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Textile recognition and manipulation using
tactile sensing based on active perception∗

Felix Wolf Hans Erich von Drigalski

Abstract

Tactile information is an attractive sensing modality, as it yields information
about the contact that is otherwise inaccessible, depends neither on lighting con-
ditions nor line of sight, and is computationally lighter than camera data. To
make use of it during the robotic manipulation of textiles, in this work I investi-
gate the sensing requirements, propose a suitable sensor, a gripper prototype and
a method to extract tactile information, and finally showcase it in an application.

First, I investigate the deformation of the human fingertip while it is under
load using stereo cameras and a 6D force plate. By measuring the force as well
as the deformation of the fingertip’s lateral surface, I relate the curvature of the
fingertip surface to the force acting on the fingertip.

Second, I propose 1) an open-source gripper with a sensor that utilizes the
deformation of a rubber half-dome to determine the normal and shear force acting
on the fingertip and 2) a rubbing motion implemented on this gripper, which
extracts information about the textile that is being grasped. I show that the
data obtained by this exploratory motion allows not only the identification of
textiles, but also to distinguish between a single and multiple layers of them, and
propose a method to perform this classification. Furthermore, I show that by
varying the speed and force of the exploratory motion, different information is
obtained, and that this can be used to increase the accuracy of the identification.

To show the usefulness of the proposed method, I use the proposed open-
source gripper and exploratory motion, as well as computer vision algorithms

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science
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and human tools, to fold shirts with a humanoid robot. I show that the use of
haptic feedback as well as the use of human tools significantly reduce the time
required to complete the folding task.

In summary, the proposed methods and gripper contribute a novel way to a)
identify different textiles and distinguish between a single and multiple layers of
them, b) manipulate textiles with a serial manipulator and c) complete the task
of laundry folding with a humanoid robot. The code and mechanical designs used
in this work are open source and available for download.

Keywords:

Textile Manipulation, Tactile Recognition, Haptic Sensing, Robotic Gripper, Ser-
vice Robots
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能動的な触覚センシングに基づく布の識別と折り畳み

操作∗

フォン　ドリガルスキ　フェリクス　ウォルフ　ハンス　エリヒ

内容梗概

触覚情報は他のセンシング方法では計測できない場所にまでコンタクトする

ことが可能であり，さらにカメラと比較し照明条件や視線に依存せず，計算速度

も早いことからとても魅力的な計測手法である．本論文では，布製品をロボット

が扱うために，必要となるセンシング技術について調査する．さらに，最適なセ

ンサやグリッパーのプロトタイプ，接触情報を抽出するための手法について提案

し，最後にそれらの応用例を示す．

はじめに，ステレオカメラと 6軸力センサを用いて，荷重を加えたヒトの指
先の形状を計測した．力と指先側面の変形を同時に測定することによって，指先

の曲面と指先が発揮している力とを紐付けることができる．

次に以下の２つを提案する．1) ゴム半球の変形を用いることで，指先の垂直
応力及びせん断応力を取得することができるセンサを用いたオープンソースなグ

リッパ．2) このグリッパによるこすり動作により，把持中の接触情報を取得する
手法．

この動作により，事前に学習した布製品を識別するだけでなく，それらが複

数枚重なっていることを識別するための手法とその結果を示す．さらに、こすり

動作の速度と力を変化させることによって，異なる情報が得られ，これらを用い

て推定の精度を高めることができることも示す．

提案手法の有効性を検証するために，提案するグリッパでこすり動作を行い，

画像認識と折りたたみ補助道具を用いて，ヒューマノイドロボットを用いたシャ

ツ折りたたみ動作を生成した．さらに，触覚フィードバックの使用だけでなく、

∗奈良先端科学技術大学院大学 情報科学研究科 博士論文, NAIST-IS-DD1561035, 2018年 3月
15日.
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補助道具を活用することで折り畳み動作を完了するために必要な時間を大幅に短

縮することを示す。

まとめると、提案した手法とグリッパは以下の新規性を有する a)布の識別及
び布の層が１層か複数層かの識別．b)ロボットアームを用いた布の操作 c)ヒュー
マノイドロボットを用いた服の折り畳み．本研究のソースコードと３Dモデルは
オープンソースでありインターネット上からダウンロードすることが可能である。

キーワード

布の操作、触覚による認識、ハプティクセンシング、ロボットグリッパ、サー

ビスロボット
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”The tactual properties of our surroundings do not chatter at us like their colors,
we have to make them speak... Eye movements do not create color the way finger
movements create touch.” (Katz, 1925)
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1. Introduction
If the living room, as Cynthia Breazeal put it, is the final frontier for robots,
then surely soft objects and clothes are one of its great battlefields. Even though
robots have demonstrated superhuman speed and strength with rigid objects,
their performance when manipulating even simple unstructured textiles is orders
of magnitude lower than humans’. Nonetheless, the manipulation of textiles is
required for countless tasks in the household (e.g. laundry, bed making, table
setting) as well as the workplace (e.g. car seat assembly, furniture manufacture,
dry cleaning facilities, not to mention clothes manufacturing). Accordingly, the
demand for robots that can manipulate textiles and clothing articles is significant.

The challenges in textile manipulation are numerous (complicated task repre-
sentation, occlusions, large search space) and span fields as diverse as computer
vision, task planning and material science. By exploiting the sensing modality
of touch, we aim to relax some of these problems. Tactile sensing can extract
information from objects that is hidden from sight, and it is with good reason
that we as humans have difficulty imagining folding a shirt without feeling it with
our fingers — tactile feedback is central to our internal task representation.

Bohg et al. [7] explore the notion that interacting with the environment creates
rich signals that would otherwise not be present, and that only the combination
of action and perception allows us to form meaningful representations of our
environment. As an example, one might imagine picking up a crumpled clothing
article in order to unfold and identify it. The importance of active perception for
this task should be immediately evident.

In this thesis, I propose a method based on active perception to determine
the material of a clothing article using a biomimetic finger rubbing motion, and
to distinguish if a single or multiple layers have been grasped.

First, I present background on the human fingertip in section 2 and investigate
the relationship between its deformation and the force applied on it. It grounds
the design considerations for the open-source gripper introduced in section 3,
where both the design and the exploratory rubbing motion are explained, as well
as the results of the textile recognition experiments. In section 4, I implement a
clothes-folding approach using a humanoid robot and a folding tool for humans.
Finally, I conclude in section 5 with an outlook for future work and applications.
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1.1 Contributions

To summarize, the contributions of this thesis are:

1. A method to distinguish different textiles and determine if a single or mul-
tiple layers of it are present

2. An open-source gripper design as well as code to implement the method

3. Experimental data showing the method’s limits and requirements in terms
of sensory data
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2. Human Fingertip

2.1 Introduction

The contact at the human fingertip is an important source of information during
human grasping. Particularly remarkable is the ability to sense a failing grasp
before slippage occurs, and to sense even small textures. Understanding the
contact at the human fingertip better should give us insight into

One can see that the lateral side of the fingertip is deformed when touching
an object. We pose the question if this deformation can be used to to determine
the force applied to the finger.

Successfully measuring the lateral deformation of the fingertip would have
the added benefit of validating simulations of the deformation of the human
fingertip. Simplified models of the fingertip have been proposed by Srinivasan [8]
and Tada [9], but their results have only been compared with the fingertip’s
contour when it is placed under a line load.

Thus, the goal of this section is to:

• develop a measuring device and method that can measure the shape of the
lateral surface of a human fingertip

• investigate whether the fingertip’s deformation yields sufficient information
to determine the contact force

2.2 Related work

2.2.1 Fingertip deformation

Srinivasan [8] has investigated the deformation of human and primate fingertips,
and proposed a “waterbed” model of the fingertip as a membrane filled with a
fluid under pressure. Tada and Pai [9] has extended this model by replacing the
membrane with simplified shell elements with bending stiffness. Their results are
compared to the deflection of a human fingertip’s bottom side when subjected to
a line load.

A number of recent works on fingertip deformation have concentrated on
increasingly complex FE models of the fingertip in an effort to investigate the
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Figure 1. A deformable hemisphere is simplified to a linear spring in [1]

biomechanics behind fingertip sensation [10, 11]. These simulations investigate
the strain and vibration frequencies present in different layers of skin. Real-time
calculation will require a more lightweight approach, however.

Mainly in the interest of designing robot fingertips, a number of analytical
solutions for simplified deformable bodies have been published, such as Inoue
and Hirai [1], which presented equations to express a homogenous, deformable
hemisphere as a spring, depending on the angle of contact. In the case of a robot
hand with deformable fingertips, the results can also be used to incorporate its
fingertip into the control system at reduced computational cost.

A review of the state of the art regarding tribological measurement of skin
properties was published in Derler and Gerhardt [12].

2.2.2 Fingertip force sensors

For measuring fingertip force in humans [13, 14, 15, 16] have been pur-
suing the use of fingernail imaging to measure the fingertip force, direction, and
angle of contact. Their idea is that the fingernail changes color in distinct pat-
terns when the fingertip is charged, because of the constricting blood vessels in
the flesh underneath the fingernail (see fig. 2) [17].

A first prototype sensor was based on 6 LEDs and 8 photoreceptors that were
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Figure 2. Average fingernail coloration patterns for 15 human subjects for 6
different force poses. 5x contrast is applied. [2]

attached to the fingernail to measure the coloration (see fig. 3). Sun et al. [18]
mention that the sensor predicted normal force to within 1 N accuracy in the
range of 2 N and shear force to within 0.5 N accuracy in the range of 3 N, and
note the disadvantage of having to manufacture sensors fitted to each subject’s
fingernail. The most recent review of this approach compared the transmission
qualities of different wavelengths in the fingernail [3].

More recently, the use of camera images taken from above the fingernail was
proposed [19], and active appearance models used to transform the camera images
to reference images [20]. Predictions of the normal force with an RMS error of
0.3 ± 0.1 N and shear force with an RMS error of 0.25 ± 0.1 N were reported.

A wearable sensor has been commercialized in 2011 by Keskato and Shiseido1,
which is supposed to measure the normal force at the fingertip. The sensor
consists of two parallel beams, the ends of which are in contact with the lateral
sides of the fingertip. When the fingertip is pressed on an object, the displaced

1Sold under the brand name “HapLog”
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Figure 3. Schematic of the sensor array on the fingernail area from [3]

Figure 4. Schematic of a commercial fingertip force sensor. The deflected beams
are arranged parallel to the force direction in this image. Reproduced from
http://keskato.co.jp/products/HapLog.html

fingertip pulp causes the beams to bend outwards (see fig. 4). Strain gauges
inside the beams measure their deflection, which is then connected to the fingertip
force through reference training data previously recorded with the subject. The
main disadvantages of this setup are the inability to measure lateral forces, and
the constraining of the fingertip’s deformation, which could affect the haptic
perception of test subjects.

For use in robotic hands Many works on tactile sensors have concentrated
on perceiving the same phenomena believed to be sensed by humans in order to
predict the onset of slip. A review of sensor technology can be found in [21].

In this way, [22] have placed accelerometers in a foam matrix (a fingertip
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facsimile) and tried to detect vibrations caused by the slipping at the edges of
the artificial fingertip ridges. This emulates the FA receptors in human skin. One
problem with this approach is that the abrasion caused by wear of the artificial
fingertip influences the behavior of the contact, and the vibrations induced during
slip.

As noted in [21], the use of conventional arrays for slip detection has been
suggested, but is only feasible if the scanning rate and array resolution are suffi-
ciently high. In this vein, [23] propose the use of a piezo-resistive sensor pad
evaluated at a very high frequency to detect the incipient slipping of an object.
They used a robotic arm to slide a foam-covered 80 x 80 mm pad of pressure sen-
sors over different surfaces, which the pad was sampling at about 1800 Hz. The
high frequency allowed the extraction of spectral information, which was used to
train an artificial neural net to detect if the object is slipping or at rest, as well
as the texture of the object (e. g. a mouse pad or a cup).

Different types of artificial skin have been proposed, for example by [24], who
claim to detect incipient slip with two inductive sheets separated by a rubber
layer. [25] propose a transparent rubber matrix inside the fingertip which hold
independent chips which measure the stress and transmit data optically. Their
prototype is supposedly able to distinguish between rolling and slip.

2.3 Theoretical background

2.3.1 Stereo vision

In stereo vision, three-dimensional information is generated from two images of
the same scene. If a point can be seen in both images, its depth or distance to the
cameras can be calculated via triangulation. As we use stereo vision to measure
the fingertip surface, we introduce the theoretical basics in this section.

Disparity and triangulation Disparity can be defined as the difference be-
tween pixels d = xl−xr. In an ideal camera configuration, it can easily be shown
that the following formula holds true (see fig. 5):

Z = fx
T

d
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Figure 5. Depth calculation from triangulation in a stereo setup (similar triangles
marked in colors)

with T the baseline distance of the cameras and fx the focal length. One can
see that depth and disparity are inversely related, which implies that fine-grain
depth measurement is limited to nearby objects.

To get to this arrangement, however, general configurations of camera orien-
tations have to be considered.

Epipolar geometry Epipolar geometry describes the relation of two pinholes
cameras, using the following characteristics [26]:

• the point of interest X

• the centers of projection OL and OR

• the points of intersection of the line −−−→OLOR with the two image planes, called
the epipoles eL and eR

• the projection of the point of interest X on the image planes, xL and xR

• the epipolar plane formed by X, OL and OR, and the intersection of the
epipolar plane with the image planes, called the epipolar lines
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Figure 6. Epipolar geometry (cc by-sa 3.0 Arne Nordmann)

It can be shown that, if the projection xL of a point X is known, then xR has to
lie on the corresponding epipolar line (see fig. 6). [27] detail the derivation of the
fundamental matrix F and essential matrix E2, which contain information about
the rotation and translation of the two cameras and which can be used to find
the epipolar line in world and camera coordinates respectively. The epipolar line
is given by (x′

R)
TExL = 0, where x′

R denotes the projection in the right hand side
camera’s coordinates. Notably, this property allows the restriction of the search
space from two dimensions to only one.

If the projections xL and xR of a point are found, its depth can be calculated
through the correspondence condition of the fundamental matrix:

(x′
R)

TFxL = 0

Rectification and calibration A special case arises when cameras with iden-
tical focal lengths are placed such that the image planes are parallel. In that case,
the epipolar lines are parallel, and the epipoles lie at infinity (see fig. 8). Most
notably, the depth calculation is reduced to a term directly proportional to the
disparity of the point:

X =
b

xl − xr

 xl

yl

1


An image pair can be transformed such that the epipolar lines become parallel.

