
NAIST-IS-DD1561034

Doctoral Dissertation

Increasing Data Center Efficiency with
Improved Task Scheduling and Communication

Pongsakorn U-chupala

March 5, 2018

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Pongsakorn U-chupala

Thesis Committee:
Professor Hajimu Iida (Supervisor)
Professor Kazutoshi Fujikawa (Co-supervisor)
Professor Shoji Kasahara (Co-supervisor)
Associate Professor Kohei Ichikawa (Co-supervisor)
Assistant Professor Yasuhiro Watashiba (Osaka University)
Assistant Professor Putchong Uthayopas (Kasetsart University)

Increasing Data Center Efficiency with
Improved Task Scheduling and Communication∗

Pongsakorn U-chupala

Abstract

A data center has become a crucial element of the modern information tech-
nology society. Operating a data center is costly so the efficiency is vital. The
primary objective of this research is to maximize the efficiency, specifically the
“computation efficiency”, of a data center. There are two factors that have the
major impact on the computation efficiency of a data center: Task Scheduling effi-
ciency and communication efficiency. We develop and evaluate several techniques
to address these two factors. These works are organized into three contributions.
Firstly, we propose Container Rebalancing, a novel task scheduling mechanism
which increased task scheduling efficiency for Linux Container (LXC) based data
center. Container Rebalancing takes advantage of LXC’s rapid container mi-
gration to increase the optimal overcommit ratio of a Linux container cluster
and in turn, increases overall resources utilization of the data center. Secondly,
we propose the application-aware routing, a software-defined network (SDN) as-
sisted routing mechanism. The application-aware routing route each network flow
individually according to the characteristics of the corresponding application, re-
sulting in a better performance to each flow and an increased communication
efficiency to the overall network. A network implementing application-aware rout-
ing is called an application-aware network. Thirdly, we propose a self-optimizing
application-aware network, an improved version of an application-aware network.
The self-optimizing application-aware network use an automatic network traffic
classification model instead of manual user configuration to identify and cate-
gorize network flow, making it easier to deploy. The automatic network traffic

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1561034, March 5, 2018.

i

classification model is a major component of the self-optimizing application-aware
network. The model is learned using a stacked denoising autoencoder, a deep-
learning-based classification technique.

Keywords:

Datacenter, Networking, Software-Defined Network, Optimization

ii

Contents

List of Figures vii

List of Tables ix

1. Introduction 1
1.1. Data Center Optimization . 1
1.2. Contribution . 3

1.2.1. Task Scheduling Efficiency 4
1.2.2. Communication Efficiency 5

1.3. Organization of the Thesis . 6

2. Container Rebalancing 7
2.1. Background . 8

2.1.1. Linux Containers . 9
2.1.2. Rapid Container Migration 9
2.1.3. LXC Scheduling and Overcommitting 10

2.2. Container Rebalancing . 11
2.2.1. Design Goals . 11

2.2.1.1. Proactive-Optimization 11
2.2.1.2. Compatibility . 11
2.2.1.3. Scalability . 11

2.2.2. Implementation . 12
2.2.2.1. Container Classification 14
2.2.2.2. Building Comparable Container Space 14
2.2.2.3. Searching Comparable Container Space 14
2.2.2.4. Container Swapping 15

iii

2.3. Evaluation . 15
2.3.1. Workload Data Preprocessing 15
2.3.2. Simulation . 16

2.3.2.1. Producer . 16
2.3.2.2. Scheduler . 17
2.3.2.3. Rebalancer . 17
2.3.2.4. Monitor . 20

2.3.3. Results . 20
2.3.4. Discussion . 21

3. Application-Aware Routing and Application-Aware Network 27
3.1. Background . 28

3.1.1. Existing works involving SDN-assisted routing 29
3.2. Design and Implementation . 30

3.2.1. Application-Aware Routing 30
3.2.2. Application Class . 31
3.2.3. Architecture . 32

3.2.3.1. Application Identification 32
3.2.3.2. Monitoring . 33
3.2.3.3. Overseer: Routing Controller 34

3.2.4. Example Use Case . 35
3.3. Evaluation . 38

3.3.1. Overseer’s Functionality Assertion 38
3.3.1.1. Emulation Technique 40

3.3.2. Validity Assessment . 40
3.3.2.1. Feasibility Evaluation with a Controlled Virtual

Environment . 42
Bandwidth Evaluation 43
Latency Evaluation 47

3.3.2.2. Practicality Evaluation with a Real-world Exper-
iment . 50

A Real Application in an Application-aware Network 50
An Application-Aware Network in a Real Wide-Area

Environment 52

iv

3.4. Discussion . 54
3.4.1. Advantages of Overseer . 55
3.4.2. Limitations and Mitigations 56

3.4.2.1. Manual Application Identification 56
3.4.2.2. Unfair Flow Distribution 57
3.4.2.3. Scalability . 57

3.4.3. Utilizing Software-Defined Network and Application-Aware
Routing to Enhance Communication Efficiency of a Data
Center . 58

4. A self-optimizing application-aware network with deep-learning-
based traffic classification 60
4.1. Background . 61

4.1.1. Existing Approach . 61
4.1.2. Deep Learning based Approach 62

4.2. Model Creation Process . 63
4.2.1. Training Samples Preparation 63
4.2.2. Training Deep Neural Network Model 64

4.3. Experiment Results . 66
4.4. Self-Optimizing Network . 73

5. Conclusion 75
5.1. Container Rebalancing . 75
5.2. Application Aware-Routing and Application-Aware Network . . . 75
5.3. A self-optimizing application aware network with deep-learning-

based network traffic classification 76
5.4. Future Work . 77

Appendices 78

A. Overseer’s JSON-RPC API 79
A.1. get_table . 79
A.2. get_entry . 79
A.3. set_entry . 79
A.4. remove_entry . 80

v

A.5. update_bandwidth . 80
A.6. update_latency . 80

References 83

Publication List 94

vi

List of Figures

1.1. Data center operation model . 3
1.2. An example workload illustrating the relationship between work-

load, jobs and tasks . 4
1.3. An example of an optimal workload distribution 5

2.1. Abstraction comparison between Virtualization and Linux Con-
tainers . 8

2.2. Example case illustrating the benefit of the container rebalancing
method . 13

2.3. CSR, LCSR and SCSR from the simulations 22
2.4. Average cluster utilizations from the simulations 23
2.5. Cluster utilizations from the simulations 25
2.6. Distribution of unique containers by their migration count through-

out the container rebalancing simulation at overcommit ratio 1.4 . 26

3.1. Structure of an OpenFlow Network 28
3.2. Structure of an application-aware network 32
3.3. Example JSON-RPC API call for adding a flow classification rule 35
3.4. Example network with corresponding calculated paths 36
3.5. Flow routing process . 37
3.6. Network topology of the example use case 38
3.7. Emulated network topology and the paths selected by shortest-

path routing and application-aware routing 39
3.8. Mininet script for creating topology in Figure 3.7 41
3.9. Structure of the OpenFlow testbed in the NAIST private cloud . . 43
3.10. Average bandwidth of the networks from bandwidth evaluation . . 44
3.11. Average latency of the networks from latency evaluation 47

vii

3.12. Network topology of the experimental Apache Cassandra cluster . 51
3.13. Apache Cassandra read frequency of the test cluster in an application-

aware network and a traditional network 52
3.14. Network topology of PRAGMA-ENT as of October 10, 2014 . . . 53
3.15. Logical network topology and latency of each link in the experi-

mental network portion of PRAGMA-ENT 54
3.16. Bandwidth of each link in the experimental network portion of

PRAGMA-ENT . 55
3.17. Interconnected multiple application-aware networks 58

4.1. The concept of a self-optimizing network 61
4.2. Example intermediate training samples sliced from a flow 63
4.3. The 3-layer stacked denoising autoencoder model 65
4.4. Training process of the first layer of the stacked denoising autoen-

coder model used in this work . 65
4.5. Value of error function (cost) of the first layer of the model as the

training progress . 67
4.6. Value of error function (cost) of the second layer of the model as

the training progress . 68
4.7. Value of error function (cost) of the third layer of the model as the

training progress . 68
4.8. Class size distribution of the 4-outputs model 69
4.9. Properties distribution of the resulting classification from the 4-

outputs model . 70
4.10. Class size distribution of the 3-outputs model 71
4.11. Properties distribution of the resulting classification from the 3-

outputs model . 72
4.12. Structure of the proposed design of a self-optimizing network . . . 74

viii

List of Tables

2.1. An example job in the workload 14

3.1. Example flow classification rules 33
3.2. Bandwidth between all hosts from the first iteration of bandwidth

evaluation with fluctuation simulation using shortest-path routing
(Mbps) . 45

3.3. Bandwidth between all hosts from the first iteration of bandwidth
evaluation with fluctuation simulation using application-aware rout-
ing (Mbps) . 46

3.4. Latency between all hosts from the first iteration of the latency
experiment with congestion simulation using shortest-path routing
(ms) . 48

3.5. Latency between all hosts from the first iteration of the latency ex-
periment with congestion simulation using application-aware rout-
ing (ms) . 49

3.6. Measured bandwidth and latency from OsakaU to UCSD 56

4.1. An example complete training sample 64

ix

1. Introduction

It is indisputable that a data center has become a crucial element of the mod-
ern information technology society. With the rise of microservices architecture,
modern “cloud-native” softwares are written in a distributed fashion for cloud
computing environment. The surge of IoT devices produces more data than ever.
These data would require a tremendous amount of computing power to store and
process. A recent breakthrough in Artificial Intelligence and Deep Learning also
drive the need for a high-performance computing even further. A data center
capable of providing these services is essential.

Because operating a data center is an expensive operation, efficiency is vital.
It is commonly known that power consumption is one of the major contribu-
tors to the cost of data center operation. There are several approaches to raise
the efficiency of a data center regarding power consumption. For example, a
workload-based dynamic resource provisioning is can be utilized [10]. However,
once a server is in operation, the amount of workload have little impact on the
power consumption of an individual server. The utilization of the servers in a
data center should be maximized for the maximum efficiency.

1.1. Data Center Optimization

Most of the existing data center optimizations focus on optimizing power con-
sumption efficiency. Electricity is required to power all components of a data cen-
ter from the server hardware and the network equipment to supporting facilities
such as cooling system. It is commonly known that power consumption is a major
contributor to the day-to-day operation cost of a data center. As such, power ef-
ficiency has become the primary target for data center optimization. Many works
has been done to study power utilization [24, 43, 59] and optimize various com-

1

ponents of a data center to improve power efficiency [13, 23, 42, 46, 50, 53, 67, 80].
Some example includes: an energy efficient resource management system with
dynamic allocation [13], power consumption reduction of the components during
idle period [50], and idle power consumption reduction with improved power state
transition time [46]. Many improvements to the data center architecture are de-
veloped [23, 42, 67, 80]. In addition to a single-component optimization, a power
management solution coordinating various optimization techniques for different
components is also presented [53].

While power consumption is a major contributor to the day-to-day operation
cost of a data center, another large portion, sometimes the biggest, of the amor-
tized cost of the data center operation goes to the hardware costs including servers
and network equipment. The amortized cost is calculated over the data center
lifetime, allowing it to be a common measure for both one time purchases (e.g.,
equipments) and recurring spending (e.g., electricity). According to the study by
A. Greenberg et al., roughly 60 percent of the amortized cost of a data center
operation goes to server hardware and network equipment combined [22].

Given the scale of a data center nowadays, optimizing computation efficiency
is also an effective strategy and a very compelling approach. To meet with the
ever increasing demands, modern data centers are bigger than ever. The com-
putation requirements of a data center have also grown immensely. Optimizing
the computation efficiency of a data center reduces the amount of the compu-
tation resources (e.g., server hardware, network equipment) required to meet a
data center computation requirements. Since the effectiveness of the computa-
tion efficiency optimization scales directly with the size of the data center, it has
become a compelling strategy. More efficient computation also help reduce power
consumption and improve power efficiency, since the fewer hardware is necessary.
By improving the efficiency of an individual server, more servers and network
equipments could be turned off or transited to a low-powered idle state when
not needed. For this reason, the efficiency gained from the dynamic resource
provisioning is also increased.

2

Figure 1.1.: Data center operation model

1.2. Contribution

The primary objective of this research is to maximize the efficiency, specifically the
“computation efficiency”, of a data center. We define the “computation efficiency”
as the utilization of computation resources. Computational resources are logical
resources used to execute workload. For example, CPU time, memory usage, and
usage of specialized hardware such as GPU allocation are considered computation
resources.

There are two factors that have the major impact on the efficiency of a data
center: task scheduling efficiency and communication efficiency. Figure 1.1 il-
lustrates a typical operation model of a data center. A data center processes
the workload, a set of jobs to be executed, and may produce resulting outputs.
A job consists of a single or multiple tasks to be executed together. A task is
a fundamental execution unit of a data center. Generally, a majority of jobs
contains multiple tasks communicating with one another during execution. Fig-
ure 1.2 illustrates the relationship between the workload, jobs, and tasks. There
are two congestion points in the data center operation model: task distribution
and execution. The two factors of major impact, task scheduling efficiency, and
communication efficiency are the factors corresponding to these two congestion
points. The relationship between the two factors of major impact and the two
congestion points are elaborated in Subsection 1.2.1 and Subsection 1.2.2 respec-
tively.

3

Figure 1.2.: An example workload illustrating the relationship between workload,
jobs and tasks

We propose and evaluate several techniques to address the two factors of major
impact on the computation efficiency of a data center: task scheduling efficiency
and communication efficiency. These techniques are presented in a form of three
contributions towards addressing the two factors of major impact.

1.2.1. Task Scheduling Efficiency

An efficient task scheduling is essential for optimal task distribution. Since task
distribution is a congestion point in the data center operation model, optimiz-
ing task distribution is vital to maximizing the utilization of the computation
resources and the data center. Optimal task distribution minimizes the number
of required resource nodes (servers) given the workload and maximizes the uti-
lization of each resource node. Figure 1.3 shows an example of an optimal task
distribution. The more efficient the task scheduling is, the higher the throughput
of the data center becomes.

For the first contribution, we propose container rebalancing mechanism. The

4

(a) An example workload to be distributed (scheduled)

(b) Resource nodes available for workload distribution (scheduling)

(c) An optimal distribution of the workload given the resource nodes

Figure 1.3.: An example of an optimal workload distribution

container rebalancing method is a novel task scheduling mechanism designed
specifically to take advantage of the unique property of Linux container in order
to increase computation resource utilization. The container rebalancing method
is described in detail in Chapter 2.

1.2.2. Communication Efficiency

More efficient communication raise the computation efficiency of a general-purpose
data center. Execution is another congestion point for the data center operation
model. Commonly, most jobs contain multiple tasks working in tandem. Commu-

5

nication between tasks is often the bottleneck of the execution. The efficiency of
the communication is a dominant contributor to the execution and the computa-
tion efficiency. Improving the communication efficiency will have a direct impact
on the execution and the computation efficiency of a data center. Note that
communication efficiency may not be the dominant factor in some specifically-
designed data center. For example, an Apache Hadoop cluster is highly optimized
for map-reduce operations and could handle map-reduce-related communications
very efficiently. This kind of cluster is not the focus of this work.

