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Abstract

Metabolite-content (MC) refers to all small molecules which are the products or
intermediates of metabolism within an organism. The secondary-metabolite-content of a
plants is highly related to its pathways which are constrained to evolutionary phylogeny, and
are also related to the bioactive compounds of the plant which determine the medicinal and
nutritional features of the plant. In this study, we consider the metabolite features of plants
as a new taxonomic marker and classify plants based on the MC-similarity of them using
KNApSAcK Core DB. For reducing the effect of missing plant-metabolite relation data, we
propose two approaches to compensate for the limitations of missing data: (1) Classification
of Plants based on Chemical Structure Similarity of Metabolite-Content. By this approach,
we calculated the structural similarity of all metabolite pairs by Tanimoto coefficients (TCs),
and determined the MC-similarity of plants based on the background population of TCs. (2)
Clustering Plants based on Structural-Similarity Network of Metabolites. By this approach,
we applied a network based approach to abstract structurally similar metabolite groups as
features, and measured the phylogenetic distance by a binary method. Then we classified the
plants by hierarchical clustering method and compared the resulted classification of plants
with NCBI taxonomy. The results prove that the MC-similarity of plants is associated with
the pathway and bioactive similarity, and can be regarded as a taxonomy marker which takes
into account both general phylogenetic relations and the relations between plants based on
bioactive features. We also extended our finding by using phylogenetic statistic method to
investigate the predictive power of MC-similarity in exploration of edible and medicinal
plants for bioprospecting. We reconstructed the phylogenetic trees for the same set of plants

based on MC-similarity and sequence-similarity. We then applied D statistic to test



phylogenetic signal of medicinal/edible plants for the obtained phylogenetic trees and
identified the hot nodes that were significantly overrepresented by plants of medicinal/edible
uses. The result shows that comparing with sequence-based approach, plants with
medicinal/edible uses are more significantly clustered in MC-based phylogenetic trees. The
hot nodes in MC-based phylogenetic trees tend to encompass more medicinal/edible plants,

and could highlighted different groups of medicinal plants.
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Chapter 1

Introduction

This dissertation summarizes the author's research experience in integrating the metabolite-
content (MC) data of plants and exploring the systematic and phylogenetic value of
metabolite-content data, including classifying plants by MC-similarity and analyzing the
relationships among plants, secondary metabolite-content and biological activities. This
study also investigates the predictive power of MC-similarity in exploring nutritional and
medicinal properties in plants, by comparing with molecular phylogenetic based approach.
This chapter describes the general background, the research problem and objectives, and also

explains what are to be expected from the rest of the dissertation.

1.1. Background

(a) Metabolite-Content of Plants

One of the outstanding features of plants in addition to their form is their chemistry.
The chemical observations of plants, from color, scent and taste, to their nutritional value or
their poisonous nature, lead the inquisitive person to a study of the chemical components and
this in turn leads to uses of these chemicals for practical economic and health purposes
(Reynolds, 2007). Metabolomics is the scientific study of quantification of low mass
compounds profiles and analysis of chemical processes involving metabolites in a
comprehensive fashion. In general, metabolites can be divided into two groups: primary and
secondary metabolites. Primary metabolites are directly involved in the normal growth,
development and reproduction. On the other hand, secondary metabolites are not directly
involved in these processes, but usually have important ecological functions, such as inter-
or intra-species communication, antifungal, antimicrobial activities and also as a defense
against pests and pathogens (Agostini-costa et al. 2012).

The metabolome has been defined as the qualitative and the quantitative collection of



all low-weight molecules(metabolites) present in the cell that are participants in general
metabolic reactions and that are required for the maintenance, growth, and normal function
of a cell. The number of the different molecules in the metabolome varies depending on the
organism being studied. However, the metabolome is not stable and inconstantly changing
due to all the chemical reactions occurring in the cell (Tauler & Walczak, 2009). For
investigating the metabolite features of an organism following an evolutionary perspective,
we propose the concept of metabolite-content in this thesis. Metabolite-content refers to all
small molecules which are the products or intermediates of metabolism (metabolites) that
are present within a biological organism. It differs from metabolome in that the metabolite-
content mainly focuses on the qualitative collection of small metabolites and ignores the
quantitative differences, which is instable with different parts and stage of one organism.
For plants, the metabolite-content are mainly represented as secondary metabolites,
which are often similar within members of a clade (Hegnauer, 1967; Pichersky & Gang, 2000;
Wink, 2003). Vascular plants contain an enormous variety of secondary metabolites, which
vary according to family and species. The restricted distribution of secondary metabolites
makes a major contribution to the specific odours, tastes and colors of plants (Bennett &
Wallsgrove, 1994). Secondary metabolites are present in all higher plants, usually in a high
structural diversity (Figure 1.1). The pattern of secondary metabolites in a given plant is
complex, it changes in a tissue- and organ specific way; regularly, differences can be seen
between different developmental stages between individuals and populations. Decades ago
botanists preferred the simpler interpretation that secondary metabolites were waste
products of primary metabolism and that structural diversity would only reflect a play of
nature. But now, adaptive explanations are more favoured again to explain the existence and

diversity of secondary metabolites (Wink, 2003).
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Figure 1.1. Six secondary metabolites and source plants (Facchini et al., 2012).

Secondary metabolites, at least the major ones present in a plant, apparently function
as defence (against herbivores, microbes, viruses or competing plants) and signal compounds
(to attract pollinating or seed dispersing animals). They are thus important for the plant’s
survival and reproductive fitness. Absence of secondary metabolites dose not result in
immediate death, but rather in long-term impairment of the organism’s survivability,
fecundity, or aesthetics, or perhaps in no significant change at all. Secondary metabolites
often play an important role in plant defense against herbivory and other interspecies
defenses. Secondary metabolites therefore represent adaptive characters that have been
subjected to natural selection during evolution, and are often restricted to a narrow set of

plants within a phylogenetic group (Figure 1.2) (Wink, 2003).
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Figure 1.2. Distribution of iridoids in Lamiaceae. The phylogenetic tree was constructed from

complete rbcL sequences. The iridoid glycosides are common in members of the subfamily

Lamioideae (Wink, 2003).

(b) Plant Phylogeny and Chemosystematics
Phylogenetic is the study of the evolutionary history and relationships among individuals

of a group of related species. The result of these analyses is called a phylogeny, which is often



represented by a tree diagram called phylogenetic tree (Davis & Jerrold, 2014). Plant
phylogeny is a phylogeny of plants. Plant phylogeny is a useful and essential tool for plant
taxonomy, the science that explores, describes, names, and classifies plants. Morphology,
anatomy, and genetics are the main sources of characters used in today’s plants taxonomy
(Rouhan & Gaudeul, 2014).

The systematic and phylogenetic analysis of plants is traditionally based on macroscopic
and microscopic morphological characteristics and is known to be turbulent (Besse, 2014).
With the advent of phylogeny, taxonomy has been evolved into systematics which allowed
classification based on the evolutional relationship among organisms. The study of DNA and
to a certain extent m-RNA and proteins has led to the immense subject of molecular biology,
which has been increasingly applied to reconstruct the phylogeny of higher and lower plants
(Soltis et al., 1992; Reynolds, 2007). Molecular phylogenetics is the study of phylogeny that
analyses hereditary molecular differences, mainly in DNA sequences, to gain information on
an organism’s evolutionary relationships. This powerful approach, which provides the best
phylogenetic resolution so far, is facilitated by rapid DNA amplification techniques such as
polymerase chain reaction (PCR), by rapid DNA sequencing methods such as Next
Generation Sequencing (NGS) (Metzker, 2010), and by powerful computation with adequate
software programs (such as PAUP, MEGA, MrBayes, RAXML) (Swofford, 2003; Kumar et al.,
1993; Ronquist et al., 2012; Stamatakis, 2014).

The use of molecular data in plant phylogeny has been highly successful in many
instances, but also has faced some limitations and cautions to consider. First, this approach
does not describe the chemical make-up of the plants, although it may comment on the inter-
relationship of the chemicals and their biosynthetic systems. The molecular biology, which
analysis DNA, m-RNA, and proteins and the interaction between them, does not describe the
small molecules (secondary metabolites) in plants, or how they relate to each other, to the
plants containing them or to the environment. Second, current technologies that use genomic
compartments instead of the entire genome data usually only partially reveal the evolutional
relations among plants (Hinchliff & Smith, 2014). The number of organisms with completely

known genomes in Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa et al., 2017)



has now reached 5093 but includes only 80 plants (October 2017). This indicates that it is
still impractical to reconstruct plant phylogeny using the entire genome information. Third,
recent research has indicated that horizontal gene transfer occurs in multicellular
eukaryotes, especially in plants, and has an important role in their eukaryotic evolution. This
suggests that phylogenetic reconstruction cannot be determined conclusively from sequence
data (Keeling & Palmer, 2008; Gao et al., 2014).

As a rule, a single group of secondary metabolite dominates within a given taxon.
Therefore, the metabolite characters could be regarded as a taxonomic marker and become a
matter of interpretation the evolutionary relation among species in the same way as
traditional morphological markers. Classifying plants based on the basis of their chemical
constituents could be helpful in discovering new edible and medicinal plants and solving
selected taxonomical problems (Wink, 2003; Reynolds, 2007; Singh, 2016). The systematics
of plants based on their chemical constituents is known as plant chemosystematics. Different
from molecular phylogeny which focuses on macromolecules such as DNA and proteins, plant
chemosystematics is the molecular systematics of plants using secondary metabolites or
micromoleculars.

Plant chemosystematics has initially been used to distinguish plants and other
organisms that are useful for food and those best avoided. This knowledge has been
progressively formalized with useful, harmful and inactive chemical constituents from
relevant taxa now identified and recorded. Plants chemosystematics could reveal the general
natural history of the plant with reference to its relationship to similar plants and its
interaction with its environment (Reynolds, 2007; Heywood, 2013; Singh, 2016).

Traditional chemosystematics of plants is based on the presence or absence of selected
secondary metabolites (Singh, 2016; Wink, 2003). This approach is based on the hypothesis
that the selected secondary metabolites dominate within a given taxon. However, an
inevitable conclusion drawn from the observations is that the expression of secondary
metabolites of a given structural type has invariably arisen in a number of occasions in
different parts of the plant kingdom. In addition, the same compounds are frequently

produced by quite different biosynthetic pathways in unrelated plants. For example, in the



family Lamiaceae, the iridoid glycosides are commonly found in members of the subfamily
Lamioideae but occasions found in other subfamilies of Lamiaceae (Figure 1.2). This
discrepancy could be due, either to convergent evolution or differential gene expression
strategy. It is likely that in some cases the gene that encode the enzymes for the production
of a given structure or structural skeleton have evolved early during evolution, and might be
“switched off” for some plants and “switched on” again at some later point (Wink, 2003;
Pichersky & Gang, 2000;). The inevitable irregular distribution of selected secondary
metabolites reveals the limitation of traditional chemosystematics approach, and the
necessity of applying a holistic approach involving metabolite-content data when conduct
systematics classification of plants.

A great variety of secondary metabolites constitute the main body of metabolite-content
of plants. These secondary metabolite-content data, which describes the small molecules in
plants, are highly associated with the expression of bioactive compounds thus related with
the nutrition and medicinal value of plant which is usually neglected by the molecular
phylogenetic analysis. The incorporation of phylogenetic into chemosystematics studies
suggests that the compilation of all these data on chemical composition (metabolite-content)
of plants 1s not only an auxiliary method to molecular biology based phylogenetic analysis,
but also provide a unique perspective in plant phylogeny and taxonomy. First, the
inconsistent secondary metabolite profile means that the systematic value of metabolite-
content characters becomes a matter of interpretation in the same way as traditional
morphological markers. Second, the metabolite-content of a plants also reveal the special

chemical features which is difficult to analyzed by molecular phylogenetic.

(c) Natural Products and Bioprospecting

Natural products are chemical compounds or substances produced naturally by living
organisms. In the broadest sense, natural products include any substance produced by life.
Bioprospecting is the process of discovery and commercialization of new products based on
biological resources (Strobel & Daisy, 2003). A growing need for new bioactive compounds in

the pharmaceutical and the food industries stresses the importance of prospecting for novel



bio-resource (Berg et al., 2013; Woolhouse & Farrar, 2014). Since the chemical diversity of
compounds as comprised in biological resources is higher than synthetic chemistry achieves,
bio-resources have great potential to hold a manifold of promising compounds for
biotechnological application (Bérdy, 2012; Novakova & Farkasovsky, 2013).

Plants are the major contributors of natural products and are usually rich in nutritional
or medicinal properties, which is attributed to the complex secondary metabolite constituents
of them. (Dahanukar et al., 2000; Veeresham, 2012; Cseke et al., 2016). Secondary
metabolites often contain more than one functional group; they therefore often exhibit
multiple functionalities and bioactivities. Many natural products related subjects arise from
the systematic study of plant chemical constituents (Figure 1.3). Generally, the natural
products of plants include food products (edible plants), medicine products (medicinal plants),
and other products such as structure and decoration. The edible plants, including fruits,
vegetable, nuts and cereals etc., occupy an important position in people’s daily diet and is
directly related to human nutrition. The medicinal uses of plants include traditional herbal
medicinal and pharmaceutical drugs derived from plants. In many cases there is no clear
demarcation of edible plants and medicinal plants because many edible plants possess

medicinal value.
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Figure 1.3. Subjects arising from the systematic study of plant chemical constituents

(Reynolds, 2007).

Plants are an important source of novel pharmacologically active compounds with many
pharmaceutical drugs have been derived directly or indirectly from plants, and have played
a central role in human health-care since ancient times. Many natural products from plants
are biologically active and have been used for thousands of years as traditional medicines
(Newman et al., 2000; Cragg & Newman, 2013; Fabricant & Farnsworth, 2001). Even at the
dawn of 21st century the importance of medicinal plants is enormous — about 25% of the drugs
prescribed worldwide come from plants, and 11% of the 252 drugs considered as basic and
essential by World Health Organization (WHO) were exclusively of flowering plant origin
(Veeresham, 2012). With the development of modern technology, more and more plant
extracts have been found to be useful to medical practice (Ouyang et al., 2014). However, the
potential of plants to yield new valuable drugs is under threat due to the alarming bio-
diversity loss, with recent estimates indicating that one in five of plants on earth is

threatened with extinction (Brummitt & Bachman, 2010). Therefore, there is an urgent need



for a time-efficient and systematic approach for unlocking the potential of plants in drug

discovery.

1.2. Research Problem and Objectives

Since the phylogenetic reconstruction based on comparison of DNA sequence has many
limitations, many researchers have begun to explore phylogenetic distance between species
based on metabolite constituents, either alone or in combination with sequence features.
Clemente et al. (2007) presented a method for assessing the structural similarity of metabolic
pathways for several organisms and reconstructed phylogenies that were very similar to the
National Center for Biotechnology Information (NCBI) taxonomy. Borenstein et al. (2008)
predicted the phylogenetic tree by comparing the “seed set” of metabolic networks. Mano et
al. (2010) considered the topology of pathways as chains and used a pathway-alignment
method to classify species. Chang et al. (2011) proposed an approach from the perspective of
enzyme substrates and corresponding products in which each organism is represented as a
vector of substrate-product pairs. The vectors were then compared to reconstruct a
phylogenetic tree. Ma et al. (2013) demonstrated the usefulness of the global alignment of
multiple metabolic networks to infer the phylogenetic relationships between species. A. A.
Abdullah et al. (2015) classified microorganism species based on the volatile metabolites
emitted by them, and the results have been well explained in terms of their pathogenicity.
However, most of these studies have focused on microorganisms, such as archaea, rather
than multicellular eukaryotesm.

The systematics of plants based on their chemical constituents is often limited by the
lack of plant-metabolite relation data. Traditional chemosystematics of plants is based on
the presence or absence of selected secondary metabolites (Wink, 2003; Singh, 2016), which
is far from the holistic approach involving metabolite-content. The inconsistency of molecular
phylogenetic with chemosystematics studies suggests that the metabolite-content of plants
may reveal more information of the interaction and bioactive similarity of plants. Such MC-
based classification not only reveals the phylogenetic relationship of plants but also can be

used for studying the relationship of plants in terms of their bioactive properties, guiding
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prediction of medicinal properties in bioprospecting, exploring new nutritional or economic
uses of plants, and solving taxonomical problems.

With the rapid development of metabolomics, metabolite-related databases (DBs) have
been created, including KNApSAcK, which contains accumulated information about species-
metabolite relations including information about many secondary metabolites of plants
(Shinbo et al., 2006). Such information can be used in the systems-biological studies on the
interactions between plants, including the activities of medicinal plants as well as
interactions between plants and their environments (Afendi et al.,, 2012). With the
development of plants metabolomics and big data biology (Marx, 2013; Altaf-Ul-Amin et al.,
2014), it is now possible to investigate the systematics value of metabolite-content of plants
on a cross-class level.

In this study, we attempt to classify a set of cross-family plants (plants spread over
different families) based on their MC-similarity, using KNApSAcK Core DB as sources. The
main objective of this study is to investigate the systematics value of metabolite-content of
plants. We consider metabolite-content of a plant as a taxonomy marker like genome data,
as metabolite-content is highly related to its pathways which are regulated by the related
enzyme genes, and MC-similarity could explore both the evolutional and bioactivity relations
between plants. The second objective of this study is to explore structurally similar
metabolite groups by MC-similarity. These metabolite groups are related to specific metabolic
pathways, and can be used to predict currently unknown plant-metabolite relations. The
third objective i1s to facilitate the prediction of medicinal/edible properties in plant

bioprospecting using metabolite-content data.

1.3. Dissertation Outline

This dissertation outline is organized as follows. In Chapter 2, we describe an approach
of plant classification based on their MC-similarity. We calculate the structural similarity of
all metabolite pairs by Tanimoto coefficients (TCs), and determine the MC-similarity of
plants based on the background population of TCs. We classify 102 plants into 28 groups by

hierarchical clustering method, and prove that metabolite-content of plants is consistent with
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both phylogenetic and bioactive characters of plants. In Chapter 3, we describe an approach
of classifying plants based on structural-similarity network of metabolites. By this approach,
we apply DPClus algorithm to abstract structurally similar metabolite groups as features,
and measured the phylogenetic distance of plants by these metabolite groups. We classify
216 plants into 48 groups by hierarchical clustering method. We also use these structurally
similar metabolite groups to predict a series of unknown plant-metabolite relations.
Additionally, we extend our analysis by implementing support vector machine (SVM)
algorithm to study the relationship between metabolite-content and uses of plants. In
Chapter 4, We investigate the predictive power of MC-similarity in exploration of edible and
medicinal plants for bioprospecting by using phylogenetic statistic method. We reconstructed
the phylogenetic trees for the same set of plants based on MC-similarity based approach and
sequence-similarity based approach. We then applied D statistic to test phylogenetic signal
of medicinal/edible plants for the obtained phylogenetic trees and identified the hot nodes
that were significantly overrepresented by plants of medicinal/edible uses. Finally, in

Chapter 5 we give conclusive remarks of this dissertation.
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Chapter 2

Classification of Plants based on Chemical

Structure Similarity of Metabolite-Content

2.1. Background

The systematics of plants by their chemical constituents is known as “Phytotaxonomy”
or “Chemosystematics”. This subject has been used to distinguish plants by their bioactive
characters. Traditional chemosystematics of plants is based on the presence or absence of
selected secondary metabolites (Singh, 2016; Wink, 2003). However, an inevitable conclusion
drawn from the observations is that the expression of secondary metabolites of a given
structural type has almost invariably arisen in a number of occasions in different parts of
the plant kingdom. It indicates that it is necessary to use a holistic approach considering all
of the metabolites when classifying plants by their metabolite constituents. The incomplete
data of metabolite constituents of plants limits the ability of chemosystematics for solving
taxonomical problems.

Biology has recently become a “big-data science” mainly supported by the advances in
high-throughput experimental technologies, and has significant roles to play in versatile
disciplines of scientific research. (Altaf-Ul-Amin et al., 2014). Big data biology is a data-
intensive science, which has emerged because of the rapidly increasing volume of molecular
biological data in omics fields such as genomics, transcriptomics, proteomics and
metabolomics (Kelling et al. 2009; Patterson et al. 2010). The metabolomics of plants is
developing rapidly and will become an important topic in the systems-biological studies of
interaction between plants and human (Bino et al., 2004; Macel et al., 2010; Saito & Matsuda
2010; Tohge & Fernie 2010).

