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Improving and Expanding Gaming Experiences
based on Cloud Gaming∗

Kar Long Chan

Abstract

In gaming industry, Cloud Gaming is a new form of gaming service on trend
trying to serve millions of players around the world with novel gaming experience.
It aims to provide high-quality gaming service at any device, including thin clients
which are incapable of handling high-definition gaming softwares. Players are only
required to use any device that can connect to cloud servers for receiving streaming
data through network and display game contents. Ideally Cloud Gaming is a
promising service of providing novel gaming experience but in reality, various
technological barriers make Cloud Gaming not comprehensively feasible for every
type of game, such as first person shooting game which requires fast responsiveness.
In addition, most existing cloud service, which streams encoded video sequence
back to the client, is difficult to catch up with the rising demands for graphic
quality. In this dissertation, we aim at addressing both of the above issues by
providing solutions that could potentially improve user’s experience of playing
games delivered on Cloud Gaming, as well as expanding the usage of Cloud Gaming
on new generation gaming experiences. First, for addressing the graphics quality
issue, we propose a Hybrid-Streaming System that takes the respective benefits
from Cloud Gaming and traditional gaming to provide highly-accessible gaming
with close-to-original graphics quality. The system distributes rendering operations
to game player’s PC and Cloud server to achieve the desired improvement by
utilising graphics processing power from both sides. Quantitative result shows
graphics quality’s improvement of the proposed system over traditional Cloud
∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1561022, February 19, 2018.
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Gaming system while maintaining acceptable network bandwidth consumption.
Moreover, since rendering tasks are reasonably distributed, server’s workload is
mitigated.

Furthermore, we explore methods that could make Cloud Gaming available for
VR gaming, which comparatively has stricter latency requirement. As such, we
propose utlizing Recurrent-Neural-Network-based Head-motion prediction model
to compensate the inevitable latency issue in a Cloud Gaming environment and the
random nature of player’s head motion. Our results show that with an assumption
of a normal Cloud Gaming environment at 150ms latency, not only the model
could well predict head-motion within the period, but also it could fit well with
different player’s motion.

Keywords:

Cloud Gaming, Graphics Quality, Hybrid Streaming, VR gaming, Prediction
Model, Head-Motion
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1 Introduction

1.1 Background
Video Game industry has been considered as an essential sector in the media
industry, joining with the other two sectors including the movie industry and
the music industry. The global market of video game is growing at a rapid
rate, with an expectation of the market worth rising from $67 billions in 2013
to $82 billions in 2017. In order to dynamically adapt to the ever changing and
highly competitive business environment, video game industry is rennovating their
services with the help of cloud technology. Efficiently utilising large amount of
data through widely deployed data centre helps to form the diversity of video
game industry nowadays. Forms of video game business utilising cloud technology
include gaming services for social usage, which can be recognised by many existing
Massively Multiplayer Online Role-Playing Games (MMORPG) such as World of
Warcraft ∗ and Finally Fantasy XIV †, together with browser-based games provided
by social network based services. Another cloud-based video game business can
refer to game contents delivery or distribution service, as Steam ‡ operated by
Valve Corporation§ is among the most famous platforms in this segment of video
game business. Cloud Gaming is an uprising solution that aims at providing
compute-intensive games, which usually require high-quality rendering in real-time,
to any device in anywhere. It is a relatively new business on trend making rapid
development in term of technology and scale, and an estimation of reaching 8
billion US dollars by 2017 shows the evidence of tremendous market potential of
cloud gaming.
∗World of Warcraft: http://us.battle.net/en/int?r=wow
†Final Fantasy XIV: http://jp.finalfantasyxiv.com/lodestone/
‡Steam: http://store.steampowered.com/
§Valve Corporation: http://www.valvesoftware.com/
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1.2 Concept of Cloud Gaming
Taking the advantages of utilizing reliable, elastic and high-performance computing
resources in cloud infrastructure, Cloud Gaming, also regarded as gaming on
demand, is an emerging gaming service that envisions a future of novel gaming
experiences for millions of game players. Cloud Gaming shifts heavy workloads
of game processing from player’s device to a powerful cloud server. Within the
overall structure, the actual interactive gaming applications are stored at the
server and get executed once requested by the players. The resulted game scenes,
which are rendered through the server’s GPU, are streamed back to the player’s
device as an encoded video over a network with sufficient bandwidth, such as
5Mbps recommended by OnLive¶ [1]. The method of streaming game contents as
video sequences is called image-based streaming. Another method, which is called
instruction-based streaming, delivers game contents by streaming 3D commands
to the client’s side, as such the game contents are locally rendered and shown on
client’s display. At the client’s side, control events from mice, keyboards, joysticks
and other types of input devices are accurately recorded and transmitted from
the client’s machine back to the cloud servers for corresponding manipulation of
game logics. A brief structure of Cloud Gaming is shown at Figure 1.1.

The On demand nature of Cloud Gaming draws significant attention from both
clients and game developers for various reasons. As for the benefits of clients,
Cloud Gaming frees clients from the complication of game software installation
and management of compatibility with hardwares. With the mere requirement of
thin client, which is a device being able to connect to network and display the
received game scenes, clients are granted with more different choices of platforms
including PCs, laptops, tablets and smart phones to play games. In addition,
clients could pay less costs for more game choices. In term of advantages gained by
game developers, Cloud Gaming eases the possible incompatibility issues between
hardwares and softwares. Therefore, developers are easier to adapt their game
softwares to more different platforms, thus decreasing the production costs and
increasing the net revenues. Features of Cloud Gaming envision a promising
future of providing million clients with novel gaming experience, as it has been an

¶OnLive: https://onlive.com/
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Figure 1.1: Brief Structure of Cloud Gaming

active topics both in industries and research fields recently. OnLive [2] is a leading
Cloud Gaming service provider based in San Francisco USA providing gaming
softwares from over 50 publishers. Sony’s acquisition of Cloud Gaming company
Gaikai [3] in the year of 2012 shows great interests toward Cloud Gaming from
leading media enterprises. GamingAnyWhere [4], developed by Chen et al, is an
open-source Cloud Gaming platform available for the use of research.

1.3 Conducted Evaluations of Cloud Gaming
Service

With all the potential benefits, it has been a recent active topic both in industries
and research fields. Sony Entertainment’s‖ acquisition of Cloud Gaming companies
of Gaikai∗∗ in 2012 [5] and OnLive in 2015 [6] shows great interests toward Cloud
Gaming from leading gaming enterprise. On the other hand, GamingAnyWhere [4]

‖Sony Computer Entertainment Inc: http://www.scei.co.jp/
∗∗Gaikai: https://www.gaikai.com/
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is an open-source Cloud Gaming platform available for the use of research. With a
forecast of reaching 8 millions US dollars market worth by 2017 [7], Cloud Gaming
proves to be a new area with tremendous market potential.
As an ideal concept, Cloud Gaming is considered as a game-changer of future

gaming experience. However, network constraints inevitably introduce significant
challenges that hinder Cloud Gaming from being competitive with traditional
gaming platforms. Particularly, responsiveness and graphics quality have been
the long term factors affecting player’s Quality of Experience(QoE) in Cloud
Gaming [8, 9]. Compared to conventional live video feeding, more rigid real-
time responsiveness is required in Cloud Gaming in order to maintain good
enough QoE [4, 10]. Furthermore, previous findings show that players are also
sensitive to changes in graphics quality as well [11]. For improving QoE in Cloud
Gaming, wide ranges of ideas are proposed to address the respective issues such
as alleviating response latency [12, 13] or sending more reliable and higher quality
video [14]. Moreover, OnLive and Gaikai, as two notable Cloud Gaming companies
prior to their acquisitions by Sony Entertainment, were reasonably successful
to compromise network constraints with their own technologies and delivered
relatively good gaming service [15]. However, the actual delivered gaming quality
is still nowhere close to match with the same gaming application being locally
processed by traditional PC platforms or major game consoles. The newtork
constraints nature of Cloud Gaming also hinder the concept from being applied
to new gaming experenice, such as VR/AR gaming.

1.4 Research Motivation
At current stage, Cloud Gaming is an intriguing technology that likely satisfies
casual gaming demands. However, it is still by far an unsatisfactory option for
gamers, as here referred to game players with high gaming demands and they
usually own specified gaming devices. With a strong base of researches being
conducted to propel a rapid development, the increasingly matured Cloud Gaming
technology will inevitably play more significant role in future gaming environment,
together with the concurrently advancing traditional gaming platforms such as
PC or game consoles. With this future perspective in mind, the goal of this

4



research is to bring novel gaming experience by making connection between
Cloud Gaming, traditional PC gaming platform and also new generation gaming
experience, specifically, VR gaming. First, we aim at drawing more positive
attentions from gamers by improving graphics quality delivered on Cloud Gaming,
as currently the quality of game scenes streamed as encoded video is degraded
from original. Furthermore, utilization of gamer’s PC platform in Cloud Gaming
can also share workload, thus achieving better efficiency in term of handling more
gaming requests at cloud server. Secondly, we propose using Machine Learning
Technique to predict player’s head motion as a mean to compensate the latency
problem in Cloud Gaming environment. As such, it could potentially expand the
application of Cloud Gaming on VR gaming.
the goal of this research can be summarized as follows:

• Improving Graphics Quality delievered on Cloud Gaming:

– Based on existing Cloud Gaming infrastructure, a prototype Hybrid
streaming system that distributes rendering operations to server and
gamer’s PC is proposed.

– Improve graphics quality of Cloud Gaming by utilizing available ren-
dering power from both server and gamer’s PC.

– Evaluate graphics quality, network bandwidth consumption and GPU
usage of the proposed system by comparing with an existing Cloud
Gaming platform.

• Creating a prediction model to compensate the latency issue in Cloud
Gaming

– Collect head motion data and build three different kinds of prediction
models.

– Evaluate the three models with cross validation.

1.5 Organization of Dissertation
Our dissertation is structured as follows:

5



• Chapter 2: Proposing an Hybrid-Streaming systed for improving graphics
quality delivered on Clud Gaming

– First we mention the two related techniques that our system is based
on.

– Provide an overview of the Hybrid-Streaming System, followed by the
corresponding implementation.

– Evaluating the Hybrid-Streaming system in terms of graphics qual-
ity improvement, incurred server workload and network bandwidth
consumption.

– Discussing some limitations of the proposed system

• Chapter 3: Head-Motion Prediction Model for expanding the usage of Cloud
Gaming to VR gaming

– We mention about the rising popularity of VR gaming and factor that
hinders it from reaching more customers.

– Propose using Cloud Gaming to improve the accessibility of VR gaming.
But multiple difficulties need to be addressed. Our work focus on
addressing the latency issues.

– Introduce Some related works about providing VR experience remotely

– Propose using RNN and Moving Average to predict head-motion as a
mean to compensate the latency issue.

– Evaluate our results and discuss about our findings

A last we will conclude our works and give an outlook about possible future
directions.

6



2 Research 1: Improving
Graphics Quality delievered on
Cloud Gaming

a challenging objective of developing a sustainable Cloud Gaming service is to
maintain and improve client’s Quality of Experience (QoE), as network constraints
play critical roles in affecting the system performance [8,9]. In general, interaction
delay and graphic quality are two significant criteria that determine client’s QoE.
In Cloud Gaming, rigid real-time responsiveness is demanded in order to achieve
good enough QoE [4, 10], so currently most related researches focus on alleviating
interaction delay [12,13]. On the other hand, findings from a conducted subject
test show that clients are sensitive to changes in graphic quality and smoothness
during gameplay, which implies that graphic quality notably affects QoE of Cloud
Gaming as well [11]. Furthermore, alongside the advancement of in-game visual
effects and high resolution display, client’s demands for gaming with more realistic
graphics on their devices are uprising. However, in term of graphic quality, there is
an obvious gap between traditional local rendering and Cloud Gaming’s streaming
encoded video, which the graphic quality is degraded from the original.

With this consideration, this study aims to enhance graphic quality delivered on
existing Cloud Gaming system. Especially we address the use case of PC, which
is not necessary to be a significant powerhouse, but rendering-capable to a certain
extent. Based on the two existing streaming methods which will be introduced in
later section, our approach is to allocate available rendering power at client’s side
to achieve the improvement of graphic quality. Furthermore, the distribution of
rendering tasks also mitigates server’s workload as well.

7
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Figure 2.1: Structure of Image-based Streaming

2.1 Related Techniques
Cloud gaming system can be regarded as a type of real-time remote rendering
system, as the technology is similar to application such as Remote Desktop.
However, dedicated video player and encoder are usually specifically designed for
the use of cloud gaming, which guarantee an environment to handle more rigid
real-time response. In general, the streaming approaches of cloud gaming system
can be categorised into two types, image-based streaming and instruction-based
streaming. These two methods differ from each other in how the game contents
are streamed from the server to the client.

2.1.1 Image-based streaming

As shown in Figure 2.1, in the Cloud Gaming environment adopting Image-based
Streaming, game logics, which drive the progression of gameplay, are manipulated
according to client’s inputs at the server CPU. Afterwards, 3D graphics rendering
operations are processed through a dedicated GPU. The rendered game contents
are then captured, encoded into video and streamed to the game player’s device.

8



Upon receiving the encoded video, game player’s device decodes the contents and
finally shows the corresponding frame on display.

An advantage of Image-based Streaming is streaming game contents as encoded
video, since it consumes low bandwidth which is suitable in a typical network
environment. Previous research reveals that only 1.5-5Mbps bandwidth is required
for streaming game contents at 720p video [4]. Nvidia Grid∗ provides better
streaming quality at 1080p, which requires bandwidth of 15Mbps. Furthermore,
since decoding can be processed through low-cost decode chips which are massively
embedded in game player’s device, this approach is ideal for thin client running
on resource-constrained devices. However, in the scenario of unstable network
environment, graphics quality may be further degraded because the contents are
streamed at lower resolution in order to adapt to the highly-burden connection.
Given the wide availability of service based on this method, most commercial

Cloud Gaming companies, such as Nvidia GeForce Now†, PlayStation Now‡ and
Steam In-Home Streaming§ are applying Image-based Streaming for delivering
game contents.
On the other hand, GamingAnyWhere is the first and the only available open

source Cloud Gaming platform [4], which is built as an Image-based Streaming
structure. Designed to be highly extensible, the platform allows developers easily
refer to programming interfaces of the modules and extend the capabilities of
the platform. The platform is also portable to different environments such as
Windows, Mac OSX and Linux, providing rich availability for testing. Furthermore,
a large number of audio and video codecs are supported as well. According to
the evaluation done in previous research [4], GamingAnyWhere outperforms the
other two cloud gaming platforms including OnLive and StreamMyGame in term
of response and graphic quality under a good network environment. Another
advantage demonstrated by GamingAnyWhere is that the system introduces less
network traffic compared to the other two. However, it is not as stable as OnLive
if the environment becomes varied. Our proposed hybrid system is implemented
based on GamingAnyWhere.