For the second contribution, we developed the application-aware routing and
the application-aware network. The application-aware routing is a software-
defined network (SDN) assisted routing method which routes each flow indi-
vidually according to the characteristics of the corresponding application. A
network with application-aware routing is called an application-aware network.
The application-aware routing and the application-aware network are described
in detail in Chapter3.

For the third contribution, we propose the concept of a self-optimizing application-
aware network. We also present a deep-learning-based-network traffic classifica-
tion technique which is a major development towards a self-optimizing application-
aware network. The detail regarding the self-optimizing application-aware net-
work as well as the deep-learning-based network traffic classification is described
in Chapter 4.

1.3. Organization of the Thesis

The rest of the thesis is organized as followed. Chapter 2 explains container
rebalancing method. Chapter 3 explains the application-aware network. Chap-
ter 4 describes a major development toward a self-optimizing application-aware
network including a deep-learning-based network traffic classification. Chapter 5
provides the conclusion and discusses future work.

6

2. Container Rebalancing

Virtualization technology [12, 39] allows resources on a single computer to be
sliced into multiple isolated units. This technology is considered mature and
is commonly used in data centers to enable more granular resource allocation
resulting in a more flexible resource management, as well as a higher resource
utilization. With Virtualization, resource isolation is achieved by virtualizing
an entire computer with an allocated amount of resources. Each virtualized
unit is called a “virtual machine” (VM). This method, however, takes inherent
performance overhead [55].

Linux Containers (LXC) [5] is another technology for resource isolation. Instead
of virtualizing an entire machine, thus requiring a separate “guest” operating
system, LXC provides each “container” with its own separate Linux environment
while still sharing the same underlying Linux kernel. Compared to VM, an LXC
container takes significantly lower performance overhead [21,74]. LXC containers
are also instantiate significantly faster and require less storage space compared to
VM (as elaborate in Section 2.1). These advantages make many LXC-based tools
such as Docker [47] and CoreOS [3] popular alternatives to full virtualization-
based solutions [14]. Figure 2.1 illustrates the difference between Virtualization
and LXC.

Rapid container migration is a powerful technique made possible with LXC. An
LXC container (referred to here as “container” from this point onward) may take
seconds to boot up whereas a similar VM may take minutes. A container also
takes less disk space than a VM, since a container does not have to contain the
whole operating system. These two traits combined make container migration
much faster than migrating the VM and offer a feasible resource management
technique.

None of the existing container orchestration solutions take advantage of rapid

7

Figure 2.1.: Abstraction comparison between Virtualization and Linux Contain-
ers

container migration. With the rising popularity of LXC, many tools and tech-
nologies are being developed [4,6,26,58]. However, they concentrate on resource
management and do not try to take advantage of the unique capabilities of LXC
such as rapid container migration.

We explores the possibility of leveraging rapid container migration as a resource
management technique in conjunction with existing optimization techniques so
as to increase data center efficiency. In the process, we proposes “container re-
balancing”, a novel mechanism with a rebalancing process constantly optimizes
LXC container placement by using rapid container migration.

2.1. Background

This paper proposes container rebalancing, a novel method to increase LXC clus-
ter efficiency by increasing the optimal overcommit ratio using rapid container
migration. The approach is explained in detail in Section 2.2. This section gives
a brief introduction to Linux Containers technology and the rapid container mi-

8

gration technique. This section also discusses existing LXC resource management
techniques including overcommitting.

2.1.1. Linux Containers

Linux Containers (LXC) is a technology that combines several Linux kernel fea-
tures to create a contained process called “container”. Each container has its
isolated view of the operating system environment with only an allocated amount
of resources, virtually achieving an isolated Linux environment without the use
of Virtualization technology. LXC’s containers incur significantly lower perfor-
mance overhead than Virtualization since LXC’s containers work on an operating-
system-level [21,74]. LXC may be viewed, in a sense, as a lightweight Virtualiza-
tion, though there are several differences.

LXC technology offers several advantages over Virtualization. Since creating
a new container is essentially the same as spawning a new process, a container
could be instantiated almost immediately. A container also typically requires less
disk space, since it does not contain the whole operating system. Docker reduces
the disk space requirement further by using AuFS to enable a layered file system,
allowing images to be stacked on top of each other. This results in each image
containing only the data which differs from base images [2].

2.1.2. Rapid Container Migration

Migrating an LXC container could be considered as a trivial operation. Total time
for migrating an isolated computing unit (tmi), whether it is a container or a VM,
could be broken down into 3 parts: disk copying time (tdisk), memory copying
time (tmem), and instantiation time (tinst). The following equation describes the
model of total migration time:

tmi = tdisk + tmem + tinst. (2.1)

Container migration time is greatly reduced compared to migrating a VM since
speedy instantiation (small tinst) and a relatively smaller disk space requirement

9

(leading to small tdisk) are traits of LXC. This reduction of migration time is an
important feature unique to LXC.

High VM migration time is a problem for migration-based scheduling strat-
egy [27]. With significant reduction in migration time of LXC, rapid container
migration becomes a viable optimization strategy.

2.1.3. LXC Scheduling and Overcommitting

Existing scheduling solutions for LXC clusters are typically designed as a general-
purpose scheduling platform [26, 58]. While some solutions are designed specifi-
cally for managing LXC clusters by providing convenient workflow for container-
ized application deployment [4,6], they are not taking advantage of LXC’s unique
capability. Even with a fairly efficient scheduling algorithm, actual resources uti-
lization could still be at about 50–60%, while available resources (such as CPU
cores and memory) are mostly allocated [56].

One common technique for increasing scheduling efficiency is overcommitting
resources [1, 7]. Overcommitting is done by allowing the scheduler to allocate
more resources than the actual capacity of the system on the assumption that
allocated resources are typically higher than actual utilization. This method
increases scheduling efficiency because it is difficult to predict accurately the re-
quired amount of resources leading to the common occurrence of an over-allocated
resources request [56,58]. Overcommitting is commonly done statically by setting
a static overcommit ratio for each type of resource.

Overcommiting creates a trade off between overall cluster utilization and the
execution performance of an individual container. High overcommit ratio in-
creases overall cluster utilization but also increases the chance of container failure
(as there are not enough actual resources for the operations), increases the risk
of resource congestion, and causes instability [16]. More busy servers may also
negatively impact the performance of an individual container. Without overcom-
mitting or by setting the overcommit ratio too low (for a given system), resources
are underutilized, which means inefficient scheduling and a waste of resources. An
optimal overcommit ratio maximizes overall cluster utilization while still main-
tains an acceptable quality of service.

10

2.2. Container Rebalancing

Container rebalancing takes advantage of rapid container migration to increase
the efficiency of LXC cluster scheduling. This section explains the design goals
and mechanism of container rebalancing.

2.2.1. Design Goals

Three goals are considered in designing a container rebalancing method: proactive-
optimization, compatibility, and scalability.

2.2.1.1. Proactive-Optimization

Container rebalancing anticipates future workloads and proactively optimizes con-
tainer placement accordingly. Common scheduling methods usually optimize con-
tainer placement reactively in response to changes in available resources. Proac-
tive optimization enables the system to prepare quickly for future workloads and
it works especially well in a busy cluster. This approach requires rapid migra-
tion which is a costly operation with Virtualization technology. With LXC, rapid
container migration is a relatively cheap operation, thus making proactive opti-
mization viable.

2.2.1.2. Compatibility

Container rebalancing should work alongside the existing scheduling process.
Task scheduling is a rigorously researched area, and existing algorithms are fairly
efficient. Instead of designing a better scheduling algorithm to replace an existing
one, container rebalancing should be another process that works in conjunction
with the scheduling process while minimizing interference to the scheduler.

2.2.1.3. Scalability

Container rebalancing should be able to handle a large number of containers
efficiently. Since a container usually requires fewer resources than a VM with
a similar configuration, an LXC cluster is expected to be able to deal with a
higher number of containers. Google cluster data is a 1-month trace from one

11

of Google’s LXC clusters [57, 72]. This single month of data already contains
24,281,242 distinct tasks (containers). Given the expected size of the LXC cluster,
the container rebalancing technique should be able to scale up gracefully.

2.2.2. Implementation

The container rebalancing method consists of the rebalancing process that works
alongside the scheduling process to load-balance resources between hosts of the
cluster in real-time. This dynamic load-balancing process increases the proba-
bility of overcommit success as it proactively prepares rooms for overcommitting
resulting in a higher optimal overcommit ratio. Figure 2.2 provides an exam-
ple case illustrating the benefit of the container rebalancing method. Before the
rebalancing process (Figure 2.2b), only host B has enough resources to accom-
modate overcommitted containers. However, both hosts have an equal chance
of being overcommitted as both of them are equally allocated, making host A
prone to overcommit failure. After the rebalancing process (Figure 2.2c), both
hosts can accommodate overcommitted containers, thus increasing the chance of
overcommit success.

To minimize the effect on the scheduling process, only actual resource utiliza-
tion is load-balanced while resources allocation is maintained. Actual resources
utilization of a container is often significantly less than the allocated amount of
the container, as it is difficult to predict accurately and subject to human er-
rors [56]. This trait of container request makes it possible to load-balance actual
resources utilization while still maintaining the same allocation amount on each
host dictated by the scheduler.

For scalability, the container rebalancing mechanism only load-balances long-
lived containers. Container requests can be classified into two groups: long-lived
(service) containers and short-lived (batch) containers. Although most containers
are short-lived containers, most resources of the system are consumed by long-
lived containers [58]. By considering only long-lived containers, the container
rebalancing process maintains significant impact on the system while drastically
reducing the number of containers the process must keep track of.

Container rebalancing mechanism may cause minor negative effects to the ex-
ecution of an individual task. For example, task migration may increase task

12

(a) Structure of a container in terms of resource

(b) Example cluster before rebalancing process

(c) Example cluster after rebalancing process

Figure 2.2.: Example case illustrating the benefit of the container rebalancing
method

13

Table 2.1.: An example job in the workload

Job ID Container
Index

Start Time
(μs)

Duration
(μs)

CPU
Request
(cores,
normalized)

Mean CPU
Usage
(cores,
normalized)

6252082279 0 6736765567 98000000 6.76000e−3 6.17230e−3

6252082279 1 6736765567 98000000 6.76000e−3 4.22395e−3

execution time. A task executed in a busy server may not performed as well
as in a server with lower load. Several techniques can be employed to address
these problems. The evaluation results also suggest that the effects are negligible.
More details regarding the negative effects of container rebalancing and methods
to address these problems are discussed in Subsection 2.3.4.

The container rebalancing process is divided into four repeating steps:

2.2.2.1. Container Classification

Containers are classified into long-lived containers or short-lived containers as
they are inserted into the system. The classification is done using container
runtime duration in each container request.

2.2.2.2. Building Comparable Container Space

Long-lived containers are grouped together according to the amounts of their
allocated resources and according to their assigned hosts, creating comparable
container space.

2.2.2.3. Searching Comparable Container Space

A pair of hosts with a significant resource utilization difference is selected. Com-
parable container space is then searched for the pair of containers from this host
pair with the highest container actual utilization difference. This pair of contain-
ers is called a “swappable container pair”.

14

2.2.2.4. Container Swapping

Each container in the swappable container pair is migrated to the host of its
counterpart.

By repeating this process, overall utilization of the cluster is load-balanced
while still retaining the original allocation assigned by the scheduler on each
host. Better load-balanced cluster leads to a higher overcommit success rate, a
higher optimal overcommit ratio, and a higher cluster utilization.

2.3. Evaluation

An LXC cluster simulation is used to evaluate the performance and validate the
feasibility of the container rebalancing mechanism. The simulation compares
performance in terms of container scheduled rate and cluster utilization of a
general scheduling mechanism (using only a scheduling process) to the container
rebalancing mechanism (using both the scheduling process and the rebalancing
process). The simulation is driven by a real-world workload from Google’s cluster
data. This cluster trace data is collected from Google’s LXC cluster covering the
period of one month and is publicly available [57, 72].

2.3.1. Workload Data Preprocessing

The workload for the simulation is extracted from Google’s cluster data and orga-
nized into “jobs” and “containers”. A “job” contains one “container”, or multiple
identical “containers” that have to be considered together while scheduling. Ta-
ble 2.1 shows the organization of the workload and an example job. Google’s
cluster data already organizes the information into “jobs” and “tasks”. A “task”
is an equivalent to a “container” in the workload organization. Google’s cluster
data contains 672,074 jobs and 24,281,242 tasks from a 1-month period. Contain-
ers that are started before the trace period or still running after the trace period
are excluded, since it is impossible to know the exact duration of these containers.
869,283 containers (3.58% of the total containers) are excluded in this process.

CPU cores are the only resources taken into account in the simulation. This
is to simplify the simulation process and is required, due to time constrains, to

15

speed up the simulation time. More investigation will be done to quantify the
effect of this simplification on the accuracy of the result. The value provided by
the trace data is normalized with the number of cores in the machine with the
most cores in Google’s cluster for obfuscation [57,72].

2.3.2. Simulation

The simulation is an event-driven simulation with four processes running simul-
taneously: producer, scheduler, rebalancer, and monitor. The general scheduling
mechanism is simulated using producer, scheduler, and monitor processes. The
rebalancing mechanism is simulated using all four processes. Each machine in
the simulated cluster has the same number of CPU cores which is equal to the
number of CPU cores in the machine with the most cores in Google’s cluster
data. 2,000 machines in the LXC cluster are simulated in this research so that
the total number of cores in the cluster is roughly equal to total number cores
in Google’s cluster. Although Google’s cluster data contains the trace of a full
month, to speed up the process, only the first week of the records was used in
the simulation. SimPy 3.0.8 [9] was chosen for the implementation due to the
authors’ familiarity with Python.

2.3.2.1. Producer

The producer process inserts a “job” into the “job_queue” when the simulation
time reaches the starting time of each “job”. Algorithm 1 describes the producer
process. Using the recorded duration in the trace data, this process also cat-
egorizes each “container” in a “job” as a long-lived container or a short-lived
container. Containers with a duration shorter than 2,000 seconds are categorized
as a short-lived containers, while the rest are categorized as a long-lived. 2,000
seconds was chosen as the threshold given that the 80th percentile runtime of
a short-lived container is 12–20 minutes and that of a long-lived container is 29
days, according to the work by Schwarzkopf et al. [58].

16

Algorithm 1 Producer Process
loop

Get job from preprocessed trace data (ordered by start_time)
if job : start_time exceeds current simulation time then

Step current simulation time to start_time

end if
Categorize and mark containers in the job as long-lived container or short-

lived container
Insert job to job_queue

end loop

2.3.2.2. Scheduler

The scheduler process implements a common scheduling strategy with overcom-
mitting. Algorithm 2 describes the scheduler process. The scheduler handles con-
tainer requests in a “job” batch. The scheduler uses a random-first-fit algorithm
to find an open slot for each “job” for speed and simplicity. If all “containers” in
a “job” could not be scheduled simultaneously, the “job” is skipped and queued
for retrying during the next scheduling iteration. For this simulation, the rebal-
ancing interval is set to 3 seconds and max retries is set to 300 times allowing a
job to stay in the queue for about 15 minutes. If the “job” could not be scheduled
within this time, it is skipped. Scheduled “jobs” and “containers” may fail if they
are allocated to an overcommitted host which lacks sufficient actual capacity to
facilitate them.