With the rapid development of metabolomics and the explosively growing data scale, the
development of metabolite-related databases (DBs) incorporating different species has

become a very important theme in big data biology. To address this need, the KNApSAcK
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Family database has been developed (Afendi et al., 2012). The KNApSAcK Family DB mainly
contains two types of binary relationships: the Metabolomics DB system and the Multifaceted
Plant Usage DB. The KNApSAcK Family database systems have been utilized in a number
of studies in metabolomics. For example, previously the KNApSAcK Family DB systems have
been used to understand the medicinal usage of plants based on traditional and modern
knowledge (Afendi et al. 2012; Afendi et al. 2013; Wijaya et al. 2014). The KNApSAcK Core
DB is a major member of the KNApSAcK Family database systems. This system contains
accumulated information about species-metabolite relations including information about
many secondary metabolites of plants. Such information can be used in the systems-
biological studies on the interactions between plants, including the activities of medicinal
plants as well as interactions between plants and their environments (Shinbo et al., 2006;
Afendi et al., 2012). The KNApSAcK Core DB contains 111,199 species-metabolite
relationships that encompass 25,658 species and 50,899 metabolites, and these numbers are
still growing (http://kanaya.naist.jp/knapsack_jsp/).

To perform a holistic review on the metabolite features of a species, the concept of
metabolite-content has been proposed. Metabolite-content refers to all small molecules which
are the products or intermediates of metabolism (metabolites) that are present within a
biological organism. Metabolite-content can be used to distinguish plants and other
organisms. For example, previously microorganisms have been classified based on the
volatile organic compounds emitted by them (Abdullah et al., 2015). The metabolite-content
of plants 1s dominated by secondary metabolites, which are usually in a high structural
diversity and often similar within members of a clade (Hegnauer, 1967; Pichersky et al., 2000;
Wink, 2003). The KNApSAcK Core DB can be considered an advanced source of metabolite-
content data of plants. As a rule, secondary metabolites are often similar within members of
a clade, and plants within a taxon often represent similar metabolite-content and bioactive
properties. Therefore, the metabolite-content of plants can be used as a taxonomy marker to
distinguish plants. Moreover, the expression of secondary metabolites of a given structural
type has frequently arisen on a number of occasions in different parts of the plant kingdom.

The inevitable irregular distribution of selected secondary metabolites suggests that the

14



metabolite-content of plants may reveal more information of the interaction and bioactive
similarity of plants than morphology features. As a hypothesis, we consider metabolite-
content of a plant as a taxonomy marker like morphology features, as the metabolite-content
of a plant is highly related to its pathways which are regulated by the related enzyme genes,
and the similarity of metabolite-content could explore both the evolutional and bioactivity
relations between plants. Such MC-similarity based classification not only reveals the
phylogenetic relationship of plants but also can be used for studying the relationship of plants
in terms of their bioactive properties, guiding prediction of medicinal properties in
bioprospecting, exploring new nutritional or economic uses of plants, and solving taxonomical
problems. With the development of plant metabolomics and big data biology, it is now
possible to investigate the metabolite-content of plants on a cross-class level (Marx, 2013;
Altaf-Ul-Amin et al., 2014).

In this chapter, we describe a novel plant classification method based on chemical
stricture similarity of metabolite-content. We collect metabolite-content data of plants and
structure data of compounds from the KNApSAcK Core DB, and measure the structural
similarity between two compounds utilizing the concept of Tanimoto coefficients (TCs)
(Godden et al., 2000; Chen et al., 2002; Willett, 2014). Next, MC-similarity between plants is
calculated based on the background population of TCs. We use the ratio of Tanimoto values
above a rational threshold to assess the MC-similarity between plant pairs. Finally, we
classify the plants based on the MC-similarity and compare our classification with NCBI
taxonomy (http://www.ncbi.nlm.nih.gov/taxonomy). The result proves that metabolite-
content of plants can be regarded as a taxonomy marker which takes into account both
general phylogenetic relations and relation between plants based on bioactivity and economic

uses.

2.2. Datasets and Preliminaries
The major input data in our study are species—metabolite relationships that have been
obtained from the KNApSAcK Core DB (Afendi et al., 2012). The KNApSAcK core DB

contains most of the published information about species—metabolite relations but obviously
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it is far from complete information regarding plants and other living organisms. In the
preprocessing step, we removed the plants that are associated to a few number of metabolites
according to our data since the known MC data of these plants are not enough to reveal their
connection with other plants. For the sake of balance, we also removed some plants
containing many metabolites, e.g. Arabidopsis thaliana, which has been frequently studied
as a model plant. Figure 2.1 shows the distribution of plants with respected to related

metabolites.
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Figure 2.1. The degree distribution of plants in the plant-metabolite bipartite graph. The x-
axes represents the count of metabolites belonging to one species and the y-axes represents
the frequency of such species. The initial part of the distribution is shown in the inset figure.
The plants containing few metabolites (<45) and excessive metabolites (>150) have been

removed from our dataset.

We also collected the MOL file (Molecular data file created in the MDL Molfile format)

which contain structure information for a single molecular compound for all the metabolites
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from KNApSAcK family DB, as additional input data. The MOL files can be transformed into
SDF files (Structure Definition File) which can be used to generate atom pair fingerprints by
ChemMine package in R (Cao et al., 2008). The atom pair fingerprints are used to assess the

structure similarity between metabolite compounds.

2.3. Methods
2.3.1. Background Population of Tanimoto Coefficients

To classify the plants, we propose a method for measuring the MC-similarity between
plants. A straight forward way for this is to represent the plant-metabolite relations as a
binary matrix and then by means of a metric or measure to calculate similarity scores
between plants and subsequently using such scores to classify the plants. However, we
propose a method involving structural similarity between MCs of plants. The intuition
behind this approach is to compensate the gap of incomplete data and to take into
consideration the fact that structurally similar metabolites are part of the same or similar
pathways. Adjacent metabolites along the metabolic pathways are often related to similar
substructures and plants with highly structurally similar metabolites are likely to be within
the same category.

We utilize Tanimoto coefficient to measure the structural similarity between two
compounds (Godden et al., 2000). Willett (2014) investigated different structural similarity
measures and concluded that chemoinformatics research on structural similarity would
continue to be largely based on the use of 2D fingerprints, and the Tanimoto coefficient has
been established as the standard for similarity searching. The Tanimoto coefficient between
two metabolites A and Bis defined as following, which is the proportion of the features shared

by two compounds divided by their union:

Tanimoto = AB (2.1)
animoto = ————— .

The variable AB is the number of features common in both compounds, while A and B

are the number of features that are related to the respective individual compounds. The
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Tanimoto coefficient has a range from 0 to 1 with higher values indicating greater similarity
than lower ones. The Tanimoto coefficient can be calculated from compound fingerprints
using the R package ChemMine (Cao et al., 2008).

We calculate the Tanimoto coefficients (TCs) for all the metabolite compound pairs in
our dataset and this constitute the background population of TCs in the present research.
Figure 2.2(A) shows the background distribution of TCs by dividing the range of 0 to 1 into

100 slots.

2.3.2. Plant-Plant Similarity Score

In this paper, we introduce a novel method for calculating a similarity score between
plants based on metabolite-contents by means of Tanimoto coefficients. Different plants are
reported to have different number of metabolites because some plants have been studied for
longer time and by more groups compared to others. Our objective is to develop a standard
method such that the similarity score falls between a range of O to 1.

Assume that there are two plants A (containing M, metabolites) and B (containing M,
metabolites) and they share M,, common metabolites. Let n be the number of unique
metabolite pairs corresponding to plant pair A and B. It is easy to derive that n can be

expressed by equation (2.2) as follows:

Mab(Mab + 1)

n:MaMb— 2

(2.2)

For all the metabolite pairs we can get the Tanimoto coefficients and make a
distribution of TCs corresponding to a pair of plants. In such a distribution, when two plants
contain structurally similar metabolites, more and higher slots are likely to be on the right
side. For example, Figure 2.2(B) shows the distribution of TCs corresponding to plants
Garcinia mangostana and Garcinia dulcis which are in the same genus. On the other hand,
when the metabolite-contents of two plants are not similar, the height of the slots on the left
side are likely to be larger. For example, Figure 2.2(C) shows the distribution of TCs

corresponding to plants Phaseolus vulgaris and Curcuma zedoaria which are taxonomically
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far different from each other.
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Figure 2.2. The distributions of TCs in our dataset. (A) The distribution of TCs for all
metabolite pairs which we call background population. A threshold is selected based on the
background population of TCs. The MC-similarity of two plants is equivalent to the
proportion of the count of TCs that are larger than the threshold. (B) The distribution of TCs
for two plants (Garcinia mangostana & Garcinia dulcis) having highly similar metabolite-

contents. (C) The distribution of TCs for two plants (Phaseolus vulgaris & Curcuma zedoaria)

having dissimilar metabolite-contents.
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Let the TCs corresponding to the pair of plants A and B are x,, x,,..... X,, Where nis
defined in equation (2.2) above. Now for a given threshold TC value 7T, we calculate the

similarity score SS between plants A and B as follows:

1 1,xi2T

Thus SSis equivalent to the proportion of the count of Tanimoto values that are larger
than the threshold and therefore the SS ranges from 0 to 1. By this method, we assess the
MC-similarity for all plant pairs reducing the influence of missing metabolite data. We
transform the similarity coefficients to distance coefficients by the following transformation
d=1-s (& distance score; s similarity score) and classify the plants using Ward’s
hierarchical clustering method.

To determine an optimal solution of the threshold T, we classify the plants by various
thresholds T and compare the resulted dendrograms with NCBI taxonomy based on a
similarity score called Baker's Gamma correlation coefficient using R package dendextend
(Baker, 1974; Galili, 2015;). Baker’s Gamma is a measure of accosiation (similarity) between
two trees of hierarchical clustering. Baker's Gamma correlation coefficient ranges from -1 to
+1, with positive values meaning that the two trees are statistically similar. This measure is
not affected by the height of a branch but only by its relative position compared with other

branches.

2.4. Results and Discussion
2.4.1. Dataset and Selection of Thresholds

The KNApSAcK Core DB has been developed by collecting information on numerous
metabolites of various organisms from published literatures and several databases (DBs),
including PubChem. The KNApSAcK family DB represents data as binary relationships and
the degree distribution of plants in the plant-metabolite bipartite graph follows a scale-free

trend (Shown in Fig. 2.1). For our current research we selected 102 plants involving totally
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4448 metabolites such that each plant contains no less than 45 metabolites.

There are 4448 metabolites and hence 9890128 unique metabolite pairs in our dataset.
For every metabolite pair, we calculate their Tanimoto coefficients (TCs), which comprise the
background population of TCs (Shown in Fig. 2.2(a)). We determine the threshold TCs based
on the background population of TCs, which we use to evaluate the plant-plant similarity
score. The background population of TCs ranges from 0.007 (minimum) to 1 (maximum) with
the mean value of 0.231 and median value of 0.177.

In this work, we utilized several thresholds of TC values as follows: 0.129, 0.177, 0.233,
0.306, 0.4, 0.522, 0.605, 0.746 which correspond to top 60%, 50%, 40%, 30%, 20%, 10%, 5%
and 1 % TCs respectively in the context of the background population. Our proposed
similarity score between plants try to measure the abundance of structurally similar
metabolites between plants compared to structurally dissimilar metabolites in the context of
a given threshold.

Corresponding to each threshold as mentioned in the previous section, we determined
plant-plant distance matrix and we performed Ward’s hierarchical clustering to reconstruct
a phylogenetic tree of 102 plants. We use NCBI taxonomy generated using a web-based tool
from NCBI homepage (http://www.ncbi.nlm.nih.gov/taxonomy) as the reference classification
to evaluate our dendrograms. Our classifications are based on very limited number of
reported metabolites and hence not very similar to the NCBI classification nevertheless the
trend is promising and it implies that addition of more information would improve the results.
We compared our classification trees with NCBI taxonomy by Baker's Gamma correlation

coefficient(Baker, 1974; Galili, 2015;). Figure 2.3 shows the results of comparison.
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Baker’s Gamma correlation coefficient
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Figure 2.3. Baker’s Gamma correlation coefficient corresponding to different threshold levels.
The value of Baker’s Gamma correlation coefficient between two tree can range between -1

to +1, with higher values indicating greater similarity between two trees than lower ones.

Because our metabolite-content dataset is incomplete and the metabolite-contents of
plants are influenced by ecology and environment, our tree is not highly similar with NCBI
taxonomy tree. But in Fig 2.3, all the trees correspond to positive values of Baker's Gamma
correlation coefficient, which means that all the trees are statistically similar with the NCBI
taxonomy. We can also observe two peaks, one at 40% and another at 1%. In case of 40%
similarity scores between plants are determined based on much more metabolite pairs
compared to 1% case. In case of 1 %, only highly structurally similar metabolite pairs are
considered. This implies that plants are likely to be in the same class if they either contain
highly structurally similar metabolites or many metabolites with reasonable structural
similarity. The best result is obtained by using the threshold corresponding to top 1% TCs as
shown in Figure 2.4. We cut the dendrogram tree corresponding to the best result (i.e. in case

of 1% threshold) to 28 clusters at an empirical threshold height of 0.98, and interpret the
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clusters with their taxonomy category and economic uses (edible, medicinal etc.) as it is

shown in Table 2.1. The order of plants in Table 2.1 is according to the dendrogram of

hierarchical clustering.
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Figure 2.4. Hierarchical dendrogram plot of 102 plants based on their MC-similarity, using

1% TCs as threshold. The 102 plants are classified in to 28 clusters by cutting the dendrogram

with an empirical threshold height 0.98.

Classification of Plants

2.4.2.

in NCBI taxonomic hierarchy are as follows: superkingdom,

The main defined ranks

kingdom, phylum, subclass, order, family, subfamily, tribe, genus, species (from high to low).

The highest rank in our dataset is phylum (Streptophyta). There are 102 plants in our data

from 45 different families. At genus level the largest group consist of 6 plants belonging to

genus Citrus and at the family level the largest group consist of 17 plants belonging to

Fabaceae family. Some species are isolated in our dataset i.e. they are the only candidate

from a sub-class.

When more than one plants are of the same rank within a cluster we mention the rank
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giving priority to lower rank in column 3 of Table 2.1. From Table 2.1 we can see that many
clusters are rich with plants of similar taxonomic ranks. In case of 9 clusters (5, 7, 8, 9, 10,
19, 22, 27, 28) all plants of an individual cluster can be assigned to the same genus or family
or subclass. Cluster 5 contains 3 plants of family Annonaceae. Cluster 7 contains 2 plants of
subclass rosids. Cluster 8 contains 2 plants of genus Garcinia. Cluster 9 contains 2 plants of
subclass rosids. Cluster 10 contains 5 plants of genus Taxus. Cluster 19 contains 3 plants of
subclass rosids, where 2 plants are of family Fabaceae. Cluster 22 contains 3 plants of genus
Glycyrrhiza. Cluster 27 contains 2 plants of subclass asterids. Cluster 28 contains 3 plants
of subclass asterids, where 2 plants are of genus Panax.

Plants of similar taxonomical ranks are also accumulated in other clusters. In Cluster
1, Salvia officinalis and Rosmarinus officinalis belong to tribe Mentheae, Cinnamomum
illicioides and Piper fimbriulatum belong to subclass Magnoliidae, Curcuma Amanda and
Roxb Acorus calanus L. belong to class Liliopsida. In Cluster 2, 7 plants belong to subfamily
Aurantioideae of which 6 plants belong to genus Citrus. Cluster 3 contains total 10 plants,
out of them 4 plants belong to class Liliopsida of which 3 plants belong to family Poaceae,
and 5 other plants belong to subclass rosids of which 2 plants belong to the same family
Papilionoideae. Cluster 4 contains 2 plants of family Cupressaceae and 2 plants of subclass
rosids. Cluster 6 contains 2 plants of genus Annona. Cluster 15 contains 2 plants of subclass
rosids. Cluster 17 contains 2 plants of Acrogymnospermae. Cluster 18 contains 3 plants of
subclass rosids. Cluster 20 contains 3 plants of Asteraceae family and 2 plants of subclass
rosids. Cluster 23 contains 2 plants of order Lamiales, and 2 plants of subclass rosids. Cluster
24 contains 2 plants of subclass asterids. Cluster 25 contains 3 plants of subfamily
Papilionoideae. Cluster 26 contains 2 plants of subclass rosids and 2 plants of subclass
asterids. Our method also successfully placed some of the isolated plants of different orders
to individual single plant cluster e.g. cluster 11, 12.

Our MC-similarity based classification of plants is consistent with chemosystematics
pattern of plants. Some deviations in our classification from NCBI classification can be
explained in terms of ecological relationships or bioactivity similarity between plants.

Generally, medicinal properties are not randomly distributed in different classes of
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plants. Some plant groups are represented by more medicinal plants than others. It is
suggested that there is a phylogenetic pattern in medicinal properties even within one genus
(Saslis-Lagoudakis et al., 2011). A similar distribution is also observed in our classification
that medicinal plants and edible plants are distributed in different groups. Interestingly, out
of the two biggest plant groups (cluster 3 and cluster 1), one is dominated by medicinal plants
and the other is dominated by edible plants even though these two groups are not represented
by plants of the similar taxonomic ranks. This implies the importance of MC-similarity based
classification of plants. The accumulation of medicinal plants in cluster 1, which are
distributed across different genus is a result of rational chemosystematics pattern in those
plants. Thus it can be concluded that the proposed method is suitable for searching new
medicinal and edible plants. Another example is plants of the genus Taxus. Most of the plants
of genus Taxus can be used in medicines. In our classification, all plants of genus Taxus
within our dataset are assigned together to cluster 10 except Taxus cuspidate, which is
poisonous and frequently used as timber instead of a drug. It also shows that considering
metabolite-content patterns is more useful compared to phylogenetic patterns for searching
medicinal plants. We also observe that plants belonging to Fabaceae family are classified into
different clusters according to their economic use pattern. Glycyrrhiza uralensis, Glycyrrhiza
glabra and Glycyrrhiza inflata are classified in Cluster 22 as 3 medicinal plants. Vicia faba,
Phaseolus vulgaris and Pisum sativum are classified in Cluster 25 as 3 edible plants.
Medicago sativa and Colophospermum mopane are classified in Cluster 19 as 2 un-edible
plants. Other plants can also be found in other clusters with the similar economic use
patterns.

Furthermore, we analyze all the clusters based on usage pattern of plants. For each
cluster of size more than five, more than 70% plants belong to one of the following three
categories: edible, medicinal and un-edible. Also, half of the smaller clusters are dominated
by plants of certain usage. The larger clusters tend to better reflect the usage pattern based
classification. Six clusters (10, 14, 21, 22, 23, 27) consist of 100% medicinal plants. Five
clusters (5, 8, 12,16, 25) consist of 100% edible plants. Three clusters (1, 18, 20) consist of

more than 70% medicinal plants, and 2 clusters (2, 3) consist of more than 70% edible plants.
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In addition, 2 clusters (4, 11) are mostly composed of un-edible (decorative/timber) plants. 10
clusters (6, 7, 9, 13, 17, 15, 19, 24, 26, 28) are not dominated by plants of specific uses but
most of them are dominated by plants of the similar taxonomic ranks.

Our classification is taking into account both general phylogenetic relations and
relation between plants based on bioactive similarity. Therefore, our method can be used for
searching new plants useful for medicine or other economic purposes.

The metabolite-content data we used in this study is far from complete. Also we
considered a very limited number of plants due to lack of data. However, from the trends of
the results we obtained it can be concluded that if more information is added then our method

would be able to perform much better classification of plants.
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Table 2.1. Classification of 102 plants. Cluster ID, plant names, taxonomic ranks and

I

economic uses are mentioned 1n consecutive columns. The taxonomic ranks with means

the plants above it belong to the same subclass or subfamily.