∗Nvidia Grid: http://www.nvidia.com/object/cloud-gaming.html
†Nvidia GeForce Now: http://www.nvidia.co.jp/object/game-streaming-with-geforce-now-jp.html
‡PlayStation Now: https://www.playstation.com/en-gb/
§Steam In-Home Streaming: http://store.steampowered.com/streaming/?l=english
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Figure 2.2: Structure of Instruction-based Streaming

In this research, Cloud Gaming generally refers to the system applying Image-
based Streaming. Even though it is the more preferred methods, the delivered
graphics quality is significantly degraded from original. Therefore, this is the
particular issue we address on in this research.

2.1.2 Instruction-based streaming

As another method for delivering game contents, Instruction-based Streaming is
varied in the way of where the rendering operation is performed. As indicated in
Figure 2.2, after game logics are calculated at server, API calls to graphics library
for corresponding rendering are intercepted. The intercepted API functions, or
referred as graphics commands, are then compressed and sent to client’s device.
In addition, related 3D data such as geometry mesh and texture are streamed
to the game player’s device as well. Soon after the arrival of the data, 3D
rendering according to the received graphics commands is processed on-site at the
player’s device. Put simply, game logics are calculated at the server, while the
corresponding game contents are rendered locally at the player’s device.

Eisert et al [16] implemented a low-latency Instruction-based Streaming within
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Game@Large framework [17,18]. The model intercepts every API calls to OpenGL
library¶ as well as SDL library‖, and tokenised them for reducing overhead during
network streaming. In addition, caching techniques are status simulation are
applied as well to mitigate network resource consumption.

The biggest advantage of Instruction-based Streaming over Image-based Stream-
ing is the preserved original graphics quality, as the actual rendering is operated
at the player’s device. Furthermore, without the heavy burden of 3D graphics
rendering, Cloud server is more efficient in term of simultaneously handling more
player’s requests. However, player is required to have a device not only compatible
with the delivered 3D graphics commands such as OpenGL or DirectX∗∗, but also
powerful enough to process high quality rendering in real time.
On the other hand, Instruction-based streaming could provide more stable

gaming experience in a changing network environment because only light-weight
graphics instruction are required to stream to the client side. However, at the start
of Instruction-based Streaming, 3D resources such as texture data are streamed
to the client side as well, which may incur network load ranging from 6Mbps up
to 80Mbps [19] depending on the in-game scenarios. Once enough 3D resources
are accumulated at the client side, only the light-weight graphics instructions
are streamed to client. Furthermore, since individual connection consume less
bandwidth, platform applying instruction-based stream could accommodate more
clients simultaneously.

Compared to Image-based Streaming, Instruction-based Streaming is not suit-
able for resource-constrained devices, but should present as a viable option for
gamer’s PC, which is usually equipped with proper GPU for gaming.

2.1.3 Other Approaches

Beside the previous two major streaming methods, an approach of video streaming
with post-rendering operation is also proposed [20]. This method is majorly
designed for cloud-based mobile game usage. Compared to broadband network,
wifi connection of mobile device implies much smaller bandwidth and possible

¶OpenGL: https://www.opengl.org/
‖SDL: https://www.libsdl.org/
∗∗DirectX: https://www.microsoft.com/ja-jp/directx/
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longer latency. Therefore, this approach aims to enhance video encoding for cloud-
based mobile gaming service by taking the advantage of the run-time graphics
rendering contexts form the 3D game engine. In this method, the modified encoder
selects a set of key frames in the video sequence, uses a 3D warping algorithm
based on the context data from the game engine to interpolate other non-key
frames. The interpolation allows encoding warping residues with much lower bit
rate, while maintaining or even improving video quality.
Another proposed method aims at streaming high quality graphics to mobile

devices with low latency in the in-home environment, by exploiting a distributed
rendering setup at the server [21]. The interactive multimedia application is
processed in the distributed environment, while the output of the contents is
compressed as ETC1 coding. Since ETC1 coding is natively supported by OpenGL
ES which is the main 3D graphics library in mobile device, the application contents
can be conveniently represented as OpenGL ES texture on the mobile display. Due
to the powerful computing offered by the distributed setup, this streaming solution
is also well suited for real-time visualisation of data intensive computations, which
belong to the aspect of big data and HPC.
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Figure 2.3: Data Flow of Proposed Hybrid-Streaming

2.2 Proposed Method: Hybrid-Streaming
System

The goal of this research is to deliver novel Cloud Gaming experience that also likely
satisfies demands of gamers. As such, we propose a streaming infrastructure which
is based on Image-based Streaming, and integrate the mechanism of Instruction-
based Streaming to achieve the desired improvement by exploiting on-site 3D
rendering power at gamer’s PC.
Our proposed Hybrid-Streaming System, which means utilizing both Cloud

Gaming streaming methods, distributes partial game data to be streamed as 3D
graphics commands and rendered locally at gamer’s PC, while keeping partial
rendering tasks to be processed at resourceful Cloud server and then streamed
as video sequence. Graphics improvement is mainly contributed by the portion
of game contents rendered by gamer’s PC, while the system which is built upon
the infrastructure of Image-based Streaming maintains highly available gaming
experience. However, applying the proposed method also inevitably increase the
GPU workload at gamer’s PC. As such, there is a tradeoff between graphics
quality and GPU workload. How such tradeoff is treated from the perspective of
our system standpoint will be thoroughly discussed in later section.

2.3 System Structure Overview
Figure 2.3 presents the overall structure of our Hybrid-Streaming System. The
blue boxes indicate the original data flow of Image-based Streaming which the
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proposed system is based on, while the orange boxes refer to the additional features
for achieving the overall infrastructure.

Within the system, how the final representation of game contents is correspond-
ingly composed from the products of two different streams is an important design
objective, which largely depends on the way of splitting the game contents at
the server. By comparing the depth value, all the objects are separated into two
groups, an upper layer which contains shallower objects (closer to client’s view),
and a lower layer which contains deeper objects (further away from client’s view).
Considering that the contents delivered through Image-based Streaming result
in video frame without any depth factor, the game contents represented as this
form should be treated as background. For this purpose, objects belonging to
the lower layer are streamed as video sequence, which undergoes the original
process Image-based Streaming. On the other hands, objects belonging to the
upper layer are streamed as graphics commands. Therefore, once 3D rendering is
accomplished through the GPU in gamer’s PC, the products can be overlaid on
top of the background filled by the contents from Image-based Streaming. The
graphical representation of the final product is indicated by Figure 2.4.

In the following subsections, data manipulation in Image-based Streaming will
be explained by exploring GamingAnyWhere(GA), which our work is based on.
Furthermore, the additional features to achieve Hybrid-Streaming System will be
introduced as well.

2.3.1 Data Flow of GamingAnyWhere’s Image-based
Streaming

In GA, the Data Flow refers to streaming audio and video frames from the server
to the game player. In this research we focus on the graphics data manipulation
throughout the Data Flow, indicated as the blue boxes in Figure 2.3.

Capturing original Game Contents and Encoding as Video

After the game source is processed and rendered at the server, a designated video
capturer implemented in GA is triggered to capture the contents in a polling
manner. The captured data are then buffered and encoded by encoder module.
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Given the highly extensible libavocode-based encoder module used in GA, our
focus is on the rich customizable features, which enable us to easily adjust the
encoding parameters that affect the delivered video quality.

Network Streaming

In GA, the encoded video frame, represented as RTSP and RTP/RTCP based
packets, is delivered to gamer’s PC. RTSP and RTP/RTCP are both specific
protocol designed for the purpose of streaming media in the network. In GA, such
packets are streamed in a connection of either TCP or UDP protocol, which can
be specified based on user’s preference. In order to handle the possible situation
of packet loss, TCP protocol is set in our system.

Decoding Video

At GA’s client module, only packets representing the most current encoded video
frame delivered from server are buffered at the decoder. Once the video is decoded,
the buffer is cleared for the next frame.
The state-of-art mechanism of GA’s handling video source achieves satisfying

results according to previous evaluations, which reveal that GA incurs low network
load while the encoded video is delivered at relatively good quality [4]. It gives
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us confidence that no significant modification for the process of Image-based
Streaming is necessary in our system.

2.3.2 Proposed Mechanism for Hybrid Streaming

For achieving the Hybrid-Streaming System as shown in Figure 2.3, features
including splitting the game contents, Instruction-based Streaming, synchronizing
data from two streaming and correspondingly arranging the final output are
mandatory.

Splitting the Contents

In order to distinguish if an object belongs to the upper layer or the lower layer
during game processing, it is necessary to dynamically intercept API calls to the
graphics library and looks for the most updated z-value of each object’s center
point. In this research, we only consider the case of OpenGL. The interception
can be easily performed by applying existing application such as GLInterceptor.
A threshold of z-value is defined for classifying which layer the object belongs, and
usually in a manner of distributing the majority of the contents to be processed
at Cloud server.
As to achieve the minimum required implementation for evaluating graphics

quality, we manually manipulate depth value of every object. As such, we can
explicitly split the contents to be processed as either Image-based Streaming or
Instruction-based Streaming.

Contents’ Processing Prior to Streaming

After the game contents classified as lower layer is rendered at the server, it
undergoes the normal process of Image-based Streaming of GamingAnyWhere, as
mentioned in last subsection.

As for the Instruction-based Streaming, the intercepted OpenGL instructions for
rendering the upper-layer objects are overridden for not being processed through
the server’s GPU, but instead packetized for streaming to the gamer’s device.
Considering that usually same sequence of OpenGL instructions are routinely
called for performing a particular task, we encrypt the sequence as a fixed code
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indicating the corresponding task. As such, rather than delivering every native
OpenGL instructions individually to gamer, a light-weight graphics commands
set, which include a code and related parameters are streamed to gamer’s device.
Furthermore, regarding other graphics data such as objects vertices and textures
that potentially incur heavy network load, a copy of such data is streamed in
advance and saved at gamer’s PC prior to actual gaming. Therefore, during
gameplay, only the graphics commands set is streamed to the gamer’s PC through
the network based on a TCP connection. Such connection is separated from the
one of Image-based Streaming.

Data Synchronization

Synchronizing data of two streams is another critical design objective. Gamin-
gAnyWhere’s source capturing rate, which can be defined manually, is usually
different from the API intercept rate, which follows the actual cycle of game
processing. Therefore, the latest graphics commands which render the upper layer
objects are buffered and updated in every cycle. Whenever GamingAnyWhere’s
source capturing is triggered, the most currently buffered graphics commands
together with related parameters are packetized and streamed to thd gamer’s
device. After the graphics commands are sent, the buffer is cleared and continues
for the next iteration of API interception. Since the contents of the two streams
undergo separated TCP connection, a precise global time stamp is added to the
respective headers during packetization. The global timestamp is for the client
module to recognize the same-frame contents from the two streams. An indication
of the buffering process is shown by Figure 2.5.

Final Arrangement at Client’s Device

After the video is decoded from Image-based Streaming, an additional step is to
assign a suitable depth value to the video frame for maintaining the contents to
be always at the back of the locally rendered objects.

For the on-site rendering, a parallel running thread is responsible for receiving
the inputs from Instruction-based Streaming and decoding the contents after-
wards. Based on the decoded code which represents a particular rendering task,
corresponding sequence of OpenGL functions are called and assigned with the
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Figure 2.5: The cycle of buffering latest graphics commands for upper layer objects
and streaming to gamer’s PC

received parameters. As such, the local rendering at the gamer’s device can be
achieved.
Since decoding video frame from Image-based Streaming and local rendering

based on Instruction-based Streaming are two separated processes at the client
module, the embedded global timestamp is checked for confirming the same-frame
contents before updating the next game frames. Once the confirmation is made,
the game frame, which is composed of the rendered 3D objects overlaying on the
video frame, is updated to the gamer’s display.

18



2.4 Implementation
We implemented a prototype system based on the open source GamingAnyWhere
platform. The main purpose of the prototype is to simulate the output of
our system, which allows us to achieve the current main goal of evaluating
graphics quality. By simulating the expected output of our system and conducting
preliminary evaluations on graphics quality, bandwidth consumption and GPU
usage at the server and also the gamer’s PC, we can compare the results with the
approach of Image-based streaming and eventually prove our concept. For this
reason, instead of a full function of dynamically intercepting graphics commands,
the graphics commands together with related parameters are streamed directly
from the source of demo application. At the gamer’s PC, the corresponding
OpenGL objects are rendered based on the received instructions together with
necessary texture data which are saved in advance. Such objects are eventually
overlaid on top of the contents streamed as Image-based Streaming.

2.4.1 Setting Image-based Streaming in
GamingAnyWhere

We installed the GamingAnyWhere pre-compiled package, which comes with
both a client module and a server module, respectively on two machines, as
one is for the server and another one is for the client. In order to stream a
game in GamingAnyWhere, the platform provides a convenient way of capturing
game frame by executing a simple command line in CLI. The command takes a
configuration file as a parameter, in which we can specify the name of the gaming
window. Many other parameters such as encoding bits, frequency of capturing
and pixel formats can be adjusted within the configuration file as well.

The applied encoder is x264, which is the default configuration of GamingAny-
Where, and the data are streamed as H.264/MPEG-4 AVC format. Figure 2.6
shows the essential setting within configuration files. Figure 2.6(a) is the basic
setting of the capturing video source, which includes the name of the demo appli-
cation’s window. Figure 2.6(b) shows the configuration of specifying the encoder
to be used, which is x264 and the desired frame rate at 24fps for the out- put
video. Specific parameters such as encoding bitrate at 3000kbps can be configured
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Figure 2.6: Configuration for Image-based Streaming

as well, which is shown in Figure 2.6(c).