2.3.2.3. Rebalancer

The rabalancer process searches through scheduled containers for swappable container-
pairs as described in Subsection 2.2.2, and migrates each container to its coun-
terpart’s host. Algorithm 3 describes the rebalancer process. The search is
performed in the host’s utilization-difference order and the container’s mean-
cpu-usage-difference order respectively. A “container” with a mean CPU usage
difference lower than 0.3 is considered comparable. For this simulation, the re-
balancing interval is set to 3 seconds, and the cpu utilization difference threshold

17

Algorithm 2 Scheduler Process
1: loop Every scheduling_interval

2: Get job from job_queue

3: if job : retries > max_retries then
4: Mark job and corresponding containers as skipped

5: else
6: Try scheduling all containers in the job into the cluster using random

first-fit algorithm
7: if job could not fit into the cluster then
8: job : retries = job : retries + 1
9: Put job back to job_queue

10: else
11: if Scheduled job cause over-utilization in the cluster then
12: Mark job and corresponding containers as failed

13: else
14: Mark job and corresponding containers as scheduled

15: for all container in job : containers do
16: if container is long-lived container then
17: Add (container, host) to

scheduled_long_lived_containers_list

18: end if
19: end for
20: end if
21: end if
22: end if
23: end loop

18

Algorithm 3 Rebalancer Process
1: loop Every rebalancing_interval

2: max_host = host with maximum CPU utilization
3: min_host = host with minimum CPU utilization
4: if CPU(max_host) − CPU(min_host) ≥

cpu_utilization_difference_threshold then
5: container_pairs = LongLivedContainers(min_host) ×

LongLivedContainers(max_hosts)
6: Create empty candidate_pair

7: for all pair in container_pairs do
8: if pair can be swap without exceeding available resources on both

host then
9: if (candidate_pair is empty) ∨

10: (CPUUtilizationDifference(pair) > CPUUtilizationDifference(candidate_pair))
then

11: candidate_pair = pair

12: end if
13: end if
14: end for
15: if candidate_pair is not empty then
16: Swap container of the candidate_pair

17: end if
18: end if
19: end loop

19

is set to 0.1 to keep the rebalancing process from being too aggressive.

2.3.2.4. Monitor

The monitor process keeps track of resource utilization of hosts and containers
in the cluster and also generates reports. After every monitoring interval of
60 seconds, this process logs utilization of each host in the simulated cluster and
computes evaluation metrics, including container scheduled rate and its variances,
as described in Subsection 2.3.3.

2.3.3. Results

Three metrics are used as the indicators of the performance of the simulated clus-
ter: container scheduled rate (CSR), long-lived container scheduled rate (LCSR),
and short-lived container scheduled rate (SCSR). These metrics are defined as
follows:

CSR = Scheduled Containers

Total Containers
, (2.2)

LCSR = Scheduled Long-lived Containers

Total Long-lived Container
, (2.3)

SCSR = Scheduled Short-lived Containers

Total Short-lived Container
. (2.4)

Figure 2.3 shows CSR, LCSR, and SCSR from the simulations with various
overcommit ratios. The resulting CSR suggests that the optimal overcommit
ratio of the simulated cluster with the general scheduling mechanism is about
1.3. The optimal overcommit ratio increased to about 1.4 with the container
rebalancing mechanism. From the results, LCSRs also conform with CSRs, and
there is no remarkable improvement with SCSRs. These two facts suggest that,
among the factors contributing to the increase in utilization, rebalancing only the
long-lived containers is significant.

There are notable CSR, SCSR, and LCSR drops at an overcommit ratio of 1.6.
They are considered to be outliers and disappear when the random seed of the
simulation is changed.

20

Figure 2.4 shows the average utilizations of the simulated clusters using the
general scheduling mechanism and the container rebalancing mechanism. Fig-
ure 2.5 shows changes in utilizations of the simulated clusters over the course
of the simulations. Only the overcommit ratios of 1.3 and 1.4 are shown in
the figures since they are optimal overcommit ratios for general scheduling and
container rebalancing, respectively. The results suggest that, at any given sim-
ulation time, the container rebalancing mechanism typically produces a higher
cluster utilization compared with the general scheduling. Container rebalancing
also outperforms general scheduling even at their respective optimal overcommit
ratios (as indicated by comparing (a) the container rebalancing at overcommit
ratio 1.4 to (b) the general scheduling at overcommit ratio 1.3).

2.3.4. Discussion

From the results (Figure 2.3), container rebalancing increases the optimal over-
commit ratio of an LXC cluster by a small margin. This increase still creates
observable utilization improvement in Figure 2.4 and Figure 2.5. The improve-
ment is desirable as there is no drawback to using cluster rebalancing.

Container rebalancing also improves cluster performance (measured by con-
tainer scheduled rate and cluster utilization in this research) regardless of the
overcommit ratio. We believe that this is because a load-balanced cluster enables
more containers to be successfully overcommitted, allowing more works to be
done with the same amount of resources. Specifically, in this simulation, at over-
commit ratio 1.4, 1.8% more containers are executed (an increase from 4,958,643
containers to 5,050,295 containers).

The overcommit ratio should be determined specifically for each cluster. Al-
though the results suggest that the container rebalancing mechanism increases
the overcommit ratio, multiple factors are influencing the optimal overcommit ra-
tio of a particular cluster. For example, the number of hosts, the capacity of each
host, and the scheduling algorithm can drastically change the value. Cluster sim-
ulation could be used to calculate the optimal overcommit ratio by using a cluster
configuration similar to the targeted cluster and the real captured workload.

Rapid container migration adds little or no overhead to the execution. At
overcommit ratio 1.4, 67,718 unique containers are migrated. This number is

21

(a) Container Scheduled Rate

(b) Long-lived Container Scheduled Rate

(c) Short-lived Container Scheduled Rate

Figure 2.3.: CSR, LCSR and SCSR from the simulations
22

Figure 2.4.: Average cluster utilizations from the simulations

1.32% of all containers in the simulation (5,127,542 containers) and 5.96% of all
long-lived containers in the simulation (1,136,517 containers). Figure 2.6 shows
the distribution of unique containers by their migration count at overcommit ratio
1.4. Around half of the affected containers are migrated only once. Almost all
of the affected containers are migrated less than 20 times. Migrating a container
is also considered a trivial operation (as is discussed in Section 2.1). The other
overcommit ratios display similar results; only the result at overcommit ratio 1.4
is shown, since it is the optimal overcommit ratio of this simulation.

Service degradation or disruption due to rapid container migration are consid-
ered negligible. Container migration may causes service degradation or disruption
as a task execution may be interrupted during migration. Since the increase to
total migration count from rapid container migration is minimal, the chance of
a container being effected by rapid container migration is also minimal. For the
containers are affected, an increase to the migration count of an individual con-
tainer is also minimal, suggesting that the effect to an individual container is
negligible.

23

There are also multiple techniques to mitigate the impact to the performance
of an individual task from rapid container migration. Live migration could be
utilized to reduce service disruption while the container is being migrated. For
critical tasks, task prioritization could be used to prevent critical containers from
being overcommited or scheduled to a high-load server.

While it is possible to over-optimize for utilization, there is also a mitigation.
As the utilization approach the theoretical maximum value, execution perfor-
mance may drop sharply. Taking the trade off between utilization and execution
performance into account, it is generally not preferable to target the maximum
theoretical utilization. Instead, targeting a slightly lower utilization allows the
system to maintain effective execution performance. Usage spike may also cause
the utilization to approach theoretical maximum and negatively impact the ex-
ecution performance. This problem could be compensated by adjusting target
utilization threshold, together with properly calculated overcommit ratio.

Due to time constraints, various compromises are taken to keep each simulation
runtime to less than 24 hours. Although Google’s cluster data contains one month
of trace data, the simulation only simulates a single week, using the data of the
first week in the trace. The results from Figure 2.5 are approaching stable values,
which suggests that simulating only the first week is enough to get meaningful
results. The results may be considered preliminary, because the simulation only
takes into account a single resource, the CPU cores. More work has to be done to
validate if cluster rebalancing is also feasible for multi-objective optimization. As
a start, fuzzy-sets and weight-averaging fuzzy operators could be used to approach
multi-objective optimization. This is similar to the approach in the work of Xu
et al. [75].

24

Fi
gu

re
2.

5.
:C

lu
st

er
ut

ili
za

tio
ns

fro
m

th
e

sim
ul

at
io

ns

25

Figure 2.6.: Distribution of unique containers by their migration count through-
out the container rebalancing simulation at overcommit ratio 1.4

26

3. Application-Aware Routing
and Application-Aware
Network

The Software-Defined Network (SDN) is a widely adopt technology for optimiz-
ing the network efficiency of a data center. SDN introduces the concept of a
software-programmable network. This is a powerful concept that cuts across
the traditional OSI layer separation [78]. A programmable network also enables
tighter integration between network hardware and software. SDN also allows
more granular network flow management. As a result, SDN-assisted routing has
become a prominent technique for improving network efficiency.

However, there are still issues with the current approaches in SDN-assisted
routing. First, conventional approaches in SDN-assisted routing search for opti-
mal routes for a small (usually single) targeted class of applications, or a certain
situation. In spite of the generality of the concepts, many of the researched ap-
proaches are only applicable to the targeted applications or situations [28,49,71].
Second, some approaches also require specific setups including client-side modifi-
cations which makes them difficult to adopt [49].

In this research, we propose using SDN-assisted application-aware routing to
address these two issues. Application-awareness allows different optimal routes
for different classes of applications, thus expanding the range of applications an
optimized network can support. SDN makes possible this granularity of flow
management. In realizing application-aware routing, application classification,
determining the network flows of an application, is an important process. This
process is done entirely within an application-aware network, eliminating the need
for client-side modifications. To evaluate the feasibility and practicality of the

27

Figure 3.1.: Structure of an OpenFlow Network

proposed concept, we created Overseer, an OpenFlow controller for implementing
an SDN-assisted application-aware network.

3.1. Background

This section briefly introduces the Software-Defined Network (SDN), OpenFlow
and the issues with existing SDN-assisted routing approaches.

A Software-Defined Network (SDN) is a network architecture that allows pro-
grammable network behavior, which in turn enables more granular route opti-
mization. OpenFlow is a widely-accepted de-facto standard implementation of
an SDN [45]. Figure 3.1 illustrates the structure of an OpenFlow network. The
OpenFlow networking model decouples a network into a control plane and a data
plane. The control plane is the layer that governs the behavior of the network.
The OpenFlow controller regulates the behavior of this plane by remotely man-
aging rules in the flow tables of all OpenFlow switches in the OpenFlow network
using the OpenFlow protocol. The data plane is the layer that handles data trans-
fer. OpenFlow switches obey rules in the flow table allowing the control plane
to “control” the data plane. By matching flows in the network with rules in the
flow tables, OpenFlow switches perform associated actions such as forwarding or
dropping communications.

28

3.1.1. Existing works involving SDN-assisted routing

Due to the limited scope of the research, existing work on SDN-assisted rout-
ing often has limited applicability [19, 28, 29, 37, 49, 62, 71]. For example, in the
work by Egilmez et al., SDN-assisted routing was used to create a QoS-enabled
adaptive video streaming service [19]. However, their solution could not coex-
ist with the other SDN-assisted routing techniques. As another example, in the
work by Watashiba et al., a system allowing a job scheduler to communicate with
the OpenFlow network was introduced to improve the performance of a network-
intensive high-performance computing (HPC) application [71]. However, the sys-
tem assumes a fat-tree topology which only works with a traditional job-based
parallel HPC application.

Many approaches also require specific setups or modifications to the client,
which makes them more difficult to deploy [19, 49, 62]. For example, in the work
by Maeda et al. and Nakasan et al., SDN-assisted routing was used in conjunc-
tion with Multipath TCP (MPTCP) to increase the data transfer throughput
of a network [49, 62]. These works rely on MPTCP for handling multiple con-
current communications. Deploying MPTCP is a complicated process involving
modification to the client’s OS kernel [54].

In the paper by Ichikawa et al., they investigated the possibility of allocat-
ing routes specific to each connection according to network properties of each
path [29]. Their implementation is geared toward improving virtual cluster per-
formance and only works with Rocks cluster. Their technique, however, could be
generalize to apply to many situations rather than targeted one.

In the work by Huang et al., GridFTP transfer speed is increased by using SDN
to manage multiple parallelized connection to avoid congestion in a multi-path
network [28]. Increasing bandwidth using multiple connections with distinct path
is applicable to many situation. However, their implementation only work with
GridFTP parallelized communication.

In the work by Watashiba et al., a system allowing job scheduler to com-
municate with OpenFlow network is introduced to improve the performance of
network-intensive high-performance computing (HPC) application [71]. However,
the system assume fat-tree topology is only works with traditional job-based par-
allel HPC application.

29

In the work by Tatsunori et al. and Nakasan et al., SDN-assisted routing is
used in conjunction with MPTCP to increase data transfer throughput of a net-
work [49, 62]. These works rely on MPTCP for handling multiple concurrent
communications. Deploying MPTCP is a complicated process involving modifi-
cation to client’s OS kernel [54].

In the work by Egilmez et al., SDN-assisted routing is used to create QoS-
enabled adaptive video streaming service [19]. However, their solution could not
coexist with the other SDN-assisted routing technique.

CORONET try to make SDN more reliable by using tried-and-through methods
such as VLAN in conjunction with SDN-assist routing [37]. Naturally, CORO-
NET requires the switches to support VLAN. CORONET also lacks application
classification thus make custom route planning a difficult task.

Although the mentioned research studies repeatedly share similar characteris-
tics, it is difficult to apply them in situations different from their targeted use
cases. A more general SDN-assisted routing approach or a framework that pro-
vides a common interface to organize and apply network optimizations could be
a solution. It would not only increase the applicability of existing SDN-assisted
routing methods, but also help avoid repeated efforts in the future.

3.2. Design and Implementation

This section describes the proposed application-aware routing approach, our gen-
eral approach to SDN-assisted routing, as well as our implementation to clarify
this concept.

3.2.1. Application-Aware Routing

Application-aware routing is a routing method which finds an optimal route spe-
cific to an individual application according to a routing strategy suited to its
application class. We designed application-aware routing to directly address two
issues with the current approach in SDN-assisted routing: limited applicability
and requirements for client-side modifications. A network with application-aware
routing is called an application-aware network.

30

The novelty of application-aware routing is the individual application routing.
Current approaches in SDN-assisted routing apply the same routing strategy to
every communication in the network. This approach substantially limits the ap-
plicability of the network. Routing each application individually allows multiple
routing strategies to be applied simultaneously, thus expanding the range of ap-
plications the network can support.

The application-aware routing process also was designed to be self-contained, so
that an application-aware network requires no client-side modification. There are
two steps in realizing application-aware routing. The first step is identifying the
application to determine its class. The second step is routing the application using
the appropriate strategy for the application class. Efficient routing strategies also
require near-realtime network information, such as topology, link bandwidth and
link latency, which is difficult to monitor [15].

3.2.2. Application Class

The research considered two major application classes: bandwidth-oriented appli-
cations and latency-oriented applications. This classification was used because,
although there are multiple factors influencing network application performance,
bandwidth and latency are the two factors that have the most noticeable impact.
A more sophisticated classification is being developed using an unsupervised ma-
chine learning technique. More details about this technique are discussed in
Section 3.4.2.1.

Bandwidth-oriented applications is a class of applications that achieves higher
performance when more bandwidth is available. Most applications that involve
transferring a large amount of data fall into this category. Examples of applica-
tions in this category include HTTP, FTP and media (audio/video) streaming.

