. However, this de-

ployment compounds the dependability of the computing systems due to their

growing size and complexity. On the other hand, it challenges designers to scale

computing systems.

In this doctoral dissertation, we present how FPGA computing can be depend-

able and scalable using checkpointing in hardware description language (HDL)

level. First, we study a method to guarantee the consistency of snapshots between

FPGA and other components. Such consistency is essential for the snapshots to

be resumed correctly on FPGA. We then propose two checkpointing architectures

along with a checkpointing mechanism on FPGA: CPRtree - a tree-based check-

pointing architecture, and CPRflatten – a ring-based flattened checkpointing ar-

chitecture. The two checkpointing architectures are transparent to applications

and portable across different hardware platforms. Third, we investigate a static

analysis of the original HDL source code for CPRflatten from fundamentals to al-

gorithms in order to re-use hardware resources for the checkpointing purpose, thus

reducing hardware consumption caused by checkpointing functionality. Fourth,

we introduce two Python-based tools in structures and algorithms to generate

checkpointing infrastructures according to CPRtree and CPRflatten so that de-

signers’ task in writing checkpointing source code can be removed completely.

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, NAIST-IS-DD1561036, February 01, 2018.

i

The two tools can be integrated seamlessly into hardware design flows. The posi-

tion of the tools in design flows ensures that our checkpointing architectures are

independent of other tools and technology. Fifth, we study a checkpoint/restart

scheme for dependability of FPGA computing. In this scheme, we also intro-

duce a software stack with application programming interface (API) functions

for “coarse-grained” management from the host. The stack is also transparent

to applications and portable across hardware platforms. Sixth, we present two

schemes for scalability of FPGA computing employing our above checkpointing

architectures. The first scheme – on-the-fly multitasking on FPGA allows multi-

ple users to efficiently share a limited reconfigurable fabric. The second scheme

– on-the-fly hardware task migration in heterogeneous FPGA computing allows

a hardware task to be migrated between different FPGA fabrics with different

technology.

We evaluate our proposals from hardware overhead, maximum clock frequency

degradation, data footprints, and performance overhead to power consumption.

Although the hardware overhead is still significant, the performance degradation

and the additional power consumption is small. Our proposals show a potential

for bringing FPGAs to hyper-scale computing, such as hyper-scale data centers

and hyper-scale clouds while taking advantages of software-based computing.

Keywords:

FPGA computing, checkpointing, multitasking, task migration, dependability,

scalability

ii

Contents

1. Introduction 1

1.1 Overview . 1

1.2 Contributions . 2

1.3 Thesis Outline . 4

2. Dependability and Scalability of FPGA computing 5

2.1 Definition and Motivation . 5

2.2 Challenges . 6

2.3 Consistent snapshots in FPGA checkpointing 8

2.3.1 Overview of Consistent Snapshot 8

2.3.2 Channel Finite State Machine 8

2.3.3 Request Throttling . 9

3. CPRtree - A Tree-based checkpointing architecture 11

3.1 Related Work . 11

3.2 Reduced Set of State-holding Elements 14

3.3 Checkpointing Architecture . 16

3.3.1 Tree-based Structure . 16

3.3.2 CPR Gate . 19

3.3.3 CPR Interface with the Previous CPR Level 21

3.3.4 Context Capturing/Restoring Circuit 21

3.3.5 CPR FSMs . 24

3.4 Tool for checkpointing insertion 25

3.4.1 Proposed Design Flow . 25

3.4.2 Structure of the Tool . 26

3.4.3 Algorithm of Checkpointing Insertion 27

3.5 Evaluation . 28

3.5.1 Hardware Resource Utilization 28

3.5.2 Maximum Clock Frequency & Data Footprint 33

3.5.3 Power Consumption . 35

iii

4. CPRflatten: A Ring-based Flattened Checkpointing Achitec-

ture 36

4.1 Checkpointing Architecture . 36

4.1.1 Overview of CPRflatten 36

4.1.2 Shifting Ring . 36

4.1.3 RAM Capturing/Restoring Circuit 37

4.1.4 CPR Finite State Machines 39

4.2 Static Analysis of Original HDL Source Code 39

4.2.1 Fundamentals of Static Analysis 39

4.2.2 Algorithms . 41

4.3 Tool for Checkpointing Insertion 43

4.4 Evaluation . 45

4.4.1 Hardware Resource Ultilization 45

4.4.2 Maximum Clock Frequency Degradation 46

4.4.3 Dummy Register Bits & Memory Footprint 46

5. Checkpoint/Restart flow 47

5.1 Checkpoint/Restart Timing Diagram 47

5.1.1 Prepare . 47

5.1.2 Capture . 47

5.1.3 Restore . 48

5.1.4 Resume . 49

5.2 Evaluation . 50

6. Multitasking on FPGA 52

6.1 Related Work . 52

6.2 Multitasking Structure . 52

6.3 Timing Diagram for Task Execution and Task Switching 53

6.4 Evaluation . 55

7. Hardware Task Migration in Heterogeneous FPGA computing 56

7.1 Related Work . 56

7.2 Hardware Task Migration Structure 56

7.3 Hardware Task Migration Timing Diagram 58

iv

7.4 Memory Usage . 62

7.5 Evaluation . 63

8. Conclusion 66

References 68

v

List of Figures

1 Computing node with checkpointing hardware. 6

2 Channel finite state machine. 9

3 Preventing issuing requests on the mater side. 9

4 Preventing receiving requests on the slave side. 10

5 Dedicated block. 14

6 CPRtree. 16

7 Tree-based checkpointing architecture on FPGA. 17

8 CPR gate. 18

9 CPR interface. 18

10 MUX-based capturing/restoring circuit for registers. 21

11 Shift-Reg-based capturing/restoring circuit for registers. 22

12 Adding capturing/restoring circuit to RAM. 23

13 Modification in design flow. 24

14 Structure of the tool. 25

15 Modifying always block. 27

16 LUT utilization for capturing/restoring registers. 30

17 LUT utilization of capturing/restoring BRAM. 31

18 Slice register utilization for checkpointing BRAM. 32

19 Ring-based flattened checkpointing architecture 37

20 Shifting ring of register bits . 38

21 RAM capturing/restoring circuit 39

22 Static analysis of original HDL source code 40

23 CPRtree API. 46

24 Checkpointing/restarting timing diagram. 48

25 Checkpointing latency. 49

26 Multitasking on an FPGA-based computing node 53

27 Task execution and task switch timing diagram 54

28 Hardware task migration in a heterogeneous FPGA cluster 58

29 Timing diagram of hardware task migration 59

30 Migration downtime while scaling the graph size. 64

31 Migration duration while scaling the graph size. 65

vi

List of Tables

1 Experimental Setup. 28

2 Additional 1-bit Registers for Resuming Dedicated Blocks. 33

3 Tree Structures after Checkpointing Insertion. 33

4 LUT Utilization. 33

5 Maximum Clock Frequency Degradation. 34

6 Power Consumption (W). 34

7 LUT Utilization. 45

8 Maximum Clock Frequency Degradation. 45

9 Dummy Register Bits & Memory Footprint 46

10 Context Size and Checkpointing Latency. 50

11 Context size (data footprint) and task switch latency. 54

12 Experimental Setup for Task Migration. 61

13 Data context size in memory . 61

14 Capturing/restoring latency . 62

15 Migration downtime, migration duration and their breakdown (ms) 62

16 Memory context size while scaling the graph size in Dijkstra bench-

mark . 63

vii

1. Introduction

1.1 Overview

Thanks to high computational capabilities, reconfigurability, power efficiency, and

the great advantages of customizing hardware for domain-specific applications,

Field Programmable Gate Arrays (FPGAs) are integrated in high-performance

computing and now widely deployed in modern datacenters [1, 2, 3, 4, 5]. Cata-

pult with the Microsoft hyperscale cloud [2], Amazon’s EC2 F1 [6], Baidu’s SDA

[7], IBM’s FPGA fabric [8], and Novo-G [9] are some examples of FPGA deploy-

ments. However, this deployment raises two issues: dependability and scalability

of FPGA computing. For the dependability, this integration compounds the prob-

lem of increasing failure rate because of the growing size and complexity in the

computing system [10, 11]. As a consequence, fault tolerance and resilience be-

comes more essential in FPGA operation. The most dominant technique used to

deal with faults in CPU-based systems is checkpoint/restart, and this technique is

also expected to improve the dependability of FPGA-based computing systems.

For the scalability, first, FPGA fabrics are expected to be shared by multiple

tasks using task switching and time multiplexing. Second, FPGA computing

is expected to be used in clusters/clouds, in which the flexibility of run-time

task scheduling should be achieved by live hardware task migration in order to

save energy, balance the load, and prepare production servers for maintenance.

Fortunately, task switching and task migration also require a checkpoint/restart

technique as the dependability does.

There are two types of checkpointing on FPGA: user-level checkpointing and

system-level checkpointing. While user-level checkpointing requires more effort

from programmers to write additional code along with applications, system-level

checkpointing is performed automatically by provided checkpointing infrastruc-

ture. Conversely, system-level checkpointing is predicted to be more complicated

and consumes more hardware resource than user-level one. However, in this dis-

sertation we choose to go forward system-level checkpointing to remove effort

from programmers.

In system-level checkpointing, there are several approaches to exploit proper-

ties of automatic checkpointing, depending on where checkpointing infrastructure

1

is inserted in the hardware design flow. First, checkpointing infrastructure can be

written and inserted in high-level languages, such as C/C++, Java, or Python.

There are many high-level synthesis tools, such as Vivado HLS and OpenCL,

that can support to do so. Second, checkpointing infrastructure can be written

and inserted in hardware description languages (HDL), called HDL-based check-

pointing in this paper. Third, checkpointing technique can be integrated in the

hardware design flows at the netlist level as in [12]. Fourth, checkpointing tech-

nique can also be employed by using configuration tools to read back and then

filter the configuration bitstream to get the values of flip-flops and RAMs used in

the hardware [13, 14]. While the first approach shows an advantage of exploiting

hardware abstract in high-level language, it requires knowledge in specific high

level languages and specific tools as well. The third and the fourth approaches

also depend much on tools and technology. For the widest use and independence

in technology, we chose to move ahead with the HDL-based checkpointing. In

this work, we assume that the original HDL source code is pure, that means

the source code consists of HDL statements only. It is assumed that the user

hardware operates with single clock domain.

However, to satisfy the properties of system-level checkpointing, the HDL-

based checkpointing technique must cover all situations of hardware behavior,

transparent to applications and technology, and portable across hardware plat-

forms. Furthermore, inserting checkpointing circuits always brings with it hard-

ware overhead for the application circuit. However, we believe that hardware re-

source utilization can be reduced by efficient checkpointing architectures. In many

cases, hardware resources utilized for normal operation can be also employed for

checkpointing functionality in order to reduce the total hardware consumption.

1.2 Contributions

Contributions of this thesis are as follows:

1. We propose a method to guarantee the consistency of snapshots between

FPGA and other components. Such consistency is essential for the snapshots to

be resumed correctly on FPGA.

2. We propose a new concept: reduced set of state-holding elements that

represents the full state of hardware operation. By capturing and restoring only

2

this set of elements, FPGA operation can be resumed correctly. This set can be

used to checkpoint dedicated blocks.

3. We present two checkpointing architectures along with a checkpointing

mechanism on FPGA: CPRtree – a tree-based checkpointing architecture, and

CPRflatten – a ring-based flattened checkpointing architecture. The two check-

pointing architectures are transparent to applications and portable across differ-

ent hardware platforms.

4. We propose a static analysis of the original HDL source code for CPRflat-

ten from fundamentals to algorithms in order to re-use hardware resources for the

checkpointing purpose, thus reducing hardware consumption caused by check-

pointing functionality.

5. We introduce two Python-based tools in structures and algorithms to gen-

erate checkpointing infrastructures according to CPRtree and CPRflatten so that

designers’ task in writing checkpointing source code can be removed completely.

The two tools can be integrated seamlessly into hardware design flows. The posi-

tion of the tools in design flows ensures that our checkpointing architectures are

independent of other tools and technology.

6. We present a checkpoint/restart scheme for dependability of FPGA com-

puting. In this scheme, we also introduce a software stack with application pro-

gramming interface (API) functions for “coarse-grained” management from the

host. The stack is also transparent to applications and portable across hardware

platforms.

7. We propose two schemes for scalability of FPGA computing employing our

above checkpointing architectures. The first scheme – on-the-fly multitasking on

FPGA allows multiple users to efficiently share a limited reconfigurable fabric.

The second scheme – on-the-fly hardware task migration in heterogeneous FPGA

computing allows a hardware task to be migrated between different FPGA fabrics

with different technology.

These contributions have been published in [15, 16, 17, 18]. We combine

all the above proposals and demonstrate on four application benchmarks. Our

proposals and evaluation show a potential for bringing FPGAs to hyper-scale

computing, such as hyper-scale data centers and hyper-scale clouds while taking

advantages of software-based computing.

3

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Section 2 discusses the

dependability and scalability of FPGA computing from concepts, motivation to

challenges. Section 3 presents CPRtree - a tree-based checkpointing architecture

and the corresponding Python-based tool. Section 4 describes CPRflatten - a

Ring-based flattened checkpointing architecture, the static analysis, and the cor-

responding Python-based tool. Section 5 presents a checkpoint/restart flow for

dependability of FPGA computing. Section 6 proposes the multitasking scheme

on FPGA. Section 7 describes the hardware task migration scheme in heteroge-

neous FPGA computing. Conclusion with potential future work and applications

is summarized in section 8.

4

2. Dependability and Scalability of FPGA com-

puting

2.1 Definition and Motivation

Dependability of FPGA computing is a concept referring to the resilience of

applications running on FPGA after failures. In other words, it refers to fault

tolerance of FPGA computing. With many great advantages, FPGAs are not only

employed as accelerators for computational iterations, but are also deployed for

long running applications, such as graph processing, scientific simulation, and big

data applications. For such long running applications, dependability should be

taken into account so that the applications do not need to restart from beginning.

In addition, although FPGAs themselves are reliable devices, they become more

fault-injectable when being deployed in a large scale. Furthermore, the integration

into heterogeneous computing requires the dependability of FPGA computing to

keep the whole system reliable. Therefore, the dependability of FPGA computing

must be investigated thoroughly.

For the dependability of FPGA computing, every kinds of faults or failures

are considered. Our checkpointing method brings the resilience to the computing

systems, even the faults or failures may come from CPU, DRAM, storage, or

power supply. The faults or failures may also come from the bitstream, that

including configuration of FPGA. However, in my method, we only need the

initial bitstream, which can be restored any time from the non-volatile storage.

Scalability of FPGA computing is a concept referring to the ability of adapt-

ing the computing to meet greater needs or demands. Two aspects of scalability

can be pointed out in FPGA computing. First, a single FPGA fabric can serve

multiple tasks so that limited hardware resources can be shared by an increas-

ing number of users. Second, multiple/many FPGA fabrics, even with different

architectures, technologies, or vendors, can works together to form a lager scale

computing system. The hardware task migration between different nodes can

adapt the computing system for load balancing and energy savings. Therefore,

the scalability of FPGA computing should be also studied deeply.

5

RAM

CPR
HardwareRAM

Reg Reg••• Read/Write

CPR Control
Core Core•••

On-chip Bus

On-chip Bus

Mem Ctrl

FPGA

SATA

Host CPU

DRAMDisk

Logic
Logic Throttling

Figure 1. Computing node with checkpointing hardware.