2.4.2 Instruction-based Streaming

The current Instruction-based Streaming sends 3D graphics commands directly
from our created demo application. Operating in the manner of request-and-
response, the graphics commands are only delivered when requested by the
modified GA’s client module. In this module, a separated thread for requesting
graphics commands was developed. This thread, which operates in parallel with
the original GamingAnyWhere decoding thread for video sequence, periodically
sends requests to the server for graphics commands. Furthermore, a lock is used
to synchronise the contents from both streams into the same frame.
As for the construction of the proposed light-weight graphics commands set,

multiple OpenGL instructions responsible for a particular task are represented
as a Function ID. Tasks here refer to altering the object’s location, rotation,
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scale, environment lighting effects and camera positions. For corresponding
rendering operation to be performed properly at the client side, data that should
be packetized includes:

• Object ID which indicates the object to be rendered (1 byte).

• Function ID which refers to the task to be performed (1 byte).

• Each task is followed by a set of corresponding parameters. For example,
float values of X, Y, Z coordinates for setting the location of object (12
bytes).

Multiple functions can be aggregated into a single packet by simply putting
graphics commands set one after another. Once receives the packet, the client
module decodes the packetized contents and calls the corresponding OpenGL
instructions to render the objects. The current packet layout is designed only
for the minimum required data in this preliminary implementation, as it can be
adjusted for adopting more patterns in favor of more complex gaming application.

2.4.3 Arrangement at Client Module

The original client module of GamngAnyWhere applies SDL library for directly
presenting the decoded video contents on display. In order to switch to OpenGL-
based operation, the module is modified to map the decoded contents as texture on
an OpenGL-based rectangular-shaped polygon, which represents the background
object of the final output. By manually setting a suitable depth value for this
polygon object, the background contents are always further away than any locally
rendered 3D objects.

As mentioned in last subsection, a separated thread was implemented to receive
the packetized graphics commands and decode the contents. Based on the received
graphics commands, Assimp††, which is a library to import 3D model formats, is
utilised to import the corresponding 3D models and OpenGL functions are called
accordingly to render the objects into the buffer, which also contains the polygon
object representing background contents.

††Assimp: http://www.assimp.org/
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Finally, once the buffered products are called for updating the next frame
on display, the locally rendered 3D objects accordingly overlay on top of the
background contents streamed as encoded video from server.
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2.5 Measurement
As for our current goal, we compared the graphics quality of the prototype Hybrid-
Streaming System to original Image-based Streaming system of GamingAnyWhere.
Besides, we also preliminarily evaluated GPU usage of both cloud server and
gamer’s PC. In addition, network bandwidth consumption was also examined.

Considering that using existing game software as a test case is sophisticated for
the prototype stage of the system, we instead created a simple interactive demo
application for evaluation.

2.5.1 Demo application for current evaluation

Before creating this demo application, which is OpenGL-based, we established
a design objective to base on: the application should have clearly distinguished
front objects and background objects, which enables us to easily split the contents
into Image-based Streaming and Instruction-based Streaming. The created demo
application is shown in Figure 2.7(a), in which one jet-fighter ‡‡ is presented. The
main background, which includes the scene of mountain landscape, is created
by applying the concept of skybox. Skybox is a cube object that the surface is
filled with the assigned texture. It is always aligned to remain stationary with
the viewer, while all the other objects must be at least closer than the skybox to
the viewer. As such, it is always classified as background object and delivered to
gamer’s PC by Image-based Streaming.

The jet-fighter 3D model in foreground is constructed from multiple files which
contain coordinates of vertices, texture image and mapping location. Applying
Assimp allows us to conveniently load all the necessary 3D data and save it into
the vertex buffers for constructing the desired 3D object on display. With the
library, adding more 3D objects into the scene is also a task of ease. In addition,
the location, rotation and scale of every object can be adjusted together with the
camera position and certain lighting effects.
Since the location of every object can be explicitly defined in the demo, we

can also conveniently classify if the 3D object belongs to lower layer, which is
streamed from the server as video sequence, or upper layer, which is rendered

‡‡Blender 3D objects free for use: http://tf3dm.com/3d-model/sukhoi-t-50-pak-fa-4724.html
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(a) With one jet-fighter

(b) With three jet-fighters

Figure 2.7: Demo Application

at the local device. For example, Figure 2.7(b) demonstrates the case of three
jet-fighter objects. The two closer jet-fighters can be classified for Instruction-
based Streaming, while the further one together with the landscape background
are streamed as encoded video.

2.5.2 System Environment and Testing Scenarios

As for the hardware setup, the server machine is equipped with an Intel Core i7
4770K 3.5GHz CPU, a Asus Nvidia GeForce GTX780 graphics card DirectCU
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Figure 2.8: Procedure of measuring graphics quality

ii OC(Core clock at 889MHz with 3072MB GDDR5 video memory)§§ and 16GB
system memory, running on a 64-bit CentOS Linux system. On the other hand,
the gamer’s PC (client’s side) is a MacBook Pro equipped with a 2.6GHz Intel
Core i7 CPU, a Nvidia GeForce GT750M (Core clock at 926MHz with 2048MB
GDDR5 video memory) with 16GB system memory. The Image-based Streaming
of Gamin- gAnyWhere is set to stream the demo application at the resolution of
1280 x 720. The testing was conducted on a private local network.

Furthermore, all the measurements were conducted respectively on the demo
application with different numbers of jet-fighter objects being loaded.

2.5.3 Procedure of Measuring graphics Quality

Referring to previous researches related to cloud gaming [4,19], Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity (SSIM) are measured to evaluate

§§GTX 780 DirectCU II: https://www.asus.com/graphics-Cards/GTX780DC2OC3GD5/
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graphics quality.
PSNR is used to measure the quality of reconstruction of lossy compression,

which refers to the output from either Image-based Streaming or Hybrid-Streaming
System in this research. It measures the ratio between the signal, which is the
original quality produced by traditional graphics process- ing, and the noise
introduced by compression. The higher PSNR value is the better the graphics
quality it indicates. Typically the range of PSNR is between 30 and 50 dB.
SSIM is an index for determining the similarity between two images. It refers

to the measurement of image quality referencing to an initial uncompressed image.
The range of SSIM is from -1 to 1 while the value closer to 1 means higher similarity
between the processed image (Image-based Streaming or Hybrid-Streaming System)
and the reference image (produced by traditional local rendering).
In order to take the measurement of PSNR and SSIM, a window capturing

software Screenflick¶¶ is used to capture a short 60fps video of the demo application
running in Image-based Streaming and the proposed Hybrid-Streaming at the
gamer’s PC. As for the reference source, we capture a short video of the demo
natively running on our Linux server as well. The setting of window capturing
is configured to be as high quality as possible for the purpose of retaining the
original quality. After acquiring a video source for each mode, we used a function
of ffmpeg∗∗∗ to extract every frame from each video source. Referencing to the
frame of original quality, a chosen frame from Image-based Streaming and the
Hybrid Streaming is used for calculating PSNR and SSIM respectively, which can
be conveniently achieved by applying MSU Video Quality Measurement Tool†††.
The overall measurement procedure is indicated in Figure 2.8.

2.5.4 Measuring GPU usage at server and gamer’s PC

With the proposed system, the GPU usage of server is expected to mitigate since
partial rendering tasks are offloaded to the gamer’s PC. Simultaneously, GPU
at the gamer’s PC should be properly utilized without overloaded. Therefore,
we investigated GPU usage at both sides under different situations of various

¶¶Screenflick: http://www.araelium.com/screenflick
∗∗∗ffmpeg: https://www.ffmpeg.org/
†††MSU Video Quality Measurement Tool: http://compression.ru/video/quality_measure/
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numbers of 3D objects being displayed in the demo application. We utilized tools,
which include atMonitor‡‡‡ (for MacBook Pro) and nvidia-settings (for CentOS),
to take the measurement of GPU usage at each second. In addition, we logged
all the data during the demo contents’ being streamed to gamer’s PC in either
Hybrid Streaming or Image-based Streaming for one minute. At last, we took
the average value of the logged GPU usage. Same measurement is repeated for
scenarios of displaying different number of jet-fighter objects.

2.5.5 Measuring Network Traffic Load

Developing a Cloud Gaming system that is viable in common broadband network
environment is also critical, as previous evaluation reveals that GamingAnyWhere’s
Image-based Streaming delivers relatively good gaming quality while attaining
reasonably low traffic load. Since the implemented Instruction-based Streaming
in our idea can introduce additional overhead, Ip-Traf§§§, which is a network
monitoring software, is used to measure average consumed bandwidth of demo
contents being streamed for one minute. The measurement was taken under the
scenario of twelve jet-fighter objects.

2.5.6 Results

In this section, the measurement results are presented.

Results of PSNR and SSIM

Figure 2.9(a) shows the PSNR and SSIM of the test case with one jet-fighter
displaying in the demo application. The proposed Hybrid-Streaming System (HS),
in which the jet-fighter object is locally rendered at the gamer’s PC, achieves
46.20dB compared to 43.96dB from GamingAnyWhere’s Image-based Streaming.
As for the SSIM, the Hybrid-Streaming System also achieves better result than
Image-based Streaming, but the difference is not significant.
In the second case which two jet-fighter objects are displayed, we conducted

evaluations on two scenarios for the Hybrid-Streaming System. The first scenario
‡‡‡atMonitor: http://www.atpurpose.com/atMonitor/
§§§IpTraf: http://iptraf.seul.org/
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(a) With one jet-fighter (b) With two jet-fighters

(c) With three jet-fighters

Figure 2.9: Run charts of PSNR and SSIM in all the test cases

is streaming one jet-fighter as 3D graphics commands to be rendered at gamer’s
PC, while another one is delivered as video sequence. The second scenario is
streaming both the two jet- fighters as 3D graphics commands. As shown in
Figure 2.9(b), the first scenario achieves PSNR of 44.54, while the second scenario
achieves slightly better result at 44.78dB. Both hybrid scenarios are better than the
43.61dB measured in Image-based Streaming. SSIM results from three scenarios
are not significantly varied, but the Hybrid-Streaming System attains better
results.
In the last test case, three jet-fighter objects are displayed in the demo ap-

plication. Similar to the second case, graphics quality was evaluated based on
various scenarios of streaming different number of jet-fighter objects as 3D graphics
commands. As shown in Figure 2.9(c), all the scenarios of applying the Hybrid-
Streaming System achieve overall better results than Image-based Streaming in
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Table 2.1: Used bandwidth of delivering demo contents from server to gamer’s
PC under the test scenario of twelve jet-fighters

Number of objects
streamed as graphics
commands set

Consumed Bandwidth

None (Only encoded
video)

402.25KB/s

3 jet-fighters 401.06KB/s
6 jet-fighters 406.39KB/s
9 jet-fighters 403.50KB/s
12 jet-fighters 401.25KB/s

terms of both PSNR and SSIM. Furthermore, while comparing only between the
scenarios of Hybrid-Streaming System, better PSNR is achieved by streaming
more jet-fighter objects as 3D graphics commands.

GPU Usage at Server and Gamer’s PC

The respective GPU usage at cloud server and gamer’s PC was investigated
under the scenario of displaying more 3D objects, which include twelve jet-
fighters, in the demo application. The purpose is to demonstrate changes of
GPU usage along different rendering complexity, which is indicated by polygons
count (One jet-fighter object is constructed from 25091 polygons, and the skybox
(background scenery) is constructed from 12 polygons). In the test scenario,
we took measurements from multiple cases of distributing different number of
jet-fighter objects to be rendered at either side. As shown in Table 2.2, a decrease
of GPU usage at server is indicated while rendering fewer jet-fighter objects.
Simultaneously, GPU usage at gamer’s PC increases as more jet-fighters are
assigned to be rendered locally.
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Network Bandwidth Consumption

For evaluating the additional overhead incurred by Instruction-based Streaming,
we measured the consumed network bandwidth under the scenario of twelve
jet-fighter objects. As shown in Table 2.1, all the measured scenarios of applying
Hybrid-Streaming System incur rather trivial additional bandwidth over the case
of Image-based Streaming (Streaming none object as graphics commands set).
Throughout the observation, significant difference or trend was not observed on
the network usage.
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Table 2.2: GPU usages of server and gamer’s PC under the test scenario of twelve
jet-fighters

Number of
distributed jet-
fighter objects
(with polygon
counts) at server

Number of
distributed jet-
fighter objects
(with polygon
counts) at
gamer’s PC

GPU usage at
server

GPU usage at
gamer’s PC

12 jet-fighters
(301104 poly-
gons)

0 jet-fighter (2
polygons)

18% 4.70%

9 jet-fighters
(233121 poly-
gons)

3 jet-fighters
(77705 polygons)

16% 5.63%

6 jet-fighters
(155418 poly-
gons)

6 jet-fighters
(155408 poly-
gons)

15% 6.21%

3 jet-fighters
(75285 polygons)

9 jet-fighters
(225821 poly-
gons)

14% 6.63%

0 jet-fighter (12
polygons)

12 jet-fighters
(310814 poly-
gons)

12% 6.98%
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2.6 Discussion
In this session, the results from the conducted measurements are investigated.
In addition, we will discuss about the novelty of the system by comparing with
several related works.

2.6.1 Investigation on Graphics Quality

Evaluation on graphics quality from previous sections shows that our proposed
Hybrid-Streaming System outperforms GamingAnyWhere’s Image-based Stream-
ing, as shown in Figure 2.9. When compared in PSNR, Hybrid-Streaming System
demonstrates clean advantage over Image-based Streaming. As shown in Figure
2.9(a), our model achieves up to 2.24dB better. Furthermore, assigning more
contents to be locally rendered at gamer’s PC achieves higher PSNR, which
is shown in both Figure 2.9(b) and Figure 2.9(c). This is reasonable because
rendering at the gamer’s PC can preserve the fidelity of the graphics. On the
other hand, in the case of SSIM, our model retains a slightly better result than
Image-based Streaming, but the difference is not significant.
Although gamer’s experience was not evaluated subjectively at current stage,

the PSNR/SSIM difference in the experiment provides us with insights of how
it may indicate the subjective experience. According to previous works [22,23],
SSIM is sensitive in different aspect from PSNR. PSNR attempts to quantify
the error between a distorted image and a reference image, while SSIM measures
the degradation of structural information. The work mentions that SSIM should
reflect better subjective information since the human visual perception is highly
adapted to extract structural information. It also shows that the SSIM results
align more consistently with the results from subjective evaluation using Mean
Opinion Score than PSNR.