ID Plants Taxonomy Usage Pattern
1 Salvia officinalis tribe(Mentheae) medicinal

Rosmarinus officinalis tribe(Mentheae) decorative
Cinnamomum illicioides subclass(Magnoliidae) medicinal
Piper fimbriulatum subclass(Magnoliidae) Toxicity
Curcuma amanda Roxb class(Liliopsida) medicinal
Acorus calanus L. class(Liliopsida) Toxicity
Cistus creticus phylum(Streptophyta) decorative
Polygonum minus phylum(Streptophyta) medicinal
Citrus aurantium genus(Citrus) edible
Citrus limon genus(Citrus) edible
Citrus aurantifolia genus(Citrus) edible
Citrus reticulata genus(Citrus) edible
Citrus paradisi genus(Citrus) edible
Citrus sinensis genus(Citrus) edible
Murraya paniculata subfamily(Aurantioideae)* decorative
Zingiber officinale phylum(Streptophyta) medicinal/edible
Schisandra chinensis phylum(Streptophyta) medicinal

27



Table 2.1. Classification of 102 plants. (Cont.)

ID Plants Taxonomy Usage Pattern

3 Oryza sativa family(Poaceae) edible
Triticum aestivum family(Poaceae) edible
Zea mays family(Poaceae) edible
Allium cepa class(Liliopsida)* edible
Glycine max subfamily(Papilionoideae)  edible
Lupinus albus subfamily(Papilionoideae)  decorative
Murraya euchrestifolia subclass(rosids)* edible
Prunus avium subclass(rosids)* edible
Combretum quadrangulare subclass(rosids)* Timber
Helianthus annuus phylum(Streptophyta) edible
Taiwania cryptomerioides family(Cupressaceae) decorative
Chamaecyparis formosensis family(Cupressaceae) Timber
Dalbergia odorifera subclass(rosids) decorative
Hibiscus taiwanensis subclass(rosids) decorative
Curcuma zedoaria phylum(Streptophyta) edible
Rollinia mucosa family(Annonaceae) edible
Annona muricata family(Annonaceae) edible
Annona squamosa family(Annonaceae) edible
Xylopia parviflora genus(Annona) medicinal
Annona glabra genus(Annona) edible
Stephania cepharantha Hayata phylum(Streptophyta) medicinal
Broussonetia papyrifera subclass(rosids) medicinal
Xylocarpus granatum subclass(rosids) Timber
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Table 2.1. Classification of 102 plants. (Cont.)

ID Plants Taxonomy Usage Pattern
8 Garcinia mangostana genus(Garcinia) medicinal/edible
Garcinia dulcis genus(Garcinia) edible
9 Phyllanthus emblica subclass(rosids) edible

Piscidia erythrina subclass(rosids) decorative

10 Taxus mairei genus(Taxus) medicinal
Taxus baccata genus(Taxus) medicinal
Taxus wallichiana genus(Taxus) medicinal
Taxus yunnanensis genus(Taxus) medicinal
Taxus chinensis genus(Taxus) medicinal

11 Catharanthus roseus order(Gentianales) decorative

12 Huperzia serrata order(Lycopodiales) edible

13 Aristolochia heterophylla phylum(Streptophyta) medicinal
Hemsl
Millettia pinnata phylum(Streptophyta) decorative

14 Clausena excavata phylum(Streptophyta) medicinal
Sedum sarmentosum phylum(Streptophyta) medicinal

15 Phellodendron amurense subclass(rosids) medicinal
Sophora japonica subclass(rosids) medicinal
Cryptomeria japonica phylum(Streptophyta) Timber

16 Morus alba order(Rosales) medicinal/edible

17 Ginkgo biloba Acrogymnospermae medicinal/edible
Taxus cuspidata Acrogymnospermae Timber/poisonous
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Table 2.1. Classification of 102 plants. (Cont.)

ID Plants Taxonomy Usage Pattern

18 Erythrina variegata subclass(rosids) Toxicity/medicinal
Raphanus sativus subclass(rosids) medicinal/edible
Humulus lupulus subclass(rosids) edible
Andrographis paniculata phylum(Streptophyta) medicinal

19 Medicago sativa family(Fabaceae) forage
Colophospermum mopane family(Fabaceae) Timber
Tripterygium wilfordii subclass(rosids)* medicinal

20 Anthemis aciphylla BOISS family(Asteraceae) medicinal
Rhaponticum carthamoides family(Asteraceae) medicinal
Artemisia annua family(Asteraceae) medicinal
Citrus spp. subclass(rosids) edible
Sophora flavescens subclass(rosids) medicinal
Houttuynia cordata phylum(Streptophyta) medicinal/edible
Rhodiola rosea L. phylum(Streptophyta) medicinal

21 Artabotrys uncinatus phylum(Streptophyta) medicinal
Psidium guajava phylum(Streptophyta) medicinal/edible

22 Glycyrrhiza uralensis genus(Glycyrrhiza) medicinal
Glycyrrhiza glabra genus(Glycyrrhiza) medicinal
Glycyrrhiza inflata genus(Glycyrrhiza) medicinal

23 Aeschynanthus bracteatus order(Lamiales) not available
Orthosiphon stamineus order(Lamiales) medicinal
Derris scandens subclass(rosids) medicinal
Brassica hirta subclass(rosids) medicinal
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Table 2.1. Classification of 102 plants. (Cont.)

ID Plants Taxonomy Usage Pattern

24 Nicotiana tabacum subclass(asterids) medicinal
Camellia sinensis subclass(asterids) edible
Vitis vinifera phylum(Streptophyta) edible
Picea abies phylum(Streptophyta) decorative

25 Vicia faba subfamily(Papilionoideae)  edible
Phaseolus vulgaris subfamily(Papilionoideae) edible
Pisum sativum subfamily(Papilionoideae) edible
Spinacia oleracea phylum(Streptophyta) edible

26 Brassica oleracea subclass(rosids) edible
Punica granatum subclass(rosids) edible
Scutellaria baicalensis subclass(asterids) medicinal
Solanum tuberosum subclass(asterids) edible
Valeriana officinalis subclass(asterids) medicinal

27 Mandragora autumnalis subclass(asterids) medicinal
Rehmannia glutinosa subclass(asterids) medicinal

28 Panax ginseng genus(Panax) medicinal
Panax notoginseng genus(Panax) medicinal
Lycopersicon esculentum subclass(asterids)* edible

2.5. Summary

In this chapter, we described an approach for classifying plants by comparing the
metabolite-contents and for studying the relationship of plants in term of their bioactive
properties. We show that by this approach we can produce a classification of plants similar
to the traditional plant taxonomy. This method can be regarded as a novel chemosystematics

method which consider the global metabolite-contents of plants instead of a group of
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metabolites as some previous researches.

Tanimoto coefficients (T'Cs) has been utilized to assess similarity between metabolite
compounds and the plant-plant similarity score is calculated based on the background
population of TCs. To determine the optimal threshold, we sorted the background population
of TCs and utilized several thresholds of TC respectively in the context of the background
population. NCBI taxonomy tree is utilized as reference tree to evaluate our dendrograms
and to determine the best threshold. Finally, we classify 102 plants into 28 clusters and
analyze the phylogeny and bioactivity relationship within each cluster.

The result proves that MC-similarity of plants is associated to the pathway and
bioactive similarity and can be regarded as a taxonomy marker which takes into account both
general phylogenetic relations and relation between plants based on bioactivity and economic

uses.
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Chapter 3

Clustering Plants based on Structural-Similarity

Network of Metabolites

3.1. Background

In previous chapter, we described an approach of plant classification by similarity of
their metabolite-contents. We calculate structural similarity scores for all of the metabolite
pairs using Tanimoto coefficients, and calculate plant-plant similarity scores based on the
distribution of TCs. With this approach, we consider all of the metabolites and deal with them
equally without taking into account the relations between metabolites. However, the
metabolites within a cell are not isolated but participant in general metabolic reactions with
other metabolites, and is constantly changing due to all the chemical reactions occurring in
this cell. As we described before, the metabolite-content of a plant is highly related to its
pathways which are regulated by the related enzyme genes, and the adjacent metabolites
along a metabolic pathway are often related to similar substructures. Moreover, for most of
plants only a set of metabolites are identified, and there are many data-gaps for metabolite-
contents of them. Therefore, it is necessary to find an approach of integrating the metabolite-
content data to reduce the disturbance of missing metabolite-content data.

In this chapter, we utilize the plant-metabolite relation data obtained from KNApSAcK
Core DB to assess the systematics value of metabolite-content data of plants, and investigate
the evolutionary and bioactive similarity among plants based on their MC-similarity. The
metabolite-content data of plants and structure data of compounds are mainly obtained from
the KNApSAcK Core DB and partially from PubChem DB (Bolton et al., 2008; Wang et al.,
2009). We measure the structural similarity between two metabolites by using the concept
of the Tanimoto coefficient (Godden et al., 2000; Chen & Reynolds, 2002), construct a network
by selecting highly structurally similar metabolite pairs, and determine structurally similar

groups of metabolites by using the DPClus algorithm (Altaf-Ul-Amin et al., 2006). We then
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link plants to such metabolite groups instead of individual metabolites to represent the
plants as binary vectors. Several structurally similar metabolites are generally involved in a
metabolic pathway. Thus, the use of structurally similar metabolite groups in this study can
help to reduce the effect of missing data. Next, the MC-similarity between plants is calculated
based on binary similarity coefficients which then transformed into MC-distances. Plants are
finally classified using the hierarchical clustering method, and the resulting classification is
evaluated by comparing it with the NCBI taxonomy (Federhen, 2011). Our classification
results reveal both the phylogeny- and bioactivity-based relations among plants. We also use
a support vector machine (SVM) algorithm to classify the plants by their economic uses
(Cortes & Vapnik, 1995; Hsu et al., 2003). The performance of the classification reveals the
predictive power of metabolite-content in exploring nutritional and medicinal properties of
plants. As a byproduct of our analysis, we can predict some currently unknown species-

metabolite relations.

3.2. Datasets and Preliminaries

The major input data are species-metabolite relationships obtained from the
KNApSAcK Core DB, which is a part of the KNApSAcK Family DB (Afendi et al., 2012). The
KNApSAcK Core DB contains most of the published information about species-metabolite
relations, but this is obviously far from complete regarding plants and other living organisms.
In the preprocessing step, we removed the plants with inadequate plant-metabolite relations
to guarantee that the amount of metabolite-contents of selected plants is sufficient enough
to reveal their interrelations.

We collected the molecular structure description files for the metabolites in our dataset
as additional input data. The KNApSAcK Core DB provides MOL molecular structure files
for most of the metabolites. For metabolite compounds with structure files that cannot be
obtained from the KNApSAcK Core DB, we downloaded the SDF files directly from the
PubChem DB (Bolton et al., 2008; Wang et al., 2009). We used R package ChemmineR
(v2.26.0) to generate atom pair fingerprints from molecular structure description files for all

the metabolite compounds (Cao et al., 2008). These molecular fingerprints were used to
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measure the structural similarity for all the metabolite pairs. Figure 3.1(a) illustrates the

binary plant-metabolite relations and corresponding molecular fingerprints.

Metabolite
groups

Plants Metabolites Molecular Fingerprints Plants

0‘0|0|o|o|1|0‘1|1|..

0[o[o[o]o[1]o]o]o].

0‘0|0|o|o|0|0‘0|0|..

]
]
o|o[o[o[o[1]o]o][1].]
]
]

0\0|0|0|0|1|0\1|1|..

0|0|o|0|o|1|0|0|1|...|

0|0|0|0|0\0\0]0|0|...|

o[o[o[o[o[1]o]1]1].]

(2) (b)

Figure 3.1. Plant-metabolite relations and plant versus metabolite-group relations. (a)
Bipartite graph of plant-metabolite relations. Molecular structures of metabolites are
described by 166-bit atom pair fingerprints, which are used to calculate Tanimoto structure
similarity score for each metabolite pair. (b) Bipartite graph of plant versus metabolite-group
relations. Fach plant has been associated with metabolite groups instead of single

metabolites to reduce effect of incomplete data.

3.3. Methods
3.3.1. Network Construction of Metabolites Based on Chemical Structure Similarity.

Very little is known of the complete set of metabolite-contents of plants. Therefore, for
classifying plants based on currently available metabolite-content data, an approach that can

compensate for the limitations of missing data is needed. Adjacent metabolites along a
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metabolic pathway are often related to similar substructures; therefore, it can be assumed
that structurally similar metabolites are involved in the same or similar pathway. Therefore,
plants that share highly structurally similar metabolites are likely to have common
pathways; thus, likely to be within the same category and represent similar bioactivity. To
compensate for the gap in missing data, we primarily linked plants to structurally similar
metabolite groups instead of individual metabolites for this study.

For the purpose of determining structurally similar metabolite groups, we initially
constructed a network of metabolites based on chemical structure similarity. We used the
Tanimoto coefficient to measure the structural similarity between two metabolites as before
(Godden et al., 2000). The Tanimoto coefficient has a range from 0 to 1 with higher values
indicating greater similarity than lower ones. Empirically, a Tanimoto coefficient value larger
than 0.85 indicates that the compared compounds represent highly similar bioactive features
(Martin et al., 2002). We used 0.85 as the threshold to insert an edge between two metabolites

and constructed a network of metabolites.

3.3.2. Clustering of Metabolites Based on DPClus

The DPClus algorithm is a graph-clustering algorithm, which has been developed based
on a graph-clustering algorithm that can extract densely connected nodes as a cluster (Md
Altaf-Ul-Amin et al. 2006). Initially, the algorithm was purposely developed to detect and
visualize clusters of proteins in interaction networks which mostly represent molecular
biological functional units. Here, we explore the possibility of this algorithm to the structural
similarity network of metabolites.

This algorithm can be applied to an undirected simple graph G = (N, E) that consists of a
finite set of nodes N and a finite set of edges E. Two important parameters are used in this
algorithm, i.e., density d and cluster property cp. Density d, of any cluster k is the ratio of
the number of edges present in the cluster (|E|) to the maximum possible number of edges in
the cluster (|E|,,q,). The cluster property of a node n with respect to cluster k is represented

as
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where Nj is the number of nodes in k, E,; is the total number of edges between n and
each node of k.

In this study, we apply the DPClus algorithm to the structural similarity network of
metabolites. The metabolites are divided into many groups such that each group contains
structurally similar compounds and can be treated as a distinctive pattern of structure. Each
metabolite group might be related to a certain pathway, which is related to the phylogeny
and ecology of plants. A plant is related to a metabolite group if it is related to any metabolite
in the group. Thus, the original plant-metabolite relations are transformed into plant versus
metabolite-group relations, as shown in Figure 3.1(b). We use such groups to measure the

similarity between plants; thus, reducing the effects of incomplete metabolite-content data.

3.3.3. Clustering of Plants Based on Metabolite Groups.

The relations between plants and structurally similar metabolite groups can be
expressed with a sparse binary matrix, which is defined as M. Element M; = 1 means that
plant i contains at least one metabolite of group j, and Mj; = 0 means that plant i contains no
metabolite of group j. Therefore, for each plant, we obtain a binary vector such that each bit
corresponds to the presence or absence of a metabolite group.

Let two plants be described by the binary vectors x and y, each comprised of p variables
with values either 1 or 0 (“1” indicates presence while “0” indicates absence), and p is the
total number of metabolite groups. The Simpson similarity coefficient between plants can be

calculated as

a
Ssim = min {(a + b), (a + ¢)}

(3.2)

Here, a, b, and c are the frequencies of the events x&y, x&y, and ¥&y, respectively (Choi
et al., 2010; Fallaw, 1979; Ma & Zeng, 2004).
To strengthen our finding with more support, we also used five binary coefficients which

stand out from 51 coefficients in the virtual screening experiments for chemoinformatics data:
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Jaccard-Tanimoto (JT), Jaccard (Ja), Sokal-Sneath (SS), Consonni-Todeschini (CT) and
Gleason (Gle) (Todeschini, 2012). These binary similarity coefficients can be calculated by

Equation 3.3 - 3.7.

Sy = — 3.3
T a+b+c (33)
S, = 3a 3.4
e " 3a+b+c (34)

See =— (3.5
5S a+2b+2c‘( )
In(1+ a)
= 3.6
" In(l+a+b+0c) (3.6)
Scie 3.7)

“2a+b+c
We transformed a similarity coefficient, s, to a distance coefficient, d, by the
transformation d = 1 —s and classified the plants by using Ward’s hierarchical clustering

method using R.

3.3.4. Classification of Plants by SVMs.

Support vector machines are supervised machine learning models for classification and
regression analysis (Cortes & Vapnik, 1995; Hsu et al., 2003). An SVM training algorithm
builds a model by constructing decision boundaries in feature space. Examples are predicted
to belong to a category based on the boundaries.

To study the relationship between metabolite groups and economic uses of plants and
evaluate the predictive power of metabolite-content in guiding the discovery of natural
products or medicinal properties in plants, we used an SVM algorithm, which was
implemented by the function svm in R package e1071 v1.6-7, to classify plants by using
default parameters (Chang & Lin, 2011; Fan et al., 2005; Dimitriadou et al., 2005). We used
economic uses as labels and corresponding metabolite groups as features. The classification
performance is evaluated by using a confusion matrix. In a confusion matrix, the sum of a
column represents the instances in a predicted class, while the sum of a row represents the

instances in an actual class. All programs in this research were run in R v3.3.1.
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3.4. Results and Discussion

3.4.1. Plant Representation Based on Metabolite-Content Similarity.

The KNApSAcK Core DB contains a total of 111,199 species-metabolite binary relations

that encompass 25,658 species and 50,899 metabolites. This DB was developed by collecting

information on numerous metabolites of various organisms from published literature and

several DBs, including PubChem (Bolton et al., 2008; Wang et al., 2009). The species-

metabolite relations in the KNApSAcK Core DB can be represented as a bipartite graph, as

shown in Figure 3.1(a). Figure 3.2 shows the degree distribution of species in a species-

metabolite bipartite graph. This distribution follows a power law trend (Fig. 3.2) (Jeong et

al., 2001).
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Figure 3.2. The degree distribution of species in the species-metabolite bipartite graph. The

x-axes represents the number of metabolites belonging to one species and the y-axes

represents the frequency of such species.
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The metabolite-content data of plants in the KNApSAcK Core DB is unbalanced, i.e.,
many plants are associated with only a few metabolites and a few plants are associated with
many metabolites, while other plants are in a between situation. One of the reasons behind
this is that different plants have metabolic pathways of varying complexity. Medicinal plants
usually contain more metabolites compared to edible plants because the former have gone
through less artificial selections and preserved more secondary metabolites during evolution.
Another reason is that the metabolomics of some important plants have been studied more
systematically. The recorded metabolite-content of such plants are more comprehensive
compared to wild plants. Therefore, in our current research, we selected 216 plants from a
total of 25658 species in the KNApSAcK Core DB, such that each of the 216 plants is reported
to be associated with no less than 30 metabolites, with 135 being the maximum number and
31 being the minimum. There is a total of 6522 metabolites related to the 216 plants in our
input dataset.

We dealt with 6522 metabolites involving 216 plants. We determined the Tanimoto
coefficients between all possible metabolite pairs (21264981 pairs). We selected 54528
metabolite pairs with Tanimoto values greater than 0.85, which are 0.25% of all the
metabolite pairs. On average, each metabolite is related to about eight different metabolites.
We connected all the selected metabolite pairs and constructed a network of metabolites, as
shown in Figure 3.3(a). This network involves 5085 metabolites and the other 1437
metabolites are not included in the network, i.e., each of these metabolites is not structurally
similar with any other metabolites. The 5085 metabolites included in the network are divided
into 669 connected components. Figure 3.3(b) shows the degree distribution of the network

of metabolites. This distribution also follows a power law trend (Jeong et al., 2001).
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Figure 3.3. Structural-similarity-based network of metabolites. (a) Structural-similarity-
based network of metabolites (plotted using network analysis tool Cytoscape v3.3.0). This
network is composed of many isolated components, and each component contains different

number of nodes. (b) Degree distribution of the network in log scale.
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To compensate for the gap in incomplete data regarding species-metabolite relations, we
associated plants with structurally similar metabolite groups instead of individual
metabolites. To achieve this, we applied the DPClus algorithm to the network of metabolites
we developed, as discussed in the previous section. We did DPClus clustering with the
following settings: cluster property cp was set to 0.5, density value d was set to 0.9,
minimum cluster size was set to 2, and we used the overlapping mode.

