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Noise-Removal From Electroencephalographies

Toward Single-Trial Cognitive State Analysis*

Hayato Maki

Abstract

It is well known that the signal-to-ratio of electroencephalography (EEG) is
low, which makes it challenging to perform estimation or information extraction
using single-trial EEG. Single-trial analysis of EEG has gathered attention from re-
searchers because it can bring new insights about cognitive or emotional states of
human beings. In this doctoral dissertation, noise-removal from single-trial event-
related potentials (ERP) and perceived quality prediction of synthesized speeches
are investigated, respectively.

Noise-removal from ERP was tackled in two different approaches. First, consid-
ering the application of tensor factorization to ERP data, a novel regularization and
initialization methods incorporating the geometrical information of EEG electrode
location are respectively proposed, whose effectiveness was shown experimentally.
Second, we proposed a multidimensional probabilistic generative model of EEG ac-
tivities, whose maximum likelihood estimators of model parameters were utilized
to construct a noise-removing filter. In addition, incorporating prior knowledge
of EEG signals as prior distributions of model parameters was proposed that were
calculated using previously recorded EEG signals.

Moreover, subjective quality evaluation scores of synthesized speeches were pre-
dicted using a single-trial EEG that was recorded during listening to the speeches.
Consequently, it was shown that subjective rating scores can be predicted by a
single-trial EEG, and effective features for the prediction was neurophysiologically
plausible.

*Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science and
Technology, NAIST-IS-DD1561019, February 25, 2018.
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Chapter 1

Introduction

1.1 Background

Nearly one hundred years ago, a German psychiatrist Hans Berger reported that he
recorded the electrical activity of human brain by placing an electrode on the scalp
[T]. Many scientists thought the Berger’s finding was spurious initially but the same
phenomenon was also reported by other researchers after a few years, which led to
the acceptance of the findings as a real phenomenon. The electrical activity has been
called electroencephalography, or shortly EEG. The word can be divided into sub-
words electro, encephalo, and graphy. Encephalo can be further divided into en and
cephalo. En comes from ancient Greek and means “in,” and cephalo also originates
from an ancient Greek word kephale, which means “head.” Therefore, EEG literally

means electrical recording of inside head.

Over the decades, EEG have been widely used by researchers as a tool to study in-
side head. For example, in cognitive science, language processing [2?-7], face recog-
nition [8—-10], emotions [T1-13] have been studied using EEG. Clinical application
of EEG includes the investigations of Alzheimer’s disease [[14-16], epilepsy [[17-19],
attention-deficit hyperactivity disorder (ADHD) [20-23]. Furthermore, endeavor to
utilize it for engineering applications has also been continued. For example, EEG-
based brain-machine interface (BMI) has attracted much attention from many re-
searchers with different backgrounds for the purpose of assisting handicapped peo-

ple and even augmenting our lifestyle [24-29]. Mental monitoring is an emerging

1



2 CHAPTER 1. INTRODUCTION

EEG application where mental or physiological condition including engagement, fa-
tigue, or drowsiness of subjects are estimated from their EEG [B0-37].

The representative applications of EEG are summarized in Figure 1. EEG poten-
tials can be roughly divided into two categories. The first one is spontaneous poten-
tial, which is generated without specific stimuli presentation. On the other hand, the
second one is evoked potential, which is generated as a response to specific stimuli
(light, sound, sentence, image, etc). Especially, evoked potential is called event-
related potential (ERP) if stimuli cause cognitive loads on a subject. Measuring ERP
is one of the most widely used method to investigate human cognitive function [33,
34].

1.2 Research Objective

It is well known that the signal-to-ratio of electroencephalography (EEG) is low,
which makes it difficult to get useful information from one EEG signal. Therefore,
EEG is usually analyzed by aggregating multiple signals. For example, multiple EEG
signals are recorded during repeated stimuli presentations to a subject. Then, the
signals are averaged to cancel out noise, which is explained again in Section 211

Single-trial EEG analysis means individually analyzing each EEG signal obtained
by single stimuli presentation. It was proposed in [36] and has gathered attention
from researchers because it can bring new insights about cognitive or emotional
states of human beings. For example, it can allow us to investigate a subject’s re-
sponse variability among stimuli, which is impossible using conventional averag-
ing [37-39].

Single-trial EEG analysis can be classified into two types, noise-removal and pre-
diction (Figure I2). A single-trial noise-removal method inputs an observed single-
trial EEG signal and outputs a cleaned signal. Definitions of signal and noise depend
on research interests. For example, if you are interested in evoked potentials, spon-
taneous potentials are noise. In addition, artificial potentials are also noise that can
be caused by body movements. On the other hand, spontaneous potentials are signal
and evoked and artificial potentials are noise if you want to analyze the former.

In single-trial prediction problems, input is an observed single-trial EEG signal as
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| EEG
Animal
Human
Spontaneous Potentials Evoked Potentials

Transient Potentials Steady State Potentials

Clinical Applications Cognitive Science Engineering
epilepsy language Brain-machine interface

stroke attention brain decoding

Alzheimer’s disease memory rehabilitation

Figure 1.1: A summary of EEG potentials and their usage. Based on the Figure 1-3 in
[B5]. In this study, analysis methods for evoked transient potential are investigated.
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Single-trial Noise-removal (Chapter 3 and 4)

§ —— | Tensor Factorization |——— §
E‘ Chapter 3 g
< <
Time — | Spatial Wiener Filtering |—— Time
INPUT Chapter 4 OUTPUT
Observed single-trial EEG Cleaned single-trial EEG
Single-trial Prediction (Chapter 5)
[}
E
= _— Predictive Model Predicted
£ Value
< X Chapter 5
Time
INPUT OUTPUT

Predicted value

Observed single-trial EEG

Figure 1.2: Two types of single-trial EEG analysis problems. In both of the problems,
input is an observed single-trial EEG signal. (Upper) In single-trial noise-removal,
output is a cleaned signal. (Lower) In single-trial prediction, output is a predicted
value. The former is investigated in Chapter 3 and 4, and the latter is in Chapter 5.

same as noise-removal problems, output is a predicted value. The objective of this
doctoral dissertation is to investigate both of the problems with a focus on analysis

of evoked potentials.

1.3 Structure of Dissertation

The rest of this dissertation is structured as follows:
In Chapter B, basic knowledges of EEG and its analysis methods are described.
Chapter B addresses a single-trial noise-removal problem investigating applica-
tion of tensor factorization. We propose a novel tensor factorization algorithm that
incorporates the geometric structure of the electrode location. Canonical polyadic
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decomposition (CPD), which is one of the tensor factorization methods is extended
by adding a regularization term that considers the graphical information of EEG elec-
trode location and controls the spatial smoothness of signals on a scalp surface. An
initialization method considering the smoothness is also proposed. The geometric
structure of EEG electrode location is expressed as an undirected graph where the
similarities between electrodes are defined by their relative distances on a scalp.

Chapter @ addresses a single-trial noise-removal problem, where we use a spatial
Wiener filtering for noise-removal. A probabilistic generative model is created to
express amplitude generation of EEG in a high dimensional space corresponding
to multiple modes of EEG data, and its parameters are used to construct a noise-
removing filter. Unifying view of the tensor factorization and spatial Wiener filtering
is also explained.

In Chapter B, we tackle to predict perceived qualities of synthesized speeches
using EEG, which is an example of single-trial prediction problem. Subjective rat-
ing scores of speech quality are predicted by regression analysis with EEG features.
Quality prediction of multi media based on EEG is challenging due to a small number
of training trials, a low signal-to-noise ratio, and a high correlation among featrures
extracted from EEG. We incorporate the structure of features to improve prediction
performance.

Chapter B concludes the entire of this dissertation and gives possible directions
for the future researches.
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Chapter 2

Basics of EEG and its Analysis

2.1 EEG

EEG measures voltage fluctuations generated by the synchronized activities of nu-
merous neurons using electrodes placed on scalp surface as shown in Figure 1.

Compared with other brain activity measurements, EEG has the following advan-
tages. (1) Non-invasiveness: Recording EEG doesn’t hurt a subject’s body and have
safety-related restriction while positron emission tomography (PET) exposes a sub-
ject to radiation. Micro electrode measurement inserts an electrode into the brain,
which limits subjects to those who have medical reasons. (2) High temporal resolu-
tion: The temporal resolution of EEG is one millisecond (ms) or better, wheare those
of functional magnetic resonance imaging (fMRI) and PET are several hundreds ms
at best [B3]. (3) Portability: EEG can be recorded almost everywhere and some EEG
recording equipments are wireless [40] while conventional ones are wired to a data
recording device. In contrast, magnetoencephalography (MEG) has to be used in
a magnetically shield room and fMRI is also fixed to an experimental room, which
makes it impossible to record brain activities in daily environment.

On the other hand, EEG has the following drawbacks. (1) Low spatial resolu-
tion: Field potentials that are generated by neuron activities come through cerebral
spinal fluid and skull to scalp EEG electrodes, which causes volume conduction [B5].
Therefore, a recorded EEG signal is a spatial average of neural activities within about

10-40 cm? of cortical sheets [24]. (2) Low signal-to-noise ratio: Various factors can

7



8 CHAPTER 2. BASICS OF EEG AND ITS ANALYSIS

Figure 2.1: A man wearing an EEG cap.

affect noise level of EEG including an used EEG equipment, an electrical shield in an
experimental room, electrode impedances, and the temperature and humidity in a
recording place [41]. Signal power in delta (1-4 Hz), beta (12-30 Hz), or gamma
(30-45 Hz) frequency bands are important to study brain functions but it is difficult
to distinguish between them and muscle electricity [35]. Moreover, EEG get con-
taminated by artifacts seriously even by a small body movement, for example an eye
blink. Artifacts often produce much higher amplitude than brain activities, which
severely limits possible experimental paradigms. For example, when movie stimuli
are presented to a subject with a wide monitor for a cognitive task, EEG data is likely
to be contaminated by ocular and other body movement artifacts because seeing a
wide range elicits movements of eye balls and the neck, which produces artificial

potentials and conceals EEG activities of interest.

2.1.1 ERP

ERP is amplitude change of an EEG waveform caused by stimuli presented to a

subject [33, 34]. Because it is always recorded mixed with spontaneous potentials
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(spontaneous potentials are also called background EEG in contrast to ERP) whose
voltage are bigger than that of ERB it is usually not visible. Therefore, synchronous
averaging of multiple ERPs that are obtained by repeated stimuli presentation is
commonly performed to attenuate spontaneous potentials.

A waveform of averaged ERP usually has a series of characteristic peaks that are
named using their polarity and latency from the stimuli onset, for example N1 or
N100 (the negative voltage shift that appears 100 ms after the stimuli onset) and
P3 or P300 (the positive voltage shift that appears 300 ms after the stimuli onset).
Each peak is called an ERP component.

There are a large body of studies that investigate relation between ERP compo-
nents and cognitive functions. For example, the P3 component is related to stimuli
categorization and cognitive resource allocation [[, 34, 42], and often utilized in
brain-machine interfaces due to its stable appearance [27-29]. The N400 compo-
nents is related to language processing in the brain [34, 43, 44]. The N170 compo-
nent is related to perception of faces and expertise objects [34, 45, 46].