As for our evaluations, the Hybrid-Streaming system achieved both better PSNR
and SSIM results than the Image-based Streaming. However, the variance of SSIM
is rather small, which indicates that from a subjective perspective, it is not easy
to distinguish the quality difference between Hybrid-Streaming and Image-based
Streaming. On the other hand, higher PSNR achieved by Hybrid-Streaming
system implies that higher fidelity of the graphics is preserved. It can be proved
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by our system’s achieving sharper edge and better graphical representation of
texture. However, such details only become more visible when viewing closely to
the graphics. We expect that by using more complicated gaming application, the
perceived changes of graphic quality should be more obvious from a subjective
perspective.

2.6.2 Investigation on GPU usages

The measured GPU usages of the server and the gamer’s PC demonstrate expected
tendency. When more objects are delivered to the gamer’s PC as graphics
commands set, GPU usage at the server, which is mainly consumed by objects’
renderings and video encoding, decreases gradually. On the other hand, as more
objects are assigned to be rendered in the gamer’s PC, the machine’s GPU
usage, which majorly includes video decoding and objects’ renderings, increases.
Furthermore, even though the server is equipped with a more capable GPU, usage
is overall higher than the one at the gamer’s PC. It can be due to the reason
that video encoding is responsible for most of the workload, while decoding at the
gamer’s PC is relatively light-weight. In addition, another finding is that the GPU
utilization at both sides is low (Averagely less than 20% at the server, and less
than10% at the gamer’s PC). It is considered that the created demo application
is not calculation-intensive, and without any significantly complicated effects. We
expect that by testing with a more formal gaming application, the GPUs at both
sides can be utilized more efficiently.

2.6.3 Investigation on network bandwidth

As for the results of the measured network bandwidth, mainly two findings can
be summarized. First, the overhead incurred by the additional Instruction-based
Streaming mechanism in our proposed system is relatively trivial. According to
the data presented in Table 2.1, the bandwidth is mostly consumed by delivering
the contents as Image-based Streaming. It is expected that more sophisticated
graphics commands in formal gaming application will likely lead to larger over-
head. Even so, as Hybrid-Streaming System saves related graphical data such
as textures and geometry meshes at gamer’s PC prior to actual gaming, low-bit
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overhead should be maintained by streaming only the light-weight graphics com-
mands set. Furthermore, another finding is that delivering more 3D objects as
Instruction-based Streaming do not imply a trend of increasingly utilitzed band-
width. According to the measurements, solely Image-based Streaming actually
incurs higher consumed bandwidth than the case of streaming three jet-fighters
as graphics commands set.

2.6.4 Related Works

In term of utilizing client’s device for rendering, Nan et al [24] proposed a method
of jointly using video and 3D graphics streaming to construct a cloud gaming
framework, aiming at achieving low-bit rate transmission. In this proposed method,
two stages of processing can be defined. As for the first stage, game contents are
streamed as normal video streaming, but simultaneously 3D data such as geometry
mesh and textures are transmitted to client side and saved at a buffer. As time goes
by, more 3D data are accumulated at the client’s buffer and the frame rendered
from this local buffers tends to be closer to the original data. Soon as all the
graphics data are received at the client, the system can shift to the second stage of
only streaming 3D commands for rendering the graphics locally at the client side,
thus achieving low-bit rate eventually. Comparing to this method of progressively
shifting from Image-based Streaming to Instruction-based Streaming, our system
utilizes both streaming in parallel. Without possibly incurring unevenly heavy
workload on either side, our system intends to allocate render power from both
sides to retain availability of Cloud Gaming service, and improve the graphics
quality as well.

For improving graphics quality in a Cloud Gaming environment, Shi et al. [20]
proposed an approach of video streaming with post-rendering operation, which
is majorly designed for cloud-based mobile game usage. Concerning the limited
network environment, the approach aims to enhance video encoding by taking
the advantage of the run-time graphics rendering contexts from 3D game engine.
The modified encoder selects a set of key frames within video sequence, uses a 3D
warping algorithm based on the context data from the game engine to interpolate
other non-key frames. The interpolation allows encoding warping residues at a
much lower bit rate, while maintaining or even improving video quality. On the
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other hand, Pohl et al. [21] proposed a method for streaming high quality graphics
to mobile devices with low latency in an in-home environment, by exploiting a
distributed rendering setup at the server. After the powerful server environment
processes the interactive multimedia application (Gaming application was used as
a test case), the contents are encoded as ETC1 coding, which can be conveniently
represented as OpenGL ES texture on mobile display. Compared to these two
methods, the established service target of Hybrid-Streaming System is gamer’s
PC, which is significantly more powerful than mobile device. Furthermore, from a
technological perspective, the two methods achieve high quality video streaming
through modifying the encoding scheme, as our approach utilizes local rendering
to preserve partial game contents as original quality.
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2.7 Limitations of Proposed System
The Hybrid-Streaming system is built upon the Image-based Streaming structure
while applying the mechanism of Instruction-based Streaming to achieve the
improvement of graphics quality, as well as the mitigation of server’s workload.
On the other hand, the main tradeoff for these improvements is the increased GPU
workload at client’s PC. Therefore, in this section we will clarify our system’s
standpoint by thoroughly discussing the tradeoff from the perspective of a Cloud
Gaming system. Furthermore, there are multiple concerned limitations at the
current prototype stage of the system. The limitations include contents separation
in more complicated application, applying post-effect, inevitable waiting time
before first-time gameplay, latency constraints and required special modification
in the application source code. In order to further develop our system to be more
practical in common usage, we will address each of the above limitations and
provide our planned solutions in the following subsections.

2.7.1 System’s Standpoint

From general Cloud Gaming perspective, the increased workload at client’s machine
in our system can be considered as a limitation. However, it is our approach
that intends to utilize the available GPU processing power at client’s machine to
achieve the improvement of high-quality gaming graphics.
A typical cloud gaming system only requires client’s machine to decode video

sequence, which is a light-weight operation and thus suitable for resource con-
strained thin-client. However, it is more likely for gamers to own a machine that
is possibly not very powerful, but capable enough to handle graphics rendering to
a certain extent. Therefore, when gamers use Cloud Gaming, the mere operation
of decoding only occupies a relatively small workload when compared to the full
potentials of their machines. In addition, even though they can enjoy immediate
gaming, the degraded graphic quality hardly satisfies the gamers’ demands for
high fidelity graphics. As such, we address this problem and propose a novel Cloud
Gaming system that can particularly benefit this group of customers. Therefore,
in our system, utilizing local rendering power inevitably induces higher workload
at client side, but this is a reasonable tradeoff in terms of graphics quality and
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resource usage at the server. Furthermore, compared with Instruction-based
Streaming, the Hybrid-Streaming system represents a more flexible option to
attain hight-fidelity graphics rather inducing too much workload at gamer’s PC.
As a limitation, our system is not applicable to devices that are without any

graphics processing unit, since ultimately our system requires client’s device to
be capable of graphics rendering to a certain extent. Furthermore, if multiple
graphics-related applications are processed simultaneously at client’s device, the
heavy-loaded environment may hinder a smooth gaming experience. Therefore,
it is necessary for our system to achieve the balance between GPU workload of
client’s device and the delivered graphics quality.

Currently our system focuses on games which are for single-player. In the case
of multi-player games which involve multiple connections from different players, it
is necessary to maintain fairness of gaming quality among the players. Therefore,
it is necessary to retrieve rendering resource information at player’s side in order
to determine how much server resource should be allocated for each connected
player. As an example, for players with more powerful rendering resource, game
contents can be delivered only via Instruction-based Streaming. On the other
hands, Hybrid-Streaming method could be used for players with less powerful
gaming machine.

2.7.2 Contents separation in complicated renderings

Currently, each object, as a whole mesh structure, is distinguished as the upper
layer or the lower layer based on the pre-defined z-value threshold. The separation
is viable in the demo application. However, in more complicated cases such as
a foreground object being placed on the background, or the foreground being
occluded by background objects, the currently implemented solution may not be
applicable. This can be due to the reason that the objects, such as ground, may
span across the upper layer and the lower layer. That is, certain object cannot be
clearly distinguished as the upper layer or the lower layer based on the z-value
threshold.
For addressing this issue, we consider to improve the approach of separation

by utilizing the characteristics of viewing frustum. A viewing frustum refers to
a three-dimensional region which is visible on the screen. The region volume is
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Figure 2.10: Division of viewing frustum based on the z-value threshold

specified by the values of near, far, left, right, bottom and top. The primitives,
which include points, lines or triangles, are clipped out from the region if they
are outside the boundaries. Therefore, instead of classifying all the objects into
two groups, the continuous development is to divide the viewing frustum into
two regions, the closer frustum and the further frustum, based on the specified
z-value threshold. The division is shown in Figure 2.10. After the division, the
contents within the closer frustum, which has the original near value and the
z-value threshold as its far value, are streamed as 3D instructions to be rendered
at the gamer’s PC. On the other hand, the contents within the further frustum,
which has the original far value and the z-value threshold as its near value, are
processed at the server and streamed to the gamer as video sequence.
In addition, for the objects which cross the boundary of the z-value threshold,

both the client’s device and the server need to render the same objects. For
the portion that belongs to the closer frustum, the respective clip plane based
on the far value (z-value threshold) clips out the portion that belongs to the
further frustum. Similarly, for the portion that belongs to the further frustum, the
respective plane based on the near value (z-value threshold) clips out the portion
that belongs to the closer frustum. Therefore, the final output is appropriately

38



shown on client’s display by aligning the further frustum (video streaming) with
the closer frustum (local rendering.)
The idea of separating viewing is considered to be applicable to any genre

of gaming applications. Even though further evaluations are required to be
affirmative with our assumption, we consider that game applications which have
clearly distinguished foreground objects and background objects should benefit
the most from our method. Such genres of games include First Person Shooters
such as Call of Duty series, scroller games such as Super Mario, Fighting Games
such as Street Fighter series and etc.

2.7.3 Applying post-effect

At current stage, post-effect was not applied on the demo application. However,
post-effect is often manipulated by shader program, so such program can be
streamed to client’s PC prior to actual gaming as well. Furthermore, as shown in
the previous section, the original view frustum is divided into two parts, which
include the closer frustum (upper layer) and the further frustum (lower layer).
Contents in both frustums undergo normal rendering process, which includes
utilizing the shader program to manipulate the post-effects, respectively at client’s
PC and cloud server. However, at the client side, the special rectangular object
for representing the video contents streamed from the server should not be applied
any post-effect since the contents needed to be kept as original. When the
lower layer contents (video streaming) are aligned with the upper layer contents
(local rendering), the system should achieve the output with the post-effect being
properly applied on.

In addition, the post-effects rendering offloaded to client’s PC may additionally
increase the GPU workload at client’s PC. Therefore, it is necessary for our
system to balance the delivered graphics quality and client’s GPU workload which
includes the task of rendering post-effects

2.7.4 Waiting time prior to first-time gameplay

The necessity of downloading assets prior to game play in the implementation is
regarded as a limitation of our system. Even though it is a one-time process, it is
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inevitable that the client needs to wait before the first-time gameplay. Therefore,
the current implementation may not compromise fully the benefit of cloud gaming.
Referring to previous work conducted by Nan et al [24], a feasible solution

to eliminate the waiting time is delivering the contents fully in Image-based
Streaming at the beginning, and simultaneously downloading the asset to client’s
machine. Once enough asset data is accumulated at client side, the system can
shift to our proposed Hybrid-Streaming. However, this method may induce heavy
network load since asset data can be large, thus further investigation is required.

2.7.5 Latency Constraints

At the current stage of development, since we primarily focus on improving graphic
quality delivered on Cloud Gaming, we are not leveraging any additional technique
being applied on either image- or instruction-based streaming to improve latency.
Therefore, the latency of our system is based on Image-based Streaming, and
larger than Instruction-based streaming. It is due to the fact that Image-based
Streaming has heavier flow of task together with larger video data to be transferred
through the network. However, according to the evaluations performed by previous
work, the Image-based Streaming platform of GA, which our work is based on,
achieves rather low processing latency. Therefore, under an environment with
sufficient network speed, our system should provide game players with smooth
gaming experiences.
Furthermore, since GA is designed to be highly extensible and portable, the

existing works which include motion prediction [12] and resource allocation [13]
are considered to be applicable to our system for improving the latency.

2.7.6 Modification required to apply Hybrid-Streaming
System

The Hybrid-Streaming system is built upon the Image-based Streaming framework
of GA, which is able to capture and encode the output of target application
without altering its source code. However, for implementing the mechanism of
Instruction-based streaming in our system, special modifications are required
in the source code of target application. The modification includes adding new
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functions to separate the contents into the upper layer and the lower layer, as
well as the network streaming for graphics instructions. At current prototype
stage where we use a relatively simple application, the task of modification is
light-weight.

For practical usage, it is necessary for developer to adapt the Hybrid-Streaming
method by performing corresponding modification. However, we consider that it is
challenging to make any direct modification to the source code because the target
application can be large and complicated. Therefore, our next goal is to include
all the necessary functions in a library which can be easily adapted by Cloud
Gaming frameworks and without any necessity to modify the application source
code. As such, game developer can specify a z-value threshold and the framework,
which utilizes our specialized library, can automatically perform a sequence of
tasks which include intercepting graphics commands, separating the contents
and streaming the contents to client’s PC. Furthermore, by monitoring the GPU
workload at client’s PC, the z-value threshold can be dynamically adjusted to
ensure task balancing.
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2.8 Research 1: Conclusions and Extensions of
the work

In this work, we present our idea of making the connection between existing Cloud
Gaming system and traditional PC platform. While attaining Cloud Gaming’s
highly available gaming experience, we especially aim at delivering improved
quality that potentially satisfies high demands from gamers. For this established
goal, the contribution of this work can be summarized as follows:

• Upon existing Cloud Gaming infrastructure, a Hybrid-Streaming System
that applies two streaming approaches is proposed.