2p. 240 ff.
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Figure 7. Image rectification illus-
tration (cc-by-sa 3.0 Bart van Andel)

(xL,yL) (xR,yR)

OL OR

P

b

Figure 8. Special case after rectifica-
tion: frontal parallel cameras

This transformation is called image rectification. Because of the increased sim-
plicity and reproducibility when calculating with perfectly coplanar, row-aligned
images, most image treatment algorithms work only on rectified images [28].

Rectification maps can be calculated on-line via Hartley’s algorithm [29],
which requires no computation of the camera’s intrinsics, but is potentially less
precise and offers no image scale. It is both more intuitive and appropriate to use
calibration patterns to compute both the camera intrinsics and rectification maps
in advance. This process is readily implemented in OpenCV as well as MATLAB.

Preparing a stereo setup will involve the following steps:

• calibration of each camera (finding the camera intrinsics matrix M, and the
distortion coefficients)

• stereo calibration of the two cameras (finding the rotation and translation
matrices R and T, and the essential and fundamental matrices E and F)

• computation of the rectification parameters via Bouguet’s algorithm [30]
(and optionally the reprojection matrix Q)

At the end of the OpenCV implementation stand two lookup maps which, when
applied to the raw camera images, return undistorted and rectified pictures ready
for use in stereo vision algorithms.
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The last note should be that the reprojection matrix Q allows the calculation
of real-world coordinates of a point:

Q


x

y

d

1

 =


X

Y

Z

W



W being a scale factor, such that the 3D coordinates are

 X/W

Y/W

Z/W

. 3

2.3.2 The matching problem

Image registration methods can be categorized into intensity-based methods,
which find correlating patterns in the grayscale values of the images, and feature-
based methods, which try to match only especially distinct, characteristic points.

Intensity-based methods

Block matching Block matching is the simplest way of finding a corre-
sponding point in the second image. It compares the neighborhood of a pixel in
the reference image (a “block”) with the neighborhood of a pixel in the target im-
age. The similarity can be established by criteria such as the sum of absolute dif-
ferences (SAD), sum of squared differences (SSD) or normalized cross-correlation
(NCC) [31]. The size of the neighborhood can also differ between block matching
algorithms.

If the two images are rectified, the search space in the right image is reduced to
pixels further to the right than the pixel being searched (yR = yL and xR > xL).
Even then, the maximum search distance should be limited in order to minimize
calculation cost. However, a small search distance can reduce precision and cause
mismatches. This inherent conflict of interest in block matching algorithms can

3p. 435 in [28]
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Figure 9. Problems of block matching algorithms. Photograph (c) Anika Henkel

be reduced by fine-tuning the search distance to a suitable value for the scene in
question 4.

Block matching is a very versatile method of image registration, and requires
no knowledge of camera parameters. For this reason it is also often used in
optical flow estimation and video compression. However, block matching usually
fails when patterns repeat in the picture, such as grids or line, or when the area in
question is relatively homogenous, like a field of snow or clouds. The sensitivity
to repeating patterns increases with the allowed search space, as well.

Block matching is also not inherently lighting invariant, but it can be if it is
4For example, video compression algorithms might reduce the search range for optical flow

estimation when the frame rate of a movie file is high, and stereo correspondence searches might
use knowledge about the scene to restrict the range.
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applied to LoG5-filtered images. Because of its high speed at low search distances,
it is common in motion tracking, too.

Dynamic/adaptive block matching, variational methods It can rea-
sonably be assumed that contiguous objects make up a considerable portion of
everyday scenes. For pixels that show the same object, the disparity would tend
to fluctuate very little. One method to improve the results produced by block
matching algorithms is thus to impose a smoothness constraint.

Some approaches change the window size adaptively, especially around object
borders [32]. There also exist multilevel (pyramiding) versions of block matching
algorithms [33].

Variational methods as proposed by [34] pose the smoothness constraint as
as a flux problem between neighboring pixels in the x as well as the y direction.
They are global rather than local (like block matching algorithms would be), and
the solution of the resulting partial differential equation is computationally heavy
and not real-time capable. It is also principally used for optical flow estimation
rather than correspondence search in stereo vision.

Feature-based methods Feature point matching methods try to match only
especially characteristic points in the two images. These correspondences can
then be used to create a transformation map between the images, or to iden-
tify objects in a scene. Feature-based methods are a powerful tool for object
recognition, but can also be used for general image registration.

A state-of-the-art feature matching algorithm might consist of the following
steps. The implementation chosen by [35] for SIFT is given as an incomplete
example.

1. Candidate generation / interest point detection (SIFT: Scale-space extrema
detection)

2. Keypoint localization and selection (SIFT: Stability check, orientation as-
signment)

3. Descriptor extraction (SIFT: Oriented histogram of gradients)
5Laplacian of Gaussian
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4. Calculation of feature similarity (SIFT: Euclidean distance of descriptor
vector)

5. Descriptor matching (SIFT: Nearest neighbor (Best-Bin-First))

6. Exclusion of weak and/or ambiguous matches (SIFT: No match if second-
nearest neighbor is >0.8 as close as nearest)

Candidate detection and selection Interest points or keypoints are well-
defined points in the image that are rich in local information and stable against
transformations.

Methods like SIFT and its variants (SURF, CenSure...) generate keypoint
candidates from extrema in intensity as well as scale space, as scale invariance
is desirable for stable view-based object recognition. If scale invariance is not
required, as is the case in this work, other detectors such as the Harris corner
detector or blob detectors might be used. An overview about different interest
point detectors has been published in [36] and [37]6.

Feature descriptors Once a point of interest has been detected, a feature
descriptor has to be extracted from it. A large number of descriptors has been
proposed over the last few years which are still actively competing. [38] summarize
the situation well:

“A large number of vision applications rely on matching keypoints
across images. The last decade featured an arms-race towards faster
and more robust keypoints and association algorithms: Scale In-
variant Feature Transform (SIFT) [35], Speed-up Robust Feature
(SURF) [39], and more recently Binary Robust Invariant Scalable
Keypoints (BRISK) [40] to name a few. These days, the deployment
of vision algorithms on smart phones and embedded devices with low
memory and computation complexity has even upped the ante [...]”7

Most of them attempt to offer improved properties in the following fields [41]:
6This paper was not available through the institute’s subscription and is mentioned here

without verification.
7Citation numbers adjusted
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• Invariance against transformation (rotation, lighting, scale)

• Low calculation cost (during extraction and matching)

• Low memory requirements

• High reproducibility

Binary feature descriptors have recently gained popularity because of their low
memory requirements and computational cost. While feature descriptors based on
oriented histogram of gradients, like SIFT, are represented as a vector of floating
point numbers that is compared via euclidean distance, binary descriptors are
both shorter and are compared via hamming distance.

Exclusion of weak and ambiguous matches After the similarity of all
features has been evaluated, they have to be matched. Brute force matching with
a fixed cut-off threshold can be applied, but the most common method appears to
be some form of nearest neighbor matching, as practiced by SIFT, for example.
After nearest-neighbor matching, the similarity to the second-nearest neighbor
can be checked, and the match discarded if it is ambiguous. It stands to reason
that the number of ambiguous matches can increase and disrupt matching quality
if the buckets are very large.

2.4 Measurement setup and implementation

2.4.1 Force sensor setup

The force measurement setup consists of four force sensors placed at each corner
below the acrylic plate on which the finger is pressed. Each force sensor measures
the forces in three directions, such that a resultant 6 element vector containing
both forces and moments can be calculated. The force data is captured at a
frequency of 40 Hz.

The setup includes a camera pointed at the finger from below, which can be
used to measure contact eccentricity and slip coefficient. The camera was not
used during these experiments, however.
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Figure 10. The force measurement setup before addition of stereo cameras.

The data received by the device is handled by a proprietary firmware by
producer TecGihan. As the dll provided uses managed memory, a wrapper class
based on gcroot was constructed.

2.4.2 Stereo cameras

The stereo setup consisted of two USB 3.0 cameras8 with macro lenses, mounted
on a 3D printed solid polymer frame (see fig. 11). The camera mount was then
screwed to a simple scaffold of aluminum extrusion profiles. To ensure that the
precision of the setup is sufficient, so the theoretical maximum depth resolution
was evaluated with the formula provided in [21], p. 422:

∆Z =
Z2

fT
∆d

Where ∆d is the physical pixel width of the camera’s sensor, ∆Z the depth
resolution, f the focal length and T the baseline distance between the two cam-
eras. The pixel width is 4.8 µm while the macro lenses offer a focal length of 3.5
mm. The distance to the object filmed would normally be around 80 mm.

Fixing the cameras in hole pair 3 of the camera mount yields the lowest angle
between cameras and a baseline distance of T = 52 mm. This means that the
maximum available depth resolution has a theoretical value of

8Point Grey Research brand, model FL3-U2-13Y3M-C.
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Figure 11. 3D printed camera mount. Hole pairs 1– 3 allow for different baseline
distances.

Figure 12. The measurement setup with cameras and force sensors

∆Z =
(80mm)2

3.5mm · 52mm
· 4.8µm ≈ 169µm

Images were recorded at frame rates of 150 Hz. As the region of interest on
each camera’s sensor is small (since the lower half is always obscured by the force
sensor), finetuning the configuration of the cameras allows even higher frame
rates, at the cost of signal noise. This frame rate was chosen as a compromise
between image quality and frequency.

18



Figure 13. Possible deformation patterns of the fingertip

2.4.3 Evaluated parameters

It is evident that the most flexible part of the finger are the fingertips’ bottoms,
where most of the deformation will take place. When pressure is applied, fluid
displacement inside the fingertip causes the lateral side to dilate. One might
expect the overall curvature of the fingertip’s side to decrease as it is pressed
down on to an object, but the evolution of the fingertip shape and the curvature
is a priori unknown (see figure 13). To quantify the curvature numerically, the
fingertip surface is approximated by a paraboloid. The maximum curvature of a
paraboloid f(x) = a0 + xa1 + ya2 + x²a3 + xya4 + y²a5 can be found easily by
transforming its coordinate system to lie in its center at an angle such that the
xy term disappears. It then equals curvaturemax = max(a3, a5).

A weakness of this approach is that the choice of points used for the approxi-
mation heavily affects the properties of the resulting paraboloid, although control
over the number of points is limited, and the exact locations of the points on the
fingertip cannot be easily predicted.

A further parameter that could be evaluated is the finger’s thickness. However,
other fingers in the background can disturb the extraction of the “main” finger’s
borders, and thus easily falsify the measurement. Furthermore, the thickness
would be measured in pixels of the camera image and then transformed into
millimeters, which would have to include a corrective calculation that accounts
not only for the distance to the cameras, but also for the projection error caused
by the close view (the upper and lower border seen in the camera image are not
the two points on the cross section with the highest thickness). As low fidelity
and reproducibility would have been likely, this parameter was not considered

19



Figure 14. Structure of the proposed algorithm

further.

2.4.4 Proposed algorithm

The feature point matching algorithm accepts two rectified stereo images, their
binarized versions and the reprojection matrix Q as input, and returns the ap-
proximation of the fingertip surface.

The algorithm can be split into the feature point matching and the iterative
surface approximation. As seen in figure 14, the feature point matching algorithm
passes matches on to the surface approximation algorithm. In the latter part,
surface candidates are used to reject outliers in the matched set of points and to
refine the approximation.

From the returned surface candidate, the curvature is extracted as described
in section 2.4.3.

Feature point matching As mentioned in section 2.3.2, feature point match-
ing is a highly empirical method primarily used for object recognition. It is an
appropriate approach to the problem at hand, which consists of the recognition
of just one object. It is also a more sophisticated method than block matching,
and it stands to reason that it can be well-optimized to incorporate our prior
knowledge about the scene. It is notable that fingerprint identification is also
based on a form of feature point matching, which is more robust when presented
with repeating patterns such as fingertip ridges.

This first part of the algorithm utilizes the rectified camera and binarized

20



images, and returns the matched points found between the pictures.
The previous knowledge about the scene includes the very important informa-

tion that only one visible object rotates in the view of the cameras, and all other
parts of the scene are suppressed. This means that a) neighboring points are
very unlikely to move very differently from one another, b) regions where points
are hidden from view are scarce (e. g. at the edges of the object), c) due to the
rectification, all visible points should be at the same height in the two pictures.

Going by the structure elaborated in section 2.3.2, the algorithm proceeds as
follows:

1. Harris corner detection (excluding points where the binarized image is
black)

2. Feature descriptor extraction

3. Exclude all matches with high y-disparity

4. Calculate feature similarity for the remaining matches

5. Match by nearest neighbor with a threshold cut-off

6. Calculate median x-disparity from current matches

7. Exclude matches with x-disparity too far from the median

8. Iterate the above three steps until no matches are excluded on the grounds
of x-disparity

9. If too many matches are returned, increase the quality threshold and enter
into step 5

The MATLAB implementation switches steps 3 and 4, as the calculation of feature
similarity for all pairs is available in optimized code that outperforms the order
described above, although it should normally be the faster option.

A FREAK descriptor was used for compliance with the standard in MATLAB
version 2013a [38].

It was found empirically that if the number of matches is too large and too ran-
domly distributed, the surface approximation algorithm fails to eliminate matches
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Figure 15. Successful iteration of a fingertip surface approximation

and to improve the approximation. To avoid pollution of the point set, step num-
ber 9 limits the number of returned matches to 120 pairs.

Iterative surface approximation For this method, it is assumed that the
matches are unambiguous and that there are only few outliers that have to be
recognized. In addition to the scene knowledge incorporated in the algorithm
described in the section above, the surface approximation takes into account the
relation of the two stereo cameras in space, as well as the presumed shape of the
object (through the choice of the surface to be approximated).

This part of the algorithm takes as input the matched points in the two camera
images, the projection matrix P1 and the reprojection matrix Q, and returns a
paraboloid as a surface approximation. It proceeds as follows

1. Project 3D points from matches and their disparity (via reprojection matrix
Q)

2. Fit a surface candidate S ′ to 3D points

3. Using S ′, project points from the surface as they would be seen in the left
image (via projection matrix P1)

4. Calculate euclidean distance of projected points and real points

5. Discard outliers
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6. Fit a new surface candidate S ′ to the updated set of points

7. Repeat steps 2 – 6, accept candidate on convergence

It should be noted that the choice to project the 3D points into the left image
is arbitrary, and the result would be the same if the right image (and the corre-
sponding projection matrix P2) was used. This is due to the stereo information
being contained within the disparity connected to each match.

The main parameters to tune are the cut-off threshold in step 5 and the
convergence criterion used to exit the iteration. It is particularly problematic
to reduce the cut-off threshold for the discarding of matches, as it is always a
compromise between overfitting and tolerating incorrect matches. Moreover, if
matches are too easily discarded, the algorithm does not converge until a lot of
characteristic points are lost or there is very little heterogeneity in the data set.