Latency-oriented applications is a class of applications that performs better
with low latency communications. Usually, applications that involve remote con-
trolling, real-time communications or applications that uses a lot of short commu-
nications for synchronization fall into this class. For instance, SSH is considered
a latency-oriented application. Most online games, although using specialized
protocols, often belong to this category as well.

31

Figure 3.2.: Structure of an application-aware network

3.2.3. Architecture

Application-aware routing consists of three elements: application identification,
monitoring, and the routing controller. Figure 3.2 illustrates the relationship
between these elements and the OpenFlow network.

3.2.3.1. Application Identification

Applications are differentiated on a network flow (connection) level in the Open-
Flow architecture. Applications’ flows are identified with a flow identifier which
is a quartet of source IP address, destination IP address, source TCP/UDP port,
and destination TCP/UDP port. Identified flows are then classified as bandwidth-
oriented flows (for bandwidth-oriented applications), latency-oriented flows (for
latency-oriented applications), or default flows (no special routing preference) by
matching with the flow classification rules. A flow classification rule is a pair
of flow identifier and the corresponding application class. Each field in a flow
classification rule could be either an exact value matching the targeted flows or
a wildcard. Table 3.1 shows some example flow classification rules. With the
current implementation, flow classification rules are provided manually by user
input (by administrator or domain experts) or a network application through the
routing component’s API.

32

Table 3.1.: Example flow classification rules

Flow Identifier Flow Class
(SrcIP, SrcPort, DstIP, DstPort)
(* denotes wildcard match)

(10.0.0.1, 80, *, *) Bandwidth-oriented
(*, *, 10.0.0.1, 80) Bandwidth-oriented
(10.0.0.1, 7000, *, *) Latency-oriented
(*, *, 10.0.0.1, 7000) Latency-oriented
(10.0.0.1, 7199, *, *) Latency-oriented
(*, *, 10.0.0.1, 7199) Latency-oriented
(10.0.0.1, 9160, *, *) Latency-oriented
(*, *, 10.0.0.1, 9160) Latency-oriented
(10.0.0.1, 9042, *, *) Latency-oriented
(*, *, 10.0.0.1, 9042) Latency-oriented

. . . Omitted to save space . . .
(*, *, *, *) Default

3.2.3.2. Monitoring

The monitoring element retrieves information on topology, link bandwidth, and
link latency from the network. As routes are allocated reactively, the information
needs to be monitored in a near-realtime manner so that the controller can react
to changes in the network as soon as possible. Any monitoring solution can be
used as long as it can communicate with the routing component’s API.

For this research, Overlord [36] is used as the monitoring solution. Overlord
implements a direct measurement method to achieve reasonably accurate mea-
sures while still retaining a near-realtime property, making it suitable for our
application-aware network. Overlord consists of monitoring agents installed on
each node and a central collecting server. These monitoring agents regularly com-
municate with each other to collect network measurements and report back to the
central collecting server. The direct measurement method measures metrics by di-
rectly benchmarking values, producing very precise results. However, the bench-

33

marking process also affects link performance during the measurement. Overlord
minimizes this interference by intelligently deciding when each link should be
benchmarked, and which links could be benchmarked simultaneously [36].

3.2.3.3. Overseer: Routing Controller

The routing controller element classifies flows with the flow classification rules
and routes them with the corresponding routing strategy. Overseer, our imple-
mentation of the routing controller, is an OpenFlow controller. In this study,
POX [8] was used as an OpenFlow controller development framework due to its
maturity and simplicity.

For its operation, Overseer gathers information from the other elements. Flow
classification rules received from the application identification element are stored
in a flow classification table. For each flow in the application-aware network,
Overseer classifies those flows and routes them using the corresponding routing
strategy along with information from the monitoring element.

Information is gathered from the other elements by exposing a set of APIs.
The APIs were implemented using the JSON-RPC protocol [33], since POX al-
ready provided support for this protocol. The current implementation is still very
primitive and does not take security into account. Figure 3.3 shows an example
request and response from a successful JSON-RPC API call, adding the first flow
classification rule shown in Table 3.1.

Overseer implements three routing strategies: maximize-bandwidth, minimize-
latency, and minimize-path-length.

1. The maximize-bandwidth strategy for bandwidth-oriented applications routes
flows through the path with the maximum bandwidth.

2. The minimize-latency strategy for latency-oriented applications routes flows
through the path that has the minimum latency.

3. The minimize-path-length strategy is the default strategy, used for unmatched
flows, which routes flows through the shortest path.

Routes between all host pairs are pre-calculated for all routing strategies us-
ing a slightly modified Dijkstra algorithm. Figure 3.4 shows some example pre-

34

1 {
2 "method ": " set_entry ",
3 "params ": {
4 " path_identifier ": [
5 "10.0.0.1" ,
6 "80" ,
7 "*",
8 "*"
9],

10 "class ": " bandwidth_oriented "
11 },
12 "id": 1
13 }

(a) Request

1 {
2 "result ": "",
3 "id": 1
4 }

(b) Response

Figure 3.3.: Example JSON-RPC API call for adding a flow classification rule

calculated paths. Figure 3.5 illustrates the flow routing process. ld

3.2.4. Example Use Case

Let us consider a 3-node Apache Cassandra cluster with one node also running
a HTTP service. The IP addresses of each node range from 10.0.0.1 to 10.0.0.3.
The HTTP service is running on node 10.0.0.1. Figure 3.6 illustrates the network
topology of this cluster.

In order to enable the application-aware network to optimize the routing, the
administrator must decide on the classification of the flows in the network and

35

A

B

8 Gbps / 10 ms

8 Gbps / 10 ms

4 Gbps / 2 ms2 Gbps / 1 ms 2 Gbps / 1 ms

(a) Example network with bandwidth and
latency information

(b) Path with maximum bandwidth
from A to B

(c) Path with minimum latency from A
to B

(d) Path with minimum path length
(hops) from A to B

Figure 3.4.: Example network with corresponding calculated paths

design suitable flow classification rules to enforce such classification. The com-
munication pattern of Apache Cassandra and the HTTP service are known to
the administrator. Apache Cassandra is a distributed database management sys-
tem that exhibits a latency-oriented communication pattern. More information
about Apache Cassandra is discussed in Section 3.3.2.2. The HTTP service is
used primarily to serve large files to the other hosts. With this knowledge, the
administrator decided to classify Apache Cassandra’s communication as latency-
oriented and the HTTP service as bandwidth-oriented.

One method to achieve this classification is to configure the flow classification
table as shown in Table 3.1. The first two rules in the tables match HTTP com-
munications from and to 10.0.0.1 and classify them as bandwidth-oriented. The
rest of the rules except the final one match Apache Cassandra’s communications
from and to all Apache Cassandra’s hosts and classify them as latency-oriented.
Rules for the other ports used by Apache Cassandra and the other Apache Cas-
sandra’s hosts are omitted to reduce the paper length. The final rule classifies
everything else as default. This rule is not required for matching HTTP and
Apache Cassandra communications but is useful in case more applications are
deployed or more hosts are connected to the network in the future. The admin-

36

Figure 3.5.: Flow routing process

37

Figure 3.6.: Network topology of the example use case

istrator input these rules into the flow classification table using the JSON-RPC
API.

3.3. Evaluation

A series of evaluations are performed to assert the correctness of Overseer’s im-
plementation of the application-aware routing and to validate the feasibility and
practicality of the application-aware network.

3.3.1. Overseer’s Functionality Assertion

An emulation is used to assert that Overseer’s functionalities, especially the
application-aware routing, are correctly implemented. That is, Overseer must
be able to properly determine and use the most appropriate paths when there are
multiple paths with different properties to choose from according to information
in the flow classification table.

Let us consider an example network scenario in Figure 3.7. This is an over-
lay network. Each link in the network is connected together not physically with
real cables but virtually through multiple tunnels over the Internet. Numerous
factors can affect performance of communication over the Internet in an unpre-
dictable manner. These factors make tunnel performance vary in an unpredictable

38

(a) Shortest-Path Routing

(b) Application-Aware Routing

Figure 3.7.: Emulated network topology and the paths selected by shortest-path
routing and application-aware routing

39

manner. The variation of tunnel performance then, in turn, propagates to the
unpredictability of performance of each link in the overlay network and finally
results in the uneven performance of each link as shown in the figure.

With the shortest-path routing (with paths selected by the spanning-tree proto-
col), all communication between leftmost host and rightmost host in this network
take the middle path, which is the shortest. This is not an optimal path both in
term of bandwidth and latency. Using these paths result in the less than optimal
performance for both application 1 and application 2.

In application-aware routing, each network flow, although sharing the same
source and destination, is routed separately according to its requirement. With
the network performance information and application characteristics information,
the network flows corresponded to the application 1 are routed through the upper
path while the network flows corresponded to the application 2 are routed through
the lower path. Utilizing these two paths should result in higher performance in
term of bandwidth and latency for both application 1 and application 2.

3.3.1.1. Emulation Technique

The scenario is emulated Mininet, a commonly accepted network emulator within
the OpenFlow research community [41]. Since only Overseer was being evaluated,
the monitoring element was bypassed. Instead, the properties of each link are
manually set through Overseer’s API. Figure 3.8 shows the script that was used
to emulate the network topology.

The emulation result indicated that Overseer performed as designed and the
expected routes were taken as in the scenario.

3.3.2. Validity Assessment

Although our proposed application-aware routing approach was designed to in-
crease the applicability of SDN-assisted routing as well as eliminating the require-
ment for specific client-side modifications, the validity of this method was still
unproven.

To validate our proposed approach, we evaluated the feasibility and practi-
cality of application-aware routing. We evaluated the feasibility, quantitatively

40

1 from mininet .topo import Topo
2

3

4 class Usecase (Topo):
5 def __init__ (self):
6 # Initialize topology
7 Topo. __init__ (self)
8

9 # Add hosts and switches
10 h1 = self. addHost ("h1")
11 h2 = self. addHost ("h2")
12 s1 = self. addSwitch ("s1")
13 s2 = self. addSwitch ("s2")
14 s3 = self. addSwitch ("s3")
15 s4 = self. addSwitch ("s4")
16

17 # Add links
18 self. addLink (h1 , s1)
19 self. addLink (h2 , s4)
20 self. addLink (s1 , s2)
21 self. addLink (s1 , s3)
22 self. addLink (s1 , s4)
23 self. addLink (s2 , s4)
24 self. addLink (s3 , s4)
25

26 topos = {
27 " usecase ": (lambda: Usecase ())
28 }

Figure 3.8.: Mininet script for creating topology in Figure 3.7

41

assessing whether application-aware routing significantly improved network per-
formance, by comparing the performance of each implemented routing strategy
with the shortest-path routing. Shortest-path routing was used as a baseline
because it represents a common routing strategy in a traditional network. We
evaluated practicality, assessing whether an application-aware network could work
in a real situation, by using a real application and a real wide-area network en-
vironment.

For the evaluations, an OpenFlow testbed was created within the private cloud
of Nara Institute of Science and Technology (NAIST). The cloud consisted of 6
virtual machine hosts. Figure 3.9 illustrates the structure of the testbed. Each
host has a gigabit Ethernet connection that is shared among all virtual machines
(VMs) running on the same host. To have the communication go through the
physical network, six VMs were placed on six separate hosts. Each VM runs
CentOS 6.5 with Open vSwitch 1.11 and the Overlord monitoring agent. The
Open vSwitch on each VM is connected to the other VMs using GRE tunnels.
Traffic control policies are applied to these tunnels during each experiment to
simulate bandwidth and latency fluctuation as well as network congestion during
the experiment. An extra tap interface was also connected to the Open vSwitch
on each VM to allow IP address assignment to enable network-level connectivity
required by Overlord. Overseer (the controller) and Overlord’s central server were
installed in a separate VM running Ubuntu 14.04 with the latest version of POX
checked out from the “carp” branch as of July 2014.

3.3.2.1. Feasibility Evaluation with a Controlled Virtual Environment

The feasibility of the application-aware network was validated by measuring the
significance of its performance gain compared to a traditional network. The per-
formance gain was measured using the average bandwidth and latency of commu-
nication within an application-aware network, and then compared with the same
measurements from a traditional network with the same topology.

There are some testbed configurations unique to this experiment. To simulate
an extreme condition, a mesh topology is employed. Also, when no controller is
available, the Open vSwitch can be configured so that it falls back to behaving
like a traditional learning switch. The Open vSwitch also comes with a Spanning

42

Figure 3.9.: Structure of the OpenFlow testbed in the NAIST private cloud

Tree Protocol (STP). These functions of the Open vSwitch were used to represent
the traditional network.

Bandwidth Evaluation

Since the network of the cloud was shared across multiple running VMs, the
bandwidth of all links in the testbed was limited to 100 Mbps to reduce inter-
ference from external factors. However, the limit enforced by the Linux kernel
is not absolute and some fluctuation may occur. Netperf [32] was used to mea-
sure the bandwidth between all pairs of switches, each pair in both directions.
The average value of all the measured bandwidth is used to represent the overall
bandwidth of the network.

To simulate bandwidth fluctuation due to path dynamics, 5 links were selected
at random. On these selected links, the bandwidth was further reduced to 40
Mbps. All pairs bandwidth measurement was performed, then average values
were calculated again for both the traditional network and the application-aware
network. For consistency, this process was repeated for 100 iterations. Finally,
average results were calculated from all iterations. Table 3.2 and Table 3.3 show
measures bandwidth between each pair of hosts from the first iteration of the

43

Figure 3.10.: Average bandwidth of the networks from bandwidth evaluation

bandwidth evaluation with fluctuation simulation. Figure 3.10 shows the average
bandwidth measured for each case.

For the baseline case where all links are limited to 100 Mbps, the traditional
network performed better than the application-aware network. This is due to
the differences in bandwidth between each link not being substantial enough for
the system to benefit from deliberately searching for a better route. Application-
aware routing becomes an unnecessary overhead in this case. However, we believe
that our implementation is imperfect as it was implemented as a proof of concept
and there is still room for improvement.

In the case where 5 links were bandwidth limited, the application-aware net-
work outperformed the traditional network because lower bandwidth links were
avoided. As shown in Figure 3.10, with the traditional network, the results vary
as depicted by the standard deviation. With the traditional network, the average
bandwidth varies due to the number of links in the spanning tree that are being
bandwidth limited. The application-aware network helps avoid this problem.

44

Ta
bl

e
3.

2.
:B

an
dw

id
th

be
tw

ee
n

al
lh

os
ts

fro
m

th
efi

rs
ti

te
ra

tio
n

of
ba

nd
w

id
th

ev
al

ua
tio

n
w

ith
flu

ct
ua

tio
n

sim
ul

at
io

n
us

in
g

sh
or

te
st

-p
at

h
ro

ut
in

g
(M

bp
s)

Fr
om

To
H

os
t

1
H

os
t

2
H

os
t

3
H

os
t

4
H

os
t

5
H

os
t

6

H
os

t
1

N
/A

46
.5

12
8

48
.4

37
3

46
.5

04
48

.4
38

48
.4

28
8

H
os

t
2

46
.5

04
4

N
/A

48
.4

4
46

.5
06

8
48

.4
67

7
48

.4
27

1

H
os

t
3

46
.5

04
9

46
.5

05
9

N
/A

46
.5

10
7

12
1.

