
NAIST-IS-DD1561026

Doctoral Dissertation

SDN-enabled GridFTP: High speed data
transfer system based on multiple TCP streams

using OpenFlow

Huang Che

March 7, 2018

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Huang Che

Thesis Committee:
Professor Hajimu Iida (Supervisor)
Professor Kazutoshi Fujikawa (Co-supervisor)
Associate Professor Kohei Ichikawa (Co-supervisor)
Associate Professor Yasuhiro Watashiba (Co-supervisor)

SDN-enabled GridFTP: High speed data
transfer system based on multiple TCP streams

using OpenFlow∗

Huang Che

Abstract

A large amount of data needs to be transferred from one site to another as
fast as possible in the fields of computational science. To achieve high-speed data
transfer in widely-distributed environments, many applications utilize multiple
TCP streams. Using multiple TCP streams in parallel can improve aggregate
bandwidth by mitigating the negative effects of packet loss and the slow start
mechanism of TCP. However, since multiple TCP streams of applications are
usually routed according to the default IP routing protocol, only a single shortest
path among the multiple paths can be utilized for the data transfer. This research
proposes a multipath controller that increases the performance of data transfer
by leveraging multiple paths simultaneously for parallel TCP streams.
For this purpose, we utilize the Software-Defined Networking (SDN) technology

and its implementation, OpenFlow. Furthermore, we propose a prediction model
to determine optimal numbers of parallel TCP streams to be assigned for each
path according to its own network condition. This thesis presents the design
and implementation of the proposed system. As a case study, we applied our
proposed system on GridFTP and evaluated the performance improvement in
both a virtual and a real global-scale environment. The results demonstrate that
our proposed system accelerates the data transfer of GridFTP. In our real global-
scale environment, our experimental results show the practicality of our proposal

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1561026, March 7, 2018.

i

and indicate that our proposed method has achieved the performance close to the
physical limitations of the hardware.

Keywords:

Software-Defined Networking, OpenFlow, GridFTP, Multipath, Data transfer

ii

Contents

Contents iii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Overview . 1
1.2 Target and Use Cases . 3
1.3 Organization of Thesis . 4

2 Background 5
2.1 Multiple TCP Streams for High-speed Data Transfer 5

2.1.1 Multiple TCP Streams . 6
2.1.2 Multiple TCP Streams in Transport Layer 6
2.1.3 Multiple TCP Streams in Session Layer 7
2.1.4 Multiple TCP Streams in Application Layer 7
2.1.5 GridFTP . 8

2.2 Multipath Routing . 10
2.2.1 Source Multipath Routing 11
2.2.2 Hop-by-Hop Multipath Routing 12
2.2.3 Problems of Current Multipath Routing 12

2.3 Software-Defined Networking and OpenFlow 13
2.3.1 Software-Defined Networking 13
2.3.2 OpenFlow . 15

2.4 Related Work . 16

iii

3 SDN-enabled GridFTP 19
3.1 Approach and Design . 19
3.2 Implementation . 22

3.2.1 Multipath Selection Algorithm 22
3.2.2 Multipath OpenFlow Controller 23
3.2.3 Globus XIO Driver for SDN-enabled GridFTP 28

4 Prediction Model to Optimize TCP Stream Assignment in
Multipath Routing 32
4.1 Goal of the Prediction Model . 33
4.2 Proposed Prediction Model . 34
4.3 Verification of Prediction Model 36

5 Use Case of SDN-enabled GridFTP 39
5.1 Taget of SDN-enabled GridFTP 39
5.2 Mechanism of SDN-enabled GridFTP 40

6 Evaluation and Results 43
6.1 Experiments using a Virtual Environment 43

6.1.1 Virtual Experimental Environment 43
6.1.2 Results of Experiments . 45

6.2 Experiments using a Real Global-scale Environment 52
6.2.1 PRAGMA-ENT . 52
6.2.2 Determine the Parameter of Prediction Model on PRAGMA-

ENT . 54
6.2.3 Results of Experiments . 55

7 Discussion and Future Work 60
7.1 Multipath Selection Algorithm . 60
7.2 Scalability and Reliability of our Multipath OpenFlow Controller 63
7.3 Path Failure . 64
7.4 Fairness . 65
7.5 Determine the Parameter of Prediction Model on PRAGMA-ENT 66
7.6 Applications in Other Areas . 66

iv

8 Conclusion 68

References 72

Publication List 86

v

List of Figures

2.1 Parallel data transfer in Globus GridFTP 8
2.2 A three-layer Software-Defined Networking architecture. 14
2.3 Overview of an OpenFlow network. 15

3.1 Parallel transfer of the conventional GridFTP 20
3.2 Parallel transfer of our proposed GridFTP over OpenFlow network 21
3.3 Globus XIO architecture . 29

4.1 Relationship between achieved bandwidth and number of paral-
lel TCP streams in high Bandwidth-Delay Product networks (An
experimental result of data transfer from our network testbed) . . 33

4.2 Transfer time (sec) of 2GB file with 50 Mbps link 36
4.3 Relationship between the optimal number of TCP streams and the

latency . 37

5.1 Overview of our proposed multipath controller and GridFTP . . . 41

6.1 Overview of the virtual experimental environment 44
6.2 Topology A on a local testbed (the bandwidth and the latency are

configured to 100 Mbps and 0ms on each path) 46
6.3 Used bandwidth of each TCP stream in topology A with two par-

allel TCP streams . 46
6.4 Used bandwidth of each TCP stream in topology A with four par-

allel TCP streams . 47
6.5 Topology B on a local testbed (the bandwidth and the latency are

configured to 100 Mbps and 0ms on each path) 48
6.6 Used bandwidth of each TCP stream in Topology B with three

parallel TCP streams . 49

vi

6.7 Topology C on a local testbed (different bandwidth and latency
are configured for each path as shown in the Figure) 50

6.8 Comparison of the average data transfer speed between the optimal
assignment and the round robin assignment in topology C 51

6.9 Overview of the real global-scale experimental environment 52
6.10 Comparison of the average data transfer speed between the sin-

gle path assignment, the round robin assignment and the optimal
assignment . 56

6.11 Used bandwidth for the round robin assignment method in case of
using 24 parallel TCP streams (6 parallel TCP streams are assigned
for each path) . 57

6.12 Used bandwidth for the optimal assignment method in case of
using 22 parallel TCP streams (TCP streams are assigned for each
path with a ratio of 4:1:5:1 in order) 58

7.1 Topology 1 (Illustration of multipath selection algorithm) 61
7.2 Topology 2 (The bandwidth between SW1 and SW2 is different

from Topology 1) . 62

vii

List of Tables

6.1 Comparison of transfer time in topology A 47
6.2 Results of Topology B . 48
6.3 Experiment result to determine value a in the global-scale experi-

mental environment . 54
6.4 Optimal assignment in the global-scale experimental environment 55

7.1 Available bandwidth and total latency of each path on topology 1 60
7.2 Available bandwidth and total latency of each path on topology 2 62

viii

1 Introduction

1.1 Overview
The rapid development of science, technology and Internet has led us into the
big data era. Every industry produces a huge amount of data every day, such as
Google and Facebook processing hundreds of petabytes of data per day [1]. The
data of the world is still increasing exponentially due to advancing technology,
such as the Internet of Things (IoT) [2], which is related to all aspects of our
modern life. More than 90% of the data in the world today has been created in
the last two years, and it has been estimated that we are generating 2.5 quintillion
bytes of data per day [3, 4].
High-speed data transfer is a necessary technology for the process of big data

[5]. The big data era gives us a lot of great opportunities and challenges in
business and research. Researchers have made a lot of progress in developing the
capability to compute, process, store, and analyze big data. In regards to data
storage, most of the large-scale data is not stored only on one site but actually
stored among the geographically distributed data centers around the world [6].
Therefore, high-speed data transfer between sites is a very important technology
for international collaborative research and many other services.
To achieve high-speed data transfer in widely-distributed environments, many

applications utilize multiple TCP streams simultaneously to transfer data. Using
multiple TCP streams in parallel can improve aggregate bandwidth over using a
single TCP stream by mitigating the negative effects of packet loss and ‘slow start’
mechanism of TCP. There have been a number of proposed schemes designed
for applications to use multiple TCP streams such as XFTP [7], PSockets [8],
GridFTP [9, 10], MultiTCP [11], PATTHEL [12], QTCP [13] Multipath TCP
(MPTCP) [14], to increase the performance of data transfer.

1

On the other hand, there are usually multiple network paths (multipath) avail-
able between widely-distributed sites, however, these multiple paths are not ef-
ficiently utilized by applications. Because even if the applications use multiple
TCP streams in parallel, those multiple TCP streams are basically routed accord-
ing to the default IP routing protocol, and only a single shortest path among the
multiple paths is used for the data transfer. The primary reason for this problem
is that there is a gap between application demands and the network architecture,
and the applications are unaware of the information on the network layer. Thus,
there is still much room for improvement in data transfer by applying some traffic
engineering technologies using different multiple paths simultaneously.
In this study, we propose a multipath controller that distributes the parallel

TCP streams of applications into multiple network paths by utilizing Software-
Defined Networking (SDN)-based traffic engineering techniques. SDN is a newly
emerged concept that brings software programmability to networks and allows
us to control routing assignment of the entire networks from the viewpoint of
applications.
Furthermore, since each network path has its own network conditions, to fully

utilize the network bandwidth, it is necessary to calculate the optimal number of
TCP streams should be assigned for each network path. Therefore, to optimize
the data transfer performance, we also developed a prediction model to deter-
mine the optimal numbers of parallel TCP streams to be assigned for each path
according to its own network condition.
We have developed our system based on OpenFlow [15], which is standard-

ized by the Open Networking Foundation (ONF) [16] and one of the most used
standard protocols for SDN. We applied our proposed multipath controller to
GridFTP as an actual case study to demonstrate the effectiveness and practi-
cality of our proposed system, because GridFTP is one of the most common
data transfer services using multiple TCP streams and it is used widely in the
computational science research fields.
To verify the effectiveness and practicality of our proposed system, we per-

formed evaluation experiments comparing the performance of the GridFTP with-
/without our proposed method. For retrieving the best possible performance, we
conducted the experiments in a virtual environment first. We then also performed

2

some experiments on a real global-scale environment to evaluate the practicality
of our proposal.

1.2 Target and Use Cases
Our proposed system aims to provide a high-speed data transfer service to the
computational science research projects. In every field of science, especially data-
intensive scientific projects, large-scale data is produced and processed every day.
However, most of these large-scale data is not stored only in one site, but actually
stored across over the geographically distributed data centers around the world;
thus, high-speed data transfer technique is very important for this data-intensive
science.
For example, Compact Muon Solenoid (CMS) [17] and Laser Interferometer

Gravitational-Wave Observatory (LIGO) [18] are well-known scientific projects
in the physics research field. The purpose of CMS experiments is investigating
a wide range of physics which built on the Large Hadron Collider (LHC) [19]
at the European Organization for Nuclear Research (CERN). This project is
supported by a global collaboration of more than 170 computing centers in 42
countries [20]. When the CMS experiment is conducted, more than 150 petabytes
data is generated every time. These data need to be distributed to all sites around
the world as soon as possible for the purpose of storing and analyzing. Obviously,
these scientific projects consume significant storage and networking resources.
In addition, to support these scientific studies, most of the countries in the

world provide the National Research and Education Network (NREN), such as
the Energy Sciences Network (ESnet) [21], the pan-European research network
(GEANT) [22], China Education and Research Network (CERNET) [23]. An
NREN is a high-speed network resource which is essential in providing advanced
Information and Communication Technology (ICT) services to the research and
education communities. By utilizing the network resources of NRENs, large-scale
data transfer is possible in these international collaborative researches. As a high-
speed data technique, multiple TCP streams data transfer, such as GridFTP, is
widely used by these scientific projects.
In this research, we focus on the use cases that integrate several NRENs and

3

create widely distributed shared computing infrastructures for the use of their
scientific projects. In these kind of scientific projects, the number of participating
organizations are relatively limited compare to the commercial Internet where the
number of participating sites are unlimited. Therefore, the centralized control
architecture of OpenFlow will work efficiently.

1.3 Organization of Thesis
The rest of this paper is organized as follows. Chapter 2 describes the back-
ground and related works, including various multiple TCP streams techniques,
multipath routing methods, SDN and OpenFlow and existing researches on high-
speed data transfer using multipath. Chapter 3 explains the implementation
details of our proposed SDN-enabled GridFTP, including a multipath selection
algorithm, a multipath OpenFlow controller and a new extended Globus XIO
Driver. Chapter 4 describes the prediction model for our system. Chapter 5 ex-
plains the mechanism of proposed SDN-enabled GridFTP with prediction model
in detail. Chapter 6 shows the evaluation results of the proposed system in both
a virtual and real global-scale environment. Chapter 7 discusses possible issues
when actually utilize our proposed system and our future work. Finally, Chapter
8 concludes this thesis.

4

2 Background

In this chapter, we will discuss the background of various techniques and research
related to our work. Section 2.1 discusses the necessity of high-speed data trans-
fer and describes various techniques for high-speed transfer. As a result of the
discussion, we choose multiple TCP streams to realize high-speed data transfer.
Then, we describe various techniques of multiple TCP streams and introduce the
GridFTP in detail. Section 2.2 describes various techniques for multipath routing.
Section 2.3 describes technique of Software-Defined Networking and OpenFlow
in detail. Section 2.4 describes some related works and indicates features of our
proposal.

2.1 Multiple TCP Streams for High-speed Data
Transfer

High-speed data transfer service between sites is very important in the big data
era. To meet the demands for high speed data transfer, the bandwidth of net-
work has been improved continuously. In the network research field, 100 Gb/s
end-to-end data communication network service (such as the Science Information
Network 5(SINET5) of Japan [24]) is also provided by some organizations. How-
ever, it is still challenging to build a suitable system or a protocol to increase the
utilization of network bandwidth.
Normally, many of data transfer applications rely on the Transmission Control

Protocol (TCP) [25] for accurate and reliable data transmission. TCP is the
dominant transport layer protocol for current IP networks and is used for more
than 90% of total traffic [26–28]. However, since TCP provides flow control
and congestion control functionalities [29, 30], it cannot fully utilize the network
bandwidth.

5

To increase the utilization of the network bandwidth, three major approaches
were developed by network researchers. The first approach is modifying standard
TCP with congestion control algorithm and other parts. Many TCP variants
have been developed [31–40]. The second approach is developing a new protocol
using UDP [41] that can be also used from the application level [42–47]. The
third one is using multiple concurrent TCP streams [7–9,11–14].
Some proposed methods of the first and second approach can achieve an excel-

lent utilization of network bandwidth as well as the third approach. For example,
MulTCP [31] only uses one logical connection, but it can emulate like a set of
multiple standard TCP connections to achieve high-speed transfer. However, ac-
cording to several performance evaluations among these approaches [48,49], single
stream of the TCP variants cannot overcome multiple simultaneous TCP streams
especially in high Bandwidth-Delay Product (high-BDP) networks. Furthermore,
to aggregate the bandwidth from available multiple paths, multiple TCP connec-
tions are necessary. Therefore, we have decided to focus on the use of multiple
TCP streams in this research. In the following sections, we will discuss more
detail about the technology using multiple TCP streams.