2.2 Challenges

We assume a computing node with checkpointing hardware as in Figure 1. This

computing node model consists of a host CPU, an FPGA, a unified main memory,

and a non-volatile storage device (disk). When checkpointing, context on FPGA

is written to the main memory before being copied to the non-volatile storage.

Conversely, when restarting, context is copied from the non-volatile storage to

the main memory before being read to FPGA and restored to state-holding ele-

ments, such as registers and RAMs. In HDL-based FPGA checkpointing, several

challenges must be overcome to make a computing system checkpoint-able and

restart-able. We summarize the challenges as follows:

How to define a checkpointing architecture on FPGAs. Original hard-

ware may have an arbitrary structure from simple as a single module to compli-

cated as a structure of many nested modules. State-holding elements located in

modules may have arbitrary sizes or data widths. To provide a network model

of checkpointing, which is transparent to structures, to capture and restore all

state-holding elements is a challenges.

Separating the operation of the checkpointing hardware and the

user logic hardware. As the nature of a checkpoint/restart procedure, before

6

the context is captured or restored, the user hardware must be paused. After

checkpointing, the user hardware is resumed. To guarantee correct operation of

the user hardware after resuming, the values of all signals, including wires, reg-

isters, and RAMs, must be kept unchanged after checkpointing. For example, in

order to capture RAM content, the input address signal of RAM must be changed

to read memory words in different addresses. After capturing, this address signal

must be returned to the original value that it holds before capturing. This puts

more constraints and complexity on the capturing and restoring circuits.

How to checkpoint HDL modules that will be synthesized as dedicated

blocks. For dedicated blocks in which the ouputs are delayed responses to the

inputs, such as BRAM and pipelined DSP blocks, we cannot insert HDL code to

capture/restore the inside states. Instead, an analysis of the relationship between

the states and the input values is required.

Ensuring that snapshots of FPGA is consistent with others. FPGA-

based heterogeneous computing systems can be considered as distributed systems,

in which there are distributed components, such as FPGA, off-chip memory, host

CPU, that we cannot ensure that the states of all components will be taken

at the same instant because they do not share a global clock. It is necessary

to separate FPGA snapshot from the rest of system and ensure this snapshot

together with snapshots of the host CPU and external memory form a consistent

global state. A global state consists of states of the host CPU, FPGA, main

memory, and states of communication channels between these components as

well. A consistent global state must satisfy two properties. First, this state can

be reached in the normal operation of the application. Second, the application

can be restarted and resumed correctly from this state [19]. In case that the host

snapshot is captured before the host sends a message to FPGA, and the FPGA

snapshot is taken after receiving the message, then this pair of snapshots does

not form a consistent global state. For another counter example, if the FPGA

snapshot is captured after FPGA issuing a memory access request to the off-chip

memory, and the content of the off-chip memory is captured before that, then

this pair of snapshots cannot form a consistent snapshot, and it cannot be used

to resume the application.

7

2.3 Consistent snapshots in FPGA checkpointing

2.3.1 Overview of Consistent Snapshot

This section answers the question mentioned in section I: How does the CPR

model on FPGA work with the CPR model of the whole computing system?

The answer is that the snapshot of FPGA must be consistent with the snap-

shot of the rest of the computing system to form a consistent global state. A

global state of a distributed system is a set of component process and commu-

nication channel states [20, 21]. In order to get a global state, the states of all

components and channels between them must be captured. Unfortunately, we

cannot capture/restore the physical state of communication channels. Therefore,

the simplest way to make a consistent global state is to capture the states of all

components when all communication channels are idle. In this case, the states

of the channels are all empty, and the global state now consists of only states of

distributed components. However, this case rarely occurs because at the time a

channel is idle, others may be active. In this paper, we propose a new concept

named virtual consistent global state, in which all communication channels are

idle. This virtual consistent global state is achieved by preventing the application

on FPGA issuing/receiving new requests on all communication channels to/from

other components, and waiting until all the channels become idle. This method of

making all the channels idle is called request throttling in this paper. It is noted

that this throttling changes the flow of execution but does not change the exe-

cution result, so that this global state still satisfies two properties of a consistent

global state mentioned in section II. To know whether the state of a channel is idle

or active, two finite state machines are required, called channel finite state ma-

chines (FSMs) in this paper. Since the most popular protocol used on FPGA to

communicate with other components is AXI4, it is chosen to illustrate operation

of these two hardware classes.

2.3.2 Channel Finite State Machine

Figure 2 shows a channel FSM for read transaction, the channel FSM for write

transaction is similar. In this FSM, we use two pairs of signals: arvalid & arready

and rvalid & rlast in order to determine when a new read request is issued and

8

Idle Active

arvalid && arready = 1

arvalid && arready = 0 and No of requests = 1

rvalid && rlast = 1

Figure 2. Channel finite state machine.

M
U

X

arvalid

0
ARVALID M

U
X

ARREADY

0
arready

(a) Prevent issuing arvalid signal (b) Prevent receiving ARREADY signal

re
q_

en

re
q_

en

Figure 3. Preventing issuing requests on the mater side.

when a read transaction finishes. Particularly, when arvalid = arready = ’1’, a

new read request is issued. When rvalid = rlast = ’1’, a read transaction finishes.

In addition, we also use a register to count the number of read requests in the

channel. The FSM is composed of two states: Idle and Active. The state will

switch from Idle to Active if the condition arvalid = arready = ’1’ is satisfied.

In this case, the number of requests increases from ’0’ to ’1’. Conversely, if both

rvalid and rlast are equal to ’1’, arvalid or arready are equal to ’0’, and the

number of requests is equal to ’1’, the state will transit from Active to Idle and

the number of requests will decrease from ’1’ to ’0’.

2.3.3 Request Throttling

To throttle new requests, a control signal named req en (request enable) from

CPR manager is required to prevent issuing new requests on the master side,

and to prevent receiving new requests on the slave side of the communication

9

M
U

X

ARVALID

0
arvalid M

U
X

arready

0
ARREADY

(a) Prevent receiving ARVALID signal (b) Prevent issuing arready signal
re

q_
en

re
q_

en

Figure 4. Preventing receiving requests on the slave side.

channel. In this section, we discuss request throttling for read transactions, the

mechanism for write transactions is similar. It is noted that the lower-case letters,

arvalid and arready, are signals used in user circuit, whereas the upper-case

letters, ARVALID and ARREADY, are signals on the side of communication

channels. When the user application on FPGA plays a role as master side in

a communication channel, the signal ARVALID must not be asserted during a

request throttling period. Therefore, we propose to use a multiplexer in order

to fasten this signal to ’0’ as in Figure 3. When req en = ’1’, ARVALID =

arvalid. When req en = ’0’, ARVALID = ’0’. At the same time arready should

be also kept at ’0’ in order to ensure that the user circuit does not receive an

acknowledgement on the channel. As a result, another multiplexer with the same

control signal is employed. Similarly, on the slave side, arvalid and ARREADY

must be fastened to ’0’ during the request throttling period as in Figure 4.

10

3. CPRtree - A Tree-based checkpointing archi-

tecture

3.1 Related Work

While the concept of checkpointing is well known for software systems [22], check-

pointing in hardware is underdeveloped. For system-level checkpointing, soft-

ware checkpointing is classified into two types: 1) Library-based checkpointing is

portable across platforms and transparent to applications. A typical tool of this

type is Distributed Multithreaded Checkpointing [23]. 2) Kernel-based check-

pointing is not portable across platforms but transparent to applications. BLCR

[24] is a typical tool of this type.

For system-level FPGA checkpointing, some works have presented effective

checkpoint/restart techniques on FPGAs to improve the dependability of FPGA

computing. The first approach is the bitstream-based method. [13, 14] presented

the bitstream-based method to read back the configuration bitstream, and then

filter the stream to get the state information. The report indicated that less than

8% of the data in the bitstream is useful. The data footprint and performance

were improved in [25] by reading only used frames of bitstream. However, this

method has several drawbacks. First, since the the formats of configuration

bitstream are not the same for different types of FPGA, a bitstream read from

an FPGA device cannot be used to resume the normal operation on other types

of FPGA. Thus, the bitstream-based method is technology-dependent. Second,

the data footprint of this method is high because only less than 8% of the data

in the stream represent the hardware state. Third, the bitstream-based method

cannot manage the channels of communication between FPGA and other devices.

Thus, this method cannot guarantee consistent snapshots of FPGA and other

devices, such as host CPU and off-chip memory. Fourth, previous works on this

method focused on reading flip-flops only, whereas reading RAMs was under

consideration.

The second approach is the netlist-based method. The scan-chain structure

was employed in this method as described in [12]. In this work, they introduced

three methodologies to access the state of a hardware module: Memory-Mapped

11

State Access, Scan Chain based State Access, and Shadow Scan Chain based

State Access. The first and the second methodologies are quite similar to our two

methods: the MUX-based capturing/restoring circuit and the Shift-Reg-based

capturing/restoring circuit. The difference is that all these methodologies used

tools to modify hardware modules at the netlist level, while our methods insert

checkpointing hardware at the HDL level. Therefore, in their methodologies, new

LUTs were inserted as multiplexers before flip-flops regardless of the possibility of

exploiting available inputs of LUTs. As a result, the LUT overhead in our experi-

ments is smaller than the overhead estimation of their methodologies. Meanwhile,

their third methodology duplicates all flip-flops of the original hardware to make

a chain of additional flip-flops. As a consequence, the flip-flop overhead and LUT

overhead increase dramatically while the checkpoint efficiency decreases much.

In another work [26], scan-chain was also employed, but, by analyzing finite state

machines, checkpoints were selected. As a result, instead of a full scan-chain,

only partial scan-chains were used to capture the value of flip-flops. Therefore,

the hardware overhead and memory footprint decreased significantly. Scan-chain

was also used in [27] to observe the state of the full chip and to control internal

signals, but not for checkpointing functionality. To access quickly any flip-flop in

a design, they used multiple scan chains instead of a single scan chain to reduce

the scan chain length. This scan chain model is similar to the methodology Scan

Chain based State Access mentioned above. However, the netlist-based method

also has several drawbacks. First, this method is generally tool-dependent be-

cause the formats and syntax of netlist files are not the same for different tools.

To generate technology-independent netlists from HDL source code, in [12], the

authors needed to use a special tool - Synopsis Design Compiler at the front-end

synthesis. After that, they used their own tool named ”StateAccess” to iden-

tify all flip-flops in the netlist. Second, the netlist-based method cannot allow

the simulation and the verification of a design with checkpointing functionality.

Third, netlist is not a language. Thus, netlist nodes cannot be abstracted as a

syntax abstract tree. As a result, behavior and parameters of circuits cannot

be analyzed in netlist level. That may be the reason why the StateAccess tool

used in [12] could not recognize RAM instances, provide RAM checkpointing, or

manage communication channels for consistent snapshots.

12

The third approach is the HDL-based method. In [28], the authors revealed

methods to capture/restore state-holding elements, such as registers, BRAMs,

finite state machines, and FIFOs by providing a context interface. However,

when evaluating LUT utilization of additional hardware, they only evaluated LUT

consumption in the context interface, even though LUT consumption caused by

multiplexers inserted along side with registers for restoring context was signifi-

cant. They used the second port of BRAM as a dedicated port for checkpointing

without considering that this port may also be utilized by users. Furthermore,

they did not propose a particular architecture to deal with structures of nested

modules, even though dealing with these structures is more complicated than

checkpointing a single module.

The fourth approach is the high level synthesis based (HLS-based) method.

Alban Bourge el al [26, 29] presented a high level synthesis design flow manipu-

lating the intermediate representation of an HLS tool to insert a scan chain into

the initial circuit. The main contribution of this work is checkpoint selection,

in which only in some states of the finite state machine, checkpointing can be

performed. In the checkpoint selection, the tool can find live variables, and only

these live variables are checkpointed. As a result, the context size can be reduced,

thus reducing the hardware overhead. However, this work did not consider the

issue about consistent snapshots of FPGAs and other components. Once taking

it into account, the state that checkpointing can be performed should depend on

the state of communication channels between FPGA and others. Therefore, the

checkpoint selection may be no longer feasible. Furthermore, the authors limited

their application benchmarks to using a specific HLS tool generating application

circuits with a single finite state machine. This constraint may prevent developers

from designing complicated applications.

Our proposed method (HDL-based) solved all above problems. First, it is

technology-independent and tool-independent because it works on HDL source

code. Thus, the output of our method can be used by any tools and any tech-

nology. Also, no special tool is required in our method. Second, the extraction

time of our method is low (0.038 ms) compared with bitstream-based method

which is up to 1.2 ms [13] and 13 ms [25] although these previous works did

not consider the extraction of RAM content. Third, the HDL-based method al-

13

Dedicated
Block ●

●
●

𝑂(𝑡)

𝐼&(𝑡)

𝐼'(𝑡)

𝐼()'(𝑡)

𝐼(𝑡)

	
 𝑂 𝑡 = 𝑓{𝐼 𝑡 }

𝑂 𝑡 = 𝑓{𝐼 𝑡 , 𝐼 𝑡 − 1 ,… , 𝐼 𝑡 − 𝑛 }

(1) No delayed response:

(2) Delayed response:

Figure 5. Dedicated block.

lows us to analyze the behavior of user hardware, customize hardware in order

to manage communication channels for consistent snapshots. Fourth, the HDL-

based method allows user designs with checkpointing functionality to possibly

be simulated and verified. Fifth, the HDL-based method allows us to develop

a tool inserting checkpointing functionality based on the abstract syntax tree of

the original HDL source code. The tool can be seamlessly integrated into typical

system design flows.

3.2 Reduced Set of State-holding Elements

In order to checkpoint hardware, the context of the application in HDL source

code must be defined. In other words, a set of elements defining the state of the

application, called set of state-holding elements in this paper, must be determined.

This set must satisfy the following property: only if all of elements of the set are

recovered from a snapshot priorly taken, the operation of the hardware will be

resumed correctly. It is noted that a set of all objects defined in the HDL source

code, including all registers, RAMs, and wires, is a set of state-holding elements,

and we call this set as a full set of state-holding elements. However, if one element

in the set is interpolated from any of the others, this element can be removed

from the set to make a reduced set of state-holding elements.

There are three cases in which wires can be removed from the set. First,

wires as inputs from the outside can be removed because the hardware is only

checkpointed or restarted when these inputs are guaranteed to be inactive. Thus

the values of these inputs do not affect the operation of the hardware when

checkpointing/restarting. Second, wires as outputs from a combinational circuit

14

can also be removed because these outputs are interpolated from the inputs of

the circuits. Third, wires as outputs of a checkpointed module can be removed

as well, because these outputs are interpolated from the recovered inside of the

module.