69
3

11
6.

24
93

H
os

t
4

46
.4

97
2

46
.5

09
2

48
.4

05
8

N
/A

48
.4

3
48

.4
39

1

H
os

t
5

48
.4

45
1

48
.4

69
8

12
1.

72
73

48
.4

34
2

N
/A

12
1.

71
79

H
os

t
6

46
.5

1
46

.5
04

4
11

6.
24

37
46

.4
99

1
12

1.
71

25
N

/A

45

Ta
bl

e
3.

3.
:B

an
dw

id
th

be
tw

ee
n

al
lh

os
ts

fro
m

th
efi

rs
ti

te
ra

tio
n

of
ba

nd
w

id
th

ev
al

ua
tio

n
w

ith
flu

ct
ua

tio
n

sim
ul

at
io

n
us

in
g

ap
pl

ic
at

io
n-

aw
ar

e
ro

ut
in

g
(M

bp
s)

Fr
om

To
H

os
t

1
H

os
t

2
H

os
t

3
H

os
t

4
H

os
t

5
H

os
t

6

H
os

t
1

N
/A

93
.6

06
3

91
.4

21
9

93
.4

56
2

93
.6

36
7

92
.5

32
6

H
os

t
2

92
.5

66
9

N
/A

94
.9

99
4

91
.0

89
8

93
.5

84
6

91
.3

95
1

H
os

t
3

93
.5

47
95

.0
39

N
/A

97
.4

39
4

91
.2

29
2

95
.0

05
1

H
os

t
4

93
.6

49
9

91
.2

59
4

97
.4

37
8

N
/A

93
.5

19
9

93
.5

49
4

H
os

t
5

93
.4

26
7

91
.4

58
1

91
.4

73
7

93
.5

25
8

N
/A

95
.0

41

H
os

t
6

91
.1

15
94

.9
88

9
91

.2
21

5
91

.2
45

2
97

.4
35

1
N

/A

46

Figure 3.11.: Average latency of the networks from latency evaluation

Latency Evaluation

The average latency of a network is measured by averaging the mean latency
between each pair of switches in the network. The mean latency between each
pair of switches is obtained from the average produced by pinging ten times. Al-
though the ping utility measures round-trip-time, this value directly corresponds
to latency and is used in this experiment to represent latency.

The average communication latency of the application-aware network and the
traditional network were measured. This experiment was performed in the same
testbed as in Section 3.3.2.1 with no baseline latency added. For congestion sim-
ulation, again 5 links were selected at random which had 10 ms latency added.
Again, the average results from 100 randomized iterations were used. Table 3.4
and Table 3.5 show measured latency between each pair of hosts from the first
iteration of the latency evaluation with congestion simulation. Figure 3.11 shows
the measured average latency of each routing technique in the two different con-
figurations.

47

Ta
bl

e
3.

4.
:L

at
en

cy
be

tw
ee

n
al

lh
os

ts
fro

m
th

e
fir

st
ite

ra
tio

n
of

th
e

la
te

nc
y

ex
pe

rim
en

tw
ith

co
ng

es
tio

n
sim

ul
at

io
n

us
in

g
sh

or
te

st
-p

at
h

ro
ut

in
g

(m
s)

Fr
om

To
H

os
t

1
H

os
t

2
H

os
t

3
H

os
t

4
H

os
t

5
H

os
t

6

H
os

t
1

N
/A

40
.5

8
20

.4
48

20
.4

39
20

.3
5

20
.4

42

H
os

t
2

40
.5

89
N

/A
20

.4
97

20
.5

26
20

.3
14

20
.5

46

H
os

t
3

20
.5

15
20

.5
31

N
/A

0.
43

4
0.

27
3

0.
39

4

H
os

t
4

20
.4

32
20

.5
51

0.
50

8
N

/A
0.

18
9

0.
49

2

H
os

t
5

20
.3

36
20

.3
27

0.
19

1
0.

20
5

N
/A

0.
31

7

H
os

t
6

20
.5

2
20

.5
28

0.
41

1
0.

59
5

0.
26

5
N

/A

48

Ta
bl

e
3.

5.
:L

at
en

cy
be

tw
ee

n
al

lh
os

ts
fro

m
th

e
fir

st
ite

ra
tio

n
of

th
e

la
te

nc
y

ex
pe

rim
en

tw
ith

co
ng

es
tio

n
sim

ul
at

io
n

us
in

g
ap

pl
ic

at
io

n-
aw

ar
e

ro
ut

in
g

(m
s)

Fr
om

To
H

os
t

1
H

os
t

2
H

os
t

3
H

os
t

4
H

os
t

5
H

os
t

6

H
os

t
1

N
/A

0.
27

6
0.

34
6

0.
20

4
0.

33
8

0.
60

1

H
os

t
2

0.
31

4
N

/A
0.

20
2

0.
21

0.
48

6
0.

25
9

H
os

t
3

0.
40

1
0.

19
9

N
/A

0.
43

3
0.

21
1

0.
36

4

H
os

t
4

0.
24

1
0.

16
9

0.
45

4
N

/A
0.

26
4

0.
54

5

H
os

t
5

0.
47

3
0.

35
3

0.
17

1
0.

21
N

/A
0.

21
6

H
os

t
6

0.
50

8
0.

20
7

0.
22

2
0.

41
8

0.
22

4
N

/A

49

At full speed, the application-aware network performed better than the tradi-
tional network in terms of latency. This is because the application-aware network
always uses the shortest paths whereas the traditional network always routes
through the root node of the spanning tree, increasing the traveling distance of
packets. With congestion simulation, the difference in term of latency between
the application-aware network and the traditional network was even more ex-
treme. The application-aware network noticed the congested links and avoided
using those links. The traditional network, on the other hand, continued using
the congested links.

With traditional routing, the results are highly variable, depending on which
links are being latency-increased. The variation was even more drastic with added
latency from congestion simulation, resulting in a severe penalty for not taking
the best route. However, the application-aware network achieved very low and
stable latency.

3.3.2.2. Practicality Evaluation with a Real-world Experiment

We evaluated practicality by measuring the performance of a real application
in an application-aware network, and the performance of an application-aware
network in a real wide-area environment.

A Real Application in an Application-aware Network

To validate the practicality of using an application-aware network with a real
application, we evaluated the performance of Apache Cassandra [40] in an application-
aware network. Apache Cassandra is a distributed database management system,
which was chosen because it is a good example of a complex communication-heavy
network application. Datastax’s distribution of Apache Cassandra comes bundled
with cassandra-stress, a stress testing tool for an Apache Cassandra cluster. This
tool was used for the evaluation.

For this evaluation, a 6-node mesh network testbed was created in the same
private cloud, in the same manner as for the feasibility evaluation. Apache Cas-
sandra 3.0.6 was installed on each node, creating a 6-node cluster with 2 seed
nodes. As shown in Figure 3.12, the network topology of the cluster was set up

50

Figure 3.12.: Network topology of the experimental Apache Cassandra cluster

to create uneven links within the network while still having an equal number of
full quality links and low quality links for each node. Each link has a bandwidth
of 10 Gbps and a latency of 1 ms, with the highlighted links in the figure having
their latency raised to 20 ms. An application-aware network was created in the
same testbed as used for the feasibility evaluation.

Using default data populated by the multiple concurrent writes test, the clus-
ter was stress tested with the multiple concurrent reads benchmark test. Each
benchmark was performed multiple times with a different number of concurrent
worker threads. The reads benchmark was used because reading from Apache
Cassandra involves searching through the entire cluster, which involves a lot of
short communications between hosts. This communication pattern is classified
as latency-oriented.

51

Figure 3.13.: Apache Cassandra read frequency of the test cluster in an
application-aware network and a traditional network

The benchmark test was done on an application-aware network with the flow
of Apache Cassandra set to minimize_latency and a custom routing that always
used the shortest-path between hosts representing the best solution from the
traditional network. From the results shown in Figure 3.13, the application-aware
network outperformed the shortest-path network in every case. At a higher thread
count, we observed a lower performance gain from the application-aware network.
We suspect this result is due to the bottleneck of the communications shifting
from latency-oriented to bandwidth-oriented as the number of threads increases.

An Application-Aware Network in a Real Wide-Area Environment

We tested an application-aware network created with Overseer on a portion
of PRAGMA-ENT, a global-scale OpenFlow network testbed [30]. This testbed
was built and is mainly used by the Pacific Rim Application and Grid Middle-
ware Assembly (PRAGMA) [11,61]. Several institutions, mostly from Japan and
the United States, contribute resources to this project. The testbed consists of
both physical OpenFlow switches and Open vSwitch. Connections between the
switches are in the form of both physical connections using a dedicated VLAN

52

Figure 3.14.: Network topology of PRAGMA-ENT as of October 10, 2014

and virtual connections through a GRE tunnel. Figure 3.14 shows participating
switches and network topology of PRAGMA-ENT as of October 10, 2014.

In this experiment, there were 4 participating hosts located at Nara Institute
of Science and Technology (NAIST), Osaka University (OsakaU), University of
California San Diego (UCSD) and University of Florida (UF). Each host ran
Open vSwitch. All connections between hosts were created using GRE tunnels
through the Internet. The performance of each connection is only limited by the
actual Internet connection quality of each location. Figure 3.15 and Figure 3.16
illustrate the logical network topology of the portion of PRAGMA-ENT utilized
in this experiment along with the measured latencies and bandwidths of each
link.

This experiment focused on the uplink from OsakaU to UCSD as it provided
the most explicit results. The bandwidth and latency from OsakaU to UCSD
were compared for the application-aware network with a corresponding routing
strategy and the traditional network using shortest path routing. In the case of
application-aware routing, two flow classification rules were set. The first rule
matched Netperf’s flows and classified them as bandwidth-oriented. The other
rule matched everything else, including ping’s ICMP packet, and classified them
as latency-oriented. Table 3.6 compares the result of all tests. From the results,

53

Figure 3.15.: Logical network topology and latency of each link in the experimen-
tal network portion of PRAGMA-ENT

the application-aware network (Overseer) achieved a higher bandwidth than the
traditional network (Shortest Path) when it routed through NAIST, approaching
the theoretical maximum value, although latency is the same for both cases as
the shortest path is already the best route for minimum latency. From these
results, we conclude that an application-aware network outperforms a traditional
network in a real wide-area environment and is practical.

3.4. Discussion

From the evaluations, We concluded that an application-aware network is both
feasible and practical. The rest of this section discusses advantages of Overseer
as well as its drawbacks and possible mitigations for those drawbacks.

54

Figure 3.16.: Bandwidth of each link in the experimental network portion of
PRAGMA-ENT

3.4.1. Advantages of Overseer

Due to the backward compatibility of its implementation, Overseer could be used
as a drop-in replacement in a traditional network. If no rule is specified, Over-
seer uses shortest-path routing for all communications. Although Overseer adds
some overhead to the routing process, a configuration with preemptive flow clas-
sification rules could be employed to reduce the overhead from reactive routing.
A technique for automatic flow identification and classification technique is also
being researched. Section 3.4.2 discusses more details regarding automatic flow
identification and classification.

The components of an application-aware network communicate through APIs,
allowing them to be replaced at will. For example, although Overlord provides
fairly accurate information, it may be preferable to use another monitoring so-
lution, such as PerfSONAR [25], for more stable monitoring and to reduce the
impact on the network, at the cost of accuracy.

Overseer’s API also allows tight integration with applications. As an example,

55

Table 3.6.: Measured bandwidth and latency from OsakaU to UCSD

Metric Shortest Path Overseer

Bandwidth 31.26 Mbps 59.25 Mbps
Latency 115 ms 115 ms

it is possible to live-modify flow classification rules to match desired communi-
cation characteristics at different stages of an application. The flow classification
rules of an application flow could be set to bandwidth-oriented and then changed
to latency-oriented at a later stage or vice-versa.

Overseer also could also be used as a building block for other SDN-assisted rout-
ing projects, since adding new network metrics, path types, and routing strategies
is a relatively simple process.

3.4.2. Limitations and Mitigations

There are still several limitations with Overseer. This section discusses those
issues and provides some possible mitigations and solutions.

3.4.2.1. Manual Application Identification

Currently, application identification requires manual input, with flow classifi-
cation rules added manually through Overseer’s API by the administrator or
domain experts. This limitation greatly reduces the applicability of Overseer.

Automatic flow identification and categorization based on observed commu-
nication patterns is a possible solution. Research is being conducted on this
approach. For example, AppMon is an OpenFlow proxy that provides flow identi-
fication and categorization using simple rules based on observations from network
traffic analysis [69].

We have also been developing a deep-learning-based automatic flow identifica-
tion and categorization technique. This technique is unsupervised so that it could
extract natural classification of the network communication as opposed to using a
defined categorization designed by the administrator or domain experts. However,

56

preliminary results from the new technique suggested that bandwidth/latency is
still a very good classification for route optimization.

3.4.2.2. Unfair Flow Distribution

Overseer allocates routes to each flow on a first-come-first-serve basis. However,
this greedy approach does not guarantee Pareto optimal network utilization as
the effect of flow order will modify the resulting flow routes. It may also lead to
a longer time to approach convergence.

To mitigate this issue, flow prioritization, resource accounting, along with on-
line optimization or flow rebalancing could be used. One of the major causes of
unfair flow distribution is differences in flow lifetimes. There are two major flow
types, long-lived flows and short-lived flows. A study has shown the importance
of managing both types of flows, especially in data center networks [34]. It is pos-
sible for long-lived flows to be allocated to superior paths for an extended period,
leaving other short-lived flows to compete with each other for inferior paths. To
combat this, flow prioritization could occasionally de-prioritize long-lived flows
and reallocate them to inferior paths, allowing short-lived flows to be allocated
to superior paths and complete their communications faster. This prioritization
method should result in higher throughput of the network.

It is also possible to take advantage of the monitored network properties of the
entire network and calculate paths for all live flows collectively with an algorithm
such as max-flow. All flows can be redistributed and updated periodically to
achieve Pareto optimal utilization.

3.4.2.3. Scalability

Overseer, our proposed OpenFlow controller, could become a bottleneck limit-
ing the scale of an application-aware network. Scalability is still an open issue
of OpenFlow [31, 77]. Overseer does not take scalability into account. How-
ever, there are several techniques that could be used to increase the scale of an
application-aware network [77].

To a certain degree, an efficient highly-available OpenFlow controller can be
scaled. A load-balancing model could be utilized to scale a single OpenFlow net-
work [76]. However, an application-aware network requires frequent information

57

Figure 3.17.: Interconnected multiple application-aware networks

updates which leads to data dependency between OpenFlow controller processes,
which limits the effectiveness of this approach. Controller fail-over techniques
also can increase the resiliency of the controller [18]. However, this does not in-
crease processing throughput, and still suffers from the same problem as controller
load-balancing.

It is more efficient to connect multiple application-aware networks instead
of scaling a single application-aware network to support a large network. An
application-aware network can be split into multiple smaller application-aware
networks with their own OpenFlow controllers, instances of Overseer, communi-
cating between each other to propagate flow classification rules. This approach
is similar to that of Hyperflow [63]. Figure 3.17 illustrates the structure of inter-
connected multiple application-aware networks.