2.1.1 Multiple TCP Streams

Utilizing multiple TCP streams data transfer is an efficient way to achieve high-
speed data transfer in widely-distributed environments. Using multiple TCP
streams in parallel can improve aggregate bandwidth over using a single TCP
stream by mitigating the negative effects of packet loss and slow start mechanism
of TCP. There have been a number of proposed schemes designed for applications
to use multiple TCP streams. We explain these schemes from different layers,
including transport layer, session layer, and application layer.

2.1.2 Multiple TCP Streams in Transport Layer

There are a lot of protocols design at transport layer for utilizing multiple TCP
streams, such as [50–54]. We explain several representative protocols. The Stream
Control Transmission Protocol (SCTP) [50] is a unicast protocol and supports
data exchange between exactly two endpoints. SCTP allows user’s messages to

6

be delivered by multiple streams, but it is not clear how it can achieve the desired
throughput in a congestion scenario.
Multipath Transmission Control Protocol(MPTCP) [14] is an extension of the

TCP/IP stack that has been widely researched. When an application utilizes
MPTCP, only a logical TCP was used by the application. Then MPTCP split
the data from application across multiple subflows, each of which is a conventional
TCP connection. It also provides a congestion control mechanism which takes
care that traffic on a congested path is moved to a link with less congestion.
Hence it adapts the load balancing according to the load of other traffic on the
paths.

2.1.3 Multiple TCP Streams in Session Layer

PATTHEL [12] is a session layer protocol that achieves parallelization by creating
multiple TCP channels between hosts. The protocol uses a dedicated channel
created in first for control channel connection, the rest data channels are used to
transfer data. A received data block from the application layer is divided into
chunks of variable size depending on the channel characteristics. It also provides
an Application Programming Interface (API) for the application developers to
use this protocol. However, the performance of PATTHEL relies on a policy
that supervises the opening and the closing of new channels. It includes a set of
parameters that need to be fine-tuned on a case-by-case basis to achieve optimal
performance.

2.1.4 Multiple TCP Streams in Application Layer

A lot of application-level implementations [7–11] have been proposed for utilizing
multiple TCP streams in application layer. PSockets [8] is a library which helps
wide area applications that need to move large amounts of data. It has the same
API as that of regular sockets. As a use case, it was used by geographically dis-
tributed data-intensive computing application which was designed for high energy
physics data transfer. The evaluation results have shown that the performance
of data transfer was increased obviously.
Other implementations are similar to PSockets which are used in many high-

7

speed data scenarios. Application layer implementation is easy to make users
deploy and utilize. And unlike transport layer implementation, it is not neces-
sary to modify the kernel. In particular, the GridFTP has been commonly used
especially in the field of the computational science research. Therefore, we will
explain GridFTP in detail in next section and utilize GridFTP as the first option
to realize multiple TCP streams in our research.

2.1.5 GridFTP

GridFTP [9, 10] is an extended data transfer protocol of the File Transfer Pro-
tocol (FTP) [55–57], that has been widely used in the Grid computing, and was
standardized by the Global Grid Forum [58]. Normally, GridFTP uses TCP as
its transport layer communication protocol and able to solve several problems of
TCP. For example, besides the features of the existing FTP, GridFTP has addi-
tional useful features such as authentication, data integrity, data confidentiality,
automatic negotiation of TCP buffer/window sizes, striped data transfer, parallel
data transfer, third-party control of file transfer, partial file transfer, security, and
reliable data transfer [59].

Figure 2.1: Parallel data transfer in Globus GridFTP

Most of these specific features of GridFTP are implemented by Globus [9].
Currently, GridFTP server and client software conforming to GridFTP is included
in the Globus Toolkit [60], which is the de facto standard middleware for Grid

8

computing developed and provided by the Globus Alliance. Figure 2.1 shows
parallel data transfer in Globus GridFTP in case of communication between a
client and a sever (Note here that GridFTP also supports data transfer between
a client and multiple servers simultaneously). As we can see, GridFTP has two
channel protocol: control channel and data channel.
When GridFTP client wants to start data transfer, it first opens a control

channel connection to the server side. The control channel is used to specify a
put or get operation and encrypted by default. Then, it will individually open
the number of data channel streams specified by the user. The data channel is
responsible for actual data transfer.

GridFTP with UDT

UDP-based Data Transfer Protocol (UDT) [47,61] is a high-performance data
transfer protocol designed for transferring large volume datasets over high-speed
wide area networks. UDT utilizes UDP to transfer large data with its own reliable
control and congestion control mechanisms. This newly designed protocol can
transfer data at a much higher speed than TCP [47].
We mentioned above, though GridFTP utilizes TCP by default, the archi-

tecture of GridFTP can easily support various transport layer communication
protocol. In the latest release of Globus Toolkit (Version 6.0), GridFTP becomes
more wildly supporting UDT. However, several performance evaluations [62, 63]
show the limitations of UDT. The UDT seems to give better performance on net-
work paths with small latency. Furthermore, in regard to system resources usage,
UDT consumes much more resources when achieving almost same performance
with TCP (The CPU utilization for TCP transfers was in the range of 30-50%,
whereas for UDT transfers it was around 80%. The memory consumption was
around 0.2% for TCP and 1% for UDT). Therefore, we utilize standardized TCP
protocol as the transfer protocol for GridFTP in this research.

Limitations of GridFTP

Like other multiple TCP streams implementation such as MPTCP, even GridFTP
can generate parallel TCP streams, it could only utilize a network which provided

9

by default IP routing. In other words, without additional network traffic engi-
neering techniques, the maximum performance of GridFTP is limited by allocated
network path.
In addition, the number of TCP streams of GridFTP is also an important fac-

tor which affects its performance. If the number of TCP streams is too small,
GridFTP could not fully utilize network resources. In the contrary, if the number
of TCP streams is too large which may cause performance degradation as follow-
ing situations: (1) It would cause network congestion, then the window size per
TCP stream becomes smaller, so TCP timeout would frequently occur. (2) The
overhead of processing TCP protocol stack would increase. Therefore, the optimal
number of TCP connections should be determined based on the network condi-
tions. Nevertheless, how to optimize the number of parallel TCP connections has
not sufficiently been studied and still remains as an open issue. Therefore, it is
necessary to combine a network engineering technique to make GridFTP more
efficient. In the next section, we will discuss the routing techniques for multipath.

2.2 Multipath Routing
Basically, multiple network paths exist between widely-distributed sites. How-
ever, due to the conventional design of the network model, only one of the paths
is usually available for a communication. We discussed the benefit of multiple
TCP streams in the previous section. However even if the applications use mul-
tiple TCP streams in parallel, those multiple TCP streams are basically routed
according to the default IP routing protocol (such as BGP [64], RIP [65] and
OSPF [66,67]), and only a single shortest path among the multiple paths is used
for the data transfer. The primary reason for this problem is that the applica-
tions are unaware of the information on the network layer. Therefore, there is
still much room for improvement in data transfer by applying multipath routing
technologies using different multiple paths simultaneously.
Multipath routing is a routing technique that aims to provide multiple alter-

native paths by utilizing the underlying physical network. This technique can
achieve many benefits for many network functions, such as load balancing, fault
tolerance, and higher bandwidth utilization. To realize multipath routing, the

10

approaches of the implementing can be divided into three major designs includ-
ing source or hop-by-hop routing, centralized or distributed routing and static
or dynamic routing. We divide the multipath routing methods into source and
hop-by-hop routing to explain from the perspective of route computation.

2.2.1 Source Multipath Routing

In source routing (path addressing), all the routing information from source to
destination is first collected at the source side, then the source side can partially
or completely specify the route to the packets which towards the destination
side. Since source routing can meet the requirements of different applications,
it is a good way to achieve optimization of path routing. The key point of this
routing mechanism is discovering the routes between sites through exchanging
control messages, and many studies [68–75] have been devoted to source multipath
routing approach. We explain several typical studies as follows.
To support a more flexible traffic engineering in IP-based networks, the mul-

tiprotocol label switching (MPLS) [76] where IP packets are switched through
the pre-established Label Switched Paths (LSPs) by signaling protocols and has
widely deployed in internet service providers (ISPs). For example, Seok et al. [77]
proposed a dynamic multipath traffic engineering scheme which utilizes source
routing and MPLS traffic engineering with a constraint on the total number of
hops and paths.
In addition, the method to realize global-scale source multipath routing is a

big challenge [78]. Internet separates routing into intradomain routing and in-
terdomain routing. The intradomain routing focuses on optimal routing within
a single autonomous system (AS), while the latter focuses on ensuring routing
between multiple ASs. The Border Gateway Protocol (BGP) [64] is the de facto
interdomain routing protocol of the global-scale Internet. However, most routing
mechanisms based on BGP are not optimal in terms of cost, performance or re-
liability. Therefore, many studies such as BANANAS [69], new Internet routing
architecture (NIRA) [72] diverse new mechanisms or techniques to adapt BGP
protocol and make the adjustment possible in AS-level, which can make source
side able to utilize multipath.

11

2.2.2 Hop-by-Hop Multipath Routing

In hop-by-hop routing, the source side cannot make a decision on packets to
go through expected network path. The forwarding decisions are made by each
node (or network device) which connects source and destination. Each node
forwards a packet to a specified link based on the destination address of incoming
packet header and its corresponding longest prefix match entry in the forwarding
table stored in memory. Hop-by-hop routing is the most famous and widely used
technique in IP networks.
To realize multipath by using hop-by-hop routing. Equal Cost Multipath

(ECMP) [66,79] is a multipath routing technique that has been adopted in many
routing protocols like OSPF and Intermediate System to Intermediate System
(ISIS) [80]. A network device with ECMP distributes the load equally over mul-
tiple equal-cost paths and utilizes simple round-robin method. Since ECMP is
designed for equal-cost networks and will not exhibit multipathing when path
costs are not equal. Some studies [67, 81] have extended ECMP and make it
available over unequal paths.
There are also some extended version of BGP routing proposed to realize hop-

by-hop multipath routing [82–85]. For example, R-BGP [84] applied multipath
routing to hierarchical networks including different ASs. Besides the primary
multiple paths, there are also some additional paths served as backup paths,
which aims to maintain connectivity even in case of multiple paths failure. Yet
another multipath routing (YAMR) [85] is another BGP extension. It can be
used to construct multiple paths and establish concurrent transmission in hierar-
chical networks. YAMP also provides reliable communication against any single
interdomain link failure and it is able to reduce control overhead by isolating
failures.

2.2.3 Problems of Current Multipath Routing

All the current multipath routing as we shown are utilized additional header/label
or extended routing protocols. However, these multipath routing methods would
cause additional overhead in both the control and data planes.
In control plane, exchanging the extra topology or path information required

12

for multipath routing would consume extra network bandwidth and processing
resources. Computing multiple paths would require more computational power
on each node. In data plane, forwarding traffic on different paths requires the
data packets to carry an extra header or label and this would consume more
memory.
Furthermore, these methods are not easy to implement and adapted to the

entire Internet. Without entire control over the end-to-end network, it is not
possible to provide an appropriate multipath routing. Due to limitations of the
current network, Software-Defined Networking (SDN) technique which separates
control plane and data plane are necessary for the future network. Therefore, we
can utilize SDN to provide feasible multiple routing mechanisms and distributes
the multiple TCP streams of the application into multiple network paths.

2.3 Software-Defined Networking and OpenFlow

2.3.1 Software-Defined Networking

Software-Defined Networking (SDN) is an emerging concept that is dynamic,
manageable, cost-effective, and adaptable for the future network. SDN is ex-
pected to meet for the high-bandwidth, dynamic nature of today’s applications.
By separating the network control and forwarding functions, SDN makes the net-
work control to become directly programmable and the underlying infrastructure
to be abstracted for applications and network services.
In conventional networking, data plane and control plane are implemented in

the firmware of network equipment, such as routers and switches. Data plane
processes the movement of actual data which entering the network equipment.
Control plane deals with routing decision such as making a decision on where
to send frames or packets. Those control planes which are implemented in the
different networking devices, cooperate with each other and decide the behavior
of the entire network.
Figure 2.2 illustrates the SDN architecture, which consists of three layers. The

lowest layer is the infrastructure layer, also called the data plane. Data plane
comprises the forwarding network equipment. The responsibilities of the data

13

Figure 2.2: A three-layer Software-Defined Networking architecture.

plane are mainly forwarding data, as well as monitoring local information and
gathering statistics.
One layer above is the control layer, also called the control plane. It is re-

sponsible for programming and managing the data plane. Control plane uses the
information provided by the data plane and defines network operation and rout-
ing. It comprises one or more software controllers that communicate with the
forwarding network elements through standardized interfaces, which are referred
to as southbound interfaces. We describe OpenFlow, a protocol option for the
southbound interface in section 2.3.2.
The top layer is application layer. This layer contains network applications

that can introduce new network features, such as security and manageability,
forwarding schemes or assist the control layer in the network configuration. The
application layer can receive an abstracted and global view of the network from

14

the controllers and use that information to provide appropriate guidance to the
control layer. The interface between the application layer and the control layer
is referred to as the northbound interface.

2.3.2 OpenFlow

Figure 2.3: Overview of an OpenFlow network.

To realize the SDN concept, one of the most used standard protocols for south-
bound interfaces is OpenFlow, which is standardized by the Open Networking
Foundation (ONF). Figure 2.3 shows the overview of an OpenFlow network. The
OpenFlow network separates the data plane from the control plane and consists
of three basic concepts.
The first concept is the OpenFlow network is connected with OpenFlow switches

that compose the data plane. An OpenFlow switch is a basic data forwarding
network equipment that forwards packets according to its own flow table. This

15

table holds a set of flow entries, each of which consists of match fields, counters,
and instructions. Flow entries are also called flow rules.
Second concept is the control plane consists of one or more OpenFlow con-

trollers. The OpenFlow specification defines the protocol that enables the con-
troller to instruct the switches. By insertion, modification and removal of flow
entries inside OpenFlow switches, the OpenFlow controller is able to modify
and influence the network. The part of OpenFlow controller is programmable.
There are also a lot of frameworks for developing OpenFlow controller, such
as Trema [86], POX [87], NOX [88], Floodlight [89], BEACON [90], OpenDay-
light [91], Ryu [92].
Lastly, the communication procedure between the data plane and the control

plane is specified by OpenFlow protocol. In particular, OpenFlow controller
and OpenFlow switches communicate with each other through a secure control
channel.
As shown above, OpenFlow can provide a flexible programming network and

make the network easy to manage. Hence, unlike traditional TCP/IP protocol,
OpenFlow is the good option that provides flexible traffic engineering. We can
utilize OpenFlow to provide multipath and distribute the multiple TCP streams
of GridFTP into the different paths to aggregate more bandwidth. Therefore, we
will combine SDN with GridFTP to propose a high-speed data transfer system.