• With the proposed system, rendering tasks are distributed to server and
gamer’s PC. As such, more available rendering power can be effectively
utilized.

• A prototype of the system was implemented and evaluations show that it
achieves improved graphics quality over traditional Cloud Gaming platform,
while maintaining reasonable network load.

Currently the Hybrid-Streaming System is still at the prototype stage, as more
thorough investigations are needed to evaluate the idea as a prospective Cloud
Gaming platform. As for the extension of this work, the following three concerns
can be addressed:

• If gamer’s PC is capable, is it better to keep the traditional way of
gaming Traditional approach of game processing at local PC still preserves
the best gaming quality. However, gaming applications, especially those
regarded as Triple-A titles, are increasingly complicated, which put heavier
workload on the GPU. Through the proposed idea, such workload can be
shared between the cloud server and the gamer’s PC. Not only original
graphics quality can be preserved to a certain extent, but also highly acces-
sible gaming experience can be achieved. Preliminary investigation on GPU
usage in current work gives us insight that we can improve the system by
dynamically assigning rendering tasks based on continuous monitoring of
GPU usage on both sides.
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• Is gamer’s actual experience improved while applying the pro-
posed idea? Numerical results indicated desired improvement in term of
graphics quality on Hybrid-Streaming System. Furthermore, the results also
provide insights into how subjective experience may be preserved. However,
evaluating gamers’ Quality of Experience (QoE) based on feedbacks is more
critical, because ultimately Cloud Gaming, as a service, is client-centered.
Subjective test involving actual clients to measure QoE based on Mean
Opinion Scores [25] is planned to be conducted.

• Is the Hybrid-Streaming System compatible with every genre of
games? In the demo application, foreground objects and background objects
are clearly defined, as we could explicitly split the contents based on the
depth value. Our next goal is to implement a new separation approach which
is based on the viewing frustum. We consider that with the new approach,
the Hybrid-Streaming System can be compatible with any genre of games.

Furthermore, we will continue to improve the applicability of the Hybrid-
Streaming System by applying it on a larger scale testing environment, such as
Nvidia Grid [26].
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3 A Head-Motion Prediction
Model for expanding the usage
of Cloud Gaming to VR
gaming

In this chapter, we will mention about our perspectives on improving the accessi-
bility of VR gaming by applying Cloud Gaming techniques. Based on this goal,
we propose a head-motion prediction model tha could compensate the inevitable
latency issue in a Cloud Gaming system.

3.1 Introduction
VR technologies have been widely used in various professional fields as well as for
medical usages. However, most of these VR simulations require heavy local-setup
and traditional head-mounted display (HMD) is usually high-cost. Therefore, it
is proven to be almost impossible for normal users to access to any of these VR
experiences.
Thanks to the advancement of VR technology, the recent introduction of

more compact and affordable HMDs becomes a game-changer. With several
representative HMDs such as Oculus Rift∗, HTC Vive† and Playstation VR‡,
normal users are granted more accessibility to VR experiences. In addition, the
increasingly more resourceful smartphone device also represents another mean

∗Oculus Rift: https://www.oculus.com/rift/
†HTC Vive: https://www.vive.com/
‡Playstation VR: http://www.jp.playstation.com/psvr/
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for users to experience VR. By inserting smartphone into specialized head mount
device such as GearVR §, user could conveniently access to media contents
presented in VR.
In the gaming industry, companies are investing large amount of resources

into developing games for the emerging VR devices. Compared to traditional
gaming, VR gaming provides game players with unparalleled immersion into the
virtual world, higher dimensional of controls and more instinctive interactions with
game elements [27]. However, for maintaining a highly immersive VR experiences,
properties including graphics quality and responsiveness are considered to be
essential. By graphics quality, we refer that game environment presented in the
HMD needs to be realistic and in high-definition. As for the responsiveness, users’
motions, especially of the head, need to be reflected as swiftly as possible in
the virtual game world by the backend system that processes the VR contents.
Without meeting the above requirements, motion-sickness may happen, which
largely hampers players’ VR experiences. Therefore, compared to traditional
gaming, a more demanding and costly high-spec backend machine is usually
required for VR gaming. According to Nvidia, for a smooth VR gaming experience,
it is required to run the game at 2K resolution and 90fps, compared to 1080p
resolution and 30fps for typical PC gaming¶. Furthermore, Kanter et al [28] also
reveals that the actual number of pixels rendered per second for VR systems at
a good frame latency is roughly 4 times higher that average PC display witch
1080p resolution, or twice of a high-end PC display at 2K resolution. Zhong et
al [29] also mentions that the frame rate of 90Hz is required to ensure a smooth
user experience, compared to 60Hz of traditional PC gaming. Furthermore, future
VR targeting at a frame rate of 120Hz will pose increasing challenges. Therefore,
the requirement of a more demanding gaming environment can still hinder the
popularity among many potential users who may not be able to afford such gaming
system. Furthermore, the application is event more challenging for the untethered
wireless environment of using smartphone as the VR device.

With this in consideration, we aim at further improve the accessibility of VR
gaming which is based on the current compact HMD device. As such, we propose

§GearVR: http://www.galaxymobile.jp/gear-vr/
¶https://venturebeat.com/2015/12/30/to-handle-vr-graphics-gaming-pcs-have-to-be-7-times-
more-powerful/
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Figure 3.1: Issues to be addressed in a cloud-based VR gaming environment

exploiting the technique of Cloud Gaming to achieve the improvement in need.
By leveraging elastic and high-performance computing resources, the intensive
workloads of processing VR contents can be offloaded to powerful Cloud Server.
The rendered game contents are delivered back to the client’s HMD as a sequence
of encoded video over a broadband network. Compared to traditional gaming, VR
gaming requires additional inputs such as the rotation angle and the position of
HMD device to be recorded and sent back to the Cloud Server for the manipulation
of game logics. Therefore, cloud gaming potentially frees players from buying
expensive gaming machines and allows them to play high-quality VR games on
any devices, which include varied choices of smartphones.
We consider that Cloud Gaming is a prospective option for improving the

accessibility of VR gaming, but multiple difficulties need to be carefully addressed
before making it viable for practical usage. In the following section we will describe
the considered difficulties and introduce previous works that may possibly address
the respective issues. Afterwards, we select the issue that affects VR gaming
experience the most and address
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3.2 Expected Difficulties and Potential
Solutions

As mentioned in the previous section, rapid responsiveness and high-definition
graphics quality are two crucial factors to preserve highly immersive VR experience.
However, dealing with these two factors present to be even more challenging in
Cloud Gaming because of the inevitable network latency and limited transmission
bandwidth. Therefore, as shown in Fig. 3.1, based on the unique features of VR
gaming, we especially address the following three points and introduce several
previous works that potentially address the respective issues:

3.2.1 Head Motion Input

Besides the input commands from keyboard or gamepads, head motion is another
critical input in VR gaming. Rapidly and accurately sensing the inputs from
player’s head-motion and seamlessly having the corresponding feedbacks in the
virtual game environment is fundamental in VR gaming. Otherwise, it may
result in motion-sickness which negatively affect player’s experience. The rigorous
requirement is considered to be even a bigger challenge in the usage of Cloud
Gaming, due to the inevitable network latency and the occasional packet loss.
For example, in a smooth network environment, the round-trip delay occurred in
Cloud Gaming is approximately at 150ms [4].
Potential solution based on previous work: Several works have been

conducted to reduce the interaction latency in a VR system. Johnson et al. [30]
proposed using low-cost motion trajectory prediction techniques to compensate
the high end-to-end latency in a smartphone-based HMD environment with a
hand motion tracking device. Three trajector prediction techniques were used
to predict the hand motion in 300ms. As a result, linear extrapolation was the
only effective way to predict the motion. Even though head-motion was not the
input being predicted in this work, Predicting high-diemensional motion in 300ms
at a reasonable accuracy by such low-cost method indicates that the technique
is applicable in a Cloud Gaming environment (with normal latency at 150ms).
Furthermore, Soccini et al. [31] proposed a method of predicting which area the
player is gazing at in immersive virtual environment without using any eye-tracking
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Figure 3.2: Foveated Rendering

devices. The proposed solution is based on a combination of the features of the
images and head motions as inputs of a Deep Convolutional Neural Network to
map 2D gaze coordinates in the image plane. The research shed light on predicting
player’s focus area in HMD without using additional expensive devices, which
indicates a good synergy with the network environment of Cloud Gaming because
less information is needed to be sent through the network.

3.2.2 High-quality rendering in real time

Compared to traditional gaming, our ocular system tends to be more sensitive to
in-game details in VR gaming. Therefore, for smooth VR gaming experience, it
is essential to not only render graphics in high-quality but also to sustain high
frame rate. Powerful servers in Cloud Gaming are certainly capable of processing
the heavy tasks of VR gaming, but as a cloud service, it is also crucial to allocate
resources efficiently and fairly among clients. Thus, rather than incurring excessive
workload on the server, it is more reasonable to look for a more efficient way of
processing VR game contents that can be adapted to a Cloud Gaming environment.
Pontential solution based on previous work: Foveated 3D rendering is

a popular technique being used to lower the VR computational requirements [32] .
As shown in Figure 3.2, eye tracking is used to determine the area where player
is focusing and only the corresponding area is needed to be rendered in greater
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details. In addition, the surrounding area can be rendered in lesser details and thus
mitigating the overall workload at the cloud server. Furthermore, based on foveated
rendering, Pohl et al. improved the performance with optimizations by taking
HMD’s lens astigmatism into consideration [33]. As a result, the performance
is increased by 20%. The corresponding continuous work [34] proposes method
that even further speeds up the rendering by determining the respective viewable
area when player looks at different point on the HMD display. As such, the
renderings for the unviewable areas are skipped by reusing pixels from previous
frame. The evaluation indicates that rendering can be sped up by 2 times by
using the proposed method. Even though the above works were conducted in a
local environment, the same techniques could be easily applied in Cloud Gaming
and greatly mitigate the workload of the Cloud server. However, one concern is
that eye tracking device, which is usually not embedded in most current HMDs, is
required in this method. Therefore, building a generic model based on eye tracking
data may present to be more practical for the Cloud Gaming environment.

3.2.3 Efficient Encoding for Transmission

In Cloud Gaming, encoding the game contents as video sequence is a fundamental
step. Not only the data needs to be efficiently compressed for streaming in network,
but also the quality of original game contents should be preserved reasonably.
Therefore, it is necessary to optimize the encoding method for coping with the
even more severe requirement of VR gaming usage.
Potential solution based on previous work: Currently most real-time

entertainment applications such as streaming of audio and video are accomplished
on top of MPEG-DASH standards, which the actual implementation is open
for development. Timmer et al. [35] proposed a cloud encoding service and
HTML5-based adaptive streaming that enables highest quality and low start-up
delay. The work claims that the proposed service is able to perform streaming at
Ultra-High-Definition (UHD) and high frame rates, such as 4k resolution video at
60fps. Furthermore, it is also compatible with the playback of VR. The versatility
of the service indicates a good match with the requirement of smooth VR gaming,
but there is no mentioning about the bandwidth consumption in network. In
order to build a Cloud-based VR gaming system which does not over allocate
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network resource, we consider that more efficient encoding can be achieved by
utilizing the similarity between the left eye contents and the right eye contents,
which is a unique characteristic of VR gaming.

The mentioned previous works were mostly conducted at small scale, which
is either in a wired environment or a local wireless network. As for designing a
proper Cloud Gaming system for VR gaming, the demanding service should not
be an one-to-one, but one-to-many platform under a geographically distributed
environment. Therefore, we consider that in order to make Cloud Gaming a
viable platform for providing good-enough VR gaming experiences, all the above
issues should be further addressed in the context of global network. However,
solving all the above difficulties and constructing a comprehensive Cloud Gaming
system for VR gaming are not the focus of this research. Instead, among all the
above issues, we select the one that should affect the quality of gaming experience
the most and address it by proposing a solution. Previous studies showed that
in immersive virtual environments, player is able to detect latency lower than
16ms [36]. The study implies that the inevitable network latency will largely
degrade player’s VR experience if proper countermeasure is not applied because in
a normal Cloud Gaming system, the RTT is at approximately 150ms. Since head-
motion is the most fundamental input that determines where the player is viewing
in an immersive virtual environment, we decided to address this particular issue
and propose a method that compensates the influence of network latency. Rather
than mitigating the round trip time (latency), we propose using a prediction
model for predicting head-motion at cloud server. Therefore, the next few frames
of game contents can be pre-rendered based on the prediction and streamed back
to client more rapidly, without the need to wait for every head-motion commands’
incoming from the client. The goal of applying such method is to maintain smooth
VR experience without players’ feeling the network latency. Our work can be
summarized as follows:

• Collecting head-motion data (represented in quaternion) through a consumer-
level HMD.

• Based on Machine Learning technique, constructing a prediction model for
each set of data.
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• Cross-validation for the generic prediction model.

In the following sections, we will briefly introduce several related works. After-
wards we will explain our approaches to build the prediction model for head-motion,
followed by corresponding results and discussions.

3.3 Related Works
The future vision of this research is providing highly accessible VR gaming
experience based on Cloud Gaming technique, while currently there exist several
platforms or works that similarly attempt to provide wireless or cloud-based VR
gaming experience. Trinus VR [37] is a platform that provides players with VR
gaming experience without the need to purchase additional expesnvie hardware,
because smartphone is used as the HMD. Motion data collected from sensors of
player’s smartphone is transformed to a PC at local side for processing game logics.
The resulted contents are then streamed back to the smartphone. Trinus VR is
designed to be easy to setup and the system provides a number of settings for
different display size. Furthermore, Trinus VR supports both wired and in-house
wireless end-to-end connections, while wired connection is suggested to provide the
most sustainable performance. Even though no quantitative result is mentioned,
we subjectively evaluated VR experience via local wireless connection, and we
discovered that there is sensible latency between real head-motion and contents
reflected on our smartphone device. We consider that Trinus VR is not yet a
platform for streaming VR gaming contents in a large-scale environment, but it
can be used a test-bed for the related purpose.
Cuevro et al [38] from Microsoft Research proposes a system called Matia

that supports VR gaming experience on resource-constrained mobile devices by
offloading processing to Cloud server. The system is claimed to attain qual-
ity, responsiveness and mobility. This work renders a wide field-of-view (FOV)
panoramic stereo video to handle unexpected head movement or network fluctu-
ations. Furthermore, Foveation technique is also applied to reallocate pixels to
areas where the user is most likely to view. As only the idea is presented in the
work, there is no evaluation showing the efficiency of the method. We consider
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that both Cuevro et al’s work and our work have similar goal, but the focus area
of optimization is different.