In the current implementation, only points with a euclidean distance of over
4 times the standard deviation were discarded. To err on the side of caution,
the iteration was not only stopped if no matches were discarded but also after a
maximum of five iterations.

2.4.5 Validation via LIDAR

In order to assess the precision of the measured values, a mock run of the ex-
periment was effected with a plastic replica of a human finger, and the results
extracted were compared against a LIDAR scan of the replica’s fingertip’s side.
A LIDAR sensor lends itself to this kind of test as it can have a very high depth
resolution at the price of a low scanning speed.

All points from the LIDAR scan were exported as a point cloud and treated
with MATLAB. Points used for the surface approximation were taken from a
rectangle, drawn by hand on the fingertip side, to correspond with the region
that the algorithm in question examined. Thus, the regions that both methods
could use to extract points were the same. For comparison, the areas can be seen
in figures 16 and 17.

The algorithm was applied to a number of images of the finger and the results
plotted in figure 18. Each dot represents the result of one image. The red line
represents the finger’s curvature as measured by the LIDAR sensor. The standard
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Figure 16. Points selected from the
LIDAR point cloud [mm]

Figure 17. Regions in the stereo im-
age pair from which feature points
could be selected [pixel]

Figure 18. Curvature measured
by LIDAR sensor and algorithm
[mm−1]

Figure 19. Number of feature points
used by algorithm on LIDAR com-
parison frames

deviation on the curvature measured by the LIDAR sensor was 0.01 mm−1 at a
total of 3 measurements from different images. Additionally, an uncertainty of
0.008 mm has to be taken into account for each 3D point.

The noise in the algorithm’s results is about two times higher than in the
LIDAR’s. More notably, the algorithm overestimates the curvature systematically
by about 60 %. This could be due to the selection of the region of interest, which
affects results considerably. On the one hand, points near the top or bottom end
of the fingertip are most affected by its curvature, but at the same time, those
areas are badly visible and produce the most unreliable matches, as can be seen
in figures 20 and 21.

The results of the validation are very sensitive to the choice of points that
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Figure 20. All feature points and
their estimate’s projection before it-
eration

Figure 21. Feature points and esti-
mated projections after iteration

are taken from the LIDAR image and included in the surface approximation.
Because there were no precise markers on the fingers, the regions from which
points were extracted could differ in size and position, and thus influence the
resulting surface.

2.5 Experiment results

For the fitting of all models, the force data was linearly interpolated to the points
in time when a frame was captured, i. e. the curvature was measured. About
10,000 frames were evaluated for the correlation calculations of each experiment.

For easier visualization, the contact forces were normalized to 1 in the graphs.
All data is given to two significant digits.

2.5.1 Protocol

The procedure (excluding finger preparation) for each subject consisted of a first
experiment, where only a normal charge was applied, and two further experiments
that involved an additional lateral charge. In all experiments, the subject started
at a hovering position above the acrylic plate. For the first experiment, the
subject touched the acrylic plate and started to press down on it over the course
of 3 seconds. The subject could lift or relax their finger after having reached
the maximum force. In the two experiments that included a lateral charge, after
pressing down on the acrylic plate, the subjects pulled their finger slowly and
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constantly to the left (in experiment 2) or right (in experiment 3). This resulted
in a movement towards or away from the cameras, respectively.

Five runs of three different experiments were recorded for six subjects. Before
the experiments were performed, four of the subjects lightly rolled their fingertip
side on an ink pad, so that the contrast might be increased. The two remaining
subjects used their fingers without any manipulation. In order to evaluate the
effect of this approach, the goodness of fit statistics of the polynomial models
were compared between the two subgroups (blank finger and inked finger). The
subjects with inked fingers are number 2, 4, 5 and 6 in the tables.

The participants were healthy males between the ages of 18 and 25.

2.5.2 Normal charge (experiment 1)

This experiment, putting the finger under a normal charge exclusively, should
paint the clearest picture of a correlation between curvature and normal force.
To test this, the correlation coefficients9 and the corresponding p-values were
calculated, and a second-degree polynomial model was fitted to the measured
curvature and normal force for each subject:

curvature(FN) = a1FN ²+ a2FN + a3

This allows a change in behavior over the range of normal force applied, which
is to be expected, as the fingertip does not seem to deform visibly after a certain
amount of force is applied, while avoiding overfitting.

Correlation between normal force and curvature Each subject’s runs
as well as the totality of all runs of the experiments were added separately to
evaluate whether a correlation could be established between the normal force
applied and the curvature that was measured. The correlation values reveal a
highly significant, but only small linear correlation between the curvature and the
normal force (see table 1). Moreover, the correlation values for different subjects
can lie above and below 0. Despite the slightly positive correlation measured

9Assuming the force and the curvature to be variables of one observation, the correla-
tion coefficients are calculated from the covariance matrix C(i, j) with the formula R(i, j) =

C(i,j)√
C(i,i)C(j,j)
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Table 1. Correlation values for curvature and FN in experiment 1 (normal charge)
Subject Correlation value (curvature, FN)

1 0.19
2 -7e-4
3 7e-4
4 .043
5 -.044
6 .068
All .11

Table 2. Parameters and 95 % confidence bounds for curvature(FN) = a1FN ²+
a2FN + a3
Subject a1 a2 a3 95 % (a1) 95 % (a2) 95 % (a3)

1 -3.8e-05 0.006 0.17 -5e-4, 5e-4 9.7e-4, .01 .16, .18
2 -0.0035 0.019 0.22 -7.4e-3, 5e-4 -.0034, .04 .2, .25
3 -8e-05 0.0042 0.32 -1e-4, -5.7e-5 .003, .006 .31, .33
4 0.00036 -0.0079 0.36 3.4e-05, 7e-4 -.014, -.002 .34, .39
5 0.00063 -0.011 0.37 -8e-4, .002 -.026, .004 .33, .4
6 -0.00038 0.011 0.23 -5e-4, -3e-4 .0073, .01 .21, .25

for all values, the variation between subjects implies that the correlation could
not be conclusively distinguished from 0. This is discussed in more detail in the
following section.

The confidence intervals and for the parameters of the curve fitting model are
listed in table 2. It is helpful to keep in mind that the curvature could range from
0 to 0.5 mm−1, and the normal force applied between 0 and around 20 N . It is
also important to note that some confidence bounds cross zero, so one cannot be
sure that those coefficients are different from zero.

It should be noted that for some subjects, a negative relationship between
applied force and curvature is obtained (see fig. 23). This can be connected to
excessive use of force, which can distort the data set. While many graphs give
the impression of an acceptable fit (see fig. 22), one has to keep in mind that the
expected curvature changes very little over the range of the independent variable.
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Figure 22. Modeled curvature with
data from experiment 1 (normal
charge)

Figure 23. Modeled curvature with
data from experiment 1 (normal
charge)
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Figure 24. Goodness of
fit (adjusted r-squared)
for each subject in ex-
periment 1
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Figure 25. Goodness of
fit (sum of squares) for
each subject in experi-
ment 1
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Figure 26. Goodness of
fit (standard error) for
each subject in experi-
ment 1

Comparison inked and blank fingers The goodness of fit of the inked sub-
jects’ models was compared to those of the subjects with clean fingers in figures
24, 25 and 26. It appears that, instead of improving the contrast in the image
and enriching the texture, rolling the finger on an ink stamp pad caused a risk of
insufficient lighting and can make it harder for feature points to be detected and
matched. This interpretation is supported by the sometimes spurious quality of
matches seen in fig. 33.
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Table 3. Correlation values between curvature and FN , FT in experiment 2 (lat-
eral charge to the left)

Subject Correlation with FN Correlation with FT

1 0.13 -0.061
2 0.05 -0.04
3 0.16 0.21
4 -0.15 -0.21
5 -0.14 0.11
6 0.024 0.04

all 0.02 0.05

2.5.3 Lateral charge (experiments 2 and 3)

Charging the contact laterally changes the distribution of the fluid inside the
fingertip pulp, which causes the deformation of the fingertip and changes the
visible curvature in complex ways. Again, the correlation between the contact
forces and the curvature was investigated. Due to the potential complexity of the
mechanism, two polynomial models of degrees 2 and 3 were evaluated, with FN ,
FT as independent variables and the curvature as the dependent one.

Correlation between normal and lateral force and curvature The runs
for each subject were added and evaluated separately in the same way as described
for experiment 1. It is noteworthy that, while the p-values are very low for
the other correlations and experiments, the p-value for the correlation between
curvature and FT in experiment 3 is at a relatively high 0.32. This implies that
even the low correlation that was found might well be due to chance (see table
4).

The correlation values for FN in both experiments 2 and 3 are lower and less
stable than in experiment 1 where only the normal force was evaluated. If this
is not an effect of chance, it suggests that the measurement becomes less reliable
when a general grasping situation is considered where the contact is charged
laterally.

The second- and third-degree polynomial models taking into account both
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Table 4. Correlation values between curvature and FN , FT in experiment 3 (lat-
eral charge to the right)

Subject Correlation with FN Correlation with FT

1 0.17 -0.25
2 0.026 0.31
3 -0.092 0.097
4 -0.008 -0.007
5 -0.096 0.16
6 -0.083 0.074

all 0.12 0.009

Table 5. Parameters for curvature(FN , FT ) = a00 + a01FT + a10FN + a02(FT )
2 +

a11FTFN + a20(FN)
2 (Experiment 2) (lateral charge to the left)

Subject a00 a01 a10 a02 a11 a20

1 0.072 0.0084 0.069 -0.0038 -0.0011 -0.0099
2 0.16 -0.036 0.13 0.0015 0.011 -0.032
3 0.28 0.03 -0.014 0.011 -0.0098 0.0025
4 0.4 0.0024 -0.015 -0.014 0.0028 0.00078
5 0.31 0.21 -0.15 0.031 -0.18 0.098
6 0.27 -0.055 0.015 -0.0058 0.011 -0.0033

all 0.3 -0.02 -0.0087 0.0073 -0.0028 0.00095

normal and lateral force fare very similarly. Three goodness of fit statistics10 are
identical for both models within a margin of 5 %. It is thus reasonable to assume
that the third-degree polynomial model performs not significantly better than the
second-degree polynomial model, and preference should be given to the simpler
solution. The parameters for the second-degree polynomial model are given in
tables 5 and 8.

The sensitivity to movement to the right is visible in figures 28 and 29. There,
the curvature decreases as the fingertip skin and liquid inside the finger is pulled
towards the side viewed by the camera.

10Sum of squares due to error, standard error, adjusted R2,
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Table 6. 95 % confidence bounds for table 5 (part 1)
Subject a00 a01 a10

1 0.046, 0.098 -0.0032, 0.02 0.05, 0.087
2 0.03, 0.29 -0.092, .021 -0.045, 0.3
3 0.26, 0.31 0.0066, 0.053 -0.026, -0.0012
4 0.35, .45 -0.058, 0.063 -0.033, 0.0039
5 0.17, .46 0.15, .28 -0.38, 0.075
6 0.22, .32 -0.086, -0.023 -0.0058, 0.036
all 0.29, .31 -0.027, -0.014 -0.013, -0.0045

Table 7. 95 % confidence bounds for table 5 (part 2)
Subject a02 a11 a20

1 -0.009, 0.0013 -0.0058, 0.0036 -0.013, -0.0069
2 -0.012, 0.015 -0.016, 0.038 -0.083, 0.019
3 0.0066, 0.014 -0.014, -0.0056 0.0011, 0.0038
4 -0.041, 0.013 -0.0098, 0.015 -0.0016, 0.0031
5 7.1e-4, 0.062 -0.24, -0.11 0.0086, 0.19
6 -0.014, 0.0026 0.0034, 0.019 -0.0056, -9.6e-4
all 0.005, 0.0096 -0.0048, -8.9e-4 3.7e-4, 0.0015

Comparison inked and blank fingers The goodness of fit statistics for the
two types of finger preparation in both experiments are presented in figures 30,
31 and 32. There appears to be less of a difference between the blank and inked
fingers in experiments 2 and 3, but this could be due to the quality of the fits,
which is worse than during experiment 1. The results do not point towards the
ink application improving accuracy, but they are overall inconclusive.

2.5.4 Irregularities and sources of error

The following things might have had an influence on the outcome of the experi-
ments and should be noted.

• One subject used a lot of force and surpassed 50 N in normal force, while
others stopped short of 5 N.
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Table 8. Parameters for curvature(FN , FT ) = a00 + a01FT + a10FN + a02(FT )
2 +

a11FTFN + a20(FN)
2 (Experiment 3) (lateral charge to the right)

Subject a00 a01 a10 a02 a11 a20

1 0.072 8.4e-3 0.069 -3.8e-3 -1.1e-3 -9.9e-3
2 0.16 -0.036 0.13 1.5e-3 0.011 -0.032
3 0.28 0.03 -0.014 0.011 -9.8e-3 2.5e-3
4 0.4 2.4e-3 -0.015 -0.014 2.8e-3 7.8e-4
5 0.31 0.21 -0.15 0.031 -0.18 0.099
6 0.27 -0.055 0.015 -5.8e-3 0.011 -3.3e-3

all 0.3 -0.02 -8.7e-3 7.3e-3 -2.8e-3 9.5e-4

Table 9. 95 % confidence bounds for table 8 (part 1)
Subject a00 a01 a10

1 0.081,0.2 -0.086, -0.0097 -0.071, 0.07
2 0.21, 0.3 0.12, 0.17 -0.028, 0.036
3 0.085, 0.23 -0.13, -0.051 0.044, 0.17
4 0.37, 0.9 -0.4, 0.14 -0.72, -0.044
5 0.02, 0.36 -0.063, 0.2 -0.071, 0.31
6 0.25, 0.34 -0.04, 0.022 -0.0031, 0.02
all 0.26, 0.27 0.019, 0.032 0.0047, 0.0082

• Inked fingers were sometimes badly illuminated

• The lighting was changed slightly after the experiment was recorded with
subject 1, so that the finger would also be illuminated from above

2.6 Discussion

2.6.1 Correlation between contact force and curvature

It was found in all three experiments that the bare correlation between the contact
forces and the curvature measured was most often small, and could change sign
even in different runs of the same subject. There can be multiple reasons for this:

1. the phenomenon can take on different forms in different subjects
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Table 10. 95 % confidence bounds for table 8 (part 2)
Subject a02 a11 a20

1 -0.0035, 0.011 -0.0071, 0.035 -0.017, 0.023
2 0.028, 0.054 -0.014, 0.018 -0.00036, 0.0004
3 -0.085, -0.054 -0.062, -0.027 -0.047, -0.019
4 -0.023, 0.096 -0.071, 0.23 -0.0015, 0.21
5 0.0004, 0.049 -0.053, 0.073 -0.069, 0.032
6 -0.0049, 0.0048 -0.0029, 0.0039 -0.0012, 0.00028
all 0.00048, 0.0056 -0.00025, 0.0013 2.1e-05, 7.5e-05

2. the phenomenon is too complex to be described by a linear relationship or
the parameters tested are out of the usable range

3. there are confounding variables that have not been considered or measured

4. there is little or no connection between the curvature and contact force

5. one or more of the measurements is plagued by noise

All of these reasons shall be considered.