2.4 Related Work
There have been a number of proposed schemes for providing multipath to ap-
plications [93–95]. Some of them have the similar approach to our study. We
describe several examples as follows.
Kissel et al. developed a new session layer protocol, called Phoebus, and made

it available from the applications by taking advantage of the Dynamic Circuit
Network (DCN), which is deployed on national academic research networks such
as Internet2 [96]. Phoebus provides Phoebus Gateways (PGs), which hide differ-
ent transport layer protocols such as UDT [61] and TCP behind the session layer,
and offer an easy method to improve the throughput for general applications.
In addition, Dan et al. extended the research idea of Kissel et al. and pro-

16

posed a system that improves the network throughput by assigning multiple TCP
streams to different multiple paths brought on the conventional IP-based rout-
ing, the DCN provided by Phoebus and the OS3E of Network Development and
Deployment Initiative (NDDI) [97]. NDDI/OS3E is a service that builds Layer 2
networks dynamically on their OpenFlow network infrastructure.
The research of Kissel et al. leveraged high-speed circuits brought by the DCN

of Internet2 and made the multiple transport protocols available on the DCN.
However, their method does not provide an interface for the users to control
routing paths inside the Internet2. Once, a path is provided through the DCN,
the provided path is just statically used for the multiple TCP streams of applica-
tion. Dan et al. use a Layer 2 network dynamically built upon their OpenFlow
network provided by NDDI/OS3E. However, the users cannot control each in-
dividual routing inside the NDDI/OS3E. The routes for the Layer 2 network is
determined at the time it is created on the OpenFlow network. Therefore, Dan
et al.’s system also just assigns the multiple routes provided by NDDI/OS3E to
the multiple TCP streams of application. Therefore, those two approaches are
not flexible enough to optimize multiple paths between widely distributed sites.
However, recently, the optimization of the network layer based on the requests

from the application layer has been gathering much attention with the develop-
ment of the OpenFlow network. The Research Infrastructure for large-scale net-
work Experiments (RISE) service provided by Japan Gigabit Network eXtreme
(JGN-X) is one of the services that allow users to control individual OpenFlow
switches of the service [98, 99]. Considering the recent trend of the research,
it is necessary to optimize multipath assignment by controlling the individual
switches under an environment where OpenFlow switches are available for end-
to-end communication.
Although the above existing researches tried to generate multiple TCP streams

at the application level, a method generating multiple TCP streams at the sys-
tem level, Multipath TCP (MPTCP), has also been proposed recently. There is
also a research [54] that combines MPTCP and OpenFlow to achieve high-speed
data transfer. However, the research also did not consider an environment where
OpenFlow switches are available for end-to-end communication. In terms of rout-
ing multiple TCP streams, the difference between multiple streams of application

17

level and multiple streams of MPTCP does not matter essentially. In this study,
we evaluate our proposed method with application-level multiple streams us-
ing GridFTP, because GridFTP has already been widely used for multiple TCP
streams while MPTCP is not available widely.

18

3 SDN-enabled GridFTP

To achieve further high performance by using multiple TCP streams, it is nec-
essary to provide available multipath. As we discussed in the session 2.3, us-
ing OpenFlow technique is a possible solution to realize multipathing routing.
Therefore, we propose the SDN-enabled GridFTP that achieves high-speed data
transfer by assigning multiple TCP streams of GridFTP to different paths in the
environment where OpenFlow network are available for the communication. By
aggregating the available bandwidth from multiple different paths, SDN-enabled
GridFTP would improve the performance of data transfer drastically.
In this chapter, we explain the approach and design of our high-speed trans-

fer system. We also describe the implementation details of our proposed SDN-
enabled GridFTP system, including a multipath selection algorithm, a multipath
OpenFlow controller and a new extended Globus XIO Driver.

3.1 Approach and Design

In this study, we propose a system that tries to improve the data transfer perfor-
mance of GridFTP by assigning parallel TCP streams of GridFTP to a number
of different paths in the environment where OpenFlow switches are available
for end-to-end communication. By aggregating the available bandwidth from
multiple different paths, the performance of data transfer would be improved
drastically.
Usually, there are several network paths between different sites. However, one

of the shortest paths is used solely for data transfer in the default IP routing.
Figure 3.1 shows the parallel transfer of the conventional GridFTP. GridFTP tries
to increase the data transfer performance by creating multiple TCP streams on
a single network path and by fully utilizing the bandwidth of the path. However,

19

Figure 3.1: Parallel transfer of the conventional GridFTP

the line speed is limited to the selected network path. Therefore, the maximum
bandwidth is limited even if GridFTP uses multiple TCP streams on the selected
path.
Figure 3.2 shows our proposed parallel transfer of GridFTP in an OpenFlow

network. We try to aggregate multiple routes to increase the available bandwidth
by assigning each of multiple TCP streams to different routes. In this study,
we construct an OpenFlow controller that dynamically calculates available paths
using breadth-first search between sites based on the request from the applications
and allocates the calculated routes for the applications.
The purpose of this study is to improve the data transfer performance by

using GridFTP. However, we carefully designed the system not to depend on
GridFTP. We have designed general interfaces to request multiple routes so that
any application can request multiple routes for data transfer. The following two
functionalities are designed for the purpose: 1) Searching the specified number
of paths between sites and holding the found paths for later use; 2) Installing
appropriate flow entries into OpenFlow switches in response to the request of
TCP connection from applications.

20

Figure 3.2: Parallel transfer of our proposed GridFTP over OpenFlow network

The reason why we have two separate functions to assign multiple paths is that
the TCP port numbers used for a communication are not determined until just
before opening the TCP connection. Since the multiple TCP streams of GridFTP
have the same source and destination IP addresses, we utilize the port number of
each TCP stream to distinguish and distribute multiple TCP streams. To install
a flow entry into an OpenFlow switch, we need information on a set of source
and destination addresses and TCP port numbers. Therefore, we search multiple
available paths between sites first when the source and the destination addresses
are provided. Then, we create actual flow entries when TCP port numbers are
determined. Thus, we designed two separate functions to find multiple available
routes and assign the routes for each actual TCP connection.

21

3.2 Implementation
To meet the functionalities of our proposed SDN-enabled GridFTP system as we
described in the previous section, we develop our proposed SDN-enabled GridFTP
system by implementing a multipath selection algorithm, a multipath OpenFlow
controller and a new extended Globus XIO Driver.

3.2.1 Multipath Selection Algorithm

Algorithm 1 Algorithm for calculating N paths from A to B
Require: A, B ∈ Switches; N ≥ 0

1: G(V, E)⇐ NetworkTopology(Switches, Links)
2: srating from vertex A

3: create a queue Q

4: mark A as visited and put A into Q

5: while Q is non-empty do
6: remove the head v of Q

7: mark and enqueue all unvisited node
8: if B is neighbours of v then
9: path is found

10: AllPaths⇐ path

11: end if
12: end while
13: if 0 < N < length(AllPath) then
14: SelectedPaths = N paths from AllPaths in order
15: return SelectedPaths

16: else
17: SelectedPaths = AllPaths

18: return SelectedPaths

19: end if

Whether or not the controller can provide an appropriate multipath set for
the GridFTP directly affects the data transfer performance of GridFTP. There
are many algorithms to choose multiple paths from source to destination. Since

22

we will use a prediction model (explained in section 4) to calculate the optimal
number of TCP streams for each path and optimize multiple TCP streams ac-
cording to network condition of each path, we can fully use the assigned network
resources. Therefore, we do not focus so much on optimizing the path selec-
tion, and utilize a simple searching algorithm, breadth-first search algorithm, to
calculate available paths.
Algorithm 1 describes the method to find multipath for our system. Our mul-

tiple OpenFlow controller gathers the connection information from OpenFlow
switches which connect to the controller. By utilizing the gathered information,
the controller can make a network topology graph. When a request for N paths is
made to the controller, the controller first utilizes breadth-first search algorithm
to calculate all available paths between the source and destination. Then the
controller will provide paths according to the number N specified by the users.
If N is less than the number of total calculated paths, the controller will return
the N paths from all paths in order. Otherwise, all paths will be returned by the
controller. If the user specify 0 as N , the controller also returns all path set.

3.2.2 Multipath OpenFlow Controller

There are a lot of frameworks for developing OpenFlow controller as shown in sec-
tion 2.3.2. We developed our multipath controller using Trema (version 0.4.6) [86],
a framework for developing OpenFlow controllers in Ruby and C. We developed
our controller based on the routing_switch controller [100] included in Trema
Apps [101]. Trema Apps is a sample application set for Trema. Routing_switch
controller is a simple OpenFlow controller that calculates the shortest-hop path
between hosts using Dijkstra’s algorithm and installs flow entries into the Open-
Flow switches for the path. Our controller utilizes this default shortest-hop rout-
ing for the normal communications that do not request multipath routing.
We have implemented the two functionalities mentioned in the previous section,

1) Searching the specified number of paths between sites, and 2) Installing flow
entries into OpenFlow switches, on our OpenFlow controller. In order to realize
these two functionalities, we implemented two interfaces called AssignMultipath
(for functionality 1) and MakePath (for functionality 2).
In addition, as mentioned previously, we have designed the controller so that

23

any other applications than GridFTP can utilize the controller. For the pur-
pose we implemented the two functionalities as common XML remote procedure
call (XML-RPC) [102] interfaces. XML-RPC is designed as a simple protocol
allows software running among heterogeneous operating systems or different en-
vironments to make procedure calls across the network. It utilizes HTTP as the
transport of remote procedure calling and XML as the encoding. XML-RPC
implementations can be available under any kind of operating systems, program-
ming languages, dynamic and static environments. In this study, we utilized
C++ implementation of the XML-RPC (version 0.7) to realize the interface of
our controller.
Listing 3.1 describes the XML interface for the request to the AssignMultipath.

The request includes three parameters, src_ip, dst_ip and path_num. The
src_ip indicates the IP address of source host. dst_ip specifies the IP address
of destination host. The path_num is the number of paths which user want to
utilize for data transfer. As mentioned in the previous section, AssignMultipath
calculates the available multipath using Algorithm 1 and also calculates the opti-
mal number of TCP streams to be used by using the proposed prediction model
of optimal TCP stream assignment.
Listing 3.2 describe the XML interface for the response from the AssignMul-

tipath. AssignMultipath responses two values, path_set_id and tcp_num. The
path_set_id is a unique ID identifying the assigned paths set which will be used
later for calling the MakePath interface. The tcp_num specifies the predicted
optimal number of multiple TCP streams that should be used by the application.
Listing 3.3 describes the XML interface for the request to the MakePath. This

request was made by the application when it opens a new TCP connection.
The request includes two parameters, path_set_id and tcp_port_num. The
path_set_id specifies the unique ID identifying the path set assigned by As-
signMultipath. The tcp_port_num is the source TCP port number of each TCP
stream which is used by the application. MakePath retrieves an available path
from the specified path set and install flow entries on the OpenFlow switches
along the path accordingly. When MakePath has successfully installed the flow
entries it just closes the connection of the XML-RPC call without any response.

24

� �
<?xml version=" 1 .0 " ?>
<methodCall>
<methodName>AssignMult ipath</methodName>
<params>
<param><value>
<struct>
<member>
<name>src_ip</name>
<value>
<string> source IP address </ string>

</value>
</member>
<member>
<name>dst_ip</name>
<value>
<string> de s t i n a t i on IP address </ string>

</value>
</member>
<member>
<name>path_num</name>
<value>
<int> path number s p e c i f i e d by user </ int>

</value>
</member>

</ struct>
</value></param>

</params>
<methodCall>

Listing 3.1: The XML-RPC request to AssignMultipath

� �

25

� �
<?xml version=" 1 .0 " ?>
<methodResponse>
<params>
<param><value>
<struct>
<member>
<name>path_set_id</name>
<value><int>
A unique ID i d e n t i f y i n g the as s i gned paths

</ int></value>
</member>
<member>
<name>tcp_num</name>
<value><int>
the number o f mu l t ip l e TCP streams
that should be used by GridFTP

</ int></value>
</member>

</ struct>
</value></param>
</params>

</methodResponse>
Listing 3.2: The XML-RPC response from AssignMultipath

� �

26

� �
<?xml version=" 1 .0 " ?>
<methodCall>
<methodName>MakePath</methodName>
<params>
<param><value>
<struct>
<member>
<name>path_set_id</name>
<value><int>
A unique ID i d e n t i f y i n g the path s e t
a s s i gned by AssignMult ipath

</ int></value>
</member>
<member>
<name>tcp_port_num</name>
<value><int>
The port number o f each TCP stream

</ int></value>
</member>

</ struct>
</value></param>
</params>

</methodCall>
Listing 3.3: The XML-RPC request to MakePath

� �

27

3.2.3 Globus XIO Driver for SDN-enabled GridFTP

In this study, we tried not to modify the design of the current GridFTP too much,
and we carefully minimized the modifications, so that we can easily and widely
apply the proposed implementation to the existing GridFTP deployment. For
the purpose, we implemented the required functionality to support our proposed
system as one of the Globus XIO [9] communication drivers that GridFTP uses as
a communication library. Since the implementation of GridFTP is separated from
that of the Globus XIO libraries, the modification of XIO libraries does not affect
the implementation of the GridFTP. Globus XIO is a plug-in framework of the
I/O libraries that are implemented in Globus Toolkit [60]. In our implementation,
we utilized the Globus Toolkit 5.2.5 which is a stable version and compatible with
our environment.
Globus XIO allows applications to support various protocols and file formats by

implementing plug-ins for each different communication method and file and stor-
age access method. Figure 3.3 illustrates the Globus XIO architecture. Globus
XIO is comprised of two main components: framework and driver stack. The
Globus XIO framework manages I/O operation requests that an application
makes via the user API. The framework does not manipulate or deliver the data
in an I/O operation; the drivers do all of that work. The task of the framework
is to manage requests and map them to the interface of drivers.
Driver stack of Globus XIO has many types of drivers. The drivers are re-

sponsible for manipulating and transporting the data from the user. There are
two types of drivers: transform and transport. Transform drivers are responsible
for manipulating the data buffers passed to it via the user API and the XIO
framework. Transport drivers are responsible for sending the data over a wire.
When an I/O operation is requested, the Globus XIO framework passes the oper-
ation request to every driver in the order the drivers are in the stack. When the
bottom-level driver (the transport driver) finishes shipping the data, it passes the
request completion notification back to the XIO framework. Globus XIO then
delivers the notification back up the stack in this manner until it reaches the top,
at which point the application is notified that its request is completed.
In addition, there must be only one transport driver in a driver stack, and

the transport driver must be at the bottom of the stack. The reason is that the

28

Figure 3.3: Globus XIO architecture

transport driver is responsible for the actual data move on a network path. The
protocols that use multiple transport drivers have to construct multiple stacks.
For example, a protocol that uses TCP for exchanging control information and
UDP for transferring the actual data needs two different stacks: one with TCP
as a transport and the other with UDP as the transport driver. Any number of
transform drivers can be in a stack. Since we utilize GridFTP with only TCP
protocol, we just need to provide one driver stack including a new transport
driver.
In this study, we created a new communication driver based on the standard

XIO TCP driver which is one of built-in default drivers in Globus XIO. We
implemented our communication driver establishes TCP connections in collabo-
ration with our multipath OpenFlow controller so that each connection can take
different paths. As we mentioned in the previous section, multipath OpenFlow

29

controller needs information on a set of source and destination addresses and TCP
port numbers to install flow entries to OpenFlow switches. Furthermore, since
the source and destination addresses of multiple TCP streams of GridFTP are
same, we have to provide the source TCP port number to OpenFlow controller
in order to distinguish the different TCP streams. For the purpose, we modified
the following function in the default XIO TCP driver.

globus_xio_tcp_driver.c:

globus_l_xio_tcp_bind(
globus_xio_system_socket_t fd,
const struct sockaddr * addr,
int addr_len,
int min_port,
int max_port,
globus_bool_t listener)

This function is used to bind a specific port number to a newly opened TCP
socket. Therefore, we added the following codes so that it tells the assigned source
TCP port to the controller by calling the XML-RPC function.

if(!first_local_bind) {
char *MPATH_ASSIGNMENT_ID;
MPATH_ASSIGNMENT_ID = getenv("MPATH_ASSIGNMENT_ID");
makepath(atoi(MPATH_ASSIGNMENT_ID),port);

}

Since GridFTP opens a TCP based control connection before data transfer.
We make the control connection utilize the default shortest path provided by
the OpenFlow controller. Hence, the second and later source port number of
TCP streams will be used in our implementation. The MPATH_ASSIGNMENT_ID is
an environment variable which includes the unique ID of the path set assigned
by AssignMultipath of OpenFlow controller. The XML-RPC client will send a
request to the OpenFlow controller with the source TCP port number and the
unique ID.