The DPClus algorithm generated 1150 clusters, i.e., metabolite groups, involving 4700
metabolites. The largest group contained 174 metabolites, and there were 510 metabolite
groups containing only 2 metabolites. Figure 3.4 shows the frequency of metabolite groups
with respect to size (the count of metabolites) in both normal scale and log-log scale (inset),
and this distribution also follows a power law trend (Jeong et al., 2001). A total of 1822
metabolites not included in any cluster are considered as groups consisting of a single

metabolite.
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Figure 3.4. Frequency of metabolite groups with respect to group size. X-axes represent
number of metabolites belonging to one metabolite group, and y-axes represent frequency of

such metabolite groups. Frequency of metabolite groups in log scale is shown in inset figure.

All clusters, large or small, contained structurally similar metabolites. Large clusters
might be related to different metabolic pathways, but small clusters are likely related to
specific metabolic pathways. A plant is related to a metabolite group if it is reported to contain
any metabolite in the group. A plant can be represented as a binary vector such that each bit

of the vector corresponds to the presence or absence of a metabolite group.

3.4.2. Clustering of Plants Based on Metabolite-Content Similarity.

We calculated the plant-plant similarity by using Simpson coefficients and other five
binary similarity coefficients which have outstanding performance for comparing
chemoinformatics data (Todeschini et al., 2012). We transformed a similarity score s into a
distance score d using d =1 —s then conducted Ward’s hierarchical clustering analysis.

Thus, we determined six dendrograms corresponding to six types of coefficients.
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We used the NCBI taxonomy of the 216 plants generated using a web-based tool from
the NCBI homepage (http://www.ncbi.nlm.nih.gov/taxonomy) as the reference classification
(Federhen, 2011). The NCBI classification reflects the phylogenetic patterns within a plant
group primarily based on morphology. According to the NCBI taxonomy, the 216 plants
spread over 52 families with the largest family Fabaceae containing 42 plants.

We compared the dendrogram trees generated with our approach with the NCBI
taxonomy based on a similarity score called Baker's Gamma correlation coefficient using R
package dendextendv1.3.0 (Baker, 1974; Galili, 2015). Baker's Gamma correlation coefficient
ranges from -1 to +1, with positive values, meaning that the two trees are statistically similar.

The results show that all the six dendrograms produced positive Baker’s Gamma values
(Simpson: 0.053; Jaccard-Tanimoto: 0.043; Jaccard: 0.040; Sokal-Sneath: 0.042; Consonni-
Todeschini: 0.048; Gleason: 0.048), indicating that all the six trees are statistically similar
with the NCBI taxonomy. Overall, the Simpson coefficient tree stands out from the
remainder in our experiments with the highest Baker's Gamma value. We also illustrate this
fact by comparing Simpson tree and Jaccard-Tanimoto tree by pointing out some examples
in Figure 3.5. The Jarccard-Tanimoto coefficient has been used as a similarity measure to
compare the enzyme content of metabolic networks in each pair of organisms (Deyasi et al.,
2015). The Simpson coefficient was devised to minimize the effect of the unequal size of two
faunas being compared, and having in the denominator only the number of taxa in a sample
having the smaller number (Fallaw, 1979; Ma & Zeng, 2004). In the Simpson coefficient tree,
more plants from the same genus or family appeared nearer to each other.

Therefore, for further explanation, we selected the Simpson-tree and classified the plants
into 48 groups by cutting the dendrogram at variable threshold heights empirically chosen
to enrich the clusters with plants of the same genus or family. Figure 3.6 shows the

dendrogram together with group IDs produced by our classification method.
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Figure 3.5. Comparison of Simpson- and Jaccard-Tanimoto dendrograms. (A) Hierarchical
dendrogram plot of classification by Simpson similarity coefficients. (B) Hierarchical
dendrogram plot of classification by Jaccard-Tanimoto similarity coefficients. Myrtus
communis and Leptospermum scoparium belong to family Myrtaceae. Phaseolus Iunatus,
Phaseolus vulgaris and Phaseolus coccineus belong to genus Phaseolus. Lycopersicon
esculentum, Nicotiana tabacum and Solanum tuberosum belong to family Solanaceae. Panax
notoginseng, Panax ginseng, Panax pseudo-ginseng var.notoginseng and Panax ginseng

C.A.Meyer belong to genus Panax.
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The main defined ranks in the NCBI taxonomic hierarchy are as follows: superkingdom,
kingdom, phylum, subclass, order, family, subfamily, tribe, genus, species (from high to low).
We collected the taxonomy information of 216 plants that we considered in this study and
annotated each plant with ranks of family and genus (we used the scientific names of plants
where the first word of a plant name represents the genus to which the plant belongs). Table
3.1 lists the 48 groups of plants based on our clustering result with their taxonomic and use
information. The plants are arranged by different groups, and for each group plants within
the same family or genus are arranged together to highlight the internal phylogeny relations.
In the dendrogram of Figure 3.6, neighboring plants belonging to the same genus or family
are indicated by horizontal bold colored lines. Each genus or family is indicated by a specific
color. It is evident that many clusters are rich with plants from the same genus or family.
Thus, our results imply that plants in the same taxon correspond to similar metabolite-
content. Taking into account the inadequate amount of metabolite data and limited number
of plants we considered for certain families, the results from our approach are very promising.
These indicate that the proposed approach was designed to compensate for the shortcomings
of limited data. Some deviations in our classification from the NCBI taxonomy can be
explained in terms of ecological relationships or bioactive similarity. This implies that
compared to morphology-based taxonomy, MC-based classification reveals more information
about the bioactive similarity among plants, which is related to the nutritional and medicinal
properties of plants. Therefore, MC-based classification can be used as a time-efficient

predictive tool for guiding discovery of edible and medicinal properties in wild plants.
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Figure 3.6. The family or genus level phylogeny patterns in proposed classification of 216
plants. Group IDs are annotated beside the corresponding plant groups. Adjacently placed

plants of the same genus or family are indicated by thick bars of specific colors.
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Table 3.1. Classification of 216 plants. Group ID, plant names, taxonomic ranks (family), and

economic uses are mentioned In consecutive columns. Economic uses of plants are

represented as following abbreviations: E (edible), M (medicinal), L (landscaping,), T (timber),

P (poisonous), W (wild plant). Some plants are both edible and medicinal and are annotated

as M/E.

Group Plant Family Use

1 Citrus limon Rutaceae E
Citrus aurantifolia Rutaceae M/E
Citrus paradisi Rutaceae E
Citrus sinensis Rutaceae E
Citrus reticulata Rutaceae E
Citrus aurantium Rutaceae E

2 Houttuynia cordata Saururaceae M/E
Houttuynia emeiensis Saururaceae W
Rhodiola rosea Crassulaceae M

3 Artemisia annua Asteraceae M
Artemisia capillaris Asteraceae M
Rhaponticum carthamoides Asteraceae W
Solanum Iycopersicum Solanaceae E

4 Anthemis aciphylla Asteraceae W
Artemisia annua L Asteraceae M
Centaurea sessilis Asteraceae W
Valeriana officinalis Caprifoliaceae M
Persicaria minus Polygonaceae M
Mentha arvensis Lamiaceae M
Peucedanum paniculatum Apiaceae W




Table 3.1. Classification of 216 plants. (Cont.)

Group Plant Family Use

5 Zingiber officinale Zingiberaceae M/E
Alphinia galanga Zingiberaceae M/E
Rosmarinus officinalis Lamiaceae M
Cistus albidus Cistaceae W
Pinus halepensis Pinaceae L

6 Myrtus communis Myrtaceae M
Leptospermum scoparium Myrtaceae M
Santolina corsica Asteraceae W

7 Curcuma amanda Zingiberaceae M/E
Curcuma aeruginosa Zingiberaceae W
Cistus creticus Cistaceae W
Melaleuca leucadendra Myrtaceae M
Piper arboreum Piperaceae W
Piper fimbriulatum Piperaceae W
Cedrus libani Pinaceae L
Cyperus rotundus Cyperaceae M

8 Pseudotsuga menziesii Pinaceae T
Pinus sylvestris Pinaceae T
Picea abies Pinaceae T
Citrus unshiu Rutaceae E

9 Prunus persica Rosaceae E
Prunus avium Rosaceae E
Prunus cerasus Rosaceae E
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Table 3.1. Classification of 216 plants. (Cont.)

Group Plant Family Use
10 Pisum sativum Fabaceae E
Lathyrus odoratus Fabaceae L
Allium cepa Amaryllidaceae E
11 Linum usitatissimum Linaceae T
Vicia faba Fabaceae E
Carthamus tinctorius Asteraceae M
12 Phaseolus lunatus Fabaceae E
Phaseolus vulgaris Fabaceae E
Phaseolus coccineus Fabaceae E
13 Triticum aestivum Poaceae E
Zea mays Poaceae E
Spinacia oleracea Amaranthaceae E
14 Raphanus sativus Brassicaceae E
Brassica napus Brassicaceae P
Malus domestica Rosaceae E
15 Hordeum vulgare Poaceae E
Oryza sativa Poaceae E
Cucumis sativus Cucurbitaceae E
Glycine max Fabaceae E
Helianthus annuus Asteraceae E
16 Eriobotrya japonica Rosaceae E
Cassia fistula Fabaceae M
Aesculus hippocastanum Hippocastanaceae P
Camellia sinensis Theaceae E
Rheum sp. Polygonaceae W

50



Table 3.1. Classification of 216 plants. (Cont.)

Group Plant Family Use
17 Robinia pseudoacacia Fabaceae L
Colophospermum mopane Fabaceae T
Acacia mearnsii Fabaceae W
18 Sinocrassula indica Crassulaceae M
Sedum sarmentosum Crassulaceae M
Rhodiola sachalinensis Crassulaceae M
Phyllanthus emblica Phyllanthaceae M/E
Psidium guajava Myrtaceae E
Phellodendron amurense Rutaceae M
Epimedium sagittatum Berberidaceae M
19 Solanum Iycopersicum Solanaceae E
Solanum tuberosum Solanaceae E
Nicotiana tabacum Solanaceae M
20 Capsicum annuum Solanaceae E
Petunia x hybrida Solanaceae L
Daucus carota Apiaceae W
Asclepias curassavica Apocynaceae L
Humulus lupulus Cannabaceae M
Cyperus rotundus Cyperaceae M
21 Glycyrrhiza uralensis Fabaceae M
Glycyrrhiza aspera Fabaceae W
Glycyrrhiza glabra Fabaceae M/E
Glycyrrhiza inflata Fabaceae M




Table 3.1. Classification of 216 plants. (Cont.)

Group Plant Family Use
22 Lupinus luteus Fabaceae W
Lupinus albus Fabaceae E
Derris scandens Fabaceae W
Erythrina variegata Fabaceae L
Erythrina senegalensis Fabaceae M
23 FEuchresta japonica Fabaceae W
Euchresta formosana Fabaceae W
Sophora flavescens Fabaceae M
Maackia amurensis Fabaceae L
Sophora secundiflora Fabaceae W
Daphniphyllum oldhami Daphniphyllaceae M
24 Medicago sativa Fabaceae E
Clitoria ternatea Fabaceae E
Trifolium pratense Fabaceae M
Sophora japonica Fabaceae T
Lespedeza homoloba Fabaceae W
Melilotus messanensis Fabaceae W
Glycyrrhiza pallidiflora Fabaceae W
Dalbergia odorifera Fabaceae T
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Table 3.1. Classification of 216 plants. (Cont.)

Group Plant Family Use
25 Corydalis claviculata Papaveraceae W
Papaver somniferum Papaveraceae M
Corydalis solida Papaveraceae W
Cocculus laurifolius Menispermaceae W
Stephania cepharantha Menispermaceae W
Stephania cepharantha Menispermaceae W
Cocculus pendulus Menispermaceae W
Annona cherimola Annonaceae E
Xylopia parviflora Annonaceae W
26 Brassica oleracea Brassicaceae E
Brassica rapa Brassicaceae E
Armoracia lapathifolia Brassicaceae E
Hesperis matronalis Brassicaceae L
27 Alstonia macrophylla Apocynaceae T
Alstonia angustifolia Apocynaceae M
Alstonia angustifolia var.latifolia Apocynaceae M
28 Millettia pinnata Fabaceae L
Millettia pinnata Fabaceae L
Neorautanenia amboensis Fabaceae W
Tephrosia purpurea Fabaceae P
Amorpha fruticosa Fabaceae L
Piscidia erythrina Fabaceae T
29 Gymnadenia conopsea Orchidaceae M
Bletilla striata Orchidaceae M
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Table 3.1. Classification of 216 plants. (Cont.)

Group Plant Family Use
30 Taiwania cryptomerioides Cupressaceae T
Chamaecyparis formosensis Cupressaceae T
Cryptomeria japonica Cupressaceae T
31 Gutierrezia microcephala Asteraceae P
Saussurea lappa Asteraceae M
Artemisia spp. Asteraceae W
Citrus spp. Rutaceae E
Citrus sudachi Rutaceae M
Murraya paniculata Rutaceae M
Cannabis sativa Cannabaceae M
Iris domestica Iridaceae M
32 Tabernaemontana coffeoides Apocynaceae W
Kopsia dasyrachis Apocynaceae W
Catharanthus roseus Apocynaceae M
Rauvolfia vomitoria Apocynaceae W
33 Nardostachys chinensis Caprifoliaceae W
Acritopappus confertus Asteraceae W
Isodon xerophilus Lamiaceae W
Cynanchum sublanceolatum Apocynaceae W
Caesalpinia crista Fabaceae T
Murraya euchrestifolia Rutaceae W
Curcuma zedoaria Zingiberaceae E
34 Garcinia mangostana Clusiaceae M/E
Garcinia dulcis Clusiaceae W




Table 3.1. Classification of 216 plants. (Cont.)

Group Plant Family Use

35 Atalantia buxifolia Rutaceae W
Ruta graveolens Rutaceae M/E
Clausena excavata Rutaceae W
Angelica furcijuga Apiaceae M/E

36 Andrographis paniculata Acanthaceae M
Scutellaria baicalensis Lamiaceae M

37 Zanthoxylum simulans Rutaceae M
Zanthoxylum integrifoliolum Rutaceae W

38 Magnolia denudata Magnoliaceae M
Magnolia officinalis Magnoliaceae M
Aeschynanthus bracteatus Gesneriaceae W

39 Broussonetia papyrifera Moraceae E
Morus alba Moraceae M/E
Artocarpus communis Moraceae E

40 Sinapis alba Brassicaceae E
Vachellia rigidula Fabaceae E

41 Lycium chinense Solanaceae M
Mandragora autumnalis Solanaceae M
Angelica sinensis Apiaceae M

42 Cullen corylifolium Fabaceae M
Calophyllum inophyllum Calophyllaceae T
Juniperus phoenicea Cupressaceae W
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Table 3.1. Classification of 216 plants. (Cont.)

Group Plant Family Use
43 Taxus cuspidata Taxaceae P
Taxus brevifolia Taxaceae M
Taxus baccata Taxaceae M
Taxus wallichiana Taxaceae M
Taxus chinensis Taxaceae M
Taxus mairei Taxaceae M
Taxus yunnanensis Taxaceae M
44 Panax notoginseng Araliaceae M
Panax ginseng Araliaceae M
Panax pseudo-ginseng var.notoginseng Araliaceae M
Panax ginseng C.A.Meyer Araliaceae M
Bupleurum rotundifolium Apiaceae M
Beta vulgaris Amaranthaceae E
Bellis perennis Asteraceae M/E
45 Xylocarpus granatum Meliaceae W
Spiraea formosana Rosaceae W
Hibiscus taiwanensis Malvaceae W
Begonia nantoensis Begoniaceae W
Alpinia blepharocalyx Zingiberaceae W
Taraxacum formosanum Asteraceae W
46 Aristolochia elegans Aristolochiaceae L
Aristolochia heterophylla Aristolochiaceae M

56



Table 3.1. Classification of 216 plants. (Cont.)

Group Plant Family Use

47 Artabotrys uncinatus Annonaceae W
Annona purpurea Annonaceae E
Rubia yunnanensis Rubiaceae M
Withania somnifera Solanaceae M

48 Salvia officinalis Lamiaceae M/E
Orthosiphon stamineus Lamiaceae W
Plantago major Plantaginaceae M
Rehmannia glutinosa Rehmanniaceae M
Olea europaea Oleaceae M/E
Lonicera japonica Caprifoliaceae M
Eleutherococcus senticosus Araliaceae M
Diospyros kaki Ebenaceae E
Punica granatum Lythraceae E
Curcuma domestica Zingiberaceae M/E

3.4.3. Predicting Currently Unknown Plant-Metabolite Relations.

The species—metabolite relation data in the KNApSAcK Core DB were collected from
previously published papers. Many more plant-metabolite relations will inevitably be
discovered in the future. However, based on our study, we can predict some not yet known
plant-metabolite relations. When several plants are included in the same cluster with our
approach, it implies that those plants contain many metabolites that are either the same or
different but structurally very similar. When several plants contain a different subset of a
group of structurally similar metabolites and they are very close according to morphological
taxonomy, we can assume that all those plants contain the union of the metabolites currently

detected in them. The basis of this assumption is that similar metabolic pathways are

expected to be active in plants within a given taxon group.
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In our experiments, we found structurally similar metabolite groups of different sizes,
large and small. However, the metabolites belonging to a smaller group are likely to be closely
related along a certain metabolic pathway. Therefore, for predicting currently unknown
plant-metabolite relations, we focused on only smaller metabolite groups and empirically
considered the metabolite groups of size no more than eight.

In summary, we follow the following steps to improve prediction accuracy:

Step 1: We select a group of plants that are in the same cluster according to our approach
and at the same time belong to the same genus or family. Let us call such a group S.

Step 2: We determine the set (K) of structurally similar metabolite groups of size no more
than eight such that each metabolite group is associated with at least two plants in S.

Step 3: All the metabolites of a metabolite group in K are assigned to the plants in S
which are associated with the group. This process is repeated for each group in K.

Based on known information, however, we exclude some metabolites that are mainly
structure isomers from this prediction process because some isomers are usually produced
by different pathways (Dewick, 2009; McMurry & Begley, 2005). We discuss this method with
an example as follows.

Predicting metabolites for Citrus plants: Six Citrus plants (Citrus limon, Citrus
aurantifolia, Citrus paradisi, Citrus sinensis, Citrus reticulata and Citrus aurantium) are
considered an excellent group in our classification (Group 1 in Table 3.1, we call it group S),
and belong to the same genus (Citrus). We extract the set K of metabolite groups (with size
no more than eight) in which each metabolite group is associated with at least two plants in
S. There is a total 58 such metabolite groups in K. For each metabolite group in K which is
related to multiple plants, we can construct a plant-metabolite table. Table 3.2 is a plant-
metabolite table for a given metabolite group that contains two metabolites: Limonene and
Cyclohexane, and their association to six plants in S. In Table 3.2, “1” means that the
metabolite is reported in the corresponding plant and “0” means that the metabolite is
unreported in that plant. We treat all these unreported plant-metabolite relations as
currently unknown but actual relations. We repeat this process for all 58 metabolite groups

in K and obtain a list of unrecorded metabolites for the plants in S, which we show in Table
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3.3. We also verify some predicted plant-metabolite relations in Table 3.3 by published
literatures. The literatures which record these relations are appended behind the
corresponding metabolites. It proves that following this method, we can predict some
currently unrecorded metabolites and find some widespread medicinal species that can be
substitutions of more endangered relatives currently being used (Saslis-Lagoudakis et al.,
2011).

Not all the predicted metabolites might actually be produced in given plants because of
the complexity of metabolic pathway evolution. On the contrary, many true relations could
not be predicted due to the limitation of the incomplete data source. However, with
developments in plant metabolomics, we may be able to add more plant-metabolite relations
in our analysis in the future and produce better results. For other plant groups, we can also
predict numerous of unrecorded metabolites. We list all the predicted plant-metabolite

relations in Appendix A.
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Table 3.2. Reported plant-metabolite relations of 6 plants of genus Citrus with a given
metabolite group (including 2 metabolites: Limonene, Cyclohexane). 1/0 indicates

presence/absence of a metabolite in a plant.

Citrus  Citrus Citrus Citrus Citrus Citrus

limon aurantifolia paradisi sinensis reticulata aurantium
Limonene 1 1 1 1 1 1
Cyclohexane 0 1 1 1 1 0

Table 3.3. Predicted unrecorded metabolites for 6 Citrus plants, encompassing 38 plant-

metabolite relations.