However, regarding wires as outputs of a module which is synthesized as

a dedicated block as in Figure 5, such as distributed RAM, Block RAM, and

dedicated DSP, there are two cases, depending on whether or not the outputs

are delayed when compared with the inputs. In the first case, the outputs are

immediate responses to the inputs. For example, the output data O(t) of a

distributed RAM at the time t is a function of the corresponding input address

I(t) at the time t without any delay. In this case, the output O(t) is immediately

generated from the input I(t), so the output wire can be removed from the set of

state-holding elements. The second case is more complicated in that the outputs

are delayed responses to the inputs. For example, the output data of a block RAM

is a one-clock-cycle delayed response to the corresponding input address. For

another example, the output data of a dedicated four-stage pipelined multiplier

is a four-clock-cycle delayed response to the inputs. In this case, the output O(t)

cannot be interpolated from the current inputs I(t), and thus the output wires

cannot be removed from the set. It is much more difficult to restore a value to

a wire than to a register. Even if the output O(t) is recovered before restarting,

this cannot ensure that the output O(t+1) will hold the expected value since it

depends on I(t+1), I(t), I(t-1), . . . , and I(t-(n-1)). Furthermore, the values of I(t-

1), I(t-2), . . . , and I(t-(n-1)) belong to previous snapshots of the hardware, and

taking many consecutive snapshots for a single checkpointing is not our intention.

To deal with this issue, this paper proposes a method to replace the output O(t)

in the set of state-holding elements by adding registers in order to store values

of I at the time t-1, t-2, . . . , t-n. These registers are called additional registers

in this paper. If the data width of I is w, then the number of additional 1-bit

registers required is n * w. However, to guarantee the normal operation of the

hardware, the values stored in these registers must be restored to the input I at

consecutive clock cycles before resuming the operation. It is noted that in normal

operation, the values of the input I are copied to the additional registers. This

does not affect the circuit behavior. In capturing process, the values of these

15

CPR node in
top module

CPR nodes in sub
modules of top module 1

2 3

4 5 6 7

8 9 10 11 12 13

Figure 6. CPRtree.

additional registers are captured then written to the off-chip memory. This also

has no impact on the behavior of the user circuit. However, in restoring process,

the values stored in these registers are restored to the input I at consecutive clock

cycles. Therefore, in order to guarantee the correctness of the circuit behavior,

it is required to ensure that the restoring circuit has no impact on the input I

in normal operation. We propose to use a multiplexer in front of the input I in

order to separate the restoring circuit from the user circuit in normal operation.

Finally, all wires are removed from the set, and the set now includes only memory

elements, such as user registers, additional registers, and RAMs. The set is now

called reduced set of state-holding elements. Our proposal solves two problems.

First, it presents a method to checkpoint dedicated blocks without need to capture

multiple snapshots for a single checkpointing. Second, our proposal removes all

wires from the set, so that its recovery becomes much simpler.

3.3 Checkpointing Architecture

3.3.1 Tree-based Structure

It should be noted that a structure of nested modules can be considered as a

model of a tree, in which the top module is the foot of the tree while sub-modules

16

Top Module

CPR
Manager

SW

D
M

A

Restore
FIFO

Static CPR Hardware

S-
B

us

M
EM

D

M
A

Capture
FIFO

M
-B

us

Logic

Reg

M
U

X

Module

Logic

Reg Reg

RAM RAM

Logic
Module

CPR
FSMs

RAM RAM

Reg Reg

M
U

X

CPR
FSMs

Capture

Restore

Logic throttling

CPR control

Logic throttling

CPR control

Logic throttling

CPR control

Restore

Restore

Capture

Capture

M
-B

us
S-

B
us

Logic throttling

CPR control

Logic throttling
CPR control

Figure 7. Tree-based checkpointing architecture on FPGA.

are nodes of the tree. Therefore, a checkpointing architecture based on the model

of a tree is an approach to deal with complicated structure of nested modules.

Each module has its own corresponding checkpoint/restart infrastructure, called

CPR node, and the CPR nodes of all modules form a checkpointing tree, as

in Figure 6. The structure of a CPR node is the same among modules in the

user hardware and is composed of parts: a CPR gate to the next CPR level,

CPR interfaces with CPR nodes of the previous CPR level, its own state-holding

elements, context capturing/restoring circuits, and two CPR finite state machines

(FSMs) - a capturing FSM and a restoring FSM. The tree-based structure is

determined recursively according to the module structure of the original HDL

source code. It starts from the CPR node of the top module (root node). In the

original HDL source code if a module A includes m sub-module instances M0,

M1, M2, . . ., Mm-1, which are not synthesized as dedicated blocks, then the

CPR node of module A is the parent node of the CPR nodes of module instances

M0, M1, M2, . . ., Mm-1. In other words, the CPR nodes of module instances

M0, M1, M2, . . ., Mm-1 are the children nodes of the CPR node of module A. It

17

input [2:0] CPR_request,
input DRIVE,
output reg [2:0] CPR_state,
input cpr_out_almost_full,
input capture_flag,
output reg [31:0] D_cp,
output reg D_cp_valid,
input [31:0] Q_r,
input Q_r_valid

Figure 8. CPR gate.

wire [2:0] a_CPR_state;
reg a_capture_flag;
reg [31:0] a_D_r;
reg a_D_r_valid;
wire [31:0] a_Q_cp;
wire a_Q_cp_valid;

Figure 9. CPR interface.

should be noted that m can be an arbitrary value. Thus, the tree-based structure

is not limited to binary trees. The CPR level of each node can be determined

by the following rule. The CPR level of the root node is 0. If the CPR level of

a CPR node is n, then the CPR level of each children node of this node is n +

1. Therefore, in Figure 6, the CPR level of node 1 is 0. The CPR level of node

2 and 3 is 1. That of node 4, 5, 6, and 7, is 2. That of node 8, 9, 10, 11, 12,

and 13, is 3. In the figure, node 1 is called the next CPR level of node 2 and

node 3, while node 4 and node 5 are called the previous CPR level of node 2,

and node 6 and node 7 are the previous CPR level of node 3. In order to connect

two checkpointing infrastructures, only a connection ”parent node” - ”children

node” is required. In other words, to link checkpointing infrastructures, only

port insertion in modules is required. Therefore, it is believed that the tree is an

efficient structure for dealing with nested modules.

18

3.3.2 CPR Gate

For capturing path, checkpoints in a CPR node are moved from their node

through their next CPR levels to the foot node before being written to the off-chip

memory. For restoring path, in contrast, checkpoints are read from the off-chip

memory to the foot node before being moved to the corresponding node through

its next CPR levels. After that, the checkpoints are assigned to the corresponding

state-holding elements. For example, the capturing path and restoring path for

node 5 are 5-2-1 and 1-2-5, respectively. The capturing path and restoring path

for node 12 are 12-7-3-1 and 1-3-7-12, respectively. While in this tree model the

capturing path for each node includes its next CPR levels only, the capturing path

for each node in the scan chain method [12] includes all registers, thus including

all nodes. As a result, the data movements when capturing in this tree model are

less than that in the full scan chain. Therefore, this tree model, compared with

the full scan chain method, is expected to reduce the energy consumption when

capturing.

From another point of view, checkpointing hardware is divided into 2 parts:

static CPR hardware, which is the CPR gate of the top module, and the rest

of the checkpointing tree, called user-logic-based CPR hardware, as shown in

Figure 7. The static part is fixed and independent of the user hardware and thus

transparent to applications. Meanwhile, the user-logic-based part depends on the

user hardware. The user-logic-based part includes the state-holding elements of

the foot node, such as registers and RAMs, the two CPR FSMs of the foot node,

and other nodes as sub-modules. The figure also reveals the connectivity between

a node and other nodes as its previous CPR level.

CPR gate of all CPR nodes except the CPR node of the top module is defined

in Verilog HDL as in Figure 8. The gate consists of a logic throttling signal

- DRIVE as in [30], control signals, synchronous signals, and data signals for

capturing and restoring. The logic throttling signal is used to pause sequential

circuits, thus pausing the application for checkpointing.

It is noted that while the CPR gate described above is quite simple, structure

of the CPR gate of the CPR node in the top module is much more complicated.

This CPR gate is the static CPR hardware part as mentioned above. This part

of checkpointing hardware is portable across platforms since it is fixed and does

19

not depend on any parameter of the user hardware. This part includes: 1) SW

DMA - a direct memory access (DMA) engine for AXI4-Lite protocol to com-

municate with the software in the host CPU via slave bus (S-Bus). 2) Capture

FIFO - a FIFO to store checkpointing data captured from the user hardware. 3)

Restore FIFO - a FIFO to store checkpointing data read from off-chip memory

before restoring to the state-holding elements. 4) MEM DMA - a DMA engine

for AXI4 protocol to write FPGA context from Capture FIFO to off-chip memory

and read the context from off-chip memory to Restore FIFO via master bus (M-

Bus). 5) CPR Manager - a checkpoint/restart (CPR) manager with functions as

follows: a) Reading control code/writing status code and address of checkpoints

stored in off-chip memory from/to SW DMA. b) Controlling MEM DMA to write

and read checkpoints to/from off-chip memory. c) Throttling user logic to pause

the application when checkpointing/restarting. d) Controlling checkpoint/restart

procedures. As in [31], using hardware core to manage CPR procedures provides

considerable performance advantage over software-only methods, our CPR man-

ager is also expected to improve the CPR performance over the direct control

from the host.

Capture FIFO and Restore FIFO can be considered as on-chip storage for

checkpoints on FPGA. Checkpointing process in a computing node now including

3 levels, called multi-level checkpointing: First, checkpoints are captured and

written to the on-chip storage. Second, checkpoints in the on-chip storage are

written to main memory. It is noted that CPR manager does not wait until

all checkpoints are stored in Capture FIFO, but issues a write request to the

off-chip memory as soon as it detects that the FIFO is not empty. As a result,

while checkpoints are being stored into the FIFO, the checkpoints already stored

in the FIFO can be written to the off-chip memory. Therefore, a large size of

the FIFO for holding all checkpoints is not required. In our implementation,

we choose the size of 16 items for both Capture FIFO and Restore FIFO. This

size is insignificant. Third, checkpoints are copied from main memory to the

non-volatile storage of the node. Since, a combination between multi-level and

non-blocking checkpointing can benefit the performance of checkpointing [32], in

our checkpointing architecture, FPGA does not wait until its all checkpoints are

written to the non-volatile storage of the node, but resumes the normal operations

20

Reg_0

Reg_1

Reg_k-1

M
U

X

D
_c

p

・
・

・

Q
_r

F
ro

m
 n

ex
t C

P
R

 le
ve

l

T
o

ne
xt

 C
P

R
 le

ve
l

CPR FSM

CPR FSMRestoring circuit

Capturing circuit
From user logic

From user logic

From user logic

Figure 10. MUX-based capturing/restoring circuit for registers.

immediately after the all checkpoints are written to Capture FIFO.

3.3.3 CPR Interface with the Previous CPR Level

As simple as the CPR gate in a module, a CPR interface consists of wires and

registers to communicate with a CPR node of the previous CPR level. Figure 9

shows the definition of CPR signals for a sub-module named ”a”, for example.

This group of signals is mapped to corresponding signals of the CPR gate of the

sub-module and does not include handshaking signals. Therefore, the checkpoint-

ing data movement is not interrupted by handshaking procedures.

3.3.4 Context Capturing/Restoring Circuit

As mentioned in the definition of the reduced set of state-holding elements, the

context finally consists of registers and RAMs. In this paper, we propose methods

to capture/restore registers and RAMs.

a) Register capturing/restoring circuit : It is assumed that there are n registers

with arbitrary bit length: Reg 0, Reg 1, . . . , Reg n-1. To align the data in

these registers with the 32-bit data width of checkpointing, these registers are

concatenated and scaled again to form 32-bit registers: Reg 0, Reg 1, . . . , Reg k -

1. It should be noted that the bit length of Reg k -1 may be less than 32 if the

bit-length sum of the registers is not a multiple of 32. We have two alternative

21

R
eg

_0

R
eg

_0

R
eg

_k
-1

M
U

X

D
_c

p

T
o

ne
xt

 C
P

R
 le

ve
l

CPR FSM

Capturing circuit

M
U

X

Q
_r

F
ro

m
 n

ex
t C

P
R

 le
ve

l

CPR FSM

Restoring circuit

us
er

 l
og

ic

…

us
er

 l
og

ic

us
er

 l
og

ic

Figure 11. Shift-Reg-based capturing/restoring circuit for registers.

approaches to capture/restore registers.

MUX-based capturing/restoring circuit: The values of these registers

are assigned to D cp (a buffer register of CPR gate) in consecutive states of the

capturing FSM, and the values of Q r (data wire from the next CPR level for

restoring) are consecutively assigned to the registers in states of the restoring

FSM. This, when synthesized, will generate a capturing circuit and a restoring

circuit as in Figure 10. In this case, the capturing circuit creates k 32-bit inputs

more for the 32-bit multiplexer in front of D cp. In addition, the restoring circuit

creates one 32-bit input more for the 32-bit multiplexer in front of each register.

Totally, 2k 32-bit inputs are added to 32-bit multiplexers. It takes n clock cycles

to capture/restore in this circuit.

Shift-Reg-based capturing/restoring circuit: If the bit length of Reg k -

1 is less than 32, a padding register is inserted to guarantee the 32-bit data width

of Reg k -1. In the capturing circuit, the data in the k 32-bit registers are step by

step shifted to the 32-bit multiplexer in front of D cp as in Figure 11. To satisfy

the requirement that the values of registers are kept unchanged after capturing,

the value of Reg 0 is looped back to the Reg k -1 via its input multiplexer. For

the restoring circuit, context is consecutively shifted from Q r to all the registers

via 32-bit multiplexers. It is realized that the capturing circuit and the restoring

circuit can share the register shifting circuit, thus saving hardware resource con-

sumption, and we consider this as an advantage of this approach in this paper.

22

RAM

inputs

we

rdata

outputs

M
U

X

addr

M
U

X

wdata

M
U

X

w
e_

0
ad

dr
_0

w
da

ta
_0

Capturing/Restoring circuit

D_
cp

To
 n

ex
t C

PR
 le

ve
l

Q
_r

Fr
om

 n
ex

t C
PR

 le
ve

lRAM

inputs

we

addr

wdata

rdata

outputs

a) Original b) Capturing/restoring circuit

Figure 12. Adding capturing/restoring circuit to RAM.

In this case, one more 32-bit input is added to the 32-bit multiplexer in front of

the registers: D cp, Reg 0, Reg 1,. . . , Reg k -2, while two more 32-bit inputs are

added to the 32-bit multiplexer in front of Reg k -1. Totally, k+2 32-bit inputs are

added to 32-bit multiplexers. It takes n clock cycles to capture/restore registers

in this circuit. Therefore, compared with the MUX-based circuit, this circuit is

the same in terms of latency. It should be noted that several registers may be

used for the control of the checkpointing functionality. However, these registers

are not captured or restored.

Changing the structure of registers does not affect the logic function of the

user circuits. However, it may affect routing process, thus changing maximum

clock frequency.

When k is equal to 1, there is no shifting structure in the shifting circuit, thus

these two circuits are the same. When k is equal to 2, the MUX-based circuit

may be better than the Shift-Reg-based circuit in terms of resource consumption

if a padding register is required. When k is greater than 2, 2k is greater than

k+2. Therefore, the Shift-Reg-based capturing/restoring circuit is expected to

be better than the MUX-based circuit.

b) RAM capturing/restoring circuit : Figure 12 shows how to add a captur-

ing/restoring circuit to the original RAM to make it checkpoint-able. Since the

size of RAM can be determined in the HDL source code, the context of RAM

23

HDL
source

Synthesis

Place &
Route

Program

FPGA

Typical Design Flow

HDL
source

Synthesis

Place &
Route

Program

FPGA

Insertion Tool

CPR IP core

Proposed Design Flow

HDL

Figure 13. Modification in design flow.

can be captured and restored by iterating reading and writing through the en-

tire RAM address space. Therefore, one port of RAM must be selected to read

and write when capturing and restoring. However, the inputs of this port are

expected to maintain unchanged after capturing in order to guarantee the ability

to resume the hardware, and sometimes these inputs are controlled from outside,

not inside, the module containing this type of RAM. For these reasons, instead

of using a port of RAM directly to read and write, three registers: we 0, addr 0,

and wdata 0 are added along with the three signals: write enable (we), address

(addr), and write data (wdata), to control the port via multiplexers.