1. The phenomenon takes on different forms in different subjects
This explanation sounds feasible, since all human bodies are different. However,
the correlation coefficient should then stay roughly the same for each subject,
and only change between different subjects. The data shows that correlation
coefficients can change sign in different runs of a single subject.

2. The phenomenon is too complex to be described by a linear re-
lationship or the parameters tested are out of the usable range There
is some evidence for this explanation: the deformation of the fingertip seems to
reach a point of saturation or maximum deformation at a fairly low charge. At
higher charges, trembling and repositioning of the finger would distort the mea-
surement. It is a reasonable assumption that only a small range of fingertip force
would correlate with the deformation, but this range is not easily determined.
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Figure 27. Two-variable curvature models with data from experiment 2 (lateral
charge to the right)

3. There are confounding variables that have not been considered
or measured The third idea, that some other confounding factor could influ-
ence the deformation of the fingertip, cannot be discarded off-hand. Indeed, one
could envision temperature differences or physiological processes modifying the
behavior of the dermis and thus influencing the measurement. However, the effect
would have to be sizable enough to explain why the correlation coefficient would
change its sign. Secondly, the unconsidered factor would have to change between
runs recorded by the same subject. As all tests for each subject took no longer
than 20 minutes, the experimental conditions are unlikely to have changed during
that time. Finally, the coefficients for some of the subjects showed multiple sign
changes in subsequent runs, which makes this explanation unlikely.

4. There is little or no connection between the curvature and con-
tact force There is the possibility that curvature and contact force are not
as intertwined as assumed. Previous work has shown that the fingertip deforms
under a line load, and the commercial sensor mentioned in section 2.2.2 even ex-
ploits the deformation of the fingertip to measure the normal force. However, the
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Figure 28. Simple curvature models
with data from experiment 3 (lateral
charge to the right)

Figure 29. Two-variable curvature
models with data from experiment 3
(lateral charge to the right)

normal force might not be reflected in the curvature of the deformed fingertip,
rather than some other aspect of its deformation.

5. One or more of the measurements is plagued by noise There
are good arguments to make for the conclusion that one of the measurements,
specifically that of the curvature, is too unreliable and the results too noisy to
make out a correlation, even if there is one. Apart from the calculated correlation
coefficients, other signs that point towards this interpretation are the low amount
of matches returned on many images, some of which fail later quality tests outright
(see fig. 33). Another sign is that the fitted models do not change the curvature
very much with the force, and barely exit the range of its standard error, as
seen in the LIDAR validation in section 2.4.5. One could ask the question if the
curvature genuinely does not change further than the tight boundaries that were
observed - however, in that case the current measurement setup is not suited due
to its high error.

The evidence that at least one part of the extraction of the curvature from
the fingertip underperforms is plenty. What are the problems, and how could
they be addressed?
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Figure 30. Goodness of
fit (adjusted r-squared)
for the models of each
subject in experiment 2
(magenta) and 3 (red)
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Figure 31. Goodness
of fit (sum of squares)
for the models of each
subject in experiment 2
(magenta) and 3 (red)
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Figure 32. Goodness
of fit (standard error)
for the models of each
subject in experiment 2
(magenta) and 3 (red)

2.6.2 Problems in the measurement setup and algorithm

The measurement of the fingertip curvature starts with the image acquisition,
continues with the algorithm described in section 2.4.4, and ends with the math-
ematical extraction of the maximum curvature of the paraboloid surface approxi-
mation. While the theoretical depth resolution of around 170 µm could be better
for a phenomenon of this size, it remains at only 3 – 5 % of the total measured
range. The only way to improve the depth resolution outside of better technology
would be a rearrangement of the stereo setup, which might exacerbate the diffi-
culties posed by the large camera angle even further. As that would introduce
even more difficulty to the matching process however, it is fair to say that the
main source of error in the pipeline lies in the algorithm itself.

Its shortcomings could be described as follows:

• The region of interest (ROI) chosen for feature point detection is arbitrary
and is prone to influence the result immensely

The fact that the position of the ROI can influence the result heavily while being
very hard to localize precisely on the finger is a fundamental challenge to this
approach. At the same time, the points near the top and bottom of the fingertip
are the ones that carry the most information about the curvature11, and the ones

11As the points near the top and bottom of the fingertip center are further from the fingertip
center, they affect the quadratic term most.
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Figure 33. A failed matching landscape and the associated projected points

whose visibility is worst and whose position is thus badly defined.

• The unpredictable distribution of matches inside the ROI destabilizes the
resulting surface approximation

On top of the fact that the placement of the ROI would affect the result even if
the points inside it were distributed evenly, in reality the distribution of matches
is extremely uneven, and depends on the texture richness of the fingertip and the
feature detection and matching (see fig. 33). This further reduces the approxi-
mation quality and is a shortcoming of the basic nature of the feature matching
algorithm employed. If no effort to create a dense disparity map is made from
which to draw information, the regional density of matches is always a source of
error.

• The fingernail is visible in some images and is not excluded from the allowed
matches

Although the fingernail is one of the most rigid parts of the fingertip and will not
deform appreciably during everyday tasks, feature points found on the fingertip
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are included in the surface approximation. These distort the result, as the fin-
gernail does not have the shape of the surrounding skin. Care should be taken
to include only points that lie on the skin of the finger. This leads conveniently
into the next problem.

• The finger is not properly binarized

In the interest of simplicity and reliable localization of the finger in the image,
the binarization routine focuses on finding the accurate contour of the bottom
side and the front part of the fingertip. As the top side might be badly lit and
other fingers can be in view of the camera, a rough overestimation is used for
the top side of the fingertip. A more accurate binarization of the finger would
come at a higher computational cost, but would allow better sorting of potential
matches.

• The cleaning of matches during iterative surface approximation is insuffi-
cient. This is a multi-part problem:

– The discarding of bad matches during surface approximation is too
hesitant

– There is no satisfactory criterion for convergence during surface ap-
proximation

As described in section 2.4.4, there is an inherent risk in reducing the threshold
for the discarding of questionable matches. An excessively low threshold would
discard too many matches, and not converge before the shape of the approximated
surface is damaged and precision is lost. The current threshold is likely too high,
and does not cull enough bad matches.

• The matching worked better for the finger replica used during LIDAR val-
idation than for the subjects’ fingers

It can be seen on a considerable number of images that the algorithm’s perfor-
mance in real situations is lower than it was during the validation (see figures
33 and 21). This points towards either the validation being inadvertently too
easy, or the experimental images being of a drastically lower quality than during
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validation. Insufficient lighting may account for a part of the problem, as well
as the reflective surface of the finger replica, which would make the image more
rich in features than for human fingers, and thus better suited for analysis by the
proposed algorithm.

• The contrast of the camera image was not monitored and optimized for
inked fingers

During image acquisition, the cameras were not in manual mode and adjusted
their exposure automatically, taking into account the brightness of the whole im-
age, while only that of a small region of interest mattered to the algorithm. This
seems to have lowered the contrast seen on the inked fingers, as their brightness
values were pushed towards the edges of the available spectrum.

2.6.3 Avenues for improvement and associated problems

One way to improve the algorithm lies in more robust feature detection and
matching. One avenue would be to apply techniques used in fingerprint classifi-
cation to identify the ends of ridges and other characteristics of the skin. This
could result in more robust features, at the cost of lowered density.

The performance on inked fingers might be improved by adjusting the bright-
ness of the cameras with respect to the region of interest instead of the whole
image. The region of interest, for which the contrast would have to be increased,
should include only the fingertip side, and not the surrounding measurement
apparatus and background noise.

An immediate option to improve the quality of the measurement would be to
discard matches more rigorously during the surface approximation. The risk of
the excessive discarding of matches should be avoided by forgoing the evaluation
based on standard deviation. Specifically, a static cut-off threshold relaying real-
world measurements to the model could be tested, since the euclidean distance
being evaluated is already normalized by the reprojection matrix.

A more appropriate convergence criterion for the surface approximation phase
of the algorithm could be constructed out of a combination of a) the current stan-
dard deviation of the set of points, b) the difference in standard deviation between
the current and the last iteration and c) the number of discarded points by the
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last iteration. A well-chosen convergence criterion that assures the integrity of
the surface estimate would, in return, allow a more radical match culling.

To check against failure of the surface approximation, the higher-order pa-
rameters of the last surface candidate could be evaluated to ascertain that the
surface is a paraboloid and has no saddle point.

Another promising option would be to mend the surface approximation part
of the algorithm with the feature matching stage. Instead of first sorting matches
with a rough idea of which geometrical properties would be unacceptable (such
as an extreme x-disparity) and then applying the previous knowledge about the
shape of the object during the surface approximation, all the assumptions about
the scene would work at the same time and produce the most appropriate matches.
A previous version of the algorithm did not mix the geometrical sorting described
in section 2.4.4 with the nearest neighbor matching that was formerly performed
inside a MATLAB stock function. However, the improvements in match quality
and number were considerable. If the synthesis of sorting criteria were to create a
comparable jump in performance, then this would probably be the best approach.

A possible alternative route to retrieving the surface of the finger is to use
an intensity-based image registration method. If a dense disparity map of the
finger were available, one could evaluate it at evenly distributed points on the
fingertip, and thus eliminate one source of instability. However, one of the bigger
challenges for methods like block matching algorithms lies in repeating patterns,
like the ridges of the fingertip. The current MATLAB implementation of image
pyramiding and dynamic block matching was tested and did not deliver promising
results.

It would be prudent to test the performance of any future version of the
algorithm on multiple objects of different curvature and surface structure (re-
flectiveness, brightness, texture), in order to better predict the extent of the
improvements.

Finally, one could optimize the lighting by projecting structured light onto
the finger and either make it easier for the stereo matching algorithm to work, or
calculate the shape directly via the deflection of the stripe. As the object is round
and without holes, this could provide decent results. The use of a special light
source might restrict the applicability too much to be generally useful, however.
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2.7 Conclusion

We showed that stereo images of the human fingertip can be used to extract
information about the shape of its lateral surface. With the presented camera
setup, a theoretical depth resolution of 0.17 mm is achieved, which at results in a
minimum uncertainty of 3 – 5 % for each measured point on the finger at a total
range of interest of about 5 mm.

An algorithm based on feature point matching was proposed, which approx-
imates the 3D shape of the fingertip via a paraboloid. The algorithm’s perfor-
mance was found to be low, as the stereo image of the fingertip presents several
difficulties, such as the homogenous and repetitive texture and the high baseline
distance required for a sufficient depth resolution.

The curvature of the surface approximation at the extremal point was ex-
tracted and tested for correlation with the normal and lateral fingertip force.
While a slightly positive correlation between the normal force and curvature was
found for the sum of observations, this was not strictly true for all subjects, and
no significant correlation with the lateral force was found. While no direct cor-
relation between contact force and fingertip curvature can be established on the
basis of the measured values, the change in deformation is strongest at low force
values.

We conclude that 1) if a force can be measured, then lower forces will be easier
to distinguish, and 2) a different measurement mechanism than external cameras
will be appropriate.
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3. Textile sensing

3.1 Introduction

When manipulating objects, humans make extensive use of haptic sensation and
feedback. Accordingly, reproducing the human sense of touch in robots has been
the subject of numerous research and engineering efforts. While cameras are the
most common sensor in modern autonomous robots interacting in unstructured
environments, haptic and tactile feedback offers a way to gather data that would
otherwise be inaccessible, such as the state of a grasp that is occluded by the
gripper or a container e.g. when trying to grasp an object in a duffle bag). The
ability to handle and distinguish textiles supports robots in the fulfillment of daily
living tasks such as laundry and bed-making, as well as in commercial applications
in unstructured environments, such as gift wrapping or covering objects.

Bohg et al. [7] explore the notion that interacting with the environment creates
rich signals that would otherwise not be present, which affords learning algorithms
not only the use of these signals, but combining the action and the resulting
perception. This concept comes natural to us when it comes to touch, where
making contact, grasping and forcefully interacting with an object gives rise to
unique signals that humans learn to interpret skillfully. Indeed, Lederman and
Klatzky [42] observed that one of the ways in which humans explore an object’s
properties is to evaluate the object’s roughness by dragging their fingertips over
its surface.

In this chapter, we present an active perception strategy: we investigate if
moving the fingertip over the surface of a material can be used to distinguish
between and classify textiles12, by using a biomimetic back-and-forth fingertip
motion to extract tactile signals from a grasped textile as shown in Fig. 45.
We also investigate which motion and sensing parameters affect the recognition
results and propose a method to discriminate textiles while they are grasped and
during manipulation.

We show experimentally that our method can distinguish not only between
different textiles, but also between multiple and single layers of the same material,

12We use the term ”textile” to mean thin, easily deformable objects with reversible deforma-
tion, including ones such as plastic and aluminium foil.
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which is to the best of our knowledge the first time in robotic general purpose
grippers. Our data set contains over 30,000 samples recorded on 18 different ma-
terials, explored at 3 different speeds and 2 different levels of force. Furthermore,
we compare the performance of state-of-the-art classifiers as well as the effect of
sampling rate, exploration speed and force on the recognition rate.

We also propose an open-source gripper design with two force sensors based
on the Yale OpenHand M2 [43], which we have developed specifically for the
manipulation of textiles, and which is equipped with only a 3-dimensional force
sensor. We show that data from this 3D force sensor, even at low frame rates, is
sufficient to distinguish everyday textiles. [44]

In summary, in this chapter we contribute:

• a novel method and algorithms to recognize a textile in-hand

• the comparison of multiple state-of-the-art classifiers on new tactile data

• the designs for the hardware required to perform both recognition and ma-
nipulation

We start by outlining how related works have explored material recognition
using tactile sensors. Afterwards, we describe the hardware and method we use to
discriminate textiles, detailing the design of the open-source gripper we propose
to perform the motion. In the Experiments section, we explain the experimental
setup and procedure used to evaluate our method and the performance of related
methods on our data. Finally, we present and discuss the results we obtained.

3.1.1 Related Work

In this section, we first introduce related works that have attempted object ma-
nipulation and recognition with tactile sensors. Ordering by the type of sensor
that was used, we describe camera-based, acceleration-based, force-based and mul-
timodal sensor approaches. For the record, our setup uses a force sensor, and a
review on tactile sensing technology can be found in Dahiya et al. [45].