Species Predicted unrecorded metabolites

Citrus limon Gibberellin A4; Methyl salicylate; Cyclohexane; o-Isopropenyl toluene;

Jasmonic acid; 10'-Apoviolaxanthal; alpha-trans-Bergamotene

Citrus Methyl salicylate; Citral; Benzeneacetaldehyde; o-Isopropenyl toluene;
aurantifolia Methyl epijasmonate; Salvigenin

Citrus Rhoifolin (Refaat et al., 2015); Isopropanol; Methyl salicylate; Citral
paradisi (Njoroge et al., 2005); Benzeneacetaldehyde; o-Isopropenyl toluene
Citrus Isoscutellarein 7,8-dimethyl ether; Isoscutellarein 7,8,4'-trimethyl
sinensis ether; o-Isopropenyl toluene; Methyl epijasmonate; Salvigenin;

Gibberellin A53; Violaxanthin (Roussos, 2016)

Citrus Gibberellin  A81; Gibberellin A9 ; Isopropanol; Citral; 6-

reticulata Demethoxytangeritin; Tetramethylscutellarein

Citrus Apigenin 7-rutinoside; Methyl salicylate; Salvigenin; Cyclohexane;

aurantium Benzeneacetaldehyde (Najafian & Rowshan, 2012); o-Isopropenyl
toluene
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3.4.4. Relationship between Metabolite-Content and Uses of Plants.

Our unsupervised approach for classifying plants is based on MC-similarity using
hierarchical clustering. Our results substantially match those of traditional morphology-
based taxonomy. However, our results further reflect the usage patterns of plants.

The metabolite-content of plants is always related to their bioactive properties, and the
similarity of the metabolite-content of plants can reveal their bioactive similarity. Generally,
medicinal properties are not randomly distributed in different classes of plants. Some plant
classes are represented by more medicinal plants than others. It is suggested that there is a
phylogenetic pattern in medicinal properties even within one genus (Saslis-Lagoudakis et al.,
2011; Rensted et al., 2012; Ernst et al., 2016). A similar distribution could also be observed
in our classification that plants with certain uses are concentrated in the same group. Many
plant groups in our classification are of similar usage patterns. A plant is frequently related
to multiple uses, but we only consider the most common use in this paper. We collected all
the plant resource information from published literature and online sources, and annotated
plants by their uses such as medicinal, edible, ornamental, forestry, poisonous, and timber.
Table 3.1 lists the usage patterns of 216 plants. The economic uses of plants are represented
by different letters (E: edible, M: medicinal, L: landscaping, including forestry and
ornamental plants, T: timber, P: poisonous, W: wild plants that are not yet widely used by
humans). Eleven groups (ID: 1, 9, 10, 12, 13, 14, 15, 19, 26, 39, 40) involving 38 plants mostly
consist of edible plants, and 14 groups (ID: 2, 4, 6, 18, 21, 27, 29, 31, 36, 38, 41, 43, 44, 48)
involving 69 plants mostly consist of medicinal plants. Moreover, 3 groups (ID: 8, 17, 30)
involving 10 plants mostly consist of landscaping or timber plants. This implies that the
proposed classification approach of plants is consistent with their economic uses.

In this section, we investigate the relations between usage patterns and metabolite-
content of plants using a supervised classification technique. We considered every metabolite
group as a pathway pattern such that each group can be used as a feature for classifying
plants by their uses. For this analysis, we considered 48 edible plants (E), 81 medicinal plants
(M), 14 timber plants (T), 14 landscaping plants (including forestry and ornamental plants),

and 5 poisonous plants (P). We considered the plants that have both edible and medicinal
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uses (plants with “M/E” in Table 3.1) as medicinal plants. We applied an SVM algorithm to
classify the plants, using economic uses of plants as labels and corresponding metabolite
groups as features. Classification performance was evaluated from the resulting confusion
matrix, as shown in Table 3.4. The rows of the confusion matrix indicate documented uses of
plants and columns indicate the predicted uses from the SVM algorithm. Recognition rate is

the proportion of correctly predicted plants corresponding to a class.

Table 3.4. Resulting confusion matrix from support vector machine (SVM) algorithm.162
plants are labeled as edible (E), medicinal (M), timber (T), landscaping (L), and poisonous (P),

and SVM model was constructed to classify them.

M E T L P Recognition

rate [%)
M 81 0 0 0 0 100
E 1 47 O 0 0 97.9
T 6 O 8 0 0 57.2
L 8 1 0 5 0 35.7
P 4 1 0 0 0 0

Total: 162 plants, Accuracy: 87.0%
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We found that all the medicinal plants and all but one edible plant were classified
correctly. This implies that the metabolite-content of medicinal and edible plants
substantially differs. However, half the timber and landscaping plants were classified as
medicinal plants. Therefore, timber and landscaping plants are somewhat related to
medicinal plants in terms of metabolite-content. All the poisonous plants were classified
incorrectly: four plants were classified as medicinal plants and one as edible. This implies
that poisonous plants are more similar to medicinal plants. Many poisonous plants can be
used in treating specific diseases if the doses are carefully controlled (Tamilselvan et al.,
2014). In summary, edible plants represent exclusive metabolite-content and can be
differently classified from inedible plants. Furthermore, MC-based classification also reveals
the predictive power of medicinal properties in bioprospecting. This indicates that our

proposed approach can be used for exploring nutritional or medicinal properties of plants.

3.5. Summary

We proposed an approach for comparing the metabolite-content of plants and classifying
plants by their metabolite-content similarity. We showed that with this approach we can
classify plants similar to the traditional morphology-based plant taxonomy. Naturally, this
work can be generalized from various perspectives. First, our approach can be regarded as a
novel chemosystematics method that can be used to consider the global metabolite-contents
of plants instead of a group of metabolites as done in previous research. The resulting
classification is consistent with natural phylogenetic and chemosystematics patterns of
plants. Some deviations in our classification from the NCBI taxonomy can be explained in
terms of bioactive similarity. Moreover, the complexity and known extent of metabolite-
content varies for different plants. We found that the Simpson coefficient can minimize the
effect of the unequal size of the metabolite-content of organisms and performs better in
comparing metabolite-content of plants than the other coefficients.

Comparing with the classification approach of Chapter 2, this approach took into account
the relation of metabolites within the same pathway (metabolite groups), and could further

reduce the influence of missing data. The time efficiency was also improved due to the
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integration of metabolite-content data. We also described a method for predicting unrecorded
metabolites by structurally similar metabolite groups and phylogenetic relation of plants.
With this method, we can predict some unrecorded metabolites and find new medicinal/edible
plants from wild plants that have not been used by humans. Moreover, we studied the
relation between the metabolite-contents of plants and their economic uses. We found that
edible and medicinal plants represent unique metabolic pathway patterns and can be
classified with an SVM algorithm with our integrated metabolite-content data. Our proposed
MC-based plant-classification approach reveals the predictive power of medicinal properties
in bioprospecting. The performance of this approach depends on the completeness of the
metabolite-content data we use because metabolite groups, which were regarded as metabolic
pathway patterns in our research, have been extracted from the background network of
metabolites by using the DPClus algorithm. Therefore, if we can add more plant-metabolite
relations, we can classify metabolites and species more accurately. Also, metabolites along
identical pathways always correspond to high structural similarity. Our approach will be

useful for predicting metabolic pathways in plants.
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Chapter 4

Metabolite-Content-Guided Prediction of Medicinal
/Edible Properties in Plants for Bioprospecting

4.1. Background

Plants are the major contributors of natural products and are usually rich in nutritional
or medicinal properties, which is attributed to the complex secondary metabolite constituents
of them. (Dahanukar et al., 2000; Veeresham, 2012; Cseke et al., 2016). Plants are an
important source of novel pharmacologically active compounds with many pharmaceutical
drugs have been derived directly or indirectly from plants, and have played a central role in
human health-care since ancient times (Newman et al., 2000; Cragg & Newman, 2013;
Fabricant & Farnsworth, 2001). Many pharmaceutical drugs are derived from plants that
were first used in traditional systems of medicine (Fabricant & Farnsworth, 2001). According
to the World Health Organization, about 25% of medicines are plant-derived (Veeresham,
2012).

Discoveries of novel molecules and advances in production of plant-based products have
revived interest in natural product research (Paradise et al., 2006; Graham et al., 2010). The
number of traditionally used plant species worldwide is estimated to be between 10,000 and
53,000 (McChesney et al., 2007); however, only a small proportion have been screened for
biological activity (Soejarto et al., 2005; Gurib-Fakim, 2006), and the plants from some
regions are less studied than others. Moreover, the potential of plants to yield new valuable
drugs 1s under threat due to the alarming bio-diversity loss, with recent estimates indicating
that every fifth plant species on earth is threatened with extinction (Brummitt & Bachman,
2010). Therefore, there is an urgent need for a time-efficient and systematic approach for
unlocking the potential of plants in drug discovery.

A correlation between phylogeny and biosynthetic pathways could offer a predictive

approach enabling more efficient selection of plants for drug discovery. Following the
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assumption that plant-derived chemicals are constrained to evolutionary plant lineages,
phylogeny-guided approaches have been seen as one of the time-efficient and informed
approaches to plant-based drug discovery (Ronsted et al., 2012; Ernst et al., 2016). A series
of studies have been conducted and verified that phylogeny is an efficient tool to facilitate
drug discovery for diverse genera across different regions or cultures (Rensted et al., 2008;
Saslis-Lagoudakis et al., 2011; Saslis-Lagoudakis et al., 2012; Ronsted et al., 2012; Yessoufou
et al., 2015; Ernst et al., 2016). However, most of these studies mainly focused on a small
cluster of genera, which limits its practical application due to the limitation of incomplete
sequence data. Phylogenetic distance correlated to feature similarity of species will also be
invalid once beyond a certain threshold (Kelly et al., 2014). Therefore, a special perspective
different from molecular biology is valuable for understanding the evolution of bioactive
features and facilitating prediction and discovery of medicinal properties in plants.

Besides molecular biology which is in view of nucleotide sequence comparison,
metabolite feature is also closely related to the evolution of pathways for both primary and
secondary metabolites. The secondary metabolite constitutes of a plants is highly related to
its pathways which are constrained to evolutionary phylogeny, and also related to the
bioactive compounds of the plant which determine the medicinal and nutritional features of
the plant (Wink, 2003). The systemization of plants on the basis of their chemical
constituents, which is also known as plant chemosystematics, could be helpful in solving
selected taxonomical problems and exploring nutritional and medicinal properties in plants.
Traditional chemosystematics of plants is based on the presence of selected metabolites
(Singh, 2016). The incomplete data of metabolite constituents of plants limits its ability to
solve taxonomical problems and discovery of new natural products or medicinal properties of
plants (Singh, 2016; Wink, 2003). Comparative classification of plants based on the MC-
similarity of them could facilitate the exploration of evolution and bioactivity relations
between plants.

Here, we investigate the phylogenetic value of metabolite-content data, especially the
predictive power of MC-similarity in exploration of medicinal and edible plants in

bioprospecting, using the KNApSAcK Core DB as metabolite-content data source. In this
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thesis, we reconstructed the phylogenetic tree for a set of plants which are distributed in
different genera and families by their metabolite-content data obtained from KNApSAcK
Core DB, using the approach described in chapter 3. We also reconstruct the phylogenetic
tree based on common DNA barcodes for the same set of plants, to investigate the predictive
power of these two approaches, sequence-similarity- and MC-similarity-based method, in

guiding the prediction of medicinal/edible plants in bioprospecting.

4.2. Datasets and Preliminaries

The input metabolite-content data are species-metabolite relationships obtained from
the KNApSAcK Core DB, which is a part of the KNApSAcK Family DB (Afendi et al., 2012).
We removed the plants with inadequate plant-metabolite relations to guarantee that the
amount of metabolite-content of selected plants is sufficient enough to reveal their
interrelations. The KNApSAcK Core DB also provides MOL molecular structure files for the
metabolite compounds. We used R package ChemmineR (v2.26.0) to generate atom pair
fingerprints from molecular structure description files (Cao et al., 2008). And these molecular
fingerprints were used to measure the structural similarity for all the metabolite pairs.

In this study, we also reconstructed phylogenetic tree for the same plant samples we
used previously based on three common DNA barcodes: two chloroplast barcodes rbcL
(Ribulose-1,5-bisphosphate carboxylase/oxygenase) and matK (Maturase K), and one nuclear
barcode ITS2 (internal transcribed spacer 2). The DNA sequence data are collected from
GenBank (Benson et al., 2012), and certainly there is lack of data for some plants. Here we
select the plants with both abundant metabolite-content data (no less than 30 metabolites)
and corresponding DNA barcode data as samples. There are 190 plants in total belong to 51
different families, with 172 plants in rbeL group, 165 plants in matK group and 160 plants

in ITS2 group. The venn diagram of these three groups is shown in Figure 4.1.
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rbcL group

matK group ITS2 group

Figure 4.1. Overview of 190 plants included in rbcL, matK and ITS2 sample groups.

4.3. Methods
4.3.1. Phylogenetic Reconstruction

In this study, we produce phylogenetic hypothesis for each groups of samples by
compiling DNA sequence data from the plastid markers rbcL, matK and nuclear marker ITS2
respectively. Species names and corresponding GenBank accessions are listed in Appendix
B. The sequence data of rbcL, matK and ITS2 are aligned by Clustal X 2.0 to compensate the
missing and gapping data. Bayesian analyses of each sample groups were performed with
MrBayes v3.2 (Larkin et al., 2007; Huelsenbeck & Ronquist, 2001). We produced Bayesian
phylogenetic hypothesis using the GTR + I + ' model (Parameters: Iset NST = 6 RATES =
gamma). For each group we perform the analysis with more than 1,000,000 generations. The
average standard deviation of the split frequencies (i.e., the average of all standard
deviations of all observed splits between two independent analyses from different random

trees) is down to <0.05 after the analysis is finished.
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4.3.2. Phylogenetic and Statistical Analyses

We assess the relationship of phylogeny with the medicinal/edible properties by
calculating the phylogenetic signal of medicinal/edible plants. We investigate the strength in
phylogenetic signal of medicinal/edible plants using the D statistic, a measure of phylogenetic
signal, implemented by the function phylo.d in the R package caper (Fritz & Purvis, 2010;

Orme, 2013). D is calculated as follows,

D= Z dobs - mean(z db)
" mean(¥ d,) — mean(Y dp)

(4.1)

where Y d,,s is the observed number of changes in the binary trait (medicinal/edible
properties) across the ultrametric phylogeny, mean(} d,) is the mean number of changes
generated from 1000 random permutations of the species values at the tips of the phylogeny,
and mean(}, d,) is the mean number of changes generated from 1000 simulations of the
evolution for the character by a Brownian motion model of evolution with likelihood of change
being specified as that which produces the same number of tip species with each character
state as the observed pattern.

The D statistic generates a value that usually lies between 0 (indicates the trait is highly
correlated with phylogeny) and 1 (indicates the trait has evolved in essentially a random
manner). Two p-values are calculated for the D statistic: p(D < 1) indicates whether the D
metric is significantly smaller than 1, meaning that the trait (medicinal/edible properties) is
not randomly distributed over the phylogeny. The second p-value, p(D > 0) indicates whether
the D metric is significantly greater than 0, meaning that the trait (medicinal/edible
properties) has a significantly different distribution on the phylogeny from the standard
Brownian model of evolution. The phylogenetic signal is considered strong if p(D < 1) < 0.05

and p(D > 0) > 0.05.
4.3.3. Evolutionary Patterns of Medicinal/Edible Properties

To narrow down the number of species chosen for an early stage medicinal/edible plants

discovery screening, we identified the position of phylogeny clustering for medicinal/edible
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properties. We highlight such hot nodes (nodes that encompass significantly more
medicinal/edible plants than the rest of the tree) by using the “nodesig” command in
PHYLOCOM v4.2 for all of the phylogenetic trees (Webb et al., 2008). This option was used
to determine the position of phylogenetic clustering in a community sample by testing each
node of the phylogenetic tree for overabundance in medicinal/edible terminal taxa distal to
it. Observed patterns for each phylogenetic trees were compared with those for random
samples of the same size per case, drawn from the phylogeny.

For these hot nodes in each of the phylogenetic tree we obtained, we recorded the
percentage of the total and medicinal properties included in them. We compared the observed
number of medicinal/edible plants encompassed in the hot nodes to the one expected to be
found randomly in the percentage of the plants encompassed in the hot nodes; this was the

gain in percentage of medicinal hits compared with random.

4.4. Results and Discussion

All of the sequence data were downloaded from GenBank (https://www.ncbi.nlm.nih.gov/
genbank/). The GenBank accession numbers and uses of species are listed in Appendix B. It
should be noted that not all samples have complete sequence data. The amount of complete
and partial sequences data of each groups are shown in Table 4.1. The ubiquitous missing
and incomplete sequence data indicates that now the sequence data of plants included in
GenBank are far from covering most of the plants, especially wild plants that not have been
fully explored by people. The KNApSAcK species-metabolite relation database is also far
from complete with a large amount of data fragmentation. However, the plants with
abundant metabolite data included in KNApSAcK database are frequently inconsistent with
plants with complete sequence data included in GenBank. The metabolite-content data of
plants in KNApSAcK could be seen as a necessary supplement of gene data in GenBank for
facilitating the analysis of evolutionary relation between plants and guiding the prediction
of medicinal/edible plants since the plants covered by these two database are complementary
to each other. The plant samples selected in our research are performing both adequate

sequence and metabolite-content data with acceptable data missing. Thus we could
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investigate the effect of these two types of data in extracting medicinal/edible patterns from
the same plant samples.

The phylogenetic trees of the three sample groups reconstructed by corresponding gene
data and metabolite-content data are shown in Figure 4.2. The useful information of plants
was collected from published literature and online sources, and annotated as seven categories:
edible plants, medicinal plants, medicinal/edible multi-useful plants (M/E), landscaping
plants, timber plants, poisonous plants and wild plants. The amount of plants with each

usage category 1s listed in table 4.2.
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(c) Sequence-based tree for matK group  (d) MC-based tree for matK group

== Edible
m=  Medicinal

(e) Sequence-based tree for ITS2 group (f) MC-based tree for ITS2 group

Figure 4.2. Phylogenetic trees and the hot nodes of medicinal/edible features for sequence- and
MC-based approaches.
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Table 4.1. The amount of complete and partial sequences data of rbcL, matK and ITSZ2 sample

groups.
rbeL matK ITS2
Null 18 25 30
Complete sequence 73 112 131
Partial sequence 99 53 29

Table 4.2. The amount of plants in each category of uses.

Edible Medicinal M/E Wild Lanscaping Timber Poisonous

47 60 15 38 13 13 4

4.4.1. Phylogenetic Signal of Medicinal and Edible Plants

We investigated the strength in phylogenetic signal of medicinal and edible categories
for each phylogenetic trees we obtained using the D statistic, which is shown in Table 4.3.
We found that plants with medicinal/edible uses are significantly phylogenetically clustered
in MC-based phylogenetic trees for all the three sample groups. The rbcL- and matK-based
trees also show moderate phylogenetic signal for medicinal/edible plants but much weaker
than that in MC-based trees. The I'TS2-based tree shows weak phylogenetic signal for both

medicinal and edible plants.
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Table 4.3. Phylogenetic signal of medicinal/edible features in sequence-based and metabolite-

content-based trees.