Examples of single-trial and averaged ERPs are shown in Figure 22, where a re-
sult of oddball paradigm is plotted [27, 47]. The oddball paradigm is the most widely
used ERP experimental paradigm, where subjects are presented a series of stimuli
that fall into two classes, target and non-target stimuli. Subjects make a response
only to target stimuli (button press, count the number of their presences) ignoring
the others. In Figure 222, finding each ERP component elicited by each stimulus is
difficult, whereas it can be clearly seen the both of the averaged waveforms have the
N1 component, and the averaged target trial waveform has the larger P3 component

than non-target.

2.2 Noise-removal from EEG Data

2.2.1 Independent Component Analysis

Independent component analysis (ICA) has been widely studied to solve the blind
source separation (BSS) problem [48, 49], and frequently used to remove noise from
EEG [37, 50, 51]. The BSS problem is depicted in Figure ZZ3. We observe signals

that are generated from I sources using J sensors. The goal of the BSS problem
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Single Trials

60 -

Amplitude (1V)
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Figure 2.2: (upper) Example of five single-trial ERPs of target (black) and non-target
(gray) trials. (lower) Averaged waveforms of the two stimuli classes.
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O— u
Unknown
O—' mixing B
system
O— u
Unknown sources A Sensors
A : ‘
e e R :
Estimation

Figure 2.3: A schematic image of the BSS problem with three sources and three
sensors. In an EEG case, sources are numerous synapses and sensors are electrodes
on the scalp.

is to estimate sources without knowledge of sources and the mixing system. If the
number of sources is equal to or less than that of sensors (I < J), the problem is
called the determined BSS. On the other hand, if we have fewer number of sensors
than sources (I > J), it is called the under-determined BSS.

If the mixing system is linear and instantaneous, BSS can be written as:

x(t) =As(t), (2.1)

xR/, seR, AeR™,

where x(t) and s(t) are respectively the observed signal and the sources at the time
t, and A represents the linear mixing system. The strategy of ICA to solve BSS is to
find an estimator of inverse matrix of the mixing matrix W = A~ and obtain source

estimators § as:
$(t) = Wx(t). (2.2)

W is estimated so that the source estimators are as independent as possible. ICA
solves the BSS problem up to the scaling and permutation ambiguities between es-
timated sources but can not handle the under-determined BSS because it assumes

the existence of the inverse of the mixing matrix.
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2.2.2 Tensor Factorization

A tensor is a natural extension of a matrix so that its element is indexed by more than
two integers. While we used the terms “row” and “column” to refer to elements of a
matrix, we use the term “mode” to refer to those of a tensor (a vector and a matrix
has one and two modes, respectively). A tensor that has N modes is called a N-th
order tensor,

There are two important features of tensor factorization, that is, the linearity
on the number of parameters and the symmetry among the mode. The linearity on
the number of parameters means that the number of parameters to be estimated
by a tensor factorization algorithm increases linearly with each mode dimension.
The symmetry among the modes means that a result of tensor factorization doesn’t
change even if a tensor is rolled, that is, a tensor factorization algorithm doesn’t de-
pend on an order of modes. There are at least two tensor factorization algorithms
that meet the two properties stated above. The one is canonical polydic decom-
position (CPD) and the other is Tucker decomposition, which are reviewed in the

following sections.

Notations

In this section notations and basic operations for tensor is introduced following [52].
A scalar, a vector, a matrix, and a tensor are denoted by a standard Italic letter,
a boldface Italic lowercase letter, a standard Roman capital letter, and a Euler script
letter, respectively, as a, a, A, and A.
The i-th entry of a vector a is denoted by a(i). An element of a matrix that is spec-
ified by the i-th row and the j-th column is denoted by A(i, j). A tensor element that
is specified by index of each mode nq, n,, ..., ny is denoted as A(n,, n,, ..., ny).These

notations are summarized in Table P11

2.2.3 Tensor Algebra
Vectorization

The vectorization of a I-by—J matrix A is denoted by vec(A) and creates a vector,

which has the IJ elements by stacking all the columns of A.
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Table 2.1: Notations of a scalar, a vector, a matrix, a tensor, and their elements.

Font Example Element Example
Scalar standard Italic a
Vector boldface lowercase a a(i)
Matrix standard Roman capital A A(i, j)
Tensor Euler’s script A Ay, iy,...,1x)

Mode-n fibers

The mode-n fibers are vectors that are obtained by varying the index of the n-th
mode while fixing all the other mode indexes. For example, we have a third order
tensor A € R**>*2, Then, we can obtain the six mode-1 fibers with the four elements,
the eight mode-2 fibers with the three elements, and the twelve mode-3 fibers with

the two elements. A schematic image of the mode-n fibers is shown in Figure 224.

Mode-n matricization (unfolding)

The mode-n matricization (also called the mode-n unfolding) of a tensor A € RI*/2x*In

is an operation that flattening a tensor into a matrix, and denoted as:
‘A[n] c RInXIIIZ'“In—IIrH—l“'IN. (23)

The mode-n matricization is obtained by arranging all the mode-n fibers of input
tensor into the columns of output matrix. Employing the same example above, the
mode-1, 2, and 3 matricizations are the 4-by-6, 3-by-8, and 2-by—12 matrices, re-
spectively. In spite of the simple concept, the order of the fiber arrangement into
the columns is not unique, which forces us to use the following complicated nota-
tion in accordance with [52] to eliminate the ambiguity, where a tensor element

(iy,1,,...,1y) is mapped to a matrix element (i,, j) as follows:

N
j =1+ (ix— 1y,
k=1

k#n

k—1
Je=[ [
m=1

m#n

(2.4)
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A schematic image of the mode-n matricization is also depicted in Figure Z4.

Rank-1 tensor and outer product

Outer product of vectors is denoted by the symbol o, and yields a tensor by calculat-

ing scalar products of all possible element-pairs among the vectors as follows:

a(n) e RIHXl,.A — a(l) o a(z) QO+++0 a(N) e RIIXIZX"'XIN’ (2'5)
Ay, igy - -5 1y) = aP(i)a®(iy) - - - a™(iy), (2.6)
n=1,2,...,N.

We say a N-th order tensor A is rank one if and only if it can be written as the outer
product of N vectors. A schematic image of outer product and a rank-1 tensor is
depicted in Figure 5.

Mode-n product

The mode-n product of a tensor A and a matrix B is denoted by A x, B and yields

another tensor X as follows:
X =Ax,B, (2.7)
where

Iy X Iy XX X oo XT
X e R'1*2 N

Ae Rllxlzxu-xlnx---xIN’ Be RJXIn, (2.8)

and elements of the resulting tensor are calculated as:
In
X(iy, i, er it Jofngtseeerin) = D Ak Iy st byt o i)BG ). (2.9)
ip=1

The mode-n product is defined when the tensor dimension of the n-th mode and the

number of matrix column are identical.
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Figure 2.4: Examples of the fibers and matricizations for a third order tensor. The
dimension of the first, second, and third are four, three, and two, respectively. The
numbers attached to the fibers indicate the column order of the matricization.
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Figure 2.5: A schematic image of outer product.

Identity tensor

The identity tensor J is analogously defined to the identity matrix, whose all mode
dimensions are identical and elements are one if their all indices are identical and

otherwise zero, that is:

JeR Iy =, = =1y,

1 (ij=iy=--=i
Wiy, iy, .., iy) = (b=t N). (2.10)

0 (otherwise)

Khatri-Rao product

The Khatri-Rao product [53] of two matrices with an identical number of columns is
denoted by ® and yields another matrix. The n-th column of the resulting matrix are
obtained by vectorizing the tensor calculated by outer product of the n-th column

vectors of the matrices. It is formulated as:

A=(ay,ay...,a¢) €R™, B=(b;,b,,..., b ) R,

A®B= (vec(a1 ob,),vec(a,ob,),...,vec(ay o bK)) € RV, (2.11)
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Frobenius norm

The Frobenius norm of a tensor A is denoted by ||A||z and defined by the element-

wise root sum square over all the indices:

I I Iy

Al = | D2 > e D Al - in )2, (2.12)

11:1 12:1 lN:1

Ae RIl xIpx-xIy

2.2.4 Divergences

A divergence between two same-sized tensors is denoted by D and can be measured

by the sum of the element-pair-wise divergences, that is:

I I Iy

D (A:B) = ZZ o Z d (‘A(lla i2> e iN)J B(i17i2) e iN))) (213)
=li=1  iy=1
.A,B c R11XIZX~~~XIN’

where d is a function to measure divergence between two scalars and satisfies:

Va,b€R d(a,b) >0, (2.14)
d(a,b)=0 ifandonlyif a=b>b. (2.15)

Notice that a divergence function d is not necessarily symmetric:
d(a,b) =d(b,a), (2.16)
and does not necessarily satisfy the triangular inequality:
d(a,b) <d(a,c)+d(c,b). 2.17)

Here are examples of divergence functions.
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Euclid distance (EUC distance)

dgyc(a, b) = y/(a—b)? (2.18)

Generalized Kullback-Leibler divergence (gKL divergence)

dye(a,b) = (a log%—a+ b) (2.19)

Itakura-Saito divergence (IS divergence)

ds(a, b) =log é + % -1 (2.20)
a

Cauchy divergence

a 3. 2a*+b?
dCauchy(a: b) = log E + 5 log ? (2.21D)

It is worth noting that some divergences can be defined only when the both of the
scalars are positive. All of the divergences above except Cauchy divergence can
be derived from either of Alpha divergence, Beta divergence, and Bregman diver-

gence [54].

When a divergence between two same-sized positive definite Hermitian matrices
is measured, the generalized Itakura-Saito divergence (gIS divergence, also known
as Log-determinant divergence or Stein’s loss) [55-57], denoted by gIS, can be
used. Let both of the matrices A and B be J-by—J positive definite Hermitian matri-

ces. The gIS divergence is formulated as:

Generalized Itakura-Saito divergence (gIS divergence)
D,;s (A,B) =Tr(AB™') —log(det(AB™")) —J, (2.22)

where Tr and det are the trace and the determinant of matrix, respectively.
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Figure 2.6: A schematic image of noise-removal based on rank-R CPD

2.2.5 Tensor Factorization Model
Canonical polyadic decomposition (CPD)

The CPD is also known as the canonical decomposition (CANDECOMP) or the par-
allel factor analysys (PARAFAC) [58-60]. It is formulated as a tensor decomposition
into a sum of rank-1 tensors:

R

1 Iy) —
Za()oa 'oa(rN)_jxlAlXZAZXS"'XNAN;
r=1

r

:"x c R11><12X"'><IN

A, = (a(ln),a(zn),.. (”)) RI*R

where J is the identity tensor. Each rank-1 tensor a®¥ oa® o ---0a*) and R are
called the r-th component of the decomposed tensor and the CPD rank, respectively.
In addition, a vector a&”) is called the mode-n basis of the r-th component. Because
the above decomposition decomposes a tensor into R rank-1 tensors, it is called rank-

R CPD. A schematic image of the noise-removal using CPD is depicted in Figure 8.

CPD finds factor matrices (or equivalently bases) by minimizing a divergence
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between its input and output tensor denoted by X and X, respectively. Using the
Frobenius norm to measure the divergence, the objective function f; to minimize is

formulated as follows:
£06,5%) = 1126, X (2.23)

The function f; is not convex but the optimal solution is unique under mild condi-
tions up to the ambiguities for scaling among modes and for permutation among
components [61] and its local convergence property is shown in [62]. After the ini-
tialization of each factor matrix, an alternating gradient descent algorithm can be
used for solving the minimization problem, which continues to update one factor

matrix while fixing the others until convergence as follows:

A, <A, =NV fi, (2.24)
where 1) is a learning rate, and
af .
Va1 =50 Aln = (X(ny— Xa1)Bs (2.25)
Bn:ANG'“@ArH—l@An—l®"'®A1' (2.26)

The n-mode matricization of the approximated tensor can be calculated using matrix

product as follows:
X =AB (2.27)

The overall procedure is shown in Algorithm .