3.3.5 CPR FSMs

The two CPR finite state machines (CPR FSMs) are one for capturing and the

other for restoring. Both FSMs are controlled by signals from the CPR manager

and the next CPR level. There are several rules for designing these two FSMs:

a) FSM for capturing : The FSM for capturing has two tasks. The first task

is to control the context-capturing circuits of the current CPR node in order

to assign the values of state-holding elements to the register D cp of the CPR

24

Verilog
Source Code Pyverilog Checkpointing

Inserter

Veriloggen IP
Packager

Checkpointable
IP-Core

AST

AST

Verilog

Figure 14. Structure of the tool.

gate and to set the value of D cp valid to ’1’. The second task is to connect

the previous CPR level to the next CPR level by copying the checkpointing

data from the previous CPR level to the register D cp; and to set the value of

D cp valid to ’1’. The difference between the two tasks is in the condition for

capturing. While the first task requires Capture FIFO to have room available,

the second task ignores this condition in order to force the current CPR node

to serve checkpointing data from the previous CPR level. In this case, to ensure

that Capture FIFO does not overflow when MEM DMA gets stuck, the guard gap

of the signal almost full from Capture FIFO should be greater than the number

of CPR levels in the user hardware.

b) FSM for restoring : This FSM also has two tasks, but the reverse of the

FSM for capturing. The first task is to control the context-restoring circuits to get

checkpoints from the next CPR level and then restore them to the state-holding

elements. The second task is to connect the next CPR level to the previous CPR

level by copying checkpoints from Q r to the CPR interfaces with the CPR nodes

of the previous CPR level.

3.4 Tool for checkpointing insertion

3.4.1 Proposed Design Flow

Since we chose HDL-based checkpointing to investigate, the tool must be inserted

before synthesis in the proposed design flow as in Figure 13. The input of the

tool is Verilog source code. Due to the location of the tool in the design flow,

25

1 m = top_module
2 call insert_checkpointing(m)
3 //--
4 function insert_checkpointing(m)
5 if m is top_module then
6 call insert_static_CPR_part(m)
7 else:
8 call insert_CPR_gate(m)
9 for all inst∈ m.instances do

10 inst_type = check_instance(inst)
11 if inst_type is normal_inst then
12 call insert_checkpointing(inst.module)
13 call insert_CPR_interface(inst)
14 if inst_type is RAM then
15 call insert_RAM_checkpointing(inst)
16 call modify_always_blocks(m)
17 call insert_capturing_FSM(m)
18 call insert_restoring_FSM(m)

Algorithm 1 Inserting checkpointing functionality

our checkpointing methodology is portable across hardware platforms and not

dependent on technology.

3.4.2 Structure of the Tool

The structure of the tool includes four blocks, as in Figure 14. The first block

is Pyverilog [33], a Python-based analysis and synthesis tool of Verilog HDL

source code. The parser in Pyverilog is a fundamental tool to analyze Verilog

HDL source code. The parser generates an abstract syntax tree (AST) in the

form of nested class objects in Python. The AST includes AST nodes presenting

all information about the Verilog HDL source code, such as module definitions,

parameters, ports, instances, always blocks. Parameters from the source code are

also abstracted and resolved. The second block is Checkpointing Inserter. This

block modifies and inserts more nodes to the AST that is the output of Pyverilog.

The third block is Veriloggen [34], a Python-based hardware description and

hardware customization library. This block is to generate Verilog HDL source

code from the modified AST. The fourth block is IP Packager. By using PyCoram

[35], this block packages the Verilog source code with checkpointing functionality

to create an IP core, called CPR IP core. For the checkpointing purpose, this

26

always @(posedge CLK) begin
if(RST) begin

cyclecount <= 0;
end else if DRIVE begin

if(state == 2) begin
cyclecount <= 0;

end else begin
cyclecount <= cyclecount + 1;

end
end else if shift_enable begin

cyclecount <= { computation_size[31:0] };
end

end

Throttling signal is
inserted

Checkpointing is added

Figure 15. Modifying always block.

section focuses on the block: Checkpointing Inserter.

3.4.3 Algorithm of Checkpointing Insertion

Based on the proposed tree-based checkpointing architecture, Algorithm 1 has

been proposed to insert checkpointing functionality into an HDL module. In this

algorithm, if the module is the top module, then the static CPR part will be

inserted. Otherwise, a CPR gate will be inserted as in line 6. After that, all

instances of the module will be visited and checked as in lines 9 and 10. The

check instance() function returns one of two values: normal inst (a normal in-

stance) and RAM (a module instance that will be synthesized as a distributed

RAM or a block RAM). The check instance() function matches the module def-

inition of this instance with the module definitions that will be synthesized as

given dedicated blocks, such as distributed RAMs and block RAMs. If the mod-

ule instance is matched with a RAM, then all parameters, such as data width

and address width, will be realized. The tool will not modify the module of the

instance. Instead, in line 15 the tool will insert a circuit outside as in Figure 12

in order to checkpoint the RAM. If the RAM is a block RAM that the output

is delayed response to the input, then the tool will insert ”additional registers”

to store values of the input at consecutive clock cycles. These registers are also

captured, and they will be used to resume the operation of the dedicated block

27

Table 1. Experimental Setup.

EDA Tool Vivado 2014.4 and ISE 14.7

FPGA Xilinx Zynq-7000 XC7z020clg484-1

Evaluation Board Zedboard

Clock frequency 100 MHz

Host CPU ARM Cortex-A9

Operating system Debian 8.0

later. If the module instance is not matched with a dedicated block, then the

module will be inserted checkpointing infrastructure as in line 12. Also a CPR

interface will be created in order to connect with the checkpointing infrastructure

as in line 13.

After visiting all instances of the module, the tool modifies always blocks to

insert the logic throttling signal and circuits for register checkpointing. Figure

15 shows an always block after being inserted checkpointing functionality. The

logic throttling signal - DRIVE in this figure is the same as the DRIVE signal in

Figure 8. The modifications in this always block are for a register checkpointing

circuit only. Finally, the tool inserts a capturing FSM and a restoring FSM into

the module.

3.5 Evaluation

Our experiments are set up as in Table 1 to evaluate hardware resource utiliza-

tion, performance degradation, memory footprint, and maximum clock frequency

degradation caused by the proposed checkpointing architecture.

3.5.1 Hardware Resource Utilization

Since our checkpointing architecture is based on the model of a tree with CPR

nodes, in order to evaluate resource utilization of the checkpointing architec-

ture, we evaluate resource utilization in the nodes. The resource consumption in

each node is caused mainly by circuits used for capturing/restoring registers and

RAMs.

28

Resource Ultilization for Capturing/Restoring Registers in a CPR

Node:

We have two alternative methods to capture/restore as presented in Figure

10 and Figure 11. To compare the resource utilization of these two methods, we

evaluate on two simple applications: Sum - sum of registers, and Sum of Squares

- sum of squares of registers. Each application is written in a single Verilog

HDL module. Figure 16 shows the synthesis result in both applications. LUT

consumption of the MUX-based circuit is higher than that of the Shift-Reg-based

circuit when the number of registers more than 2. It is explained that in the

MUX-based circuit, 2k inputs are added to multiplexers while in the Shift-Reg-

based circuit, the corresponding number is only k + 2, with k is the number

of 32-bit registers, as mentioned above. Therefore, the paper recommends that

when the number of 32-bit registers is more than 2, Shift-Reg-based circuit should

be used.

Figure 16 also reveals that the LUT utilization in Sum of Squares increases

dramatically in both the MUX-based circuit and the Shift-Reg-based circuit,

while the LUT utilization in Sum rises slightly in the MUX-based circuit and

remains steady in the Shift-Reg-based circuit. The difference can be explained as

follows. It is noted that in the following explanations LUTk is defined as k -input

LUT. In Sum, each register bit has only one input pattern and a carry input.

Thus, an LUT2 is used for each register bit. When capturing/restoring circuits

are added to the original hardware, one more input pattern is added for each

register bit. Totally, each register bit has two input patterns, one carry input,

and one 1-bit selector. Thus, instead of LUT2, an LUT4 is employed in front of

each register bit. In this case, the number of used slice LUT is kept unchanged.

Meanwhile, in Sum of Squares, each register has 3 input patterns and most of bits

of registers have 3 input patterns. As a consequence, an LUT5 with 2-bit selector

is employed for the 1-bit 3-input multiplexer for each of these bits. When one

more input pattern is added to each register for checkpointing functionality, an

additional LUT3 is used to make an 1-bit 2-input multiplexer. Totally, two slice

LUTs, including one LUT5 and one additional LUT3, are employed. That is the

reason why the LUT utilization in Sum of Squares increases dramatically. For

more optimal case, an LUT6 can be used to replace these two LUTs to create an

29

0

500

1000

1500

2000

2500

1 2 4 8 16 32 64

6-
in

pu
t L

oo
ku

p
Ta

bl
es

(L
U

T6
s)

Number of 32-bit Registers

MUX-based - Sum

Shift-Reg-based - Sum

MUX-based - Sum of Squares

Shift-Reg-based - Sum of Squares

Figure 16. LUT utilization for capturing/restoring registers.

1-bit 4-input multiplexer. In this case, two more slice LUTs must be employed

to generate the 2-bit selector of the 1-bit 4-input multiplexer from the 2-bit

selector of the LUT5 and the 1-bit selector of the LUT3 , and this 2-bit selector

may be shared with other 1-bit 4-input multiplexers. As a result, the slice LUT

consumption is reduced significantly. The same optimization is achievable for the

case that there are available inputs in slice LUTs to add more input patterns. For

example, an input can be added to LUT2, LUT3, LUT4, and LUT5 to become

LUT3, LUT4, LUT5, and LUT6, respectively, thus no additional slice LUT is

used for checkpointing functionality. In short, the LUT utilization caused by

checkpointing does not depend on how many LUTs consumed in the original

hardware, but depends on how many registers used in the user logic and whether

there is available input in LUTs used as multiplexers in front of registers or not.

Since registers are not duplicated in either the MUX-based circuit and the

Shift-Reg-based circuit, the slice register utilization for checkpointing is insignifi-

cant. It includes only 32 slice registers for the 32-bit D cp register and additional

slice registers for counters and CPR finite state machines.

Resource Utilization for Capturing/Restoring RAMs in a CPR Node:

We evaluate in two cases. First, BRAM size is kept at 128 words, and data

width is changed. Second, data width is kept at 128 bits, while BRAM size varies.

The synthesis results in Figure 17 and Figure 18 show that both the slice LUT and

30

0
200
400
600
800

1000
1200
1400
1600

4 8 16 32 64 128 256 512 1024

6-
in

pu
t L

oo
ku

p
Ta

bl
es

 (L
U

T6
s)

BRAM Size/Data Width

128-bit data width,
changing BRAM size

128-word BRAM size,
changing data width

Figure 17. LUT utilization of capturing/restoring BRAM.

slice register utilization for checkpointing remains almost constant when BRAM

size changes while data width is fixed. The very small increase in both LUT and

register consumption is caused by using more bits for counters and the address

of BRAM.

Conversely, the two figures also illustrate a dramatic increase in both LUT

and register utilization when BRAM size is fixed at 128 words while data width

increases. The increase is nearly linear with data width. The linear increase is

due to the fact that the LUT utilization comes from the multiplexer for the input

data of BRAM and from the input multiplexer for D cp. These two multiplexers

depend on the data width of BRAM and the number of 32-bit inputs, respectively.

Meanwhile, the increase in the register consumption is linear because the register

consumption is caused mainly by the register wdata 0, which has the same data

width as BRAM.

In summary, LUT consumption for checkpointing RAMs does not depend on

RAM size but depends linearly on data width.

Additional Registers for Resuming Dedicated Blocks:

We apply the checkpointing mechanism to four realistic applications - pipelined

SIMD matrix multiplication (Mat-Mul), Dijkstra graph processing (Dijkstra), 9-

point Stencil Computation (Stencil), and String Search (S-Search). Table 2 shows

the number of additional 1-bit registers required for resuming dedicated blocks in

31

0

200

400

600

800

1000

1200

1400

4 8 16 32 64 128 256 512 1024

Sl
ic

e R
eg

is
te

rs

BRAM Size/Data Width

128-bit data width,
changing BRAM size

128-word BRAM size,
changing data width

Figure 18. Slice register utilization for checkpointing BRAM.

each application. These numbers are really small. It is noted that the response

delay for distributed RAM and block RAM is 0 and 1 clock cycle, respectively. In

Dijkstra application, only distributed RAMs are employed. In distributed RAMs,

their outputs have no response delay to their inputs. Therefore, additional reg-

isters are not required. In the other applications, block RAMs are employed.

These RAMs are dedicated blocks that the data outputs are one-clock-cycle de-

layed responses to their input addresses. As a result, additional 1-bit registers

must be inserted in order to resume the operation of block RAMs.

Resource Utilization for the whole Checkpointing Tree:

Table 3 reveals the tree structures of the four application benchmarks after

inserting checkpointing functionality. The synthesis results are shown in Table 4.

As can be seen in the table, the static CPR hardware in the applications consumes

small amounts of slice LUTs compared with the total amount of the device. Since

the design of the static CPR part is fixed and transparent to applications, the

amount of LUTs consumed for this part is compared with the total amount of

the device instead of the amount of utilized LUTs in the original hardware. The

context in Mat-Mul includes 242 32-bit registers and the total data width of used

BRAMs is 885 bits. While these numbers in Dijkstra are much smaller, which

are only 56 32-bit registers and 448 bits, respectively. This explains why the

LUT overhead (160.67%) in the user-logic-based part of Mat-Mul is much higher

32

Table 2. Additional 1-bit Registers for Resuming Dedicated Blocks.

Apps Distributed RAM Block RAM Additional

(bits) (bits) 1-bit registers

Mat-Mul 0 57158 61

Dijkstra 7168 0 0

Stencil 512 104672 73

S-Search 0 17632 46

Table 3. Tree Structures after Checkpointing Insertion.

Apps CPR CPR Nodes Nodes Nodes Nodes

nodes levels level 0 level 1 level 2 level 3

Mat-Mul 28 4 1 6 17 4

Dijkstra 6 2 1 5 - -

Stencil 23 4 1 5 15 2

S-Search 16 3 1 5 10 -

than that of Dijkstra (17.98%). The point of the table is to show that the LUTs

consumed by checkpointing depends on the amount of registers used to define the

context of application and the total data width of utilized RAMs.

3.5.2 Maximum Clock Frequency & Data Footprint

Table 5 shows the synthesis results from Xilinx ISE 14.7. When adding check-

pointing hardware to the four realistic applications, the maximum clock frequency

Table 4. LUT Utilization.
Apps LUTs Additional LUTs LUTs

(User-logic-based) (Static CPR part)

Mat-Mul 3323 5339 (160.67%) 2030 (3.73% avail.)

Dijkstra 8126 1461 (17.98%) 1812 (3.4% avail.)

Stencil 6748 7395 (109.59%) 1835 (3.45% avail.)