Phylogenetic tree feature D estimate P(D<1) P(D>0)
rbcL group Edible 0.234~0.355 0 0.026~0.126
(sequence) Medicinal 0.341~0.427 0 0.004~0.042
rbcL group Edible -0.0563~0.002 0 0.535~0.6
(MC) Medicinal 0.165~0.212 0 0.253~0.323
matK group Edible 0.197~0.274 0 0.093~0.184
(sequence) Medicinal 0.433~0.519 0 0.001~0.022
matK group Edible -0.206~-0.158 0 0.682~0.752
(MC) Medicinal -0.045~0.001 0 0.517~0.580
ITS2 group Edible 0.214~0.326 0 0.051~0.160
(sequence) Medicinal 0.470~0.604  0~0.002 0~0.006
ITS2 group Edible -0.118~-0.049 0 0.584~0.663
(MC) Medicinal 0.354-0.391  0~0.003 0.091~0.151
MC-based tree Edible 0.768~0.773 0 0

for 1047 plants  yr e icinal 0.906~0.910  0.001~0.005 0

Generally, the edible plants are more significantly phylogenetically clustered than
medicinal plants in all the three sample groups for both of the two approaches, with lower D
estimate values and higher P(D>0) values. This suggests that comparing with edible plants,
the distribution of medicinal plants reveal some but less phylogenetic relations. This
observation could be explained as the different chemical constituent of edible and medicinal
plants. The edible plants tend to contain massive primary metabolites, or the intermediate
between primary and secondary metabolism (.e., Gibberellin), which perform more stable
expression during the evolution. The gene expression mechanism of medicinal plants is much
subtler than edible plants and is related to the expression of small secondary metabolites

which are sometimes randomly distributed along the clades. Thus we might found more
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phylogenetic patterns for medicinal plants by skipping gene data and comparing metabolite-
content directly. Considering the genome data available from GenBank is usually incomplete,
the metabolite-content data could be regarded as a novel approach for predicting medicinal

properties.

4.4.2. Hot Nodes of Medicinal and Edible Plants

As a tentative approach to narrow down the number of medicinal/edible plants selected for
bioactivity screening, we also identified the hot nodes that are significantly overrepresented by
species of medicinal/edible uses. Phylogenetic clustering was found for edible and medicinal
plants in all of the tested phylogenetic trees except ITS2 sequence based tree. The hot nodes in
MC-based phylogenetic trees tend to encompass more medicinal and edible plants than sequence-
based phylogenetic trees. This suggests that comparing with sequence-based approach it is more
effective to explore phylogenetic patterns for medicinal and edible plants with the MC-based
approach. We also compare the observed patterns for edible and medicinal plants with those for
random samples of the same size drawn from the phylogeny. For these hot nodes in each of the
tested phylogenetic trees, we recorded the percentage of edible and medicinal plants included in
them. We compared the observed number of medicinal/edible plants encompassed in the hot
nodes to the one expected to be found randomly in the percentage of the plants encompassed in
the hot nodes, and this was the gain in percentage of medicinal/edible hits compared with random.

(Table 4.4)
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Table 4.4. The number and proportion of medicinal/edible plants within the clades of hot
nodes. Total plants included (%): The number (percentage) of the total plants included in the
hot nodes of medicinal/edible uses. Medicinal/edible Hits (%): The number (percentage) of
the medicinal/edible plants included in the hot nodes of medicinal/edible uses. Gain in
medicinal/edible hits: the percentage of gain in medicinal/edible plants included in hot nodes,
compare with what would be expected by chance. Co-included plants (hits): the number of
(medicinal/edible hits) plants included in the hot nodes of medicinal/edible uses for both of

the sequence- and MC-based phylogenetic trees.

Phylogenetic feature Total plants Medicinal/ed Gain in edible/ Co-included

tree included (%) 1ible Hits (%) medicinal hits plants (hits)
rbeL group  Edible 30 (17.4%) 20 (43.5%) 150% Edible:
(sequence)  \roiinal 46(26.7%) 20 (50.9%)  90.6% 20 (18)
Medicinal:
rbcL group  Edible 64 (37.2%)  37(80.4%)  116.1% 27 (20)
MOC) Medicinal 64 (37.2%) 32 (56.1%) 50.8%
matK group  Edible 23 (13.9%) 21 (44.7%) 221.6% Edible:
(sequence)  \roiinal 44.(26.7%) 23 (42.6%)  59.7% 16 (16)
Medicinal:
matK group  Edible 32 (19.4%) 26 (55.3%) 185.1% 12 (10)
MOC) Medicinal 34 (20.6%) 25 (46.3%) 124.7%
ITS2 group  Edible 35 (21.9%) 27 (65.0%) 196.8% Edible:
(sequence)  \rogicinal 5 (3.1%) 5 (9.6%) 207.7% 30 (25)
Medicinal:
ITS2 group  Edible 61 (38.1%) 35 (85.4%) 124.1% 5 (5)
MC)

Medicinal 82 (51.2%) 35 (67.3%) 314 %

The phylogenetic distribution of edible and medicinal plants encompassed by hot nodes
also shows that the edible plants perform more converge trends and gains in percentage of
hits. This indicates that the edible features of plants are more closely associated with the
phylogeny as well as the MC-similarity of plants, and also suggests that there maybe many

unexplored medicinal properties within the plant kingdoms. Moreover, we also investigated
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the coincidence rates of the medicinal/edible plants encompassed by hot nodes between the
sequence-based and MC-based phylogenetic trees. We found that there is not significantly
coincidence of medicinal/edible plants encompassed by hot nodes of these two types of
phylogenetic trees. In other words, the medicinal/edible patterns identified by MC-similarity
shows no significant similarity to the medicinal/edible patterns identified by sequence-based
approach.

Our findings thus indicate that the MC-based approach might highlighted different
group of medicinal/edible plants with phylogeny approach, and might reflect more

unexplored medicinal/edible potential not associated with the genome-sequence similarity.

4.4.3. Predicting of Medicinal Properties by Metabolite-Content-Similarity

As a meaningful attempt, we imported more plant-metabolite relation data (28123 plant-
metabolite relations associated with 1047 plants) and reconstructed phylogenetic tree by MC-
similarity (Figure 4.3). We selected plants containing at least 14 metabolites to ensure data
integrity. Plant usage information (edible or medicinal uses) was imported from KNApSAcK
WorldMap DB (Afendi et al., 2012). For the total 1047 tested plants, we found medicinal or
edible uses information of 605 plants from WorldMap DB, with 563 plants having medicinal
values, 345 plants having edible values. There are totally 303 plants with both medicinal and
edible values. The remaining 442 plants which are lack of usage information are regarded as
wild plants from which we can explore new medicinal properties.

Both edible and medicinal plants in this phylogeny show weak phylogenetic signals
(Table 4.3). The observed patterns of medicinal and edible plants are different from the
random shuffle, but also different from the Brownian evolution model. That maybe due to
the incomplete of metabolite-content data and plant uses information. However, from the hot
nodes we can still find many phylogenetic patterns for medicinal plants (Figure 4.3). The hot
nodes for medicinal plants encompass 288 plants in the MC-based phylogenetic tree,
including 198 recorded medicinal plants. The remaining 90 wild plants encompassed by the
hot nodes should be given priority for future screening for overall medicinal bioactivity

because these plants perform highly MC-similarity with 198 medicinal plants. We list the 90
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plants with high priority for future screening for overall medicinal bioactivity in Appendix C.

mm Edibleonly
mm  Medicinal only

mm Medicinal/Edible

Figure 4.3. MC-based phylogenetic tree for 1047 plants, with the hot nodes of

medicinal/edible plants.

4.5. Summary

Many researches have proved that medicinal and edible plants were derived mostly from
some lineages, and tend to be clustered rather than scattered in the phylogenetic tree. Our
study reveals that besides the genome sequence data, metabolite-content data is also closely

associated with medicinal and edible bioactivity of plants and can be used to explore the
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medicinal/edible patterns in a different perspective from DNA sequence based plant
phylogeny.

We found that our MC-based approach performs fair even better performance in
predictive power of medicinal/edible properties comparing with DNA sequence based
approach. Moreover, the hot nodes of MC-based phylogenetic tree highlight different
medicinal/edible patterns comparing with DNA-sequence-based approach. This implies that
MC-based approach could reflect unexplored medicinal/edible potential not recovered by the
sequence-based approach.

Since phylogenetic analysis based plant bioprospecting is frequently confined to the lack
of DNA sequence data, it is rational to utilize metabolite-content data to extent the limitation
of phylogeny based bioprospecting. MC-based plant phylogeny reconstruction could provide
a new perspective in plant bioprospecting, and the predictive power of metabolite-content
data for medicinal/edible plants will also be improved with the improvement and

completeness of metabolite-content database in future.
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Chapter 5

Conclusion

Plants are the major contributors of natural products and are usually rich in nutritional
or medicinal properties, which is attributed to the complex secondary metabolite constituent
of them. The biological classification of plants, or the plant systematics, is one of the most
ancient discipline which stretches from the traditional morphology based plant taxonomy to
modern molecular phylogenetic. This study is conducted in order to investigate the
systematic value of metabolite-content data of plants, and the relationships among
metabolite-contents of plants and their biological activities.

In this dissertation, we utilized data-intensive science for conduction classification of
plants based on the MC-similarity of them using KNApSAcK Core DB. We have proposed
two approaches of classifying plants by their MC-similarity: (1) Classification of Plants based
on Chemical Structure Similarity of Metabolite-Content. By this approach, we calculated the
structural similarity of all metabolite pairs by Tanimoto coefficients (TCs), and determined
the MC-similarity of plants based on the background population of TCs. We classified 102
plants into 28 groups by hierarchical clustering method. (2) Clustering Plants based on
Structural-Similarity Network of Metabolites. By this approach, we applied a network based
approach to abstract structurally similar metabolite groups as features, and measured the
phylogenetic distance by a binary method. We classified 216 plants into 48 groups by
hierarchical clustering method. We compared the resulted classifications of plants with NCBI
taxonomy. The result proves that the MC-similarity of plants is associated to the pathway
and bioactivity similarity, and can be regarded as a taxonomy marker which takes into
account both general phylogenetic relations and the relations between plants based on
bioactive features. Both these two methods have the ability to compensate for the limitations
of missing data, and by the second method we can even predict some currently unknown

plant-metabolite relations.
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We also extended our finding by using phylogenetic statistic method to investigate the
predictive power of MC-similarity in exploration of edible and medicinal plants for
bioprospecting. We reconstructed the phylogenetic trees for the same set of plants based on
MC-based approach and sequence-based approach. We then applied D statistic to test
phylogenetic signal of medicinal/edible plants for the obtained phylogenetic trees and
identified the hot nodes that were significantly overrepresented by plants of medicinal/edible
uses. The result shows that comparing with sequence-based approach, plants with
medicinal/edible uses are more significantly clustered in MC-based phylogenetic trees than
sequence-based phylogenetic trees. The hot nodes in MC-based phylogenetic trees tend to
encompass more medicinal/edible plants, and could highlighted different groups of
medicinal/edible plants. We also imported plant-metabolite relation data and plant usage
information from KNApSAcK Core DB and KNApSAcK WorldMap DB, and used this
approach to predict some medicinal plants.

The performance of our approach depends on the completeness of the metabolite-content
data we imported. In future, with the developments in plant metabolomics, we may be able
to add more plant-metabolite relations in our analysis and produce better results. Moreover,
MC-based plant phylogeny reconstruction could provide a new perspective in plant
bioprospecting, and the predictive power of metabolite-content data for medicinal/edible
plants will be improved with the improvement and completeness of metabolite-content
database in future. Also, metabolites along identical pathways always correspond to high
structural similarity. Our approaches will be useful for predicting metabolic pathways in

plants.
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Appendix A

The predicted unrecorded plant-metabolite relations, involving 524 metabolites and 117

plants.
Metabolite Plant
Gibberellin A4 Citrus limon; Phaseolus lunatus; Nicotiana tabacum; Lupinus luteus

Methyl salicylate

Citrus limon; Citrus aurantifolia; Citrus paradisi; Citrus aurantium

Cyclohexane

Citrus limon; Citrus aurantium; Artemisia annua; Artemisia capillaris;

Centaurea sessilis; Zingiber officinale

o-Isopropenyl toluene

Citrus limon; Citrus aurantifolia; Citrus paradisi; Citrus sinensis; Citrus

aurantium

Jasmonic acid

Citrus limon

10'-Apoviolaxanthal

Citrus limon

alpha-trans-Bergamotene

Citrus limon

Citral

Citrus aurantifolia; Citrus paradisi; Citrus reticulata

Benzeneacetaldehyde

Citrus aurantifolia; Citrus paradisi; Citrus aurantium

Methyl epijasmonate

Citrus aurantifolia; Citrus sinensis

Salvigenin Citrus aurantifolia; Citrus sinensis; Citrus aurantium
Rhoifolin Citrus paradisi
Isopropanol Citrus paradisi; Citrus reticulata

Isoscutellarein 7,8-dimethyl ether

Citrus sinensis

Isoscutellarein 7,8,4'-trimethyl ether

Citrus sinensis

Gibberellin A53 Citrus sinensis; Lathyrus odoratus; Phaseolus lunatus; Phaseolus coccineus;
Hordeum vulgare; Nicotiana tabacum

Violaxanthin Citrus sinensis

Gibberellin A81 Citrus reticulata

Gibberellin A9 Citrus reticulata

6-Demethoxytangeritin

Citrus reticulata

Tetramethylscutellarein

Citrus reticulata
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Metabolite

Plant

Apigenin 7-rutinoside

Citrus aurantium

Caryophyllene oxide

Houttuynia emeiensis

Capillaridin E Artemisia annua; Rhaponticum carthamoides
Limonene Artemisia annua; Artemisia capillaris; Artemisia annua L.cultivar Jwarharti
Cyclosativene Artemisia annua

2-Nonanone

Artemisia annua

Kaempferol

Artemisia capillaris; Sedum sarmentosum; Medicago sativa; Cryptomeria

Japonica

Salicylic acid

Artemisia capillaris

Apigenin Artemisia capillaris
Octanal Artemisia capillaris
Rhamnocitrin Rhaponticum carthamoides
Genkwanin Rhaponticum carthamoides
p-Cymene Rhaponticum carthamoides

Hexahydrofarnesyl acetone

Artemisia annua L.cultivar Jwarharti

Caprylic acid

Centaurea sessilis

Isophytol Centaurea sessilis; Anthemis aciphylla
Phytol Centaurea sessilis; Anthemis aciphylla
Bicyclogermacren Centaurea sessilis

(2E)-Octenal

Centaurea sessilis

R-(+)-trans-Verbenol

Centaurea sessilis

2-Pentylfuran

Anthemis aciphylla

Isovaleraldehyde

Alphinia galanga

alpha-Thujene

Leptospermum scoparium

Neryl acetate

Leptospermum scoparium

6,9-Guaiadiene

Piper arboreum

Geraniol

Piper arboreum

Germacrene D

Piper fimbriulatum

Ampelopsin 7-glucoside

Pseudotsuga menziesii
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Metabolite Plant

Indole-3-carboxylic acid Pseudotsuga menziesii; Picea abies; Lycopersicon esculentum

Gibberellin A9 Pinus sylvestris; Lathyrus odoratus; Brassica napus; Hordeum vulgare
Gibberellin A1 Pinus sylvestris; Lycopersicon esculentum; Lupinus luteus
Gibberellin A7 Pinus sylvestris

Indole-3-acetic acid

Pinus sylvestris; Brassica rapa

Methyl indole-3-acetate

Pinus sylvestris

Syringetin 3-(6"-acetylglucoside)

Pinus sylvestris

Laricitrin 3-(6"-acetylglucoside)

Pinus sylvestris

Taxifolin 3'-glucoside

Picea abies

Isorhamnetin 3-(6"-acetylgalactoside)

Picea abies

Gibberellin A20 Prunus persica; Lycopersicon esculentum
Afzelechin Prunus avium

Gibberellin A44 Prunus avium; Hordeum vulgare
Gibberellin A30 Prunus avium

Chrysin Prunus avium

Peonidin 3-rhamnoside

Pisum sativum

Gibberellin A97 Lathyrus odoratus; Zea mays; Oryza sativa

Gibberellin A51 Lathyrus odoratus; Hordeum vulgare

Gibberellin A12 Lathyrus odoratus; Triticum aestivum; Brassica napus

Gibberellin A24 Lathyrus odoratus; Brassica napus; Hordeum vulgare
Gibberellin A44 Lathyrus odoratus

Isosojagol Phaseolus lunatus

Isoferreirin Phaseolus lunatus; Phaseolus vulgaris

7,4'-Dihydroxy-5,2'-

dimethoxyisoflavanone

Phaseolus lunatus; Phaseolus vulgaris

5-Deoxykievitol

Phaseolus vulgaris

(-)-Glycinol

Phaseolus vulgaris

Psoralidin

Phaseolus coccineus

Gibberellin A19

Phaseolus coccineus; Lycopersicon esculentum
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Metabolite

Plant

Gibberellin A37 Phaseolus coccineus

Gibberellin A14 Triticum aestivum

Gibberellin A25 Zea mays; Brassica napus
Neoglucobrassicin Raphanus sativus; Armoracia lapathifolia
Gibberellin A53 Raphanus sativus

Gibberellin A40 Brassica napus

Gibberellin A34 Hordeum vulgare

Gibberellin A8 Oryza sativa

Fisetin 3-methyl ether

Robinia pseudoacacia

Garbanzol Robinia pseudoacacia
Butin Robinia pseudoacacia
Gallocatechin Colophospermum mopane

(+)-Gallocatechin

Colophospermum mopane

Dihydrorobinetin Acacia mearnsii
Dihydroquercetin Acacia mearnsii
Liquiritigenin Acacia mearnsii

(-)-Epicatechin

Acacia mearnsii

ent-Epifisetinidol

Acacia mearnsii

Kaempferide

Rhodiola sachalinensis; Sinocrassula indica

Sinocrassoside C1

Rhodiola sachalinensis

Rhodionin

Sinocrassula indica

Rhodiosin

Sinocrassula indica

Nicotinic acid

Lycopersicon esculentum

9-Ribosyl-cis-zeatin

Lycopersicon esculentum

Indole-3-acetonitrile

Nicotiana tabacum; Solanum tuberosum

Trigonelline

Nicotiana tabacum

Phytuberin

Nicotiana tabacum

(-)-Phytuberin

Nicotiana tabacum

1-Caffeoyl-beta-D-glucose

Nicotiana tabacum
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Metabolite

Plant

Desacetylphytuberin

Solanum tuberosum

9-Ribosyl-trans-zeatin

Solanum tuberosum

Prunetin

Glycyrrhiza

uralensis; Medicago sativa; Clitoria ternatea; Melilotus

messanensis; Glycyrrhiza pallidiflora; Dalbergia odorifera

Licoisoflavone A Glycyrrhiza uralensis; Glycyrrhiza inflata

Glabridin Glycyrrhiza uralensis

Topazolin Glycyrrhiza uralensis

Isoderrone Glycyrrhiza uralensis; Glycyrrhiza aspera

Licoflavone B Glycyrrhiza uralensis

3'-Dimethylallylkievitone Glycyrrhiza uralensis

Wighteone Glycyrrhiza uralensis; Glycyrrhiza aspera; Lupinus luteus; Derris scandens

Hydroxywighteone Glycyrrhiza uralensis; Glycyrrhiza aspera; Lupinus albus; Erythrina
variegata

Licopyranocoumarin Glycyrrhiza aspera; Glycyrrhiza inflata

Kanzonol W Glycyrrhiza aspera

Licuroside Glycyrrhiza aspera; Glycyrrhiza inflata

Neoisoliquiritigenin Glycyrrhiza aspera; Glycyrrhiza inflata

1-O-Methylglycyrol

Glycyrrhiza aspera; Glycyrrhiza glabra

Kanzonol P

Glycyrrhiza aspera; Glycyrrhiza glabra

Neoliquiritin

Glycyrrhiza aspera; Glycyrrhiza glabra; Glycyrrhiza inflata

Licoricone

Glycyrrhiza aspera; Glycyrrhiza glabra; Glycyrrhiza inflata

Licoricesaponin A3

Glycyrrhiza aspera; Glycyrrhiza glabra

Licoricesaponin G2

Glycyrrhiza aspera; Glycyrrhiza glabra

Licoricesaponin C2

Glycyrrhiza aspera; Glycyrrhiza glabra; Glycyrrhiza inflata

Licoricesaponin E2

Glycyrrhiza aspera; Glycyrrhiza glabra; Glycyrrhiza inflata

Licoflavonol

Glycyrrhiza aspera

Gancaonin Q

Glycyrrhiza aspera; Glycyrrhiza inflata

Glisoflavanone

Glycyrrhiza aspera

Kanzonol T

Glycyrrhiza aspera; Glycyrrhiza glabra
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Metabolite Plant

Glycyrrhizol A Glycyrrhiza aspera

Licoriphenone Glycyrrhiza aspera
Licofuranocoumarin Glycyrrhiza glabra; Glycyrrhiza inflata
Glyasperin L Glycyrrhiza glabra; Glycyrrhiza inflata
Licocoumarone Glycyrrhiza glabra; Glycyrrhiza inflata
Glyinflanin E Glycyrrhiza glabra