3.4.3. Utilizing Software-Defined Network and
Application-Aware Routing to Enhance
Communication Efficiency of a Data Center

The application-aware routing and the application-aware network is highly suit-
able for enhancing communication efficiency of a general-purpose cluster. An
example of a general-purpose cluster includes a Mesos cluster. This technology
could be used to accelerate network communication of a variety of applications in
the cluster. In the environment with a wide range of applications, each with their
own distinct communication characteristics, the application-aware network could
detects network flows associated with each application and provide an optimal
route for each individual flow.

58

In the case of a specifically-designed cluster where the network communication
is highly efficient, SDN technology could still be applied to enhance the commu-
nication efficiency even further. This kind of cluster may not benefit as much
from the application-aware routing and the application-aware network compared
to a general-purpose cluster. Even in this case, the other SDN-based network
optimizations could still be utilized to improve the communication efficiency. For
example, SDN could be used to accelerate MPI_Reduce operation by eliminating
redundant communications [44].

59

4. A self-optimizing
application-aware network
with deep-learning-based
traffic classification

An automatic network flow categorization and identification is essential for realiz-
ing a self-optimizing network with an application-aware network. Network traffic
categorization and identification, in general, is also useful for network monitoring,
quality of service (QoS) control, network security, as well as data mining. De-
ploying an application-aware network involves configuring a predetermined flow
classification and flow optimization rules for network flows corresponding to each
application using the network. An automated method to create (and update) flow
classification and flow optimization rules using communication data from the net-
work would complete a cycle and create an automatic self-optimizing network.
Figure 4.1 illustrates the concept of a self-optimizing network.

Generating a meaningful classification of network flows together with a corre-
sponding class identifier (classifier) is challenging problem. A class of a network
flow is defined as a non-linear representation of the network flow. The classi-
fier model creation process is formulated as an unsupervised clustering of a raw
network traffic capture. A raw network traffic capture is commonly available as
a large unlabeled lightly-preprocessed dataset. While there are many cluster-
ing techniques, a deep-learning-based approach was chosen as it is a technique
suitable for this kind of dataset.

60

Figure 4.1.: The concept of a self-optimizing network

4.1. Background

In the scope of this work, network flows categorization and identification are
defined as follow. Network flow categorization is a process of generating a mean-
ingful network flow classification. The classification also has to be useful to the
application-aware network meaning that the classification should be based on
network properties that could be optimized with network routing. Network flow
identification is to identify which class a network flow belongs to, corresponding
to the classification.

4.1.1. Existing Approach

There were issues with the previous approaches to automatically categorize and/or
identify network flows from network traffic data. Most of the existing works use
an application-level classification which is too specific for route optimization with
the application-aware network [20,35,48,51,60,70,73,79]. In the work by X. Wang,
a decision tree with the limited number of predetermined features and thresholds
were used [68]. While their work is applicable to the application-aware network,
they used a predetermined bandwidth-bound and latency-bound classification
with the assumption that the classification is appropriate for any network traffic
without providing proper justification. A single-model-fit-all approach also limits

61

the applicability of the model.

4.1.2. Deep Learning based Approach

A deep learning technique refers to a machine learning technique using deep neural
network (DNN) model. While the neural network is not a new technology, a
recent breakthrough in parallel computation allowed for a training of a much more
complex network within a reasonable time. Multiple types of deep neural network
are developed for various applications ranging from (unsupervised) clustering fix-
sized input vectors to (supervised) classification of sequential time series data.

Using deep learning for network flows categorization and identification has sev-
eral advantages. Deep learning is a technique that is highly suitable for capturing
a non-linear representation from a large unlabeled lightly-preprocessed dataset.
Since the classification of a network flow is a non-linear representation of the flow
and a large unlabeled lightly-preprocessed network traffic data set is also readily
available, deep learning is a natural choice for this task.

While there are some existing neural-network-based approaches, they do not
work very well for creating a self-optimizing network with the application-aware
network. Specifically, most of the approaches classify a network flow into a
predetermined application-level classification [60, 70] which is too specific for
application-aware network and does not guarantee to reflect a natural classifi-
cation of the dataset. Some works also require labeled input [70] which is not
readily available.

In this work, a deep neural network clustering is selected as it is a suitable deep-
learning-based approach to network flows categorization and identification (for
the application-aware network) with the following characteristics. The approach
is unsupervised thus allowing the model to capture natural classification of the
dataset without requiring prior knowledge which could bias the results. The
resulting classification represents application’s communication characteristic and
is useful for route optimization.

62

Figure 4.2.: Example intermediate training samples sliced from a flow

4.2. Model Creation Process

This section describes training samples preparation and the deep neural network
clustering method to generating a network flow classification and a classifier.

4.2.1. Training Samples Preparation

Raw network traffic capture is transformed into training samples format suitable
for clustering with a deep neural network model. Since the objective is to create an
online network flow classifier for an application-aware network, the input format
have to be highly scalable to be able to process the large amount of network
flows in a near-real-time manner. A fixed-size input vector is chosen as the input
format as it allows for parallel inferencing with multiple instances of the classifier.
Protocol (TCP or UDP), source TCP/UDP port, and destination TCP/UDP port
are also added to the input vector as these are common features that are known
to be related to network application performance characteristic.

The training samples preparation process is divided into three steps as followed.

1. Raw network traffic is grouped by flows. Each flow is identified by a unique
combination of source IP address, destination IP address, protocol (TCP
or UDP), source TCP/UDP port, and destination TCP/UDP port.

2. A flow is sliced into multiple intermediate samples with a 1-second sliding
window with 10 seconds in length. Each intermediate sample contains 10

63

Field Value

Protocol TCP
Source Port 80
Destination Port 56931
Transferred Size (second 0-1, Bytes) 796

. . . Omitted to save space . . .
Transferred Size (second 9-10, Bytes) 2, 073
Packet Count (second 0-1) 6

. . . Omitted to save space . . .
Packet Count (second 9-10) 4

Table 4.1.: An example complete training sample

seconds of packets from the flow. Figure 4.2 illustrates the flow slicing
window.

3. An intermediate sample is restructured with a transfer size binning and a
packet count binning into a complete training sample. Packets in the in-
termediate sample are counted and binned into 10 1-second transfer size
bins and 10 1-second packet count bins. Protocol (TCP or UDP), source
TCP/UDP port, and destination TCP/UDP port are also added. Ulti-
mately, each complete training sample is a vector with 23 dimensions. Ta-
ble 4.1 shows an example complete training sample.

4.2.2. Training Deep Neural Network Model

A 3-layer stacked denoising autoencoder network with sigmoid activation func-
tions is used in this work. Softmax functions are applied at the final layer to
“squash” the output into the probability distribution. The error function is a
standard mean square error function comparing the clean input and the recon-
structed output. Adam optimizer, an optimization algorithm based on stochastic
gradient descent, is used for the optimization with all parameters set to its default
value [38]. Figure 4.3 illustrates the structure of the model.

A stack denoising decoder is an unsupervised deep neural network model struc-

64

Figure 4.3.: The 3-layer stacked denoising autoencoder model

Figure 4.4.: Training process of the first layer of the stacked denoising autoen-
coder model used in this work

ture that is commonly used for automatic feature extraction [65, 66]. The de-
noising process is introduced to the standard autoencoder to address overfitting

65

problem which is prevalent in case the size of the encoded representation is larger
than the size of the input vector. A stack denoising autoencoder model is trained
on a layer-by-layer basis. For the training of each layer, the model takes a clean
input vector and generate a noised input from the clean input. The noised input
is fed to the encoder in the encoding step to create an encoded representation
of the noised input. The encoded representation is then fed to the decoder in
the decoding step to create a reconstructed input. The quality of the encoded
representation is defined as the inverse of the error function. The error function
is a distance function between the clean input and the reconstructed input. An
optimizer is used to minimize the value of the error function as the training step
goes on. After the training of each layer, the decoder is discarded and the training
continues with the output from the trained encoder as an input to the next layer.
Figure 4.4 illustrates the training process of the first layer of the stack denoising
autoencoder model used in this work.

We have also experimented with the other networks such as deep denoising
autoencoder. However, they did not produce useful results. Only the stacked
denoising autoencoder is discussed in this paper.

4.3. Experiment Results

Several stacked denoising autoencoder models were trained with varying num-
bers of hidden layers, size of each hidden layers, and size of the output vector
(numbers of output nodes). All models were trained with CAIDA Internet traffic
dataset [17].

The following 3-layer stacked denoising autoencoder models produces the most
promising results. The first two hidden layers contain 100 and 10 nodes respec-
tively. The output layer has 3 nodes. Uniform random masking noise is used to
create the noised input from the clean input. The model took around 9 hours to
learn. Figure 4.3 illustrates the structure of the model.

While the model with 3-nodes at the output layer (3-outputs model) produces
the best results, the results from the model with 4-nodes at the output layer
(4-outputs model) are also shown for comparison. Since similar reasoning is also
applied in comparing the 3-outputs model to the other models, the results from

66

Figure 4.5.: Value of error function (cost) of the first layer of the model as the
training progress

the other models are omitted to save space.
Value of error function (cost) after learning alone is not enough to evaluate

the quality of the model. Figure 4.5, Figure 4.6, and Figure 4.7 show the cost
associated with each layer of the 3-outputs model and the 4-outputs model as
the training progress. The model was learned for the total of 240,000 iterations.
The first layer was learned during the first 80,000 iterations of the training. The
second and third layers were learned during the subsequent 80,000 iterations of
the training respectively. The cost of the first and second layer of both model are
identical as they share the same structure. The cost of the last layer of the two
model do not significantly different.

The 4-outputs model does not produce useful classification. The model cluster
network communication into four classes. Figure 4.8 and Figure 4.9 show proper-
ties distribution of classes generated with this model. The resulting classification
is similar to the classification produced by the 3-outputs model. We could not
find a meaningful interpretation of the class 2. The class 2 of this model also
contains very little flows. These two points suggest that it is better to use the

67

Figure 4.6.: Value of error function (cost) of the second layer of the model as the
training progress

Figure 4.7.: Value of error function (cost) of the third layer of the model as the
training progress

68

Figure 4.8.: Class size distribution of the 4-outputs model

3-class classification of the 3-outputs models. Aside from class 2, it is possible
to interpret the other classes in the similar fashion with the classification of the
3-outputs model.

The 3-outputs model cluster network communication into three classes. Fig-
ure 4.10 and Figure 4.11 show properties distribution of classes generated with
this model.

Information from Figure 4.10 and Figure 4.11 is used to interpret the meaning
of the classes. From the Figure 4.11, we observe that all distributions of class
2 are grouped at the very small value compared to the other classes. According
to the Figure 4.10, all UDP communications are also clustered into this class
2. We interpret these observations as class 2 representing a low-frequency com-
munication considered as an irregular communication pattern. Comparing only
class 0 and class 1, class 1 have a relatively higher transfer size and packet rate
across the board. Transferred size standard deviation distribution of class 1 also

69

(a) Transferred size distribution per class (b) Packet rate distribution per class

(c) Transferred size standard deviation dis-
tribution per class

(d) Packet rate standard deviation distribu-
tion per class

Figure 4.9.: Properties distribution of the resulting classification from the 4-
outputs model

significantly higher the other classes. We interpret these observations as class 0
represents a regular-frequency communication with relatively lower packet size

70

Figure 4.10.: Class size distribution of the 3-outputs model

(latency-bound communication pattern) whereas class 1 represents a regular-
frequency communication with relatively higher packet size (bandwidth-bound
communication pattern). With these interpretations, the classes are interpreted
as followed.

1. Class 0: Regular-frequency communication with relatively low packet size
(latency-bound pattern).

2. Class 1: Regular-frequency communication with relatively high packet size
(bandwidth-bound pattern).

3. Class 2: Low-frequency communication (irregular pattern).

It is also important to note that the three classes discovered by this model
are similar to our prior curated classification (bandwidth-bound/latency-bound
classification) used in the development of the application-aware network [64].

71

(a) Transferred size distribution per class (b) Packet rate distribution per class

(c) Transferred size standard deviation dis-
tribution per class

(d) Packet rate standard deviation distribu-
tion per class

Figure 4.11.: Properties distribution of the resulting classification from the 3-
outputs model

72

4.4. Self-Optimizing Network

The classifier model presented in this work, together with the application-aware
network, can be used to develop an automatic self-optimizing network. Figure 4.1
illustrates the concept of a self-optimizing network.

An implementation of a self-optimizing network has to be able to operate in a
high-throughput environment. Raw network traffic contains an enormous amount
of data. Ideally, during each optimization cycle, every network flows have to be
identified and categorized Then, a rule for each flow are created or updated to
reflect the current classification of the corresponding flow. The flow categorization
and identification process has to be highly scalable to cope with the amount of the
raw network traffic data. Since it is not practical to create a rule for every single
flow due to the limitation of OpenFlow, the implementation requires a method
to prioritize the creation and maintenance of optimization rules for high-impact
flows.

We propose the following design for an implementation of a self-optimizing
network. At every edge switch, the ingress communication is mirrored out to a
collector port. sFlow [52] could be used to output a uniform sampling of the com-
munication at each switch instead of mirroring everything to reduce the through-
put if required. The communication is gathered at the collector and bucketed
into each identified flow. The network flow samples are constructed from the lat-
est collected communication together with corresponding duration counter. To
prioritize high-impact flows, only flow sample from the flows with the duration
longer than a specific threshold value are sent to the classifier model for classi-
fication. Flow class identification (classification) can be parallelized for higher
throughput with parallel model inferencing. The result of the classification is
used to create and update the flow optimization rules for the application-aware
network. Figure 4.12 illustrates the structure of this implementation.

This design is feasible and highly scalable. The sFlow sampling rate and the
flow duration threshold can be optimized the achieve the acceptable balance be-
tween classification accuracy and scalability unique to each network. Parallel
model inferencing also allows for scaling-out by increasing the numbers of the
classifiers.

73

Figure 4.12.: Structure of the proposed design of a self-optimizing network

74

5. Conclusion

We present three contributions towards addressing the two factors of major im-
pact on data center computation efficiency: the container rebalancing method,
the application-aware routing and the self-optimizing application-aware network
including a deep-learning-based network traffic classification system.

5.1. Container Rebalancing

Container rebalancing method is a novel scheduling mechanism with a rebalanc-
ing process working in conjunction with an existing scheduling process of Linux
Containers (LXC) cluster. Container rebalancing takes advantage of LXC’s rapid
container migration to increase the optimal overcommit ratio of an LXC cluster.
This improvement, in turn, increases overall resources utilization of the data cen-
ter.

The simulation is used to evaluate the performance and validate the feasibility
of container rebalancing. Although many simplifications and compromises have
been made due to time constraints, the results still suggest that the container
rebalancing is a promising method.

5.2. Application Aware-Routing and
Application-Aware Network

An application-aware network enables route optimization for communication be-
tween tasks during group execution. This is done by identifying and routing each
network flow independently. It also eliminates the need for client-side modifica-
tion by classifying the applications on the network side. Overseer is an example
of an OpenFlow controller implementing an application-aware network.

75

Feasibility and practicality of the application-aware network are validated by
comparing an application-aware network with a spanning-tree-protocol-based net-
work and a shortest-path routing network in multiple situations. From the re-
sults, the application-aware network achieved higher overall performance than
the competitors. The reason being that by providing different routes for different
classes of application, the network can support a wider range of applications. We
conclude that the application-aware network is a promising technology. While
there are still several issues with our implementation, Overseer, a list of possible
mitigations is also presented.