S-Search 4056 3771 (92.97%) 1468 (2.76% avail.)

33

Table 5. Maximum Clock Frequency Degradation.

Apps Fmax (MHz) Fmax (MHz) Degradation

(Original) (Checkpointing)

Mat-Mul 115.075 103.875 9.73%

Dijkstra 161.627 161.589 0.0235%

Stencil 200.844 202.184 -0.667%

S-Search 188.929 188.644 0.15%

Table 6. Power Consumption (W).

Apps Original CPRtree CPRtree CPRtree

+ static + capturing + restoring

Mat-Mul 3.496 3.520 3.576 3.554

(0.69%) (2.29%) (1.66%)

Dijkstra 3.345 3.426 3.555 3.588

(2.42%) (6.28%) (7.26%)

Stencil 3.507 3.607 3.562 3.545

(2.85%) (1.57%) (1.08%)

S-Search 3.430 3.460 3.523 3.502

(0.87%) (2.71%) (2.1%)

decreases from 115.075 MHz to 103.875 MHz (a decline of 9.733%) for Mal-Mul

while it is kept nearly unchanged in the three other applications. It is believed

that input patterns added for checkpointing could find an available room in uti-

lized LUTs in the critical paths of the three applications, thus no multiplexer is

required in the critical paths. In contrast, in Mat-Mul input patterns could not

find a room in utilized LUTs, thus an additional dedicated MUX or LUT are re-

quired to insert in the critical paths. This leads to the significant degradation in

maximum clock frequency. It is noted that the measured speed reduction caused

by scan chain insertion in [27] is slightly lower than 20%. Therefore, the proposed

HDL-based checkpointing mechanism is better than the scan chain methodology

in terms of maximum clock frequency. It can be seen from the table that the

maximum clock frequency of Stencil even increase after inserting checkpointing

34

functionality. The results are just estimated by the tool. This may come from the

optimization of the tool so that the physical distance of logic elements reduces,

thus reducing the critical path.

Since our checkpointing mechanism is based on the definition of the reduced

set of state-holding elements, the data footprint in our mechanism is also reduced

significantly compared with the readback method [13]. If the four applications

are implemented on the same device (XC7z020clg484-1), the readback method

needs to read up to 4 Mbyte. Our method, however, needs to read only 8.3

kbyte, 1.1 kbyte, 14.3 kbyte, and 2.8 kbyte for Mat-Mul, Dijkstra, Stencil, and S-

Search, respectively. Since the reduced set of state-holding elements is regconized

as registers and RAMs, the memory footprint for checkpointing is approximately

the total amount of registers and RAMs used in the application.

3.5.3 Power Consumption

The current sense on board was used to evaluate the power consumption caused

by the whole Zedboard with our checkpointing architecture in the four realistic

applications. There are three modes for the evaluation: static checkpointing -

checkpointing hardware is inserted but the hardware runs in normal operation

without any checkpointing request, capturing mode, and restoring mode. Table 6

shows that the power consumption of the board in static checkpointing is nearly

the same as that of the board with original hardware (biggest increase of 2.85%

for Stencil). The table also shows the power consumption when the board run in

capturing and restoring mode. However, compared with the power of the board

with the original hardware, the increases are quite small, which are from 1.08%

(restoring mode in Stencil) to 7.26% (restoring mode in Dijkstra). Furthermore,

the normal operation accounts for the majority of the execution time. Therefore,

the proposed architecture in terms of power consumption is acceptable.

35

4. CPRflatten: A Ring-based Flattened Check-

pointing Achitecture

4.1 Checkpointing Architecture

4.1.1 Overview of CPRflatten

It is assumed that hardware structures are flattened in HDL level. That means

two objects can be connected without the need for considering complicated struc-

tures of nested modules. Our checkpointing architecture as in Figure 19 is derived

from the idea of removing all connectors between checkpoint/restart (CPR) levels

of CPRtree. In this case, Mux-based capturing/restoring circuits and Shift-Reg-

based capturing/restoring circuits can no longer be used anymore, and, instead,

a shifting matrix of register bits must be employed in register checkpointing.

However, the output of the matrix (CPR out) is looped back to the input of

the matrix to make sure that the values of registers after capturing are kept un-

changed. Thus, this forms a shifting ring, and this architecture is called ring-based

flattened checkpointing architecture in this paper. In the architecture, the reduced

set of state-holding elements is divided into two sets: register set and RAM set.

While capturing/restoring circuits for registers are configured as a shifting ring,

capturing/restoring circuits for RAMs is separated from each other and is sepa-

rated from the shifting ring. The proposed architecture can be divided into two

parts: static CPR hardware part and the rest, called user-logic-based part. The

later includes a shifting ring for register checkpointing, capturing/restoring cir-

cuits for RAMs, and two CPR finite state machines (CPR FSMs) for capturing

and restoring.

4.1.2 Shifting Ring

The shifting ring is formed from the shifting matrix of register bits with outputs

looped back to inputs. Let W be the data width of checkpointing, B be the

number of register bits in the reduced set of state-holding elements, and C be

B/W. If B is not a multiple of W, then a padding register is added to guarantee

a multiple of W. As showed in Figure 20, the shifting matrix of register bits is a

W-by-C matrix. There are two advantages of using shifting ring in checkpointing.

36

CPR
Manager

SW
DMARestore

FIFO

Static CPR Hardware

S-Bus

MEM
DMA

Capture
FIFO

M-Bus

Th
ro

ttl
e

Co
nt

ro
l

Re
g

Re
g

Re
g

M
U

X

Capture
FIFO

Restore
FIFO

D
EM

U
X

…

RAM

RAM

CPR
FSMs

Loopback

CPR_in CPR_out

Figure 19. Ring-based flattened checkpointing architecture

First, it ensures that the content of registers is kept unchanged after capturing.

Second, the shifting ring can be used for both capturing and restoring processes,

thus saving hardware resources.

However, employing a shifting ring leads to complexity in hardware. In the

worst case, particularly, one more input pattern is added to each register bit, thus

one input is added to the multiplexer in front of the bit. As a result, additional

LUTs may be used for such logic functionality. if the multiplexer is re-structured

including more levels, the degradation of maximum clock frequency will be more

serious due to the increase in the critical path.

4.1.3 RAM Capturing/Restoring Circuit

On-chip RAM context can be captured and restored by iterating reading and

writing through its whole address space. To keep the inputs and outputs of a

RAM unchanged after capturing, multiplexers are employed to separate check-

pointing from the normal operation. However, instead of writing the context read

from a RAM to the next CPR level when capturing as in CPRtree, the context

is written directly to Capture FIFO in our architecture as in Figure 21. Con-

37

● ● ●

● ● ●

● ● ●

●
●
●

C

CPR_out[0]

CPR_out[1]

CPR_out[W-1]

CPR_in[0]

us
er

 lo
gi

c

us
er

 lo
gi

c

us
er

 lo
gi

c

Shifting pathShifting multiplexer

CPR_in[1]
CPR_out[1]

CPR_in[W- 1]
CPR_out[W- 1]

Figure 20. Shifting ring of register bits

versely, when restoring, context is read from Restore FIFO, and then written to

the RAM. This implementation is possible by flattening HDL modules for RAM

checkpointing.

A RAM port includes four signals: write enable (we), address (addr), write

data (wdata), and read data (rdata). While the read data signal (output) can be

shared between the normal operation and capturing, the other signals (inputs)

require multiplexers to be shared between the normal operation and the restoring

process. Therefore, three registers: we 0, addr 0, and wdata 0 are added for RAM

checkpointing. Let DW be the data width of the RAM, and A be the number of

address bits of the RAM. As can be seen from Figure 21, the capturing/restoring

circuit requires a 1-bit register for we 0, an A-bit register for addr 0, and a DW-

bit register for wdata 0. In total, it requires DW + A + 1 register bits. When

synthesized, it is estimated to consume (DW + A + 1) slice registers. Since

all the multiplexers are 2-input, (DW + A + 1) 2-input 1-bit multiplexers are

required. It is also noted that all these 2-input multiplexers use the same select

bit – throttling signal. Furthermore, an LUT6 can also be configured as two 5-

input LUTs (32-bit ROMs) with separate outputs but common logic inputs. As

a consequence, (DW + A + 1) 2-input 1-bit multiplexers can be mapped onto

(DW + A + 1)/2 LUT6s. Therefore, if there are k RAMs in hardware structure

with data widths DW0, DW1, . . . , DWk-1, and numbers of address bits A0, A1,

38

RAM

we
rdata

M
U

X

addr

M
U

X

wdata

M
U

X

w
e_

0
ad

dr
_0

w
da

ta
_0

Ca
pt

ur
in

g/
Re

st
or

in
g c

irc
ui

t
Capture
FIFO

M
U

X

Restore
FIFO

Figure 21. RAM capturing/restoring circuit

. . . , Ak-1, respectively, then the estimated number of utilized slice registers and

the estimated number of utilized slice LUTs caused by RAM capturing/restoring

circuits can be presented respectively as follows:

FRAM =
∑k−1

l=0 (DW l + Al + 1)

LRAM =
∑k−1

l=0 (DW l + Al + 1)/2

4.1.4 CPR Finite State Machines

Checkpoint/restart procedures require two finite state machines, the first for cap-

turing and the second for restoring. The number of states in the two finite state

machines depends on the number of utilized RAMs and their data widths. In

both CPR FSMs, the slice register consumption comes mainly from counter reg-

isters. While the LUT ultilization in the capturing FSM is mainly caused by the

multiplexer in front of the Capture FIFO, the LUT consumption in the restoring

FSM is primarily from the comparators for selecting state-holding elements to be

restored.

4.2 Static Analysis of Original HDL Source Code

4.2.1 Fundamentals of Static Analysis

In the shifting ring in Figure 20, a shifting path may bring with it not only an

additional input to the shifting multiplexer in front of each register bit but also

39

10

(a) Original directed graph (b) Graph after removing redundant edges

11

0

1
2

3

4
5

6

78

9

1

9

2

0

8

5

7

4

10

6

3

11

(c) Shifting matrix after graph-aware mapping

edgeedge new shifting path

10 11

0

1
2

3

4
5

6

78

9

Figure 22. Static analysis of original HDL source code

cause complexity for the combinational circuit generating select bits. This input

may require more LUTs for the multiplexing functionality, whereas the complexity

of the combinational circuit may also consume more LUTs. While the complexity

cannot be avoided, the additional input will be not required if the shifting path

coincides with one of the inputs from the user logic. Such coincidence is achieved

when the preceding register bit (F1) in the shifting path is used to determine the

value of the register bit (F0) in the next clock cycle. In this case F0 at the time

t is a function of F1 at the time t-1, written as F0(t) = f(F1(t-1)). If register

bits are considered as vertices of a directed graph, then F0 and F1 are two of the

vertices of a graph and there is an edge from F1 to F0. Therefore, we believe that

the LUT consumption caused by a shifting ring can be reduced if the shifting

ring is designed in such a way that some shifting paths coincide with edges of the

graph of register bits.

However, if there are several edges from one vertex, then only one edge can be

mapped onto a shifting path. Conversely, if there are several edges to one vertex,

40

then, too, only one edge can be used as a shifting path. Therefore, there are three

steps to design a shifting matrix. The first step is to analyze the original HDL

source code to identify the graph of register bits. The second step is to find groups

of edges to the same vertex, then keep only one edge in each group while removing

the rest of the group. The rest is called redundant edges. The third step is to map

all remaining edges onto shifting paths of the shifting matrix. These three steps

are called static analysis of original HDL source code. They are described in an

example in Figure 22. This mapping is called graph-aware mapping. The original

graph has 12 vertices and 10 directed edges. After removing redundant edges,

there are 6 remaining edges. Therefore, after mapping vertices and edges onto

the shifting matrix, only 3 additional shifting paths are required. As a result, the

graph-aware mapping eliminates 6 shifting paths.

4.2.2 Algorithms

The Pseudo code to describe how to remove redundant edges and how to map

register bits onto a shifting matrix are outlined in Algorithm 2 and Algorithm 3.

- Let bitSet be the set of register bits in the module.

- Let unvisitedBitSet define the set of register bits that has not been visited.

- Let rightBitSet of register bit B be the set of register bits used to determine

B in the next clock cycle.

- Let leftBitSet of register bit B be the set of register bits that are determined

by B in the next clock cycle.

- Let preceding of register bit B define the preceding register bit of B in the

shifting path. preceding will be None if the shifting path does not coincide with

any edge.

- Let following of register bit B be the following register bit of B in the shifting

path. following will be None if the shifting path does not coincide with any edge.

- Let noFollowBitSet define the set of register bits that have no following but

have preceding in the shifting path.

- Let noFollowNoPrecBitSet be the set of register bits that have no following

and no preceding in the shifting path.

- Let matrixBitList define the list of bits in the shifting matrix. The bit index

increases by 1 in the same column and increases by W in the same row.

41

1: unvisitedBitSet ← bitSet
2: while unvisitedBitSet is not Ø do
3: min_length← min{length(B.rightBitSet), B ∈ unvisitedBitSet}
4: for all B ∈ unvisitedBitSet do
5: if length(B.rightBitSet) == min_length then
6: for b ∈ B.rightBitSet do
7: if b.following is None and b.preceding is not B then
8: B.preceding ← b
9: b.following ← B
10: for C ∈ b.leftBitSet do
11: C.rightBitSet← C.rightBitSet – {b}
12: break
13: unvisitedBitSet← unvisitedBitSet – {B}

Algorithm 2 Removing redundant edges

- Let unmappedIndexList be the list of indexes of bits in matrixBitList that

has not been mapped onto.

- Let Nb be the number of register bits in the module.

In Algorithm 2, register bits are consecutively visited to remove redundant

edges (line 4). It is noted that after removing such redundant edges, all edges

starting from a register bit can be removed, while one of them is expected to be

mapped onto a shifting path. To avoid this case, register bits having a rightBit-

Set with fewer elements should be visited first (line 3, 5). After removing the

redundant edges of a group, only one edge remains in the group (the edge from b

to B). The vertex b cannot be used anymore, thus it is removed from rightBitSets

(line 10, 11).

The next step to map register bits and remaining edges onto the shifting

matrix is presented in Algorithm 3. Since the register bits with edges must be

mapped onto the most left-side column first, the noFollowBitSet must be visited

first as in line 3. The visit to bits in the noFollowBitSet also leads to a visit to

bits that have both following and preceding by tracing the preceding on the bit

chain (line 7 when B0.preceding is not None). It finally leads to a visit to the bits

42

1: noFollowBitSet← {B ∈ bitSet, B.preceding is not None, B.following is None }
2: noFollowNoPrecBitSet← {B ∈ bitSet, B.preceding is None, B.following is None }
3: for all B ∈ noFollowBitSet do
4: k ← unmappedIndexList.Pop()
5: matrixBitList[k] ← B
6: B0 ← B
7: while B0.preceding is not None do
8: if (k + W) < Nb then
9: matrixBitList[k + W] ← B0.preceding

10: unmappedIndexList.Remove(k + W)
11: k ← k + W
12: B0 ← B0.preceding
13: else
14: if B0.preceding.preceding is None then
15: noFollowNoPrecBitSet← noFollowNoPrecBitSet∪ {B0.preceding}
16: else
17: noFollowBitSet← noFollowBitSet∪ {B0.preceding}
18: for all B ∈ noFollowNoPrecBitSet do
19: k ← unmappedIndexList.Pop()
20: matrixBitList[k] ← B

Algorithm 3 Graph-aware Mapping Algorithm

that have following but no preceding (line 7 when B0.preceding is None). After

that, it continues to visit the noFollowNoPrecBitSet to cover all bits in the bitSet

(line 18).

