
NAIST-IS-DD1561029

Doctoral Dissertation

Improvement of Multipath TCP Performance
using Software-Defined Network

Chawanat Nakasan

March 8, 2018

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Chawanat Nakasan

Thesis Committee:
Professor Hajimu Iida (Supervisor)
Professor Kazutoshi Fujikawa (Co-supervisor)
Associate Professor Kohei Ichikawa (Co-supervisor)
Associate Professor Yasuhiro Watashiba (Co-Supervisor)
Assistant Professor Putchong Uthayopas (Kasetsart University)

Improvement of Multipath TCP Performance
using Software-Defined Network ∗

Chawanat Nakasan

Abstract

Current distributed systems require a large and increasing amount of network
resources and greatly benefit from a larger bandwidth. Network environments,
such as in data centers and across wide-area networks, usually provide multiple
paths for each host to mitigate possible network failures. However, even with
multiple paths to utilize, only one path is used per connection, which severely
limits the maximum throughput. Additionally, there is no comprehensive multi-
pathing solution as of the start of this research. Even by using transport-layer
multipathing protocol such as MPTCP, it is still incomplete because this protocol
is not in control of network routing. By providing a multipathing-aware routing
system it is possible to increase useable bandwidth between two hosts and pro-
vide a more stable connection, both of which are crucial requirements of many
distributed systems.

There are previous work that has been conducted on routing in high-performance
networks like this, but so far they are mostly concerned about creating general-
purpose bandwidth maximization algorithms in routing, without concern about
optimizing for specific cases such as MPTCP and software-defined networks. On
the other side, recent research on “multipath routing” concerns more about wire-
less and ad hoc communications, which are not the case for data center networks
or wide-area networks. By thoroughly studying and carefully combining multi-
path routing theories and software-defined network, it is possible to improve the
performance of distributed systems.

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1561029, March 8, 2018.

i

In this dissertation, a better routing algorithm that is tailored for MPTCP
is explored, along with other similar algorithms that promise similar qualities.
It is expected that this algorithm will, in terms of total throughput between a
single pair of hosts, perform as well as simple shortest-path algorithms under
the conditions of a spanning-tree network, or general networks without the use
of MPTCP, while performing better when both multiple paths and MPTCP are
available. This work is expected to result in a better performance for distributed
systems, and outlines the possible ways to increase available throughput and
increase the performance.

Keywords:

computer networks, distributed storage, software-defined network, OpenFlow,
Multipath TCP, multipath networking, multipath routing

ii

Contents

List of Figures vi

1 Introduction 1
1.1 Background: The Demands of Networked Systems 1
1.2 Keeping Up with the Data Demands 1
1.3 Improvement Factors for Bandwitdh Requirements of Distributed

Systems . 5
1.4 Motivation and Goals . 5

1.4.1 Target and Use Cases . 6
1.5 Outline of this Dissertation . 7

2 Background 8
2.1 Software-defined Network . 8
2.2 Multipathing . 9

2.2.1 Multipathing in Network Layer 9
2.2.2 Multipathing in Application Layer 10
2.2.3 Multipathing in Transport Layer 10
2.2.4 Multipath TCP . 11

MPTCP network model 12
Advantages and Limitations of MPTCP 13

2.3 Multipath Routing . 13
2.4 Distributed Storage . 13

2.4.1 Architectures . 14
2.4.2 Bandwidth and Availability Requirements of Distributed

Storage Systems . 15
2.4.3 Communication Patterns 17
2.4.4 Rationale for Distributed Storage Choice in this Research . 17

iii

3 Preliminary Study of Multipath TCP on OpenFlow Network 21
3.1 Development Testbed . 21

3.1.1 Design Goals . 21
3.1.2 Design Decisions . 22
3.1.3 The Testbed . 23

3.2 Evaluation Method . 23
3.3 Results of Evaluation . 24

3.3.1 Bandwidth utilization of MPTCP 24
3.3.2 Performance of a Single Thread 25
3.3.3 Performance of Multiple Threads 27
3.3.4 Performance in Unequal-Bandwidth Environments 27
3.3.5 Performance when Subjected to Disconnection and Recon-

nection . 27
3.3.6 Packet analysis . 28

3.4 Discussion . 28

4 The simple multipath OpenFlow controller (smoc) 31
4.1 Design of MPTCP Routing Mechanism 31

4.1.1 Identifying MPTCP subflow group on the network layer . . 31
4.1.2 Finding and using multiple paths 33

Path Set Calculation Algorithm 33
Representation of Path and Path Set Information 36
Collecting and Managing MPTCP Subflows 36

4.2 Implementation of smoc: Simple Multipath OpenFlow Controller 37
4.3 Evaluation and Results . 38

4.3.1 Evaluation in virtual local-area SDN 40
4.3.2 Evaluation in physical wide-area SDN 42

4.4 Discussion . 43
4.4.1 Algorithm performance . 43
4.4.2 Path installation delay . 43
4.4.3 Test environment . 44
4.4.4 Scalability . 44
4.4.5 Adjustments to Subflow Assignment 45

4.5 Conclusion . 45

iv

5 Analysis of Distributed Storage Communication Patterns 46
5.1 General Setup of the Testbed . 46

5.1.1 Equipment . 46
5.1.2 Software Versions . 46

5.2 Evaluation of smoc in a Ceph installation 47
5.3 Experiment Results and Discussion 49

5.3.1 Performance of Write and Read operations (Client-OSD) . 49
5.3.2 Observation of Communication Patterns 52

Write Pattern of POX Spanning-Tree and smoc 53
Read Pattern of POX Spanning-Tree and smoc 54

5.3.3 Additional Observations 55

6 Conclusion 62

Publication List 73

v

List of Figures

2.1 A simple image of OpenFlow, displaying the essential components. 8
2.2 Relationship between the traditional TCP/IP network model and

derivation that led to the principle design of MPTCP. 12

3.1 Implementation of the MPTCP/OpenFlow testbed. 22
3.2 Transient throughput measured during 1-thread to 4-thread MPTCP

tests. 25
3.3 Transient throughput comparing the cases of running 1-thread test

with and without MPTCP . 26
3.4 Wireshark analysis of the first packet captured while MPTCP con-

nection is being established. Here, an MP_CAPABLE option is
seen. GRE encapsulation between public and private IP addresses
are also visible. The sender’s key (last attribute shown in the top
panel) can later be used as the basis for MPTCP flow group iden-
tification. 29

3.5 Composition of the hosts, the switch, and links between them. All
links are limited to 100 Mbps. 30

3.6 Transient bandwidth measured during the resilience test. MPTCP
can fully utilize whatever resources that it can. 30

4.1 MPTCP handshake process, annotated with a partial list of TCP
and MPTCP option fields used in our work. 32

4.2 Components of the smoc controller, based on POX framework and
Overseer’s topology management modules. 37

vi

4.3 Topology configuration of the local testbed. The switches are Open
vSwitch installed on virtual machines. Each virtual machine is
hosted on a separate physical host. Links between the switches
are limited to 100 Mbps. 39

4.4 Testbed implementation in PRAGMA-ENT. The hosts are installed
as virtual machines on the two sites. 40

4.5 Transient throughput between two hosts measured by iperf on
different network topologies . 41

5.1 Abstract topology of the testbed, with 1 monitor node, 3 object
storage devices, and 2 clients. The network zones are highlighted,
with MDS-OSD (1–2, 1–3, and 1–4) communication in blue, OSD-
OSD (2–3, 2–4, and 3–4) in green, and CLI (2–5, 3–5, 3–6, and
4–6) in orange. 48

5.2 Visualization of relative data transfer volume when writing to the
DSS, based on data in Table 5.2a and Table 5.2b, as undirected
graphs . 56

5.3 Visualization of relative data transfer volume when reading from
the DSS, based on data in Table 5.3a and Table 5.3b, as undirected
graphs . 57

5.4 Transient stacked area plot of aggregate throughput by communi-
cation types when writing a large file to the DSS. 58

5.5 Transient stacked area plot of aggregate throughput by communi-
cation types when reading a large file from the DSS. 59

5.6 Transient stacked area plot of aggregate throughput sent from the
interfaces of Node 5 (the client) when writing a large file to the DSS. 60

5.7 Transient stacked area plot of aggregate throughput received by
the interfaces of Node 5 (the client) when writing a large file to
the DSS. 61

vii

1 Introduction

1.1 Background: The Demands of Networked
Systems

Networked systems, such as database, computation, and storage systems, have
become more prominent in the society as infrastructure supporting various ap-
plications. The increase in usage, complexity, availability, adoption, among
many factors, have led to increasing demands on the network. Furthermore, the
widespread adoption of cloud computing adds a new dimension to the usage of
network resources. With abstraction concepts such as infrastructure-as-a-service
(IaaS), platform-as-a-service (PaaS), and software-as-a-service (SaaS), many ser-
vices were widely created, leveraged, and utilized. Coupled with user-generated
nature of modern Internet, the demands on the networks have further increased,
as practically anyone can create a website, service, or even a whole virtualized
data center in a matter of minutes.

1.2 Keeping Up with the Data Demands

In a data center network (DCN), it is possible to invest in equipment so that the
system can handle more traffic, work quicker, and are more stable. On the other
hand, wide-area networks (WANs) which are more prone to latency can greatly
benefit from a more direct route to their destinations. This is why Internet data
centers (IDCs) are born in the first place – to provide a direct Internet connection
to the server and benefiting from proximity to the Internet to reduce their latency.

Systems in WANs can benefit further from practices like multi-homing which
connects a system to the Internet through multiple gateways. Another concept,
multi-site, refers to the practice of distributing the system to multiple geographic

1

locations. These practices have many benefits including locality, capacity, and re-
dundancy. When these two concepts are used together, the sites of the networked
system can be connected through wide-area network (WAN) by multiple paths.
Similarly, DCNs can also provide multiple paths to each server unit by installing
additional network elements, such as network interfaces and switches, to increase
the number of connections and benefit from the improved reliability as well as
potential bandwidth, something which would be discussed further in Chapter 2.
In fact, some motherboards are designed with multiple network interface cards
(NICs) just for this purpose.

While new, more powerful equipment could be acquired to improve both the
bandwidth and latency, modifying the networking mechanisms or protocols that
run within them is not very easy due to the distributed nature of networking.
Being protocols, they inherently require an agreement between multiple parties.
It might be possible for proprietary protocols to be developed and tested inside
a single organization, but it is much harder to gain the public acceptance needed
for the protocols to successfully interoperate between machines, and also between
autonomous systems. Any changes in networking must also take into account
backward- and forward-compatibility, as the older devices may simply be unable
to update to the new firmware necessary to run the newer protocols or operating
systems that implement them.

While it is hopeful that “improving” the bandwidth would be a direct solution
to bandwidth-dependent applications like networked systems, the situation of the
networking field itself is not an easy affair. There are many reasons that lead to
these difficulties, each a problem point of their own.

The first reason is the cost. Without naming names or numbering numbers,
it is a well-known fact that network adapters and equipment that boast higher
bandwidth, lower latency, faster processing rate, generally more stable, or oth-
erwise “better”, can be leagues more expensive than commodity devices used by
the general public. There is also additional cost of actual infrastructure, such
as renting out a better-connected data center, or constructing a private one for
use in own company. For individual researchers, it might be difficult to pull the
strings to gain access to these coveted hardware due to various reasons, be it
technical, financial, or otherwise.

2

The second reason is the important barrier in networking known as the Shan-
non Limit [39] which can be plainly explained that no matter the modulation
technique, there is only so much data that can be sent at a time without suffering
from errors. It is suggested that as this limit is approached, a “trade-off between
reach, bandwidth, and spectral efficiency” must be considered, and one way to
overcome this problem is to use multiple network paths to provide more data
capacity without hitting the Shannon Limit [34].

For the third reason, all networks, including local loopback, have latency. To
put this into perspective, the distance from Tokyo to San Diego, approximately
9,000 km, would take light, its speed approximated at 3×108, 30 ms to reach the
destination. Since communication would be done over a wire, the actual speed
will be even lower because the propagation speed in a wire is lower than the speed
of light itself. This constitutes the propagation delay of the often-quoted delay
equation, which also consists of transmission delay, processing delay, and queuing
delay. This means there is always some unavoidable latency in the network, which
is only compounded by the time it takes for the network equipment to process and
send or receive the data. While latency has minimal effect in DCNs and long-lived
network transmissions such as streaming and large data chunks, it is devastating
for response-demanding applications (such as interactive applications, including
command shells, the Web, and games) and WANs.

Another important reason to be listed as the fourth here is the congestion
control. The network cannot send all the data at once, especially with multiple
users contending for resources. Congestion control mechanisms were created to
throttle and slow down when necessary to avoid introducing errors in the network.
However, most congestion control mechanisms in modern and general use use the
round-trip time, which is a form of latency, as a parameter. Generally, the larger
the latency, the less responsive the network will be towards congestion. This, in
turn, causes reduction in performance as the end hosts cannot properly respond to
the changes in network conditions in time, leading to packet losses or bandwidth
under-utilization.

However, even if we tackle all the problem points of bandwidth, there is still an
issue of system reliability. The network has always been capable of being designed
with multiple paths between any pair of nodes, but it has not been widely utilized

3

as such because only one network path is used at a time. The traditional design
of the network model itself, where one application-layer socket corresponds to
only one transport-layer stream [10], which in turn corresponds to a fixed pair of
network-layer and link-layer endpoints [41], permits only one path to be used per
one connection. The path can be split or switched in the network layer, but it
does not address the root at the endpoints of the connections. Classical routing
mechanisms usually work in a way that results in only one route being used
for each pair of source and destination hosts. This means the network resources
(i.e. bandwidth) of multi-site multi-homed distributed systems would not be fully
utilized if only one application socket is used to connect between multiple sites,
as only one route would be used between the two sites.