Force sensors Kaboli et al. [46] use the same model of sensors as in our work,
mounted on a 3-finger gripper to detect slip and control the grasp when manipu-
lating deformable objects. They detect the slip by a sudden change in tangential
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force, determine the friction coefficient from it, and then use it to regulate the
grasping force on each sensor. Their results support the assumption that this type
of sensor yields sufficient information for slip detection and textile manipulation.

Strese et al. [47] proposed a database of 43 textures which they examine with
a vibrotactile display and from which they attempt to extract features. Mukaibo
et al. [48] proposed a tactile sensor with a structured fingerprint and embedded
strain gages to distinguish textures based on friction and roughness. Boissieu et al.
[49] identified 10 kinds of paper by exploring them with a MEMS force sensor
element covered with a rubber skin. Schöpfer et al. [50] used a tactile sensor
array recording at 1800 Hz to control slippage and attempted the classification
of 5 surface textures.

In the CloPeMa project13, Le et al. [51] developed a gripper for textile manip-
ulation and recognition which contains a tactile sensor and can perform a rubbing
motion. They use its tangential force measurement to estimate an appropriate
grasping force on their items of clothing. While Le et al. [52] mention that the
rubbing motion was intended for supporting the system’s textile recognition, the
authors were not able to locate a publication about this.

Camera-based sensors Visually tracking the inside of the contact surface has
been used in a number of tactile sensors, such as the TacTip series of sensors
summarized in Ward-Cherrier et al. [53], or the FingerVision, a transparent, flat
gripper surface by Yamaguchi and Atkeson [54] which allows the observation of the
grasped object, or the GelSight [55] which additionally tracks surface deformation
via lateral projection of colored light. All of these approaches use cameras whose
frame rate imposes a limit on the frequency of the signal they are able to extract
from the contact interface. The sensor matrix may also dampen high frequency
signals even if using a high-speed camera.

Accelerometer-based sensors Ho et al. [56] proposed a sensor knitted from
conductive yarn, intended to detect the micromovements during the beginning of
slip events, and draped over a steel ball. They test the sensor on three fabrics
using different signal processing approaches, reporting success rates of up to 90 %

13Clothes Perception and Manipulation. http://www.clopema.eu/
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Figure 34. Structure of the tactile sensor. Figure adapted from [4]

using a feature vector constructed from Discrete Wavelet Transforms of their
signal.

Sukhoy et al. [57] attached an accelerometer to an artificial finger nail and
performed a scratching motions at different speeds and directions on 20 different
surfaces. After five exploratory motions, they report a recognition rate of 80 %.
Using a feature vector constructed from a spectro-temporal histogram of the
magnitude of the acceleration, they applied different machine learning techniques
to the data.

Giguere and Dudek [58] attached a tactile probe to a mobile robot, identifying
different kinds of floor covering and using it as a weak form of localization.

3.2 Multimodal sensors

Fishel and Loeb [59] investigated a large amount of textures (117 materials) using
a BioTac sensor mounted on a lever to apply a normal force, with the texture
fixed to a linear stage to induce a movement. At a large number of different
movement speeds and normal forces, they recorded three parameters that they
related to ”Traction”, ”Roughness” and ”Fineness” of a texture, and which they
postulate to be roughly orthogonal. These three dimensions are informed by the
language with which humans describe textiles, which in turn should be based
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on the extensive experience of the human brain (an exceptional classifier) with
textiles. They propose the use of Bayesian exploration (choosing the subsequent
exploratory motion predicted to minimize the remaining uncertainty) for the
classification of textures and report an overall recognition rate of 95.6 % after
up to 10 exploratory motions. They use both the BioTac’s sensor modalities and
the current supplied to the linear stage as a measure of the tangential force, and
chose a range of 36 exploratory motions mimicking the ranges typically used by
humans (1 – 10 cm/s, 0.2 – 2 N).

Kaboli et al. [60] used a shadow hand with 5 BioTac sensors to identify an
object held in hand by moving a fingertip over its surface. They proposed to use
Hjorth parameters as tactile features, reporting an average 97 % recognition rate.

Tanaka et al. [61] explored cups made of different materials with a BioTac
sensor, applying active learning on a 5-element feature vector obtained from the
sensor’s different modalities. They generated optimal actions from a set of dy-
namic motion primitives using object manifold learning.

Tada et al. [62] created an artificial fingertip by dispersing strain gauges and
polyvinylidene fluoride films in two silicon rubber matrices of different stiffnesses,
and used it to discriminate textures. Similarly, Jamali et al. [63] dispersed strain
gauges and piezoelectric vibration sensors in an artificial finger, mimicking the
human fingertip’s slow- and fast-acting nerve cells, and moved it over different
materials. They extracted local maxima of the recorded frequency spectrum as
features, and report success rates of 80 % using one sample, and 95 % using
several samples.

3.3 Texture benchmarks

While numerous groups have experimented on different numbers and classes of
surfaces, as of yet no set of benchmark textures has been agreed upon, which
makes the comparison between different works difficult. The difficulty in estab-
lishing such a benchmark lies not only in the selection of an appropriate set
of textures, but also, more practically, in its accurate description. While some
descriptive parameters are known to textile manufacturers or international stan-
dards14, the parameters are not publicly known for commercially available objects.

14e.g. ISO 11036 for sensory analysis
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Accordingly, most groups describe their specimen qualitatively (e.g. ”carpet”,
”coarse cotton”, ”rabbit fur”), allowing for at least a rough classification and
internal consistency.

3.4 Hardware & Gripper Design

Both pushing and light grasping are important subtasks in the manipulation of
deformable objects and textiles. Pushing (tucking) textiles into small openings is
a challenging task in the manipulation of textiles and thin objects, which poses an
obstacle to the automation of a number of manufacturing tasks. However, current
robot grippers are almost exclusively designed for grasping objects, or imitate the
human hand with very fine mechanisms that break easily, so that they cannot
withstand the loads required by the pushing task. Additionally, many grippers
cannot detect if a textile has been grasped, due to the thinness and deformability
of textiles. Lastly, many grippers are not compliant, so that it is hard to realize
a light grasp (one that applies little force). An overview of common grippers and
their features is listed in Table 11. Finally, as textiles are very thin, grippers with
pressure pads cannot easily confirm if a textile was grasped successfully or if the
gripper is empty.

To advance in the automation of textile manipulation tasks, a gripper is de-
sirable that is able to perform both sensitive precision grasping as well as the
tucking task. In this chapter, we present the NAIST OpenHand M2S, a gripper
design that can:

• detect the successful grasping of thin objects via the rubbing motion we
propose

• sustain significant pushing loads in order to perform tucking tasks

• perform grasps with light forces to allow textiles to slide through its fingers

. The design is open source and can be 3D printed. All CAD files, assembly
manuals and code reference can be found online at https://github.com/naist-
robotics/naist-openhand-m2s.

It is based on the Yale OpenHand M2 gripper [43], an under-actuated gripper
with two degrees of freedom on one finger, and a thumb without joints. We use
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the thumb to tuck textiles into cracks, and added two 3D force sensors to the
hand’s fingertips. This allows not only the compliant grasping of objects and
textiles, but also to grasp with small amounts of force let a textile slide between
the gripper’s fingers. We also use the sensors to evaluate the grasp success of
textiles by using a rubbing motion: the index finger contains two joints, which
allows the fingertip to be rubbed against the rigid thumb.

Figure 35. First prototype of the proposed gripper with two force sensors and a
rigid thumb

3.5 Design & Hardware

3.5.1 Approach

We consider textile manipulation to consist of elementary manipulations such as
grasping, sliding and tucking.

• Grasping creates a temporary, fixed connection between one or more points
and the grasping surface of the grippers (e. g. the fingertips).

• Sliding is considered to occur when relative movement between the object
and the grasping surface takes place, but the grasp is not necessarily lost
after the operation, as shown in Fig. 37 and Fig. 41.
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Figure 36. Second version of the gripper with one force sensor and a compliant
thumb with a hinge joint, allowing it to be used on robots without torque control

• Tucking is the insertion of part of a textile into a small opening or crack by
pushing onto the textile, as shown in Fig. 39, Fig. 40 and Fig. 42.

We enable all three of these elementary manipulations with our gripper de-
sign [44].

3.5.2 Gripper

The gripper shares most of its basic characteristics with the M2 gripper, such as
one rigid thumb, a 2-DOF finger with an agonist and antagonist tendon arrange-
ment, and a base with actuating motors. The agonist motor closes the second
finger joint and results in an underactuated grasp, while the antagonist motor
results in a fully actuated grasp where the second finger joint does not close.

In contrast to the Yale OpenHand design, we go to some lengths to reduce the
friction in our wires and simplify the production process. For example, we added
bearings with an outer diameter of 5 mm to each finger joint. With decreased
friction, the force of the springs retracting the finger can be significantly reduced,
which lowers the load on the motors that have to counteract the spring force
during operation. While the bearings can be omitted, they make a significant
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Figure 37. Human pulling a textile
taut with two hands and light grasp
force during bed making

Figure 38. KUKA LBR iiwa with
a prototype of the proposed gripper
pulling a bed sheet over a mattress

Figure 39. Human tucking a bed
sheet in between mattress and frame
during bed making

Figure 40. KUKA LBR iiwa with
a prototype of the proposed gripper
tucking a bed sheet under a mattress

difference when using less costly servo motors.
We also omit any rubber surfaces and hybrid deposition techniques, which

makes it simpler to print and assemble than the original design. Our proposed
design consists of only one 3D printed material and commercially available parts.

Another important addition to the original design are the two force sensors
which allow us to perform tactile recognition with the method we describ in
scetion 4.3. For the tactile sensor, we use hemispherical Optoforce 3D force
sensors15 with a high-friction rubber surface. While each sensor measures only
three scalar force values at 1000 Hz, the whole surface of the sensors is sensitive

15OMD-20-SE-40N
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Figure 41. Representation of a textile being pulled taut while sliding through the
gripper’s fingers

and contributes to the force reading. The sensors function by measuring the
deformation of a half dome of nitrile rubber via the light reflected off its inside
surface [4]. The measuring range of 40 N covers the forces at which humans
typically explore textures, with a non-linearity given at 2 %.

The motors are controlled at a rate of 50 Hz through an Arduino Uno mi-
crocontroller. While we worried that the control rate may cause vibrations that
are visible in the force signal, this worry was unfounded. Most likely, they are
absorbed by the under-actuated structure of the hand, the wires, tolerances and
friction phenomena in the 3D-printed body. The underactuated structure of the
hand implies that the input motor positions are not exactly mapped to output
joint positions and forces, which reduces precision, but increases grasp stabil-
ity and filters noise. This kind of robustness to noise is important for real-life
applications on hardware with commercial tolerances.

Two different thumb structures are used as shown in Figs. 35 and 36: one with
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Figure 42. Representation of the tucking manipulation. The arrow represents a
gripper pushing into the space between the two objects

a second sensor, and one with a single sensor and a flat nitrile rubber surface.
The friction parameters of the flat surface are not exactly identical: The nitrile
rubber was slightly harder, smoother and less adhesive than the surface of the
sensor. The joint angles of the finger are not recorded, and are generally not
known precisely due to the wire-driven structure of the hand.

In total, the gripper contains:

• 1 or 2 OptoForce 3D force sensors (OMD-20-SE-40N)

• 1 Arduino Uno microcontroller

• 2 HS-5585MH servo motors or 2 Dynamixel MX-28AT

• 3D printed base & finger links

• Bearings, pins, pulleys, cables

While the force sensors are capable of precision grasps, if an object is in a
power grasp, it is in contact with more parts of the hand than the force sensors.
In this case, the sensors do not report all the force acting on the object. Fully
actuated grasps may also result in a grasp where the force sensors are not in
contact with the object. We consider these limitations minor, as our main focus
is the manipulation of textiles. As long as the force sensors are in contact with
the object, slip can still be detected.

Aside from the addition of the bearings and the sensors, the assembly of the
gripper can be completed by following the tutorial for the original design of the
M2 gripper. If heavy objects are to be lifted, adding rubber to the grasping areas
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Figure 43. Grasp force at different motor positions. Motor 1: Antagonist tendon.
Motor 2: Agonist tendon.

of the finger and thumb will help increase friction. Excluding the sensors and 3D
printed material, the cost of the gripper is about $200 USD.

3.5.3 Maximum force in different positions

To evaluate the performance of the gripper, we sweep a grid of motor positions
and record the force reported by the sensors, as shown in Fig. 43. This reveals the
maximum grasping force in different configurations and grasping angles, and can
also be used for the creation of a model-based controller. The maximum grasp
force at the sensors is 4700 mN, as shown in the graph.

We note that the effective grasp force can be different for larger objects such
as cylinders, and it may be only partially recorded by the sensors. Sensors were
run at 30 Hz with a low-pass filter during this evaluation, as well as the following
one.

We also used a simple controller to achieve a target grasp force for the hand
and to evaluate the effective precision of the hand: the motor position of the
antagonist is increased by one unit when the force is below the dead zone and
vice versa, while the agonist tendon is still. As this utilizes the minimum discrete
signal that a controller can use, it demonstrates the maximum precision of the
setup. While a properly adjusted PID or model-based controller would be faster
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Figure 44. Total force seen by the force sensors when targeting 2 N

Table 11. Comparison of robot hands and their features.

to reach the target force and may exhibit lower vibration, it will not be more
precise than shown in this experiment unless the actuator is changed.

The controller was updated once every 150 ms. The data shows that at
worst, the grasp force precision is about ±0.25 N. An example graph can be seen
in Fig. 44.

54



Figure 45. The finger performing the back-and-forth rubbing motion between
the contact points p1 and p2, indicated in red.

Figure 46. Single and multiple layers of the 18 materials were distinguished for
a total of 36 cases. The case with two layers of cushion (top row, 3rd from the
left) was excluded due to the high thickness.
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3.6 Materials and Methods

3.6.1 Exploratory motion

Fig. 45 shows the basic, planar exploratory motion, which is a biomimetic rubbing
motion as humans would perform with the tips of their index finger and thumb.
The motion causes the sensors to rotate relatively to one another, which increases
the relative motion in the contact interface. We surmise that this increases the
amount of data issued by friction phenomena, allowing for easier detection.

The motion is defined by two sets of motor positions which place the fingertip
on the thumb at a certain force. Fig. 45 shows the back-and-forth rubbing motion
between the fingertips. To set up the exploratory motion, we record the motor
positions near two points p1 and p2, at which the index finger’s sensor touches
the other sensor lightly. At p1, the index finger is extended further than at the
second point p2, so that the point of contact is farther away from the robot and
the distance between the two points of contact on the thumb’s sensor are roughly
5 mm. To determine the final motor positions for a given exploratory motion, the
motor positions at both p1 and p2 are increased slowly until the sensor reports a
certain target force. These motor positions along with the values for tmove and
twait fully define the motion.