4.3 Tool for Checkpointing Insertion

Based on CPRflatten, Algorithm 4 has been proposed to insert checkpointing

functionality into an HDL module. In this algorithm, if the module is the top

module, then the static CPR part will be inserted. Otherwise, control ports

will be inserted (line 8). After that, all instances of the module will be vis-

ited and checked (line 9, 10). The check instance() function matches the cor-

responding module definition with RAM templates. If it is matched, the func-

43

1 m = top_module
2 call insert_checkpointing(m)
3 //--
4 function insert_checkpointing(m)
5 if m is top_module then
6 call insert_static_CPR_part(m)
7 else:
8 call insert_control_port(m)
9 for all inst∈ m.instances do

10 inst_type = check_instance(inst)
11 if inst_type is normal_inst then
12 call insert_checkpointing(inst.module)
13 if inst_type is RAM_inst then
14 call insert_RAM_checkpointing(inst)
15 call visit_always_block(m)
16 if m is top_module then
17 call modify_always_blocks(m)
18 call insert_capturing_FSM(m)
19 call insert_restoring_FSM(m)

Algorithm 4 Inserting checkpointing functionality

tion returns RAM inst and the function insert RAM checkpointing() is called

(line 14). Otherwise, the check instance() returns normal inst and the function

insert checkpointing() is called as a recursive algorithm (line 12). Then, the

visit always block() (line 15) visits all always blocks in the module and counts

registers driven by the always blocks. By calling this function in the recursive

function insert checkpointing(), all always blocks and registers in the design will

be visited. After the recursive process, the modify always blocks() function is

called (line 17) to modify always blocks based on the above static analysis. Fi-

nally, a capturing FSM and a restoring FSM are inserted in the HDL top module

(line 18, 19).

44

Table 7. LUT Utilization.

Apps LUTs Additional LUTs Additional LUTs Decline of

(Original) (CPRtree) (CPRflatten) Additional LUTs

Mat-Mul 3323 5339 (160.67%) 2593 (78.03%) 51.43%

Dijkstra 8126 1461 (17.98%) 1020 (12.55%) 30.18%

Stencil 6748 7395 (109.59%) 3883 (57.54%) 47.49%

S-Search 4056 3771 (92.97%) 1210 (29.83%) 67.91%

Mean 49.25%

Table 8. Maximum Clock Frequency Degradation.

Apps Fmax (MHz) Fmax (MHz) (CPRtree) Fmax (MHz) (CPRflatten)

(Original) & Degradation & Degradation

Mat-Mul 115.075 103.875 (9.73%) 103.875 (9.73%)

Dijkstra 161.627 161.589 (0.02%) 165.822 (-2.6%)

Stencil 200.844 202.184 (-0.67%) 202.184 (-0.67%)

S-Search 188.929 188.644 (0.15%) 188.644 (0.15%)

4.4 Evaluation

4.4.1 Hardware Resource Ultilization

We demonstrate CPRflatten on four realistic applications: - pipelined SIMD ma-

trix multiplication (Mat-Mul), Dijkstra graph processing (Dijkstra), 9-point Sten-

cil Computation (Stencil), and String Search (S-Search). Since the static CPR

hardware part is fixed and transparent to applications, to evaluate the efficiency

of checkpointing architectures, only the hardware overhead of the user-logic-based

part is considered. Table 7 shows that the hardware overhead is reduced the most

from 92.97% (CPRtree) to 29.83% (CPRflatten) in the S-Search application (a

decline of 67.91% of LUT overhead). The average decline of 49.25% of LUT

overhead shows that the proposed checkpointing architecture (CPRflatten) with

the proposed static analysis is much better than CPRtree in terms of hardware

overhead.

45

Table 9. Dummy Register Bits & Memory Footprint

Apps Dummy Register RAM Total

register context context context

bits (kB) (kB) (kB)

Mat-Mul 05 0.70 7.31 8.01

Dijkstra 27 0.20 0.87 1.07

Stencil 04 1.26 13.06 14.32

S-Search 26 0.44 2.38 2.82

void CPRtree_prepare(int* cpr_data);
void CPRtree_capture();
void CPRtree_restore();
void CPRtree_wait(int cpr_n);
void CPRtree_resume();
void CPRtree_copy(int* cpr_data, char* context_path);

Figure 23. CPRtree API.

4.4.2 Maximum Clock Frequency Degradation

The estimation results in Table 8 show that both CPRflatten and CPRtree have

negligible impact on the maximum clock frequency. The average degradation is

only 2.31% and 1.65%, respectively. The most significant degradation is 9.73%

(Mat-Mul). These average values are really small compared with the value of

around 20% in the scan-chain netlist-based method [27].

4.4.3 Dummy Register Bits & Memory Footprint

Table 9 shows the number of dummy register bits and the total context size

(memory footprint) for each benchmark. For CPRtree, the number of dummy

register bits is quite high since each node on the tree requires a dummy register.

For CPRflatten, the number of dummy register bits is always less than W = 32

bit – the checkpointing data width.

46

5. Checkpoint/Restart flow

5.1 Checkpoint/Restart Timing Diagram

CPR procedures on FPGA are clock-cycle-level controlled by CPR Manager,

while CPR Manager is controlled directly by the host. However, while the host

only provides ”coarse-grained” control through a simple software stack repre-

sented as an application programming interface (API) in Figure 23, CPR Manager

provides ”fine-grained” management for CPR procedures on FPGAs, as shown

in Figure 24.

5.1.1 Prepare

Instead of pausing an application and waiting for channels to be idle, as in [19], the

host calls CPRtree prepare() and passes the allocated address of checkpointing

data and a request command to CPR Manager. The address of the checkpointing

data is stored at a register in CPR Manager and used when writing FPGA context

to or reading from off-chip memory. After that, CPR Manager throttles channel

requests by preventing the issuing of requests on the master side and preventing

the receiving of requests on the slave side of channels and then waits until all

channels become idle. While CPR Manager is waiting, the user logic is still

operating. Finally, CPR manager sends an acknowledgement back to the host to

inform that the user logic is ready to be captured.

5.1.2 Capture

After the prepare procedure finishes, the host calls CPRtree capture() to send a

request command to CPR Manager. Then, first of all, CPR Manager throttles

logic to pause the operation of the original hardware. The system snapshot taken

is now a virtual consistent global state because all channels have become idle.

To capture context, CPR Manager issues a request to all checkpointing nodes of

the checkpointing tree, and checkpointing data flow continuously from nodes of

the tree to Capture FIFO before being written to off-chip memory. It is worth

noting that CPR Manager does not wait until the FIFO is full, but issues a

write request to off-chip memory immediately upon detecting that the FIFO is

47

Host
“Coarse-grain”

CPR Manager
“Fine-grain”

Prepare() Prepare_Req

Capture()

Prepare_Ack

Capture_Req Capture

Capture_Ack

Resume_ReqResume() Resume

Normal execution

Prepare
Throttle requests
Drain channels

Throttle logic
Capture & store

Signal virtualization

Host
“Coarse-grain”

CPR Manager
“Fine-grain”

Prepare() Prepare_Req

Restore()
Prepare_Ack

Restore_Req Restore

Restore_Ack

Resume_ReqResume() Resume

Prepare
Throttle requests

Throttle logic

Load & restore

Signal virtualization
Allow requests
Allow logic

(a) Checkpointing (b) Restarting

Normal execution

Allow requests
Allow logic

Figure 24. Checkpointing/restarting timing diagram.

not empty. In addition, since the checkpointing tree does not use a handshaking

procedure between CPR levels, the delay in the data flow in the tree is minimized.

This therefore also minimizes the checkpointing time, which is defined as the total

time from when the capture request is issued by host until the last word of the

context is written to off-chip memory.

5.1.3 Restore

When the host needs to restart the FPGA operation from the most recent saved

snapshot of checkpointing, it must complete the prepare procedure before starting

to restore data. This procedure is required because, in order to separate FPGA

from other distributed processes, communication channels must be idle and no re-

quest can be issued. Furthermore, the allocated address must be passed from the

host to FPGA to determine the location of the context in off-chip memory. Then

the API function CPRtree restore() is called, which sends a request command to

CPR Manager. CPR Manager starts to restore the context by throttling logic

and requesting MEM DMA to read all the context data from off-chip memory.

The data are then stored in Restore FIFO before being pumped to nodes of the

48

0

500

1000

1500

2000

2500

16² 32² 64² 128² 256² 512²

C
he

ck
po

in
tin

g
La

te
nc

y
in

C

lo
ck

 C
yc

le
s

Matrix Size

Cycles by inplementation

Cycles by ideal case

Figure 25. Checkpointing latency.

checkpointing tree. At the CPR nodes, checkpointing data is restored to state-

holding elements, such as registers and RAMs. When the last word is restored to

the corresponding elements, CPR Manager sets an acknowledgement to inform

the host that the restore procedure is complete.

5.1.4 Resume

The resume procedure is used in both checkpointing and restarting processes.

First, the host calls CPRtree resume() to send a request command to CPR Man-

ager. After that, CPR Manager virtualizes outputs of dedicated blocks by restor-

ing the inputs in consecutive clock cycles before allowing channel requests and

logic operation. It takes only one clock cycle to allow requests and logic opera-

tion, whereas the signal virtualization consumes the number of clock cycles equal

to the number of clock cycles of delay between the outputs and the inputs of

the dedicated blocks. Finally, after several clock cycles, the operation of the user

hardware is resumed.

49

Table 10. Context Size and Checkpointing Latency.

Apps Register RAM Total Checkpointing

context context context latency

(kbyte) (kbyte) (kbyte) (ms)

Mat-Mul 0.95 7.31 8.26 0.023

Dijkstra 0.22 0.87 1.09 0.005

Stencil 1.28 13.06 14.34 0.038

S-Search 0.46 2.38 2.84 0.008

5.2 Evaluation

To evaluate performance degradation, we evaluate the checkpointing latency cp l,

which is the time to complete the extraction of hardware context. The checkpoint-

ing latencies are measured in Mat-Mul while scaling the matrix size. Changing

the matrix size leads to changing the size of BRAMs, thus changing the amount

of checkpointing data and the memory footprint. The ideal checkpointing latency

in clock cycles is defined as the number of 32-bit checkpointing words. Figure

25 reveals that while scaling the matrix size, the checkpointing latency is always

higher than the ideal case but has the same shape. It is likely that the checkpoint-

ing latency can be represented as: cp l = ideal case + C, with C as a constant.

Our experiments on Zedboard show that C is about 120 clock cycles (1.2 us).

The checkpointing latency cannot reach the ideal case because the constant C

is the representative of the delay due to off-chip memory requests and the delay

due to the ”coarse-grained” control from the host, and thus C cannot be re-

moved. Therefore, the checkpointing latency seems to be linear with the number

of checkpointing words and therefore linear with the number of register bits and

with the total amount of RAM capacity used in the application. Let texe be the

execution time of an application without checkpointing request. Let fcp be the

checkpointing rate, which is the number of checkpointing times per second. Let

tcp be the checkpointing interval. Let cp o be the checkpointing overhead, which

is the increased execution time of the application due to checkpointing. Let ncp

be the number of checkpointing times during the execution time. Let P o be the

performance overhead of the application.

50

fcp is defined by fcp = 1/tcp

ncp is defined by ncp = texe* fcp = texe/tcp

cp o is defined by cp o = ncp * cp l = texe * cp l/tcp

P o is defined by P o = cp o/texe = cp l/tcp

In our evaluation, cp l is about 2300 clock cycles (0.023 ms) for the matrix

size of 512 * 512. We choose the checkpoiting interval tcp to be one second.

Therefore, the performance overhead is 0.23%. This value is small. Table 10

shows the context sizes and checkpointing latency of the four benchmarks. It can

be seen that checkpointing latencies depend linearly on the context sizes.

51

6. Multitasking on FPGA

6.1 Related Work

Multitasking on FPGA is not a new idea. Previous approaches to multitasking

[13, 14, 36, 37, 38] using the readback-of-bitstream method for task switching have

several serious drawbacks, that can prevent multitasking from being deployed in

reconfigurable computing. First, the readback-of-bitstream method cannot ensure

that a readback bitstream (a taken snapshot) is consistent with other components.

For example, a bitstream, taken while FPGA is accessing off-chip memory, is not

consistent with the off-chip memory. Thus, the application cannot be resumed

correctly on FPGA. Second, the readback bitstream is not enough to resume the

normal operation of dedicated blocks, which have outputs delayed compared with

inputs. Third, the report in [13] indicated that only less than 8% of the data in

the bitstream is useful, thus 92% of readback time is a waste of time.

6.2 Multitasking Structure

A multitasking system is organized in an FPGA-based computing node as Figure

26. Initial bitstreams are stored in the local storage. The host CPU will load an

initial bitstream and configure FPGA when the corresponding task is required.

FPGA can execute only one task at a time. Multiple tasks can share the recon-

figurable fabric by using task switching. Each task is allocated a time period

to run before being replaced by another task. For task switching, HDL-based

checkpointing is employed to capture FPGA context when a task is swapped out,

and to restore FPGA context when another task is swapped in. Captured context

will be written to the unified memory as a snapshot of the corresponding task at

a given physical address. Therefore, saving snapshots to the local storage is not

required in our scheme. In addition, to reduce the configuration time, a bitstream

can be pre-loaded to the unified memory at a given physical address area, called

a bitstream buffer, before being written to FPGA.

Multiple tasks running on FPGA require fixed contiguous memory allocation

at a given physical address space for both snapshots and application data in

the unified memory. This is easy on stand-alone systems, but more complicated

52

Host
CPU

FPGA
executing task x

Bitstream 0
(Task 0)

Bitstream n-1
(Task n-1)… Local storage

Snapshot 0 Snapshot 1 Snapshot n-1…

Unified RAM

Bitstream 1
(Task 1)

App data 0 App data 1 App data n-1…

Bitstream
buffer

Figure 26. Multitasking on an FPGA-based computing node

on operating systems (OS) using virtual addresses like Linux. For the later, a

reserved memory should be created when building the OS so that the kernel and

other software applications will not touch the memory space.

6.3 Timing Diagram for Task Execution and Task Switch-

ing

Figure 27 shows a timing diagram for three tasks running on FPGA. The tasks can

be allocated different time periods (T0, T1, and T2) to run. The cost of multitask-

ing on FPGA consists of performance overhead, hardware overhead, additional

footprints on the unified memory, and maximum clock frequency degradation on

FPGA when checkpointing functionality is inserted. The performance overhead

is the total task switch latency. Since HDL-based checkpointing is employed, no

readback of the bitstream as [14] is required. Also, saving snapshots to the local

storage as [29] is not required. Therefore, the task switch latency (Tswitch) is the

sum of the context capturing latency (Tcap), the bitstream configuration latency

(Tconf), and the context restoring latency (Tres). The restoring latency is not

required if the task swapped in runs on FPGA for the first time.