30

In this way, when GridFTP tries to open a new TCP stream for data transfer,
the proposed new XIO driver informs the source TCP port number to the mul-
tipath OpenFlow controller behind the call. This approach allows the GridFTP
to support our OpenFlow network without any modifications on the GridFTP
itself. Also, other applications using Globus XIO may benefit from the proposed
system.

31

4 Prediction Model to Optimize
TCP Stream Assignment in
Multipath Routing

In section 3, we proposed a multipath controller that improves the data transfer
performance by assigning parallel TCP streams of GridFTP to a number of dif-
ferent paths in the environment where OpenFlow switches are available for end-
to-end communication. By aggregating the available bandwidth from multiple
different paths, the performance of data transfer would be improved drastically.
However, to achieve the best performance using multiple paths, the strategy

of how many TCP streams should be assigned for each path is also an important
factor. The simplest method is to create enough TCP streams and distribute
these TCP streams equally over the multiple paths. However, this is obviously
inefficient in terms of resource usage. Therefore, it is necessary to figure out the
optimal combination of multipath and the number of parallel TCP streams.
We therefore tried to develop a method to determine optimal numbers of par-

allel TCP streams to be assigned for each path according to its own network
condition. There are many factors affecting the transfer speed in a network con-
nection; the two major factors are the bandwidth and the latency. Since each
network path has different bandwidth and latency, the optimal number of par-
allel TCP streams to get the best performance may be different for each path.
In order to develop a prediction model to determine optimal numbers of TCP
streams, we figured out the relationship between the optimal number of TCP
streams and network conditions.

32

4.1 Goal of the Prediction Model
Our purpose of developing a prediction model is to calculate the optimal number
of TCP streams for each network path according to its own network condition.
Multiple TCP streams can increase the utilization of network bandwidth by ag-
gregating the performance that each TCP achieved.

Figure 4.1: Relationship between achieved bandwidth and number of parallel
TCP streams in high Bandwidth-Delay Product networks (An ex-
perimental result of data transfer from our network testbed)

Figure 4.1 shows an experimental result of data transfer from our network
testbed. In this case, when we increase the number of parallel TCP streams, the
achieved bandwidth also increases. However, when we increase the number of
parallel TCP streams more than 4, the achieved bandwidth stops increasing and
begin to decrease slowly.

33

The reason for this phenomenon is with the increasing of the number of parallel
TCP streams, the overall rate of recovery from packet loss will increase until the
congestion occurs in the network. After this critical point, the number of TCP
streams and the amount of congestion become affecting the packet loss rate. The
increasing of packet loss rate indicates that the network is congested, and the
TCP sender should reduce its congestion window. If we continuously increase
the number of parallel TCP connections, the higher packet loss rate will decrease
the impact of multiple TCP streams, the aggregate TCP bandwidth will stop
increasing, or begin to decrease. Therefore, calculating the critical point is the
key point of the prediction model.

4.2 Proposed Prediction Model
There are several existing researches to predict the maximum network throughput
with multiple TCP streams. However, little research has been conducted to find
the optimal number of TCP streams that can achieve the maximum throughput.
Therefore, we derived the prediction model for an optimal number of TCP streams
based on some existing models for the network throughput.
According to Hacker et al Model [103], when an application opens a single

stream, the maximum network throughput can be represented as:

Th <= MSS

R

c0√
p

. (4.1)

Th represents the maximum throughput, MSS is the maximum segment size of
TCP, R is the round trip time, p is the packet loss rate and c0 is a constant.
Hacker et al [103] also claim that the aggregated throughput of parallel streams

can be calculated with the throughput of a single stream multiplied by the number
of streams. In addition, Dinda et al [104] show p would increase as the number
of parallel streams increases and the network gets congested. Therefore, Eq. (1)
can be rearranged for n streams as:

Thn <= MSS × c0

R

(
n
√

pn

)
. (4.2)

n represents the number of parallel streams, pn is the packet loss rate when

34

n streams are used on the network. If we use too many streams, pn increases
dramatically and Thn decreases.
According to [105], the packet loss rate in a network, pn, is determined only by

the available bandwidth(B)-latency(R) product per TCP connection (i.e., BR/n)
and can be represented as:

pn =
(

c1

(
BR

n

)2
+ c2

BR

n
− c3

)−1

. (4.3)

c1, c2 and c3 are constant and positive numbers.
After placing pn in Eq. (2), the total achievable throughput Thn is calculated

as follow:

Thn <= MSS × c0

R

 n√(
c1
(

BR
n

)2
+ c2

BR
n
− c3

)−1

 . (4.4)

Since Eq. (4) is a convex upward function, we can get an optimal n that
maximizes the Thn by solving the following partial differential equation for n:

∂Thn

∂n
= 0. (4.5)

If we assume MSS is a relatively static value, the solution of Eq. (5) is given
by the following equation:

n = c1

2c3
BR. (4.6)

Since c1 and c3 are constants, Eq. (6) can be simplified as follows with a single
constant value, a:

n = aBR. (4.7)

Since n is actually the number of TCP streams, it should be equal to or greater
than 1. The equation can be therefore written as:

n = max(1, aBR). (4.8)

This result seems to be too simplified. However, we got this result by just
combining the existing known models for the maximum aggregated bandwidth

35

and the packet loss rate, as calculated in the above. Also, this result matches
intuitive expectations. If we have a larger bandwidth-delay product the number
of optimal parallel TCP streams will increase accordingly.
The constant values, from c1 to c3, which define the packet loss rate, are de-

termined by the characteristics of the network we use. Therefore, the constant
value, a, in Eq. (8) will be also determined by the characteristics of the network.
To determine the value, a, we need to measure several combinations of n, B and
R. We will verify the prediction model in the next section.

4.3 Verification of Prediction Model

Figure 4.2: Transfer time (sec) of 2GB file with 50 Mbps link

To verify the validity of the prediction model, we have conducted a large amount
of data transfer experiments with various network conditions by changing avail-
able bandwidth and latency. For the data transfer experimental environment, we
prepared two virtual machines with two CPU cores and 2 GB memory on different
physical VMware ESX machine equipped with two Intel Xeon E5649 processors
and 48 GB memory. The physical machines were connected with a single 1 Gbps
network switch. Traffic control tool (tc) of Linux [106] was used to configure the
available bandwidth and latency between the two virtual machines.

36

In order to calculate the constant value, a, of Eq. (4.8) in our virtual envi-
ronment, we have measured the time needed to transfer a file of 2 GB from one
host to another host under different conditions where the available bandwidth is
limited to 50 Mbps or 100 Mbps with changing the added latency from 0 to 140
ms.

Figure 4.3: Relationship between the optimal number of TCP streams and the
latency

Figure 4.2 shows the part of the observed data in the case where the available
bandwidth is limited to 50 Mbps. We have repeated this measurement 12 times
for each case. The data presented in Figure 4.2 reflects the average of 10 trials
excluding the highest and lowest ones. In the Figure, the best results for each
different latency are highlighted with red. For example, we can see that using 4
TCP streams achieved the best performance where the latency is configured to
60ms.
Using the measurement results, we can calculate the constant value, a. From

the result of the average value calculated with the measurement results, we deter-
mined that a is about 0.001495 in our virtual environment. And at section 6.1,

37

we will use this parameter to conduct experiments in our virtual experimental
environment.
Figure 4.3 plots the measured optimal numbers of TCP streams and the pre-

dicted lines based on our proposed model. We can see that the measured values
are very close to our prediction results. The result also demonstrates the effec-
tiveness of our proposed prediction model. Therefore, by using Eq. (4.8), we
can calculate the optimal number of TCP streams if the available bandwidth and
latency are given.

38

5 Use Case of SDN-enabled
GridFTP

We explained the implementation of SDN-enabled GridFTP and an optimal TCP
assignment prediction model in the previous section. In this chapter, we introduce
the target and mechanism of our proposed system.

5.1 Taget of SDN-enabled GridFTP
As we explained in the section 1.2, our proposed system aims to provide a high-
speed data transfer service to the computational science research projects. Es-
pecially, some data-intensive scientific projects consume significant networking
resources which are supported by the specialized network, such as NRENs. How-
ever, traditional network routing techniques limit the performance of data trans-
fer. Therefore, to meet the needs of these scientific projects when using specialized
network resources, our proposed system, SDN-enabled GridFTP utilizes multi-
ple paths simultaneously and optimization TCP assignment prediction model to
achieve the high-speed transfer of large-scale data.
In the current implementation of SDN-enabled GridFTP, we only consider

one user utilizing high-speed data transfer service. It is because SDN-enabled
GridFTP calculates the optimal TCP streams number for each network path to
fully utilize network resource, and it will cause unfairness to the other network
users. We will discuss this problem in the section 7.4

39

5.2 Mechanism of SDN-enabled GridFTP
In order to utilize our proposed system, users need to go through a two-step
process. The first step is acquiring available multiple paths using the AssignMul-
tipath; the second step is the deployment of actual flow entries using MakePath.
Since the first step for acquiring multiple paths is a preprocessing step before
the actual communication starts, we created a lightweight client program called
assign_mpath just for calling the AssignMultipath interface. Also, we imple-
mented an XIO driver to access the MakePath interface for the second step and
implemented the XIO driver to be called from GridFTP.
The actual execution procedure of program is as follows:

> ./assign_mpath <controller_address> <port> <src_ip>
<src_mac> <dst_ip> <path_num>

> MPATH_ASSIGNMENT_ID=<id> globus-url-copy -p <path_num>
<Source_URL> gsiftp://<Destination_URL>

The assign_mpath program requires the IP address of the multipath OpenFlow
controller (controller_address), the port number of the controller (port), the
source IP address (src_ip), the source MAC address (src_mac), the destination
IP address (dst_ip) and the number of paths needed to be assigned (path_num).
assign_mpath outputs the number of assigned paths and an assignment ID. This
assignment ID is a unique ID identifying the assigned paths and will be used later
for calling the MakePath interface.
The globus-url-copy is a GridFTP client provided by the Globus Toolkit. It is

a scriptable command line tool that can do multi-protocol data movement. The
option p with path_num) specifies the number of parallel data connections that
should be used. The Source_URL specifies the original URL of the file(s) to be
copied. If this is a directory, all files within that directory will be copied. The
option gsiftp:// exactly specifies the GridFTP protocol as the data transfer
protocol. The Destination_URL specifies the URL where you want to copy the
files. In addition, we use an environment variable, MPATH_ASSIGNMENT_ID in order
to give the assignment ID to our developed XIO driver. The globus-url-copy is
therefore launched with the variable, MPATH_ASSIGNMENT_ID.

40

Figure 5.1: Overview of our proposed multipath controller and GridFTP

41

Figure 5.1 illustrates the proposed system. The proposed system performs the
following steps:

• First, in (1), a user launches the assign_mpath program. It accesses the As-
signMultipath interface implemented on our multipath OpenFlow controller,
and requests available paths and optimal parallel TCP streams from Host
A to Host B.

• Next, in (2), the AssignMultipath calculates the available paths with the
breadth-first search algorithm from Host A to Host B based on the topol-
ogy of the OpenFlow network. The AssignMultipath secures the specified
number of available paths and returns the number of paths with an as-
signment ID to the user. The assignment ID will be used to refer to the
assigned paths for later use. The AssignMultipath also calculates the op-
timal number of TCP streams for each secured path according to optimal
TCP stream assignment prediction model. The total number of each path’s
optimal TCP streams will be also returned to the user for specifying the
option p of globus-url-copy.

• Then, the user starts the GridFTP client with the assignment ID and spec-
ifies the number of parallel TCP streams obtained in the previous step.

• In (3), our implemented XIO driver loads the assignment ID. Then, the
XIO driver accesses the MakePath interface on the OpenFlow controller
and requests to create an individual path each time the GridFTP client
opens a TCP stream via the XIO driver.

• In (4), the MakePath finds the set of paths assigned by the AssignMultipath
using the assignment ID and acquires a path from the path set, and then
installs flow entries into the OpenFlow switches for the requested TCP
stream. The MakePath creates flow entries using the source and destination
IP addresses and the source TCP port number as match conditions and
installs the flow entries to each OpenFlow switch for the path.

• Finally, the requested TCP stream starts the communication according to
the assigned route. Steps (3) and (4) are applied repeatedly for the subse-
quent TCP streams.

42

6 Evaluation and Results

To verify the effectiveness of the proposed system, we performed evaluations
comparing the performance of the GridFTP with as well as without our proposed
method. For retrieving the best possible performance, we conducted the evalua-
tions in a virtual environment first. We then also performed some evaluations on
a real global-scale environment to evaluate the practicality of our proposal.

6.1 Experiments using a Virtual Environment
In our virtual environment, we conducted our experiments over a simple topology
to confirm if our proposed system can achieve the expected results. Furthermore,
we designed another more realistic topology, which has some overlapped links
among different paths, to verify the effectiveness of our system.

6.1.1 Virtual Experimental Environment

Figure 6.1 shows the overview of the experimental virtual environment. We in-
stalled the GridFTP on two machines: Host A and Host B, and used these
two machines as a client and a server respectively. In this experiment, due
to lack of hardware OpenFlow switches resources, we have prepared multiple
hosts called, Switch Hosts, installing software-based implementation of OpenFlow
switch, Open vSwitch [107]. We deployed these Switch Hosts between Host A
and B, and constructed an OpenFlow network which has multiple paths between
Host A and B.
Our experimental virtual environment is constructed on six virtual machines

deployed on each of six physical VMware ESX machines equipped with two Intel
Xeon E5649 processors and 48GB memory. We assigned two virtual cores and
2GB memory for each virtual machine, and setup CentOS 6.5 on each of them.

43

Figure 6.1: Overview of the virtual experimental environment

These virtual machines share a single 1Gbps network switch physically, and the
actual available bandwidth is about 941Mbps measured by iperf between two
hosts.
In addition, in order to make the communication of GridFTP pass through

the OpenFlow network, we also installed Open vSwitch on Host A and B, and
added a virtual network device, tap on them. The Open vSwitches on Host A,
Host B and other Open vSwitches are connected by GRE [108] links, which is an
IP-based point-to-point tunneling protocol. By changing the combination of the
GRE links, we can easily construct various topologies for the experiments and
configure each path with different bandwidth and latency.
In this virtual environment, we conducted the experiments on three network

topologies, topology A, B and C. Topology A (Figure 6.2) is a simple topology
which has four independent paths, and the bandwidth and latency of each path
are configured to 100 Mbps and 0 ms respectively. Topology B (Figure 6.5) has
same configured bandwidth and latency with topology A. However, it has more
realistic topology. Topology C (Figure 6.7) assume a more realistic situation. It

44

has some overlapping links and different bandwidth and latency are configured.
In the figures, SW1 to SW6 denote Open vSwitches.