One rubbing motion consists of setting the motor positions linearly from p1

to p2 over a time tmove, waiting for a time twait, and then doing the same for
the movement back to p1. The step trajectory that the motors follow is updated
every 20 ms. Each rubbing motion starts and ends at the same point p1, and
thus consists of two movement phases and two relaxation phases. Fig. 47 shows
the different phases during one motion.
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Algorithm 1 Rubbing motion
Input: in
Output: out

Initialize parameters :
1: num_mv_cmds = round(tmove/dt)

2: dstep = rubbing_distance/num_mv_cmds

Back-and-forth rubbing loop
3: for i = 1 to 5 do
4: if (i ≥ 2) then
5: Start recording
6: end if

Move finger back
7: for j = 1 to num_mv_cmds do
8: Move motors back by dstep

9: Wait for dt
10: end for
11: Wait for twait

Move finger forward
12: for j = 1 to num_mv_cmds do
13: Move motors back by dstep

14: Wait for dt
15: end for
16: Wait for twait

17: if (i ≥ 2) then
18: Stop recording, save recorded data
19: end if
20: end for

During each relaxation phase, some of the stored mechanical energy in the
sensors, materials and grippers is released. This can be seen in the decreasing
force signal after the motors arrive at their destination (after about 100-150 ms).
As the behavior during this phase differs between materials, we wait for twait =

300ms before sending the next motor instruction. In our previous paper, we have
used twait = 1s under the assumption that the relaxation phase would yield more
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Figure 47. The two force signals of one of the sensors during a rubbing motion.
The movement phases take place inside the red dotted lines.

information. However, in preliminary tests reducing twait to 300-500 ms had only
a negligible effect on the recognition rate. We thus chose a shorter wait time to
speed up the data collection.

As the movement of the index finger is nearly planar, two of the three force
values are used and the out-of-plane force value discarded.

3.6.2 Motion and sensor parameters

Humans vary the way they explore an object according to the information they
wish to extract, and the results of [59] imply that moving the sensor at differing
speeds and normal forces yields distinct insights into the material. In our experi-
ment, the parameters that we vary to evaluate their effect on the recognition rate
of the system are:

• Movement speed (tmove of 50, 350 and 700 ms)

• Force (1 N and 2 N)

• Number of sensors (one or both)

• Sampling rate

We investigated the performance of the system at lower sampling rates to
determine if camera-based force sensors can be used for material recognition.
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Figure 48. Left: Fast exploratory motion. Right: Slow exploratory motion. The
horizontal forces of one sensor when rubbing 2 layers of two textiles of different
roughness at two different speeds. Note the different vibration patterns during
the slow motion.
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Figure 49. The mean and standard deviation of a feature over the course of
successive rubbing motions. The noise in the first motion after closing the hand
can be very high.

These low-cost sensors offer a high spatial resolution [64], which makes them
attractive for manipulation tasks, and may be even be transparent, to allow more
insight into the object being handled, such as in Yamaguchi and Atkeson [54].
However, they can only provide a low measuring frequency, which may be an
obstacle for tactile material recognition.

We also investigated the number of sensors, because we expected that a sin-
gle sensor would perform similarly to the pair of sensors, considering that both
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sensors should be subject to practically the same forces, at least for thin textiles.
For the different movement speeds and forces, we evaluate the confusion ma-

trices for different exploratory motions to determine if different materials are
more reliably distinguished by each exploratory motion.

Some of the materials had a structured surface that changes according to
the orientation. To avoid adding complexity to these cases, all materials were
arranged in the same direction during all measurements.

3.6.3 Classification algorithms

We evaluated the performance of different machine learning techniques and choices
of feature representations.

In [65], we proposed a set of features and found that it yields the best results
when using an OVO-MSVM16 with a radial basis function. We used this SVM to
compare the performance of each of the following features:

• The feature vector proposed in our previous work.

• A set of discretized spectral-amplitude-based features similar to Sukhoy
et al. [57]

• Up to 15 frequency components as proposed by Jamali et al. [63]

• Roughness and Fineness as proposed by Fishel and Loeb [59]

• Activity, Mobility and Complexity as defined by Kaboli et al. [60] 17

Finally, we compared their performance against a number of neural network
models trained on the raw data. The performance of the SVM with each set of
features was tested via a 10-fold cross-validation, and the neural network with a
5-fold cross-validation.

As the movement of the index finger is nearly planar, two of the three force
values were used and the out-of-plane force value was discarded.

16One vs One Multicategory Support Vector Machines
17The feature vector in the original paper includes the correlation between 20 electrode signals

and the pressure sensor in each BioTac. Because this cannot be calculated for our sensors, the
feature vector contains 12 elements instead of 16. We consider each axis separately.
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The calculation of the features proposed by Jamali and Sammut uses the
peak-find algorithm graciously supplied by O’Haver [66].

Geometric features The set of features is extracted from the filtered force
sensor data according to human intuition, and called ”geometric” because it de-
scribes characteristic points defining the shape of the curve. It was originally
developed for the fastest of the three exploratory motions, and does not attempt
to extract information from vibrations.

From each of the four force signals that are recorded during one back-and-forth
motion., the following values were used as features:

• The peak value during or just after the movement phase

• The amount of time between start of the movement phase and the occur-
rence of the peak value

• The absolute maximum value of the gradient in the relaxation phase after
the peak value

• The static values at the end of the relaxation phases

• The values at the start and end of the motion

The bulk of the features, such as the peaks and the stationary force levels,
are related directly to the friction coefficients. When a single layer of material
is being measured, the friction coefficients are those of the interface between the
sensor and the material. When multiple layers are present, it is predominantly
the friction coefficient between the material itself that is being sensed, as the
sensors’ high-friction rubber surface experiences little slippage.

Binned frequencies To extract the frequency-based features only from the
movement phases as described in section 3.6.1, we define two intervals of tmove +

50 ms length that begin when the motion command is sent to the motors, as most
frequency variation is expected to happen during and shortly after the movement
phases. We extract the frequencies present in each of these windows via fast
Fourier transform from the raw sensor data. The 50 ms delay compensate for the
lag of the the control chain.
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Figure 50. Structure of the neural network classifier Nr. 3 (medium size). All
layers are fully connected. The last layer applies a softmax operation.

The single-sided amplitude spectrum of the signal in each interval is split
into 10 equally sized bins and the values in each bin averaged. This results in a
histogram of dominant frequencies. The feature vector consists of the histograms
of all the intervals.

Neural Networks Neural networks have the strong appeal that they can learn
feature representations, although they require large amounts of data to be effec-
tive. For our specific case, we examine the performance of five different configu-
rations of neural networks. As training data in tactile applications is relatively
sparse and expensive to obtain, finding an efficient configuration is of great in-
terest.

We evaluated five different network structures. All of the layers were fully
connected with an ReLU activation function, and each network ended with a
softmax layer with 36 nodes. The numbers describe the number of ReLU neurons
in each layer. Fig. 50 illustrates the third network in this list:

1. 125-75-36

2. 250-125-36

3. 500-125-36

4. 1900-500-125-36

5. 3800-1900-500-125-36

The input vector length depended on the speed of the exploratory motion and
varied between 4000 and 8000 elements.
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3.6.4 Material selection and data collection

To evaluate our method, we chose a set of 18 materials taken from different
household objects, such as aluminium foil, saran wrap, cotton or carpet. Fig. 46
shows the full set listed in Table 12. More detailed information can be found in
the appendix.

Table 12. List of materials. Ordered as in Fig. 46 left-to-right, top-to-bottom.
Materials marked with a * had different material properties on each side.

Article Material
Place mat 60% Cotton, 40% Polyester
Bath mat* 90% Polyester, 10% Nylon
Cushion* Polyester, Polyurethane
Floor mat* Polyester, Latex
Carpet* Bitumen (bottom), Polyamide (top)
Scarf Polyester
Fabric Cotton
Basket* Polyester

PE trash bag Polyester
Pencil case Polyester

Paper Paper
Belt Polyester

Saran wrap Polyvinylidene chloride
Laundry net Polyester
Curtain - rose Nylon
Curtain - white Polyester

Banknote Paper, treated
Aluminium foil Aluminium

A preliminary data set of 9000 fast motions was recorded with two sensors on
a single exploratory motion with twait = 1s in [65]. Of these, 2160 motions were
preparatory as described in section 3.6.1, resulting in about 7200 usable samples.

Next, we collected 5400 samples each for the three different motion speeds
and two different force levels, for a total of 32400 samples. These were used to
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Figure 51. The experiment setup, with a NAIST OpenHand M2S rubbing its
index finger on a piece of textile to obtain tactile information. The white guard
supports the textile so it does not slip away while the fingers are opened.

evaluate the performance of the different features on different data.
Before every set of measurements and after the start-up of the system, the

motor positions were recalibrated such that the force acting on the sensors would
be constant during the rubbing motion. This was to avoid loosening wires or
wear affecting the measurements.

The order of materials was randomized so that neither deterioration of the
sensor nor possible debris from a fabric or other factors such as softeners would
contaminate the measurements.

As shown in Fig. 51, the gripper is mounted horizontally with the rigid fin-
ger’s sensor pointing upwards, with a small guard around the thumb so that the
material would not fall off.

During the slower rubbing motions, the movement of the textile and collisions
with the guard could cause vibrations and contaminate the signal. Furthermore,
for samples of different sizes and high stiffness, such as the carpet, the way the
object is placed on the hand may have an effect on the extracted signal. However,
as this kind of noise would be unavoidable in a real application, we consider it a
realistic difficulty.

For each recording of a material, we execute 5 consecutive exploratory motions
after closing the hand, and another 5 motions after opening and closing the
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Figure 52. Confusion matrix for high speed motion at normal force 1 N, tmove =

50 ms.

hand once more. We limited the number of successive rubbing motions to avoid
damaging the material. During preliminary experiments, we observed that the
first motion after closing the fingers yields less reliable values than the later
movements, as shown in Fig. 49. This is caused by factors such as the initial
configuration of the textile, the undefined angle of approach of the sensor when
closing the hand and the state of internal forces in the sensors at the start. As
these are difficult to predict, we only use the data from later motions for the data
analysis.

3.6.5 Comparison with human performance

To compare the performance of the system and to evaluate the difficulty of our
set of materials, we performed experiments with human subjects. We selected 9
textiles for which the confusion matrix showed difficulty, and which are listed in
Fig. 56. Subjects had to distinguish between all the pair permutations between
these textiles, as well as between 1 and 2 layers of the same object for all 18
materials. 8 human subjects consented to participate in the study in total.

The experiment procedure followed the one described in Fishel and Loeb [59]
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Figure 53. Confusion matrix for medium speed motion at normal force 1 N,
tmove = 350 ms.

Figure 54. Confusion matrix for low speed motion at normal force 1 N, tmove =

700 ms.
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closely. First, subjects were presented with two textiles and asked to rub them
between their thumb and index finger until they felt comfortable distinguishing
between them. Next, subjects were asked four times to feel one of the two textiles,
randomly chosen, and state which one they believed it to be. There was no time
limit. Subjects could not see the textile after the initial exploration and were
given no feedback about the correctness of their answers until the end of their
test. Subjects were aware that the selection was determined from a random
number generator on the fly, and that they may encounter the same material
multiple times in a row, or even by chance all four times.

One of the weaknesses of this setup is that humans have a number of advan-
tages over the robot hand and force sensor:

• The robot can only move along 1 axis, but humans instinctively perform a
more complex, multi-axis movement with their fingers

• Humans can hear the crumpling of certain materials (aluminium, paper)

• Proprioception. Humans sense the object’s thickness from the position of
their fingers, while the sensors measure it only indirectly via an increased
normal force.

Some measures were taken to reduce the impact of these advantages. For
one, the experimenter was imitating the motion that the subject was performing
using the other textile, so that the sounds of both of the materials would be
heard. Furthermore, subjects were reminded to use only their fingertips and not
to touch the object with other parts of their hands or fingers.

3.7 Results

We first present the results of different classifiers on data obtained at different
motion speeds and normal forces. Afterwards, we compare the effect of a lowered
sampling rate, and the performance of humans in the recognition task.

3.7.1 Motion speed and force

Fig. 48 shows the horizontal force signal for two different materials at two different
motion speeds. During the slow motion, the rougher material shows both lower
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Table 13. Recognition rates using different classifiers, 1 N normal force
tmove 0 ms 350 ms 700 ms

Geometric features (GF) 86.4 % 90.9 % 87.5 %
Binned frequencies (BF) 76.5 % 79.8 % 88.6 %
BF & GF 86.9 % 88.6 % 86.8 %
Jamali2011 13.8 % 16.9 % 23.9 %
Fishel2012 48.2 % 54.4 % 22.4 %
Kaboli2015 25 % 25.2 % 18 %
Neural Net (Nr. 3) 93.3 % 96.3 % 97.5 %

Table 14. Recognition rates using different classifiers, 2 N normal force
tmove 0 ms 350 ms 700 ms

Geometric features (GF) 90.9 % 93.8 % 91.3 %
Binned frequencies (BF) 79.5 % 83.2 % 86.3 %
BF & GF 91.3 % 92.9 % 92.1 %
Jamali2011 17 % 24.4 % 39 %
Fishel2012 51.4 % 49.4 % 31.8 %
Kaboli2015 20.3 % 18.1 % 10.1 %
Neural Net (Nr. 3) 91.6 % 98.3 % 97.1 %

frequencies and higher amplitudes during the movement phase. When moving
quickly, although almost no vibration is visible, the change from static to sliding
friction is sudden and clear. When the sensor moves slowly, one can see the
tangential force rise until slip starts to occur, after which vibrations appear at
different frequencies. These vibration patterns are affected by stick-slip friction,
surface roughness and other tribological phenomena.

Figs. 52, 53 and 54 show the confusion matrices for different motion speeds.
It is notable that the matrices barely overlap, indicating that materials that are
difficult to distinguish through one motion can more easily be determined by
using another motion. The recognition rate of each individual motion is over
91 % for all of the neural network classifiers.
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3.7.2 Performance of different features

Tables 13 and 14 show that the neural network outperforms all the other classifiers
we have tested.

The geometric features we proposed in von Drigalski et al. [44] perform best
at tmove = 350ms (medium speed) and 2 N normal force, instead of the fastest
motion and 1 N normal force, which is the movement they were based on.

The binned frequency features perform better when the rubbing motion is
slower, likely because the sensor obtains more characteristic vibrations.

Jamali and Sammut’s feature descriptor performs the worst on the fastest
exploratory motion. We note that the single-sided amplitude spectrum in our
data is relatively smooth, so that the peak-find algorithm had difficulty finding
significant peaks: on 6000 samples of the fast motion in the 2016 data, 60 peaks
should have been found, but the mean was 38.7 with an std of 5.