The timing diagram for a switch from task 0 to task 2 includes task 0 swapping-

out, bitstream configuration for task 2, and task 2 swapping-in. The host uses

API functions Prepare() and Capture() to swap task 0 out. It also uses Prepare(),

53

Task 0

Task 1

Task 2

Running

Running

Running

Time

FPGA

T0

T1

T2

Task switch

Execution
C
a
p

Config
R
e
s

Host FPGA

Prepare()Prepare_Req

Capture()

Prepare_Ack

Capture_ReqCapture

Capture_Ack

Prepare
Throttle requests
Drain channels

Throttle logic
Capture & store

Prepare() Prepare_Req

Restore()
Prepare_Ack

Restore_Req Restore

Restore_Ack

Resume_ReqResume() Resume

Prepare
Throttle requests
Throttle logic

Load & restore

Virtualize signal

Normal execution

Allow requests
Allow logic

Configure hardware for task 2

Ta
sk

 0
 sw

ap
pi

ng
-o

ut
Ta

sk
 2

 sw
ap

pi
ng

-in
Task Switch

Figure 27. Task execution and task switch timing diagram

Restore(), and Resume() to swap task 2 in. The consistency of snapshots between

the FPGA and other components, such as the host CPU and the unified memory,

is guaranteed by the Prepare procedure on FPGA. Checkpointing of dedicated

blocks is also guaranteed by the Resume procedure with signal virtualization.

Table 11. Context size (data footprint) and task switch latency.

Apps Register RAM Total Capturing Restoring Configuration

context context context latency latency time

kbyte kbyte (kbyte) (ms) (ms) (ms)

Mat-Mul 0.70 7.31 8.01 0.022 0.023 31.095

Dijkstra 0.20 0.87 1.07 0.005 0.007 31.095

Stencil 1.26 13.06 14.32 0.039 0.04 31.095

S-Search 0.44 2.38 2.82 0.009 0.01 31.095

54

6.4 Evaluation

Table 11 shows the breakdown of the total context size (memory footprint) and

the task switch latency. The memory footprints (less than 15 kbyte) are much

lower than the memory footprint in the readback-of-bitstream method (4 Mbyte

for Zedboard). The capturing latency and the restoring latency depend linearly

on the corresponding context size. The FPGA on Zedboard is configured from

host programs in C language using processor configuration access port (PCAP).

The measured configuration time is stable at 31.095 ms. The task switch latency

caused by switching from Mat-Mul to Stencil is 31.157 ms for example. The

improvement of our scheme over the previous schemes based on the readback

method in terms of the task switch latency is that the readback latency (tens

to hundreds of milliseconds [14, 36]) is removed and replaced by the capturing

latency (less than 0.039 ms).

55

7. Hardware Task Migration in Heterogeneous

FPGA computing

7.1 Related Work

Problems of previous works on FPGA checkpointing could prevent hardware task

migration from being implemented and evaluated. In [39] the authors presented

a task migration method using ICAP for configuration and readback of partial

bitstreams. However, their evaluations show that the extraction time (953 ms),

the configuration time (52 ms), and the relocation time are high. In addition,

the total migration latency was not evaluated. Because of using the readback-

of-bitstream method, this work has several additional drawbacks. First, the

readback-of-bitstream method cannot ensure that a readback bitstream (a taken

snapshot) is consistent with other components. For example, a bitstream, taken

while FPGA is accessing off-chip memory, is not consistent with the off-chip mem-

ory. Thus, the application cannot be resumed correctly on FPGA. Second, the

readback bitstream is not enough to resume the normal operation of dedicated

blocks, which have outputs delayed compared with inputs.

7.2 Hardware Task Migration Structure

A heterogeneous FPGA cluster with hardware task migration is organized as in

Figure 28. The cluster includes a server for task management, a file system, and m

computing nodes integrated with FPGA. The server, file system, and m nodes are

connected via an Ethernet network. Each node consists of a host CPU, a local

storage, an FPGA, and a unified memory. FPGAs in nodes may be different

in architecture, technology, and vendor. Bitstreams for potential tasks running

on FPGA is stored in the local storage. For hardware task migration between

two nodes, HDL-based checkpointing is employed in the source node to capture

FPGA context. The captured context is then written to the unified memory

as a snapshot of the corresponding task at a given physical address. In the

cluster, the snapshot is not saved to the local storage or the file system, instead,

it is sent to the destination node using message passing interface (MPI) [40]. In

the destination node, the snapshot is read from unified memory to FPGA and

56

restored to the state-holding elements before being resumed. However, the FPGA

on the destination node must be configured before that with the corresponding

bitstream. To reduce the configuration time, the corresponding bitstream can

be loaded from the local storage or pre-loaded to the unified memory at a given

physical address area, called a bitstream buffer, before being written to FPGA.

There are several requirements for hardware task migration in a FPGA cluster.

First, it requires contiguous memory allocation for both app data and snapshots

in the unified memory. Second, since task context contains the physical address

of app data, the app data of a migrated task must be allocated the same physical

address in the unified memory of both source node and destination node. These

two requirements are easy to satisfy in stand-alone systems, but more complicated

in operating systems (OS) using virtual addresses like Linux. For the later, a

memory space for FPGA should be reserved when building the OS so that other

software applications will not touch the space. It is noted that if the source and

the destination FPGA fabrics are different, the corresponding bitstreams must

be different but generated from the same HDL source code.

Heterogeneity: It is noted that a readback bitstream from an FPGA fabric

cannot be used on different types of FPGA fabrics. Therefore, the readback-of-

bitstream method cannot allow hardware task migration on heterogeneous FP-

GAs. In our method, checkpointing circuits are inserted in the HDL level. They

allow a task snapshot to be taken or restored by capturing or restoring the values

of the state-holding elements. For each task, the same HDL source code is used

to generate different bitstreams for different FPGA fabrics. Instead of trans-

ferring the whole bitstream from the source node to the destination node, only

checkpoints (the values of the state-holding elements) are transferred. On the

destination node, after configuring the FPGA fabric with the corresponding bit-

stream, the checkpoints are restored to the state-holding elements of the hardware

task. Then the normal operation can be resumed. Therefore, our checkpointing

method (HDL-based) allows hardware task migration in heterogeneous FPGA

computing.

57

File System
Server

Node
0

Node
1 Node

m-1
… Host

CPU
FPGA

executing task x

Bitstream 0
(Task 0)

Bitstream n-1
(Task n-1)…

Snapshot x

Unified RAMApp data x

Bitstream buffer

MPI-based Hardware task migration

Local Storage

Figure 28. Hardware task migration in a heterogeneous FPGA cluster

7.3 Hardware Task Migration Timing Diagram

Figure 29 depicts a timing diagram of hardware task migration from node 0 to

node 1. When node 0 receives a migration request, it launches two MPI jobs.

The first program (1) is in the same host to send DRAM context and FPGA

context to node 1. The other (2) is in the host of node 1to resume the task on

its FPGA. The two programs communicate via MPI. As soon as the program

(2) starts, it configures the FPGA on node 1. At the same time, it copies all

memory used by the task on node 0. The copy includes two phases. In the first

phase, node 0 sends the data (un-dirty RAM context), that will not dirty during

the task execution, to node 1. This phrase is called pre-copy in this paper. The

second phase is to send all the dirty data from node 0 to node 1 after the task is

paused on node 0. This phase uses a non-blocking function MPI Isend().

When the FPGA configuration and the pre-copy finish, a setup acknowledge is

sent to node 0. Then node 0 calls the Prepare() function to guarantee a consistent

snapshot before calling the Capture() function to capture FPGA context. After

FPGA context is captured and saved to the unified memory, the host in node 0

sends the FPGA context to node 1 using a blocking function MPI Send(). When

58

Computing Node 0 Computing Node 1
HostFPGA Host FPGA

Mig request

Prepare()

Launch MPI jobs Start app

Setup

Bitstream

Prepare_reqPrepare

Capture

Prepare_ack

Capture()Capture_req

Send un-dirty RAM context

Normal
execution

Throttle requests
Drain channels

Throttle logic
Capture & store

Capture done
Capture_ack

Capture_done()

Mig start

Send FPGA context

Prepare() Prepare_req
Prepare

Throttle requestsPrepare_ack

Restore() Restore_req Restore
Load & restore

Restore_ack
Resume() Resume_req Resume

Virtualize signal
Allow requests
Allow logic

Normal
execution

Mig_ackMig done

M
ig

la
te

nc
y

Send dirty RAM context

Config done

Config

Setup_ack

(1)

(2)

Pre-copy

Figure 29. Timing diagram of hardware task migration

node 1 receives all the FPGA context, it calls the Restore() function to restore

the context to the state-holding elements on FPGA. After the restoration and

receiving all the dirty data, it calls the Resume() function to resume the task.

Then, a migration acknowledge signal is sent back to inform node 0 that the

migration has already done.

In the timing diagram, we adopt the following parameter and latency defini-

tions:

• Tconfig denotes the configuration time for the FPGA on node 1.

• bw is the bandwidth allocated for transferring data from node 0 to node 1

during the migration.

• mrbwi denotes the memory read bandwidth on node i allocated to FPGA

during the migration.

• mwbwi is the memory write bandwidth on node i allocated to FPGA during

the migration.

• CFPGA denotes the amount of FPGA context.

• Cnon-dirty is the amount of non-dirty data that can be pre-copied.

59

• Cdirty denotes the amount of dirty data that must be copied after pausing

the application.

• Tpre-copy denotes the time required copying the non-dirty data from node 0

to node 1.

T pre-copy =
Cnon-dirty

bw
(1)

• Tprep is the latency of the Prepare() function on node 0.

• Tcap denotes the latency of the FPGA context capture on node 0.

T cap =
CFPGA

mwbw0

(2)

• Ttransf FPGA denotes the time for transferring FPGA context from node 0 to

node 1.

T transf FPGA =
CFPGA

bw
(3)

• Tres is the latency of FPGA context restoration on node 1.

T res =
CFPGA

mrbw1

(4)

• Ttransf dirty denotes the time for transferring the dirty data from node 0 to

node 1.

T transf dirty =
Cdirty

bw
(5)

• Tdown is the downtime of the migrated task, which is the time period from

when the host on node 0 calls the Prepare() function to when it receives a migra-

tion acknowledge. It is noted that the FPGA context capture on node 0 and the

dirty data transfer can be performed simultaneously. The restoration of FPGA

context on node 1 can be also performed simultaneously with receiving dirty data.

Therefore, the downtime can be presented as follows:

T down = T prep + T transf FPGA + Max{(T cap + T res), T transf dirty} (6)

Using equations (2), (3), (4), and (5), the downtime can be determined by:

60

Table 12. Experimental Setup for Task Migration.

EDA Tool Vivado 2017.2

FPGA XCZU9eg-ffvb1156-2L-e-es1

Evaluation Board Zynq UltraScale

Clock frequency 100 MHz

Host CPU ARM Cortex-A53

Operating system Petalinux 2017.2

MPI version OpenMPI 3.0.0

Table 13. Data context size in memory

Apps Cnon-dirty Cdirty Total data (Cdata)

(kB) (kB) (kB)

Mat-Mul 8,192 4,096 12,288

Dijkstra 549.68 12.50 562.18

Stencil 0 2,048 2,048

S-Search 32,768 8 32,776

T down = T prep +
CFPGA

bw
+ Max{ CFPGA

mwbw0

+
CFPGA

mrbw1

,
Cdirty

bw
} (7)

As can be seen from the equation (6), the downime does not include the

readback-of-bitstream latency (replaced by Tcap) and the configuration latency,

which are time-consuming. Tcap and Tres can be also overlapped by Ttransf dirty.

Therefore, the downtime is expected lower than that of the previous scheme using

the readback-of-bitstream method.

• The migration duration Tmig is measured from when the pre-copy starts to

when node 0 receives a migration acknowledgment.

Tmig = Max{T config + T res, T pre-copy + T down} (8)

The migration duration can be presented using expressions (1) and (4) as

follows:

61

Table 14. Capturing/restoring latency

Apps Tprep Tcap Tres Tconfig

UltraS UltraS Zedboard Zedboard

(ms) (ms) (ms) (ms)

Mat-Mul 0.002 0.021 0.023 32.093

Dijkstra 0.001 0.003 0.007 31.817

Stencil 0.014 0.038 0.040 31.727

S-Search 0.007 0.008 0.010 32.033

Table 15. Migration downtime, migration duration and their breakdown (ms)

Apps Tpre-copy Ttransf FPGA Tdirty Tdown Tmig

Mat-Mul 142.598 0.809 63.940 64.807 207.455

Dijkstra 45.944 0.540 2.287 2.781 48.729

Stencil 0 1.174 51. 351 52.575 52.646

S-Search 524.373 0.555 0.637 1.251 525.627

Tmig = Max{T config +
CFPGA

mrbw1

,
Cnon-dirty

bw
+ T down} (9)

In expression (9) for the migration duration, the FPGA configuration time

can be overlapped by the pre-copy, the transfer of FPGA context, and the copy

of the dirty data. Such overlap hightlights the advantages of our scheme.

7.4 Memory Usage

To reduce the FPGA configuration time, all the bitstreams stored in the local

storage are pre-loaded to the memory on the destination node. We assume that

the local storage stores k bitstreams, and the bitstream size is btr size. The

memory consumed by the bitstreams is k * btr size. The memory footprint for

checkpointing a hardware task is the amount of FPGA context CFPGA. Therefore,

the memory usage on the destination node for migrating the task is CFPGA + k

* btr size, while on the source node, it is only CFPGA.

62

Table 16. Memory context size while scaling the graph size in Dijkstra benchmark

Vertices Edges Cnon-dirty Cdirty Cdata

(kB) (kB) (kB)

200 1,193 4.66 1.56 6.22

400 9,545 37.29 3.12 40.41

800 35,283 137.82 6.25 144.07

1,600 140,719 549.68 12.50 562.18

3,200 461,723 1,803.61 25.00 1,828.61

6,400 1,433,782 5,600.71 50.00 5,650.71

7.5 Evaluation

Table 12 shows additional experimental setup for hardware task migration in

heterogeneous FPGA computing. In our experiments, tasks are migrated from a

Zynq Ultrascale board to a Zedboard in a heterogeneous FPGA cluster connected

via an Ethernet network. The four benchmarks have different sizes of non-dirty

and dirty data in memory as shown in Table 13. As can be seen from Table 14,

first, the capturing latency (Tcap), restoring latency (Tres), and the Ttranf FPGA

depend linearly on the FPGA context (CFPGA). Second, Tpre-copy and Ttransf dirty

also depend linearly on Cnon-dirty and Cdirty, respectively as shown in Table 15.

Third, the migration downtime (Tdown) and the migration duration (Tmig) are

matched with the expressions (6) and (8). Therefore, the experimental results

show the correctness of the expressions (1), (2), (3), (4), (5), (6), and (8).

However, all the four benchmarks show the case that (Tpre-copy + Tdown) >

(Tconfig + Tres). As a result, in the expression (8), Max{ Tconfig + Tres, Tpre-copy +

Tdown} = Tpre-copy + Tdown. In order to verify the expression more in other cases,

the benchmark Dijkstra is used while scaling the number of vertices in the graph.