Bao et al [39] proposes a Motion-Prediction-Based Transmission for 360-Degree
Videos in an attempt to significantly reduce the bandwidth consumption. Com-
pared to regular video, the 360-degree video transmission imposes 4-6x the band-
width of a regular video with the same resolution. It is due to the reason that the
whole image, including the portion that user is not viewing, needs to be streamed
to client’s HMD because the view angle is not known in prior at the server. For
addressing the issue, the author proposes using a prediction model to determine
which area the user is viewing. Ideally, if the prediction model could predict user’s
motion at 100% accuracy, only the portion of image that user is view needs to
be streamed, which could reduce bandwidth consumption by 80%. However, due
to the random nature of user’s head motion, further technique is required for
assuring the quality of experience. According to their studies, their prediction
model could well predict the motion in 100 to 500ms. Furthermore, the work
predicts the prediction deviation as well to decide the amount of redundancy to
be transmitted. Such prediction is used as a mean to handle the gap between
prediction result and true viewing point for maintaining user’s viewing experience.
As a result, the proposed system achieves up to 45% bandwidth reduction with less
than 0.1% failure ratio. One significant point regarding this research is that the
authors applied Machine Learning (ML) technique, specifically Neural Network
(NN), to build the prediction model and achieve the best result among the other
two methods. Therefore, from technical perspective, this work is potentially the
closest to our work. However, we focus on exploiting ML-based prediction model
to compensate network latency for streaming VR gaming contents, while they
optimize bandwidth consumption of streaming 360-Degree Video.

3.4 Head-Motion Prediction Model
In this section, we will explain our approach of building a prediction model for
head-motion.
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Figure 3.3: Field of View

3.4.1 Head-Motion in VR Gaming

In video gaming, Field of View (FOV) [40], which means the extent of the
observable world that can be seen, is used to determine the corresponding portion
that needs to be rendered and displayed on player’s end. As shown in Figure. 3.3,
Vertical FOV is the range of angle from the top to the bottom, horizontal FOV
means the furthest left to the furthest right while the diagonal FOV is from the
top-left corner to the bottom-right. In addition, viewpoint refers to the center of
the image that the player is watching.
As for VR gaming, vertical, horizontal, diagonal FOV are fixed values defined

by the HMD specification. For example, HTC Vive [41], which is the HMD that
we use in our work, has 145-degree diagonal FOV, 100-degree horizontal FOV
and 110-degree vertical FOV. Therefore, the view contents are mainly determined
by the viewpoint, which depends on the pitch, yaw and roll angles as shown in
Figure.3.4. These three Euler’s angles (pitch, yaw, roll) correspond to head’s
rotation around the X, Y, Z axis, which are values recorded by sensor embedded
in the HMD. In our work, the values of these three angles are represented in the
units of quaternions, which include four values: qw, qx, qy and qz. Therefore, in
this work, our goal is to create an individual prediction model for each of these
four quaternion values.
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Figure 3.4: Pitch, Yaw, Roll angles

3.4.2 Requirement for prediction window

In the last subsection, we define that we need to build prediction models respec-
tively for the four quaternion values, which are the qw, qx, qy and qz. In this
section we mention about the criteria of building such prediction model. In order
words, it is crucial to select an appropriate prediction window, which is denoted
as Tp. The longer the Tp is, the more time available to transmit the predicted
frame, but the less accurate the prediction is. Figure.3.5 shows an overall system
of Cloud-based VR gaming that includes several fundamental steps. The first step
is the data upstreaming which is required to transmit player’s viewpoint from
the HMD to the cloud server. The next step is the game process, which includes
processing data (quaternions in our case) received from player’s HMD, calculating
game logics and rendering the game contents. As for the last step, it includes
encoding the contents and streaming the contents back to player’s HMD. As such,
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Figure 3.5: Steps that are required in a Cloud-based VR gaming system

Tp should be a value determined within the Round-Trip-Time (RTT), which is
the sum of required times for the above steps.

To put it simply, an appropriate value of Tp depends on how the Cloud Gaming
system is setup in the network. Referred to previous work conducted by Bao
et al, 100 to 500ms is a reasonable range for Tp in the scenario of streaming
360-degree video. Concerning the fact that VR gaming requires much more rigid
responsiveness because tasks are processed in real-time, we decided to define our
prediction window Tp at 70ms. The value is reasonable because it is approximately
the sum of the content processing time (20ms) at cloud server and the time required
to stream the content back to player’s end (50ms) in a normal broadband network
circumstance. Concerning that an usual RTT of Cloud Gaming is at 150ms for
normal gaming, we assume that this value as the worst scenario of applying Cloud
Gaming to VR gaming, which requires up to 2 to 3 times faster responsiveness. As
such, there is around 80ms(150ms - 70ms - 50ms) for upstreaming the quaternion
data from player’s HMD to cloud server. Assuming that the upstream time is
same as the downstream time (50ms), there remains 30ms for accumulating as
much previous data as possible to build up the sequence for prediction. In our
case, we were able to sample a data at every 2ms, which indicates 15 samples
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Figure 3.6: An overview of RNN

within 30ms to make a rather accurate prediction at Tp equals 70ms. The details
will be mentioned in implementation section.

3.4.3 Prediction

After defining the data to be predicted and the requirement of prediction, we set
up our head-motion prediction algorithm for predicting future motions. In our
work, we consider that the feature of motion prediction only depends on the past
and current motions of the players. Some other potential features, such as game
types, interactive in-game elements and sound directions, could play significant
role in affecting the prediction. These features will be considered in the future for
further improving and generalizing the prediction model.
For predicting future motion, simple technique such as Naive Model, which

applies the last observed value as the prediction value, can be used for cost-
effective prediction. However, according to previous work, Naive Model has the
worst prediction performance for head-motion. Since head-motion is a time-series
data, another efficient way that we consider is calculating moving average, which
refers to using the average value of previous samples as the prediction value.
The performance of moving average will be shown in later section. Furthermore,
Linear Regression is another popular method being applied to make time-series
prediction. In previous work, Linear Regression performs relatively well in term of
head-motion prediction. However, compared to watching 360-degree movie, player
tends to have more sudden and polarized random movements. Thus, it is more
preferable to apply a prediction algorithm that could handle such nonlinearity
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better. In this case, Neural Network is potentially the most suitable method.
However, traditional neural network is not designed to use its reasoning about
previous events to figure out the later ones. As such, the Nerual Network we
mention here specifically refers to Recurrent Neural Networks (RNN), which allows
information to persist. As shown in Figure.3.6 , by unrolling a RNN loop, it is
actually a concatenation of multiple copies in which the output of last network is
fed into the next network. One problem regarding RNN is that if the gap between
relevant information and the prediction becomes large, the model is unable to learn
to connect the information. As for our goal to build a generic prediction model,
it is necessary to persist all necessary information long enough in order to make
the prediction generalized. Therefore, Long Short Term Memory networks [42],
named as LSTMs, is applied in our work. LSTMs is a special kind of RNN which
specializes at remembering information for long periods.

As a summary of the prediction strategy in our work, we applied both Moving
Average and LSTMs to create our prediction model. We compare the performances
of these two method based on the MSE results retrieved from the models of each
person’s quaternion data. Furthermore, we also conducted 10-fold cross validation
to evaluate if the LSTMs prediction model is overfit or not. The results will be
shown in later section.

3.5 Implementation
In order to collect data and build prediction model for head-motion, we setup
an experimental environment with HTC Vive. As shown in Figure.3.7(a), We
demonstrated the setting in an Open Campus that occurred in November 2017,
and a total of 45 volunteers joined the experiment. Each participant was asked
to play a VR shooting game titled as "Space Pirate Trainer" [43] for 4 minutes.
Before each participant played the game, she/he was asked to fill in a simple
questionnaire about her/his gaming experiences and whether she/he has ever
experienced VR before. After her/his VR section, the player was asked to answer
if she/he felt about the experience. During each participant’s VR section, the
quaternion data of head-motion was simultaneously logged at our gaming server.
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(a) Experiment setup in Open Campus (b) HTC Vive HMD

(c) Tested Game: Space Pirate Trainer

Figure 3.7: Experiment setup for our work

3.5.1 Hardware and Software

In our hardware setup, the game server machine is equipped with an Intel Core i7
4770K 3.5GHz CPU, a Asus Nvidia GeForce GTX780 graphics card DirectCU
ii OC(Core clock at 889MHz with 3072MB GDDR5 video memory)‖ and 16GB
system memory, running on a 64-bit Microsoft 10 system. As mentioned previously,
we use the HTC Vive as our HMD hardware, as shown in Figure.3.7(b).It is
considered that HTC Vive provides the most comprehensive VR gaming experience
compared to other market rivals, due to the Lighthouse tracking system [?].
Lighthouse is a laser-based positional tracking system developed by Valve, which

‖GTX 780 DirectCU II: https://www.asus.com/graphics-Cards/GTX780DC2OC3GD5/
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Table 3.1: Data of Participants in our experiment
Age Male Female
5-20 29 10
20-30 1 0
30-40 0 2
40-50 2 1
Total 32(71%) 13(29%)

is able to accurately tracks not only the orientation of the HMD as well as the
controllers, but also the positions of the devices. The Base Stations are able to
sense the movement of player within a maximum range of 4m x 4m area. In our
experimental setting, a 2m x 2m was reserved for participants to move around
during their VR sections. Furthermore, Lighthouse tracking system is able to
perform sampling rate at 1000Hz.
As for the gaming software, we selected Space Pirate Trainer, which is a VR

shooting game shown in Figure.3.7(c). The gameplay requires player to use their
controllers on both hands, which are represented as a pair of weapons, to shoot
down continuous waves of enemies. The player could also shift to different weapon
or even shield for better attack or defense. As the wave goes on, the difficulties of
enemies increase. In each round of gameplay, player is granted 3 health points,
and game-over screen shows up when the player lost all his health points. Unless
the 4-minute section was over, The participants in our experiment were instructed
to continue a new round of gameplay even after game-over. We consider that
the game is a suitable choice for our experience because the participant needs to
continuously move their heads to aim at the flying enemies, which should create
desired data for our prediction model. Moreover, the gameplay is simple enough
that even participants who have their first-time VR experience in our experiment,
they could easily get used to the controls in a rather short period.
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Table 3.2: A example of dataset from one participant
Index quaternion w quaternion x quaternion y quaternion z
1 0.753446 0.0109914 -0.657079 -0.0210848
2 0.754943 0.0109193 -0.655353 -0.0213258
3 0.758531 0.0107283 -0.651181 -0.0219136
4 0.761459 0.0104646 -0.64774 -0.0224307
5 0.765097 0.0100987 -0.643419 -0.0231574

3.5.2 Subjects and Questionnaire

In our experimental demo during open campus, a total of 45 volunteers joined
the experiment, in which each of them conducted the 4-minute VR section as
mentioned in previous section. Most of the participants are visitors of the open
campus, and most of them had their first VR experience in our experiment section.
Ash shown in Table 3.1, the age distribution is as follows: 87% of them are between
age from 5 to 20, 2% of them are at their 20s, 4% of them are at their 30s and
the remaining 7% is between 40 to 50. Furthermore, 29% of the participants are
females.

Furthermore, all participants were required to answer some questions regarding
their video gaming habits. Questions include whether the participants play video
games from time to time, how often do they play video games every week and
what type of games do they play the most. Furthermore, the questionnaire also
questions if the participant had ever experienced VR before our experiment section.
After the participant finishes her/his section, she/he is required to fill in if she/he
has any uncomfortable feeling such as nausea and dizziness. Participants could
also optionally fill in more details about their experiences during the experiment
section. The answers to the questionnaires will be later summarized in discussion
section, as it will provide further insight to our prediction model.

3.5.3 Data Collection

Our overall data contains 45 view from all the participants, and a total of
180 minutes of head-motions were recorded. As mentioned in previous section,
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Figure 3.8: Train Data and Test Data for RNN

Lighthouse tracking system is able to sample at 1000Hz, which means 1 sample per
millisecond. Our data collecting software at the game server can approximately
log the data at the same rate, but due to the processing load on hardware, the
actual sample rate written to log file is around 2ms. Furthermore, rather than
utilizing the whole sequence of 4-minute data, we extract a one-minute segment
in the middle, which the segment is from second to third minute. It is due to the
reason in the first minute the participant needed to adjust herself/himself into
the immersive VR environment, and we pick the following minute to guarantee
our experiment dataset is consistent. Therefore, in each participant dataset, each
4 quaternion value contains 30000 samples, which means in total we have 5400000
samples from all the 45 participants. An example of dataset is shown in Table 3.2.