A networking concept known as multipathing was developed to allow a host
or network to utilize multiple paths at the same time. Multipathing has many
benefits, including increasing maximum bandwidth, balancing network load, or
providing redundancy. Many multipathing solutions exist, with their own set of
benefits and problems.

Multipathing exists in many forms, and only some are actually useful in multi-
site multi-homed systems that are connected through wide-area networks. By
examining the TCP/IP model [41], we can find multiple places to perform mul-
tipathing, from application layer all the way down to physical layer, and many
options were introduced. [10, 37, 23, 7, 13, 35, 12, 1, 2, 4, 44, 20] Among these,
transport-layer multipathing protocol known as Multipath TCP (MPTCP) [12]
stands out the most as it is both backwards-compatible with legacy applications
and networks, and being a transport-layer protocol, it can regulate the flow of
data to respond to congestion and therefore works well in unequal or unstable
networks.

While useful, MPTCP is far from being the perfect solution to multi-site multi-
homed systems on its own. Since MPTCP works on transport layer, it now suffers
from the lack of control over which path(s) it should actually take and the network
layer does not have any knowledge about MPTCP being used. As a result, it is
possible that, in a shared infrastructure, the network would actually route the
multiple paths in MPTCP through the same network route. This means the
bandwidth in that same network route would have to be shared, eliminating the

4

benefits of MPTCP.
Software-defined networking or SDN can be utilized to rapidly test and imple-

ment new networking protocols and concepts with minimal cost.
The role of customizable routing suitable for fine-tuning MPTCP routing would

be easily filled in by OpenFlow [26], an SDN protocol. OpenFlow allows a pro-
grammer to control various aspects of switching and routing in a network, by
issuing commands from a single OpenFlow Controller to the OpenFlow Switches
in the network. This centralized design gives a lot of power to the controller.

1.3 Improvement Factors for Bandwitdh
Requirements of Distributed Systems

While there are many factors that decide what is considered “good” or “high-
performance” for a network, and interpretations of different researchers and in-
dustries may differ, bandwidth, latency, packet loss, and jitter are considered to be
among the most important metrics networks. However, with respect to the flexi-
bility of the bandwidth problem and the emergence of data-intensive networking,
it is a good idea to focus on the bandwidth aspect of the problem, which turns
this into the objectives of this research.

The next point of consideration is how would OpenFlow and MPTCP be able
to support bandwidth-intensive networking like this. The answer looks easy and
the path looks logical, that it is possible to use MPTCP to split the network com-
munication into multiple smaller subflows and manage them through multipath
congestion control mechanisms, while OpenFlow manages the routing of those
subflows.

1.4 Motivation and Goals

By looking at the problem in this way, we consider that creating a simple and effi-
cient OpenFlow Controller that splits and distributes MPTCP traffic through the
network would increase bandwidth utilization of MPTCP in the network, reducing
waste in the form of underutilized bandwidth. To be specific, we are particularly

5

targeting wide-area networks because bandwidth in wide-area network is more
limited, so greater efficiency means a lot more in this kind of network.

First and foremost, in order to preserve compatibility and allow our solution to
be more easily deployed or used with existing systems, we also have a specific goal
to not require changes in applications. This means it is most likely not possible to
use an application-layer multipathing technique. Our solution should not break
things that already work by introducing incompatibility.

Next, we focus on use of multiple paths and proportional increase of bandwidth.
Applications should be able to use multiple paths automatically and benefit from
the increased bandwidth when used in a system that we introduced.

Furthermore, we plan to find ways to improve path selection. There are many
strategies to do so, but we will introduce one that can almost guarantee that not
all flows will use the same route while being simple in itself.

Finally, we aim to adapt our solution and further refine upon the multipath
routing strategy to find a topological routing strategy that works best in specific
use cases.

1.4.1 Target and Use Cases

This work is primarily targeted at large-scale, multi-homed multi-site systems
connected together using OpenFlow. Multi-homed multi-site systems include
distributed storage, database, content delivery network (CDN), high-performance
computing (HPC), or other critical systems with disaster recovery sites, which are
usually located far away from the main site. For the purposes of this work, the
experiments will use distributed storage as the subject. Apart from multi-homed
multi-site WANs, a DCN environment with minimal latency and equal path cost
will also be considered. The consideration of both WANs and DCNs means that
network-layer multipathing techniques might not be applicable, further reinforc-
ing the position of MPTCP as the multipath network protocol of choice in this
work.

We specifically turn towards OpenFlow as an SDN protocol because it is a
well-established standard with a long and established history of development and
support from its developers, yet evolving quickly with active research and can be
expected to remain relevant for foreseeable future.

6

1.5 Outline of this Dissertation

The rest of this dissertation is organized as follows. Chapter 2 describes back-
ground and related work, including the concepts of distributed storage, software-
defined network, multipath networking in general, as well as multipath routing
theories and algorithms. Chapter 3 discusses my early steps on the evaluation
of Multipath TCP on an OpenFlow network. Chapter 4 revisits my previous
work on the simple multipath OpenFlow controller (smoc) that I have imple-
mented, with additional analyses and benchmarks. Chapter 5 talks about the
analysis of how distributed storage systems communicate, which is a key point in
understanding how bandwidth-intensive applications like them can be improved.
Chapter 6 describes a collection of methods I have implemented to improve the
routing algorithm using topological techniques, as well as relevant evaluations.
Chapter 7 discusses the importance and impact of this work in its entirety, and
the dissertation is finally wrapped up in Chapter 8.

7

2 Background

2.1 Software-defined Network

OpenFlow is an SDN protocol which allows network traffic control and man-
agement from the centralized OpenFlow Controller instead of distributing such
control to each network element (switches, routers, etc.). By centralizing net-
work control at the controller, the network elements can be programmed to add
or remove any switching or routing rules in its flow table. Figure 2.1 shows a
sample complete OpenFlow network, consisting of switches that are connected
to the controller, making up the control plane, while ordinary switch-switch and
switch-host connections make up the data plane. Since the controller has all the
power to modify and influence the network, OpenFlow can be a very powerful
network research and development tool.

While OpenFlow provides programming flexibility to the network and allows
many concepts such as QoS or traffic engineering to be realized, it cannot modify
communication pattern between the end hosts themselves. In traditional TCP/IP
protocol suite, only one route or path is used per connection. This limits the

Host A Host B

OpenFlow Controller

Control Plane

Data PlaneOpenFlow Switch

Figure 2.1: A simple image of OpenFlow, displaying the essential components.

8

maximum bandwidth of the entire connection to that of the segment with the
least bandwidth, and this cannot be overcome by simply adopting OpenFlow.

2.2 Multipathing

One early mention of the term multipath is in RFC 2991, where the term is first
mentioned in the phrase Equal-Cost Multipath (ECMP) routing, and explained
that it is used in routing protocols such as Open Shortest Path First (OSPF)
and Intermediate System to Intermediate System (ISIS), along with other imple-
mentations such as in Routing Information Protocol (RIP) [44]. This means if,
from one router’s perspective, there are multiple paths to the destination with
equal cost (which can be based on bandwidth, latency, or other metrics), then the
router will use both of them. Therefore, the term multipathing in this case takes
on the meaning of routing a connection or data stream between a single pair of
hosts through multiple routes or paths. Since many other works in the field also
use the same term to refer to this concept even though an explicit definition is
not given [37, 4, 35], we will use this as the definition for multipathing in this
thesis.

Since the term is loosely defined and there are many techniques or network
protocols that achieve multipathing effect, we will begin by explaining them by
layer, and highlight their differences.

2.2.1 Multipathing in Network Layer

RFCs 2991 and 2992 [44, 20] mention ECMP as a multipathing technique that
works at the network layer. By using ECMP, routers will load-balance among the
paths which have equal cost with respect to the destination. However, ECMP
routing is performed at network layer and is problematic to TCP, because TCP
is not aware of the presence of ECMP operations. Some ECMP implementations
scatter packets in a round-robin fashion, making packets prone to arriving out-of-
order which will prompt TCP to use retransmission mechanisms when multiple
consecutive ACKs are received, decreasing network performance [10]. Another
flaw of ECMP is the fact that it is designed for equal-cost networks and therefore
will not exhibit multipathing when path costs are not equal, which is a common

9

occurrence in wide-area networks due to variation in bandwidth and latency. This
means ECMP is not suitable for multipathing across a wide-area network. Even if
ECMP is relaxed and extended to work in WANs, it would still have to handle the
problem of unequal bandwidth between multiple paths, which can either cause
out-of-order packets or packet loss, none of which can be realistically handled by
the network layer alone.

2.2.2 Multipathing in Application Layer

GridFTP [1, 2] is one example of a multipath protocol, in that it uses multiple
TCP streams in parallel to improve performance along the network topology
[16] by extending FTP with additional commands to support parallel streams.
Application-layer multipathing can provide especially strong control over quality
of service and policies regarding what would be higher in list of priorities to
communicate first, such as prioritizing the more important parts of the data first,
then sending the rest as appropriate. It is most suitable for complex applications
that have a large variety of tasks, or those directly designed for multipath network
environments such as high-performance computing, clusters, and so on.

While useful and easily controlled by applications, application layer multi-
pathing can be error-prone [4] and hard to maintain [10]. The task of working
with the multiple paths and flows will fall upon the application, which is not aware
of the many mechanisms that are already available and working in the transport
layer [25]. Some mechanisms that involve specific transport-layer packets (TCP
SYN and ACK are common examples) may not work at all when implemented
in applications, because they do not see the complete information necessary that
support such functionality. Additionally, applications not written with multi-
pathing in mind will not benefit when multiple paths are available. In the case of
small applications or those with little network activity, implementing multipath
networking may not feasible as the problems far outweigh the benefits.

2.2.3 Multipathing in Transport Layer

For many of the applications that would not be suitable for application-layer
multipathing, it is more desirable that the paths be managed from the transport

10

layer, which is more informed about each path than applications [4] but is also
aware of the high-level connections not accounted for in the network layer. While
SCTP, a transport-layer protocol, is also capable of multipathing, the feature is
used only for redundancy purposes and not to increase bandwidth utilization [12].
Additionally, since SCTP is a completely different protocol, it may be treated
differently by network devices, and applications still need to be modified in order
to use it.

Even if actual multiple paths are not available, using multiple TCP streams in
parallel over a single network path may still be desirable. The reason is tied to
the congestion control mechanism of TCP itself that results in a constant cycle of
high and low bandwidth. Multiple TCP streams sharing the same path will split
the bandwidth and apply congestion control independently, resulting in reduced
spread between high and low moments and therefore a more stable throughput.
[17].

Many researchers, as a result, look at transport layer as a viable position to
multipath. Many works such as concurrent TCP (cTCP) [10], M/TCP [37], and
Heterogeneous Multipath Transport Protocol (HMTP) [23] provide multipathing
solutions in transport layer. Many of these are mentioned in [7]. Among these,
MPTCP [13] was considered an interesting protocol as it is implemented as TCP
options and not a separate protocol, allows paths to be added and removed while
the connection is still established, allows multipathing to be initiated from sender
or recipient which allows it to work in a greater variety of environments, manages
congestion control as a group (not per individual TCP connection), and has
integral security features. It also has extensive research, including works on
making a Linux kernel implementation [35] and a large following of community.

2.2.4 Multipath TCP

Multipath Transmission Control Protocol, or MPTCP is an extension to TCP at
the transport layer to utilize multiple paths between two network endpoints by
opening multiple subflows based on the number of interfaces in the host. Each
subflow then behaves like a TCP flow, with its own congestion control, send and
receive windows, and so on. Multipathing allows us to use more than one path in
one logical connection, increasing bandwidth utilization, improving redundancy

11

Application

Transport

IP

(a) TCP/IP Model

IP

Semantic

Flow+Endpoint

Application

(b) Decomposed-TCP Model

MPTCP

Subflow (TCP)

IP

Application

Subflow (TCP)

IP
(c) MPTCP interpretation of the decomposed layers.

Figure 2.2: Relationship between the traditional TCP/IP network model and
derivation that led to the principle design of MPTCP.

and stability, as well as allowing seamless handovers in certain environments. It is
especially useful in multi-homed networks and systems, which are more prevalent
today.

MPTCP network model

By decomposing the transport layer into two sublayers, as shown from Fig. 2.2a
to Fig. 2.2b [14], MPTCP can separately recognize the end-to-end and point-
to-point situations better than the traditional model by having the upper half,

12

which is the MPTCP extension, work only with managing the connection and
subflows, while the lower half works like ordinary TCP, dealing with congestion
and other matters in each subflow as in Fig. 2.2c.

Advantages and Limitations of MPTCP

However, even with all the advantages MPTCP could offer, there still is no guar-
antee that the multiple paths employed (a “path set”) will always be the most
optimal path set possible, as the paths in a path set may overlap or collide with
each other reducing the leverage provided by MPTCP. Since MPTCP works on
the transport layer and operates only from the source and destination hosts, it
does not have control over the path selection at network layer. Therefore, an
additional mechanism is required to guide MPTCP traffic onto multiple paths.

2.3 Multipath Routing

While OpenFlow and MPTCP each has its own limitations, combining them to
work in a single implementation could make them work well with each other.
The traffic engineering and routing techniques provided by OpenFlow can yield
optimal path sets that MPTCP can use to manage multiple subflows while pre-
senting a single interface to the application, allowing maximum performance to
be achieved with minimal additional effort from the application. While such
solutions have already been proved workable in [34], we have a further plan to
optimize it specially for wide-area networking and distributed data storage en-
vironments, as well as to develop and improve the path selection strategy with
regards to other factors beyond available bandwidth.