Neither the features proposed by Fishel and Loeb nor those by Kaboli et al.
result in a high recognition accuracy. We discuss the reasons for this in section 3.8.

3.7.3 Effect of sampling rate & neural network depth

In previous work, we found that when using filtered data recorded at 1000 Hz, the
third network configuration (500-125-36 ReLU activation layers and one softmax)
reached 96 % recognition success on the first data set. In this investigation, we
used the unfiltered data (7200 samples) in order to preserve vibration information,
which lowers the recognition rate of the neural network by about 3 %. This is
likely due to the increase in both signal and noise, which requires more training
data for the network to adapt to.

Fig. 55 shows that with decreasing sampling rate, a decrease in both recog-
nition and convergence speed starts to occur from 100-50 Hz, which indicates
either a lack of useful information in the high frequencies of the data, or that the
amount of training data was insufficient for the network to decipher the data at
high frequencies.

All the neural network configurations performed similarly at all sampling
rates, with no clear advantages in terms of generalization or convergence speed.
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Figure 55. The performance of neural networks is affected by the signal sampling
rate. Both recognition rate and convergence speed decrease with lower sampling
rates. tmove = 0 ms, twait = 300 ms, F = 1000 mN.

3.7.4 Dual vs. single sensor

Using the neural network classifier, eliminating one of the two sensors costs about
3 % in recognition rate and slows down the convergence rate. This could be
due either to the system requiring more data, or to the second sensor’s signal
containing information that is not captured by the first. With SVM classifiers,
the recognition rate dropped by about 10-15 %. We expected the setup with dual
sensors to be superior for materials who have a different texture on each side, but
there was no significant difference.

3.7.5 Comparison with human performance

Fig. 56 shows the confusion matrix for single-layer materials. The overall success
rate was 98.6 % on the restricted set of materials, whereas the best classifier18

had an accuracy of 97.5 % on the same materials.
When distinguishing between one and two layers, the recognition rate was

18The neural network at medium speed and 2 N normal force.
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Figure 56. The confusion matrix for single-layer materials in the human experi-
ment. The lowest confidences were found for cotton(fabric) and the pencil case,
which were confused for other polyester-based textiles 25 % of the time.
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100 % for almost all materials, except for the floor mat (very springy) and saran
wrap (very sticky), where the success rate was 75 %. Subjects reported the
highest difficulty while distinguishing two layers of saran wrap, as the material
tends to stick to itself. It was evident that when subjects were distinguishing
between one and two layers of the same material, they were trying to induce
sliding between the two layers. Once the sliding has been perceived, subjects
were quick to answer.

After the experiments, some subjects expressed an interest in attempting to
distinguish between 2 and 3 layers of banknotes. We recorded their attempts in
10 trials, where they achieved a recognition rate of 50 % – the same as random
chance.

3.8 Discussion

First off, it is striking that the performance of the features proposed by Jamali
et al. [63] and Fishel and Loeb [59] is lower than in the original papers. We
believe that this has multiple reasons:

• features and classifiers are tuned to specific systems and methods

• the performance is closely linked to the sensors and the method that is used

• both the exploration methods and the classification approaches differ sig-
nificantly between the related work and our proposed method

For instance, the sensor proposed by [63] is designed to capture data that is
rich in vibration signals of a wide frequency range. Consequently, the features
they proposed extract the peaks of the feature spectrum, and are particularly
suited for this kind of data. Similarly, Fishel and Loeb’s had an experimental
setup that measured the resistance force accurately via a separate sensor, as
well as a textured fingertip surface which augmented vibrations, and also used
a different exploration method: they used a series of short, uniform exploratory
motions selected by their method of Bayesian Exploration.

By contrast, our exploratory motion varies in force and relative pose of the
sensors, is affected by the resistance of the materials because it is implemented in
an underactuated gripper, and does not measure the resistance force separately.
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The motion is also shorter than those used in related work, and the features we
proposed in von Drigalski et al. [65] are intended for this type of input. Since
both our movement and our sensors differ, it is not surprising that the methods
proposed in other works performed worse on our data.

In our experiments, we found that the neural network had the highest recog-
nition rates, but it is uncertain how this classifier would perform on a different
system. There is also an argument to be made in favor of retaining some physical
relevance in the feature description of a material.

In summary, it is logical that the recognition methods proposed for different
sensor data play to different strengths and particularities of their respective sys-
tems. Our results highlight the difficulty of choosing an appropriate recognition
approach for tactile recognition problems, and how strongly it is connected to the
parameters of the problem and the equipment that is used.

3.9 Effect of different movement speeds

One question we aimed to answer is the effect of lower movement speeds on the
data we obtain. As Figs. 52, 53 and 54 show, the confusion matrices for the
different motions are indeed different, and indicate that the information obtained
by each motion differs as well. This shows that some exploratory motions reduce
uncertainty about the system’s belief more than a repeated or random one would,
which is in line with the findings of [59] and [57].

[59] reported that some of their feature dimensions (Traction, Roughness and
Fineness) perform better on some materials and worse on others, with significant
differences. By contrast, all of our exploratory motions yield reasonable recog-
nition rates, with only small differences between them. We believe that this is
because our motions are less controlled, and record a wider range of data at once.

In the investigation of the sampling rate, we found that the recognition rate
of the fast exploratory motion stayed stable, even when reducing the measur-
ing frequency down to 50 Hz. This is in line with the results of our previous
work, where we found that even when using features that did not capture vibra-
tions, recognition performance was acceptable, even though we had expected that
high-frequency vibrations would be more important. The finding shows that our
method may be used to perform textile recognition using sensors whose measur-
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ing frequency is low, but whose spatial resolution is high, such as camera-based
sensors. We note that this means that robotic skin in particular does not require
a high measuring frequency to be useful for this and other applications.

3.10 Number of sensors

The results of the single sensor data show that reliable identification can be per-
formed even with a single sensor, especially if multiple exploratory movements
are permitted. Performance did increase when using a second sensor, but only
slightly, so the cost should be kept in mind. We attribute the increased perfor-
mance to the second sensor reducing the effect of noise.

3.11 Physical interpretation and limitations

While we did not confirm this in a separate experiment, it is our strong impression
that a high friction coefficient on the fingertip sensor19 is an important require-
ment for our exploratory motion to yield useful data. When two layers of the
same material are to be distinguished, both humans and our method detect this
by inducing a relative movement of the two layers. If the friction coefficient of the
sensor surface were too low, then the layers would not separate, and the sensory
experience would be similar to a single layer. One can imagine that, if the sensor
were extremely slippery, it would simply slide over the surface, capturing only a
small tangential force and the vibrations caused by moving over the textile’s sur-
face. This view is supported by our results in the case of two layers of saran wrap,
where test subjects noted particular difficulty because the layers did not separate
easily. Even in the single-layer cases it appears that high friction is helpful, by
increasing the signal-to-noise ratio when measuring the friction parameters of the
material, and by increasing the range of tangential forces the sensor can perceive.

One limitation of our method is that it cannot distinguish between 2 and
3 layers of the same textile. However, as mentioned in section 3.7.5, we have
found not only that humans have the same limitation, but also a reason for it.
The contact interface material-material, as shown in Fig. 57, behaves differently
than the interface material-sensor, or material-fingertip, and it is this change

19and the surface on the opposing finger, if only one sensor is used
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Figure 57. From left to right: Two layers of textile, a single layer of textile, and
no object between two sensors. Contact interfaces between different materials
have different friction coefficients and behaviour. If the interface sensor-material
(magenta) has a higher friction coefficient than material-material (green), the
three cases can be distinguished reliably.

in behavior that is revealed by the rubbing motion and detected by the human
fingertip and our sensors. When attempting to distinguish 2 and 3 layers of a
textile, the contact interface material-material is present in either case, so the
sensory experience is identical except for thickness.

A more general limitation of our method – and indeed all the other recognition
methods we have found – is the need to train on the different materials. It would
be desirable if a database of surfaces and objects could be used for recognition,
so that the sensor could identify a material it has not seen before. In future
work, we plan to evaluate if it is possible to obtain a sensor-agnostic description
of surfaces, and if it can be based on physical parameters, such as roughness,
surface structure or stiffness.

3.12 Conclusion

In this chapter, we presented a method for the identification of textile-like mate-
rials that can be used by any robotic gripper that can induce a tangential relative
movement of its fingers. By rubbing the gripper’s fingertips together, it can not
only detect the material, but also distinguish between one and multiple layers of
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the material between the tactile sensors. We tested the method’s performance
on 18 different materials at different speeds and normal forces, and compared
it to humans’ performance on the texture discrimination task. Furthermore, we
showed that the method performs well even at low measuring frequencies, indi-
cating that it can be used with other tactile sensors as well. Additionally, we
investigated the descriptors of tactile data that have been proposed by earlier
work by comparing their performance on our data set, compared to a neural
network classifier. The recognition rate of our method is over 92 % after a sin-
gle motion, and can be increased by performing additional exploratory motions.
Lastly, we proposed the designs for the open-source gripper that can perform the
exploratory motion and which we have used in our experiments. It can be used
freely to reproduce our work.
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4. Clothes folding

4.1 Introduction

To test the sensing method and gripper proposed in the previous section, we
implement it in a system that folds clothing articles. We propose to improve
both the speed and reliability of the process, as well as the quality of the result,
by:

• integrating the tactile sensing into the picking and unfolding process, and

• using a tool made for humans during the folding process.

In spite of the proliferation of washing machines and dryers and the demand
for further automation, laundry-related tasks still take up over 10 percent of total
time spent on household tasks [67]. They also represent one of the areas in which
the performance of modern robots is lacking.

We describe a series of manipulations and algorithms to bring a shirt from an
arbitrary initial state on a table in front of the robot to a folded configuration.
First, we describe the related work. Afterwards, we discuss the effect of our
proposed rubbing motion and the folding tool for humans on the performance
of the system. We close with directions for future work and limitations of our
solution.

4.2 Related Work

In the body of research regarding clothes perception, a large number of works deal
with a) person recognition using their gait and clothing and b) simulation, e.g. for
computer graphics or online stores. These research directions can serve as sources
for cloth modeling and representations, but in this section, we present works
that propose either methods to manipulate textiles and garments, or perception
methods that enable such manipulation.

Two noteworthy efforts in this field are from the group of P. Abbeel at UC
Berkeley, and the EU-funded CloPeMa project that ran from 2012 to 2015, who
each presented a complete pipeline to fold textile objects. In Maitin-Shepard
et al. [5], the former folded a heap of towels using a PR2. Doumanoglou et al.
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Figure 58. The PR2 that was used to fold towels in Maitin-Shepard et al. [5].
The table in the back is used as a folding surface.

[6] presents the results of the latter, which uses two robot arms with parallel
grippers, and can be considered the current state of the art.

Additionally, some commercial products such as the Foldimate and the Laun-
droid have been announced, which claim to perform part of or the entire folding
process. However, they have not been released yet.

We present the remaining works grouped by the subproblem that they focus
on: grasping, unfolding, folding, flattening and classification/pose estimation.

4.2.1 Grasping

This subtask concerns finding a grasp point to pick up the clothing item, usu-
ally from a flat surface in a randomly arranged state, and often piled up with
other items. Finding grasping points during manipulation is covered in separate
sections.

Hamajima and Kakikura [68, 69] described the complete laundry folding pro-
cess as bringing a pile of unfolded garments to a stack of folded items. They focus
on separating items of similar color to obtain the grasping point of a single item
in the pile.

Willimon et al. [70] segment the RGB image of the pile into similar regions,
and attempt grasping in the highest segmented region above the table. Hata
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Figure 59. The two Motoman MA1400 with custom jaw grippers used in the
CloPeMa project [6]. The vertical aluminium frame in the back holds two Nikon
D5100 cameras for stereo vision.

et al. [71] and Bersch et al. [72] choose the highest point of the clothes pile as the
grasping location.

In Cusumano-Towner et al. [73], the boundary of a crumpled garment is de-
tected and then grasped from the side. Ramisa et al. [74, 75, 76] proposed grasp-
ing highly wrinkled parts of the clothing article to increase the success rate, and
in [75] described a feature descriptor to detect such wrinkled parts. They also
provide a database of wrinkled clothes and semantically labeled areas of those
clothes in [76]. Yamazaki and Inaba [77] proposed a wrinkle detector to detect
clothes in unstructured environments.

Doumanoglou et al. [6] proposed to first detect fold lines in a rectified depth
image using a filter, and detected grasp point candidates on these fold lines. A
suitable grasp point is then selected based on the fold geometry and an RGB
image segmented by texture, preferring points that are easy to grasp and inside a
region of one homogenous texture, so as to reduce accidental grasps of two clothes
at once.

Alenyà et al. [78] present a benchmark for grasping textiles and explain the
general difficulties when comparing textile manipulation systems.

In our method, we also use the RGB image segmentation to inform our grasp
position, but otherwise prefer the highest point of the pile.
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4.2.2 Classification and Pose Estimation

Kita and Kita [79], Kita et al. [80, 81, 82, 83] treated the recognition and pose
estimation problem in a series of works. In [79], they fit the silhouette of a
hanging piece of clothing to that of its mass spring model and thus infer some
3-D information about the garment. They improve the method in [80, 81, 82] by
adding multiple view angles, 3D point clouds and matching the cloud to a Maya
simulation of the clothing item. In [83], they demonstrate their method unfolding
a pullover on an HRP2 humanoid robot.

Li et al. [84, 85, 86] simulated grasping and hanging clothing items to classify
and finally unfold a clothing item held by a robot. [84, 85] focused on the classifi-
cation of the item, which is observed by a depth sensor from multiple viewpoints,
and then classified into a category and pose using an SVM. In [85], the similarity
is calculated according to the merged volumetric model from multiple views, and
the simulated virtual model of the garment. [86] extended this by matching the
model to the observed item using non-rigid deformation and then unfolding the
clothing item through a series of regrasps with a dual-armed robot.

Petit et al. [87] tracked textureless 3D objects using an RGB-D sensor by first
registering their initial shape and then simulating the object’s internal forces using
ICP and a linear FEM model.20 Similarly, Willimon et al. [88, 89] tracked 3D
surfaces using an RGB-D sensor, a deformable mesh and an energy minimization
approach without prior knowledge of the object’s shape. They report difficulty
with the borders of the object as well as sharp angles and folds. In Willimon
et al. [70], they propose to classify a hanging garment via global features and
edge information.

Stria et al. [90] proposed another method to fit polygonal clothing models to
RGB input images, and report increased performance over Miller et al. [91].

We use our own algorithm based on an edge representation of the item’s
contour to estimate the pose and find the shoulder grasp points.