6.1.2 Results of Experiments

In the experiments, the data transfer time was measured. In our proposed system,
it is necessary to run the assign_mpath command in advance to find the routes.
But, we did not measure the time taken for assign_mpath, since these experimen-
tal topologies are very small and the required time for executing assign_mpath
is very short. We leave such evaluation on the scalability of assign_mpath with
larger and more complex topologies as a future issue.
In addition, we measured the used bandwidth by periodically monitoring packet

counters on the OpenFlow switches. Each packet counter on OpenFlow switches
records the number of transferred packets and transferred bytes for a flow-basis.
Thus, this information is useful to measure the bandwidth of each TCP stream of
the GridFTP separately. We measured the counter in the Open vSwtich on Host
B, which is the destination of the data transfer. As we calculated the parameter
of Eq. (4.8) in the section 4.3, we will use the result to calculate the optimal
number of TCP streams in our virtual environment.

Results of Topology A

In topology A, we conducted two experiments in the case of two and four
parallel TCP streams by transferring a file of 1Gbyte. In this topology, there are
four available paths, 1) SW1-SW2-SW6, 2) SW1-SW3-SW6, 3) SW1-SW4-
SW6 and 4) SW1-SW5-SW6. In this paper, SW1-SW2-SW6 represents a path
which walks through switches SW1, SW2, SW6 in this order. The optimal
number of TCP streams is calculated as 1 for each path in this topology because
the added latency for each path is configured to 0 ms.

45

Figure 6.2: Topology A on a local testbed (the bandwidth and the latency are
configured to 100 Mbps and 0ms on each path)

Figure 6.3: Used bandwidth of each TCP stream in topology A with two parallel
TCP streams

46

Figure 6.4: Used bandwidth of each TCP stream in topology A with four parallel
TCP streams

Number of
streams

Proposed multipath
system

Conventional single
path method

2 47.486s 92.108s
4 23.404s 90.533s

Table 6.1: Comparison of transfer time in topology A

Table 6.1 shows the experimental results of Topology A. The result shows that
our proposed system successfully distributes multiple TCP streams of GridFTP
into different paths and improved data transfer speed, while the conventional
single path method just uses a single path for all four TCP streams. In the case
using two parallel TCP streams, the proposed system shortened the transfer time
by about half. In addition, in the case using four parallel TCP streams, the
proposed system shortened the transfer time about one-quarter. Figure 6.3 and

47

Figure 6.4 show the used bandwidth summarized as stacked area graphs which
are calculated from the average transferred bytes per second. We can see that
the performance of each TCP stream is also very stable.

Results of Topology B

Figure 6.5: Topology B on a local testbed (the bandwidth and the latency are
configured to 100 Mbps and 0ms on each path)

In topology B, there are three available paths, 1) sw1-sw5-sw6, 2) sw1-sw2-
sw3-sw6 and 3) sw1-sw2-sw4-sw6. But, path 2) and 3) share a link, sw1-sw2. We
conducted one experiment using three parallel TCP streams in this topology.

Number of
streams

Proposed multipath
system

Conventional single
path method

3 46.603s 1m30.480s

Table 6.2: Results of Topology B

48

Figure 6.6: Used bandwidth of each TCP stream in Topology B with three par-
allel TCP streams

Table 6.1.2 shows the experimental results of Topology B. The results show
that our proposed system shortened the transfer time by about half. Since we
used one independent path and two paths sharing a link, the improvement of the
data transfer has only doubled. Figure 6.6 shows the used bandwidth of each
TCP stream. TCP Stream1, 2 and 3 used the path 1), 2) and 3) respectively.
Since the path for TCP Stream1 was independent of the other two paths, the
bandwidth for the path is about 95Mbps and the performance was very stable.
On the other hand, the paths for TCP Stream2 and 3 shared a link, sw1-sw2,
and the bandwidth was about half of the TCP Stream1. In addition, the perfor-
mance of the data transfer was also not stable compared to that of TCP Stream1.
From these experiments, we found that our proposed system works correctly as
expected.

49

Results of Topology C

Figure 6.7: Topology C on a local testbed (different bandwidth and latency are
configured for each path as shown in the Figure)

In topology C, we compared the proposed optimal assignment and a simple
round robin assignment by transferring a file of 10 Gbyte to evaluate the efficiency
of the proposed optimal assignment method. There are three available paths, 1)
SW1-SW2-SW3-SW6, 2) SW1-SW2-SW4-SW6 and 3) SW1-SW5-SW6 in the
topology. With the proposed optimal assignment, the assignment of TCP streams
for each path is decided based on the calculated optimal number of TCP streams
of each path. On the other hand, with the simple round robin assignment, the
assignment of TCP streams for each path is equally distributed. In the optimal
assignment method, the optimal assignment of TCP streams is calculated as
that 2 streams for each first and second path and 18 streams for the third path.
Therefore, using 22 TCP streams in total is the optimal number of streams in
this case.

50

Figure 6.8: Comparison of the average data transfer speed between the optimal
assignment and the round robin assignment in topology C

To compare the performance of our optimal method and the simple round robin
method, we actually measured the transfer time with increasing the number of
TCP streams from 3 to 39 by 3. Since the optimal assignment of streams is 2,
2 and 18 streams for each of three paths, we assigned the TCP streams to the
three paths with a ratio of 1:1:9 in the proposed method. On the other hand, we
assigned the TCP streams in a round robin manner for the simple round robin
method. We repeated the same experiment 10 times and calculated the average
for the results.
Figure 6.8 shows the average data transfer speed of the optimal assignment and

the round robin assignment with increasing the number of parallel TCP streams.
As shown in Figure 6.8, the proposed optimal assignment method achieves an
overall better throughput than the round robin assignment. This also means
that the performance of the optimal assignment method is converged to the peak
performance more quickly. Also, the peak of the performance is located in the

51

position where the number of TCP streams is around the predicted optimal num-
ber, 22. The results demonstrated the effectiveness of our proposed system with
the proposed optimal TCP stream assignment.

6.2 Experiments using a Real Global-scale
Environment

To evaluate the practicality of our method, we have also conducted some experi-
ments in a real global-scale environment.

6.2.1 PRAGMA-ENT

Figure 6.9: Overview of the real global-scale experimental environment

For the evaluation, we used the resources provided by PRAGMA Experimental
Network Testbed (PRAGMA-ENT) [109] [110]. PRAGMA-ENT provides a large
scale OpenFlow network composed of computing resources and international aca-
demic networks. The part of resources is also connected through GRE over the
public Internet as alternative paths. We used a part of the resources provided by
PRAGMA-ENT.

52

Figure 6.9 shows the overview of the experimental environment. We installed
GridFTP on a virtual machine as a client and deployed an Open vSwitch and
two hardware OpenFlow Switches (Pica8 P-3290 and NEC PF5220) at Nara
Institute of Science and Technology, Japan (NAIST). Also, we installed GridFTP
on a virtual machine as a server and deployed an Open vSwitch and a hardware
OpenFlow Switch (Pica8 P-3290) at the University of Florida, USA (UF).
There are three sites between NAIST and UF: 1) National Institute of In-

formation and Communications Technology, Japan (NICT) that deployed three
hardware OpenFlow Switches (NEC PF5240): one is in Osaka Data Center, one
is in Tokyo Data Center and another one is in Los Angeles Data Center, 2) Osaka
University, Japan (OU) that deployed an Open vSwitch, 3) University of Califor-
nia, San Diego, USA (UCSD) that deployed two hardware OpenFlow Switches
(Pica8 P-3290) and an Open vSwitch.
The experimental environment uses different international and academic net-

works and GRE : 1) The GRE connection between NAIST and UCSD is estab-
lished over the TransPAC3 network; 2) The GRE connections between OU and
NAIST, OU and UCSD are established over Science Information NETwork, Japan
(SINET5); 3) NAIST, Osaka, Tokyo and Los Angeles Data Center of NICT are
connected with RISE service over JGN-X; 4) The links between UF and Los An-
geles, UCSD and Los Angeles, UCSD and UF are connected via Internet2 and
California Research and Education Network (CalREN). All experiments on the
global environments are conducted during weekends to reduce the impact from
the background traffic because there is usually a larger traffic during working days
and a smaller traffic during weekends on these national research and education
networks.

53

6.2.2 Determine the Parameter of Prediction Model on
PRAGMA-ENT

Path number 1 2 3 4
Latency (ms) 191 183 211 191

Available average bandwidth (Mbps) 728.4 638 916 780.5
S.D. of available bandwidth 0.78 3.82 4.97 20.43

Observed optimal number of streams 8 10 10 28
Predicted optimal number of streams 9 8 13 10

Table 6.3: Experiment result to determine value a in the global-scale experimental
environment

In order to determine the value, a, of Eq. (8) in our global-scale environment,
we have also measured the available bandwidth and latency on several paths and
figured out the optimal number of TCP streams for those paths. Figure 6.9 shows
four shorter paths (path1 to 4) that our system found. Since longer paths than
these four paths have too many overlapped links with the other paths and are
not useful to evaluate, we use the four paths illustrated in Fig. 6.9.
The Table 6.3 indicates the measurement results of the four paths. As the

fourth path has a bigger standard deviation and the performance is not stable
on the path, we use the other three paths to calculate the value, a. From the
measurement results, we have determined the value, a as about 0.000065 in our
international environment. The Table 6.3 also shows the predicted optimal num-
ber of TCP streams. We can see that the numbers are slightly different from the
observed optimal numbers but still similar.

54

6.2.3 Results of Experiments

In the experiments, we compared our proposed system with two other methods,
1) the single path assignment method which is a conventional routing method
just using a single path for multiple TCP streams, 2) the round robin assign-
ment method which uses available multiple paths in a round robin manner. Our
method uses available multiple paths based on the rate from the predicted opti-
mal numbers of TCP streams for each path. For the evaluation, we transferred
a file of 6GB from NAIST to UF, and measured the transfer time and also mea-
sured the used bandwidth during the transfer. The measurement method is the
same as the method used in our virtual environment experiments.

Path number 1 2 3 4
Latency (ms) 191 183 211 191

Expected available bandwidth (Mbps) 660 200 740 170
Optimal number of streams 8 2 10 2

Table 6.4: Optimal assignment in the global-scale experimental environment

Since the used four paths have shared links each other, the available bandwidth
would be reduced when these four paths are used simultaneously. We measured
a standalone performance of each link and expected the available bandwidth of
each path as shown in Table 6.4. Based on the expected bandwidth, we have
calculated the optimal number of TCP streams for each path as 8, 2, 10 and 2
respectively. Therefore, we assigned TCP streams to the four paths with a ratio
of 4:1:5:1 in our optimal assignment method.

55

Figure 6.10: Comparison of the average data transfer speed between the sin-
gle path assignment, the round robin assignment and the optimal
assignment

Figure 6.10 shows the average speed of the data transfer while increasing the
number of parallel TCP streams. From the results, in the case of using 4, 8 and 12
parallel TCP streams, the average speeds of the single path assignment method
are better than the optimal assignment and the round robin assignment method.
This is because our proposed system used path1, 2, 3 and 4 simultaneously, and
only a few TCP streams were assigned for each path in the case of using smaller
streams. Therefore, those TCP streams could not overcome the performance
degradation of TCP’s slow start mechanism.
On the other hand, in the case of using the single path assignment method,

all streams were assigned to the shortest path, path1, and achieved better per-
formance than our method. However, when we used more than 16 streams, the
optimal assignment and the round robin assignment method achieved better per-
formance than the single path assignment. Especially, the maximum performance

56

of our optimal assignment method reaches approximately 30% better than the
round robin assignment method and approximately 60% better than the single
path assignment method.

Figure 6.11: Used bandwidth for the round robin assignment method in case of
using 24 parallel TCP streams (6 parallel TCP streams are assigned
for each path)

Figure 6.11 shows the used bandwidth for the round robin assignment method
with 24 parallel TCP streams. The performance for path4 is slightly worse than
the other paths because path4 is the longest and unstable path. The results show
that the bandwidth keeps at around 880 Mbps and also achieved 900 Mbps as its
best performance.
Figure 6.12 shows the used bandwidth for the optimal assignment method with

22 parallel TCP streams. The performance of path2 and 3 is worse than that
of the other paths. But, the overall performance of the aggregated bandwidth
is larger than the round robin assignment method. The results show that the

57

Figure 6.12: Used bandwidth for the optimal assignment method in case of using
22 parallel TCP streams (TCP streams are assigned for each path
with a ratio of 4:1:5:1 in order)

traffic is stable and the bandwidth keeps at around 960 Mbps.In this experiment,
our virtual machine host was equipped only with a 1 Gbps NIC. So, this result
indicates that our proposed method achieved the performance that is close to the
physical limitation of the hardware.
In addition, the network congestion happened in both the round robin method

and the optimal assignment method. As Figure 6.11 shows, two congestion points
appear at 35th and 55th second. The performance of each path degrades after
the congestion. The reason can be considered that the congestion happened at
UCSD site in figure 6.9. Since the round robin method does not consider the
network conditions and assigns the same number of TCP streams on each path.
We use 6 parallel TCP streams in path 1, 2 and 4, so 18 TCP streams go through
the ovs of the UCSD site. The ovs cannot process all packets when total windows

58

size of 18 TCP streams increase too big and cause packet loss.
In figure 6.12, there is also a congestion point at 25th second. The performance

of path 1 and 2 begin to degrade. We consider the congestion also occurs in the
ovs of the UCSD site. One possible reason is that path4 is the longest and
unstable path as we mentioned above. However, the performance of the path 3
and 4 continues to increase and the total performance keeps increasing steadily.
The main reason is we utilized prediction model to assign an optimal set of TCP
streams to the different path. So our proposed system and prediction model can
be also considered efficient in our global scale network.

59

7 Discussion and Future Work

This chapter discusses possible issues when actually utilize our proposed sys-
tem. For future works, we also provide some feasible methods to deal with these
possible issues.

7.1 Multipath Selection Algorithm
In our current implementation, we utilized a simple breadth-first searching algo-
rithm since our proposed prediction model can optimize TCP streams according
to the network condition of each path. When a user request the specified number
of paths, our algorithm just assign the number of paths in the order of hops.
However, each network path has it own maximum attainable throughput.

When a user wants to send data as soon as possible with specified number of
paths, current algorithm probably could be a problem. Hence, in this case, it is
necessary to consider network condition of each path to assign a better multipath
set. Furthermore, we also need to consider the overlapping part among paths. We
explain our future multipath selection algorithm through two network topologies.
Figure 7.1 shows a network topology. Assume Host A wants to transfer data

to Host B. The controller will calculate all available paths according to number
of hops. The calculation result should be in the order of path3 (3 hops), path2
(4 hops) and path 1 (5 hops).

Path number 1 2 3
Latency (ms) 60 110 160

Available bandwidth (Mbps) 100 50 50

Table 7.1: Available bandwidth and total latency of each path on topology 1

60

Figure 7.1: Topology 1 (Illustration of multipath selection algorithm)

Table 7.1 shows bandwidth and latency of each path on topology 1. The three
paths have different bandwitch and latency. There is no doubt that the path 1
is the best choice. Because it has the higher bandwidth and lower latency in the
three paths. In regard to path2 and 3, path 2 and 3 have the same available
bandwidth, but path2 has lower latency than path3. Therefore, path selection
should be in order of path 1, 2 and 3 when considering the priority.
In addtion, overlapping part is also an important factor should be considered.