5.3. A self-optimizing application aware
network with deep-learning-based network
traffic classification

A self-optimizing application-aware network eliminates the requirement of a man-
ual application classification by using an automatic network traffic classification
model. A deep-learning-based clustering technique is used to develop the classifi-
cation model. We describe the development of a network flow categorization and
identification model. The model was developed using a 3-layer stacked denoising
autoencoder and trained with CAIDA Internet traffic dataset. 3-classes classifica-
tion is discovered from the dataset. The three classes are a latency-bound pattern,
a bandwidth-bound pattern, and an irregular pattern. This result suggested that
deep learning is a feasible approach for network flow categorization and identi-
fication in the context of developing a classification model for a self-optimizing
application-aware network.

The design of the self-optimizing network is also proposed. The design has to
be highly scalable to be feasible given the size of the network traffic workload
it was expected to handle. All design decision are described and rationalized in
detail to demonstrate its scalability.

76

5.4. Future Work

Going forward, there are still more works to be done towards multiple aspects of
our contributions.

Regarding the container rebalancing, more work is being done to investigate
the effectiveness of this method and to improve the accuracy of the simulation.
We are also looking to expand the work towards multi-objective optimization
by including other optimization targets (i.e. memory usage, response time, and
operation performance) and constraints (i.e. data locality).

Regarding the self-optimizing application-aware network including the deep-
learning-based network traffic classification model, we are continually working to
improve our deep-neural-network classification model as well as looking into the
other model creation techniques. To keep pace with the dynamic of the network
communication as time passes, we are working on finding optimal model update
frequency and reducing model learning time if required. We are also looking
to incorporate adaptive learning to continuously update the model as well. The
real implementation of the self-optimizing application-aware network is also being
developed.

Finally, while it is straightforward to implement both container rebalancing and
a self-optimizing application-aware network together, we have yet to implement
them together in a single environment. We are working towards implementing
both container rebalancing and a self-optimizing application-aware network to-
gether in a real data center and performing a more comprehensive evaluation.

77

Appendices

78

A. Overseer’s JSON-RPC API

Overseer communicates with other element of the application-aware routing suite
by exposing a JSON-RPC API [33]. This API is used by the applications to
register flow classification rules as well as monitoring element to continuously
feeding measured network properties. The following methods were implemented:

A.1. get_table

Parameter : None
Output : All entries in flow preference table

A.2. get_entry

Parameter : Path identifier (JSON quadruple array)
Output : A single entry in flow preference table

A.3. set_entry

Parameters :

• Path identifier (JSON quadruple array)

• Path preference (possible options are minimum_hop, maximum_bandwidth
and minimum_latency)

Output : None

79

A.4. remove_entry

Parameter : Path identifier (JSON quadruple array)
Output : None

A.5. update_bandwidth

Parameters :

• Source DPID (Hexdecimal)

• Destination DPID (Hexdecimal)

• Bandwidth (Mbps)

Output : None

A.6. update_latency

Parameters :

• Source DPID (Hexdecimal)

• Destination DPID (Hexdecimal)

• Latency (ms)

Output : None

80

Acknowledgements

I would like to thank the following people for their wisdom, guidance, and support,
without whose help this work would never have been possible:

First and foremost, to Professor Hajimu Iida for providing a great research
environment. His laboratory, Software Design and Analysis Laboratory, is a
great place to pursue research.

To Professor Kazutoshi Fujikawa and Shoji Kasahara. Their constructive com-
ments and feedback push my works come so far. Without them, my research
works and the thesis would not be possible.

I would like to express deep appreciation to my supervisor, Associate Professor
Kohei Ichikawa for his continuous support and guidance in my research work as
well as my life in Japan. It was his valuable suggestions and comments that
bring this research to fruition. Without them, I would not have successfully
accomplished the Master course.

To Assistant Professor Putchong Uthayopas, who was also my advisor during
my time as an undergraduate student at Kasetsart University. He gave me in-
valuable knowledge in research methodology and widened my vision insight in the
area of high-performance computing. Part of this research was originally started
during my time in Kasetsart University. His insightful suggestion helped shape
this research in its initial stage. Without him, I could not come this far.

To Assistant Professor Yasuhiro Watashiba. His informative feedbacks and
suggestions always helps raise the quality of this research.

To Professor Shinji Shimojo, Professor Susumu Date and Associate Professor
Hirotake Abe for the great internship opportunity at Cybermedia Center, Osaka
University. This valuable opportunity has led me to pursue the master course.
They also gave a lot of beneficial points that I can use in order to improve my
research.

81

Professor Philip M. Papadopoulos, Professor Nadya Williams, Dr. Teri Simas,
Luca Clementi, Shava Smallen and PRAGMA community members for giving
me an opportunity to get involved with PRAGMA research activities as well
as an internship opportunity at University of California San Diego. PRAGMA
community provides me access to their resources that is vital to this research.
Without the privilege, this research would be impossible. The internship was
also a highly worthwhile experience for me.

I would like to acknowledge my thesis committee. Thank you so much for
reviewing my thesis and for the insightful comments and suggestions that helped
me to improve the overall quality of this thesis.

Finally, I would like to thank the Monbukagakusho (MEXT) Scholarship for
their monetary support. This scholarship enables me to live and pursue my
research in Japan comfortably. It is a huge honor to be a recipient of this schol-
arship.

82

References

[1] 33.4. Overcommitting Resources. URL: https://access.
redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/
5/html/Virtualization/sect-Virtualization-Tips_and_
tricks-Overcommitting_with_KVM.html.

[2] AUFS storage driver in practice. URL: https://docs.docker.com/engine/
userguide/storagedriver/aufs-driver/.

[3] CoreOS is Linux for Massive Server Deployments. URL: https://coreos.
com/.

[4] Kubernetes - What is Kubernetes? URL: http://kubernetes.io/docs/
whatisk8s/.

[5] Linux Containers - LXC - Introduction. URL: https://linuxcontainers.
org/lxc/introduction/.

[6] Swarm Overview. URL: https://docs.docker.com/swarm/overview/.

[7] IBM Knowledge Center | Platform Resource Scheduler 2.2.0 > Admin-
istering > Resource over commit allocation ratios, jan 2013. URL:
http://www.ibm.com/support/knowledgecenter/SS8MU9_2.2.0/Admin/
concepts/resourceovercommit.dita.

[8] POX Wiki, 2014. URL: https://openflow.stanford.edu/display/ONL/
POX+Wiki.

[9] Overview — SimPy 3.0.8 documentation, 2015. URL: http://simpy.
readthedocs.io/en/3.0.8/.

83

[10] Sameera Abar, Pierre Lemarinier, Georgios K. Theodoropoulos, and Gre-
gory M.P. Ohare. Automated dynamic resource provisioning and monitoring
in virtualized large-scale datacenter. Proceedings - International Conference
on Advanced Information Networking and Applications, AINA, pages 961–
970, 2014. doi:10.1109/AINA.2014.117.

[11] Peter Arzberger and Grace S. Hong. The Power of Cyberinfrastructure in
Building Grassroots Networks: A History of the Pacific Rim Applications
and Grid Middleware Assembly (PRAGMA), and Lessons Learned in Devel-
oping Global Communities. 2008 IEEE Fourth International Conference on
eScience, pages 470–470, 2008. doi:10.1109/eScience.2008.55.

[12] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM symposium on Oper-
ating systems principles - SOSP ’03, volume 37, page 164, New York, New
York, USA, oct 2003. ACM Press. URL: http://dl.acm.org/citation.
cfm?id=945445.945462, doi:10.1145/945445.945462.

[13] Anton Beloglazov and Rajkumar Buyya. Energy Efficient Resource Man-
agement in Virtualized Cloud Data Centers. In 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages
826–831, 2010. URL: http://ieeexplore.ieee.org/document/5493373/,
doi:10.1109/CCGRID.2010.46.

[14] David S. Bernstein. Containers and Cloud: From LXC to
Docker to Kubernetes. IEEE Cloud Computing, 1(3):81–84, sep
2014. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=7036275, doi:10.1109/MCC.2014.51.

[15] Y. Breitbart, Chee-Yong Chan Chee-Yong Chan, M. Garofalakis, R. Rastogi,
and A. Silberschatz. Efficiently monitoring bandwidth and latency in IP
networks. In Proceedings IEEE INFOCOM 2001. Conference on Computer
Communications. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Society (Cat. No.01CH37213), volume 2, pages 933–
942. Ieee, 2001. doi:10.1109/INFCOM.2001.916285.

84

[16] David Breitgand, Zvi Dubitzky, Amir Epstein, Alex Glikson, and Inbar
Shapira. Sla-aware resource over-commit in an iaas cloud. Proceedings of the
8th International Conference on Network and Service Management, pages
73–81, oct 2012. URL: http://dl.acm.org/citation.cfm?id=2499406.
2499415.

[17] CAIDA. The CAIDA Anonymized Internet Traces 2016 Dataset, 2016. URL:
http://www.caida.org/data/passive/passive_2016_dataset.xml.

[18] Xiaoliang Chen, Bin Zhao, Shoujiang Ma, Cen Chen, Daoyun Hu, Wen-
shuang Zhou, and Zuqing Zhu. Leveraging master-slave OpenFlow controller
arrangement to improve control plane resiliency in SD-EONs. Optics Express,
23(6):7550, 2015. doi:10.1364/OE.23.007550.

[19] Hilmi E. Egilmez, Seyhan Civanlar, and A. Murat Tekalp. An opti-
mization framework for QoS-enabled adaptive video streaming over open-
flow networks. IEEE Transactions on Multimedia, 15(3):710–715, 2013.
doi:10.1109/TMM.2012.2232645.

[20] Jeffrey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, and Carey
Williamson. Offline/realtime traffic classification using semi-supervised
learning. Performance Evaluation, 64(9-12):1194–1213, 2007. doi:10.1016/
j.peva.2007.06.014.

[21] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Ru-
bio. An Updated Performance Comparison of Virtual Ma-
chines and Linux Containers. Technology, 25482, 2014. URL:
http://domino.research.ibm.com/library/CyberDig.nsf/papers/
0929052195DD819C85257D2300681E7B/$File/rc25482.pdf.

[22] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Pa-
tel. The Cost of a Cloud : Research Problems in Data Center Net-
works. ACM SIGCOMM Computer Communication Review, 39(1):68–
73, 2009. URL: http://portal.acm.org/citation.cfm?doid=1496091.
1496103, doi:10.1145/1496091.1496103.

85

[23] Laszlo Gyarmati and Tuan Anh Trinh. How can architecture help to reduce
energy consumption in data center networking? In Proceedings of the 1st
International Conference on Energy-Efficient Computing and Networking,
pages 183–186, 2010. URL: http://portal.acm.org/citation.cfm?doid=
1791314.1791343, doi:10.1145/1791314.1791343.

[24] Ali Hammadi and Lotfi Mhamdi. A survey on architectures and energy
efficiency in Data Center Networks. Computer Communications, 40:1–21,
2014. URL: http://dx.doi.org/10.1016/j.comcom.2013.11.005, doi:
10.1016/j.comcom.2013.11.005.

[25] Andreas Hanemann, Jeff W. Boote, Eric L. Boyd, Jerome Jérôme Durand,
Loukik Kudarimoti, Roman Łapacz, D. Martin Swany, Szymon Trocha, Ja-
son Zurawski, Roman Lapacz, D. Martin Swany, and Jason Zurawski. Perf-
SONAR: A Service Oriented Architecture for Multi- Domain Network Mon-
itoring. In The Third international conference on Service-Oriented Comput-
ing, pages 1–23. Springer-Verlag, 2005. doi:10.1007/11596141_19.

[26] Benjamin Hindman, Andy Konwinski, Matei Zaharia, A Plat-
form, Fine-Grained Resource, and Matei Zaharia. Mesos: A
Platform for Fine-Grained Resource Sharing in the Data Cen-
ter. Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, pages 295–308, 2011. URL:
http://static.usenix.org/events/nsdi11/tech/full_papers/
Hindman_new.pdfhttps://www.usenix.org/conference/nsdi11/
mesos-platform-fine-grained-resource-sharing-data-center,
doi:10.1109/TIM.2009.2038002.

[27] Jinhua Hu, Jianhua Gu, Guofei Sun, and Tianhai Zhao. A scheduling
strategy on load balancing of virtual machine resources in cloud computing
environment. Proceedings - 3rd International Symposium on Parallel Ar-
chitectures, Algorithms and Programming, PAAP 2010, pages 89–96, 2010.
doi:10.1109/PAAP.2010.65.

[28] Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida. A
Multipath Controller for Accelerating GridFTP Transfer over SDN. 2015

86

IEEE 11th International Conference on e-Science, pages 439–447, 2015.
doi:10.1109/eScience.2015.37.

[29] Kohei Ichikawa and Hirotake Abe. A network performance-aware routing
for multisite virtual clusters. In 19th IEEE International Conference on
Networks (ICON), pages 1–5. Ieee, dec 2013. doi:10.1109/ICON.2013.
6781935.

[30] Kohei Ichikawa, Pongsakorn U-Chupala, Che Huang, Chawanat Nakasan,
Te-Lung Liu, Jo-Yu Chang, Li-Chi Ku, Whey-Fone Tsai, Jason Haga, Hi-
roaki Yamanaka, Eiji Kawai, Yoshiyuki Kido, Susumu Date, Shinji Shi-
mojo, Philip Papadopoulos, Mauricio Tsugawa, Matthew Collins, Kyuho
Jeong, Renato Figueiredo, and Jose Fortes. PRAGMA-ENT: An Interna-
tional SDN testbed for cyberinfrastructure in the Pacific Rim. Concur-
rency and Computation: Practice and Experience, (February), 2017. URL:
http://doi.wiley.com/10.1002/cpe.4138, doi:10.1002/cpe.4138.

[31] Sally Johnson. Exploring OpenFlow scalability in cloud provider data
centers, 2013. URL: http://searchtelecom.techtarget.com/feature/
Exploring-OpenFlow-scalability-in-cloud-provider-data-centers.

[32] Rick Jones. NetPerf: a network performance benchmark, 1996. URL: http:
//www.netperf.org/netperf/.

[33] JSON-RPC Working Group. JSON-RPC 2.0 Specification, 2013. URL:
http://www.jsonrpc.org/specification.

[34] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and
Ronnie Chaiken. The nature of data center traffic. In Proceedings of the
9th ACM SIGCOMM conference on Internet measurement conference - IMC
’09, page 202, 2009. doi:10.1145/1644893.1644918.

[35] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Falout-
sos. BLINC: Multilevel Traffic Classification in the Dark. Proceedings
of the 2005 conference on Applications, technologies, architectures, and
protocols for computer communications - SIGCOMM ’05, 35(4):229, 2005.
URL: http://portal.acm.org/citation.cfm?id=1090191.1080119%

87

5Cnhttp://portal.acm.org/citation.cfm?doid=1080091.1080119,
doi:10.1145/1080091.1080119.

[36] Nawawit Kessaraphong, Putchong Uthayopas, and Kohei Ichikawa. Building
a Network Performance Benchmarking System Using Monitoring as a Service
Infrastructure. In The 18th International Computer Science and Engineering
Conference, pages 2–5, 2014.

[37] Hyojoon Kim, Mike Schlansker, Jose Renato Santos, Jean Tourrilhes, Yoshio
Turner, and Nick Feamster. CORONET: Fault tolerance for software de-
fined networks. Proceedings - International Conference on Network Proto-
cols, ICNP, pages 1–2, 2012. doi:10.1109/ICNP.2012.6459938.