2.4 Distributed Storage

Distributed storage system (DSS) and distributed file system (DFS) refer to net-
worked systems of multiple storage nodes or servers working together to provide
storage capability to the users, which could be an actual physical user (e.g. a
human being operating a computer) or another computer system that stores and
retrives the files from DSS/DFS.

13

DSS/DFS can be seen as a foundation to construct a logical view of multiple
file servers on the network [45] and provide a translation between the logical view
and the physical storage structure of the files in the system.

Apart from the naming practice of their own developers, the distinction between
the terms “distributed storage system” (DSS) and “distributed file system” (DFS)
are not given much attention. In a specific report, DSS is considered to originate
from or consist of DFS [33], and another report uses only the term DFS in a
catch-all fashion [45]. Therefore, it is reasonable to regard DSSes as being a
broader unit than, or implemented using, DFSes, but the actual terms may be
used interchangeably depending on context. For the purposes of this disseration,
the term DSS will be used for consistency.

For the purposes of this research, a number of well-known DSSes were reviewed.
The works included in this section are Network File System (NFS) [42] ∗, Ceph
[49], Lustre [5], GlusterFS [9], Hadoop Distributed File System (HDFS) [40],
Google File System [15], and Gfarm File System [43]. The following subsections
describe the general landscape of these DSSes and how they can be roughly
classified based on their functions.

2.4.1 Architectures

There are many ways to provide a taxonomy on the architectures of DSSes, but
among the easiet and clearest ways are to divide them between client-server
model and cluster-based model, and also between centralized and decentralized
architectures.

In addition to these classifications, the storage methods of the DSS, commonly
trisected into file-based, block-based, and object-based, are also to be taken into con-
sideration. File-based storages organize files and their metadata in a directories-
and-files fashion, which makes the system simple to implement and easy to incor-
porate with various user policies such as access levels and permissions. However,
they are usually seen as being inferior in performance compared to block-based
systems because the latter manages data directly on a block-by-block basis, man-

∗Newer versions of NFS includes additional features beyond the initial standard. For the purposes
of comparison, only the core feature of the classic versions of NFS, which is the mounting and
sharing of storage, are considered.

14

aging a minimal amount of identifier without considering any sort of metadata.
Block-based systems are therefore superior in terms of flexibility, usefulness for
applications that do not work with the logical structure of a file (e.g. databases).
However, the complexity of implementation makes it impractical for cases where
file-based storages are sufficient. A relatively new and emerging type of stor-
age, object-based storage, treats metadata and data as objects that can be given
flexible identifiers and stored in the system. These systems usually provide an
application programming interface (API) that allows the data to be flexibly ac-
cessed by users or applications. This kind of storage provides a relatively high
level of abstraction that makes it useful for scalability, as the management of
metadata and file location can be handled by the (group of) servers responsible
for them.

Architecture classifications of the DSSes are considered for the candidate of the
DSS to be used in this research.

2.4.2 Bandwidth and Availability Requirements of
Distributed Storage Systems

Primary points of concern for DSS performance includes bandwidth and avail-
ability, which are addressed by various mechanisms of the DSSes themselves or
by providing an auxiliary mechanism or an extension to improve the usefulness.

DSSes are supposed to support a large number of users using a large amount of
bandwidth. Exabyte-level system implementations are becoming more common-
place as big data and supercomputing expands [36]. As “exascale” computing
is constantly evolving and the concept of supercomputing itself now relies more
on DSS, it is clearly evident that the performance of DSS is in need of further
research attention.

Many centralized DSSes suffer from the problem of single point of failure (SPF),
which may vary depending on the DSS. For example, non-replicative systems such
as NFS, the file server itself is the SPF. For systems with data replication but
highly centralized metadata servers such as HDFS, the system could fail when
the limited number of metadata servers are unavailable. On the other hand,
systems that distribute both the files and metadata such as GlusterFS and Ceph

15

can sustain more system outages until the cluster is inoperable.
However, distribution of data and metadata has a price. As with any sort

of distributed system, DSS must be able to maintain the consistency of the file
copies, making sure that every data is updated, manage simultaneous write and
read operations, synchronizing between the metadata servers if there is more than
one, and so on. For simple centralized systems such as NFS, it is easy to manage
file consistency because there is only one copy of a file, and the operating system
is the only entity maintaining the file index and lock, so a separate metadata
server is not necessary.

There are many reasons that a single storage node can fail. For example, the
network could be disrupted as the switches or routers become overwhelmed or
otherwise unavailable. Hard drives can go down and need to be replaced. Even
with replicative RAID levels such as RAID 1, it is still important to take the node
down for inspection and repairs when a hard drive fails. There is even an instance
where a commercial storage provider treats hard drive failures as statistics and
occasionally make them available to the general public †.

The point of DSS resilience is not about keeping all the nodes up, but rather
how to make the data still readable and writable when some of the nodes are
down. Many DSSes are designed for data recovery, such as a well-placed replica-
tion of data across multiple nodes using various strategies, implementing restora-
tive RAID levels (such as RAID 1) within each data storage server for additional
stability, and having awareness of physical server settings such as the Rack Aware-
ness concept implemented in HDFS.

During system and data recovery, it is important to complete the process as
quickly as possible. Unless the entire DSS has a backup, it is not possible to lose
access to all but one server and expect all data to survive. Many DSSes have a
set number of replications per file, block, or object, and the loss of that exact
number of server nodes can lead to permanent loss of the file, block, or object in
question.

Furthermore, when an error occurs, correction happens in bursts. When a new
hard drive is installed, data is quickly copied from other locations. When a large
file is updated, a lot of synchronization occurs.

†https://www.backblaze.com/blog/hard-drive-failure-rates-q1-2017/

16

Depending on the distributed storage system and the storage method config-
ured in the system, it is possible that one node’s file may be replicated to multiple
other nodes. When that node goes down and is restored, files from multiple nodes
will be replicated back to the original node. While it is possible to reduce the
number of servers involved in this process by designating two servers to be exact
clones of each other, this could result in a very high load on the surviving server
when another one goes down.

As we can see, there are many architectural considerations that must be made
when considering a DSS for application. These unique behaviors would also lead
to unique communication patterns between the nodes in each DSS.

2.4.3 Communication Patterns

Every distributed system has its unique communication pattern, and the exploita-
tion of this information can lead to performance increase both by a meticulous
network design that takes into account this pattern, as well as a routing technique
designed to make communication within such system more efficient.

Some distributed systems already employ a two-network approach where one
public and one private subnets are run separately. In this case, the public subnet
is used to provide connectivity to the clients for receiving commands and send-
ing files as well as status messages. On the other hand, the private network is
used for synchronization of messages, file backup and recovery, as well as other
housekeeping features in the system.

2.4.4 Rationale for Distributed Storage Choice in this
Research

A variety of DSSes were reviewed in this work. A careful consideration was carried
out between all of them to determine which would be the best fit as the primary
target in the experiments.

While Lustre has an outstanding performance as a DSS, providing one meta-
data server (MDS) and storing data on separate object storage targets (OST)
through object storage servers (OSS). Despite the high performance and flexibil-
ity, it was first ruled out due to the goals of this research. Since MPTCP was

17

planned to be used, and both Lustre and MPTCP require kernel modification to
achieve full performance, it is a risk to validity and stability of the system to use
two modifications at the same time in a single kernel. Due to the much higher
rarity of viable and flexible multipathing systems compared to DSS, MPTCP was
kept in favor and it was decided to find another DSS instead.

Network File System or NFS is among the most classic DSSes. It operates on
a client-server model and basically it is a way to view and interact with a remote
directory on a different server. In addition to this, since there is only one copy of
the actual file which is stored in the central server providing the file itself, it can
also be said that NFS is a centralized DSS. Since there is actually only one node
running NFS at any given time, it becomes a single point of failure that can make
the system unreliable. It is possible to counter this weakness by providing multi-
ple servers sharing the same or similar set of files by using simple synchronization
methods, creating a “hack job” kind of DSS with simple redundancy. However,
this kind of crude management adds another layer of complexity because consis-
tency, among other factors, suffers if the synchronization system is not present
or not properly managed. Load balancing is also another matter which must be
taken into consideration, as applications or users may not be aware of the multi-
ple NFS servers, and decide to read from or write to only one server, causing a
bottleneck in the DSS itself. NFS was briefly considered as a primary DSS target
in this work, but due to the volume of research that has already been performed
on it, as well as its client-server, centralized nature and lack of scalability, there is
not much uniqueness and complexity to the communication pattern. Therefore,
NFS is also considered not suitable for this research.

Hadoop’s HDFS is a storage system for Hadoop. It is a centralized system that
has up to two nodes used as NameNodes, and works with a scalable number of
DataNodes, each of which storing a number of files, separated into blocks. The
file name, tree, and mapping of blocks are all managed by the NameNodes. Due
to the files being actually stored as blocks, the block-based performance can be
very high, and the replication can make the system resilient. One important point
of HDFS is that since the NameNodes must be consulted every time a new file is
accessed, the performance of the block-based storage is still hindered by the file
identification. It is noteworthy that this characteristic can be considered a minor

18

issue for systems with few large files as opposed to many small files. HDFS was
also taken into consideration due to its impact and usefulness in e-science, high-
performance computing, and data science. However, since this research aims to
provide a solution that represents a more general DSS, HDFS was also considered
to be too specific for its purpose.

Google File System (GFS, but abbreviated here as GooFS) was also at one
point considered during the search for the representative target of DSS. However,
GooFS is designed to work with especially large file for Google’s big data endeav-
ors. Given the importance of benchmarking the performance of DSSes on both
large and small files, it was not considered for inclusion in this research at this
stage.

GlusterFS (also GFS, but abbreviated here as GluFS) is one of the decentralized
DSSes because it uses hashing to map the files, as opposed to using designated
metadata system like HDFS. This eliminates the bottleneck problem and makes
GluFS stand out as a high-performance DSS. Furthermore, it is a well-known and
well-maintained DSS that has a large adoption and support (funded by Red Hat).
However, the lack of a metadata system makes GluFS hard to represent the other
DSSes that do have one, so it was also not considered as a target candidate in
this work.

Due to the researcher’s familiarity with Gfarm, along with a simple yet robust
consistency and locking mechanisms, it was also considered for selection as the
primary target in this research. However, its centralized nature with only one
metadata server makes it not extensible to represent systems that may have
more than one metadata server. Additionally, Gfarm is originally designed as a
system to directly support parallel processing, not a pure DSS for the purpose of
storage. Furthermore, the known problems associated with it as of writing this
dissertation‡ outweighed the qualities. Therefore, it is decided to not use Gfarm
as a test target.

Ceph provides a flexible architecture that can provide object, block, and file
storage in a single system. Ceph depends on Reliable Autonomous Distributed
Object Storage (RADOS) [51] that provides a system that can contain multiple
object storage devices (OSDs), each a full computer unit on its own. The flexible

‡http://oss-tsukuba.org/gfarm/share/doc/gfarm/KNOWN_PROBLEMS.en

19

concept of OSD allows RADOS to manage a heterogeneous DSS that has different
system specifications on each OSD. An arbitrary, but recommended to be odd,
number of monitoring nodes can be used to provide a map of the cluster and
checks the state of the OSDs. Ceph/RADOS uses a concept of placement group
(PG) that abstracts and simplifies the problems of file placement, allowing higher
management performance in the system. Ceph uses CRUSH hashing algorithm
[50] to provide a deterministic way to locate data instead of fully depending on
the metadata server to provide all information to the client at all times. This
reduces the load on the metadata servers and provides a higher metadata-level
performance. Ceph can be summarized to be a decentralized, cluster-based DSS.
Due to Ceph’s flexibility, its low reliance on metadata access, relative popularity,
friendliness to the operating system (as opposed to Lustre), active development
(Ceph is also funded by Red Hat), and highly distributed nature that permits
as many monitor nodes as needed, Ceph is chosen as the primary target of this
research.

20

3 Preliminary Study of
Multipath TCP on OpenFlow
Network

The advent of Multipath TCP and OpenFlow has enabled many new network sys-
tems and practices to be deployed and utilized. Multipath TCP has been gaining
an increasing traction as various applications and extensions are explored, includ-
ing cellular and mobile networks [32], leveraging the API exposed to the applica-
tions for better performance [19], and extensions to improve user cooperation in
LTE networks [52].

With the traditional network model, various topologies of network such as Fat-
Tree (in DCNs) and mesh (in WANs) are provided or present, allowing multiple
routes to be taken between a pair of nodes. However, as explained, the classical
TCP/IP model allows only one path to be practically used at a time. MPTCP
provides a way to efficiently provide multiple paths over the network in an effi-
cient fasion and works well both in the DCNs and WANs, but no control over its
routing, usually resulting in many paths colliding amongst themselves and limit-
ing the actual performance. This section contains a preliminary study regarding
a simple combination of MPTCP and OpenFlow.

3.1 Development Testbed

3.1.1 Design Goals

The goal of this experiment is to evaluate and find the effectiveness of running
MPTCP on an OpenFlow testbed. OpenFlow would be used to for routing, while

21

eth0

gre0

tap0

application

gre1

tap1

eth0

gre1

tap1

application

gre0

tap0

eth0

OpenFlow Switch

gre0 gre1

Host A Host BIntermediate

OpenFlow Switch OpenFlow Switch

mptcp mptcp

Figure 3.1: Implementation of the MPTCP/OpenFlow testbed.