We can easily choose path 1 when only one path was requested for data tranfer.
According the priority, the path 1 and 2 will be chosen when two paths were
requested. However, since path 1 and 2 have a overlapping part, if we use path
1 and path 2 simultaneously, the TCP streams assigned for the two paths will
compete network resourses between SW1 and SW2. This will cause performance
decreasing of data transfer on the contrary. In our future algorithm, a network
path which has no overlapping with other paths will be given a higher priority.
Therefore, when we choose two paths for GridFTP, path 1 and 3 should be the
answer and also the best multipath combination for GridFTP. Because if we use
more than two paths in this network topology, the performace may be decrease

61

due to traffic collision. In this case, even though users specify three or more
paths, we only return them the best multipath set and total number of optimal
TCP streams.

Figure 7.2: Topology 2 (The bandwidth between SW1 and SW2 is different from
Topology 1)

Path number 1 2 3
Latency (ms) 60 110 160

Available bandwidth (Mbps) 100 50 100

Table 7.2: Available bandwidth and total latency of each path on topology 2

Figure 7.2 shows topology 2 which has same topology as topology 1. Topology
2 only has some different bandwidth in two parts of network path (Between SW1
and SW2, SW5 and SW7) compared to Topology 1. The bandwidth and latency
of each path on topology 2 shown as table 7.1. The path 1 is still the best choice
from the three paths. In regard to path2 and path3, path2 has lower latency than
path3, but path3 has higher available bandwidth than path2. Since we will use
multiple TCP streams to transfer data, we can achieve better performance when

62

using path3. Therefore, path selection should be in order of path 1, 3 and 2 when
considering the priority.
In this topology, when two paths were requested, path 1 and 3 can be chosen.

When three paths were requested, though path 1 and 2 share a common part of
network path, the sharing part (between SW1 and SW2) has 150 Mbps band-
width. This bandwidth has enough capacity to make data transfer even using
path 1 and 3 simutaneously. Therefore, the best multipath set for this topology
is using all three paths.

7.2 Scalability and Reliability of our Multipath
OpenFlow Controller

We evaluated our proposed system on a virtual and a real global-scale network
environment. The evaluation results showed that our system performed very
well. However, the scale of both network environments is not big enough. The
practicality and performance of our multipath OpenFlow controller still need to
be tested.
Scalability or performance of an OpenFlow controller is usually tested by char-

acteristics of throughput and latency. A scalable controller can keep maximum
throughput (number of outstanding packets) and minimum response time even
if the number of switches is increased. Regarding the reliability of an OpenFlow
controller, when under an average workload, a reliable controller can operate the
entire network persistently without accidental connections failure or dropping
OpenFlow messages from the switches. Accordingly, we will test our controller
by using larger network testbed in the future. As an option, we can also use
network simulation tools such as Mininet [111].
The architecture of OpenFlow network provides the OpenFlow controller a

global view of the network and makes it easy to achieve an optimal configuration.
However, the part of the controller could become a bottleneck in large scale
deployment due to such as added latency in newly established flows. Regarding
this issue, multiple OpenFlow controller cooperation is a good option. We can
deploy multiple controllers in different areas or countries. At the same time,
we can make the controllers communicate with each other to control the entire

63

network.
In addition, as mentioned in section 2.3.2, there are a lot of frameworks to de-

velop OpenFlow controller. A set of performance comparison experiments were
conducted to compare ten types of OpenFlow controller which were developed by
different frameworks [112]. The results show that the performance of these con-
trollers was totally different. Therefore, we also need to consider this important
factor when developing our OpenFlow controller in the future.

7.3 Path Failure
Network path failure happens when a network device (such as switch, router) or
a link connection between network devices fail due to planned maintenance or
unplanned accidents such as power outages, fiber cuts, and hardware/software
malfunction [113, 114]. These path failure issues occur often, everywhere and
approximately 80% are unplanned [115, 116]. These routing problems can affect
the performance and reliability, especially in common commercial network.
Ideally, the routing system detects unplanned link failures and reconfigures

routing tables to avoid using failed links. Some researches showed that interdo-
main routers may take as long as tens of minutes to reconstruct new paths after
a path failure [117].
Assume a path failure occurs during the data transfer of our system, the TCP

streams of failure path will timeout and abort. Since our system utilizes multipath
to conduct data transfer, even when some TCP streams of GridFTP fail, the data
transfer continues.
In addition, we have another option for this issue. Since our system is based on

SDN, we can implement a monitoring function of dynamic path failure detection
on OpenFlow controller. According to the path routing of the controller, it is also
possible to provide other alternative paths for the TCP streams when a failure
path is detected.

64

7.4 Fairness
Fairness is an important factor that should be considered in computer networks.
It is normally defined as equal sharing of the network resources. In the current
implementation of SDN-enabled GridFTP, we only consider one user utilizing
high-speed data transfer service. Our proposed system optimizes multiple parallel
TCP streams to fully utilize network resources. However, this approach actually
defeats the congestion control [29] mechanisms of TCP, leading to unfairness and
potential network congestion.
According to a serious simulation experiment which was performed to test

the fairness between single TCP stream and parallel TCP streams on a network
path [118], when utilization of available bandwidth is more than 90%, the parallel
multiple TCP streams could increase throughput by stealing the bandwidth from
competing with single TCP stream. This means when our system fully utilizes a
network path, the other single TCP streams will be affected.
Improving the performance of TCP is easy, but improving the efficiency while

maintaining fairness on a sharing network is still difficult. There is very few
research focused on maintaining fairness by using multiple TCP streams [42,119].
And these researches are adopting the method of modifying the transport protocol
itself.
To figure out the problem of fairness, We decided to approach it from a different

perspective in the future. As we discussed in section 2.3, SDN concept brings us
a new flexible network operation and application level control is possible. The
standardized OpenFlow protocol provides Quality of Service (QoS) functionality
called per-flow meters. Per-flow meters enable OpenFlow to implement QoS
operations, such as rate-limiting per flow and can be combined with per-port
queues to implement complex QoS frameworks.
Since our system is based on SDN, we can adopt QoS function to our system

to realize fairness. There are two conditions that should be considered in real
network. 1) Make sure the TCP streams of GridFTP do not affect other commu-
nications when GridFTP starts its data transfer. 2) Network conditions change
dynamically; for example, the other users may start new TCP connections when
the GridFTP is working. Therefore, it is necessary to guarantee the quality of
the new network connection.

65

We design two scenarios to deal with the two conditions. For the first con-
dition, we can limit the maximum rate of GridFTP’s TCP streams before data
transfer. As simulation experiments [118] shown, if we can control the bandwidth
utilization less than 90% on the paths that GridFTP will use, it will not cause
unfairness. For the condition 2, since dynamic QoS management of SDN is an
effective method which was shown in several studies [120–122], the solution is
further and dynamically limiting the bandwidth utilization of GridFTP transfer
when OpenFlow controller detects other new TCP connections. Furthermore,
the OpenFlow-compatible switches from different vendors also show different be-
haviors utilizing dynamic QoS management [123]; it is necessary to choose an
appropriate switch to realize QoS mechanisms.

7.5 Determine the Parameter of Prediction
Model on PRAGMA-ENT

In our current OpenFlow controller, to simplify the design, we used a common pa-
rameter a of a prediction model for all paths. Actually, for each network path, the
performance could be improved by assigning different parameter a according to
network path conditions. Therefore, we plan to adapt the parameter adjustment
function to improve the OpenFlow controller and conduct further experiments.
In addition, we measured the parameter and network conditions manually be-

fore data transfer. Moreover, our proposed optimization of TCP Streams assign-
ment method based on the accurate information of bandwidth and latency. It
is also possible to implement a network monitoring to automatically realize the
measurement required for the prediction model.

7.6 Applications in Other Areas
Our research aims to provide a high-speed data transfer system to the computa-
tional science research projects. Furthermore, other data transfer service such as
data backup, Disaster Recovery (DR) and multimedia streaming can also ben-
efit from our proposed multipath OpenFlow controller and prediction model of

66

optimal TCP streams.
In order to cope with any kind of service disruption from accidental interference,

many enterprises prepare several data centers to back up data and its own DR
system. Since the data generated daily is very huge, high-speed transfer service
between the data centers is necessary especially under the process of DR. In this
kind of case, our proposed system can support the high-speed data backup and
DR by providing optimal multipath data transfer.
In addition, to support high-performance multimedia streaming, Content De-

livery Network (CDN) technology is widely used for content delivery. CDN has
a lot of geographically distributed servers which store the cached version of nec-
essary content. This method provides a better user experience by minimizing
the distance between the end-users and web server. However, when some new
large-scale data (such as the application of 8k video streaming service) needs
to be distributed between the servers of CDN, high-speed data transfer service
is very important. Therefore, it is possible to apply our proposed system to the
CND which can optimize the network utilization and achieve a better multimedia
streaming service.

67

8 Conclusion

In this thesis, considering the need for the big data era, we focused on the high-
speed transfer of large-scale data. Especially in data-intensive scientific projects,
high-speed data transfer between sites is a necessary platform service. We sur-
veyed the current techniques for high-speed data transfer. Regarding this topic,
there are two main studies that are about transfer protocols and traffic engineer-
ing techniques.
We first explained various transfer protocols for high bandwidth utilization.

After researching on many performance evaluations in which these techniques
were compared, we chose the multiple TCP streams techniques for our research.
There are also a lot of methods to realize multiple TCP streams transfer, however,
since the application-level protocol is easy to deploy and utilize than transport
layer for users, we decided to use the application layer to realize multiple TCP
streams. Furthermore, in the computational science research fields, GridFTP
was widely used and standardized by the Global Grid Forum. We therefore chose
GridFTP as our method to realize data transfer with multiple TCP streams.
Regarding the traffic engineering techniques, since using multipath can ag-

gregate more bandwidth, we introduced current routing techniques for utilizing
multiple paths by dividing them into the source and Hop-by-Hop routing. How-
ever, all the current multipath routing methods utilize additional header/label
or extended routing protocols and would cause additional overhead in both the
control and data planes. Furthermore, these methods are not easy to deploy and
lack complete central control. Hence, we adopted SDN technique to realize more
flexible traffic engineering.
As a result, we proposed a system which combined GridFTP and SDN. We

implemented a multipath OpenFlow controller based on OpenFlow to provide
multipath to any application. To make GridFTP utilize our controller, we im-

68

plemented a Globus XIO that can communicate with the controller. Moreover,
to optimize the data transfer of multiple TCP streams, we proposed a prediction
model according to the network condition of each path. We also verified the
effectiveness of our model in our virtual experimental environment.
To demonstrate the effectiveness of our proposed system, we built a virtual

environment and a real global-scale environment and performed various experi-
ments. The results demonstrate that our proposed system accelerates the data
transfer of GridFTP and fully utilizes network resources. In the real global-scale
experimental environment, the results show the practicality of our proposal and
indicate that our proposed method pushes the performance to near the physical
limitations of the hardware.
The main contribution of this thesis is proposing a system for high-speed data

transfer. Our system utilizes a multipath controller providing multiple paths
to the multiple TCP streams of GridFTP by using SDN technology based on
OpenFlow. We also proposed an effective prediction model for optimal assignment
of TCP streams. In terms of future work, we discussed possible issues when
actually utilize our proposed system. We also provided some feasible methods to
deal with these possible issues.

69

Acknowledgements
I would like to thank the following people for their wisdom, guidance, and support.
Without whose help this work would never have been possible:
First and foremost, I would like to express a deep appreciation to my super-

visor, Professor Hajimu Iida, who provides me a great opportunity to study at
Laboratory for Software Design and Analysis. Not only he gave me helpful ad-
vices for my research, but also he motivated me to join business contests through
which I could express my ideas beyond the academic field. It largely widened my
perspectives in many ways, and through the given chances I was able to elevate
my professional aptitude to a higher level that I became ready for the upcoming
challenges.
I would like to thank Professor, Kazutoshi Fujikawa. As a member of my

dissertation committee, his suggestions given in my Seminar presentation also
benefits me with improving some critical areas of my research.
I would like to express my deepest appreciation to Associate Professor, Kohei

Ichikawa. I met professor Ichikawa five years ago at the open campus of NAIST
when I was studying for my master degree at Osaka Kyoiku University. I was
attracted by his research direction and his passion for research. As such, I decided
to continue my doctoral course under his guidance. Although I was not major
in the field of networking during my year in Master Course, he accepted me
and guided me to a successful direction in networking research. His continuous
help and suggestions for my research allowed me to successfully accomplish the
doctoral course.
Moreover, I would also like to express my gratitude to Associate Professor,

Yasuhiro Watashiba. Professor Watashiba gave me valuable advices on writing
research papers and conference presentations, through which I became much bet-
ter than before in expressing my research work professionally in the academic
field.
I would like to thank my thesis committee. Thank you so much for reviewing

my thesis and for the insightful comments and suggestions that help me improve
the overall quality of this thesis.
My sincere thanks also goes to Dr. Ryousei Takano and Dr. Takahiro Hirofuchi

in National Institute of Advanced Industrial Science and Technology (AIST), who

70

provided me an opportunity to join their team an intern, and gave me access to
the laboratory and research institutes.
Also I want to especially thank Professor Junichi Fujii and Professor Yuri

Hasegawa in Osaka Kyoiku University. Professor Fujii was my supervisor during
both my bachelor and master course. His guidance with passion helped me set
up a strog foundation of knowledges in the field of Informmation Science. Fur-
thermore, he also encouraged me to push further for my Doctoral degree. In
addition, Professor Yuri Hasegawa was my Japanese language lecturer. Instead
of only teaching me about the language itself, she helped me understand the cul-
ture, gave me tremendous advice and assistance for my daily life in Japan. With
her generous help, I was able to pursue my academic achievement, and build my
family in this wonderful country.
I wish to express my great thanks to MEXT and JASSO for supporting my

research and life in Japan since I was an undergraduate student. I feel deeply
honored to receive the scholarship from them and this honor strongly encouraged
me to work harder.
Finally and most importantly, I would like to thank my beloved parents and

wife. Their unconditional love and endless support make me have this gorgeous
day. Thank you for letting me follow my dreams and happily supporting me to
be whatever I want to be. I would like to dedicate this thesis to them as a small
present of my gratitude for everything.

71

References

[1] Viktor Mayer-Schönberger and Kenneth Cukier. Big Data: A Revolution
that Will Transform How We Live, Work, and Think. Eamon Dolan/-
Mariner Books; Reprint edition, 4 2014.

[2] James Manyika. The Internet of Things: Mapping the value beyond the
hype. McKinsey Global Institute, 2015.

[3] IBM. 10 key marketing trends for 2017. [Online]. Available:
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=
WRL12345USEN, Accessed on: Dec 1, 2017, 2016.

[4] Eric Siegel. Predictive analytics: The power to predict who will click, buy,
lie, or die. Wiley Hoboken (NJ), 2016.

[5] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven
Tuecke. The data grid: Towards an architecture for the distributed man-
agement and analysis of large scientific datasets. Journal of Network and
Computer Applications, 23, 2000.

[6] Reagan Moore, Chaitanya Baru, Richard Marciano, Arcot Rajasekar, and
Michael Wan. Data-intensive computing. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, pages 105–129, 1999.