Initialization of CPD

The initialization of factor matrices are usually done using random numbers or
higher order singular value decomposition (HOSVD) [63]. When HOSVD is used
for initialization, the matricization of each mode is caluculated at first. Then, stan-
dard SVD is applied for each unfolded matrix, and each factor matrix is initialized

with the left singular vectors corresponding to the R largest singular values.
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Algorithm 1 CPD based on the Frobenius norm

Require:
X € Rivaxly > Input tensor
R > 1 is an integer > Number of components
n>0 > Learning rate
e>0 > Convergence tolerance
Ensure:

i € RIxIx-xIy
1: function CPD(X, 1)

2: for all n do
3: initialize A € RI~R
4 X7 < unfold(X, n) > Unfold input tensor along with each mode
5: end for
6:  while Dyyc(X,X) > € do
7: for all n do
8: B, < Ay® - @A ,,0A ,0---0A,
9: X < AB!
10: A, — (X — Xpp)B,
11: end for
12: end while > End iterative update
13:  return X

14: end function

Tucker Decomposition

Tucker decomposition is a generalization of CPD and formulated as follows:

Ky K

Ky
N 1 2 I
:X::ZZ--.Zg(nl,nz,---,nN)a(kl)oa(kz)o--.Oa(kAI]V)’ (2.28)

ki=1k,=1  ky=1

i € RIxI2xxIy Ge RK1XKp X+ xKyy
[, () (n) I, %K,
An_(ak1 ak2 ...aKN)ER N
where G is called the core tensor. While CPD restricts the ranks of all components

to R, Tucker decomposition allows them to differ. If the core tensor is diagonal, it
reduces to CPD.
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Chapter 3

Graph Regularized Tensor

Factorization

3.1 Introduction

ERPs are usually analyzed using trial averaging to weaken the background potentials,
that is always generated and irrelevant to stimuli presented to a subject. Noise-
removal problems to realize single-trial ERP analysis have gathered much attention
from researchers because such an averaging procedure conceals variabilities among
trials.

Matrix factorization algorithms including independent component analysis (ICA)
[37, 64] have been studied to tackle this problem. However, such algorithms can
only be applied to a two-way array, i.e., a matrix, while ERP data usually have more
than two modes (dimensions), for example time, electrodes, frequencies, trials, sub-
jects, and experimental conditions, which naturally expresses such data as a multi-
dimensional array, or a tensor. Therefore, the application of tensor factorization to
ERP data has been studied recently [54, 65]. Especially, CPD has been commonly
used for its high interpretability and simplicity [66-69].

However, it is well known that EEG data are noisy and sensitive to the outliers
caused by body movements such as eye blinks. The amount of data is also usually
small, which causes the above statical noise-removal methods to slip into over-fitting

and fail to find meaningful components.

23
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Regularization can be used to avoid over-fitting by adding the norm of param-
eters or incorporating prior knowledge of the data [Z0]. For example, researchers
in the field of brain-machine interfaces have found that a common spatial pattern
filter, which is widely used in two-class classification problems with EEG data, can be
effectively constructed with regularization based on the geometric structure of the
EEG electrode location [[Z1], 72]. An EEG is a summation of an electrical recording
of numerous neuron activities from which we can reasonably assume that multiple
electrodes will observe signals that resemble each other if they are closely located
on a scalp. However, existing CPD applications to EEG data have failed to utilize
the spatial smoothness of EEGs and often identify spatially bumpy components [66,
69]. On the other hand, the nonnegative matrix factorization (NMF) algorithm that
incorporates a graphical structure (GNMF) was proposed and applied to the facial
image analysis [73].

In this chapter, a new CPD-based noise-removal method is proposed, which in-
corporates geometrical information of the EEG electrodes. It is a natural extension

of GNMF to tensor factorization.

3.2 Graph Regularized Tensor Factorization

In this section, CPD is extended to GCPD, which uses the geometrical information
of the electrode location for both regularization and initialization. First, we explain
a method that models the geometrical information of the electrode location using
a graph. Second, we introduce a regularization method for CPD that constrains
the spatial smoothness of the components. Third, we explain how to use the graph
structure for initialization.

3.2.1 Obtaining Adjacency Matrix

EEG electrodes are usually placed on a scalp according to the International 10-20,
10-10, or 10-5 systems [74-76] depicted in Figure B1. These systems assume that
the electrodes are placed on a sphere and define the j-th electrode position using
a three-dimensional vector as z; = (x;, y;,2;) by setting the sphere’s center as the

origin.
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The local structure among J nodes can be expressed by an undirected graph
which has J nodes and its corresponding J-by-J adjacency matrix [ZZ]. In our
study, we regards EEG electrodes as nodes. We denote an adjacency matrix by W,
and its element W(i, j) express the similarity between the i-th and j-th nodes.

The commonly used methods to measure the similarity between the i-th and j-th

nodes are inner product:
W(i,j) =32/ 2, (3.1)
and heat kernel weighting [[78]:

—llz —z|”
—_— (3.2)

W(i, j) = exp

With these measures employed, the adjacency matrix is symmetric and its element
W(i, j) increases when the i-th and j-th nodes are similar and vice versa.

We have mentioned only the spatial structure of EEG but the temporal smooth-

ness can be also considered in the same way by using each time index as a node to

define a graph structure.

3.2.2 Graph Regularization

Given an adjacency matrix, the smoothness of the CPD bases of the n-th mode on its

corresponding graph can be measured using the following term:

K Iy
S (A W) =D T IA (LK) —A,GLRIPW™(E, j) = Tr(ATL,A,),  (3.3)

k=11i,j=1
L, =DM —wm, (3.9

the matrix D™ is a diagonal matrix, whose diagonal elements are a column (or
equivalently a row) sum of W, and L, is called a graph Laplacian matrix [77]. In
the spectral graph theory literature, the term Tr(AILnAn) is called the graph Lapla-
cian quadratic form. It increases when the difference between the column entries of
the factor matrix A (i, k) and A, (j, k) is big although W((i, j) is big, in other words
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Figure 3.1: Modified international 10-20 system. This figure is distributed under the
Creative Commons CCO 1.0 Universal Public Domain Dedication [[79].

the i-th node and the j-th node are close to each other on the graph [Z8, BO].

By adding this term to the original objective function of CPD shown in Equa-
tion (2223), the objective function of GCPD is formulated as follows:

N
n=1

where ), is a graph regularization parameter. By minimizing this function we expect
that bases can be found that respect the intrinsic graphical structure. A gradient of

f5 is given by the following terms:

Vafo =X, —X,)B, + (A, ] +,L A, (3.6)
Bn:AN "'@An+1®An_1®"'®A1, (3.7)

where [ is the identity matrix. Iterative updating is performed as in Equation (224)).
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3.3 Initialization Considering Graph Structure

While GNMF uses the graphical smoothness only for regularization, we propose to
incorporate it not only for regularization but also initialization of CPD. The bases of
each mode found by GCPD should respect its geometric structure: in other words,
such bases make smoothness defined by Equation (3=3) small. Therefore, the pro-
posed initialization method is given by solving the following minimization prob-
lem [78]:

A" =argminS(A,, W,). (3.8)
A

n

The solution of this problem is given by the following eigenvalue problem:
L,b™ = pb™, (3.9)

Let the dimension of the n-th mode J,. Since the graph Laplacian is a J,-by-J,

.....

.....

O:p0<p1S"‘Sp]n_1. (310)

The eigenvectors of the graph Laplacian is called the graph Fourier bases (GFB). GFB
corresponding to a smaller eigenvalue reduce the following term more greatly:

Jn
S'(B", W,) = > 1B — b G)IPW, (i, ), (3.11)

i,j=1

where bg{")( j) is the j-th element of the vector b,g"). In other words, the following
relation holds [BO]:

0=5'(B",W,) <--- < S'(B ,W,). (3.12)

Each factor matrix is initialized with the K GFBs corresponding to the K smallest

eigenvalues.
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While HOSVD initializes the factor matrices based on the orthogonality and the
variance explained by the direction of the singular vectors and fails to consider the
graph structures, the eigenvectors of the graph Laplacian are also orthogonal as well
as they consider the smoothness on a given graph. Moreover, they are dependent
only on a graph Laplacian matrix. Therefore, they always produce the same ini-
tialization result with the same Laplacian matrix (the same EEG electrode location)
even if a subject or an experimental condition is different: HOSVD is dependent on
input data, which means the quality of initialization will be largely affected by the
data amount and the artifacts in the data. This can be an advantage for the proposed
method because EEGs are easily affected by such artifacts as body movements and

the amount of data is often severely limited.

3.4 Experimental Evaluation

An noise removal experiment is described in this section. Since it is difficult to dis-
criminate which decomposed components really correspond to a signal (an EEG sig-
nal caused by brain activities of interest) or a noise (a signal caused by other brain
activities or artifacts), a pseudo ERP data were created using real EEG signals to
make it possible to evaluate the proposed method and the standard CPD objectively.

3.4.1 Data Acquisition

All EEG signals were recorded in a sound proof room with 25 scalp electrodes placed
according to International 10-20 system at the sampling rate of 1000 Hz. Three
healthy subjects aged from 23 to 26 years old without any neurological disorders
participated in the experiment. All experimental procedures were approved by the
Ethical Review Board of Nara Institute of Science and Technology. The recorded EEG
signals were down-sampled to 200 Hz, and a band-pass filter was applied between
0.01 Hz and 30 Hz.

An auditory oddball paradigm was used [B3] to elicit the ERP component of
P300 from the subjects. A random sequence of 2000 Hz and 1000 Hz sound stimuli
was presented to each subject by earphones. All the sound stimuli had a duration

of 200 milliseconds and the intervals between them were 1.4 seconds. 2000 and
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Figure 3.2: Timeline of the EEG recording experiment. All stimuli have the dura-
tion of 0.2 seconds and the intervals between stimuli were 1.4 seconds. Target and
Non-target stimuli were presented to subjects 50 and 200 times in one session, re-
spectively. Subjects looked at the fixation mark on the monitor and counted the
number of target stimuli presences.

1000 Hz sounds were respectively presented 50 and 200 times. Subjects counted
the number of 2000 Hz sound stimuli (target trials) while ignoring 1000 Hz sound
(non-target trials). It has been well documented that the ERP of P300 appears more
conspicuously when a subject is presented a target stimuli than a non-target one.
After repeating this procedure twice (100 target and 400 non-target trials in total),
the subjects were told to relax without a task or a stimulus to record their resting

state EEG for two minutes.

3.4.2 Validation Using Pseudo ERP-Data

From the resting state EEG signal from the each subject, 100 epochs of 850 milli
seconds duration (170 time samples) was extracted randomly. All the target-trials
obtained from the oddball paradigm were averaged across trials. Then, the resulting

averaged ERP that stands for signal was added to the each of 100 resting state epochs
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that stands for noise to make the 100 trials of pseudo ERP data. The obtained ERPs
are shown in Figure B3. The phase of the added ERP was randomly shifted from
-50 ms to 50 ms and amplitude also randomly changed by multiplying a random
number sampled from the normal distribution with mean 1 and standard deviation
0.4. The averaged non-target trial ERP was also added to another 100 resting state
epochs as same as the target-trial ERP Concatenating the two data, a third order
tensor X € R179%25%290 with modes of time x space(electrodes) x trials was made
for each subject.