Glyinflanin F Glycyrrhiza glabra

Gancaonin A Glycyrrhiza glabra

Semilicoisoflavone B

Glycyrrhiza inflata

Licoagrochalcone D

Glycyrrhiza inflata

Pratensol Lupinus luteus; Derris scandens; Clitoria ternatea; Melilotus messanensis;

Glycyrrhiza pallidiflora; Dalbergia odorifera

Indicanin E Lupinus luteus; Lupinus albus; Derris scandens

Derrisisoflavone B Lupinus luteus; Lupinus albus

Lupinisol A Lupinus luteus

Lupalbigenin Lupinus luteus

Derrisisoflavone F Lupinus luteus; Lupinus albus

Lupinalbin B Lupinus luteus

Lupinalbin G Lupinus luteus

Laburnetin Lupinus luteus; Lupinus albus

3'-Methylorobol Lupinus luteus; Lupinus albus

Genistein Lupinus albus; Melilotus messanensis; Glycyrrhiza pallidiflora; Dalbergia
odorifera

Isoprunetin Lupinus albus; Derris scandens

Scanderone Lupinus albus

Chandalone Lupinus albus

Ulexone A Lupinus albus

Isolupalbigenin Lupinus albus; Derris scandens

Gibberellin A18 Lupinus albus
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Metabolite

Plant

Gibberellin A23 Lupinus albus

Lupinol C Lupinus albus

Scandenal Lupinus albus; Erythrina variegata
Lupisoflavone Derris scandens

Alpinumisoflavone Derris scandens

Derrone Derris scandens; Erythrina variegata

Angustone B

Derris scandens

Angustone C

Derris scandens

Lupinisolone A

Derris scandens

Lupinisoflavone H

Derris scandens

Lupinifolin

Derris scandens

Barpisoflavone C

Erythrina variegata

Erysenegalensein K

Erythrina variegata

8-Prenylluteone

Erythrina variegata

Robustic acid

Erythrina variegata; Erythrina senegalensis

Eturunagarone

Erythrina variegata; Erythrina senegalensis

Bidwillon B

Erythrina senegalensis

Lonchocarpic acid

Erythrina senegalensis

Lonchocarpenin Erythrina senegalensis

Scandenin Erythrina senegalensis

Euchretin E Euchresta japonica

Euchretin D Euchresta japonica

Euchretin M Euchresta japonica

Cytisine Euchresta japonica; Sophora flavescens; Maackia amurensis

Formononetin Euchresta formosana

Secundiflorol T Euchresta formosana; Sophora flavescens; Maackia amurensis

Kushenin Euchresta formosana; Maackia amurensis; Sophora secundiflora; Sophora

Japonica; Glycyrrhiza pallidiflora

Euchrenone a4

Euchresta formosana
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Metabolite

Plant

Amorilin

Euchresta formosana

(-)-N-Methylcytisine

Euchresta formosana

Daidzein Sophora flavescens; Maackia amurensis; Melilotus messanensis; Glycyrrhiza
pallidiflora; Dalbergia odorifera
Thermopsine Sophora flavescens; Maackia amurensis

(-)-6alpha-Hydroxylupanine

Sophora flavescens; Sophora secundiflora

(-)-6alpha-methoxylupanine

Sophora flavescens; Sophora secundiflora

Pratensein

Maackia amurensis

Mamanine

Maackia amurensis; Sophora secundiflora

5,6-Dehydrolupanine

Maackia amurensis

Argentine

Maackia amurensis

Maackiain

Sophora secundiflora

(-)-12,12'-Methylenedicytisine

Sophora secundiflora

Soyasapogenol E

Medicago sativa; Trifolium pratense

Xenognosin B

Medicago sativa; Clitoria ternatea; Trifolium pratense; Sophora japonica;

Melilotus messanensis

Vestitone Medicago sativa
Anhydroglycinol Medicago sativa; Trifolium pratense; Melilotus messanensis
Lespedezol Al Medicago sativa; Trifolium pratense; Melilotus messanensis

6a-Hydroxymedicarpin

Medicago sativa; Glycyrrhiza pallidiflora; Dalbergia odorifera

Sophorophenolone Medicago sativa

Delphinidine Medicago sativa; Trifolium pratense; Sophora japonica; Melilotus
messanensis

Quercetin Medicago sativa; Clitoria ternatea; Melilotus messanensis

Lespedezol G1

Medicago sativa

Licoagroside C

Medicago sativa

Pratol

Medicago sativa; Glycyrrhiza pallidiflora

Licoagroside E

Medicago sativa

7,4'-Di-O-methyldaidzein

Medicago sativa; Trifolium pratense; Melilotus messanensis; Glycyrrhiza

pallidiflora; Dalbergia odorifera
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Metabolite

Plant

Licodione 2'-methyl ether

Medicago sativa

Tricin Clitoria ternatea; Trifolium pratense
Myricetin Clitoria ternatea; Trifolium pratense; Sophora japonica
Irisolidone Trifolium pratense; Glycyrrhiza pallidiflora

Erythrinin C

Trifolium pratense; Sophora japonica

Licoagroisoflavone Trifolium pratense; Sophora japonica
Kushenin Trifolium pratense

Tectoridin Trifolium pratense

Sophojaponicin Trifolium pratense; Glycyrrhiza pallidiflora

7,3'-Dimethylorobol

Trifolium pratense

Irisolidone 7-O-beta-D-glucoside

Trifolium pratense

(-)-Maackiain

Trifolium pratense; Lespedeza homoloba

Irilone Sophora japonica; Glycyrrhiza pallidiflora
Isokaempferide Sophora japonica
Trifoliol Sophora japonica
Trifolirhizin Sophora japonica
Irilone 4'-O-glucoside Sophora japonica

(+)-6a-Hydroxymaackiain

Sophora japonica; Lespedeza homoloba; Glycyrrhiza pallidiflora

Coumestrol

Lespedeza homoloba

Bolusanthin III

Lespedeza homoloba

9-0-Methylcoumestrol

Lespedeza homoloba

5'-Methoxysativan

Lespedeza homoloba

Sativanone

Melilotus messanensis

2-Methoxymedicarpin

Melilotus messanensis

Coumestrin

Glycyrrhiza pallidiflora

Haginin D

Glycyrrhiza pallidiflora

Lespedezol F1

Glycyrrhiza pallidiflora

2'-Methoxyisoliquiritigenin

Glycyrrhiza pallidiflora

Echinatin

Dalbergia odorifera
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Metabolite

Plant

Glypallichalcone

Dalbergia odorifera

Melilotocarpan B

Dalbergia odorifera

Cryptopine Corydalis claviculata; Corydalis solida
Allocryptopine Corydalis claviculata; Papaver somniferum
Rhoeadine Corydalis claviculata

Norribasine Papaver somniferum

Ribasine Papaver somniferum

Sinoacutine Papaver somniferum

alpha-Hydrastine

Papaver somniferum

Noscapine Corydalis solida

Narcotoline Corydalis solida

Salutaridine Corydalis solida

Oxocularicine Corydalis solida

Glaziovine Annona cherimola; Cocculus laurifolius; Artabotrys uncinatus
Calycinine Annona cherimola

Juzirine Annona cherimola

Pronuciferine Xylopia parviflora; Stephania cepharantha Hayata
Annocherine A Xylopia parviflora

Annocherine B Xylopia parviflora

Michelalbine Xylopia parviflora

Micheline A Xylopia parviflora

14-Episinomenine

Cocculus laurifolius; Stephania cepharantha

Cephamonine Stephania cepharantha
Aknadilactam Stephania cepharantha
Stephodeline Stephania cepharantha
Tannagine Stephania cepharantha
Aknadinine Stephania cepharantha
Juziphine Stephania cepharantha

N-Methylasimilobine

Stephania cepharantha
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Metabolite

Plant

Coclaurine Stephania cepharantha Hayata
Anonaine Stephania cepharantha Hayata
Aknadicine Stephania cepharantha Hayata
Cucoline Stephania cepharantha Hayata
Oblongine Stephania cepharantha Hayata

1-Methoxybrassitin

Brassica oleracea

Glucoviorylin

Brassica oleracea; Brassica rapa; Hesperis matronalis

Glucolepidiin

Brassica oleracea; Brassica rapa; Hesperis matronalis

Caulilexin C

Brassica oleracea

Brassicanal B

Brassica oleracea

Benzylglucosinolate Brassica oleracea; Brassica rapa; Hesperis matronalis
Glucocheirolin Brassica oleracea; Brassica rapa; Hesperis matronalis
Spirobrassinin Brassica oleracea

3-Hydroxybutyl glucosinolate

Brassica oleracea; Brassica rapa; Hesperis matronalis

4-Methoxyglucobrassicin

Brassica oleracea

Sinigrin

Brassica rapa; Hesperis matronalis

Methyl anthranilate

Brassica rapa

Glucoberteroin

Brassica rapa

1-Methoxyspirobrassinin

Brassica rapa

Glucosinalbate Armoracia lapathifolia
Glucoalyssin Armoracia lapathifolia
Glucohesperin Armoracia lapathifolia
Glucoiberin Hesperis matronalis
Glucobrassicanapin Hesperis matronalis
Glucolesquerellin Hesperis matronalis

2-Methoxybenzyl glucosinolate

Hesperis matronalis

Alstolactone

Alstonia macrophylla

Isoalstonisine

Alstonia macrophylla

Normacusine B

Alstonia macrophylla
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Metabolite

Plant

N(4)-Demethylalstonerinal

Alstonia macrophylla; Alstonia angustifolia

Cathafoline N(4)-oxide

Alstonia macrophylla

Alstophyllal

Alstonia angustifolia; Alstonia angustifolia var.latifolia

Macrocarpine A

Alstonia angustifolia; Alstonia angustifolia var.latifolia

Macrocarpine B

Alstonia angustifolia; Alstonia angustifolia var.latifolia

Alstohentine Alstonia angustifolia; Alstonia angustifolia var.latifolia
Alstonisine Alstonia angustifolia
Alstomaline Alstonia angustifolia; Alstonia angustifolia var.latifolia

N1-Demethylalstophylline

Alstonia angustifolia; Alstonia angustifolia var.latifolia

(-)-Vincamajine

Alstonia angustifolia var.latifolia

Isopongaflavone

Pongamia pinnata; Tephrosia purpurea

Pongaglabol methyl ether

Pongamia pinnata; Tephrosia purpurea

Kanjone

Pongamia pinnata; Tephrosia purpurea

Lanceolatin B

Pongamia pinnata

Glabranin Pongamia pinnata
Purpurenone Millettia pinnata
0O-Methylpongamol Millettia pinnata
Purpuritenin B Millettia pinnata
Pinnatin Millettia pinnata
Piscisoflavone D Millettia pinnata
Praecansone B Millettia pinnata
Ovalichromene B Millettia pinnata

Piscisoflavone A

Neorautanenia amboensis

Millettone

Neorautanenia amboensis

Pongachalcone 1

Tephrosia purpurea

Pongapinnol D Tephrosia purpurea
Karanjachromene Tephrosia purpurea
Dihydroamorphigenin Tephrosia purpurea; Piscidia erythrina
Dalpanol Tephrosia purpurea; Piscidia erythrina
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Metabolite

Plant

Amorphigenol Tephrosia purpurea; Piscidia erythrina
Amorphigenin Tephrosia purpurea; Piscidia erythrina
Jamaicin Tephrosia purpurea; Amorpha fruticosa
Ichthynone Tephrosia purpurea; Amorpha fruticosa
Dehydromillettone Tephrosia purpurea; Amorpha fruticosa

3-0-Demethylamorphigenin

Tephrosia purpurea; Piscidia erythrina

Rotenone Amorpha fruticosa
Candidone Piscidia erythrina
Dehydrodeguelin Piscidia erythrina
Ambofuranol Piscidia erythrina
Neorautenanol Piscidia erythrina
Isopongachromene Piscidia erythrina
Blestrianol A Gymnadenia conopsea
Blestrin A Gymnadenia conopsea
Blestrin B Gymnadenia conopsea
Blestrin C Gymnadenia conopsea
Blestrin D Gymnadenia conopsea

Isoarundinin-II

Gymnadenia conopsea

Bulbocodin C

Bletilla striata

Bulbocodin D

Bletilla striata

Gymconopin C

Bletilla striata

Bulbocol

Bletilla striata

Gymconopin D

Bletilla striata

12-Methylferruginol

Taiwania cryptomerioides

Pisiferal

Taiwania cryptomerioides

(-)-Nortrachelogenin

Taiwania cryptomerioides; Cryptomeria japonica

Matairesinol

Chamaecyparis formosensis

Cryptomeridiol

Chamaecyparis formosensis

Cubeb camphor

Chamaecyparis formosensis
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Metabolite

Plant

Epicubebol Chamaecyparis formosensis
Diphyllin Chamaecyparis formosensis
Sandaracopimarinal Chamaecyparis formosensis
Sugiol Chamaecyparis formosensis

3,7,4'-Tri-O-methylkaempferol

Chamaecyparis formosensis

19-Hydroxyferruginol

Chamaecyparis formosensis

Pisiferanol Cryptomeria japonica
Pisiferol Cryptomeria japonica
Chaenocephalol Cryptomeria japonica
(-)-Pluviatolide Cryptomeria japonica
12-0-Methylpisiferanol Cryptomeria japonica
alpha-Cadinol Cryptomeria japonica
Sugiol methyl ether Cryptomeria japonica

(+)-beta-Cyclocostunolide

Artemisia spp.

Arbusculin C Saussurea lappa

Nortetraphyllicine Tabernaemontana coffeoides
Vincamine Kopsia dasyrachis

Ajmalicine Kopsia dasyrachis; Rauvolfia vomitoria
Sarpagine Catharanthus roseus

Alstonine Catharanthus roseus

(+)-Isoeburnamine

Catharanthus roseus

(+)-Eburnamonine

Catharanthus roseus

14,15-Dihydroxyvincadifformine

Catharanthus roseus

Serpentine

Rauvolfia vomitoria

10-O-Methylsarpagine

Rauvolfia vomitoria

Dulcisxanthone B

Garcinia mangostana

Cowaxanthone D

Garcinia mangostana

Isonormangostin

Garcinia mangostana

Normangostin

Garcinia dulcis
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Plant

Garcinone C

Garcinia dulcis

Mangostenone D

Garcinia dulcis

Mangostenone E

Garcinia dulcis

Tovophyllin B

Garcinia dulcis

Arborinine

Severinia buxifolia

Xanthoxyletin

Ruta graveolens

Clausamine A

Ruta graveolens

1,2,3-Trihydroxyacridone

Ruta graveolens

Bergapten Clausena excavata
Psoralen Clausena excavata
Rutacridone Clausena excavata
Isoscopoletin Zanthoxylum simulans

N-Methylflindersine

Zanthoxylum simulans

(-)-5-Methoxybalanophonin

Zanthoxylum simulans

beta-Sitosterone

Zanthoxylum integrifoliolum

Sepesteonol Zanthoxylum integrifoliolum
Zanthobungeanine Zanthoxylum integrifoliolum
Flindersine Zanthoxylum integrifoliolum
Scopoletin Broussonetia papyrifera
Sanggenon L Broussonetia papyrifera

Gemichalcone B

Broussonetia papyrifera

Gemichalcone C

Broussonetia papyrifera

Artocommunol CA Morus alba
Artocommunol CE Morus alba
Marmesin Morus alba
Dihydrocycloartomunin Morus alba
Dihydroisocycloartomunin Morus alba
Cycloartomunin Morus alba
Artochamin D Morus alba
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Metabolite Plant
Broussoflavonol A Morus alba
(-)-Cycloartocarpin Morus alba

Morusin Artocarpus communis
Sanggenon M Artocarpus communis
Cyclomulberrin Artocarpus communis
Sanggenon A Artocarpus communis
Mulberrin Artocarpus communis

Demethoxyisogemichalcone C

Artocarpus communis

Isogemichalcone C

Artocarpus communis

Calystegin B2

Lycium chinense

Atropine

Lycium chinense

Calystegine B4

Mandragora autumnalis

Baccatin V Taxus cuspidata; Taxus brevifolia; Taxus wallichiana; Taxus chinensis;
Taxus mairei; Taxus yunnanensis
Taxol D Taxus cuspidata; Taxus chinensis; Taxus yunnanensis

Dantaxusin D

Taxus cuspidata; Taxus baccata; Taxus chinensis; Taxus mairei

9-Deacetyltaxinine

Taxus cuspidata; Taxus chinensis; Taxus mairei; Taxus yunnanensis

Taxchin B Taxus cuspidata; Taxus baccata; Taxus mairei; Taxus yunnanensis
Taxinine B Taxus cuspidata; Taxus chinensis
Taxine I Taxus cuspidata; Taxus chinensis

Taxumairol A

Taxus cuspidata; Taxus baccata; Taxus chinensis

Taxchinin H

Taxus cuspidata; Taxus brevifolia

Taxol B

Taxus cuspidata

Dantaxusin A

Taxus cuspidata; Taxus baccata; Taxus chinensis; Taxus mairei

Taxayuntin E

Taxus cuspidata; Taxus chinensis

Taxayuntin F

Taxus cuspidata

Taxchinin A

Taxus cuspidata

Taxchinin D

Taxus cuspidata; Taxus baccata; Taxus wallichiana

Taxchinin C

Taxus cuspidata; Taxus brevifolia; Taxus yunnanensis
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Metabolite Plant

Taxchinin K Taxus cuspidata; Taxus brevifolia; Taxus yunnanensis

Taxayuntin H Taxus cuspidata; Taxus brevifolia; Taxus baccata; Taxus wallichiana; Taxus
mairei

Baccatin IV Taxus cuspidata; Taxus yunnanensis

Taxamairin B Taxus cuspidata

Dantaxusin C Taxus cuspidata; Taxus baccata; Taxus mairei

Taxinine A Taxus cuspidata

7-Deacetylcanadensene Taxus cuspidata; Taxus baccata

Chinentaxunine Taxus cuspidata

N-Methyltaxol C Taxus cuspidata; Taxus chinensis; Taxus yunnanensis

14beta-benzoyloxybaccatin IV Taxus cuspidata; Taxus baccata; Taxus mairei

5-Decinnamoyltaxuspine D Taxus cuspidata; Taxus yunnanensis

5-Cinnamoyltaxicin I triacetate Taxus cuspidata; Taxus chinensis; Taxus mairei; Taxus yunnanensis

5-epi-Canadensene Taxus cuspidata; Taxus chinensis; Taxus mairei

7,2'-Bisdeacetoxyaustropicatine Taxus cuspidata

Taxuspinanane I Taxus brevifolia; Taxus baccata; Taxus wallichiana; Taxus chinensis; Taxus

mairel; Taxus yunnanensis

Ormosin VI Taxus brevifolia; Taxus mairei

Taxchinin B Taxus brevifolia; Taxus wallichiana

Taxuspine V Taxus brevifolia; Taxus mairei

14beta-Hydroxytaxusin Taxus brevifolia; Taxus baccata; Taxus wallichiana

Epitaxol Taxus baccata; Taxus wallichiana; Taxus chinensis; Taxus mairei; Taxus
yunnanensis

Taxachitriene A Taxus baccata

Taxachitriene B Taxus baccata

Taxuspine S Taxus baccata; Taxus chinensis; Taxus mairei

Taxezopidine L Taxus baccata; Taxus mairei

Taxol C Taxus baccata

Taxuspinanane A Taxus baccata; Taxus chinensis; Taxus yunnanensis

Taxinine E Taxus baccata; Taxus chinensis
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Plant