20While the goal of the authors’ research is to create a pizza-making robot, their method
applies to cloth and paper as well.

80



4.2.3 Unfolding

Hamajima and Kakikura [68, 69] proposed to regrasp the lifted clothing item until
its hemlines are grasped, and thus unfold it. They detect the hemlines based on
the shadows and shape of the item.

Osawa et al. [92] noted that grasping the lowest point of a freely hanging piece
of clothing two times necessarily brings it into a finite number of states, and used
template matching to categorize clothing articles.

Maitin-Shepard et al. [5] limited the possible cases by grasping two adjacent
corners of a towel, and then rotating one of the grippers if the towel is not flat
when pulled taut. The folding used the edge of the table and the mobile base
of the robot. Cusumano-Towner et al. [73] used lowest point regrasps and the
contour of the grasped item hanging between two robot arms to find appropriate
grasp points.

Bersch et al. [72] use a t-shirt covered in fiducial markers which allows them
to reconstruct its 3D shape. The grasp points are then found by searching for
the point that is both reachable and closest to the shirt’s shoulder.

Stria et al. [93] focused on the unfolding of a garment with few folds spread on
a table. They proposed to detect the top and bottom layer of the garment using
depth information, and then generate grasp points to unfold along the edge of the
overlapping areas. This allows them to unfold garments without prior knowledge
of their shape.

The approach we use resembles most closely that of [92], with some modifi-
cations to allow the use of a robot with a smaller workspace.

4.2.4 Flattening

Willimon et al. [94] propose to unfold a garment by first pulling the garment in 8
equidistant directions, and then using depth information to remove any remaining
folds. They test their method on a washcloth.

Sun et al. [95] present a method to flatten a wrinkled but otherwise unfolded
garment with two robot arms, by locating ridges and peaks of the wrinkles, and
determining appropriate grasp points to pull the garment flat.

Doumanoglou et al. [6] compare the contour of the garment on the table to
its target shape, and sweep over the concerned area towards the outside with a
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brush attached to the gripper, while the other gripper holds down the garment
to prevent it from sliding.

4.2.5 Folding

Van Den Berg et al. [96] develop a method to plan folds of a garment along a
folding line such that the remaining parts of the garment are not affected, using
only the shape of the item and geometric considerations. The visual recognition
and fitting of the shape of the items is described by Miller et al. [91, 97].

Stria et al. [98] proposed the method used in Doumanoglou et al. [6] to fold
a flat clothing article on a table. It fits a contour to the observed garment and
assumes a thin gripper that can fit one of its fingers underneath it from the side.
Hou et al. [99] propose a similar recognition method, but discretize the garment
into a mesh of particles.

Balaguer and Carpin [100] propose a motion planning algorithm for robot
arms folding towels using an arc trajectory, focusing on collision avoidance and
execution speed. Li et al. [101] calculate an optimized folding trajectory based
on the contour of the object and target fold line, using the friction and material
properties of the garment and table.

Although not focused on garments, an origami folding method and robot has
been proposed by Balkcom and Mason [102]. Elbrechter et al. [103, 104] tracked
the deformation of a piece of paper via fiducial markers and finite elements of
varying stiffness, and folded it with two shadow hands.

Koustoumpardis et al. [105] and Kruse et al. [106] propose approaches for
collaborative cloth handling with a human, with [105] focusing on collaborative
folding with RGB-D and force sensor feedback.

4.3 Method

The folding process can be split into four distinct steps:

1. Picking

2. Unfolding

3. Grasping shoulder points

82



Figure 60. The HIRO NX used in our experiments, equipped with two NAIST
OpenHand M2S grippers and a head-mounted Realsense R200.

4. Folding using the tool

The solution we describe uses a Kawada HIRO NX equipped with two NAIST
OpenHand M2S grippers as shown in Fig 60. The grasp points are extracted from
RGB and depth images recorded using a Realsense R200 mounted on the robot’s
head.

Detailed sequences of the subtasks as demonstrated in a previous version of
this solution can be seen in Fig. 65, Fig. 66 and Fig. 67.

4.3.1 Picking

The goal of this subtask is to pick a single garment from a pile of randomly
ordered, crumpled clothes, so that it can be manipulated later. Two common
modes of failure consist of the robot either accidentally grasping two articles
of clothing, or missing the garment and grasping nothing at all. The former,
especially, is hard to avoid using only robotic vision, and causes problems when
two articles of clothing are inadvertently transferred to the unfolding area. By
using the rubbing motion we proposed in chapter 3, we aim to catch failures and
detect successes faster, and thus make the process more reliable.

Fig. 62 shows a flow chart of our picking strategy. After picking the highest
point of the clothes pile, we perform two regrasps at the point furthest to the
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Figure 61. The different subtasks are performed in order. From left-to-right, then
top-to-bottom: picking, unfolding, grasping shoulder points, placing the item on
the folding tool, finshing.

side of the hanging garment. We perform the rubbing motion after each grasp
attempt, to check if the grasp is successful and if only one layer is grasped. If no
material is detected, we can immediately move the gripper closer and reattempt
the grasp. Without this tactile feedback, a failed grasp would have to be detected
visually by dropping the garment.

If only a single layer is detected, the process is considered successful and the
robot proceeds to the unfolding section immediately. Tab. 15 shows that single-
layer grasps occur over 25 % of the time for shirts, which implies that our strategy
has the potential to improve performance.

After each grasp, we also shake the gripper lightly to separate items that may
be stuck together. Fig. 63 shows one step of the process.

4.3.2 Unfolding

The goal of this process is to bring the shirt from an unknown, crumpled configu-
ration to a planar, unfolded state. To this end, we adapted the method described
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Figure 62. Picking strategy to avoid double grasps. When a single layer is
grasped, the process can exit immediately.

by Osawa et al. [92]. As the working space of a humanoid robot is wider than it is
high, we spread the shirt on a table and grasp a point furthest on the side, rather
than the lowest hanging points.21 The grasping points in this section are deter-
mined by canny filtering the camera image of the shirt on the table, binarizing
the image and selecting the lateral extreme pixels of the shirt’s contour. After
two regrasps of the outermost points, the shirt is grasped with both grippers and
laid out flat in front of the robot, moving away from the robot.

This leaves the shirt in one of 12 configurations, which are shown in Fig. 64.

4.3.3 Grasping shoulder points

The goal of this step is to lift the shirt by its shoulders, so that it can be placed
cleanly on the folding tool. To achieve this, we need to determine appropriate

21e. g. the shirt is grasped and lifted with the right gripper, then pulled from left-to-right,
so that the left gripper can grasp the leftmost point.
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Figure 63. After the picking, the clothing article is lifted up, and the furthest
point on its lateral side grasped with the other hand. In this picture, the gripper
will recognize that only a single layer of textile is in the new grasp, which allows
the system to proceed to the unfolding section immediately.

Table 15. The number of times a regrasp resulted in a multi- or single-layer
grasp when handling a short-sleeved shirt during the picking subtask. Single-
layer grasps are an opportunity to finish the picking subtask more quickly.

Count Percentage
Total grasps 100 100 %
Multi-layer grasps 74 74 %
Single-layer grasps 26 26 %

grasping points near the shoulders or collar of the shirt. The method we propose
to find the shoulder grasp points is based on the contour of the shirt after the
unfolding procedure explained in the previous section.

First, we segment the outer edges as shown in Fig 68, by performing the
following steps:

1. Binarize the input image. Shirt edges are white.

2. Apply the Guo-Hall algorithm[107] to thin the edges to a single pixel.

3. For each white pixel, count all white pixels at a certain Manhattan distance
(we use a distance of 3).

86



Figure 64. The possible configurations of the shirt after two lowest-point regrasps

4. If more than 2 pixels are white, paint the pixel black.

This deletes line junction points and results in a collection of edges. Each
edge is then represented by four parameters: the edge’s length, its position in x
and y, and its angle22. Starting from the largest edge, we store this collection by
relative transformation as a 4xn matrix Mc, and consider that it describes the
contour of the garment.

The collection Mc is then compared with the matrices derived from a set of
template images in which the grasp points are labeled manually. The template
image with the lowest l2 distance is considered the closest match. Taking the
largest edge from the matched template image as the base, the labeled grasp
points are transformed to the camera image, and the shoulders of the t-shirt
grasped. After grasping the shoulder points, the shirt can be placed on the
folding tool.

22The angle between the x axis and the vector from the edge’s first to last pixel. The direction
of the vector from ”first” to ”last” pixel (rp1 and rp2) is chosen such that it points in a counter-
clockwise direction around the contour’s center point rc.
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Figure 65. Unfolding sequence executed with 3-point grippers. After spreading
the clothing item with one gripper, the point furthest from the hand is regrasped
twice, leaving the clothing article in a number of finite states.

Figure 66. After the shoulder points are grasped, the shirt can be placed easily
on the tool.

Figure 67. Details of the folding sequence using the commercial folding tool.
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Figure 68. Image processing during the shoulder grasp point search.

Figure 69. ”QUICK PRESS” (Daisaku Shoji Ltd.) folding aid used to fold the
shirt

4.3.4 Folding

The goal of this step is to fold the shirt using the folding tool seen in Fig. 69.
The tool is situated to the right of the robot as shown in Fig. 70, and had a hinge
attached to the bottom part of the tool23 to make it easier for the robot to use
with only sliding contacts.

The shirt is placed, centered and pulled taut on the tool, so that no unnec-
essary wrinkles are generated. The robot then folds and opens the flap on each
lateral side, and finally the bottom side. At the end of this procedure, the shirt
is completely folded.

23The hinge is visible in Fig. 65(9).
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Figure 70. Overview of our folding pipeline. Right: Clothes basket. Middle:
Unfolding surface. Left: Folding tool. The robot proceeds from right to left, first
by picking, then by unfolding, and lastly folding each clothing item.

Table 16. Average time taken per section of the folding process
Section Time taken
Picking 40 s
Unfolding 180 s
Grasping shoulder points 10 s
Placing shirt on tool 10 s
Folding 40 s

4.4 Experiments

In the previous section, we explained the folding pipeline. For our experiments,
we implement it as shown in Figs. 70 and 61, using a HIRO NX with two NAIST
OpenHand M2S grippers that are equipped with one force sensor each and a thin
version of the thumb that contains a compliant hinge joint. This allows the robot
to make contact with the table easily without using impedance control, and to
slide the passive finger underneath the textile to be grasped.
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Figure 71. Folding times compared to past work that have reported their speed.
Times for Doumanaglou et al. were extracted from their video.

4.5 Results

Tab. 16 shows the average time required for the task and subtasks. The Unfolding
subtask had the biggest effect on the overall time, as the detection of the collar
grasp points can fail, which requires the unfolding procedure to be repeated. This
means that while individual unfolding procedures can finish in under a minute,
perception failures that lead to repetitions affect the task time significantly.

4.6 Discussion

We showed that our proposed system works, and that the rubbing motion in-
creases its reliability and performance. In a previous version of this system,
which used a 3-finger gripper without tactile sensing, we found that single grasps
during the unfolding section succeeded only 51 % of the time. This was due
partially to the thickness of the gripper’s finger, which did not always succeed to
slide underneath the garment, as well as to noise in the vision system. Our hand
improves on this with its thin tip, which can slide underneath the garment, and
by the rubbing motion, which allows both a quick confirmation of the grasp, and
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an early termination during the picking subtask.
As shown in Fig. 71, the use of a tool for humans increases our folding speed

significantly. It can also increase the usable workspace of the robot, even when
the robot is stationary, by allowing it to interact with an object outside of its
workspace. The tool is well suited to our gripper’s design, as it can be operated
easily by using a sliding contact along the edge of the gripper’s thumb.

A frequent mode of failure is the grasping of multiple layers of the shirt when
the initial state is very compact, or when many clothing items are tightly packed.
We mostly solve this problem for the case of dry shirts by regrasping the hanging
garment twice before moving it to the unfolding area, and improve the efficiency
of this solution with the rubbing motion we proposed. However, while this pro-
cess increases the success rate, it does not guarantee fully that a single garment
is grasped. For situations where the clothes are highly entangled, a different
approach may be required to separate garments.

One weak point in the system is the vision and recognition system. The
detection of the collar grasp points can fail if the edges of the shirt are not
detected cleanly, and the recognition of patterns with misordered edges is difficult.
For future work, we would attempt different approaches such as end-to-end deep
learning and shape registration.

The limited workspace of the robot leads to many detected grasp points being
unreachable by the robot. This could be avoided if the robot could reposition
the garment. If the table surface is smooth, the robot could shift the garment by
touching a point in its center and moving it horizontally, so that the grasp points
are more accessible. Such a repositioning process would likely be an effective
measure that is worth developing further.

Other future work includes the application to more different kinds of cloth-
ing, integrating more advanced cloth models and perception methods, and more
dextrous manipulation using tactile sensing, such as stretching the clothing item
during unfolding.

4.7 Conclusion

We described a solution that brings a shirt from an unknown initial state to
a folded configuration using our custom gripper, a two-armed robot, an RGB-
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D camera and a commercially available folding aid. We showed experimentally
that our solution can autonomously fold shirts, and that the rubbing motion
that we propose with our gripper can improve the process by detecting earlier
if the picking subtask was successful, and by improving the reliability in the
other subtasks. Additionally, we showed that the use of a human folding tool
improves the performance in the folding task significantly, finishing the task 20-40
% faster than past work, without requiring a large workspace. Future work
includes the evaluation of different grasping point detection approaches, ensuring
that grasping points are in reach of the robot, spreading the shirt out to reduce
wrinkles and improving the manipulation of the folding press with the robot
grippers.
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5. Conclusion
In chapter 2, I investigated the human fingertip’s deflection under load, conclud-
ing that the change in curvature is most pronounced at low loads.

In chapter 3, I proposed a design for an open-source gripper that utilize the
deformation of a rubber half-dome to determine the normal and shear force.

I also showed that the biomimetic finger rubbing motion it can perform ex-
tracts tactile data from the material in its grasp, which can be used to recognize
not only the material with an accuracy of over 92 %, but also distinguish between
single and multiple layers of the same material. Furthermore, I show that by
varying the speed and force of the rubbing motion, different tactile information
is obtained, which increases the recognition accuracy of successive exploratory
motions.

Lastly, in chapter 4 I present an application of a humanoid robot using a tool
for humans and its grippers to fold clothes, using both haptic feedback as well
as the use of human tools to significantly reduce the time required to complete
the task. In summary, this thesis contributes a novel way to a) identify different
textiles and distinguish between a single and multiple layers of them, b) manipu-
late textiles with a serial manipulator and c) complete the task of laundry folding
with a humanoid robot.

All the designs and code required to manufacture the gripper and reproduce
the experiments are provided open-source online under the name ”NAIST Open-
Hand M2S”.
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