[7] Mark Allman, Hans Kruse, and Shawn Ostermann. An application-level
solution to TCP’s satellite inefficiencies. In Proceedings of the First In-
ternational Workshop on Satellite-based Information Services (WOSBIS).
Citeseer, 1996.

[8] Harimath Sivakumar, Stuart Bailey, and Robert L Grossman. Psockets:
The case for application-level network striping for data intensive applica-

72

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345USEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345USEN

tions using high speed wide area networks. In Supercomputing, ACM/IEEE
2000 Conference, pages 38–38. IEEE, 2000.

[9] William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael Link,
Catalin Dumitrescu, Ioan Raicu, and Ian Foster. The Globus striped
GridFTP framework and server. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, page 54. IEEE Computer Society, 2005.

[10] John Bresnahan, Michael Link, Gaurav Khanna, Zulfikar Imani, Rajku-
mar Kettimuthu, and Ian Foster. Globus gridftp: what’s new in 2007. In
Proceedings of the first international conference on Networks for grid appli-
cations, page 19. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2007.

[11] Sunand Tullimas, Thinh Nguyen, Rich Edgecomb, and Sen-ching Cheung.
Multimedia streaming using multiple TCP connections. ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM),
4(2):12, 2008.

[12] Andrea Baldini, Lorenzo De Carli, and Fulvio Risso. Increasing perfor-
mances of TCP data transfers through multiple parallel connections. In
Computers and Communications, 2009. ISCC 2009. IEEE Symposium on,
pages 630–636. IEEE, 2009.

[13] Barkatullah Qureshi, Mohamed Othman, Shamala Subramaniam, and
Nor Asila Wati. Qtcp: improving throughput performance evaluation
with high-speed networks. Arabian Journal for Science and Engineering,
38(10):2663–2691, 2013.

[14] Alan Ford, Costin Raiciu, Mark Handley, Sebastien Barre, and Janard-
han Iyengar. Architectural guidelines for multipath TCP development. In
Request for Comments (RFC) 6182, 2011.

[15] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-
Flow: enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

73

[16] Open Networking Foundation. [Online]. Available: https://www.
opennetworking.org/, Accessed on: July 22, 2016.

[17] Serguei Chatrchyan, G Hmayakyan, V Khachatryan, AM Sirunyan, Wolf-
gang Adam, T Bauer, Thomas Bergauer, H Bergauer, M Dragicevic, Janos
Erö, et al. The cms experiment at the cern lhc. 2008.

[18] Alex Abramovici, William E Althouse, Ronald WP Drever, Yekta Gürsel,
Seiji Kawamura, Frederick J Raab, David Shoemaker, Lisa Sievers,
Robert E Spero, Kip S Thorne, et al. Ligo: The laser interferometer
gravitational-wave observatory. science, 256(5055):325–333, 1992.

[19] Georges Aad, E Abat, J Abdallah, AA Abdelalim, A Abdesselam, O Ab-
dinov, BA Abi, M Abolins, H Abramowicz, E Acerbi, et al. The atlas
experiment at the cern large hadron collider. Journal of Instrumentation,
3(8):S08003–S08003, 2008.

[20] Worldwide LHC Computing Grid. [Online]. Available: http://wlcg.web.
cern.ch/, Accessed on: Dec 1, 2017.

[21] Energy Sciences Network. [Online]. Available: https://www.es.net/, Ac-
cessed on: Dec 1, 2017.

[22] GÉANT. [Online]. Available: https://www.geant.org/Networks, Ac-
cessed on: Dec 1, 2017.

[23] China Education and Research Network. [Online]. Available: http://www.
edu.cn/HomePage/english/cernet/, Accessed on: Dec 1, 2017.

[24] Takashi Kurimoto, Shigeo Urushidani, Hiroshi Yamada, Kenjiro Yamanaka,
Motonori Nakamura, Shunji Abe, Kensuke Fukuda, Michihiro Koibuchi,
Hiroki Takakura, Shigeki Yamada, et al. Sinet5: A low-latency and high-
bandwidth backbone network for sdn/nfv era. In Communications (ICC),
2017 IEEE International Conference on, pages 1–7. IEEE, 2017.

[25] Jon Postel. Transmission control protocol. 1981.

74

https://www.opennetworking.org/
https://www.opennetworking.org/
http://wlcg.web.cern.ch/
http://wlcg.web.cern.ch/
https://www.es.net/
https://www.geant.org/Networks
http://www.edu.cn/HomePage/english/cernet/
http://www.edu.cn/HomePage/english/cernet/

[26] Kun-chan Lan and John Heidemann. A measurement study of correlations
of internet flow characteristics. Computer Networks, 50(1):46–62, 2006.

[27] Feng Qian, Alexandre Gerber, Zhuoqing Morley Mao, Subhabrata Sen,
Oliver Spatscheck, and Walter Willinger. Tcp revisited: a fresh look at
tcp in the wild. In Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement conference, pages 76–89. ACM, 2009.

[28] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. Tackling
bufferbloat in 3g/4g networks. In Proceedings of the 2012 ACM conference
on Internet measurement conference, pages 329–342. ACM, 2012.

[29] W Richard Stevens. Tcp slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms. 1997.

[30] Mark Allman, Vern Paxson, and Ethan Blanton. Tcp congestion control.
Technical report, 2009.

[31] Jon Crowcroft and Philippe Oechslin. Differentiated end-to-end Internet
services using a weighted proportional fair sharing TCP. ACM SIGCOMM
Computer Communication Review, 28(3):53–69, 1998.

[32] Mario Gerla, Medy Y Sanadidi, Ren Wang, Andrea Zanella, Claudio
Casetti, and Saverio Mascolo. TCP Westwood: Congestion window control
using bandwidth estimation. In Global Telecommunications Conference,
2001. GLOBECOM’01. IEEE, volume 3, pages 1698–1702. IEEE, 2001.

[33] Hung-Yun Hsieh and Raghupathy Sivakumar. ptcp: An end-to-end trans-
port layer protocol for striped connections. In Network Protocols, 2002.
Proceedings. 10th IEEE International Conference on, pages 24–33. IEEE,
2002.

[34] Sally Floyd. Highspeed tcp for large congestion windows. 2003.

[35] Tom Kelly. Scalable tcp: Improving performance in highspeed wide area
networks. ACM SIGCOMM computer communication Review, 33(2):83–91,
2003.

75

[36] Douglas Leith and Robert Shorten. H-tcp: Tcp for high-speed and long-
distance networks. In Proceedings of PFLDnet, volume 2004, 2004.

[37] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion
control (bic) for fast long-distance networks. In INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and Communications
Societies, volume 4, pages 2514–2524. IEEE, 2004.

[38] Sumitha Bhandarkar, Saurabh Jain, and AL Narasimha Reddy. Improving
tcp performance in high bandwidth high rtt links using layered congestion
control. PFLDNet’05, 2005.

[39] David X Wei, Cheng Jin, Steven H Low, and Sanjay Hegde. Fast tcp: mo-
tivation, architecture, algorithms, performance. IEEE/ACM transactions
on Networking, 14(6):1246–1259, 2006.

[40] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-
speed tcp variant. ACM SIGOPS Operating Systems Review, 42(5):64–74,
2008.

[41] Jon Postel. User datagram protocol. Technical report, 1980.

[42] Yunhong Gu and Robert Grossman. Sabul: A transport protocol for grid
computing. Journal of Grid Computing, 1(4):377–386, 2003.

[43] Malathi Veeraraghavan, Xuan Zheng, Hyuk Lee, M Gardner, and Wuchun
Feng. Cheetah: Circuit-switched high-speed end-to-end transport architec-
ture. In Proceedings of SPIE, volume 5285, pages 214–225, 2003.

[44] Qishi Wu and Nageswara SV Rao. Protocol for high-speed data transport
over dedicated channels. In Third International Workshop on Protocols for
Long-Distance Networks (PFLDnet 2005), Lyon, France, 2005.

[45] Xuan Zheng, Anant Padmanath Mudambi, and Malathi Veeraraghavan.
Frtp: Fixed rate transport protocol–a modified version of sabul for end-to-
end circuits. In Proc. of Broadnets, 2004.

76

[46] Chaoyue Xiong, Jason Leigh, Eric He, Venkatram Vishwanath, Tadao Mu-
rata, Luc Renambot, and T DeFanti. Lambdastream–a data transport pro-
tocol for streaming network-intensive applications over photonic networks.
In Third International Workshop on Protocols for Long-Distance Networks
(PFLDnet 2005), Lyon, France, volume 11, 2005.

[47] Yunhong Gu and Robert L Grossman. UDT: UDP-based data transfer
for high-speed wide area networks. Computer Networks, 51(7):1777–1799,
2007.

[48] Mohamed A Alrshah and Mohamed Othman. Test-bed based comparison
of single and parallel TCP and the impact of parallelism on throughput
and fairness in heterogenous networks. In Computer Technology and De-
velopment, 2009. ICCTD’09. International Conference on, volume 1, pages
332–335. IEEE, 2009.

[49] Mohamed A Alrshah and Mohamed Othman. Performance evaluation of
parallel TCP, and its impact on bandwidth utilization and fairness in High-
BDP networks based on test-bed. In Communications (MICC), 2013 IEEE
Malaysia International Conference on, pages 23–28. IEEE, 2013.

[50] Lyndon Ong. An introduction to the stream control transmission protocol
(sctp). 2002.

[51] Yohei Hasegawa, Ichiro Yamaguchi, Takayuki Hama, Hideyuki Shimon-
ishi, and Tutomu Murase. Improved data distribution for multipath tcp
communication. In Global Telecommunications Conference, 2005. GLOBE-
COM’05. IEEE, volume 1, pages 5–pp. IEEE, 2005.

[52] Younghak Hwang, Brownson O Obele, and Hyuk Lim. Multipath transport
protocol for heterogeneous multi-homing networks. In Proceedings of the
ACM CoNEXT Student Workshop, page 5. ACM, 2010.

[53] Bhargava K Kancherla, Ganesh M Narayan, and K Gopinath. Performance
evaluation of multiple tcp connections in iscsi. In Mass Storage Systems and
Technologies, 2007. MSST 2007. 24th IEEE Conference on, pages 239–244.
IEEE, 2007.

77

[54] Ronald van der Pol, Michael Bredel, Artur Barczyk, Benno Overeinder,
Niels van Adrichem, and Fernando Kuipers. Experiences with mptcp in
an intercontinental openflow network. In Proceedings of the 29th TERENA
Network Conference (TNC2013), 2013.

[55] Jon Postel and Joyce Reynolds. File transfer protocol. October 1985.

[56] Marc Horowitz and Steve Lunt. Ftp security extensions. Technical report,
October 1997.

[57] Paul Hethmon and Robert Elz. Feature negotiation mechanism for the file
transfer protocol. August 1998.

[58] Charlie Catlett. Standards for grid computing: Global grid forum. Journal
of Grid Computing, 1(1):3–7, 2003.

[59] William Allcock. Gridftp: Protocol extensions to ftp for the grid. OGF
Document Series GFD.20, April 2003.

[60] Ian Foster and Carl Kesselman. The globus project: A status report. Future
Generation Computer Systems, 15(5):607–621, 1999.

[61] Yunhong Gu. UDT: a high performance data transport protocol. University
of Illinois at Chicago, 2005.

[62] John Bresnahan, Michael Link, Rajkumar Kettimuthu, and Ian Foster. Udt
as an alternative transport protocol for gridftp. In International Work-
shop on Protocols for Future, Large-Scale and Diverse Network Transports
(PFLDNeT), pages 21–22, 2009.

[63] Se-young Yu, Nevil Brownlee, and Aniket Mahanti. Comparative perfor-
mance analysis of high-speed transfer protocols for big data. In Local Com-
puter Networks (LCN), 2013 IEEE 38th Conference on, pages 292–295.
IEEE, 2013.

[64] Yakov Rekhter, Tony Li, and Susan Hares. A border gateway protocol 4
(bgp-4). Technical report, 2005.

78

[65] Charles L Hedrick. Routing information protocol. Technical report, 1988.

[66] John Moy. Ospf version 2. 1998.

[67] Curtis Villamizar. Ospf optimized multipath (ospf-omp). Work in Progress,
1999.

[68] Dapeng Zhu, Mark Gritter, and David R Cheriton. Feedback based routing.
ACM SIGCOMM Computer Communication Review, 33(1):71–76, 2003.

[69] H Tahilramani Kaur, Shivkumar Kalyanaraman, Andreas Weiss, Shifalika
Kanwar, and Ayesha Gandhi. Bananas: An evolutionary framework for
explicit and multipath routing in the internet. ACM SIGCOMM Computer
Communication Review, 33(4):277–288, 2003.

[70] P Krishna Gummadi, Harsha V Madhyastha, Steven D Gribble, Henry M
Levy, David Wetherall, et al. Improving the reliability of internet paths
with one-hop source routing. In OSDI, volume 4, pages 13–13, 2004.

[71] Xiaowei Yang and David Wetherall. Source selectable path diversity via
routing deflections. In ACM SIGCOMM Computer Communication Review,
volume 36, pages 159–170. ACM, 2006.

[72] Xiaowei Yang, David Clark, and Arthur W Berger. Nira: a new inter-
domain routing architecture. IEEE/ACM Transactions on Networking
(ToN), 15(4):775–788, 2007.

[73] Murtaza Motiwala, Megan Elmore, Nick Feamster, and Santosh Vempala.
Path splicing. In ACM SIGCOMM Computer Communication Review, vol-
ume 38, pages 27–38. ACM, 2008.

[74] P Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. Pathlet routing.
ACM SIGCOMM Computer Communication Review, 39(4):111–122, 2009.

[75] Donghong Qin, Jaihai Yang, Zhuolin Liu, Hui Wang, Bin Zhang, and Wei
Zhang. Amir: Another multipath interdomain routing. In Advanced In-
formation Networking and Applications (AINA), 2012 IEEE 26th Interna-
tional Conference on, pages 581–588. IEEE, 2012.

79

[76] Daniel O Awduche and Johnson Agogbua. Requirements for traffic engi-
neering over mpls. 1999.

[77] Yongho Seok, Youngseok Lee, Yanghee Choi, and Changhoon Kim. Dy-
namic constrained multipath routing for mpls networks. In Computer Com-
munications and Networks, 2001. Proceedings. Tenth International Confer-
ence on, pages 348–353. IEEE, 2001.

[78] Jiayue He and Jennifer Rexford. Toward internet-wide multipath routing.
IEEE network, 22(2), 2008.

[79] Christian E Hopps. Analysis of an equal-cost multi-path algorithm. 2000.

[80] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by optimiz-
ing OSPF weights. In INFOCOM 2000. Nineteenth annual joint conference
of the IEEE computer and communications societies., volume 2, pages 519–
528. IEEE, 2000.

[81] Zhiruo Cao, Zheng Wang, and Ellen Zegura. Performance of hashing-based
schemes for internet load balancing. In INFOCOM 2000. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 1, pages 332–341. IEEE, 2000.

[82] Feng Wang and Lixin Gao. Path diversity aware interdomain routing. In
INFOCOM 2009, IEEE, pages 307–315. IEEE, 2009.

[83] Iljitsch Van Beijnum, Jon Crowcroft, Francisco Valera, and Marcelo Bag-
nulo. Loop-freeness in multipath bgp through propagating the longest path.
In Communications Workshops, 2009. ICC Workshops 2009. IEEE Inter-
national Conference on, pages 1–6. IEEE, 2009.