MPTCP utilize them to distribute traffic across multiple paths to maximize the
use of available bandwidth in the network.

3.1.2 Design Decisions

It is essential to maintain compatibility between the multipathing solution and
applications. MPTCP preserves vertical backwards compatibility by providing
the same interface to applications as TCP, so we think it is a viable method. If
an application does not already use application-layer multipathing on its own,
it will benefit from MPTCP. If the application already does, it can keep using
its own multipathing mechanisms in conjunction with MPTCP. We expect the
performance may be degraded, but the application should still function. It is
also trivial to mention that MPTCP suite is compatible with IP, because TCP
packets generated by TCP are already encapsulated in IP. Additionally, MPTCP
is also laterally backwards compatible, able to revert back to TCP if a host does
not have MPTCP installed. This is because MPTCP is implemented as a set of
TCP options, initiated by sending MP_CAPABLE option during 3-way handshake.
If a similar option is not returned, the initiating host immediately knows it has
to fall back.

As mentioned in the previous section, MPTCP has no control over the paths

22

taken by each subflow, and a path set can be suboptimal. In order to use the
most optimal multiple paths, multiple routes have to be created at the network
level so MPTCP can utilize them. These paths are situated on different networks,
and OpenFlow-based solution is used to provide the overlay network that fits this
description. For this experiment, the flow entries were set up manually to provide
static routing that works immediately without any sort of lookup algorithm and
minimize the delay that would be caused by doing so.

3.1.3 The Testbed

The testbed was implemented as described in Fig. 3.1 on a VMware vSphere
environment. Each node in this setup is deployed onto different host machines,
interconnected with a total rate of 1 Gbps, shared between all users. The GRE
connections established between each pair of hosts (red lines) are manually limited
to 100 Mbps.

The MPTCP kernel (Linux 3.11) and related MPTCP utilities were obtained
from the Multipath TCP Project [31]. The kernel provides MPTCP functionality
while the other utilities provide configuration of MPTCP in various aspects, in-
cluding preventing MPTCP traffic from spilling into unrelated network adapters.
In this particular case, eth0 interface was disabled so that MPTCP relies only
on the GRE connections to communicate between the two hosts.

3.2 Evaluation Method

Network performance was evaluated by running ordinary testing mechanisms via
iperf. This tool was chosen because only the measurement of raw throughput
was desired. If MPTCP is active and working with unmodified applications,
iperf should be able to utilize more bandwidth than without MPTCP. In ad-
dition to comparison against this common expectation, two variables were also
created to determine their effects on the measured throughput. The first variable
is the MPTCP State between on, on (but only one path is allowed), and off.
The other variable is the number of iperf threads from 1 to 4. This yields 12
settings in total. Each setting is then run in five replicates, using 10 seconds for
each repeat and 5-second pause periods between the replicates and the settings

23

Table 3.1: Bandwidth measured (in Mbps) between two host nodes over two GRE
links. Each test condition is run for ten seconds for five times, five
seconds apart.

MPTCP, many paths MPTCP, one path w/o MPTCP
1 Thread 189.13 95.17 89.14
2 Threads 190.16 95.46 95.33
3 Threads 190.84 95.23 95.62
4 Threads 191.41 95.52 95.67

to make sure that the buffers do not interfere with the subsequent tests. The av-
erage measured throughput over time is then averaged for each setting. Transient
bandwidth information is also obtained every 0.5 seconds.

MPTCP is integrated into the kernel and can be turned on and off using
sysctl -w net.mptcp.mptcp_enabled={1 or 0}, while number of connections
on iperf can be set by using -P #, where # is the number of parallel threads to
run.

3.3 Results of Evaluation

Since the testbed is implemented on a virtual environment, it can be easily con-
figured and modified. In this state, the network topology was kept as simple
as possible, by having only two nodes with one intermediate. After running the
experiment, data rates based on different conditions were captured as detailed in
Table 3.1.

3.3.1 Bandwidth utilization of MPTCP

Based on the data rates shown in Table 3.1, it was discovered that by using
MPTCP over two paths, the maximum bandwidth between the two hosts in-
creased approximately one-fold. This means MPTCP can fully utilize the new
path assigned to the two hosts. As shown in the second column in Table 3.1,
MPTCP can function as well as without MPTCP even if there is only one path,
suggesting that performance drop, if any, is negligible when using MPTCP. Addi-

24

Figure 3.2: Transient throughput measured during 1-thread to 4-thread MPTCP
tests.

tionally, MPTCP seems to be able to adapt to changing network conditions on its
own. This should allow MPTCP to adapt to any kind of network if appropriate
paths are provided by the means of OS- or network-level configuration.

3.3.2 Performance of a Single Thread

Based on the results in Table 3.1, it is worth mentioning that while the per-
formance of running multiple threads with single-path MPTCP and without
MPTCP at all yields the similar average values, the difference in the case of
1-thread evaluation was more significant (95.17 Mbps vs 89.14 Mbps). Since
it was a difference of significance, a more thorough analysis was necessary. A
transient plot of these two cases were made as shown in Fig. 3.3. The shape of
the graph indicated that the case of running MPTCP in one thread showed a
more stable throughput towards the maximum, compared to using only ordinary
TCP without multipathing. This is the effect of TCP congestion control behavior
which consists of starting slow, then increasing the speed of data transmission as

25

Figure 3.3: Transient throughput comparing the cases of running 1-thread test
with and without MPTCP

the system works without packet loss [3]. The back-and-forth behavior of TCP
congestion control itself could be the reason behind this result. It is possible that
this difference would be even more pronounced when using a network with larger
latency. All other settings, on the other hand, results in all the other cases with
either one path or without MPTCP consist of subflows or flows sharing the single
link, causing the aggregate throughput to reach the maximum more quickly.

In the case of running multiple threads without MPTCP, our results agree with
a related work [17] which performed a similar kind of test. This work further
suggests that in case of running MPTCP on a single path, a similar result could
also be achieved.

Since this behavior is dependent on the congestion control, it is possible that
mechanisms that do not exhibit this back-and-forth behavior or rely on packet
losses, such as BBR [6], would not yield this kind of graph shape.

26

Table 3.2: Throughput measured (in Mbps) between two host nodes over two
GRE links when one link is limited to 100 Mbps and another link to
50 Mbps.

Without MPTCP With MPTCP
1 Thread 47.82 142.37
2 Threads 47.60 143.94
3 Threads 47.86 144.54
4 Threads 47.86 146.52

3.3.3 Performance of Multiple Threads

In addition to the average values, the transient throughput was also measured
by iperf every 0.5 seconds, as shown in Fig. 3.2. These results indicated that
MPTCP can utilize bandwidth in a stable manner over both time and number of
threads, no worse than ordinary TCP.

3.3.4 Performance in Unequal-Bandwidth Environments

Since it is normal for WAN links to be unequal in terms of bandwidth, we have also
simulated this fact in our testbed by limiting one path’s bandwidth to 50 Mbps
as shown in Figure 3.5. The results shown in Table 3.2 indicate that MPTCP
can fully function in unequal environment and can use multiple paths effectively.
Without MPTCP, the performance would be affected if the single path uses the
affected link.

3.3.5 Performance when Subjected to Disconnection and
Reconnection

We also tested MPTCP’s resilience by running a 60-second iperf session, which
is called from Host A to Host B, but we shut down one of Host B’s interfaces
at 15 seconds, then another one at 25 seconds. We restored the original link
at 28 seconds, then another one at 38 seconds. The experiment is run for 60
seconds in total and data points are collected every 0.5 seconds. The results,
shown in Figure 3.6, demonstrates that MPTCP can respond to changes in path

27

availability. If one path goes down or becomes unavailable, another can be used,
and additional paths can be used when they become available. This test was run
five times.

3.3.6 Packet analysis

In order to check if MPTCP initialized and operated properly, we have cap-
tured the packets exchanged between the two hosts using tcpdump and put them
into Wireshark, version 1.8.6. ∗ Fig. 3.4 shows the first MPTCP packet with
MP_CAPABLE option being sent from iperf client to server. By inspecting multi-
ple packets in capture files, we also found out that multiple endpoints are used
during communication. When each pair of endpoints is being initialized, an
MP_JOIN option is sent in addition to normal TCP handshake.

3.4 Discussion

In this section, a group of MPTCP-enabled hosts implemented on an OpenFlow
network was evaluated for the network performance. The hosts could utilize
MPTCP and the network could use the primitive flow entries to increase aggregate
application-layer bandwidth between two end hosts. It is also discovered that
in this case of a virtual local network, MPTCP can work with no significant
performance drop compared to ordinary TCP. Furthermore, even in the case of a
single network route, MPTCP could serve to saturate the route more and provide
a little extra throughput to the application.

By successfully designing and implementing a working MPTCP–OpenFlow
combined testbed that yields superior bandwidth utilization and point-to-point
data rate, we further reinforce the existing proof that MPTCP is viable as a
drop-in improvement to TCP. This brings us closer to our research goal.

This, however, is still far from our main research theme. While iperf can
simulate large file transfer, it still works on a host-to-host basis and still does not
fully reflect distributed storage or other HPC systems.

∗Wireshark supports MPTCP since version 1.7.1.

28

Figure 3.4: Wireshark analysis of the first packet captured while MPTCP con-
nection is being established. Here, an MP_CAPABLE option is seen.
GRE encapsulation between public and private IP addresses are also
visible. The sender’s key (last attribute shown in the top panel) can
later be used as the basis for MPTCP flow group identification.

29

Host A Host B

100 Mbps 100 Mbps

50 Mbps

Figure 3.5: Composition of the hosts, the switch, and links between them. All
links are limited to 100 Mbps.

Figure 3.6: Transient bandwidth measured during the resilience test. MPTCP
can fully utilize whatever resources that it can.

30

4 The simple multipath
OpenFlow controller (smoc)

In this research, the simple multipath OpenFlow controller (smoc) was designed
and implemented. Its early goal was to provide an OpenFlow controller that
identifies the flow-subflow grouping in MPTCP, which is not possible from the
perspective of packet routing alone.

4.1 Design of MPTCP Routing Mechanism

Two actions are necessary to route MPTCP traffic through the network using
multiple paths. First, we need to know which subflows belong to which instance
of MPTCP. Second, we also need to decide which paths would be used and when.
These actions are further discussed in the following two subsections.

4.1.1 Identifying MPTCP subflow group on the network
layer

As stated above, we need to identify which subflows belong to the same MPTCP
instance. Since all MPTCP information is encoded as TCP options, not headers,
it is impossible to just match the basic protocol headers to identify MPTCP sub-
flow grouping. Therefore, a method to identify the subflows from the OpenFlow
controller’s perspective is necessary. In order to do so, special information beyond
IP addresses and TCP port numbers is required.

Fortunately, MPTCP exchanges all need information during the initial MPTCP
subflow establishment (using MP_CAPABLE TCP option) and subsequent subflows
(using MP_JOIN option). This process is basically an extended version of TCP

31

Host A Host B

eth1 eth1eth0 eth0

syn + MP_CAPABLE + A_key

syn/ack + MP_CAPABLE + B_key

ack + MP_CAPABLE + A_Key + B_key

MP_JOIN + B_key

MP_JOIN

ack

ack

Figure 4.1: MPTCP handshake process, annotated with a partial list of TCP and
MPTCP option fields used in our work.

three-way handshake, with MPTCP-related information added into the process.
While this is, from a strict viewpoint, considered to be a purely L4 (transport-
layer) exchange, it could also be considered as an “L4.5” communication. This is
due to MPTCP information spanning through multiple TCP streams, forming a
loose sort of session. From a hierarchy viewpoint, this distinction also makes sense
because normally all TCP-related packets should belong to a specific connection.
However, in this case, multiple TCP streams can belong to a larger group that is
still not an application-layer (an “L5”) protocol. From the monitoring viewpoint,
it is understandable because tracking such “multi-connection” protocol would
require following more than one TCP stream at a time, which takes significantly
more effort than doing so on a single TCP stream.

MPTCP relies on keys and tokens to identify a connection endpoint which is
unique for each connection and host. We can use this identification information
to find which subflows belong to which MPTCP connection∗. When MPTCP
creates a new instance for the first time, each host sends its own key to the other
host. When a host establishes an additional subflow, it (A) will send the other

∗In MPTCP, keys are later hashed, truncated, and called tokens. As we do not work on the full
process of MPTCP, we will not care about the differences between these terms. Key will be
used throughout this paper for simplicity.

32

party (B)’s key to identify an MPTCP session it (A) wishes to join. As this
process uses different IP address and TCP port pairs, an OpenFlow packet_in
message will be sent from an OpenFlow switch to the controller, which would use
this information. This process is illustrated in Figure 4.1 and is used as a basis
for flow detection and grouping in our routing algorithm.

4.1.2 Finding and using multiple paths

Apart from correctly identifying MPTCP subflows, the paths are also required
to correctly guide the flows through the optimal routes. In this work, the Open-
Flow controller would use the topology information to find optimal path sets, a
collection of paths that lead a packet from one host to another, and decide which
path an MPTCP subflow should use. This mechanism involves multiple stages:
first we analyze the packet and gather or match information with the database.
In this step, a new path set may need to be created. Then, the path set would
be applied to new MPTCP subflows as they are created. By cycling through the
different paths in a path set, MPTCP subflows can be distributed to multiple
paths.