Taxuspine Z

Taxus baccata; Taxus wallichiana

Taxezopidine E

Taxus baccata

Taxuspine X

Taxus baccata

Taxezopidine F

Taxus baccata; Taxus yunnanensis

Taxuyunnanine C

Taxus baccata

Taxuspinanane B

Taxus baccata; Taxus wallichiana; Taxus chinensis

Ponasterone A

Taxus baccata; Taxus chinensis

Decinnamoyltaxinine E

Taxus baccata

Taxezopidine H

Taxus baccata; Taxus mairei

Taxuspine D

Taxus baccata; Taxus mairei

Taxin B

Taxus baccata

Taxuspine U

Taxus baccata; Taxus mairei

5-Deacetyltaxachitriene B

Taxus baccata

2-Deacetyltaxachitriene A

Taxus baccata

Taxuspine A

Taxus wallichiana; Taxus chinensis

Taxuspine P

Taxus wallichiana; Taxus yunnanensis

Isolariciresinol

Taxus wallichiana; Taxus yunnanensis

Taxuspine T

Taxus chinensis; Taxus mairei

Taxine II

Taxus chinensis

Taxuspine B

Taxus chinensis; Taxus mairei

Taxuspine E

Taxus chinensis; Taxus yunnanensis

Taxayuntin J

Taxus chinensis; Taxus mairei

Taxumairol F

Taxus chinensis; Taxus yunnanensis

Deaminoacyltaxine A

Taxus chinensis; Taxus mairei; Taxus yunnanensis

Isotaxine B

Taxus chinensis; Taxus yunnanensis

Taxinine H

Taxus chinensis; Taxus mairei

Dantaxusin B

Taxus chinensis; Taxus mairei

Taxayuntin A

Taxus chinensis

2-Deacetyldecinnamoyltaxinine E

Taxus chinensis; Taxus mairei
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Plant

Taxuyunnanine N

Taxus mairei

10-Deacetyltaxol A

Taxus mairei

13-Deacetoxybaccatin I

Taxus mairei; Taxus yunnanensis

Taxumairol V

Taxus yunnanensis

Taxchinin I

Taxus yunnanensis

Methyl pyroglutamate

Panax notoginseng

Ginsenoside Rh7

Panax notoginseng; Panax pseudo-ginseng var.notoginseng

Ginsenoyne E

Panax ginseng; Panax pseudo-ginseng var.notoginseng

Notoginsenoside

Panax ginseng

Panaxydol

Panax pseudo-ginseng var.notoginseng

Ginsenoside Re

Panax pseudo-ginseng var.notoginseng

Aristolactam IIla

Aristolochia elegans

Aristolochate I

Aristolochia elegans

Aristolactam I

Aristolochia elegans

Methyl aristolochate

Aristolochia elegans

Aristolochate C

Aristolochia elegans

Aristolochic acid I

Aristolochia heterophylla

4-Hydroxybenzoic acid

Aristolochia heterophylla

O-Methylflavinantine

Artabotrys uncinatus

Pallidine Artabotrys uncinatus
Norpallidine Artabotrys uncinatus
Lysicamine Artabotrys uncinatus
Flavinantine Annona purpurea
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Appendix B

GenBank ID (rbcL, matK, ITS2) and use information of sample plants. Economic uses of

plants are represented as following abbreviations: E (edible), M (medicinal), L (landscaping,),

T (timber), P (poisonous), W (wild plant). Some plants are both edible and medicinal and are

annotated as M/E. (*Partial sequence data)

Plant name rbeL matK ITS2 uses
Rosmarinus officinalis NC_027259.1 NC_027259.1 EU796893.1 M
Anthemis aciphylla BOISS. *FTM957767.1 W
var.discoidea BOISS

Acritopappus confertus *KP454449.1 W
Nardostachys chinensis *AF446950.1  AF446920.1 *AY236190.1 W
Valeriana officinalis L13934.1 *AY362532.1 EU796889.1 M
Mentha arvensis L. *HQ590183.1 *JN896123.1 AY656005.1 M
Solanum Iycopersicum NC_007898.3 NC_007898.3 AB373816.1 E
Cyperus rotundus L. *AM999813.1 *KX369513.1 M
Zingiber officinale KM213122.1 KM213122.1 K(C582868.1 M/E
Alphinia galanga *KY189086.1 AF478815.1 AF478715.1 M/E
Curcuma amada Roxb *KF981156.1  *KJ872380.1 AHO009165.2 M/E
Curcuma aeruginosa *KX608611.1  AF478840.1 DQ438047.1 W
Pinus halepensis JN854197.1 JN854197.1 AF037007.1 L
Cedrus libani *HG765043.1 L
Cistus albidus *FJ225860.1 *DQO092975.1  *DQ092933.1 W
Melaleuca leucadendra L. *KX527090.1 *EU410106.1 M
Cistus creticus *FJ225862.1 *DQ092979.1 *DQ092937.1 W
Myrtus communis JQ730673.1 AY525136.2 GU984341.1 M
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Plant name

rbeL matK ITS2 uses
Leptospermum scoparium *HM850121.1 *KMO065275.1 KMO065050.1 M
Rhodiola rosea L. *KM360979.1 *KP114859.1 KF454616.1 M
Piper arboreum *(GQ981830.1 EF056223.1 W
Piper fimbriulatum EF056254.1 W
Polygonum minus *FM883633.1 *JN896184.1 EU196895.1 M
Brassica hirta *HM849823.1 LC064389.1 FJ609733.1 E
Saussurea lappa *KX527328.1 *KX526536.1 KJ721545.1 M
Artemisia annua *KJ667633.1 *HM989754.1 KX219675.1 M
Artemisia capillaris NC_031400.1 NC_031400.1 KT965668.1 M
Olea europaea NC_013707.2 NC_013707.2 KJ188984.1 M/E
Juniperus phoenicea *HMO024320.1 *HMO024042.1 GU197870.1 W
Hesperis matronalis *KM360815.1 *HQ593319.1 AJ628314.1 L
Citrus sinensis DQ864733.1 DQ864733.1 AB456127.1 E
Citrus reticulata *AB505952.1 AB626773.1 AB456115.1 E
Citrus aurantium *AB505953.1 AB626798.1 AB456126.1 E
Citrus paradisi *AJ238407.1 *JN315360.1 AB456065.1 E
Citrus Iimon *AB505956.1 AB762353.1 AB456128.1 E
Citrus aurantifolia KJ865401.1 KJ865401.1 AB456118.1 M/E
Houttuynia cordata *AY572259.1 DQ212712.1 *AM777852.1 M/E
Helianthus annuus NC_007977.1 NC_007977.1 KF767534 E
Carthamus tinctorius KM207677.1 KM207677.1 KX108699.1 M
Hordeum vulgare K(C912687.1 K(C912687.1 KM252865.1 E
Triticum aestivum KJ592713.1 KJ592713.1 AJ301799.1 E
Zea mays NC_001666.2 NC_001666.2  *KJ474678.1 E
Oryza sativa KM103369.1 KM103369.1 KM252851.1 E
Allium cepa KMO088013.1 KMO088013.1 AM492188.1 E
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Plant name rbeL matK ITS2 uses
Picea abies *EU364777.1 AB161012.1 AJ243167.1 T
Pinus sylvestris *JF701589.1 AB097781.1 AF037003.1 T
Brassica napus NC_016734.1 NC_016734.1 AB496975.1 P
Cucumis sativus DQ119058.1 DQ119058.1 AJ488213.1 E
Glycine max NC_007942.1 NC_007942.1  AJO011337.1 E
Phaseolus lunatus DQ445985.1 Y19456.1 E
Phaseolus vulgaris EU196765.1 EU196765.1 GU217644.1 E
Phaseolus coccineus *LT576851.1 DQ445966.1 Y19453.1 E
Pisum sativum KdJ806203.1 KdJ806203.1 AB107208.1 E
Lathyrus odoratus KJ850237.1 KJ850237.1 KX287478.1 L
Vicia faba KF042344.1 KF042344.1 *EU288904.1 E
Linum usitatissimum FJ169596.1 EU307117.1 T
Malus domestica *KM360872.1 AMO042561.1 AF186484.1 E
Prunus cerasus *HQ235416.1 *FN668844.1 FJ899099.1 E
Prunus persica HQ336405.1 HQ336405.1 *KX674813.1 E
Prunus avium *HQ235394.1 *AMb503828.1 HQ332169.1 E
Citrus unshiu *AB505946.1 AB626802.1 AB456117.1 E
Spinacia oleracea NC_002202.1 NC_002202.1 E
Camellia sinensis KC143082.1 KC143082.1 *EU579773.1 E
Pseudotsuga menziesii JN854170.1 JN854170.1 AF041353.1 T
Cassia fistula *U74195.1 *JQ301870.1 JQ301830.1 M
Colophospermum mopane *JX572425.1 AY386894.1 AY955788.1 T
Robinia pseudoacacia KJ468102.1 KJ468102.1 GU217616.1 L
Acacia mearnsii *KF532045.1 HMO020723.1 KF048786.1 W
Garcinia mangostana *JX664049.1 AJ509214.1 M/E
Garcinia dulcis JF738433.1 EU128468.1 W
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Plant name rbeL matK ITS2 uses
Eriobotrya japonica KT808478.1 DQ860462.1 FJ449737.1 E
Aesculus hippocastanum *KM360616.1 EU687725.1 EU687637.1 P
Rheum sp. *EU840308.1 EUS840469.1 w
Raphanus sativus NC_024469.1 NC_024469.1 AY746462.1 E
Armoracia lapathifolia *KM360651.1 LC064385.1 AF078032.1 E
Brassica oleracea KR233156.1 KR233156.1 GQ891877.1 E
Brassica rapa AY167977.1 AY541619.1 KF454313.1 E
Daucus carota DQB98156.1 DQB9Y8156.1 AHO003468.2 W
Asclepias curassavica *EU916742.1 *DQ026716.1 AM396884.1 L
Nicotiana tabacum NC_001879.2 NC_001879.2 *KP893959.1 M
Capsicum annuum KR078313.1 KR078313.1 *KP893996.1 E
Lycopersicon esculentum NC_007898.3 NC_007898.3 AJ300201.1 E
Cyperus rotundus *KJ773433.1 *KX369513.1 *KX675088.1 M
Humulus lupulus NC_028032.1 NC_028032.1 AB033891.1 M
Catharanthus roseus K(C561139.1 K(C561139.1 HQ130657.2 M
Petunia x hybrida *HM850249.1 *EF439018.1 L
Diospyros kaki NC_030789.1 NC_030789.1 AB175009.1 E
Clitoria ternatea *U74237.1 EU717427.1 AF467038.1 E
Sedum sarmentosum NC_023085.1 NC_023085.1 *GQ434462.1 M
Psidium guajava NC_033355.1 NC_033355.1 *AB354956.1 E
Phyllanthus emblica *AY765269.1 AY936594.1 *KU508339.1 M/E
Phellodendron amurense *AF066804.1 FJ716737.1 *KT972670.1 M
Epimedium sagittatum NC_029428.1 NC_029428.1 M
Rhodiola sachalinensis *KJ570585.1 *KJ570498.1 M
Sinocrassula indica *AF115679.1 M
Amorpha fruticosa KP126864.1 KP126864.1 GU217619.1 L
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Plant name rbeL matK ITS2 uses
Glycyrrhiza uralensis *AB012126.1  AB280741.1 AB649775.1 M
Glycyrrhiza aspera *JQ669639.1 GQ246126.1 W
Glycyrrhiza glabra NC_024038.1 NC_024038.1 *KX675022.1 M/E
Glycyrrhiza inflata *AB012127.1  AB280743.1 JF778868.1 M
Erythrina variegata *KF496750.1 *KUb87466.1 KdJ716427.1 L
Sophora japonica *U74230.1 *HMO049517.1 JQ676976.1 T
Medicago sativa KU321683.1 KU321683.1 799236.1 E
Trifolium pratense KP126856.1 KP126856.1 AF154620.1 M
Lespedeza homoloba KY174702.1 W
Glycyrrhiza pallidiflora *HM142228.1 EF685997.1 GQ246130.1 W
Dalbergia odorifera *KM510281.1 *KM521320.1 *GQ434362.1 T
Neorautanenia amboensis *KX213174.1 w
Lupinus luteus NC_023090.1 NC_023090.1 AF007478.1 W
Lupinus albus KdJ468099.1 KdJ468099.1 AF007481.1 E
Derris scandens JX506621.1 JX506450.1 w
FEuchresta japonica *AB127040.1 W
FEuchresta formosana *AB127039.1 W
Sophora flavescens *AB127037.1  *HMO049520.1 GU217622.1 M
Maackia amurensis *AB127041.1  AY386944.1 772352.1 L
Sophora secundiflora *770141.1 AF174638.1 W
Daphniphyllum oldhami KC737396.1 KC737244.1 JN040993.1 M
Annona purpurea *KMO068886.1 *JQ586490.1 E
Annona cherimola NC_030166.1 NC_030166.1 E
Xylopia parviflora *JF265661.1 *JF271002.1 W
Cocculus laurifolius DC. *JN051677.1  AF542588.2 KM092304.1 W
Stephania cepharantha *JN051691.1 *GU373530.1 AY017400.1 W
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Plant name rbeL matK ITS2 uses
Cocculus pendulus (Forsk.) *FJ026478.1 W
Diels

Corydalis solida *KM360733.1 X85464.1 W
Papaver somniferum NC_029434.1 NC_029434.1 DQ364699.1 M
Rubia yunnanensis *KP098291.1 *KP098123.1 M
Taraxacum formosanum *AY862577.1 W
Alpinia blepharocalyx *KJ871690.1 AF478809.1 AF478709.1 W
Hibiscus taiwanensis *KX527103.1  *KX526698.1 W
Xylocarpus granatum *KF848252.1  *KJ784619.1 W
Acanthopanax senticosus JN637765.1 JN637765.1 *KX674996.1 M
Panax notoginseng KR021381.1 KR021381.1 KT380921.1 M
Panax ginseng KM067390.1 KM067390.1 *AB043872.1 M
Bupleurum rotundifolium AF481400.1 M
Bellis perennis *AY395530.1 KP175061.1 JN315918.1 M/E
Lonicera japonica NC_026839.1 NC_026839.1 EU240693.1 M
Solanum tuberosum KM489056.2 KM489056.2 E
Withania somnifera *FJ914179.1 *KR734871.1 JQ230981.1 M
Punica granatum *1.10223.1 *JQ730680.1 *FM887008.1 E
Beta vulgaris KR230391.1 KR230391.1 E
Taxus wallichiana KX431996.1 KX431996.1 EF660573.1 M
Taxus cuspidata *DQ478793.1 AF228104.1 KU904438.1 P
Taxus brevifolia *AF249666.1  *EU078561.1 EF660600.1 M
Taxus baccata *AF456388.1 DQ478791.1 EF660599.1 M
Taxus chinensis *AY450855.1  AF228103.1 AF259300.1 M
Taxus mairei KdJ123824.1 KdJ123824.1 KU904440.1 M
Taxus yunnanensis *AY450857.1 M
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rbeL

matK

ITS2

uses

Tabernaemontana coffeoides
Boj.

Rauvolfia vomitoria
Alstonia macrophylla
Tephrosia purpurea
Pongamia pinnata
Millettia pinnata
Psoralea corylifolia
Calophyllum inophyllum
Broussonetia papyrifera
Morus alba

Artocarpus communis
Gymnadenia conopsea R.BR.
Bletilla striata

Curcuma zedoaria
Taiwania cryptomerioides
Chamaecyparis formosensis
Cryptomeria japonica
Angelica sinensis

Lycium chinense
Mandragora autumnalis
Curcuma domestica
Plantago major
Rehmannia glutinosa
Andrographis paniculata

Scutellaria baicalensis

*DQ660663.1
*GU135289.1
*LT576862.1
*AY289676.1
NC_016708.2
*JN114837.1
*HQ332016.1
*AF500347.1
KU981119.1
*AF500345.1
*KJ451493.1
NC_028422.1
*GU180515.1
NC_016065.1
*AY380879.1
NC_010548.1
*JN704983.1
*FJ914171.1
*HQ216129.1
*KX608614.1
*KJ204386.1
*FJ172725.1
KF150644.2

NC_027262.1

*GU973924.1

*DQ660538.1
*GU135060.1

*KF545845.1

NC_016708.2

*HQ331553.1
*AF345326.1
KU981119.1
*KJ767846.1
EF612530.1
NC_028422.1
AB047743.1
NC_016065.1
*FJ475234.1
NC_010548.1
*GQ434227.1

*AB036637.1

AB551931.1
*KJ593055.1
*GQ434277.1
KF150644.2

NC_027262.1

AF467493.1
JX506445.1
GU217608.1
AJ312608.2
AB604292.1

AMO041998.1

794068.1
KJ405419.1
KJ803170.1

*AY916831.1

AF387522.1
JX138965.1

K(C832461.1

KJ803148.1
AB281165.1
EU266023.1
*KT898259.1

JN853779.1

H 2 2 £ R 2 =

=

/E

2 2 E =2 =2 =2 =2 2 2 4

=

/E

= E £ £
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Plant name rbeL matK ITS2 uses
Magnolia denudata NC_018357.1 NC_018357.1 M
Magnolia officinalis NC_020316.1 NC_020316.1 JF755930.1 M
Aeschynanthus bracteatus AF349283.1 W
Angelica furcijuga DQ278164.1 M/E
KITAGAWA

Zanthoxylum simulans *KT634182.1 EF489100.1 DQ016545.1 M
Severinia buxifolia *AF066806.1 AB762384.1 JX144180.1 W
Aristolochia elegans *AB060790.1 KM092119.1 L
Aristolochia heterophylla *KU853431.1 *KU853368.1 M
Hemsl

Cannabis sativa NC_027223.1 NC_027223.1 KF454086.1 M
Citrus sudachi AB762337.1 AB456086.1 M
Salvia officinalis *AY570431.1  *JQ934074.1 FJ883522.1 M/E
Orthosiphon stamineus *KM658969.1 *AY506663.1 W
Murraya paniculata *AB505906.1 AB762389.1 KM092325.1 M
Belamcanda chinensis *AJ309694.1 AY596652.1 JF421476.1 M
Murraya euchrestifolia *JX144210.1 W
Ruta graveolens *U39281.2 EF489057.1 JQ230976.1 M/E
Clausena excavata NC_032685.1 NC_032685.1 JX144189.1 W
Caesalpinia crista *KP094390.1 *EU361900.1 T
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Appendix C

The 90 plants with high priority for future screening for overall medicinal bioactivity:

Panax pseudo-ginseng var.notoginseng:; Panax ginseng C.A.Meyer; Trichosanthes
tricuspidata; Bupleurum rotundifolium; Dracaena draco; Tribulus pentandrus; Solanum
abutiloides; Silphium perfoliatum; Dioscorea spongiosa; Astragalus trojanus; Polygala
japonica; Duranta repens: Ilex kudingcha; Kandelia candel; Baikiaea plurijuga;
Dicranopteris pedata; Camellia sinensis var. viridis; Cistus incanus; Rheum sp.; Vancouveria
hexandra; Melicope triphylla; Chrysothamnus viscidiflorus; Hypericum sampsonii;
Anaxagorea luzonensis A.GRAY, Rhamnus disperma; Podocarpus fasciculus;
Chrysothamnus nauseosus; Platanus acerifolia; Pityrogramma triangularis; Grevillea
robusta; Podocarpus nivalis; Hypericum erectum Thunb.; Petunia x hybrid; Solanum spp.;
Acacia dealbata; Ardisia colorata; Syzygium samarangense; FEugenia jambolana;
Leptarrhena pyrolifolia;, Nymphaea caerulea; Abies amabilis; Hyacinthus orientalis;
Eustoma grandiflorum; Salvia splendens; Lathyrus odoratus; Rosa spp.; Rhododendron spp.;
Empetrum nigrum; Vaccinium padifolium; Saussurea medusa; Crataegus pinnatifida; Betula
nigra; Conocephalum conicum; Tephrosia toxicaria; Syzygium samarangense; Fugenia
jambolana; Leptarrhena pyrolifolia;, Nymphaea caerulea; Abies amabilis; Hyacinthus
orientalis; FEustoma grandiflorum; Salvia splendens; Lathyrus odoratus; Rosa spp.s
Rhododendron spp.; Empetrum nigrum; Vaccinium padifolium; Saussurea medusa;
Crataegus pinnatifida; Betula nigra; Conocephalum conicum; Tephrosia toxicaria; Euphorbia
supina Rafin; Oricia suaveolens; Rhodobacter sphaeroides; Erwinia uredovora; Myxococcus
xanthus; Streptomyces griseus; Rhodobacter capsulatus; Corbicula sandai; Corbicula
japonica; Silurus asotus; Erysimum asperum; Cibotium glaucum; Gibberella fujikuroi;
Marah macrocarpus; Pharbitis purpurea; Haplophyllum patavinum; Niphogeton ternate;

Chloranthus japonicus
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