The effectiveness of compared methods were measured by how well they re-
moved the noise and extracted the added ERP components from the tensor.

The rank of CPD is set to 20 for both of the methods. Similarities between elec-
trodes and time samples were defined by the heat kernel weighting with the vari-
ance parameter 0 = 1. The hyper parameters were chosen following the previous
researches. Spatial Wiener filtering introduced in Chapter @ was also compared.

The noise removal performances were measured by root mean square error (RMSE):

3.4.3 Component Selection

As with other source separation techniques, CPD decomposes an input signal into
multiple components without identifying the components of interest. Therefore,
they must be selected based on prior knowledge [8T].

Target-trials elicit larger ERP than non-target trials. If a component corresponds
to an ERB the magnitude of trial mode bases differ among the set of elements corre-
sponding to target trials and the set of the non-target trials. On the other hand, if a
component doesn’t correspond to an ERB the magnitude of the trial mode bases will
take similar values among elements. Based on this idea, the inter-condition variance

(ICV) of the r-th component is defined as follows:

ICV(r) = > |ATel(, )| = > AT, ), (3.13)
iePr i¢Pr
where D; is a set of component indexes that corresponds to the target trials. Com-
ponents with a high ICV are chosen as ERP components.

A previous work adopted a similar approach [66] and selected components based
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Figure 3.3: Plots of the averaged ERPs of all subjects. Black and gray lines are time
courses of the averaged ERPs of target and non-target trials, respectively.
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on the p-value of a statical test to the magnitude of the subject mode to investigate
the difference between subjects with reading and with attention disabilities. ICV
is simpler and more instinctive than the p-value of a statical significant test, which
needs a sufficient amount of data to find significant differences and assumptions the
about data, e.g., distribution or variance. We selected the three components that
had the highest ICVs.

3.4.4 Result

The noise-removal performance of GCPD was superior to CPD for all subjects as sum-
marized in Table B, where the averaged RMSE values with the standard deviation
(s.d.). The average was calculated across all the 200 trials and the 25 electrodes
(5000 RMSEs in toal). The performance of the spatial Wiener filter was worse than
CPD and GCPD, which is probably caused its high dimensionality of parameters to

be estimated (a detailed discussion is in Section E8).

The bases of the component that was obtained from the subject 3 by GCPD and
had the highest ICV is shown in Figure for each mode. The temporal mode basis
clearly shows the appearance of P300. The spatial mode basis shows the amplitude
distribution on the scalp. It is spatially smooth and has the highest activity at near
the central of the scalp, which is physiologically plausible. The absolute value of
the trial mode basis is shown for both of trial and non-target trials. The mode is
important for single-trial analysis because it is possible to know which trials affect
to a cognitive state of a subject more strongly than others. From the first to one
hundredth elements correspond to target trials and the rest to non-target trials. It
can be seen that magnitude are larger at the target-trials than the non-target ones,

which is why this component is selected by ICV.

Convergence results of GCPD initialized by GFB and HOSVD are shown in Fig-
ure 5. Although GCPD initialized by GFB achieved the better noise removal per-
formance in all subjects, GCPD initialized by HOSVD converged faster than that by
GFB in the subject 2.
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Figure 3.4: Each mode of the component that had the highest ICV. (Left) the temporal
mode, (middle) the spatial mode, and (right) the absolute value of the trial mode
with the highest ICV. The first one hundred bars and the rest indicate the target and
non-target trials, respectively.
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Figure 3.5: Convergence results of GCPD initialized by GFB (solid line) and HOSVD
(dotted line). Horizontal axis indicates the number of iterations of the gradient
descent algorithm, and vertical axis does the value of the loss function.
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Table 3.1: RMSE of all subjects

RMSE
Subject 1 Subject 2 Subject 3
CPD 3.96 (s.d. 3.15)  7.12 (s.d. 6.29) 6.13 (s.d. 4.57)
GCPD + HOSVD 3.41 (s.d. 3.03) 7.12 (s.d. 6.29) 6.39 (s.d. 6.50)
GCPD + GFB 2.87 (s.d. 2.05) 6.88 (s.d. 4.60) 4.05 (s.d. 4.36)

Spatial Wiener filter 9.22 (s.d. 18.63) 11.27 (s.d. 14.64) 11.42 (s.d. 14.46)

Conventional averaging 2.47 (s.d. 1.18) 3.14 (s.d. 2.02) 2.01 (s.d. 1.04)

3.5 Summary

This Chapter proposed GCPD, a new tensor factorization method that extends the
standard CPD so that it incorporates the geometrical structure of the EEG electrode
location.

An adjacency matrix for each mode encodes the geometric structure of the mode
whose elements represents the distances between entries of the mode bases, and
was used for for two purposes, regularization and initialization.

The regularization term is defined using the graph Laplacian matrix that repre-
sents the smoothness on its graph. The initialization was performed using the graph
Fourier bases, or eigen vectors of the graph Laplacian matrix. They are orthogonal
to each other and consider the graph structure.

The noise-removal experiment from ERP data demonstrated that GCPD removed
background EEGs from single-trial ERPs more effectively than the conventional CPD,
especially with initialization by graph Fourier bases although the performance of

GCPD was not compatible with the conventional averaging.
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Chapter 4

Noise-Removal via Spatial Covariance

Modeling

4.1 Introduction

In this chapter, a noise-removal problem from EEGs is tackled using a different ap-
proach from Chapter B. The goal of this chapter is to construct an adaptive filter
that separates an observed EEG signal into multiple components. An probabilistic
generative model of EEG with multiple modes is defined, and an adaptive filter is
created to maximize posterior probability of an observed signal. Because not only
filter coefficients but also model parameters have to be estimated from observed
data, they are iteratively updated. To create such a filter, spatial covariance matrices
(covariance matrix between data captured by multiple electrodes) play a key role.
While GCPD introduced in Chapter B performs signal separation without specific
knowledge of components, prior distribution of spatial covariance matrices are con-
sidered to improve the performance of parameters estimation. It is also shown that
tensor factorization and maximum a posteriori approaches can be comprehensively
understood from the point of divergence minimization.

This chapter is constructed as follows. First, related researches are surveyed.
Second, our framework for signal separation employed in this chapter is explained.
Third, a probabilistic generative model of EEG sources and maximum likelihood es-

timation of the model parameters are introduced. Next, a method to incorporate

37
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prior knowledge of objective components is presented. Finally, a theoretical connec-
tion between the tensor factorization and the adaptive filtering approaches that are

presented in Chapter B and @ is discussed.

4.2 Related Works

In most cases, an EEG recording experiment is conducted using more than one elec-
trode, which allows an observed signal to have spatial characteristics. In the liter-
ature of the multi-channel sound signal separation research, several methods have
been investigated that model the spatial spread of an observed signal using a co-
variance matrix between microphones [57, 82-84]. In these methods, coefficients
of short-time Fourier transform (STFT) of observed signal is assumed to follow a
phase-invariant multivariate complex Gaussian distribution with zero mean vector

as follows:

x(n, f) ~ A (x(n, f) | O,R,. ;)
1

_ 1 on .
- ﬁJdet(Rn,f)eXp( x (n’f)Rn,fx(“’f)): (4.1)

where x(n, f) € C’ is the complex valued activity of the observed signal captured by

J microphones, n and f are indexes of the time frame and frequency bin, respectively.

Our method is strongly inspired by these methods. While multi-channel sound is
modeled in the time-frequency domain, EEG signal often have additional modes, for
example, trial, experimental condition, subject, and etc. Moreover, the sources of
the EEG signal are numerous neurons, which makes the problem under-determined
signal separation explained in Section ZZ21.. Therefore, we created a model that can
handle an observed data that has more than two modes and an under-determined

signal separation, which is explained in the following sections.
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4.3 Signal Separation Framework

4.3.1 Observational Model

Let us assume EEG signals are observed using J electrodes in the the time-frequency
domain and can have additional modes. In general, we assume the observed signal
has N modes and denote the complex-valued observational activity by x (ny, n,, ..., ny),
where n,, is the index of the m-th mode. We call the index set (n, n,, ..., ny) multi-
domain frame. To avoid a clunky notation, we use a single index i that corresponds

to a unique multi-domain frame as:

X(l) ::x(n1’n2)"'1nN)3 (42)
i=1,2,....,I, n,=1,2,...,I, (4.3)
N
1=] [ (4.4)
m=1

Observed signal is assumed to be a sum of K components (ERPs, background
EEGs, eye blinks, and others) as:

x(i]0(1) =c,(i ] 0,1(1)) + co(i | O(1)) + -~ + e (0 | O (1)), (4.5)
0(1) = {6,(1), 6,(1), ..., O(D}, (4.6)

where ¢, (i) is the k-th component and 6,(i) is the parameter set of the probabilistic

generative model that generates ¢ (i).

4.3.2 Adaptive Filtering

The log-likelihood of the observed signal L,(x, 6) is written as:

I
Ly(x,0) =logp(x | 8) =log Y p(x(i) | (1)), (4.7)
i=1

x ={x(1),x(2),...,x(D)},
0 ={6(1),6(2),...,6(N},
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Figure 4.1: Overview of the Wiener filtering based on the probabilistic generative
model.

and the maximum likelihood estimator of the parameter set 0 is:

A

0 = argmaxL,(x, 60). (4.8)
)

An adaptive filter using the optimal parameter set M(é) is constructed and an esti-

mator of the k-th component ¢, (i) in the multi-domain frame (i) is obtained as:
&) = M(6,(1))x (D). 4.9)

Notice that this is a time- and trial- variant filtering in contrast that ICA shown in
Equation (7) is a time- and trial- invariant filtering. If the filter is estimated by
minimizing mean square error assuming all components are independent from each

other, it is called a multi-channel Wiener filter and obtained as:
M (1) = Re, )Ry (i (4.10)
where
E [x(D)x(D)"] =Req, Ei[c@e(D"] =R - (4.11)

The schematic image of the overall procedure of the component extraction is shown
in Figure B3,
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4.4 Probabilistic Generative Model

In this section, we explain a source generative model at first. Second, a component
generative model is explained. Third, an observation generative model is derived
and an observational likelihood to maximize is formulated. Generative models of a
source, a component, and an observation are linked to each other due to the linearity

of the Gaussian distribution.

4.4.1 Source Generative Model

Each component is assumed to be generated from L sources whose contributions are

instaneously mixed as:

¢, (i) = Bys (i) e T/, (4.12)
si(i) e Ch,
be(1,1) ... bi(1,L)
Bk — . . c CJXL’

b(J,1) ... b(J,L)

where B, is the lead field matrix of the k-th component and s, (i) is the source con-
tribution to the k-th component. A schematic image of the observational model is
depicted in Figure B-4.Tl.

Assumption 1: Independent and Individual Gaussian Distributions
The source activation independently follows the multi-variate proper com-
plex Gaussian with the zero mean vector and the individual variances that de-

pend on the index of multi-domain frame (i):
k(1) ~ A (s(1) ] 0, 0 (D), (4.13)
where I is the L-by-L identity matrix.