Path Set Calculation Algorithm

Algorithm 1 Algorithm to find a path set to route from S1 to S2 in network
graph G
Require: graph G(V, E)
Require: S1, S2 ∈ switches

G(V, E) ← NetworkTopology(switches, links)
PrimaryPath ← shortest_path(G, S1, S2)
AltPaths ← all_simple_paths(G, S1, S2) - PrimaryPath

AltPaths ← AltPaths sorted by number of edges shared with PrimaryPath
ascending, then by length of path ascending
PathSet ← PrimaryPath + AltPaths

return PathSet

33

Algorithm 2 Details of database schema. ** (two asterisks) denotes data types
that may be dependent on actual implementation. PK denotes the attributes
that constitute the primary key.

pending_capable = (
tuple(init_ip IPADDR**, init_port INT) PK,
tuple(listen_ip IPADDR**, listen_port INT) PK,
init_hash INT,
pathset COLLECTION-OF-LISTS**
)

pending_join = (
tuple(init_ip IPADDR**, init_port INT) PK,
tuple(listen_ip IPADDR**, listen_port INT) PK,
listen_hash INT,
pathset COLLECTION-OF-LISTS**
)

mptcp_connections = (
to_hash INT PK,
from_hash INT,
pathset COLLECTION-OF-LISTS**
)

34

Algorithm 3 Flow group identification algorithm to handle incoming MPTCP
packets that trigger OpenFlow packet-in message.
Require: packet

Ensure: route for the flow of packet

pending_capable, pending_join, mptcp_connections defined in Algorithm 2
if packet is MP_CAPABLE message then

if (packet.dst_ip_port, packet.src_ip_port) in pending_capable then
recvkey, ABpathset ←

pending_capable[(packet.src_ip_port, packet.dst_ip_port)]
BApathset ← find new pathset
add recvkey → (packet.sendkey, ABpathset) to mptcp_connections

add packet.sendkey → (recvkey, BApathset) to mptcp_connections

delete (packet.dst_ip_port, packet.src_ip_port) from pending_capable

return BApathset.next()
else

ABpathset ← find new pathset
add (packet.src_ip_port, packet.dst_ip_port) → (packet.sendkey,
ABpathset) to pending_capable

return ABpathset.next()
end if

else if packet is MP_JOIN message then
if (packet.dst_ip_port, packet.src_ip_port) in pending_join then

sendkey, ABpathset ← pending_join[(packet.src_ip_port,
packet.dst_ip_port)]
recvkey, BApathset ← mptcp_connections[sendkey]
delete (packet.dst_ip_port, packet.src_ip_port) from pending_join

return BApathset.next()
else

sendkey, ABpathset ← mptcp_connections[packet.recvkey]
add (packet.src_ip_port, packet.dst_ip_port) → (sendkey, ABpathset)
to pending_join

return ABpathset.next()
end if

end if
return shortest path as route

35

Algorithm 1 describes a simple method to find a path set for multipath use.
When supplied with a network topology graph and the source and destination
switches, the algorithm chooses one shortest path as the primary path. The
remaining paths are sorted and prioritized to minimize path sharing with the
primary path, and then by path length. We use the shortest path and all simple
path functions from networkx[18] package.

Representation of Path and Path Set Information

Each path is represented by a simple list of all DPIDs, stored in integer, from
start to end, including the first and the last DPIDs. Path sets consist of one
or more paths stored together as a larger collection. For the implementation,
the path sets are stored as Python itertools.cycle objects, which allows us to
easily cycle through all paths inside.

Since only the specification of data is given in this section, it is also possible to
replace the routing algorithm presented in Algorithm 1 with others, allowing the
controller to be customized or improved with minimal changes to existing code.

Collecting and Managing MPTCP Subflows

To track the states of MPTCP subflows, three tables, with their schema repre-
sented in Algorithm 2, are used to store and match the subflows and assign them
to routes by Algorithm 3.

The first table is the pending_capable table which stores information of first
SYN packets sent by the MPTCP initiator using MP_CAPABLE message. It maps
the IP address and TCP port to the initiator’s hash and also stores the path set
from the initiator to the listener.

The second table is the pending_join table which does a similar function for
subsequent subflows created by MP_JOIN messages.

The final table, mptcp_connections table, stores a list of already established
MPTCP connections. Once an entry in the previous two tables is matched by
a reply packet (TCP ACK), that entry is removed from its original table and
the path set will be stored here. It maps a destination’s key to the source’s key
and the path set from source to destination. Since, by the style of OpenFlow
connections, it is not possible to detect when a connection is over, the current

36

topology spanning tree

pox core

overseer

smoc

pox

path calculation

subflow
management

Figure 4.2: Components of the smoc controller, based on POX framework and
Overseer’s topology management modules.

implementation smoc is configured to hold a maximum number of connections
that expires over time. New MP_JOIN subflows are matched against this table.
This method makes it possible for a monitor or observing entity to tap into
the information of MPTCP handshakes, which remain entirely end-to-end and
initiated by the hosts, without affecting their operations or acting as a proxy.

4.2 Implementation of smoc: Simple Multipath
OpenFlow Controller

To achieve the goal of solving the multipath bottleneck problem by using Open-
Flow to program the flow tables for MPTCP, we implement the algorithms de-
scribed in Subsection 4.1.2 in our controller, Simple Multipath OpenFlow Con-
troller (smoc). The core of smoc is based on POX, a well-known OpenFlow
controller framework. POX was chosen due to its modularity which means new
features can be rapidly developed. Topology management and path management
features are based on Overseer [48, 47] which is also an OpenFlow controller based
on POX. Overseer’s original purpose is to optimize routing based on character-
istics of applications. To serve its purpose, Overseer has well-designed topology
management and path management features, which also form the basis for smoc.

37

Path finding is assisted by the networkx Python package while path selection
is based on Algorithm 1. smoc implements Algorithm 2 as expiring dictionaries
(ExpiringDict†) in the now-modified running instance of Overseer. The majority
of the _handle_openflow_PacketIn method was replaced by an implementation
of Algorithm 3 to provide a multipath-aware subflow management system in-
stead. Underlying maintenance functions such as spanning tree management and
communication with the switches using the OpenFlow protocol are handled by
POX and Overseer.

To route flows, we maintain a list of pending and connected sessions. When
we receive a new connection handshake message, we calculate a new path set and
add both the information of the connection initiation and the path set to the
pending list. When the pending connection is responded, we calculate another
path set for the reverse direction and move everything to the connected sessions
list. Any subsequent connections would only require a lookup in the connected
sessions list to find an appropriate path.

4.3 Evaluation and Results

We evaluated smoc against POX’s original spanning tree controller (henceforth,
POX S-T). With this controller, all MPTCP traffic would be confined to a single
path even if multiple paths actually exist in the network. We chose this controller
because it is based on the same framework and architecture, and spanning tree
is commonly used to prevent loops in network topology. However, spanning tree
eliminates any sort of multiple paths that exist at the network topology level.
This means POX S-T always produces a single path between any pair of hosts.
Being based on the same technology as smoc, all basic program libraries would
be the same. This makes POX S-T suitable for an experimental control.

We chose iperf as our benchmarking tool due to its simplicity. smoc was
evaluated in two testbeds, a local-area and a wide-area testbed. These testbeds,
based on our previous work in [28], represented different network environments.

In the local testbed, two topology configurations shown in (Figure 4.3) are
modeled after a previous work from our research group [21]. Topology 1 (Fig-

†https://github.com/mailgun/expiringdict

38

Intermediate Switches Host BHost A

application

mptcp

application

mptcp

sw3

sw2

sw4

sw5

sw1 sw6

(a) Topology 1 on the local testbed

Intermediate Switches Host BHost A

application

mptcp sw3
sw2

sw4
sw5

application

mptcp

sw1

sw6

(b) Topology 2 on the local testbed

Figure 4.3: Topology configuration of the local testbed. The switches are Open
vSwitch installed on virtual machines. Each virtual machine is hosted
on a separate physical host. Links between the switches are limited
to 100 Mbps.

39

Host BHost A

eth1

application

mptcp

NICT

NAIST UF
Legend

ovs

Physical OpenFlow Switch

Open vSwitch

eth0

ovs

eth1

application

mptcp

eth0

ovs

Figure 4.4: Testbed implementation in PRAGMA-ENT. The hosts are installed
as virtual machines on the two sites.

ure 4.3a) has four isolated paths, while Topology 2 (Figure 4.3b) has paths partly
sharing a link.

The wide-area testbed (Figure 4.4) experiment uses an existing collaborative
wide-area software-defined network project known as the Pacific Rim Applica-
tions and Grid Middleware Assembly Experimental Network Testbed (PRAGMA-
ENT) [38].

4.3.1 Evaluation in virtual local-area SDN

We implemented our local-area testbed on a VMware vSphere environment using
six virtual machines. Each virtual machine, containing MPTCP installation and
Open vSwitch [30], were deployed to different physical host machines. The GRE
connections established between each virtual machine are manually limited to 100
Mbps to ensure that our virtual environment has a stable and clear maximum
level of bandwidth, allowing easier verification of MPTCP and our controller.

We obtained MPTCP kernel and utilities from [31]. The kernel provides

40

(a) Results of test on the local testbed with Topology 1

(b) Results of test on the local testbed with Topology 2

(c) Results of test on the wide-area testbed with PRAGMA-ENT

Figure 4.5: Transient throughput between two hosts measured by iperf on dif-
ferent network topologies 41

MPTCP functionality while the other MPTCP utilities allow us to disable MPTCP
on select interfaces to make sure that the experimental traffic does not “spill” into
the management subnet. This MPTCP kernel comes with multiple options that
can be set through the sysctl variables, allowing us to customize the subflow cre-
ation options and numbers. Some options allow an arbitrary number of subflows
to be created, regardless of the actual number of interfaces of the machine.

Testing POX S-T and smoc produced results as shown in Figure 4.5. Without
a combination of a multipath router and MPTCP, only one path could be used
at a time and the test run showed only approximately 95 Mbps of bandwidth,
slightly below the 100 Mbps limit, was used. However, when smoc and MPTCP
are used together, after a few seconds of delay in the controller, the measured
bandwidth was increased to greater than 100 Mbps, indicating that multipathing
was successful with this combination. Test results using Topology 1, shown in
Figure 4.5a, indicate that all four paths between Host A and Host B were used,
allowing the maximum throughput to reach up to 400 Mbps. Test results using
Topology 2, shown in Figure 4.5b, the measured throughput reached the maxi-
mum aggregate bandwidth of 200 Mbps as configured.

4.3.2 Evaluation in physical wide-area SDN

Two virtual machines were used for the evaluation in the wide-area SDN. One
was deployed in NAIST (Nara Institute of Science and Technology), Japan. An-
other was deployed in UF (University of Florida). Two paths were used in this
experiment. For the first path, NAIST and UF are connected through two phys-
ical OpenFlow switches provided by NICT (National Institute of Information
and Communications Technology), Japan. For the second path, a GRE link was
directly established over the Internet between NAIST and UF.

smoc outperformed POX S-T from the start, then continued to increase its
throughput throughout the test as shown in Figure 4.5c. It is noteworthy that
since TCP increases window size slowly in wide-area networks due to long round-
trip time, more experiment time is needed for smoc to reach the maximum band-
width possible in the network. For the wide-area test in PRAGMA-ENT, we used
12 iperf threads (-P 12) to saturate the network, using more bandwidth. This
means iperf produces more consistent values toward the maximum available

42

bandwidth.

4.4 Discussion

In this section, we discuss the performance of our algorithm, issues with path
installation delay in our controller, conditions of the test environment, and scal-
ability of our solution.

4.4.1 Algorithm performance

We used a purely topological routing algorithm and generated path sets based
on “minimum shared edges – minimum hops” basis. Whlie this is very simple to
implement, only requiring a few calculations and no monitoring at all, the per-
formance in real-world WANs may be debatable as topology information alone is
not enough to effectively route flows through the best paths. One quick improve-
ment that could be done to this controller is to use bandwidth-based routing by
implementing a weighted graph and bandwidth monitoring to supply the graph
with weights. Passive bandwidth monitoring was considered because we do not
require the level of precision that could only be achieved by active monitoring.
Any changes to the topology in real-time would be noticed by the management
modules provided by POX and Overseer.

4.4.2 Path installation delay

We experienced a 2-3 second delay in path installation as seen in Figure 4.5. This
delay is caused by the path installation process by underlying POX modules.
While this delay may be insignificant when a flow is long enough, it may impact
short flows and cause scalability problems when handling a large number of flows.
We need to find some way to improve the performance of the controller, such as
shifting from the current reactive approach to a more proactive one which is more
scalable [11] and has better performance. Some examples of proactive measures
possible for smoc include anticipating and preinstalling flow entries for additional
subflows right after the first subflow is created, or storing a group of frequently-
used path sets so they do not have to be calculated every time a new flow enters

43

the network.

4.4.3 Test environment

While PRAGMA-ENT is a very good representation of WANs, the segment that
we used consists of only two paths and a small number of switches. Even if
these switches represented many more actual network elements, a more complex
network could prove beneficial to the evaluation of our work. Additionally, testing
with real-world applications would provide a realistic picture of our experiment.
The high latency present in PRAGMA-ENT caused TCP flows to increase their
window sizes more slowly. Shown in Figure 4.5c, it takes about 160 seconds for
smoc’s TCP flows to collectively increase their throughput to about 160 Mbps.
This means spending more time with the test runs on high-latency networks
should provide clearer results.