3.5.4 Prediction Models and Validation

In this section, we discuss about building the prediction models. It mainly consists
of defining suitable input data (observed data) and output data (target prediction
data) for RNN training, building the two prediction models respectively based on
LSTM and Moving Average, and validating the prediction models.
Since the prediction of future head-motion is based on the current and past

status, the four quaternion values, qw, qx, qy, qz are treated as features in the
predictions models. Assuming qwt, qxt, qyt, qzt are denoted as the four quaternion
values at time t. Furthermore, qwt1:t2, qxt1:t2, qyt1:t2 and qzt1:t2 refer to the
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Figure 3.9: The RNN used in our work

sequence of quaternion data fomr time t1 to time t2, respectively. For example,
in our case, qwt1:t2 = (qwt1, qwt1+2, qwt1+2 ....,qwt2) and qzt1:t2 = (qzt1, qzt1+2,
qzt1+2 ....,qzt2). Therefore, with observed data qwt1:t2, qxt1:t2, qyt1:t2 and qzt1:t2,
we aim at predicting (qwt2+Tp, qxt2+Tp, qyt2+Tp, qzt2+Tp). In last section, we made
our assumption that in order to predict head-motion at 150ms with a Tp at 70ms,
the model is given approximately a 30ms window to accumulate a sequence of
observed data. In addition, the interval between each sample of quaternion data
is 2ms. For facilitating our study, we define this observed data is a sequence of 15
continuous data (30ms/2), thus t2 equals t1+30 while the target prediction data
is at t2+70. Furthermore, we treat each quaternion as an individual time-series
regression problem and train separate models respectively for the prediction of
the 4 quaternion values.
As for the prediction, we first build a prediction model based on the simple

method of Moving Average. The 30000 samples of each quaternion value are
grouped into sets of 15 continuous data, such as in the form of qzt1:t2, and we
calculate the average of each set. The result is used as the prediction value at
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Figure 3.10: 10-fold cross validation

t2+70, which will be compared with the actual target data at t2+70 from the
samples for evaluation. As for the RNN model, we need to define the input data,
which consists of sets of 15 continuous data, and the output data, which are the
corresponding t2+70 target values for training the model. Furthermore, as shown
in Figure. 3.8, the whole set of 30000 samples is separated into train data, which
is used to train the RNN, and test data for evaluating the accuracy. 5% of the
train data is also used for validation. The ratio of train data and test data is
9:1. For building the LSTM-based RNN, we utilized Keras which is based on
Tensorflow [44]. The RNN, which is shown in Figure. 3.9, consist of one input
layer which feeds in a sequence of size 15, two hidden layers which one layer has
15 LSTM neurons and another has 100 LSTM neurons, and a single output layer.
Furthermore, the model training is set to have a batch size of 512 with 10 epoch.
Each participant’s data is trained separately, which means that each participant
has four prediction models respectively for the four quaternion values.
For evaluation, we feed in the test data and calculate the mean absolute error

(MSE). Afterwards, we compare the result with the MSEs from the method of
Moving Average. Furthermore, training the data separately may lead to overfit,
so we also took all the samples from 45 participants as a whole and performed
10-fold cross evaluation, as shown in Figure. 3.10. In each iteration, the data of 41
participants was used to train a comparatively more generalized prediction model,
and the data of remaining 4 participants was used as test data for evaluation. All
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(a) box plot of qw prediction model trained
by Moving Average and RNN

(b) box plot of qx prediction model trained
by Moving Average and RNN

(c) box plot of qy prediction model trained
by Moving Average and RNN

(d) box plot of qz prediction model trained
by Moving Average and RNN

Figure 3.11: Performance Comparison between RNN and Moving Average

the results will be shown in the next section.

3.6 Results
After training the mentioned prediction models, we utilize both Mean Absolute
Error (MSE) to evaluate the result.

3.6.1 Results of RNN and Moving Average

Both Table. 3.4 and Table. 3.5 show the MSEs of all the prediction models
we built, which include the individual model of qw, qx, qy and qz respectively
trained by using Moving Average (MA) and RNN. As we can see from both
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(a) box plot of qw prediction by individual
RNN and generalized RNN

(b) box plot of qx prediction by individual
RNN and generalized RNN

(c) box plot of qy prediction by individual
RNN and generalized RNN

(d) box plot of qz prediction by individual
RNN and generalized RNN

Figure 3.12: Performance Comparison between individual RNN and generalized
RNN

tables and Figure. 3.11, overall the prediction model trained by RNN outperforms
the one from Moving Average in term of accuracy. The difference is especially
more obvious in the case of qw, qy and qz. In the case of qx, both models have
relatively closer result, but it is not difficult to conclude that RNN is the better
one. Furthermore, RNN prediction model also demonstrates higher consistency
with shorter high-density region, closer extremes as well as fewer outliers. In
addition, we also show qw, qx, qy and qz prediction example from one participant
by plotting both the true data and prediction value within a 6000ms (3000 indexes
in the graphs) region, which are shown from Figure. 3.13 to Figure. 3.16. It
becomes more obvious that RNN could make better prediction pattern compared
with Moving Average, especially when the data movement tends to be more

65



Table 3.3: Result comparison between Individual RNN and Generalized RNN
qw qx qy qz

I_RNN G_RNN I_RNN G_RNN I_RNN G_RNN I_RNN G_RNN
Average 0.001132 0.001214 0.0887 0.0388 0.1282 0.0603 0.2064 0.1244
Median 0.000749 0.001073 0.0211 0.0134 0.0918 0.0533 0.2021 0.1226

linear. However, in the cases of both qy and qz shown in Figure. 3.15 and Figure.
3.16, both models cannot predict the moving distance well when there is a spike
movement, where RNN performs slightly better than Moving Average.

3.6.2 Results of 10-fold cross validation

In the last subsection, the result indicates that RNN is the better way to predict the
future value. However, training individual prediction model for each participant’s
data could make the model overfit for the corresponding dataset, which makes
the model not generalized for being used in other dataset. Therefore, 10-fold
cross validation is applied for validating if the prediction model can be trained for
generalizing the usage on different participant’s dataset. After the 10 iterations of
cross validation, we calculate both the average and median of MSEs retrieved from
all the iterations, which the results are shown in Table 3.3. Furthermore, we also
compare the performance of the generalized RNN model trained in 10-fold cross
validation (denoted as G_RNN) with individual RNN model (denoted as I_RNN),
which the results are presented in 3.12. In the case of qw, I_RNN has overall
better prediction in term of accuracy. However, G_RNN has more consistent
performance indicated by closer extreme values and outliers. Furthermore, for
qx, qy and qz, G_RNN has much better performance than I_RNN in terms of
both accuracy and consistency. The RNN performance can be further explained
from Figure. 3.13 to Figure. 3.16. In the case of qw and qx, prediction results
from both G_RNN and I_RNN are able to accurately follow the trend of the
true data. However, in the case of qz, where there is spike movement, G_RNN
could predict such sudden change better than I_RNN.
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(a) qw prediction using Moving Average

(b) qw prediction using RNN

Figure 3.13: Plot of qw from one of the participants
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(a) qx prediction using Moving Average

(b) qx prediction using RNN

Figure 3.14: Plot of qx from one of the participants

68



(a) qy prediction using Moving Average

(b) qy prediction using RNN

Figure 3.15: Plot of qy from one of the participants
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(a) qz prediction using Moving Average

(b) qz prediction using RNN

Figure 3.16: Plot of qz from one of the participants
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(a) qw prediction using individual RNN

(b) qw prediction using generalized RNN

Figure 3.17: Comparison of qw between individual RNN and generalized RNN
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(a) qx prediction using individual RNN

(b) qw prediction using generalized RNN

Figure 3.18: Comparison of qx between individual RNN and generalized RNN
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(a) qy prediction using individual RNN

(b) qy prediction using generalized RNN

Figure 3.19: Comparison of qw between individual RNN and generalized RNN
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(a) qz prediction using individual RNN

(b) qz prediction using generalized RNN

Figure 3.20: Comparison of qz between individual RNN and generalized RNN
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Table 3.4: MSE results from Moving Average and RNN (This table is showing
data from participant 1-30)

Person
qw qx qy qz

MA RNN MA RNN MA RNN MA RNN
1 0.003343 0.002158 0.5631 0.2169 0.0610 0.0149 0.5730 0.3242
2 0.000712 0.002548 0.2024 0.2309 0.2290 0.0747 0.2859 0.0856
3 0.001268 0.000657 0.0111 0.0043 0.0402 0.0220 0.5168 0.1946
4 0.003511 0.001111 0.0337 0.0126 0.3672 0.0760 0.6213 0.2815
5 0.003182 0.002359 0.4953 0.4807 0.0297 0.0687 0.9989 0.4481
6 0.000680 0.000203 0.0235 0.0411 0.1114 0.0876 0.0826 0.0395
7 0.001409 0.000748 0.0091 0.0069 0.0051 0.1169 0.2768 0.0788
8 0.000496 0.000582 0.2030 0.0943 0.1486 0.0722 0.5691 0.2643
9 0.000973 0.000104 0.0863 0.2452 0.2138 0.0487 0.0799 0.0600
10 0.002873 0.000245 0.0503 0.2189 0.3274 0.0959 0.2641 0.1457
11 0.001378 0.005453 0.0274 0.0048 0.1637 0.0808 0.0866 0.0824
12 0.000826 0.000256 0.0375 0.0196 0.3006 0.0563 0.3983 0.1928
13 0.007775 0.002664 0.0816 0.3182 0.1084 0.1612 0.4090 0.1415
14 0.002007 0.000724 0.0147 0.0067 0.2747 0.2249 0.5849 0.1408
15 0.005058 0.000656 0.0795 0.1981 0.1613 0.1791 0.4018 0.1995
16 0.000517 0.001107 0.0237 0.0026 0.4500 0.0497 0.4332 0.1885
17 0.001856 0.001986 0.0247 0.0315 0.4956 0.2353 0.5793 0.2056
18 0.001081 0.002945 0.5785 0.2897 0.4308 0.2624 0.4820 0.3620
20 0.000896 0.000339 0.0252 0.0159 0.2176 0.1696 0.4798 0.2028
21 0.001135 0.000631 0.0073 0.0023 0.2362 0.1938 0.6767 0.2858
22 0.000042 0.00038 0.2176 0.0091 0.2190 0.4129 0.5251 0.2147
23 0.014507 0.001687 0.0337 0.0802 0.2607 0.0972 0.2512 0.0695
24 0.002984 0.000935 0.7893 0.2824 0.5240 0.1678 0.6778 0.3140
25 0.001173 0.000364 0.0108 0.0024 0.3852 0.0874 0.5241 0.2423
26 0.001201 0.00145 0.0086 0.0142 0.0283 0.1598 0.6550 0.2775
27 0.000847 0.000955 0.0257 0.0198 0.0309 0.1855 0.6846 0.2504
28 0.000621 0.000749 0.0082 0.0125 0.2284 0.0263 0.3220 0.1320
29 0.000725 0.000184 0.1721 0.0301 0.2061 0.0201 0.2687 0.0726
30 0.001602 0.000396 0.0259 0.0136 0.0303 0.0396 0.5716 0.2504

75



Table 3.5: MSE results from Moving Average and RNN (This table is showing
data from participant 31-45

Person
qw qx qy qz

MA RNN MA RNN MA RNN MA RNN
31 0.000926 0.003777 0.0283 0.0117 0.0326 0.0506 0.2460 0.2880
32 0.001697 0.00042 0.2957 0.1540 0.0994 0.0414 0.2334 0.0724
33 0.001137 0.000248 0.2211 0.1248 0.2318 0.1120 0.3911 0.1721
34 0.001171 0.000334 0.0262 0.0486 0.7405 0.3834 0.4388 0.2595
35 0.000485 0.000393 0.0174 0.0177 0.3819 0.2234 0.5548 0.2015
36 0.000551 0.001183 0.0053 0.0034 0.0202 0.0620 0.6292 0.2647
37 0.002652 0.001134 0.0153 0.0143 0.3552 0.1781 0.6797 0.3398
38 0.001407 0.001338 0.2803 0.2079 0.6873 0.3526 0.5873 0.2314
39 0.000338 0.000592 0.1283 0.0510 0.1893 0.1314 0.6129 0.2397
40 0.001954 0.001815 0.0605 0.0223 0.0558 0.0269 0.4385 0.1835
41 0.002043 0.001141 0.0160 0.0094 0.2182 0.0776 0.3687 0.1259
42 0.001438 0.001041 0.0266 0.0106 0.3266 0.1893 0.5504 0.1701
43 0.002697 0.000999 0.0171 0.0051 0.5700 0.2092 0.5388 0.2258
44 0.001624 0.000266 0.2697 0.2789 0.1809 0.0519 0.5865 0.3720
45 0.002050 0.000579 0.0368 0.0313 0.1780 0.0621 0.4162 0.1864
Average 0.001974 0.001132 0.1208 0.0887 0.2340 0.1282 0.4694 0.2064
Median 0.001324 0.000749 0.0310 0.0211 0.2180 0.0918 0.4994 0.2021
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3.7 Discussion
In this section, we will discuss about the evaluations, threats to validity, application
in actual VR games as well as the questionnaire results.

3.7.1 Evaluations

Prediction’s accuracy and consistency

According to our last section, in terms of both accuracy and consistency, prediction
model trained by using LSTMs-based Recurrent Neural Networks outperform
the one from Moving Average. When the data point does not change drastically,
Moving Average has comparatively closer performance to RNN. However, due to
the continuous random nature of head-motion as well as high range of movement
within short time, RNN prediction model is the preferred solution to cope with the
nonlinear changes. Furthermore, the conducted 10-fold cross validation also reveals
that fitting the prediction model with multiple participant’s data as training set
could make the model generalized for other participants’ dataset. The resulted
model performs as good as, or even better than the prediction model trained by
individual participant’s data. However, we also observed that the generalized RNN
model seems to have more shaky predictions, and we consider that other means
such as methods proposed by [45] can be applied to smooth out the prediction.
Furthermore, our prediction was performed in the scenario of RTT at 150ms,

which is assumed to be the worst case of applying Cloud Gaming to VR gaming.
Therefore, in usual case, the RTT is shorter, which indicates smaller prediction
window. With shorter prediction window, prediction with higher accuracy is
expected.

Resource required for training

On the other hands, even though the corresponding data was not logged in this
work, the time required for training the prediction model should be considered.
Obviously, Moving Average is the fastest prediction model because the prediction
value requires only a simple arithmetic calculation, which in our case each MA-
based prediction model usually took multiple seconds. In the case of RNN, the
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training process is the most time-consuming, as it took approximately 5 minutes to
complete the training for all the 4 quaternion values of each participant. Therefore,
it also implies that each iteration of cross validation took more than 2 hours.
The required time can be shortened by having different RNN setting such as
fewer epochs or neurons, but it leads to lower accuracy of the model. Utilizing
GPU processing power for training RNN is another practical way to speed up the
performance. In Cloud Gaming, clusters of GPUs in powerful servers provide an
appropriate environment for such purpose. However, properly allocating resources
to efficiently train a more comprehensive prediction model based on larger dataset
is required for delivering the actual service.