Assumption 2: Variance factorization
Each mode has its own variance in each multi-domain frame and the source
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Figure 4.2: Schematic image of the observational model.

variance is the product of the mode variances. Therefore, source variances can

be expressed as an outer product of vectors:

O-k(l) = Gk(nI: Ng,..., nN)
_ A A@) )
= Anl,kAnz,k .. 'AnN,k
— (D (2) (]
- (ak °a, oo )nl,nz ..... ny’ (4.14)
where A™ is called a variance factor matrix and defined as:
(n) (n)
A1,1’ >A1,K
A= | =(a® &, .. LaD). (4.15)
(n) (n)
AIn,l’ ’Aln,K
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4.4.2 Component Generative Model

Thanks to the linearity of the Gaussian (See Appendix), component activations also
follow the multi-variate proper complex Gaussian, whose covariance matrix is cal-

culated as follows:

¢ (i) ~ A (c(D) 1 0,Re,). (4.16)
Rei) = IAAGIAORE BkEi[sk(i)]B]I;I = o (1)Ry, (4.17)

where R, = BkB]If is called the spatial covariance matrix of the k-th component.

4.4.3 Observation Generative Model

Using the linearity of the Gaussian, we can finally derive the probability density

function distribution that the observed signal follows:

x (i) ~ A (x(D) 1 0,Ry), (4.18)
K

Rx(i) == ZRCk(i)' (419)
k=1

4.4.4 Sparsity Constraint

To make the maximum likelihood estimation simpler, the components are assumed
to be generated sparsely in each multi-domain frame. To modify Equation (EX5)
introducing the sparsity, we use the latent factors 2, (i), which takes the 1-of-K rep-

resentation as follows:

x(i) = Yz (De(d), (4.20)
k=1
D=1, z(i)e{0,1}. (4.21)
k=1

We call this observational model the sparse model. It restricts the number of com-

ponents that activate in a multi-domain frame to one, and makes the conditional
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distribution of x (i) expressed as:
p(x(@) | o, R, [7 (i) = 1]) = A(x | 0, 0 (D)Ry). (4.22)

If the probability that z, (i) will take the value 1 is 7, it is written:

p(z(i) = 1) = q, (1), (4.23)

K
0<q()<1, D q)=1. (4.24)
k=1

Denoting the latent factors by the vector form

. . . . T
z(i) = (21(1), 2,(i), ... ,ZK(I)) , (4.25)
the marginal distribution of the latent factors can be written:
K
p(=() = J(au()™. (4.26)
k=1

Then, the conditional distribution of the observed signal Equation (B22) can be

rewritten with the latent factors:

p(x(i) | 6,2(i)) = A (x(i) | 0,0 ()R, (4.27)
0 ={o,R,q}.

The marginal distribution of x (i) is obtained by summing the joint distribution over

all possible state of x to obtain the following Gaussian mixture model (GMM):

p(x()0) =D p(z()p(x(i) | 0,2(1)) = D qu(DA(x | 0,04 (DRy).  (4.28)
z k=1

4.5 Maximum Log-Likelihood Estimation

Maximization of the data log-likelihood shown in Equation (B.7) can be iteratively

solved by the expectation maximizing (EM) algorithm [B5]. Let us denote the pos-
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terior distribution of the latent factors {zk(i)}lr,f:1 given observed data and current
parameter set 6,4 by {m,(i)}5_,. In the E step, the posterior distribution is calcu-

lated for each multi-domain frame (i):

p(z()) = Dp(x (1) | (1) =1, 6514)

my () = (1) = 1| x(D), 00) = —
> P (@) = Dp(x (i) | z()) = 1, 0,0)
k'=1
_ qu(im(xlo,oz“(i)Rzld) | (499
> quli)A (x 1 0,084()RIY)

k'=1

Under this posterior distribution of the latent variables found, the expected value
of the complete data log-likelihood evaluated for some parameter set 6, denoted by
Q.(0, é), is calculated:

Q1(0,0)=E,(x,2]6°9,0)=> p(z | x,0°logp(x,z | ). (4.30)

In the M step, this expected value is maximized. The update formulas are obtained

by setting its derivative with respect to each parameter zero:

Iy
dr = T’ (4.31)
1 .
1 m(i) A
Re=— > ——R_ ., (4.32)
¢ Iy ; o (1) ®
A P _
o (i) = 3Tr(Rx(i)Rkl), (4.33)
where
I
L= my(d), (4.34)
i=1
Ry = x"(D)x (). (4.35)

Note that the determinant of each spatial covariance matrix is normalized in each

iterative step, and R, and o (i) are iteratively updated since their update formulas
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depend on each other.
After convergence of the EM algorithm, the expected value of the covariance

matrix of each component is given by:
ﬁck(i) = m ()6 (DR, (4.36)

and Wiener filtering is performed using Equation (B-1I0) to extract each component

in each multi-domain frame. Overall algorithm is shown in Algorithm D.

4.5.1 Initialization of model parameters

To perform the EM algorithm, model parameters need to be initialized. Initialization
can be performed with random numbers or principal component analysis (PCA). Let
us denote the eigen vectors and their corresponding eigen values of observational co-
variance matrix R, ;) by v,(i),v,(i),...,v;(i) and u, (i), uy(7),...,u, (i) respectively,
and assume they are sorted by descending order of their eigen values. Spatial co-

variance matrices and mixture ratio are initialized as:

I

RIT = v, (Dve(D), (4.37)
i=1
1

and the initialization of o (i) is performed using Equation (A-33).

4.6 Maximum Posteriori Estimation Using Reference

Signals

Well known EEG responses including ERPs, motor imagery, SSVEP are often used
to pursue a research goal instead of exploring unseen EEG responses. Therefore,
it is reasonable to assume that objective components of EEG can be recorded to
obtain prior knowledge and more effective signal separation can be obtained by
incorporating such prior information. In this section, we extend the framework that

is just explained in the previous section to incorporate prior knowledge of objective
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Algorithm 2 Wiener filtering based on maximum likelihood estimation

Require:
x,(i) € C’ for all k and i > Observed activities
K > 1 is an integer. > Number of components
Ensure:

¢, (1) is estimator of ¢, (i)
1: function EM_ML(x)

2: for all k do > Initialization of model parameters
3: calculate RS using Equation (&37)
4: calculate ¢?' — <
5: for all i do
6: calculate o9"(i) using Equation (&33)
7: end for
8: end for
9: repeat
10: for all k and i do
11: update m; (i) using Equation (&29) > E step
12: end for
13: for all k do > M step
14: update R, using Equation (&32)
15: for all i do
16: update o, (i) using Equation (B&33)
17: end for
18: end for
19: for all k and i do > M step
20: update ¢ using Equation (B-31)
21: end for
22: until convergence > End of EM algorithm
23: for all k and i do > Wiener filtering
24: calculate R, ;) using the Equation (236)
25: calculate ¢, (i) using the Equation (E10)
26: end for
27: return ¢, (i)

28: end function
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components by setting prior distributions of spatial covariance matrices whose hyper

parameter is calculated using pre-recorded objective components.

4.6.1 Spatial Prior Distribution

Let us assume that J-dimensional random complex vectors that are independent
from each other with a known mean and an unknown covariance matrix A~!. Then,
the conjugate prior distribution of the precision matrix A is the Wishart distribution,

whose probability density function is provided as:
1
A~ (AT, ¢) =BT, ¢p)det(A) P72 exp( 5 Tr (AW~ )) (4.39)

where

D

-1
B(w,qb):det(w)—w(z% S ( L d)) ,

d=1

I(¢p)= f exp(—t)t?7dt.
0

I" is called the gamma function, W is a positive definite Hermitian matrix, and ¢ >
J—1.

Maximum likelihood estimation is extended to maximum a posteriori (MAP) es-
timation, where posterior probability of parameters is maximized instead of likeli-
hood. From the Bayes’ theorem, the log posterior probability of spatial covariance

matrices L,(x, o0, ¥, ¢) can be expressed as:

I K

Ly(x,0,9,¢) o< log| [px@ 1) [#, (R 1), (4.40)
i k

o= {O-(l)}l 12 U= {“Ijk}Ik(:p ¢ = {q',)k Ik<:1' (441)

By maximizing this posterior probability, a parameter set to construct Wiener filtering
can also be found using the expectation maximization (EM) algorithm [86]. E step
is the same to Equation (B2Z9). The function to be maximized in the M step can be

expressed as a sum of Q,(6, 6), the expected value under the posterior probability of
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the latent factors shown in Equation (&.30), and log prior distribution of parameters:

K
Qu(0,0)=0Q,(6,0)+ > log #; (R | ¥y, di). (4.42)

k=1

The update formulas of g, (i) and o (i) in the M step are same to Equation (&-31)

and (A33) respectively, and that of spatial covariance is obtained:

(i )
\I’k + ZZ Zk(z) x (i)

R, = . 4.43
kT ¢k+J—1+ZIk (4.43)

Overall procedure is shown in Algorithm B.

4.6.2 Obtaining Prior Information

Prior information of components are provided via the hyper parameters of the Wishart
distribution {¥, };_, and {¢, };_, that are calculated using pre-recorded components.
Component activities can not be recorded alone because EEG signals are always mix-
ture of multiple components. However, EEG signals in which a specific component
is supposed to appear and not to appear can be recorded respectively to establish
contrast between them. For example, synchronously averaged ERP can be used as a
prototype of single-trial ERPs although they have different waveform trial-to-trial.
From Equation (B42), effect of setting prior distribution for k-component can

be written:
1
log #, (R, | ¥, p) = —ETr(\kaj). (4.44)

This term takes the maximum value when ¥, = R,.. Therefore, ¥, can be regarded

as a prototype of R, and obtained as:

M-

¢, (De (1)
v, = —21 (4.45)

et (Z éf(i)ék(i))

i=1
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Algorithm 3 Wiener filtering based on MAP estimation

Require:
x, (i) € C’ for all k and i > Observed activities
K > 1 is an integer. > Number of components
W, is positive definite symmetric matrix whose elements are more than zero and
determinant is one for all k. > Prototype of R,
Ensure:

¢, (1) is estimator of ¢, (i)
1: function EM_MAP(x)

2: for all k do > Initialization of model parameters
3: ROM —
4 QU < ¥
5: for all i do
6: calculate o, (i) using Equation (B&33)
7: end for
8: end for
9: repeat
10: for all k and i do
11: update m, (i) using Equation (&29) > E step
12: end for
13: for all k do > M step
14: update R, using Equation (EZ43)
15: for all i do
16: update o (i) using Equation (E33)
17: end for
18: end for
19: for all k and i do > M step
20: update ¢ using Equation (B-31)
21: end for
22: until convergence > End of EM algorithm
23: for all k and i do > Wiener filtering
24: calculate f{ck(i) using the Equation (2-36)
25: calculate ¢, (i) using the Equation (EI0)
26: end for
27: return ¢, (i)

28: end function
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where a signal that contains the k-th component is denoted by ¢, ().

4.7 Experimental Evaluation

In this section, ocular artifact removal experiment is described. The oddball paradigm
experiments are employed again to evaluate the proposed and the ICA-based meth-
ods.

4.7.1 Data Acquisition

All EEG signals were recorded in a sound proof room with 25 scalp electrodes placed
according to International 10-20 system at sampling rate of 1000 Hz. Three healthy
subjects aged from 23 to 26 years old without any neurological disorders participated
in the experiment. All experimental procedures were approved by the Ethical Review
Board of Nara Institute of Science and Technology. The recorded EEG signals were
down-sampled to 200 Hz, and a band-pass filter was applied between 0.01 Hz and
30 Hz.