4.4.4 Scalability

Even though the multipath routing algorithm described in this work is adequate
to efficiently route a set of subflows belonging to an MPTCP session through
multiple paths, the smoc controller itself may have scalability problems. smoc is
inherently centralized due to its use of OpenFlow. It has been studied that the
number of flows that can be processed by the OpenFlow controller reduces at a
quadratic rate with increasing number of switches, regardless of using proactive or
reactive approach in routing [11]. As described earlier, reducing path installation
delay by using proactive routing and reducing path set computation time can
be some simple ways to mitigate (but not completely eliminate) the scalability
problem by increasing the rate of flow processing. More involved methods include
considering additional features in later OpenFlow protocol versions, such as TCP
flag matching introduced in version 1.5.0, to allow the switches to make more
decisions on their own without requesting decisions from the controller. However,
not all switches support the newest versions. We must consider the compatibility
between the controller and the target environment carefully before upgrading the
protocol version used in our controller.

Apart from the methods mentioned above, we could consider alternatives and

44

modifications to OpenFlow, such as HyperFlow [46] and DevoFlow [8]. Hyper-
Flow uses multiple synchronized OpenFlow controllers to communicate with each
other and split the workload. Installing one HyperFlow controller per site may
lead to greater scalability than using a single OpenFlow controller for the en-
tire network. On the other hand, DevoFlow, which is a significant modification
to OpenFlow, aims to reduce workload on the controller by allowing additional
actions on the switches, such as rule cloning and multipath support. These solu-
tions would be able to improve scalability of many existing OpenFlow applications
including smoc.

4.4.5 Adjustments to Subflow Assignment

It is possible to configure MPTCP and the network to create more subflows than
the actual number of possible paths. In this case, at least one path will be used by
more than one subflow. By considering network characteristics such as latency
and bandwidth and configure our controller accordingly, we might be able to
increase total throughput. For example, placing more subflows on a path with
larger bandwidth would allow those subflows to take advantage of the bandwidth,
rather than having them contend against each other on a smaller bandwidth path.

4.5 Conclusion

In this work we presented a simple multipath OpenFlow controller that routes
MPTCP connections by splitting them across multiple paths. Tests on both
LAN and WAN SDN testbeds yielded positive results, indicating that our con-
troller works as intended. No modifications to applications or host machines were
made (only the kernel in the virtual machines), making our solution backwards-
compatible with existing systems. We would find ways to improve its performance
in future iterations of our work.

45

5 Analysis of Distributed Storage
Communication Patterns

5.1 General Setup of the Testbed

5.1.1 Equipment

The six server nodes were implemented as virtual machines in the six servers at
Nara Institute of Science and Technology’s VIS Center, the successor to ISA.

5.1.2 Software Versions

Each of the six experiment nodes are configured as follows:

• Ceph 10.2.9

• CentOS 7.4

• MPTCP 0.91.3 based on Linux 4.1.39

• Open vSwitch 2.5.1

• OpenFlow 1.0

• Python 2.7.5

Ceph was chosen based on reasons in Sect. 2.4.4. CentOS was chosen over
Ubuntu in this case due to software compatibility and similarity to the systems
at PRAGMA, which are based on Rocks Cluster and belong to the Red Hat fam-
ily of Linux distributions. MPTCP was updated specifically to this version with
bleeding-edge new kernel due to the advanced congestion control features and

46

additional settings not available in the previous versions. Open vSwitch 2.5 ver-
sion is the most stable and newest at the time of writing this dissertation (newer
versions were attempted, but they produced unstable results). Open vSwitch
itself was chosen over using physical switches due to the virtualization of the
testbed itself. OpenFlow was strictly limited to 1.0 to guarantee compatibility
with OpenFlow-capable hardware, which may or may not support newer versions
like 1.3. At the time of writing, Python 2.7.5 was the latest version officially
available (through official repositories) to the distribution.

The OpenFlow controller uses the following software:

• Ubuntu 14.04.5 LTS

• Python 2.7.6

• POX 0.5.0

• NetworkX 2.1

The controller retains Ubuntu 14.04.5 LTS as it was configured a long time
before the experiment nodes themselves (which were renewed for new versions of
CentOS and MPTCP in mid-2015). Python and POX were the newest officially
available versions on this distribution. NetworkX 2.1 was chosen and is strictly
required (i.e. 2.0 will not work) due to the addition of some advanced path calcu-
lation methods. NetworkX itself was chosen over other network or graph-theory
libraries due to its high performance, functional completeness, general widespread
use, and reliability of software support.

5.2 Evaluation of smoc in a Ceph installation

The six nodes were configured as shown in Fig. 5.1. While this particular con-
figuration is not optimal for ceph, it represented many other DSSes well because
there are also many DSSes that employ a single metadata server and multiple
OSDs. The two clients were situated as shown in the figure so that they can
perform upload/download operations with one or two OSDs, and two clients can
access a single shared OSD as well.

47

Monitor & MDS OSDs Clients

1

5

6

3

2

4

Figure 5.1: Abstract topology of the testbed, with 1 monitor node, 3 object stor-
age devices, and 2 clients. The network zones are highlighted, with
MDS-OSD (1–2, 1–3, and 1–4) communication in blue, OSD-OSD
(2–3, 2–4, and 3–4) in green, and CLI (2–5, 3–5, 3–6, and 4–6) in
orange.

All links in this testbed are rate-limited to 100 Mbps to provide a clear limit
to the bandwidth. As there is no additional latency added in this stage, this
configuration represents a small network that should not experience significant
bandwidth limitations or latency.

The experiment was carried out by writing an arbitrary file from Node 5 into
Ceph, then reading it back and verifying the hash. Timing for both read and
write operations were recorded, and the transient throughput was monitored
separately by periodically dumping the flow counters from the six switches. Total
throughput can be confirmed by comparing the total traffic into and out of the
Open vSwitch situated in Node 5.

To determine basic performance of the network when used without MPTCP,
the functionality was turned off and the spanning-tree module (not the Spanning
Tree Protocol) was run on top of POX to provide basic routing functionality. The
results would be used as the baseline for comparison against the evaluations with
smoc and an additional routing algorithm.

In the same manner as the experiments in the earlier chapters, smoc was de-

48

Table 5.1: Time to transfer each file in a simple write-read test using different
algorithms and number of MPTCP subflows per port. Legend: S-T
= Spanning-Tree (POX’s implementation), smoc = algorithm in the
original version of smoc, W = Time to write (s), R = Time to read (s)

S-T smoc
File Size W (s) R (s) W (s) R (s)

5 GB 627.03 442.81 436.66 130.47
1 MB 0.35 0.37 4.27 4.14

ployed as the OpenFlow controller in the network and the experiments were
repeated.

The algorithms to be experimented on includes smoc’s original routing algo-
rithm, which consists of one single shortest path followed by the least conflicting
paths as secondary routes, as shown in Algorithm 1.

For the write/read test, the large file used is a 5 GB ∗ file. The small files were
1 MB each, with 1000 files in total. All files are pseudo-randomly generated from
/dev/urandom stream. File transfers are done five times to obtain the average
time.

5.3 Experiment Results and Discussion

5.3.1 Performance of Write and Read operations
(Client-OSD)

The times to transfer one file for each case are shown as in Table 5.1. The routing
algorithm presented by smoc was considered to successfully fulfill its role as a mul-
tipath routing algorithm. In case of large files, smoc implementation performed
significantly better, writing 43% and reading 240% faster†. The extraordinarily
high data read speed increase could be related to the full parallelization of the
read process when using MPTCP in conjunction with smoc. However, this is not

∗For clarification purposes, prefixes use the SI system. In this case, 5 GB = 5× 109 bytes.
†Based on (B/A)− 1 formula

49

Table 5.2: Data volume transferred by link and category when writing to DSS
with (a) POX Spanning-Tree and (b) smoc. Amounts <1 MB and
their sums are represented by “<”. NL means no link. Amounts are
in MB unless indicated.

(a) Writing with POX Spanning-Tree
������

From To Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Node 1 - < < < NL NL
Node 2 < - 3.04 5.27 GB 27.85 NL
Node 3 < 3.06 - 3.93 < <
Node 4 < 5.05 GB 3.35 - NL <
Node 5 NL 5.01 GB < NL - NL
Node 6 NL NL < < NL -

Communication Category Volume %
MDS-OSD < <0.01%
OSD-OSD 10.33 GB 67.19%

CLI 5.04 GB 32.80%
Grand Total 15.48 GB 100%

(b) Writing with smoc
������

From To Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Node 1 - 19.85 395.08 534.44 NL NL
Node 2 793.87 - 677.33 684.19 52.05 NL
Node 3 13.03 5.03 GB - 13.09 58.08 15.61
Node 4 142.39 23.36 721.33 - NL 360.72
Node 5 NL 2.14 GB 3.19 GB NL - NL
Node 6 NL NL 360.72 15.61 NL -

Communication Category Volume %
MDS-OSD 1.90 GB 12.46%
OSD-OSD 7.15 GB 46.91%

CLI 6.19 GB 40.63%
Grand Total 15.23 GB 100%

50

Table 5.3: Data volume transferred by link and category when reading from DSS
with (a) POX Spanning-Tree and (b) smoc. Amounts <1 MB and
their sums are represented by “<”. NL means no link. Amounts are
in MB unless indicated.

(a) Reading with POX Spanning-Tree
������

From To Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Node 1 - < < < NL NL
Node 2 < - 1.81 1.59 5.01 GB NL
Node 3 < 1.65 - 1.64 < <
Node 4 < 1.53 1.68 - NL <
Node 5 NL 11.46 < NL - NL
Node 6 NL NL < < NL -

Communication Category Volume %
MDS-OSD < <0.01%
OSD-OSD 9.90 0.20 %

CLI 5.02 GB 99.80%
Grand Total 5.03 GB 100%

(b) Reading with smoc
������

From To Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Node 1 - 1.61 GB 435.50 35.26 NL NL
Node 2 23.99 - 1.30 GB 25.29 2.29 GB NL
Node 3 11.28 606.48 - 22.83 3.03 GB 11.49
Node 4 2.05 GB 1.39 GB 1.22 GB - NL 663.03
Node 5 NL 33.71 59.72 NL - NL
Node 6 NL NL 663.03 11.49 NL -

Communication Category Volume %
MDS-OSD 4.17 GB 26.88%
OSD-OSD 4.57 GB 29.48%

CLI 6.77 GB 43.64%
Grand Total 15.51 GB 100%

51

the case for writing. Write operations with multiple agents must be done care-
fully with consistency in mind. While many systems can work on an “eventually
consistent” basis, Ceph as a DSS intended to store data is not designed to work
with such inconsistencies, and would rather limit writing to only one copy by one
user at a time rather than allowing file updates to be written to many physical
locations and relying on synchronization.

Unsurprisingly, as explained in Sect. 4.4.2, smoc performs comparatively worse
than POX S-T for the short file cases due to the seconds-long path installa-
tion delay. This is inherent to more complex OpenFlow implementations. Since
real-world DCNs have more permanence in terms of network configuration, it is
advisable to have production systems use a more permanent and encompassing
way to install flow rules. Due to the emphasis of this work on large file transfers,
communication pattern of large files was also observed, collected, and analyzed.

5.3.2 Observation of Communication Patterns

Communication in DSSes can be roughly categorized into three broad groups.
The first group is the client communication, which includes the metadata inter-
action between the client and the MDS, and also the actual data transfer between
the client and the OSDs. The second group is the data transfer between the OSDs
(OSD-OSD) for data replication, system recovery, and synchronization of updates
to stored objects. The third group consists of the internal interaction between
the MDS and the OSDs (MDS-OSD), which can include important housekeeping
messages like heartbeats and file mapping updates. The categorization applied
to this work is visualized in Fig. 5.1.

All three groups of communication have unique requirements, specific charac-
teristics, and are handled differently. In practical implementations, client com-
munication is usually restricted to a public network. Ceph documentation also
recommends that system architects build their DSSes with separate private and
public networks. OSD-OSD communication may require large bandwidth and
occur in large bursts. Finally, the MDS-OSD interaction ensures the continuity
of the system as the cessation of these messages can result in an inconsistent
view of the system and therefore instability. Both OSD-OSD and MDS-OSD
communication groups are usually confined to the private network.

52

With these considerations in mind, the obtained data was more thoroughly
explored. By periodically collecting port statistics of the switches in the network,
it was possible to create a matrix of data volume sent between each pair of hosts
(as shown in Table 5.2 and Table 5.3) and determine where the communication
occurs the most, and visualize it as a graph as shown in Fig. 5.2 and Fig. 5.3.
Please note that these are not averages of five experimental replications like the
time measurement. This is because the routing and congestion control behaviors
can differ between runs, complicating the aggregate data. Instead, the result from
a single experimental replication was chosen based on the clarity and typicality
of the communication pattern represented.

When using POX Spanning-Tree to write or read the data, network traffic is
largely confined into a single line in case of large file transfer. However, when
using smoc for the same tasks, network traffic is more evenly spread throughout
the network, sometimes even into the MDS-OSD area. Before using smoc, traffic
in the MDS-OSD area was negligible for both writing and reading. This can
be seen either as a risk or a benefit depending on the design and view point
of the operator. However, for the purposes of this work, this is regarded as an
improvement to path diversity, which improves the resilience of data transfer.

Network traffic into and out of the client was also more balanced. The share of
data communication increased to 12.46% and 26.88% for write and read opera-
tions. Balance between two interfaces of the client was also observed, as without
smoc all 5 GB of traffic occurred through only one interface, but was spread to a
more equal share of 2 GB + 3 GB after introducing the controller.

Write Pattern of POX Spanning-Tree and smoc

When writing data to the DSS, POX Spanning-Tree directed virtually all data
through only one interface. This is reflected in the “Node 5” row in Table 5.2a
where the node sends almost the entirety of its data towards Node 2, while sending
a negligible amount to Node 3. The bulk of the communication occurred between
the two OSD nodes, Node 2 and 4.