[84] Nate Kushman, Srikanth Kandula, Dina Katabi, and Bruce M Maggs. R-
bgp: Staying connected in a connected world. USENIX, 2007.

[85] Igor Ganichev, Bin Dai, P Godfrey, and Scott Shenker. Yamr: Yet another
multipath routing protocol. ACM SIGCOMM Computer Communication
Review, 40(5):13–19, 2010.

80

[86] Hideyuki Shimonishi, Yasuhito Takamiya, Yasunobu Chiba, Kazushi
Sugyo, Youichi Hatano, Kentaro Sonoda, Kazuya Suzuki, Daisuke Kotani,
and Ippei Akiyoshi. Programmable network using OpenFlow for network
researches and experiments. In Proc. 6th International Conference on Mo-
bile Computing and Ubiquitous Networking (ICMU 2012), pages 164–171,
2012.

[87] POX. [Online]. Available: https://github.com/noxrepo/pox/, Accessed
on: July 22, 2016.

[88] NOX open controller. [Online]. Available: http://www.noxrepo.org/, Ac-
cessed on: July 22, 2016.

[89] Floodlight OpenFlow controller -Project Floodlight. [Online]. Available:
http://www.projectfloodlight.org/floodlight/, Accessed on: July
22, 2016.

[90] David Erickson. The beacon openflow controller. In Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined net-
working, pages 13–18. ACM, 2013.

[91] The OpenDaylightPlatform. [Online]. Available: https://www.
opendaylight.org/, Accessed on: July 22, 2016.

[92] Ryu SDN framework. [Online]. Available: http://osrg.github.io/ryu/,
Accessed on: July 22, 2016.

[93] Bing Wang, Wei Wei, Jim Kurose, Don Towsley, Krishna R Pattipati, Zheng
Guo, and Zheng Peng. Application-layer multipath data transfer via TCP:
schemes and performance tradeoffs. Performance Evaluation, 64(9):965–
977, 2007.

[94] Jinyu Zhang, Yongzhe Gui, Cheng Liu, and Xiaoming Li. To improve
throughput via multi-pathing and Parallel TCP on each path. In ChinaGrid
Annual Conference, 2009. ChinaGrid’09. Fourth, pages 16–21. IEEE, 2009.

[95] Ming Zhang, Junwen Lai, Arvind Krishnamurthy, Larry L Peterson, and
Randolph YWang. A Transport Layer Approach for Improving End-to-End

81

https://github.com/noxrepo/pox/
http://www.noxrepo.org/
http://www.projectfloodlight.org/floodlight/
https://www.opendaylight.org/
https://www.opendaylight.org/
http://osrg.github.io/ryu/

Performance and Robustness Using Redundant Paths. In USENIX Annual
Technical Conference, General Track, pages 99–112, 2004.

[96] Ezra Kissel, Martin Swany, and Aaron Brown. Improving GridFTP perfor-
mance using the Phoebus session layer. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, page 34.
ACM, 2009.

[97] Dan Gunter, Rajkumar Kettimuthu, Ezra Kissel, Martin Swany, Jun Yi,
and Jason Zurawski. Exploiting Network Parallelism for Improving Data
Transfer Performance. In High Performance Computing, Networking, Stor-
age and Analysis (SCC), 2012 SC Companion:, pages 1600–1606. IEEE,
2012.

[98] Yoshihiko Kanaumi, Shu-ichi Saito, Eiji Kawai, Shuji Ishii, Kazumasa
Kobayashi, and Shinji Shimojo. RISE: A Wide-Area Hybrid OpenFlow
Network Testbed. Ieice Transactions on Communications, 96(1):108–118,
2013.

[99] Shuji Ishii, Eiji Kawai, Yoshihiko Kanaumi, Shu-ichi Saito, Tomoaki
Takata, Kazumasa Kobayashi, and Shinji Shimojo. A study on design-
ing OpenFlow controller RISE 3.0. In Networks (ICON), 2013 19th IEEE
International Conference on, pages 1–5. IEEE, 2013.

[100] NEC Corporation. Routing switch, Trema Apps. [Online]. Avail-
able: https://github.com/trema/apps/tree/master/routing_switch,
Accessed on: July 22, 2016.

[101] Trema App. [Online]. Available: https://github.com/trema/apps/, Ac-
cessed on: July 22, 2016.

[102] Phillip Merrick, Stewart Allen, and Joseph Lapp. Xml remote procedure
call (xml-rpc), 2006. US Patent 7,028,312.

[103] Thomas J Hacker, Brian D Athey, and Brian Noble. The end-to-end
performance effects of parallel tcp sockets on a lossy wide-area network.
In IEEE International Symposium on Parallel and Distributed Processing
(IPDPS02), pages 434–443. IEEE, 2002.

82

https://github.com/trema/apps/tree/master/routing_switch
https://github.com/trema/apps/

[104] Dong Lu, Yi Qiao, Peter A Dinda, and Fabian E Bustamante. Modeling and
taming parallel tcp on the wide area network. In 19th IEEE International
Parallel and Distributed Processing Symposium. IEEE, 2005.

[105] Takeshi Ito, Hiroyuki Ohsaki, and Makoto Imase. On parameter tuning
of data transfer protocol gridftp for wide-area grid computing. In 2nd
International Conference on Broadband Networks, 2005., pages 1338–1344.
IEEE, 2005.

[106] Bert Hubert et al. Linux advanced routing & traffic control HOWTO.
http://www.lartc.org/howto/., 2009.

[107] Open vSwitch. [Online]. Available: http://openvswitch.org, Accessed
on: July 22, 2016.

[108] Dino Farinacci, P Traina, Stan Hanks, and T Li. Generic routing encapsu-
lation (gre). 1994.

[109] Kohei Ichikawa, Mauricio Tsugawa, Jason Haga, Hiroaki Yamanaka, Te-
Lung Liu, Yoshiyuki Kido, Pongsakorn U-Chupala, Che Huang, Chawanat
Nakasan, Jo-Yu Chang, Li-Chi Ku, Whey-Fone Tsai, Susumu Date, Shinji
Shimojo, Philip Papadopoulos, and Jose Fortes. PRAGMA-ENT: Exposing
SDN concepts to domain scientists in the pacific rim. In PRAGMA Work-
shop on International Clouds for Data Science (PRAGMA-ICDS 2015),
2015.

[110] Kohei Ichikawa, Pongsakorn U-chupala, Che Huang, Chawanat Nakasan,
Te-Lung Liu, Jo-Yu Chang, Li-Chi Ku, Whey-Fone Tsai, Jason Haga, Hi-
roaki Yamanaka, Eiji Kawai, et al. PRAGMA-ENT: An International SDN
testbed for cyberinfrastructure in the Pacific Rim. Concurrency and Com-
putation: Practice and Experience, 29(13), 2017.

[111] Mininet: An instant virtual network on your laptop (or other PC). [Online].
Available: http://www.mininet.org/, Accessed on: July 22, 2017.

[112] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and
Ruslan Smeliansky. Advanced study of SDN/OpenFlow controllers. In

83

http://www.lartc.org/howto/.
http://openvswitch.org
http://www.mininet.org/

Proceedings of the 9th central & eastern european software engineering con-
ference in russia, page 1. ACM, 2013.

[113] Farnam Jahanian, Craig Labovitz, and Abha Ahuja. Experimental study
of internet stability and wide-area backbone failures. U. of Michigan, Tech.
Rep. CSE-TR-382-98, 1998.

[114] Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding bgp
misconfiguration. In ACM SIGCOMM Computer Communication Review,
volume 32, pages 3–16. ACM, 2002.

[115] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya,
Chen-Nee Chuah, and Christophe Diot. Characterization of failures in an
ip backbone. In INFOCOM 2004. Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications Societies, volume 4, pages 2307–
2317. IEEE, 2004.

[116] Nick Feamster, David G Andersen, Hari Balakrishnan, and M Frans
Kaashoek. Measuring the effects of internet path faults on reactive routing.
In ACM SIGMETRICS Performance Evaluation Review, volume 31, pages
126–137. ACM, 2003.

[117] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed
internet routing convergence. ACM SIGCOMM Computer Communication
Review, 30(4):175–187, 2000.

[118] Thomas J Hacker, Brian D Noble, and Brian D Athey. The effects of
systemic packet loss on aggregate tcp flows. In Supercomputing, ACM/IEEE
2002 Conference, pages 7–7. IEEE, 2002.

[119] Thomas J Hacker, Brian D Noble, and Brian D Athey. Improving through-
put and maintaining fairness using parallel TCP. In INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Commu-
nications Societies, volume 4, pages 2480–2489. IEEE, 2004.

[120] Panagiotis Georgopoulos, Yehia Elkhatib, Matthew Broadbent, Mu Mu,
and Nicholas Race. Towards network-wide qoe fairness using openflow-

84

assisted adaptive video streaming. In Proceedings of the 2013 ACM SIG-
COMM workshop on Future human-centric multimedia networking, pages
15–20. ACM, 2013.

[121] Thomas Zinner, Michael Jarschel, Andreas Blenk, Florian Wamser, and
Wolfgang Kellerer. Dynamic application-aware resource management using
software-defined networking: Implementation prospects and challenges. In
Network Operations and Management Symposium (NOMS), 2014 IEEE,
pages 1–6. IEEE, 2014.

[122] Wonho Kim, Puneet Sharma, Jeongkeun Lee, Sujata Banerjee, Jean Tour-
rilhes, Sung-Ju Lee, and Praveen Yalagandula. Automated and scalable qos
control for network convergence. INM/WREN, 10(1):1–6, 2010.

[123] Raphael Durner, Andreas Blenk, andWolfgang Kellerer. Performance study
of dynamic qos management for openflow-enabled sdn switches. In Quality
of Service (IWQoS), 2015 IEEE 23rd International Symposium on, pages
177–182. IEEE, 2015.

85

Publication List
Refereed

• Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida, "A
Multipath OpenFlow Controller for Multiple TCP Stream Applications,"
IPSJ Transactions on Advanced Computing System, 2017.

• Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida, "A
Multipath OpenFlow Controller for GridFTP," The 1st. cross-disciplinary
Workshop on Computing Systems, Infrastructures, and Programming, April
2017.

• Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida, "An
SDN-based Multipath Gridftp for High-Speed Data Transfer," In 36th IEEE
International Conference on Distributed Computing Systems, pages 763-
764, June 2016.

• Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida, "A
Multipath Controller for Accelerating GridFTP Transfer Over SDN," In
11th IEEE International Conference on eScience, pages 439-447, September
2015.

Non-Refereed, Oral Presentation

• Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida, "An
Optimal Multipath Assignment Technique for OpenFLow Network," PRAGMA
33 Workshop, Poster, October 2017.

• Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida, "A
Multipath Controller for Accelerating GridFTP Transfer Over SDN," PRAGMA
28 Workshop, Poster, April 2015.

86

Other Related Publication

• Kohei Ichikawa, Pongsakorn U-chupala, Che Huang, Chawanat Nakasan,
Te-Lung Liu, Jo-Yu Chang, Li-Chi Ku, Whey-Fone Tsai, Jason Haga, Hi-
roaki Yamanaka, Eiji Kawai, Yoshiyuki Kido, Susumu Date, Shinji Shimojo,
Philip Papadopoulos, Mauricio Tsugawa, Matthew Collins, Kyuho Jeong,
Renato Figueiredo, and Jose Fortes, "Pragma-Ent: an International SDN
Testbed for a Cyberinfrastructure in the Pacific Rim," Concurrency And
Computation: Practice And Experience, e4138 March 2017.

• Kohei Ichikawa, Mauricio Tsugawa, Jason Haga, Hiroaki Yamanaka, Te-
Lung Liu, Yoshiyuki Kido, Pongsakorn U-Chupala,Che Huang, Chawanat
Nakasan, Jo-Yu Chang, Li-Chi Ku, Whey-Fone Tsai, Susumu Date, Shinji
Shimojo, Philip Papadopoulos, and Jose Fortes, "Pragma-Ent: exposing
SDN concepts to domain scientists in the Pacific Rim," In PRAGMA Work-
shop on International Clouds for Data Science, October 2015.

Awards

• Best Poster Award

Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida, "An
Optimal Multipath Assignment Technique for OpenFLow Network," PRAGMA
33 Workshop, Poster, October 2017.

• Best Research Award

Che Huang, Chawanat Nakasan, Kohei Ichikawa, and Hajimu Iida, "Best
Research Award," The 1st. cross-disciplinary Workshop on Computing Sys-
tems, Infrastructures, and Programming, April 2017.

• Best Paper Award

Kohei Ichikawa, Mauricio Tsugawa, Jason Haga, Hiroaki Yamanaka, Te-
Lung Liu, Yoshiyuki Kido, Pongsakorn U-Chupala,Che Huang, Chawanat
Nakasan, Jo-Yu Chang, Li-Chi Ku, Whey-Fone Tsai, Susumu Date, Shinji
Shimojo, Philip Papadopoulos, and Jose Fortes, "Pragma-Ent: exposing
SDN concepts to domain scientists in the Pacific Rim," In PRAGMA Work-
shop on International Clouds for Data Science, October 2015.

87

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Target and Use Cases
	1.3 Organization of Thesis

	2 Background
	2.1 Multiple TCP Streams for High-speed Data Transfer
	2.1.1 Multiple TCP Streams
	2.1.2 Multiple TCP Streams in Transport Layer
	2.1.3 Multiple TCP Streams in Session Layer
	2.1.4 Multiple TCP Streams in Application Layer
	2.1.5 GridFTP

	2.2 Multipath Routing
	2.2.1 Source Multipath Routing
	2.2.2 Hop-by-Hop Multipath Routing
	2.2.3 Problems of Current Multipath Routing

	2.3 Software-Defined Networking and OpenFlow
	2.3.1 Software-Defined Networking
	2.3.2 OpenFlow

	2.4 Related Work

	3 SDN-enabled GridFTP
	3.1 Approach and Design
	3.2 Implementation
	3.2.1 Multipath Selection Algorithm
	3.2.2 Multipath OpenFlow Controller
	3.2.3 Globus XIO Driver for SDN-enabled GridFTP

	4 Prediction Model to Optimize TCP Stream Assignment in Multipath Routing
	4.1 Goal of the Prediction Model
	4.2 Proposed Prediction Model
	4.3 Verification of Prediction Model

	5 Use Case of SDN-enabled GridFTP
	5.1 Taget of SDN-enabled GridFTP
	5.2 Mechanism of SDN-enabled GridFTP

	6 Evaluation and Results
	6.1 Experiments using a Virtual Environment
	6.1.1 Virtual Experimental Environment
	6.1.2 Results of Experiments

	6.2 Experiments using a Real Global-scale Environment
	6.2.1 PRAGMA-ENT
	6.2.2 Determine the Parameter of Prediction Model on PRAGMA-ENT
	6.2.3 Results of Experiments

	7 Discussion and Future Work
	7.1 Multipath Selection Algorithm
	7.2 Scalability and Reliability of our Multipath OpenFlow Controller
	7.3 Path Failure
	7.4 Fairness
	7.5 Determine the Parameter of Prediction Model on PRAGMA-ENT
	7.6 Applications in Other Areas

	8 Conclusion
	References
	Publication List