The experiment consists of the four sessions. In the first session, a standard odd-
ball paradigm paradigm experiment was performed in the same manner as Chap-
ter B. In the second session, an modified auditory oddball paradigm was performed
where, as same as the precious session, subjects counted the number of target-stimuli
presence, and intentionally made an eye blink every time they heard the either types
of stimuli. In the third session, the resting state EEG of the subjects was recorded.
In the last session, subjects did not do cognitive tasks and just made eye blinks every
1.5 seconds.

The data obtained in the first, third and fourth session were used for calculating
the prior information, and the data obtained in the second session was used for test.
If the potential produced by the intentional eye blinks are successfully removed, the
N1 and P3 components are expected to be seen. Moreover, the P3 component should
be seen larger at the target-trials than non-target trials.

The proposed method separated the test data into three components (K = 3),
which have eye blink, ERP, and resting state prior, respectively. An ICA-based auto-

matic artifact-removal method called ADJUST [50] was compared with the proposed
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method.

4.7.2 Result

The result is shown in Figure B72, where the black and white lines are the averaged
target and the non-target trials at the channel F3, respectively. The left column shows
the trial averaged data that were processed by only a band pass filter, which have
extremely high amplitude and no ERP components are observable except the N1
component of the subject 3. The second column shows the data cleaned by ICA,
where the waveforms are almost identical to the band pass filtered data. The third
column shows the cleaned signal by GCPD introduced in Chapter B. The fourth
column shows the data processed by the proposed method. The N1 component can
be seen at the subject 2 and 3, and the P3 component can be seen at the subject 1 and
3. However, the magnitude of P3s are almost identical in the target and non-target

trials.

4.8 Unifying View of Tensor factorization and Maxi-

mum Likelihood Approach

The two noise removal approaches, tensor factorization described in Chapter B and
maximum likelihood described in Chapter @ can be comprehensively understood

by revisiting the log-likelihood of observed data shown in Equation (B-7). From
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Equation (&7), (B17), and (BE19) we obtain :

Ly (x | 0) =log D A (x(i) | 0,Ry(p)

i=1

1
< le log (det (R;%i))) —x (i)HR;%i)x (i)
I

= —Z—log (det( x(l))) +Tr (x(l)x(l)HRx(l))

i=1
I

< > log(det(RyL,)) + Tr (RuyRel, ) + log (det (Ryy))

i=1
I

= Z —log (det (ﬁx(i)R;%i))) +Tr (ﬁx(i)R;%i)) , (4.46)

i=1

where

log (det (R;%i))) +log(det(R,()) = log (det (f{;%i)Rx(i))) : (4.47)

Equation (&.47) holds because both of ﬁx(i) and R, ;, are positive definite (See Ap-
pendix). Consequently, the following equation holds:

1 K
L(X|60)=~ ZDgzs < Ra) == > Dais ( x(l),ZRck(i))
i=1

i=1 k=1

1 K
(1) 2 (N)
=—ZDg,S( xm,z calo-0aV) bkobk). (4.48)
i=1

k=1

Therefore, maximum likelihood estimation of spatial covariance matrices under the
probabilistic generative model defined in Section B4 is mathematically equivalent to
performing matrix factorization for spatial covariance matrices in each multi-domain

frame based on gIS divergence shown in Equation ZZ22.
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4.8.1 Spatially Independent Model

The spatial covariance matrices are generally expressed as a sum of outer products

of array manifold vectors:

b Ib(L, ) ... be(J,d)bi(1,d)
szBkBEIZ : - :
DI, DbU,d) ... b, d)?
Ib(DI* ... b(J)bi(1)
= : : , (4.49)
b (Db;(J) ... [b(DP

where complex conjugate is denoted by *.

Let us assume that component activations captured by J electrodes are spatially
independent, which means the spatial covariance matrices are diagonal matrices:

R, = BB} = diag(b,), (4.50)
by, = (1b(DI 1B .. [B(NI), (4.51)

where diag(b,) is the diagonal matrix, whose diagonal elements are the elements

of b,. Under this assumption, the observational likelihood is measured ignoring
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non-diagonal component:
L3 (X | 9) - ZDgIS x(l)’RX(l))
ZZ(lx 0% Ifcj(i)lz)
O Ixj(i)l2
I J
== dis (15,001 15, )P
i=1 j

J

é—ZZdls(lx 0P, Z(ak(znbk(m) )

i=1

I

j
J
= _ZZ dys (|Xj(i)|2’z (a(kl) o aiz) 0---0 a(kN) o bk)nl’n2 """ nN,j) .
i=1

j=1 k=1
(4.52)

Therefore, in contrast to the general model shown in Equation (A48), maximum
likelihood estimation of the spatially independent model is mathematically equiva-
lent to performing tensor factorization based on the IS divergence shown in Equa-
tion (2220).

4.8.2 Difference between Unconstrained and Diagonal Models

Equation (A.48) and (B52) illustrates the difference between the two model in terms
of outer product.

The spatially independent model treats all modes equally, which means outer
product is calculated using all modes including the electrode mode. The element-
wise distances between the estimated and observed tensor are measured by IS di-
vergence, and all of element-wise divergences are summed as a the total divergence
to be minimized.

On the other hand, the general model regards the spatial mode as special one,
and define the divergence to be minimized as follows: it excludes the electrode mode
from outer product calculation, instead calculates the covariance matrix of the mode
(spatial covariance matrix) , each element of the outer product tensor is multiplied to

the covariance matrix, the distances between the estimated and observed covariance
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matrices are measured in each multi-domain frame by the gIS divergence shown in,
and then the distances of all frames are summed to obtain the total divergence.
Because the general model is more general than the other, it is inherently more
computationally expensive and largely depends on the initial values of the iterative
update. This fact can be understood in terms of the numbers of parameters to be
estimated. Let us denote the number of parameters by the general model by v; and

the spatially independent model by v,, respectively. Then, they are calculated as:

+1112...1N), (4.53)

Vvo=K{U+L+I,+---+1). (4.54)

This indicates the number of the general model parameters increases exponentially
and it suffers from the curse of dimensionality while that of the spatially independent
model does linearly.

4.9 Discussion About Probabilistic Modeling of Am-

plitude Generation

We assumed STFT coefficients of each component follow complex Gaussian so far.
This section gives its theoretical validation and further discussion about probabilistic
modeling of amplitude generation

As same as most of signal separation methods, we have assumed the additivity of

components:

K

(DI = D le (D17, (4.55)

k=1
where |c(i)|* is called fractional spectrum [87], amplitude spectrum with a = 1,
or power spectrum with a = 2. In general, the above equality does not hold be-
cause phase difference of components causes canceling out each other. However,
the additivity can be justified in terms of the expected value if the component STFT

coefficient c(i) is modeled by a probabilistic distribution with stability.
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4.9.1 Symmetric Alpha Distribution

Let x;, X, and x5 be random variables that are independently and identically dis-
tributed (i.i.d). They are said to be strictly stable if there exists a positive number ¢

for any positive numbers a and b such that:
dist.
ax, + bx, = cxs, (4.56)

dist. e g
where =" denotes equality in distribution [B7, 88]. We say that a random vector X,
satisfying Equation is a-stable because there exists a constant a €]02] called

the characteristic exponent that satisfies:

¢ = (a®*+ b*)Ve. (4.57)

If x4 ot —X3, it is called symmetric a-stable and denoted by SasS.

We say a complex random variable z = x; +ix, is complex SaS if the random vec-
T
tor (xlT, Xy ) is SaS. Moreover, z is said to be isotopic complex Sas if the following

relation holds:
VO e[02n[, exp(if)z oy (4.58)

Regarding to signal processing application, isotopic complex SasS is particularly im-
portant and parameterized by a scale parameter c“. We denote it by SaS.(c?).
Although there is no closed-form expression for SaS.(c*) except the case of a =1

or 2, the characteristic function ¢ is given by:

z2=x,+ix, ~SaS.(c?),

¢ (2) = E[exp(i(6,x; + 0,x,))] = exp(—c*|0[*), (4.59)

where |0 is the Euclidian norm of the vector (91 92).
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Table 4.1: The value of a, additive spectrum, generative distribution, and diver-
gence.
a Additive Spectrum  Generative Distribution Divergence

1 amplitude spectrum  Cauchy distribution = Cauchy divergence
2 power spectrum Gaussian distribution IS divergence

4.9.2 Distribution Stability and Component Additivity

Let 2,(i) and 2,(i) are STFT coefficients in the multi-domain frame (i), and follow

SaS. independently as:
21(1) ~ SaS(|2,(D%),  2z,(1) ~ SaS.(I12,())[%),
then, the distribution reproductivity holds:
21(1) +25(1) ~ SaS (12, (D + |2,())[%), (4.60)

which means the additivity of component activation is justified in terms of the ex-

pected value.

When a =1, SaS.(|z(i)|) is equivalent to the complex Cauchy distribution, and
component additivity is satisfied in expected amplitude spectrum. If the generation
of the component activity ¢, (i) is assumed to follow the complex Cauchy distribution,
maximum likelihood estimation is equivalent to minimizing the Cauchy divergence
(Equation (Z-2T)) between x(i) and Zk ¢ (1) [BY9]. Therefore, application of tensor
factorization to amplitude spectrum based on the Cauchy divergence is theoretically
justified. Similarly, when a = 2, SaS,(|z(i)|?) is equivalent to the univariate com-
plex Gaussian distribution, and component additivity is satisfied in expected power
spectrum, which is the case of Equation (B.52). As already seen, if the generative
distribution is the complex Gaussian distribution, maximum likelihood estimation is
equivalent to minimizing the IS divergence [90]. Therefore, tensor factorization to
power spectrum with IS-divergence is also verified. Relations between the value of
a, the expression of component additivity that holds additivity, a probabilistic dis-
tribution to model a generation of the complex value of ¢;, and the corresponding

divergence are summarized in Table &1
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Figure 4.4: Tails of symmetric alpha stable distribution with different value of a.

Although stability of multivariate distribution is much more complicated and
difficult to compute, similar discussion is available [9T].

An important property of SaS.(o%) is that the constant a controls the heaviness
of the density tail. As shown in Figure B.9.2, smaller a makes the distribution tail
heavier. Signal separation based on a distribution with smaller a is worth investigat-
ing because an EEG signal is often impulsive and include outliers and heavy-tailed
distribution is more suitable for modeling such a kind of signal.

4.10 Summary

In this Chapter, we proposed a noise-removal method based on spatial Wiener filter-
ing. A probabilistic generative model of EEG components in the multi-domain was
created and the filter coefficients are calculated to maximize the posterior probability
of the observed EEG signal.

Spatial spread of each component was encoded in the spatial covariance matrix
and their prior knowledge were incorporated to estimate model parameters setting
their prior distribution.

Discussion about the equivalence to tensor factorization was also provided, where

maximum likelihood estimation assuming Gaussian distribution is equivalent to min-
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imization of IS divergence. Furthermore, we discussed the theoretical validity of the
component additivity under the Gaussian distribution assumption. We explained the
Gaussian distribution falls under the umbrella of the symmetric alpha distribution,

which gives the validity in the terms of the expected value of power spectrum.
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Chapter 5

Quality Prediction of Synthesized
Speech Using EEG

5.1 Introduction

Text-to-Speech (TTS) systems, which convert a written text into speech, and are
becoming more widely implemented in mobile phones, car navigation systems, and
other consumer electronics. Such systems play a critical role in many applications
because speech is the most fundamental and easiest communication tool for human
beings. Therefore, synthesized speeches must sound natural for good machine-to-
human communications.