By inspecting the “heatmap” plots as shown in Fig. 5.2 and the transient plots
based on the communication category in Fig. 5.4, the replication of data between
the OSDs occur concurrently with the transmission of data from the client to one

53

of the OSDs. This concurrent replication behavior could be one of the factors that
contribute to a lower throughput gain when using smoc to write, compared to
read. There was significant communication in the MDS-OSD area that appeared
when smoc was in use, but not when POX Spanning-Tree was used, suggesting
that smoc directed some of the traffic through that area.

By inspecting the interface-based plot in Fig. 5.6, it is apparent that for these
specific cases, using smoc with MPTCP gives the node the proper ability to
communicate using both interfaces. Due to the recent implementation of new
MPTCP congestion control, however, MPTCP became less aggressive and essen-
tially abandoned one of the interfaces during the latter half of the data transfer
illustrated in Fig. 5.6b. The facts that total throughput (about 50 Mbps, based
on number about 20 MB per 3 seconds in the graph) remained the same, not
reduced to half (as shown earlier in Sect. 3.3.5), and did not reach the upper
aggregate limit (2 × 100 Mbps) suggest that the limiting factor could be related
to I/O, OS, physical storage devices, or other environmental operations beyond
the scope of the controller. Still, the graphs and the heatmaps showed that the
paths taken became more diverse as MPTCP and smoc were implemented.

Both cases exhibited at least 5 GB of client communication, and also at least
5 GB of OSD-OSD communication. Based on the architecture of Ceph outlined
in the documentation ‡, the OSD-OSD communication could be explained as
replication operation. Since the communication pattern may be different based
on the DSS and their configurations, using other DSS, for example HDFS or GFS,
would result in a different communication pattern and therefore the performance
gains as well.

Read Pattern of POX Spanning-Tree and smoc

It was unsurprising that smoc performed better than POX when reading the large
file due to the larger bandwidth made available by MPTCP. The measured times
were much lower for the read compared to the write operations, due to the lack
of external limiting factors discussed in the previous section. As indicated in
Table 5.3 and reflected in Fig. 5.3, there was a larger path diversity when using
smoc with MPTCP, including the go-around paths that involve the MDS-OSD

‡http://docs.ceph.com/docs/jewel/architecture/

54

area of the network. While this might be seen as counterproductive, such usage
will be automatically eliminated by MPTCP congestion control when sufficient
congestion is present in the network or a path that has a clearly better perfor-
mance is decided. This behavior was also equally shown in transient plots shown
in Fig. 5.5 and Fig. 5.7, where more diversity both in communication areas and
the activity of client interfaces are observed when using smoc compared to POX
Spanning-Tree.

5.3.3 Additional Observations

In addition to the slower small-file operations, an additional simple test was
performed to test the time for no-file operations as a basis for short flows between
the client and the servers. In particular, an empty directory list of Ceph objects in
an empty object storage pool was acquired five times in succession. The average
time to execute no-file operations with smoc running MPTCP was 8.192 s with
standard deviation of 0.02501 s (CV = 0.3053%), suggesting that the time is
relatively constant. As with the previous experiments, this could be caused by
Overseer and POX’s housekeeping functions that add delay to the installation of
flow entries, causing all commands to be delayed.

Furthermore, using MPTCP with POX Spanning-Tree controller resulted in
errors. This is understandable because basic POX modules could not understand
the notion of having a network interface appear from multiple ingress ports, caus-
ing the controller to believe that an IP or MAC address has relocated. This further
establishes the importance of providing a properly implemented multipathing-
aware controller when using any OpenFlow network and striving to take advan-
tage of having multiple paths.

55

(a) Writing with POX Spanning-Tree

(b) Writing with smoc

Figure 5.2: Visualization of relative data transfer volume when writing to the
DSS, based on data in Table 5.2a and Table 5.2b, as undirected graphs

56

(a) Reading with POX Spanning-Tree

(b) Reading with smoc

Figure 5.3: Visualization of relative data transfer volume when reading from the
DSS, based on data in Table 5.3a and Table 5.3b, as undirected graphs

57

20 MB

40 MB

60 MB

80 MB

100 MB

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

Da
ta

 V
ol

um
e

Time (s)

POX-Write by Communication Type

CLI
OSD-OSD
MDS-OSD

(a) Writing with POX Spanning-Tree

20 MB

40 MB

60 MB

80 MB

100 MB

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840

Da
ta

 V
ol

um
e

Time (s)

smoc-Write by Communication Type

CLI
OSD-OSD
MDS-OSD

(b) Writing with smoc

Figure 5.4: Transient stacked area plot of aggregate throughput by communica-
tion types when writing a large file to the DSS.

58

20 MB

40 MB

 0 60 120 180 240 300 360 420 480

Da
ta

 V
ol

um
e

Time (s)

POX-Read by Communication Type

CLI
OSD-OSD
MDS-OSD

(a) Reading with POX Spanning-Tree

20 MB40 MB60 MB80 MB100 MB120 MB

200 MB

400 MB

600 MB

 0 60 120 180

Da
ta

 V
ol

um
e

Time (s)

smoc-Read by Communication Type

CLI
OSD-OSD
MDS-OSD

(b) Reading with smoc

Figure 5.5: Transient stacked area plot of aggregate throughput by communica-
tion types when reading a large file from the DSS.

59

20 MB

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

Da
ta

 V
ol

um
e

Time (s)

POX-Write by Ports

Interface 1
Interface 2

(a) Writing with POX Spanning-Tree

20 MB

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840

Da
ta

 V
ol

um
e

Time (s)

smoc-Write by Ports

Interface 1
Interface 2

(b) Writing with smoc

Figure 5.6: Transient stacked area plot of aggregate throughput sent from the
interfaces of Node 5 (the client) when writing a large file to the DSS.

60

20 MB

40 MB

 0 60 120 180 240 300 360 420 480

Da
ta

 V
ol

um
e

Time (s)

POX-Read by Ports

Interface 1
Interface 2

(a) Reading with POX Spanning-Tree

20 MB

40 MB

60 MB

80 MB

100 MB

120 MB

 0 60 120 180

Da
ta

 V
ol

um
e

Time (s)

smoc-Read by Ports

Interface 1
Interface 2

(b) Reading with smoc

Figure 5.7: Transient stacked area plot of aggregate throughput received by the
interfaces of Node 5 (the client) when writing a large file to the DSS.

61

6 Conclusion

In this dissertation, the Multipath TCP performance in an OpenFlow network
was explored. An MPTCP-aware network controller, smoc, was developed to
address the problem of path conflicts that arise when attempt to route multipath
traffic through a network that is not multipath-aware. Furthermore, the controller
was tested against a deployment of Ceph distributed storage system to determine
write and read performance gain when using smoc and MPTCP compared to
using basic shortest-path and Spanning-Tree controller.

The primary feature of the controller was its ability to quickly detect and iden-
tify MPTCP flow-subflow relationship which is the quality that sets it apart from
the MPTCP-unaware controllers or ordinary routers. This was made possible
by monitoring the data plane of the network for the initiation of TCP streams,
detecting if they are MPTCP, and matching them against existing connections
into a group as shown in Algorithm 3. From this point, any action could be taken
on these flows, as demonstrated in Chap. 4 where the traffic was routed according
to the original smoc routing algorithm implemented in Algorithm 1.

Based on the results of the experiments, the leverage provided by the con-
troller, and the efficiency of the proposed algorithm, there should be a case for
Multipath TCP should be widely adopted in the future when these algorithms
are more thoroughly tested and verified. However, current research on multi-
path networking concerns mostly wireless networks. Attention to bring MPTCP
into high-performance computing as a potentially efficient backwards-compatible
algorithm, along with using OpenFlow to provide a customizable routing algo-
rithm to the multipath traffic could lead to a better performance in DSSes and
distributed systems in general.

Since the methods presented in this work does not include the monitoring of
bandwidth information, it is recommended that network metrics should also be

62

considered when working with network routing. However, it is important to note
that bandwidth and latency monitoring can add load to the system, and it is
possible to also adversely affect the performance in DCNs due to their already
low and constant latency. Nevertheless, smoc showed that even the most ba-
sic of routing mechanisms could be used to reliably route MPTCP traffic. The
choice of routing protocols or network metrics doesn’t change this fact: as long
as MPTCP subflow groups could be identified, a fully MPTCP-aware network
controller would still largely work, regardless of the finer details in network con-
figuration.

As a strictly bare-bones controller designed to implement only the core mech-
anisms necessary for recognizing and routing MPTCP traffic, smoc has achieved
its purposes. It is distinct from general-purpose SDN controllers that usually
work on either bandwidth-based or metric-based routing. The treatment of dif-
ferent MPTCP sessions has also, up to date of first published paper within this
dissertation, been a novel approach. Finally, the topological routing algorithm
in this work guarantees that it will always, bandwidth wise and unless there are
circumstances complicating MPTCP congestion control, perform equally well or
better than single-path algorithms and spanning trees.

In summary, it is demonstrated in this work that a combination of Open-
Flow and Multipath TCP could be used to potentially utilize the full amount of
bandwidth whenever multiple paths are available between a pair of hosts in the
network. This work also serves as a step towards the future Internet, where more
bandwidth could be utilized to accommodate the ever-growing demands of the
various applications.

63

Acknowledgements

I wish to thank the following people for their guidance, support, and assistance.
Without these people, this work would not have been possible.

Firstly, I would like to express my appreciation to my research supervisor,
Professor Hajimu Iida for his support, early financial assistance, work assignment,
and valuable feedback. His support is of absolute importance for my life in Japan.

Secondly, I would like to thank Professor Kazutoshi Fujikawa for taking re-
viewing, discussing, and providing feedback for my work, without which the work
would not have been complete as it is.

I wish to thank my advisor, Associate Professor Kohei Ichikawa. When I
decided I would be joining NAIST, I had no experience with research or even
the school itself. It obviously takes a lot of trust to support someone one barely
knows, but he did confide in my ability and potential. He provided a lot of
guidance, experience, support, and opportunities.

I express additional thanks to Assistant Professor Putchong Uthayopas for his
guidance during my undergraduate years. In fact, he was the one who introduced
me to high-performance computing when I first met him during high school. After
joining his laboratory, he provided rigorous instruction on research methodology
and guidance on my future career. He also introduced me to the Pacific Rim
Applications and Grid Middleware Assembly or PRAGMA.

I also wish to extend my gratitude to the professors of Laboratory for Software
Design and Analysis (SDLAB), as they provided me with a lot of opportunity and
guidance. Associate Professor Toshinori Takai introduced me to the IT-Triadic
Program at NAIST and provided me with opportunities to collaborate with and
visit renowned institutions such as the JAXA and Nagoya University. Associate
Professor Norihiro Yoshida and Assistant Professor Ana Erika Camargo Cruz pro-
vided additional feedback and comments during my working on Master’s thesis,

64

while Assistant Professor Yasuhiro Watashiba and Assistant Professor Eunjong
Choi provided further assistance during the latter years as a doctoral student.
Although visiting SDLAB for a limited time, Associate Professor Daniel Port
from Shidler College of Business, University of Hawai’i at Manōa provided new
insights that could not be obtained otherwise. I wish to express my appreciation
to everyone at Creative and International Competitiveness Project (CICP) and
Global Entrepreneur in Internet of Things (GEIOT) program, with which I have
earned significant opportunities to explore and educate.

To all the good people of PRAGMA: Dr. Peter Arzberger, Associate Professor
Philip M. Papadopoulos, Ms. Teri Simas, Ms. Nadya Williams, Ms. Shava
Smallen, and Mr. Luca Clementi provided me with a lot of assistance, advice,
inspiration, and instruction while I was interned at University of California, San
Diego in 2014. I also express my gratitude towards Professor Beth A. Plale for
her guidance to PRAGMA Students Steering Committee.

The JASSO Honors Scholarship provided me with financial support during FY
2013, followed by the MEXT Top Global University Project Scholarship in FY
2014, KDDI Foundation Scholarship for FY 2015, and SGH Foundation Schol-
arship since FY 2016. I feel honored to be part of these families, and wish to
express my gratitude to all of these organizations.

To Friendship, I also express my thanks to all members of the Laboratory
for Software Design and Analysis, especially my tutor and groupmates who ac-
tively provided assistance and feedback for my research. To PRAGMA Students
Steering Committee including but not limited to “Class of 2018” Pongsakorn U-
Chupala, Quan Zhuo, and Meilan Jiang, as well as alumnus Yuan Luo and new-
comers Wassapon Watanakeesuntorn, Can Wu and Giljae Lee. To Thai friends
in Nara; and to new friends from Ingress Resistance Kansai club.

To Patcha Yanpirat, for her support, care, and suggestions, some of which the
most important I have ever received. Even “I will give you everything I have”
would still not suffice as a proper reciprocation of this kindness.

Last but not least, I wish to express my highest gratitude to my dearest parents
for the most precious gift of life, raising and educating me with great care, and
instilling the values of education and ethics since my youth. No amount of words
would sufficiently express my gratitude. I thank both my parents for everything.

65

Bibliography

[1] William Allcock et al. “Protocols and services for distributed data-intensive
science”. In: AIP Conference Proceedings. IOP INSTITUTE OF PHYSICS
PUBLISHING LTD. 2000, pp. 161–163. url: http://globusproject.
org/alliance/publications/papers/ACAT3.pdf.

[2] William Allcock et al. “The Globus striped GridFTP framework and server”.
In: Proceedings of the 2005 ACM/IEEE conference on Supercomputing.
IEEE Computer Society. 2005, p. 54. url: https://www.dc.uba.ar/
materias/aerg/2006/cuat2/downloads/gridftp-final.pdf.