Difference from previous study

As mentioned in previous section, from technical perspective, Bao et al’s work is
potentially closest to our work, due to the reason of applying Machine Learning
Technique for prediction. However, there is a significant difference in term of
application scenario. In our work, we focus on exploiting ML-based prediction
model to compensate network latency for streaming VR gaming contents, while
Bao et al optimizes bandwidth consumption of streaming 360-Degree Video. In
other words, the requirement for prediction is different. For VR gaming usage,
the prediction window is smaller (150ms in our case) due to more rigid RTT,
compared to 100-500 ms in Bao et al’s work. Furthermore, unlike the usage of
video streaming which stores all image data at cloud server, each immediate frame
is created in real time for VR gaming. Therefore, the prediction accuracy is
required to be significantly higher.

3.7.2 Threats to Validation

RNN Model setting

In this research, we apply the same RNN model to train all the data, based on
our assumption for prediction requirement mentioned in previous section. We
defined that in a normal Cloud Gaming streaming environment with RTT at
around 150ms, there is approximately 30ms window to accumulate a sequence
of data to predict the value at Tp equals 70ms. Furthermore, we also assumed

78



Figure 3.21: Conversion to Euler Angles from quaternions

that our software of capturing each head-motion data point at 2ms, which implies
a sequence of 15 data points within the 30ms window. Result shows that the
RNN model fits well with our assumption setting. However, in the actual network,
latency tends to be varied, which means RTT is different from time to time. As
well, based on the types of games, the sampling rate could be different. Therefore,
it is possible that our RNN model could not suitably fit with such changing
conditions. Even though making our prediction model flexible and dynamically
adapt to various conditions is not the focus of this work, undoubtedly it needs to
be further addressed for practical usage.

Representation of the data

In our work, our method collects and predicts the head-motion represented in the
four quaternion values: qw, qx, qy and qz. It is due to the fact that these four
values are the raw data retrieved from the Lighthouse tracking system. In order
to convert from the representation of quaternions to Euler angles which include
roll, pitch and yaw, it is necessary to follow the equation shown in Figure. 3.21.
However, we decided to skip the conversion for saving small amount of time in our
environment which requires intensive responsiveness. Therefore, it is a fact that
the predicted roll, pitch and yaw angles calculated from the predicted quaternion
values maybe varied from the actual angle at different deviation. However, from our
presented results in last section, our prediction model, especially the generalized
RNN model performs rather close prediction compared with the actual data, so
the deviation from predicted angle should be not far off from the actual angle.
For handling the inevitable deviation, other means can be applied, which will be
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discussed in later section.

Testing subjects

One threat to validation regarding our work is about the distribution of our testing
subjects (participants). As shown in table 3.1, 39 out of 45 participants (87%) are
under 20 years old. This is not a factor we could control because we conducted
our experiment on an Open Campus Day, where a lot of visitors are teenagers
and children. This may indicate a lack of diversity in term of participants’ ages.
Moreover, even though most of the players equipped the HTC Vive HMD without
any issue, the already light-weight device still presented to be slightly heavy for
some younger participants, which may limit their head movements during the
gameplay. As an extension of this work, gathering dataset from more participants
with more diverse ages may help to train a more comprehensive prediction model.

Types of Games and VR System

In our experimental setup, we apply "Space Pirate Trainer", which is a VR-
only shooting game as our immersive VR gaming software for the participant to
experience with. As mentioned in previous section, the control requirements for
the chosen VR game is simple that even first-time player could easily get used to.
As the head-motion data is retrieved from participants’ playing this game, it also
indicates that our RNN model is specifically trained for head-motions involved
in the corresponding gameplay. Therefore, it is possible that the trained model
cannot be fitted well with the other types of games, which involve different patterns
of head movements. It is due to the reason that in Space Pirate Trainer, most of
the interactive elements, such as the enemies, only show up in the front direction.
Most of the time participants only need to look forward or up to interact with the
in-game elements, as they seldom turn around or look behind. We consider that
for practical usage, there is a need to train varied models respectively for different
types of games, but further investigation is needed to judge if this viewpoint is
valid.

Furthermore, we conducted the experiment using HTC Vive, and we cannot
confirm if other VR devices such as Oculus Rift or smartphone devices collect and
process head-motion data in the similar way. However, we consider that it should
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be easy to adapt the model to different devices because ultimately, it belongs to
the same time-series regression problem.

3.7.3 Application in practical usage

In our work, we propose using RNN as the preferred method for predicting head-
motion and present the corresponding result, without actually applying it in the
actual gaming software. However, we consider that the model is highly adaptable
to gaming software, without necessity to largely alter the software source code.
Moreover, there is a need to retrain or modify the RNN model to fit with different
types of games or network conditions. Such related steps should be performed
and evaluated prior to deploying on the Cloud Gaming environment.

On the other hands, as mentioned in previous subsection, even though the model
trained by RNN could predict quaternion values at high accuracy, the predicted
head-motion (roll, pitch and yaw) represented by those values is most likely not
100% correct compared to the true data. Therefore, for dealing with such inevitable
deviations, corresponding countermeasure is required. One way is that we could
define threshold values based on the error deviations retrieved from evaluating the
prediction model. We can classify the deviations into multiple patterns based on
the derivative of changes, which mean that the bigger change is, the bigger error it
usually indicates. For each of these patterns, we assign a corresponding threshold
value. In the Cloud Gaming server, GPUs render redundant contents based on
the threshold value. Therefore, the redundant content can be used to compensate
the deviation between the predicted result and the true representation.
Furthermore, the above method may lead to higher bandwidth because of the

redundancy. As such, foveated rendering and or reapplying pixels from previous
frame on border content can be used to maintain efficiency.

3.7.4 Questionnaire Results

During our experiment sections, we also required each of our participants to fill in
a simple questionnaire regarding their gaming habits as well as VR experiences.
According to our collected data, 39 out of the 45 participants play video games for
at least one hour per week regularly, with a maximum value at 10 to 20 playing
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hours per week. Therefore, we consider that most of our participants are familiar
with the concept of video gaming. Furthermore, among these 39 participants, 16
of them had VR experiences through other means prior to our experiments. The
VR experiences include mostly watching 360-degree video, special navigation in
sky, VR-involved roller coaster in amusement park. However, only one participant
had experience with VR gaming. Therefore, for our participants, VR is relatively
not a new concept but VR gaming is a new experience for most of the participants.
Our chosen VR gaming software, "Space Pirate Trainers", can be considered as
suitable because even first-time player could easy get used to the control.

What is more, our participants also provided us with their subjective comments
after their VR gaming experiences through our experiment. Most participants were
impressed with the immersive feeling during the gameplay, which can be shown
by some comments (translated from Japanese) such as "The attacks from enemies
feel very real" and "The environment looks very real but a bit scary". Furthermore,
even though most participants expressed the easiness of the gameplay, but some
participant found the control is "difficult as first time" and "a bit weird at the
beginning". Moreover, 44 out of 45 participants felt physically fine after their VR
section with only 1 participant felt dizzy. Despite of the dizziness, the participant
expressed great VR experience throughout his section. Many of the participants
mentioned theirs desire to have the VR gaming system at home because of the novel
gaming experiences, but several of them have the concerns about HMD weight
because some younger participants had difficulties to look upward. Regarding
this issue, we consider that for further expanding the popularity of VR gaming, it
is necessary to make the whole system light-weight with better accessibility. As
such, our goal of applying Cloud Gaming on VR gaming is a prospective solution.

3.8 Summary
In this work, we state about the rising popularity of VR gaming and also the
barriers that hinder such experience from reaching out to larger market. For
improving the accessibility of VR gaming, we propose applying Cloud Gaming
technique. However, for making Cloud Gaming a viable option for VR gaming,
multiple technical issues needed to be further address. The issues include more
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rigid responsiveness, high-quality graphics rendering in real-time, and more efficient
transcoding for streaming the VR contents. We also provided a list of existing
works that may resolve the respective issues, but none of these previous works were
conducted in the context of Cloud Gaming. Furthermore, among the mentioned
issues, we consider that rigid end-to-end latency affects the quality of experience
in VR gaming the most. Therefore, we propose using head-motion prediction as a
mean to compensate the inevitable latency.
For building the prediction model, we define that the four quaternion values:

qw, qx, qy and qz are the target data to be predicted. These four values represent
the orientation of head-motion. In addition, based on the common condition of a
Cloud Gaming environment, we also establish our prediction requirement. As for
the prediction models, we propose using RNN and Moving Average as the two
candidates of prediction methods. In our actual experiment, we collected head-
motion data from 45 participants when they experience VR gaming via our chosen
shooting game. Afterwards, we trained the prediction models for each quaternion
value based on the two mentioned method, and compared their performances.
The conducted evaluation reveals that prediction of RNN outperforms Moving
Average in terms of both accuracy and consistency. Furthermore, 10-fold cross
validation also indicates that a generalized RNN prediction model has very stable
performance.
As an extension of this work, different prediction models can be trained and

evaluated by using different types of VR games. In addition, for actually applying
the prediction model in a Cloud Gaming environment, it is necessary to deal
with the inevitable deviation between prediction and the actual value. As a
countermeasure, rendering and streaming redundant in-game contents can be
considered.
In our work, we only consider head-motion but a truly immersive VR gaming

experience involves body motions as well as the orientations of controllers. Several
previous works [46–48] also utilized RNN to train models for predicting body-
motion. These are the features that can be further explored for the usage in
Cloud Gaming. As well, our previous work Hybrid Streaming [49] method can
be utilized for processing some front-ground objects at the client side, as well as
mitigating the workload at cloud server.
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4 Conclusion

In this dissertation, we present our viewpoint that Cloud Gaming is an uprising,
novel gaming service with tremendous potential market value. The purpose of
cloud gaming is to provide highly accessible game contents with high-quality
to any device at anywhere. However, previous works reveal that maintaining
sustainable quality of experience in Cloud Gaming is challenging, because of the
inevitable network latency. The limitations imposed in network environment
could largely hinder QoE delivered on Cloud Gaming from being competitive
with traditional gaming platform. Particularly, real-time responsiveness and
graphics quality, which are the two elements that affect player’s QoE the most,
are addressed extensively by a number of existing works. With a strong base
of researches being conducted to propel a rapid development, the increasingly
matured Cloud Gaming technology will inevitably play more significant role in
future gaming environment, together with the concurrently advancing traditional
gaming platforms such as PC or game consoles. With this future perspective in
mind, the goal of this research is to bring novel gaming experience by making
connection between Cloud Gaming, traditional PC gaming platform and also new
generation gaming experience, specifically, VR gaming. As such, by addressing
the mentioned two issues, We mainly conducted the following two works:

• Addressing the graphics quality: We propose a Hybrid-Streaming system
that utilizes the rendering power at server and client’s local PC as a mean
to improve the graphics quality

• Addressing the network latency: For potentially expanding the usage of
Cloud Gaming on VR gaming, we propose using Machine-Learning-based
technique to predict player’s head motion as a way to compensate the
network latency.
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In our first work, the proposed Hybrid-Streaming system is based on two existing
streaming methods: Image-based streaming and Instruction-based streaming. In
Hybrid-Streaming system, in-game contents are separated into two groups, the
foreground object and the background object, based on their depth values. The
background objects were processed via Image-based streaming, through which
the corresponding contents are rendered at cloud server and streamed back to
client’s device as encoded video. As for the foreground objects, the contents
are rendered locally by exploiting client’s GPU, thus the fidelity of graphics can
be maintained. At last the foreground objects (original quality) overlay on top
of the background objects (encoded quality). We implemented a prototype of
Hybrid-Streaming system based on an open source cloud gaming platform called
Gaminganywhere, and conducted evaluation on graphics quality by comparing
with traditional streaming method used in Cloud Gaming. The result reveals
that our Hybrid-Streaming System outperforms the traditional streaming method,
where all contents are at encoded quality, in term of graphics quality. Furthermore,
further evaluation also shows that server workload is mitigated because rendering
tasks are shared with GPU at client’s end. As well, the incurred network is
maintained at a reasonable level.

In our second work, we state about the increasing popularity of VR gaming and
propose applying Cloud Gaming technique as a way to improve the accessibility of
VR gaming to more potential customers. However, for making Cloud Gaming as
a practical option, multiple difficulties need to be further addressed. Particularly,
we address the inevitable latency issue in network environment because it is the
most significant factor that affects VR gaming experience. For this reason, we
propose head-motion prediction as a mean to compensate the latency issue. In
our experiment, we collected head-motion data from 45 subjects and created
two prediction models respectively based on Moving Average and LSTM-based
Recurrent Neural Networks. We evaluated two prediction models and the result
reveals that RNN predictions outperform Moving Average in terms of both accuracy
and consistency. Furthermore, 10-fold cross validation also indicates a more
generalized RNN prediction model has even stabler performance. Moreover, during
our experiment, we also collected feedbacks from the 45 subjects regarding their
VR section. The qualitative evaluation shows that the VR gaming experiences
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received by the subjects are positive.
For our two conducted research, various directions of extensions can be con-

sidered. For Hybrid-Streaming system, it can be further evaluated with actual
gaming softwares, and a more concrete mechanism for splitting game contents can
be discovered to cope with more complicated scenarios. As for the Head-motion
prediction model, applying countermeasure for prediction errors can further im-
prove the practicality of the method. Further, beside head-motion, VR in-game
elements can be considered as additional input features for training the prediction
model, which may lead to even more comprehensive performance. Cloud Gaming
system is a metropolitan consisting of technologies from different fields. Regarding
the prospects of future Cloud Gaming Development, several significant research
problems spanning over a wide spectrum of different directions can be concerned:
The distributed systems [50–52], human-computer interaction [53,54], quality of
experience [55–57], resource allocation/virtualisation [58–60], and dynamic adap-
tion [61,62]. Addressing these issues could largely help to make Cloud Gaming
system more profitable, and more successful to provide high quality and highly
accessible services to clients. Considering that Cloud Gaming is still a relatively
new research field and there are lot of works needed to be done, dedication is
needed to keep brining up novel ideas and contributing to this field in years to
come.
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