The research of TTS systems needs reasonable criteria that evaluate the qual-
ities of synthesized speeches. Several current evaluation methods have their own
advantages and disadvantages: (1) subjective ratings [92-94], (2) speech feature
analysis [95-97], and (3) physiological response analysis [98-105].

Naturalness and intelligibility are the most commonly aspects for subjective qual-
ity judgment of TTS. Naturalness describes how close synthesized speech is to human
speech, and intelligibility reflects how well the speech content can be heard. The for-
mer is usually measured by a mean opinion score (MOS) test [92], and the latter is
gauged by semantically unpredictable sentences (SUS) [93]. In addition, valence
and arousal are often used to evaluate the subjective impressions of speech [103,

T05-107] and to model emotions [TO8-I11]. Valence reflects a positive or a nega-

63
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tive emotion. Arousal reflects the degree of intensity or activation. In a MOS test,

subjects listen to speech and rate its relative perceived quality on some kind of a

” o« 7

scale, for example, “excellent,” “good,” “fair,” “poor,” “bad.” Then the scores are
averaged across subjects. This is well established method for which references on
how to perform it are available [94], making it the only standard way to evaluate
the naturalness quality of synthesized speech. However, their appropriateness has
not been fully proven because high inter- and intra-subject inconsistencies are often
observed in the ratings, resulting in poor reproductivity [I12]. Another problem is
that a MOS test can only provide an overall impression without any further detailed

information about the speech.

Speech feature analysis automatically evaluates speech quality at its signal level
by software that inputs a speech file and outputs the estimated speech quality. The
fundamental frequency or the mel-feats are usually extracted as representative fea-
tures from synthesized and human speeches, and their root mean square error (RMSE)
is used as an evaluation metric. Advantages of these methods include complete
reproductivity and less time consumption after such software is developed. How-
ever, appropriateness is difficult to prove because the exact relationship between the
acoustic features and the perceived quality of speech by a listener is not well under-
stood [I12]. In fact, speech quality must be evaluated not only physically but also
psychologically because it is commonly defined as an assessment result within which
a listener compares his/her perceptions with expectations [113, 114].

Physiological response analysis methods for multi media including speech are
emerging recently [[[T5]. Even though these methods have not been established yet,
they are worth investigating because physiological signals can be recorded automat-
ically and continuously to provide insight about listeners’ cognitive states without
interruptions caused by directly asking them to answer questions. Among existing
non-invasive physiological response measures, EEG has especially great potential to
estimate a listener’s perceived speech quality for the following reasons. EEGs can
be recorded at a higher temporal resolution, which can be important to evaluate
speech quality since the temporal structure of speech largely affects its perceived
quality. In addition, as already explained, EEG recording equipment is relatively
small and portable. Measuring physiological responses to speech in daily environ-

ments is critical because speech is everywhere. Despite the above advantages, the
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main disadvantage of physiological measures is the difficulty of data gathering. The
amount of data that can be collected from a subject is limited for practical and ethi-
cal reasons. Conducting experiments is usually time-consuming and labor-intensive.
Furthermore, the recording of multiple EEG channels are usually highly correlated
to each other, which makes the features extracted from them less informative com-
pared to the height of their dimensions. These aspects of EEG (limited amount of
data, noise, and high correlation and dimension) complicate training a predictive
model with EEG data and require a sophisticated dimension reduction or regulariza-

tion techniques [116].

Existing researches have analyzed EEG responses to speech stimuli using event-
related potentials (ERP), which are time-locked responses to external or internal
events in terms of a voltage change that are usually visualized and quantified after
synchronous averaging of multiple epochs [99-T10T]. Due to its definition, mea-
suring ERP needs the instantaneous time-locking points at which an event occurs,
complicating the use of ERP if stimuli onsets are gradual or unclear [33]. Therefore,
ERP is not suitable for our purpose of the predicting perceived quality of speech
whose length exceeds a second because it is usually unclear which time points af-
fect a listener’s perceived quality. Other research used power spectral density [102,
[17] and difference between scalp EEG channels [103, T05] at multiple frequency
bands. Neuroscience studies reported that EEG spectral changes in distinct regions
and between hemispheres are related to emotions [[[T8-121]. Other studies used
EEG phase synchronization between EEG channel pairs and found a correlation to
emotions [122, T23].

The purpose of this research is to predict the perceived qualities of synthesized
speeches just using EEG. Interest is growing in the development of a machine learn-
ing algorithm that uses an input/output data structure as tensor formats [[124-126].
Such tensor structured features were investigated in this study because EEG signals
can have structures in time, frequency, space, experimental condition, and other

modalities.
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Table 5.1: Subjective rating scales.

Rating Scale Abbreviation Description
Overall Impression MOS 1 (Bad) to 5 (Excellent)
Valence VAL 1 (Negative) to 9(Positive)
Arousal ARL 1 (Unexcited) to 9 (Excited)

5.2 Materials

In this study, we used the Physyqx data set [98], which consists of speech files, their
subjective rating scores from 21 subjects, and EEG signals from the same subjects
that recorded while they listened to the speech. The data recording protocol was
approved by the INRS Research Ethics Office, and participants gave informed consent
for their participation and to make their data anonymous and freely available online.
The details of the data set and the experimental procedures are available in [98].

We obtained it by an e-mail request.

5.2.1 Speech Stimuli

The speech stimuli presented to the subjects in the data set consist of speech collected
from four humans and seven commercially available TTS systems. From each human
and each TTS system, four English sentences were collected whose durations ranged
from 13 to 22 seconds. The 44 human and synthesized speeches were presented

randomly to each subject.

5.2.2 Experimental Procedure

The experiment’s timeline is shown in Figure E1. A 15-second rest period was pro-
vided before each stimulus presentation followed by a subjective rating period during
which the subjects evaluated the speech to which they had just listened. The sub-
jective rating scales used in this study are shown in Table and include overall
impression (MOS), valence (VAL), and arousal (ARL). MOS was evaluated with a

5-scale rating and the others with a 9-scale using self-assessment manikin [127].
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Blank  Stimuli Rating  Blank  Stimuli  Rating
] ] ] ] .
1 I I 1 P Time
15s 13~22s  Varied 15s 13~22s Varied
44 blocks
> P - - in total

1st block 2nd block

Figure 5.1: Timeline of EEG and subjective evaluation data recording experiment.

5.2.3 EEG Recording and Preprocess

EEG data were recorded throughout the experiment with 64 scalp channels. The
sampling rate was 512 Hz, which was down-sampled to 256 Hz. All the channels
were placed on scalp according to the modified 10/20 system [[128]. Some channels
were removed from further analysis by visual inspection because they were noisy. We
applied a band-pass filter to all the data between 0.5-50 Hz and applied an indepen-
dent component analysis based semi-artifact removal technique using the ADJUST
toolbox [50]. After preprocessing, the EEG signal of each subject was cut into 44

epochs corresponding to the stimuli listening periods.

5.3 Methods

Multivariate regression analysis was performed to predict three response variables,
the overall impression, the valence, and arousal using the features extracted from
the EEG signals.

5.3.1 Feature Extraction and Construction

All of the features for the regression analysis performed in this study were extracted
at five frequency bands from a channel or a channel pair. The frequency bands
include delta (6 : 1-4 Hz), theta (6 : 4-8 Hz), alpha (a : 8-12 Hz), beta (f : 12—
30 Hz), and gamma (y : 30-45 Hz). Let us denote the Fourier transformation at a

frequency of f; of the n-th training trial recorded by the m-th channel by x,, ,(f;)
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where k is the index of the frequency bins. An estimator of the power spectrum
density and a phase spectrum denoted by p, and h, can be calculated using the

periodogram method as follows:

pn,m(fk) = ? xn,m(fk) 2’ (51)

hn,m(fk) = angle(xn,m(fk)): (52)

where T is the number of time samples. Then, we averaged the power spectrum
density over the frequency bins within the range of each frequency band to define

channel-based features PSD,(c, f) as follows:

PSD,(m, ) = —— > pru(fi; (5.3)

| fl frEDy

where Dy is the index set of the frequency bins that are included in the range of the
f-th frequency band and |D;| is the number of the elements in D;. The channel-pair-
based features are also defined using the averaged power spectrum density and the

phase spectrum as follows:

PWD, (m,,m,, f) = PSD(t my, f)—PSD,(m,, f), (5.4
PHD, (my, my, £) = = > By (f) = By, (fi). (5.5)
|Df| fx€Dy

If M EEG channels and F frequency bands are used (F=5 in this study), I = F (M(M —1) + M)

features are calculated. The feature matrix X can be expressed as:
T NI
= (x(1),x(2),...,x(N)) €R¥, (5.6)

where N is the number of training trials and x(n) is a feature vector of the n-th trial
and has all the features PSD,, PWD,,, and PHD,,.

To exploit structures of the features, we organized the features as a tensor ' €
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RN*M*Mx*F a5 follows:

PWDn(mls m2:f) (ml > mz)
X(n,my,my, f) =14 PHD,(m;,my, f) (m; <m,). (5.7)
PSD,(my, f) (m; =my)

The feature matrix and tensor are depicted in Figure 5.

5.3.2 Regression Analysis

Among dimension reduction or regularization techniques, higher order partial least
square (HOPLS) [124] and standard partial least square (PLS) [129, 130] simul-
taneously perform dimension reduction and regression and are used for regression
analysis because the former is a natural extension of the latter so that features can
be structured as a tensor.

Let us denote the feature matrix and the response matrix by X and Y, respectively.
X has all the features of all training trials while Y has all the response variables of

all training trials:

Y= (y(1),y(2),...,y(1\f))T e RV, (5.8)

where N, and J are the number of training trials, features, and response variables
to be predicted, respectively. x(n) is a feature vector of the n-th trial and has all the
features explained above, and y(n) is the response vector that has all the response
variables of the n-th trial.

PLS performs a simultaneous decomposition of X and Y to find common latent

variables t, € RN as:
X:Ztrp:+E, (5.9)

Y=>tq  +F, (5.10)

where E and F are the residual matrices, and R, is called the number of the compo-
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nents.
On the other hand, HOPLS can be similarly formulated as the problem to find

latent variables as follows:

Ry
X =5, x; t, x, PV x; P x, PO 4 ¢, (5.11)

r=1

MxL _
G e RIMxMxF  p(K) R (k=12) (5.12)
r ) r e RF*L (k _ 3) 5 .

R,
Y=>tq +F, (5.13)
r=1

where G, is called the core tensor, £ and V are the residuals, R, is the number of the
components. Pr(”) is called the loading matrix of the r-th component, and L, is called
the number of the k-mode loadings.

If data are plentiful, which is rare in EEG studies, the best approach for train-
ing and evaluating the performance of a predictive model is to randomly divide the
dataset into three parts: training, validation, and test sets, which are respectively
used to train a model, tune hyper-parameters or select a model, and evaluate the gen-
eralization error [131]. However, since the amount of data in this study is too small
to exploit such an ideal protocol, we instead used leave-one-out cross-validation for
each subject. The hyper-parameter R, of PLS varied from 1 to 43, loadings of the
channel-1 L; and the channel-2 L, ranged from 1 to 7. The loading gs of the fre-
quency band L5 and the number of components R, of HOPLS ranged from 1 to 5. The

result of the models that achieved the best performance was reported in Section 4.