[38] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic
Optimization. International Conference on Learning Representations 2015,
pages 1–15, 2015. arXiv:1412.6980.

[39] Avi Kivity, Uri Lublin, Anthony Liguori, Yaniv Kamay, and Dor Laor.
kvm: the Linux virtual machine monitor. Proceedings of the Linux Sym-
posium, 1:225–230, 2007. URL: https://www.kernel.org/doc/mirror/
ols2007v1.pdf#page=225, doi:10.1186/gb-2008-9-1-r8.

[40] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review, 44(2):35,
2010. doi:10.1145/1773912.1773922.

[41] Bob Lantz, Brandon Heller, and N McKeown. A network in a laptop: rapid
prototyping for software-defined networks. . . . Workshop on Hot Topics in
Networks, pages 1–6, 2010. URL: http://dl.acm.org/citation.cfm?id=
1868466.

[42] Huang Lei, Jia Qin, Wang Xin, Yang Shuang, and Li Baochun. PCube:
Improving Power Efficiency in Data Center Networks. In Cloud Computing
(CLOUD), 2011 IEEE International Conference on, pages 65–72, 2011. doi:
10.1109/cloud.2011.74.

88

[43] P. Mahadevan, S. Banerjee, P. Sharma, A. Shah, and P. Ranganathan.
On Energy Efficiency for Enterprise and Data Center Networks. Commu-
nications Magazine, IEEE, 49(8):94–100, 2011. doi:10.1109/MCOM.2011.
5978421.

[44] Pisit Makpaisit, Kohei Ichikawa, and Putchong Uthayopas. MPI_Reduce
Algorithm for OpenFlow-Enabled Network. In 15th International Symposium
on Communications and Information Technologies (ISCIT), pages 261–264,
2015.

[45] N McKeown and Tom Anderson. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review, 38(2):69–74,
2008.

[46] David Meisner, Brian T. Gold, and Thomas F. Wenisch. The PowerNap
Server Architecture. ACM Transactions on Computer Systems, 29(1):1–
24, 2011. URL: http://portal.acm.org/citation.cfm?doid=1925109.
1925112, doi:10.1145/1925109.1925112.

[47] Dirk Merkel. Docker: lightweight Linux containers for consistent devel-
opment and deployment. Linux Journal, 2014(239):2, mar 2014. URL:
http://dl.acm.org/ft_gateway.cfm?id=2600241&type=html.

[48] Andrew W Moore and Denis Zuev. Internet Traffic Classification Using
Bayesian Analysis Techniques Categories and Subject Descriptors. Sigmet-
rics, pages 50–60, 2005. doi:10.1145/1071690.1064220.

[49] Chawanat Nakasan, Kohei Ichikawa, Hajimu Iida, and Putchong Uthayopas.
A simple multipath OpenFlow controller using topology-based algorithm for
multipath TCP. Concurrency and Computation: Practice and Experience,
(February), 2017. URL: http://doi.wiley.com/10.1002/cpe.4134, doi:
10.1002/cpe.4134.

[50] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy,
and David Wetherall. Reducing network energy consumption via sleeping
and rate-adaptation. In Symposium A Quarterly Journal In Modern Foreign

89

Literatures, volume 21, pages 323–336, 2008. URL: http://portal.acm.
org/citation.cfm?id=1387612, doi:10.1.1.143.3471.

[51] T T T Nguyen and G Armitage. A survey of techniques for internet traffic
classification using machine learning. Communications Surveys and Tutori-
als, IEEE, 10(4):56–76, 2008. doi:10.1109/SURV.2008.080406.

[52] P. Phaal, S. Panchen, and N. McKee. InMon Corporation’s sFlow: A Method
for Monitoring Traffic in Switched and Routed Networks. sep 2001. URL:
http://dl.acm.org/citation.cfm?id=RFC3176.

[53] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui
Wang, and Xiaoyun Zhu. No “ Power ” Struggles : Coordinated Multi-
level Power Management for the Data Center. Solutions, 36:48–59, 2008.
URL: http://portal.acm.org/citation.cfm?id=1346289, doi:http://
doi.acm.org/10.1145/1346281.1346289.

[54] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,
Fabien Duchene, Olivier Bonaventure, and Mark Handley. How Hard Can It
Be? Designing and Implementing a Deployable Multipath TCP. In NSDI’12
Proceedings of the 9th USENIX conference on Networked Systems Design
and Implementation, number 1, pages 29–42, 2012. URL: http://elf.cs.
pub.ro/soa/res/lectures/mptcp-nsdi12.pdf.

[55] Nathan Regola and Jean-Christophe Ducom. Recommendations for Virtu-
alization Technologies in High Performance Computing. 2010 IEEE Sec-
ond International Conference on Cloud Computing Technology and Science,
pages 409–416, 2010. doi:10.1109/CloudCom.2010.71.

[56] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael a. Kozuch. Heterogeneity and dynamicity of clouds at scale. Proceed-
ings of the Third ACM Symposium on Cloud Computing - SoCC ’12, pages 1–
13, 2012. URL: http://dl.acm.org/citation.cfm?id=2391229.2391236,
doi:10.1145/2391229.2391236.

90

[57] Charles Reiss, John Wilkes, and Joseph L Hellerstein. Google cluster-usage
traces: format + schema. Technical report, Google Inc., Mountain View,
CA, USA, nov 2011.

[58] Malte Schwarzkopf and Andy Konwinski. Omega: flexible, scalable sched-
ulers for large compute clusters. EuroSys ’13 Proceedings of the 8th ACM
European Conference on Computer Systems, pages 351–364, 2013. URL:
http://dl.acm.org/citation.cfm?id=2465386, doi:10.1145/2465351.
2465386.

[59] Junaid Shuja, Sajjad A. Madani, Kashif Bilal, Khizar Hayat, Samee U. Khan,
and Shahzad Sarwar. Energy-efficient data centers. Computing, 94(12):973–
994, 2012. doi:10.1007/s00607-012-0211-2.

[60] Murat Soysal and Ece Guran Schmidt. Machine learning algorithms for ac-
curate flow-based network traffic classification: Evaluation and comparison.
Performance Evaluation, 67(6):451–467, 2010. URL: http://dx.doi.org/
10.1016/j.peva.2010.01.001, doi:10.1016/j.peva.2010.01.001.

[61] Yoshio Tanaka, Naotaka Yamamoto, Ryousei Takano, and Akihiko Ota.
Building Secure and Transparent Inter- Cloud Infrastructure for Scientific
Applications. Technical report, 2013.

[62] Kato Tatsunori, Maeda, Hirotake, Abe, Kazuhiko. MPTCP with path selec-
tion mechanizm based on predicted throughput on OpenFlow-enabled envi-
ronment. IPSJ SIG Notes, 2013(7):1–5, 2013.

[63] Amin Tootoonchian and Y Ganjali. HyperFlow: A distributed control plane
for OpenFlow. INM/WREN’10 Proceedings of the 2010 internet network
management conference on Research on enterprise networking, pages 3–3,
2010.

[64] Pongsakorn U-chupala, Yasuhiro Watashiba, Kohei Ichikawa, Susumu Date,
and Hajimu Iida. Application-aware network: network route manage-
ment using SDN based on application characteristics. CSI Transac-
tions on ICT, 5(4):1–11, 2017. URL: http:https://doi.org/10.1007/
s40012-017-0171-y, doi:10.1007/s40012-017-0171-y.

91

[65] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. Extracting and composing robust features with denois-
ing autoencoders. Proceedings of the 25th international conference on
Machine learning - ICML ’08, pages 1096–1103, 2008. URL: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.149.8111%
5Cnhttp://portal.acm.org/citation.cfm?doid=1390156.1390294%
5Cnhttp://portal.acm.org/citation.cfm?doid=1390156.1390294,
arXiv:arXiv:1412.6550v4, doi:10.1145/1390156.1390294.

[66] Pascal Vincent Pascalvincent and Hugo Larochelle Larocheh. Stacked De-
noising Autoencoders: Learning Useful Representations in a Deep Network
with a Local Denoising Criterion Pierre-Antoine Manzagol. Journal of
Machine Learning Research, 11:3371–3408, 2010. arXiv:0-387-31073-8,
doi:10.1111/1467-8535.00290.

[67] Lin Wang, Fa Zhang, Jordi Arjona Aroca, Athanasios V. Vasilakos, Kai
Zheng, Chenying Hou, Dan Li, and Zhiyong Liu. GreenDCN: A general
framework for achieving energy efficiency in data center networks. IEEE
Journal on Selected Areas in Communications, 32(1):4–15, 2014. arXiv:
arXiv:1304.3519v2, doi:10.1109/JSAC.2014.140102.

[68] Xuliang Wang. A Flow-level Monitoring Middleware for Automatic Flow
Categorization. Master’s thesis, Nara Institute of Science and Technology,
2016.

[69] Xuliang Wang, Pongsakorn U-chupala, Kohei Ichikawa, Yasuhiro Watashiba,
Chantana Chantrapornchai, Putchong Uthayopas, and Hajimu Iida. Design
of a flow-level monitoring middleware for automatic flow categorization. In
IEICE Technical Report, 2016.

[70] Zhanyi Wang. The Applications of Deep Learning on Traffic Identification.
In Black Hat USA, 2015.

[71] Yasuhiro Watashiba, Susumu Date, and Hirotake Abe. Efficacy Analysis
of a SDN-enhanced Resource Management System through NAS Parallel
Benchmarks. The Review of Socionetwork Strategies, 8(2):69–84, 2014.

92

[72] John Wilkes. More Google cluster data. Google research blog, nov 2011.

[73] Charles Wright, Fabian Monrose, and Gm M Masson. HMM profiles for
network traffic classification. . . . of the 2004 ACM workshop on . . . , pages
9–15, 2004. URL: http://dl.acm.org/citation.cfm?id=1029211, doi:
10.1145/1029208.1029211.

[74] M G Xavier, M V Neves, F D Rossi, T C Ferreto, T Lange, and C a F
De Rose. Performance Evaluation of Container-based Virtualization for
High Performance Computing Environments. Proceedings of the 2013 21st
Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, pages 233–240, 2013. doi:Doi10.1109/Pdp.2013.41.

[75] Jing Xu and Jose A B Fortes. Multi-objective virtual machine place-
ment in virtualized data center environments. In 2010 IEEE/ACM In-
ternational Conference on Green Computing and Communications, Green-
Com 2010, 2010 IEEE/ACM International Conference on Cyber, Phys-
ical and Social Computing, CPSCom 2010, pages 179–188, 2010. doi:
10.1109/GreenCom-CPSCom.2010.137.

[76] Chiba Yasunobu and Sugyou Kazushi. OpenFlow Controller Architecture
for Large-Scale SDN Networks. NEC Technical Journal, 8(2):41–45, 2014.

[77] Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali. On scal-
ability of software-defined networking. IEEE Communications Magazine,
51(2):136–141, 2013. doi:10.1109/MCOM.2013.6461198.

[78] Yechiam Yemini. The OSI Network Management Model. Communications
Magazine, IEEE, 31(5):20–29, 1993.

[79] Jun Zhang, Yang Xiang, Yu Wang, Wanlei Zhou, Yong Xiang, and Yong
Guan. Network traffic classification using correlation information. IEEE
Transactions on Parallel and Distributed Systems, 24(1):104–117, 2013. doi:
10.1109/TPDS.2012.98.

[80] Yan Zhang, Student Member, Nirwan Ansari, and United States. HERO: Hi-
erarchical Energy Optimization for Data. IEEE Systems Journal, 9(2):2957–
2961, 2015. doi:10.1109/JSYST.2013.2285606.

93

Publication List

Early version of the work in this thesis as well as the other work directly related
to this thesis were published as listed below.

[1] P. U-Chupala, Y. Watashiba, K. Ichikawa, S. Date, and H. Iida, “Container
Rebalancing: Towards Proactive Linux Containers Placement Optimization
in a Data Center,” Computer Software and Applications Conference (COMP-
SAC), 2017, vol. 1, pp. 788–795. (Chapter 2)

[2] P. U-chupala, K.Ichikawa, P. Uthayopas, S.Date and H.Abe “Designing of
SDN-Assisted Bandwidth and Latency Aware Route Allocation,” in IPSJ SIG
Techinical Report, Vol. 2014-HPC-145, No. 2, pp. 1–7, 2014. (Chapter 3)

[3] P. U-chupala, K. Ichikawa, H. Iida, N. Kessaraphong, P. Uthayopas, S. Date,
and H. Abe, “Application-Oriented Bandwidth and Latency Aware Rout-
ing with OpenFlow Network,” in The 6th IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), 2014. (Chapter 3)

[4] P. U-chupala, Y. Watashiba, K. Ichikawa, S. Date, and H. Iida, “Application-
aware network: network route management using SDN based on application
characteristics,” CSI Transactions on ICT, vol. 5, no. 4, pp. 1–11, 2017.
(Chapter 3)

[5] K. Ichikawa, M. Tsugawa, J. Haga, H. Yamanaka, T. Liu, Y. Kido, P. U-Chupala,
C. Huang, C. Nakasan, J. Chang, L. Ku, W. Tsai, S. Date, S. Shimojo, P.
Papadopoulos, and J. Fortes, “PRAGMA-ENT: Exposing SDN Concepts to
Domain Scientists in the Pacific Rim,” PRAGMA Workshop on International
Clouds for Data Science (PRAGMA-ICDS 2015), Oct. 2015. (Chapter 3)

[6] K. Ichikawa, P. U-Chupala, C. Huang, C. Nakasan, T. Liu, J. Chang, L.
Ku, W. Tsai, J. Haga, H. Yamanaka, E. Kawai, Y. Kido, S. Date, S. Shi-
mojo, P. Papadopoulos, M. Tsugawa, M. Collins, K. Jeong, R. Figueiredo,
and J. Fortes, “PRAGMA-ENT: An International SDN testbed for cyberin-
frastructure in the Pacific Rim,” Concurrency and Computation: Practice and
Experience, February, 2017. (Chapter 3)

[7] P. U-chupala, Y. Watashiba, K.Ichikawa and H.Iida “Towards Self-Optimizing
Network: Applying Deep Learning to Network Traffic Categorization and
Identification in the Context of Application-Aware Network,” in IPSJ SIG

94

Techinical Report, Vol. 2018-IOT-40, No. 6, pp. 1–6, 2018. (Chapter 4)

95

The following publications are not directly related to the material in this thesis
but were produced in parallel to the research performed for this thesis.

[1] S. Date, H. Abe, D. Khureltulga., K. Takahashi, Y. Kido, Y. Watashiba,
P. U-Chupala, K. Ichikawa, H. Yamanaka, E. Kawai, and S. Shimojo, “An
Empirical Study of SDN-accelerated HPC Infrastructure for Scientific Re-
search,” 2015 International Conference on Cloud Computing Research and
Innovation (ICCCRI), 2015, pp. 89–96.

[2] S. Date, H. Abe, D. Khureltulga, K. Takahashi, Y. Kido, Y. Watashiba,
P. U-chupala, K. Ichikawa, H. Yamanaka, E. Kawai, and S. Shimojo, “SDN-
accelerated HPC Infrastructure for Scientific Research,” International Journal
of Information Technology, Vol. 22, No. 1, April 2016

96