The non-dirty (Cnon-dirty), dirty (Cdirty), and total context (Cdata) in memory are

also scaled as in Table 16. The corresponding migration downtime is depicted in

Figure 30. Basically, the downtime depends linearly on the amount of dirty con-

text Cdirty. It is also independent of Cnon-dirty. In contrast, the migration duration

Tmig depends on both Cnon-dirty and Cdirty as in the expression (9). However, when

63

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

200 400 800 1600 3200 6400

M
ig

ra
tio

n
D

ow
nt

im
e

(u
s)

Number of Vertices

1,768

2,781

3,268

4,536

1,120 1,263

Figure 30. Migration downtime while scaling the graph size.

the number of vertices is small enough (Cnon-dirty and Cdirty are small), (Tpre-copy

+ Tdown) can be less than (Tconfig + Tres). As a result, Tmig is kept constant at

(Tconfig + Tres) until the number of vertices (Cnon-dirty and Cdirty) increase enough

as shown in Figure 31. After that, the migration duration depends linearly on

Cnon-dirty and Cdirty.

The experimental results also reveal the efficiency of our migration scheme.

First, since the HDL-based checkpointing is employed in our scheme, the cap-

turing latency and restoring latency (less than 0.040 ms) are much smaller than

the capturing (readback) (953 ms) and restoring (configuration) (52 ms) latency

in the readback-of-bitstream-based scheme [39]. This work did not consider the

transfer of FPGA context, non-dirty, and dirty context. Therefore, the migra-

tion downtime and migration duration were not evaluated. Second, the capturing

(Tcap) and restoring (Tres) latency can be hidden by the transfer of dirty context

as in the expression (6). As a result, they have no impact on the migration down-

time. Third, the configuration latency (Tconfig) can be hidden by the pre-copy

and the transfer of FPGA context and dirty context. The latency also has no

impact on the migration downtime. Fourth, the expressions (7) and (9) shows

64

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

200 400 800 1600 3200 6400

M
ig

ra
tio

n
D

ur
at

io
n

(u
s)

Number of Vertices

31,806 31,805 31,988
48,729

134,638

377,242

Figure 31. Migration duration while scaling the graph size.

that the downtime can be reduced much compared with the readback scheme

since the amount of FPGA context (less than 15 kB) is much smaller than the

bitstream size (4 MB). Although the downtime and migration duration were not

evaluated in [39], it can be noted that the downtime in [39] must be more than

the sum of the readback latency and configuration latency (1005 ms). However,

in our scheme the downtime is only 1.251 ms (less than 0.13%) for the S-Search

benchmark. Furthermore, small amounts of FPGA context also help to reduce

the total network traffic in the cluster/cloud.

65

8. Conclusion

FPGAs have been playing an important role in high performance computing and

large-scale computing, such as datacenters and clusters/clouds due to their high

performance, energy efficiency, and flexibility. Dependability and Scalability of

FPGA computing have risen as essential issues to achieve higher reliability, perfor-

mance, and energy efficiency. This thesis studied dependable and scalable FPGA

computing based on checkpointing in the HDL level. In this work, we proposed

two checkpointing architectures along with a checkpointing mechanism on FPGA,

that are transparent to application and portable across hardware platforms with

different technology. We optimized the checkpointing design by analysing the

original HDL source code to reduce the hardware resource utilization. We also

provided two Python-based tools to generate checkpointing infrastructures ac-

cording to the two architectures. Our evaluation shows that although the check-

pointing architectures and mechanism cause significant hardware overhead, they

have negligible impact on performance, power consumption, and maximum clock

frequency.

We then described how FPGA computing is scalable by proposing a multitask-

ing scheme on FPGA and a hardware task migration scheme in heterogeneous

FPGA computing. The two schemes reveal great improvements over previous

schemes using the readback-of-bitstream method in terms of latency and mem-

ory footprints. In addition, our checkpointing method (HDL-based) allows tasks

to be migrated among different FPGA fabrics (heterogeneous). The management

of snapshot consistency in our checkpointing mechanism allows the two schemes

to be demonstrated on more complicated and realistic application benchmarks.

For future work and potential applications, we will consider the following

issues:

- Can FPGA resources be virtualized and shared by multitasking with run-

time partial reconfiguration? We will implement and evaluate task switching

on partial reconfigurable partitions. Hardware overhead caused by decoupler

between static regions and reconfigurable regions will be also evaluated.

- Can hardware tasks be migrated between partial reconfigurable regions on

heterogeneous FPGAs?

- Can a hardware application running on multiple FPGA fabrics be resilient

66

using the proposed checkpointing mechanism and management of snapshot con-

sistency?

67

Acknowledgments

I would like to thank all members in Computing Architecture lab, my family, my

friends for supporting me during my doctoral course.

To professor Yasuhiko Nakashima, he supported me a lot from when I started

applying MEXT scholarship. He recommended many good papers to me and

taught me how to find research ideas. He guided me how to prepare slides and

make a good oral presentation. He also gave me advice on how to write a good

paper. During my PhD research, he gave me many valuable comments on how

to solve problems in research and implementation.

To professor Michiko Inoue, she gave me many valuable comments and in-

teresting questions in mid-term presentation and during my PhD thesis defense.

She showed me more motivation and other aspects of my research. Her comments

and advice encourage me to expand my research in near future.

To associate professor Takashi Nakada, my advisor, he has supported me a

lot since he came to NAIST one and a half year ago. He gave me many valuable

comments and advice on my research. He helped me a lot in improving my

manuscripts. He always encourages me to submit manuscripts to journals and

international conferences.

To assistant professor Renyuan Zhang, he gave me some good comments and

suggestions in my PhD thesis defense. He showed me his enthusiasm for doing

research.

To assistant professor Tran Thi Hong, she is a good example of women in

research. She also encouraged me to write papers.

To assistant professor Shinya Takamaeda, he supported me much in using

tools, Linux when I first came here. He showed me his motivation and dream in

research.

To other students in my lab, they supported me a lot in Japanese, tools,

Linux. We enjoyed student life together.

To Vietnamese Association in NAIST, they helped me a lot in daily life. We

shared fun, sadness, difficulty, and happiness together. We played games and

traveled a lot together. They cooked a lot of Vietnamese foods and held many

parties. Thanks to their support and friendship, I did not get homesick much.

68

References

[1] Andrew Putnam et al, “A Reconfigurable Fabric for Accelerating Large-

Scale Datacenter Services,” Communications of the ACM, vol. 59, no.

11, pp. 114-122, Nov. 2016.

[2] Andrew Putnam, “FPGAs in the Datacenter – Combining the Worlds

of Hardware and Software Development,” Proceedings of Great Lakes

Symposium on VLSI, pp. 5, May. 2017.

[3] Babak Falsafi et al, “FPGAs versus GPUs in Data centers,” IEEE Micro,

Vol. 37, No. 1, pp. 60 – 72, 2017.

[4] Naif Tarafdar el al, “Enabling Flexible Network FPGA Clusters

in a Heterogeneous Cloud Data Center,” Proceedings of the 2017

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays (FPGA2017), pp. 237 – 246, Feb 2017.

[5] Adrian M. Caulfield el al, “Configurable Clouds,” IEEE Micro, Vol. 37,

No. 3, 2017.

[6] Amazon EC2 F1 Instances (Preview)” 2017; [Online]. Available:

http://aws.amazon.com/ec2/instance-types/f1

[7] J. Ouyang , “SDA: Software-Defined Accelerator for Large-Scale DNN

Systems,” in Proc. Hot Chips 26 Symposium, 2014.

[8] J. Weerasinghe , “Enabling FPGAs in Hyperscale Data Centers,” in Proc.

IEEE 12th Int’l Conf. Ubiquitous Intelligence and Computing, 12th Int’l

Conf. Autonomic and Trusted Computing, and 15th Int’l Conf. Scalable

Computing and Communications (UIC-ATC-ScalCom), 2015.

[9] A.G. Lawande, A.D. George, H. Lam, ”Novo-G#: A Multidimensional

Torus-Based Reconfigurable Cluster for Molecular Dynamics”, Concur-

rency and Computation: Practice and Experience, vol. 28, no. 8, pp.

2374-2393, 2016.

69

[10] Bianca Schroeder and Garth A. Gibson, “A Large-Scale Study of Fail-

ures in High-Performance Computing Systems,“ IEEE transactions on

Dependable and Secure Computing, VOL. 7, NO. 4, Oct-Dec 2010.

[11] F. Cappello, Al Geist, W. Gropp, S. Kale, B. Kramer, M. Snir, “To-

ward Exascale Resillience – 2014 Update,” Journal of Supercomputing

Frontiers and Innovations, Vol. 1, No. 1, 2014.

[12] Dirk Koch, Christian Haubelt and Jurgen Teich, “Efficient Hardware

Checkpointing - Concepts, Overhead Analysis, and Implementation,”

FPGA’07, pp.188-196, February 18–20, 2007, Monterey, California, USA.

[13] H. Kalte and M. Porrmann, “Context Saving and Restoring for Multi-

tasking in Reconfigurable Systems,” International Conference on Field

Programmable Logic and Applications, pp. 223-228, 2005.

[14] I H. Simmler, L. Levinson, and R. Manner, “Multitasking on FPGA

Coprocessors,” In Proceedings of the 10rd International Conference on

Field Programmable Logic and Application (FPL’00), pages 121–130,

2000.

[15] Hoang Gia Vu, Supasit Kajkamhaeng, Shinya Takamaeda-Yamazaki and

Yasuhiko Nakashima, “CPRtree: A Tree-based Checkpointing Architec-

ture for Heterogeneous FPGA Computing,” 4th International Sympo-

sium on Computing and Networking (CANDAR 2016), Nov 2016.

[16] Hoang Gia Vu, Shinya Takamaeda-Yamazaki, Takashi Nakada, Ya-

suhiko Nakashima, ”CPRring: A Structure-aware Ring-based Check-

pointing Architecture for FPGA Computing”, The 25th IEEE Interna-

tional Symposium on Field-Programmable Custom Computing Machines

(FCCM2017) (poster), pp. 192, May 2017.

[17] Hoang-Gia VU, Shinya TAKAMAEDA-YAMAZAKI, Takashi

NAKADA, and Yasuhiko NAKASHIMA, ”A Tree-based Check-

pointing Architecture for the Dependability of FPGA Computing,”

IEICE Transactions on Information and systems, Vol.E101-D, No.2,

pp.xxx-xxx, Feb. 2018.

70

[18] Hoang-Gia VU, Takashi NAKADA, and Yasuhiko NAKASHIMA,

”Efficient Multitasking on FPGA Using HDL-based Checkpointing,”

14th International Symposium on Applied Reconfigurable Computing

(ARC2018), Lecture Notes in Computer Science, Springer, Book Title:

Applied Reconfigurable Computing. Architectures, Tools, and Applica-

tions, Vol. 10824, Chapter. 47, 2018.

[19] Arash Rezaei, Giuseppe Coviello, Cheng-Hong Li, Srimat Chakradhar,

and Frank Mueller, ”Snapify: Capturing Snapshots of Offload Applica-

tions on Xeon Phi Manycore Processors,” HPDC’14, June 2014.

[20] K. Mani Chandy and Leslie Lamport, “Distributed snapshots: Deter-

mining global states of distributed systems,” ACM Transactions on Com-

puter Systems, Volume 3 Issue 1: 63-75, Feb. 1985.

[21] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for dis-

tributed systems,” IEEE trans. on Software Engineering, SE-13(1): 23-

31, Jan. 1987.

[22] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. Johnson. “A Sur-

vey of Rollback-Recovery Protocols in Message-Passing Systems,” ACM

Comput. Surv., 34(3), 2002.

[23] Jason Ansel, Kapil Arya, and Gene Cooperman, “DMTCP: Transparent

Checkpointing for Cluster Computations and the Desktop,” Parallel &

Distributed Processing, 2009. IPDPS 2009. IEEE International Sympo-

sium on 23-29 May 2009.

[24] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (BLCR)

for linux cluster,” in Proceedings of SciDAC, 2006.

[25] Aurelio Morales-Villanueva and Ann Gordon-Ross, “On-chip Context

Save and Restore of Hardware Tasks on Partially Reconfigurable FP-

GAs,” FCCM 2013, pp.61-64.

[26] Alban Bourge, Olivier Muller and Frederic Rousseau, “Automatic

High-Level Hardware Checkpoint Selection for Reconfigurable Systems,”

FCCM 2015, pp.155-158.

71

[27] Iakovos Mavroidis, Ioannis Mavroidis, and Ioannis Papaefstathiou, “Ac-

celerating Emulation and Providing Full Chip Observability and Contro-

lability,” IEEE Design & Test of Computers, Dec. 2009.

[28] Andrew G. Schmidt, Bin Huang, Ron Sass, and Matthew French, “Check-

point/Restart and Beyond: Resilient High Performance Computing with

FPGAs,” FCCM 2011, pp.162-169.

[29] Alban Bourge, Olivier Muller and Frederic Rousseau, “Generating Ef-

ficient Context-Switch Capable Circuits through Autonomous Design

Flow,” ACM Transactions on Reconfigurable Technology and Systems,

Vol. 10, No. 1, Dec 2016.

[30] Shinya Takamaeda-Yamazaki and Kenji Kise, “A Framework for Efficient

Rapid Prototyping by Virtually Enlarging FPGA Resources,” 2014 In-

ternational Conference on ReConFigurable Computing and FPGAs (Re-

ConFig 2014), December 2014.

[31] Ashwin A. Mendon, Ron Sass, Zachary K. Baker, and Justin L. Tripp,

“Design and Implementation of a Hardware Checkpoint/Restart Core,”

2012 IEEE/IFIP 42nd International Conference on Dependable Systems

and Networks Workshops (DSN-W).

[32] Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd

Gamblin, Bronis R. de Supinski, and Satoshi Matsuoka, “Design and

Modeling of a Non-blocking Checkpointing System,” SC12, November

10-16, 2012.

[33] Shinya Takamaeda-Yamazaki, ”Pyverilog: A Python-based Hardware

Design Processing Toolkit for Verilog HDL,” 11th International Sympo-

sium on Applied Reconfigurable Computing (ARC 2015) (Poster), Lec-

ture Notes in Computer Science, Vol.9040/2015, pp.451-460, April 2015.

[34] Minoru Watanabe, Kentaro Sano, Shinya Takamaeda, Take- fumi

Miyoshi, Hironori Nakajo: ”Japanese High-level Synthesis Tools for

FPGA Hardware Acceleration,” IEICE Transactions on Communica-

tions, Vol. J100-B, No.1, pp.1-10 (in Japanese), 2016.

72

[35] Shinya Takamaeda-Yamazaki, Kenji Kise and James C.Hoe: ”PyCo-

RAM: Yet Another Implementation of CoRAM Memory Architecture

for Modern FPGA-based Computing,” Workshop on the Intersections of

Computer Architecture and Reconfig- urable Logic (CARL 2013) (Co-

located with MICRO-46), De- cember 2013.

[36] Wesley J. Landaker, Michael J. Wirthlin, and Brad L. Hutchings, “Mul-

titasking Hardware on the SLAAC1-V Reconfigurable Computing Sys-

tem,” 12th International Conference on Field-Programmable Logic and

Applications (FPL2002), pp. 806-815, 2002.

[37] L. Levinson, R. Manner, M. Sessler, and H. Simmler, “Preemptive mul-

titasking on FPGAs,” FCCM2000, pp. 301-302, 2000.

[38] M. Happe, A. Traber, and A. Keller, “Preemptive Hardware Multitasking

in ReconOS,” ARC 2015, pp. 79-90, 2015.

[39] Oliver Knodel, Paul R. Genssler and Rainer G. Spallek, “Migration of

long-running Tasks between Reconfigurable Resources using Virtualiza-

tion,” ACM SIGARCH Computer Architecture News, vol. 44, no. 4, Sep.

2016.

[40] https://www.open-mpi.org.

73