5.3.3 Evaluation Metrics

Root mean squared error (RMSE) was used to quantify the predictability of the

trained predictive models for their overall impression, valence, and arousal.

_1x 2
RMSE = J N;(yi —¥) (5.14)
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where N is the number of test samples, y; is the predicted value for the i-th test
data, and y; is the actually observed value. All were calculated individually for each

subject.

5.4 Results

Table summarizes RMSE and the numbers of latent factors identified by PLS
and HOPLS. Predictions with tensorial features generally made smaller errors than
the vectorized ones for all the rating scales. Figure summarizes which features
contributed to the 3 calculated by taking the magnitude of the regression coefficients.
The number of features of each type in the 100 most contributed features across
subjects is shown. PHD contributed the most; PSD rarely appeared in the list of the
top 100 features list for all of the rating scales. Among the five frequency bands, the
a band contributed the most to the MOS prediction, followed by the 8 band. For
the VAL and ARL predictions, the 8 band contributed the most, followed by the a
band. The top ten channel pairs, which contributed the most to the MOS prediction
of subjects 1, 2, 3, and 4, are shown in Figure 5.4. The numbers of latent factors
identified by PLS and HOPLS are also shown in Table 5.

5.5 Discussion

Channel-pair-based features (PWD and PHD) contributed more to the predictions
than channel-based features (PSD). This result agrees with a previous study [121]
and suggests the importance of considering scalp EEG dynamics between brain re-
gions and that graph theory based features and functional connectivity analysis can
be effective [[132, 133]. The association of the lateral (left-right) spectral difference
(DLAT) is well documented [[I18, 120]. In addition, spectral differences in cau-
dality (DCAU) between the anterior and posterior [[[04, 134] or the front-posterior
brain regions [21] have been investigated. In this study, both DLAT and DCAU con-
tributed to the predictions (Figure 5:4) although their effectiveness was dependent
on the subjects.

Quality prediction models were independently trained for each subject because
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Figure 5.2: Schematic image of vectorized and tensorial features. (a) Vectorized
feature is included in a matrix whose first and second modes are trials and features.
PWD, PHD, and PSD at each frequency band are lined as a vector in each trial. (b)
Tensor structured dependent variable with four modes: trials, channel-1, channel-2,
and frequency bands. Tensor elements with a larger channel-1 index than channel-
2 are PWD, and a smaller channel-1 index than channel-2 are PHD, and identical
channel indexes are PSD.
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Figure 5.3: Contribution of features. Feature contributions were calculated by taking
magnitude of their regression coefficients. (Left) Numbers of PWD, PHD, and PSD
among 100 features that most greatly contributed to the prediction of each rating
scale among all features. (Right) Number of features of each frequency band among
100 features that most greatly contributed to each rating scale.
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Subject 3 Subject 4

Figure 5.4: Contribution of channel pairs. Top ten channel pairs that contributed the
most to MOS predictions of subjects 1, 2, 3, and 4. This figure was made by modify-
ing the original one, which is distributed under the public domain dedication [79]
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Table 5.2: Prediction results and the number of latent factors identified.
RMSE (vector) RMSE (tensor)

subject —urse VAL ARL MOS VAL ARL 0 D1 L2 Is R,
1 1.091 1.090 1.086 0961 0957 0962 1 3 4 5 3
2 1.042 1.057 1.058 0987 0958 0975 1 4 4 4 3
3 0997 1.018 1.020 0907 0936 0931 2 7 3 4 2
4 1.148 1.110 1.043 0949 0944 0994 2 7 5 2 2
5 1187 1.225 1229 1.082 1.177 1150 1 6 7 4 &5
6 1260 1292 1.151 1.000 2176 1941 4 7 4 4 4
7 0979 0981 1.007 0869 0935 1167 1 2 3 5 5
8  1.155 1.186 1.125 0970 0989 1.017 1 1 5 1 1
9 1.215 1.221 1.160 0996 0994 1.023 2 7 7 1 2
10 1.111 1.112 1.022 0957 0985 1.144 1 5 4 3 4
11 1.125 1.243 1.019 1.013 1.047 0920 3 7 7 1 1
12 0996 1.193 1.177 0641 0912 0680 29 4 2 3 4
13 1.258 1.227 1234 1.051 1.050 1.035 3 4 2 5 4
14 0991 1.102 1.040 0040 0980 0020 12 7 1 2 3
15 1.022 0989 0969 00965 0927 0934 1 7 3 2 5
16 1196 1.206 1.087 1.058 1.047 102, 4 7 6 2 5
17 1.021 1.083 1.087 0884 0886 0924 3 4 7 4 3
18 1.055 1.027 1.092 00915 0920 0969 2 1 3 4 4
10 1.130 1.142 1.126 1.021 1.081 1.020 1 5 1 5 4
20 0995 1.028 00944 0887 0990 1057 1 4 5 2 5
21 1.121 1.157 1.103 0900 0969 0997 1 1 1 4 2
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emotion regulation is reportedly dependent on individuals [135]. The common-
ality of the channels/channel pairs, which greatly contributed to the predictions,
was actually rather small (Figure 5:4). Therefore, creating subject-independent fea-
tures is an interesting future work. However, note that the alpha and beta bands
commonly contributed to the predictions while the effective channels/channel pairs
differed depending on the subjects. The alpha and beta bands contributed more
largely to the predictions than the other frequency bands, which is in line with pre-
vious neurophysiological studies. The relationship between alpha band asymmetry
and the withdrawal or disengagement from a stimulus or negative valence is well
documented in response to a variety of stimuli, including pictures [136, 1:37], mu-
sic [I21, 134, 138], movies [[139], and speech [103, T05]. The beta band, which
contributed the most to the ARL predictions, is reportedly associated with arousal

and emotional experiences [[140, T41].

Gupta et. al. [T05] predicted the MOS values using the same data set that we
used in this study (they are the creators of the data set). Their study used a simple
linear regression model with not only EEG but also speech features. They reported
the RMSE of their model was 0.117, which is much lower than our model, and can
suggest that speech features are much more informative than EEG features to predict
subjective quality ratings although they failed to report the detailed procedure of

model training and test.

Neither previous work nor our current study advocate that physiological assess-
ment methods of speech quality should replace subjective rating methods or signal
analysis methods because, as stated in Section 5], each method has its own advan-

tages and disadvantages and they can complement each other.

Features were extracted and constructed as tensors as described in Section
and B33, but other features and construction ways are also possible. For example,
if time-frequency analysis is employed, times frames can be treated as one of the
tensor modes.
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5.6 Summary

This chapter performed prediction of subjective quality ratings for synthesized speech
solely based on EEG. We created tensorial features that consider all of the channel-
based and channel-pair-based features in terms of power and phase spectrum at
multiple frequency bands and used them as regression features. The experimental
result showed that tensorial features more effectively predicted the subjective ratings
than vectorized ones, and the trained predictive models were neurophysiologically

plausible.



Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this doctoral dissertation, methods to enable single-trial analysis of EEG have been

presented.

Chapter B and @ discussed single-trial noise removal from EEG signals, where
different methods are respectively proposed, namely tensor factorization with graph
structure and spatial Wiener filtering with spatial correlation prior. In the both of
the method, incorporating prior knowledge played a key role. In Chapter B, EEG
electrode location was given as a prior knowledge to regularize CPD, where prior
knowledge of an objective component (for example, ERP) was not given. On the
other hand, in Chapter @, prior knowledge of an objective component was given
explicitly as spatial covariance matrices. Moreover, they can be understood in an

unified manner in the terms of divergence minimization.

In Chapter B, we tackled the prediction of perceived quality of synthesized speech.
To our best of our knowledge, this study is the first study which attempts to predict
subjective rating scales of naturalness to synthesized and natural speeches solely
based on EEG.
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6.2 Future Directions

We have come to the end of this dissertation. It was a long way, but there are so

much more to do. Here are a part of them.

Obtaining adjacency matrix

Electrode similarities have to be given as a prior knowledge, and we calculated them
solely based on their relative distances. This similarity measure is particularly effec-
tive when amount of EEG data is small because it is calculated without any EEG
recording. However, if a plenty of data is available it is worth considering to cal-
culate electrode similarities based on recorded EEG data. For example, in [[142],
the functional connectivities of the brain [[143, 144], which were synchronization of
different brain regions, were estimated to define a graph adjacency matrix based on
recorded EEG data and their correlation coefficients and mutual information. Graph

structure learning is gathering much attention from researchers recently [[145, T46].

Using graph structure in other tensor decomposition model

We used the EEG electrode location to regularize CPD. Tucker decomposition, tensor

train decomposition [[147], and HOPLS can be extended in a similar way.

Component selection

It is important to automatically select a subset of the decomposed components of
interest. We did component selection in a heuristic manner using the difference of
the trial mode bases between experimental conditions. Even though this approach
worked well in this study, a better component selection method should be invented.
Especially, a selection method that don’t use information of stimuli classes is desired,

whereas our method does.

Initialization

We proposed an initialization method using graph Fourier bases, which are orthog-

onal each other as same as HOSVD initialization. However, it is pointed out re-
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cently that orthogonality might not be a good property for a basis of matrix factor-
ization [[I48]. It is worth investigate an initialization method based on a property

other than orthogonality.

Probabilistic distribution to model EEG signals

In Chapter 8, amplitude generation of EEG sources are expressed using a proba-
bilistic generative model, and its covariance matrix parameters were exploited to
construct an adaptive filter to extract objective components. Discussion about the
equivalence of tensor factorization and maximum likelihood estimation was given,
which shows a selection of probabilistic distribution is the same as a selection of
divergence. Moreover, the theoretical validity of component additivity were also
discussed. As shown in Figure £9.2, the complex symmetric alpha stable distribu-
tion has a heavy tail to be robust to outliers when the characteristic exponent a is
small, which can be desirable to model an impulsive and noisy signal such as EEG.
However, the optimal value of a to model EEG signals is not known. Although there
is an experimental study about the optimal value of a to model sound signals [87],

similar discussions in an EEG case are not available to the best of our knowledge.

Convex Optimization

The optimization of CPD is a non-convex problem, which is only guaranteed to con-
verge locally and can suffer from a local minima. However, there are endeavors
to re-formulate it as a convex problem [149, T50]. A method of convex relaxation
based on the general alpha stable distribution with a graph structure should be in-

vestigated.

Detecting degraded speech parts

In Chapter B, we predicted the subjective rating scales of speech. Analysis unit was
by entire of speech. However, it is possible that particular parts of speech affect the
perceived qualities. Detecting such degraded parts exploiting high temporal resolu-

tion of EEG can contribute to the future TTS research.
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Perceptual dimensions

We predicted the subjective rating scale of the overall impression, valence, and
arousal as the previous works did [103, T0O5-107], various perpetual dimensions
other than them have been also proposed recently to model emotions or perceived
quality-of-experiences [I51, T52], which were not investigated in the current re-
search. For example, voice peasantness [94], prosody [[12], intonation [I53], and

naturalness [[154].

Online analysis

Throughout this dissertation, EEG analysis is limited to offline manners. Online
analysis should be investigated because it is important for some EEG application

including brain-machine interfaces.

This paper ends here, but I hope these points are investigated in the future by some-

one or me.
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