[3] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC
5681. RFC Editor, Sept. 2009.

[4] Sébastien Barré et al. “Experimenting with Multipath TCP”. In: Proceed-
ings of the ACM SIGCOMM 2010 Conference. SIGCOMM ’10. New Delhi,
India: ACM, 2010, pp. 443–444. isbn: 978-1-4503-0201-2. doi: 10.1145/
1851182 . 1851254. url: http : / / doi . acm . org / 10 . 1145 / 1851182 .
1851254.

[5] Peter J Braam and Rumi Zahir. “Lustre: A scalable, high performance file
system”. In: Cluster File Systems, Inc (2002).

[6] Neal Cardwell et al. “BBR: Congestion-based congestion control”. In: Queue
14.5 (2016), p. 50.

[7] Bachir Chihani and Denis Collange. A Survey on Multipath Transport Pro-
tocols. http://xxx.tau.ac.il/pdf/1112.4742.pdf. arXiv: 1112.4742v1.

[8] Andrew R Curtis et al. “DevoFlow: Scaling flow management for high-
performance networks”. In: ACM SIGCOMM Computer Communication
Review. Vol. 41. 4. ACM. 2011, pp. 254–265.

66

[9] Alex Davies and Alessandro Orsaria. “Scale out with GlusterFS”. In: Linux
J. 2013.235 (Nov. 2013). issn: 1075-3583. url: http://dl.acm.org/
citation.cfm?id=2555789.2555790.

[10] Yu Dong et al. “Multi-Path Load Balancing in Transport Layer”. In: 3rd
EuroNGI Conference on Next Generation Internet Networks. May 2007,
pp. 135–142. doi: 10.1109/NGI.2007.371208.

[11] Marcial P Fernandez. “Comparing openflow controller paradigms scalabil-
ity: Reactive and proactive”. In: Advanced Information Networking and
Applications (AINA), 2013 IEEE 27th International Conference on. IEEE.
2013, pp. 1009–1016.

[12] A. Ford et al. Architectural Guidelines for Multipath TCP Development.
RFC 6182. RFC Editor, Mar. 2011.

[13] A. Ford et al. TCP Extensions for Multipath Operation with Multiple Ad-
dresses. RFC 6824. RFC Editor, Jan. 2013.

[14] Bryan Ford and Janardhan Iyengar. “Breaking up the transport logjam”.
In: ACM HotNets, October. 2008.

[15] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google File
System”. In: SIGOPS Oper. Syst. Rev. 37.5 (Oct. 2003), pp. 29–43. issn:
0163-5980. doi: 10.1145/1165389.945450. url: http://doi.acm.org/
10.1145/1165389.945450.

[16] Dan Gunter et al. “Exploiting Network Parallelism for Improving Data
Transfer Performance”. In: 2012 SC Companion: High Performance Com-
puting, Networking, Storage and Analysis (SCC). IEEE. 2012, pp. 1600–
1606.

[17] Thomas J Hacker, Brian D Athey, and Brian Noble. “The end-to-end per-
formance effects of parallel TCP sockets on a lossy wide-area network”. In:
Proceedings of the 16th International Parallel and Distributed Processing
Symposium. IPDPS ’02. IEEE. 2001, 10–pp. url: http://www-personal.
umich.edu/~hacker/IPDPS.pdf.

67

[18] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network struc-
ture, dynamics, and function using NetworkX. Tech. rep. Los Alamos Na-
tional Laboratory (LANL), 2008.

[19] B. Hesmans et al. “SMAPP: Towards Smart Multipath TCP-enabled Ap-
plications”. In: Proceedings of the 11th ACM Conference on Emerging Net-
working Experiments and Technologies. CoNEXT ’15. Heidelberg, Germany:
ACM, 2015, 28:1–28:7. isbn: 978-1-4503-3412-9. doi: 10.1145/2716281.
2836113. url: http://doi.acm.org/10.1145/2716281.2836113.

[20] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992. RFC
Editor, Nov. 2000.

[21] Che Huang et al. “A multipath controller for accelerating GridFTP transfer
over SDN”. In: 11th IEEE International Conference on eScience. Munich,
Germany. Sept. 2015, pp. 439–447.

[22] Che Huang et al. “A Multipath OpenFlow Controller for GridFTP”. In: The
1st. cross-disciplinary Workshop on Computing Systems, Infrastructures,
and Programming (Apr. 2017).

[23] Younghak Hwang, Brownson O Obele, and Hyuk Lim. “Multipath transport
protocol for heterogeneous multi-homing networks”. In: Proceedings of the
ACM CoNEXT Student Workshop. ACM. 2010, p. 5.

[24] Kohei Ichikawa et al. “PRAGMA-ENT: An International SDN testbed
for cyberinfrastructure in the Pacific Rim”. In: Concurrency and Com-
putation: Practice and Experience 29.13 (2017). Previously presented at
PRAGMA Workshop on International Clouds for Data Science 2015, Best
Paper Award., e4138–n/a. issn: 1532-0634. doi: 10.1002/cpe.4138.

[25] V. Jacobson. “Congestion Avoidance and Control”. In: Symposium Pro-
ceedings on Communications Architectures and Protocols. SIGCOMM ’88.
Stanford, California, USA: ACM, 1988, pp. 314–329. isbn: 0-89791-279-9.
doi: 10.1145/52324.52356. url: http://doi.acm.org/10.1145/52324.
52356.

68

[26] Nick McKeown et al. “OpenFlow: enabling innovation in campus networks”.
In: ACM SIGCOMM Computer Communication Review 38.2 (2008), pp. 69–
74.

[27] Chawanat Nakasan, Kohei Ichikawa, and Putchong Uthayopas. “Perfor-
mance Evaluation of MPTCP over OpenFlow Network”. In: IPSJ SIG
Notes 2014-HPC-145. Vol. 145. 30. Information Processing Society of Japan
(IPSJ), July 2014, pp. 1–6. url: http://ci.nii.ac.jp/naid/110009808125/
en/.

[28] Chawanat Nakasan et al. “A Simple Multipath OpenFlow Controller using
topology-based algorithm for Multipath TCP”. In: PRAGMA Workshop
on International Clouds for Data Science (PRAGMA-ICDS 2015). Depok,
Indonesia. Oct. 2015.

[29] Chawanat Nakasan et al. “A simple multipath OpenFlow controller using
topology-based algorithm for multipath TCP”. In: Concurrency and Com-
putation: Practice and Experience 29.13 (2017), e4134–n/a. issn: 1532-0634.
doi: 10.1002/cpe.4134.

[30] Open vSwitch. https://github.com/openvswitch/ovs. 2009.

[31] Christoph Paasch, Gregory Detal, and David Heidelberger. Multipath TCP.
https://github.com/multipath-tcp. 2014.

[32] Christoph Paasch et al. “Exploring Mobile/WiFi Handover with Multipath
TCP”. In: Proceedings of the 2012 ACM SIGCOMM Workshop on Cel-
lular Networks: Operations, Challenges, and Future Design. CellNet ’12.
Helsinki, Finland: ACM, 2012, pp. 31–36. isbn: 978-1-4503-1475-6. doi:
10 . 1145 / 2342468 . 2342476. url: http : / / doi . acm . org / 10 . 1145 /
2342468.2342476.

[33] Martin Placek and Rajkumar Buyya. “A taxonomy of distributed storage
systems”. In: Technical Report, The University of Melbourne, The Cloud
Computing and Distributed Systems (CLOUDS) Laboratory (2006).

[34] Ronald van der Pol et al. “Multipathing with MPTCP and OpenFlow”. In:
2012 SC Companion: High Performance Computing, Networking, Storage
and Analysis (SCC). IEEE. 2012, pp. 1617–1624.

69

[35] Costin Raiciu et al. “How Hard Can It Be? Designing and Implementing
a Deployable Multipath TCP”. In: Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation. NSDI’12. San
Jose, CA: USENIX Association, 2012, pp. 29–29. url: http://dl.acm.
org/citation.cfm?id=2228298.2228338.

[36] Ioan Raicu, Ian T. Foster, and Pete Beckman. “Making a Case for Dis-
tributed File Systems at Exascale”. In: Proceedings of the Third Inter-
national Workshop on Large-scale System and Application Performance.
LSAP ’11. San Jose, California, USA: ACM, 2011, pp. 11–18. isbn: 978-
1-4503-0703-1. doi: 10.1145/1996029.1996034. url: http://doi.acm.
org/10.1145/1996029.1996034.

[37] Kultida Rojviboonchai and AIDA Hitoshi. “An evaluation of multi-path
transmission control protocol (M/TCP) with robust acknowledgement schemes”.
In: IEICE transactions on communications 87.9 (2004), pp. 2699–2707.

[38] Scientic Expeditions - PRAGMA. http://www.pragma-grid.net/expeditions.php.
Accessed: 2015-02-05.

[39] C. E. Shannon. “Communication in the Presence of Noise”. In: Proceedings
of the IRE 37.1 (Jan. 1949), pp. 10–21. issn: 0096-8390. doi: 10.1109/
JRPROC.1949.232969.

[40] Konstantin Shvachko et al. “The hadoop distributed file system”. In: Mass
storage systems and technologies (MSST), 2010 IEEE 26th symposium on.
IEEE. 2010, pp. 1–10.

[41] T. Socolofsky and C. Kale. A TCP/IP Tutorial. RFC 1180. RFC Editor,
Jan. 1991.

[42] Sun Microsystems, Inc. NFS: Network File System Protocol Specification.
RFC 1094. RFC Editor, Mar. 1989.

[43] Osamu Tatebe, Kohei Hiraga, and Noriyuki Soda. “Gfarm Grid File Sys-
tem”. In: New Generation Computing 28.3 (July 2010), pp. 257–275. issn:
1882-7055. doi: 10.1007/s00354-009-0089-5. url: https://doi.org/
10.1007/s00354-009-0089-5.

70

[44] D. Thaler and C. Hopps. Multipath Issues in Unicast and Multicast Next-
Hop Selection. RFC 2991. RFC Editor, Nov. 2000.

[45] Tran Doan Thanh et al. “A Taxonomy and Survey on Distributed File Sys-
tems”. In: 2008 Fourth International Conference on Networked Computing
and Advanced Information Management. Vol. 1. Sept. 2008, pp. 144–149.
doi: 10.1109/NCM.2008.162.

[46] Amin Tootoonchian and Yashar Ganjali. “HyperFlow: A distributed con-
trol plane for OpenFlow”. In: Proceedings of the 2010 internet network
management conference on Research on enterprise networking. USENIX
Association. 2010, pp. 3–3.

[47] Pongsakorn U-chupala et al. “Application-Oriented Bandwidth and La-
tency Aware Routing with OpenFlow Network”. In: 6th IEEE Interna-
tional Conference on Cloud Computing Technology and Science. 2014. isbn:
5314550091.

[48] Pongsakorn U-chupala et al. “Designing of SDN-Assisted Bandwidth and
Latency Aware Route Allocation”. In: Summer United Workshops on Par-
allel, Distributed and Cooperative Processing (SWoPP). 2014.

[49] Sage A. Weil et al. “Ceph: A Scalable, High-Performance Distributed File
System”. In: Presented as part of the 7th USENIX Symposium on Operating
Systems Design and Implementation. Seattle, WA: USENIX, 2006. url:
https://www.usenix.org/conference/osdi-06/ceph-scalable-high-
performance-distributed-file-system.

[50] Sage A Weil et al. “CRUSH: Controlled, scalable, decentralized placement
of replicated data”. In: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. ACM. 2006, p. 122.

[51] Sage A. Weil et al. “RADOS: A Scalable, Reliable Storage Service for
Petabyte-scale Storage Clusters”. In: Proceedings of the 2Nd International
Workshop on Petascale Data Storage: Held in Conjunction with Supercom-
puting ’07. PDSW ’07. Reno, Nevada: ACM, 2007, pp. 35–44. isbn: 978-
1-59593-899-2. doi: 10.1145/1374596.1374606. url: http://doi.acm.
org/10.1145/1374596.1374606.

71

[52] D. Zhou et al. “Multipath TCP for user cooperation in LTE networks”. In:
IEEE Network 29.1 (Jan. 2015), pp. 18–24. issn: 0890-8044. doi: 10.1109/
MNET.2015.7018199.

72

Publication List

Kohei Ichikawa et al. “PRAGMA-ENT: An International SDN testbed for
cyberinfrastructure in the Pacific Rim”. In: Concurrency and Computation:
Practice and Experience 29.13 (2017). Previously presented at PRAGMA
Workshop on International Clouds for Data Science 2015, Best Paper Award.,
e4138–n/a. issn: 1532-0634. doi: 10.1002/cpe.4138.

Chawanat Nakasan, Kohei Ichikawa, and Putchong Uthayopas. “Performance
Evaluation of MPTCP over OpenFlow Network”. In: IPSJ SIG Notes 2014-
HPC-145. Vol. 145. 30. Information Processing Society of Japan (IPSJ), July
2014, pp. 1–6. url: http://ci.nii.ac.jp/naid/110009808125/en/.

Chawanat Nakasan et al. “A Simple Multipath OpenFlow Controller using
topology-based algorithm for Multipath TCP”. In: PRAGMA Workshop on
International Clouds for Data Science (PRAGMA-ICDS 2015). Depok, In-
donesia. Oct. 2015.

Chawanat Nakasan et al. “A simple multipath OpenFlow controller using
topology-based algorithm for multipath TCP”. In: Concurrency and Com-
putation: Practice and Experience 29.13 (2017), e4134–n/a. issn: 1532-0634.
doi: 10.1002/cpe.4134.

73

