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Study on Neuromorphic Systems
using Thin-Film Devices *

Mutsumi Kimura

Abstract

Artificial intelligences have been used for various applications and are promising
in future societies, but because the conventional neural networks are software on
hardware, the size is bulky, and the power is huge. Neuromorphic systems are
biomimetic systems from hardware level and have the same advantages as living
brains, especially, compact size, low power, and robust operation. On the other hand,
thin-film semiconductor electronic devices can be fabricated on large areas, and
three-dimensional layered structure can be acquired.

Neuromorphic systems using thin-film devices will be studied in this doctoral
dissertation. First, a neuromorphic system will be investigated, where a neuron
element is simplified to three simple circuits and a synapse element is simplified to
one variable resistor or capacitor, and a tug-of-war method and modified Hebbian
learning will be proposed, whose advantage is that the synaptic connection strength
1s automatically controlled wusing the local electrical conditions. Next,
low-temperature poly-Si (LTPS) device, amorphous In-Ga-Zn-0 (a-IGZO) device, and
amorphous Ga-Sn-0 (a-GTO) device will be examined, where it is confirmed that the
electrical conductance gradually decreases when electric current flows, which is
available as a synaptic connection strength. Finally, Hopfield neural networks using
crosspoint-type devices and cellular neural networks using separated architecture,
surfaced architecture, layered architecture, and planar-type devices will be
investigate, and the correct operations of simple logic learning and letter
reproduction is confirmed. It will be believed that these results will be theoretical
bases to realize ultra-large scale integration for neuromorphic systems. In this

doctoral dissertation, the correct operations will be confirmed using Hopfield neural



networks and cellular neural networks, which are historical neural networks and
have contrastive properties. According to the history of neural networks, individual
parts can be implemented to new parts and the peculiar functions of the new parts
can be obtained. Therefore, it is expected that this study can be adapted to the
advanced technologies of neural networks.

Neuromorphic systems using thin-film devices have great potentials that the size
can be compact, the power can be low, and the operation can be robust. Energy crisis
can be avoided, and artificial intelligence on everything (AIoE) may be realized.
Although integration of an astronomical number of processing elements with
three-dimensional layered structure will not be achieved, the research results will

suggest that it is possible in the future.
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1 Introduction

Artificial intelligences have been used for various applications and are also
promising in future societies. Neural networks are representative technologies, and
the advantages are self-organization, self-learning, parallel distributed computing,
fault tolerance, etc. However, because the conventional ones are software on
hardware, the size is bulky, and the power is huge. Moreover, some of the
advantages are not acquired, because they are executed on Neumann-type
computers. Neuromorphic systems are biomimetic systems from hardware level and
have the same advantages as living brains, especially, compact size, low power, and
robust operation. Although some neuromorphic systems are well known, because
they are hybrid systems, the abovementioned advantages are only partially obtained.
On the other hand, thin-film semiconductor electronic devices are widely used, and
the advantages are that they can be fabricated on large areas and three-dimensional
layered structure can be acquired, whereas the unavoidable disadvantages are low
performance and low yield. Neuromorphic systems are interesting applications for
thin-film devices, because the advantages are available and the disadvantages are
acceptable.

In this doctoral dissertation, we study neuromorphic systems using thin-film
devices. First, we investigate a neuromorphic system, where we simplify
processing elements and propose neural networks and a novel learning method,
modified Hebbian learning. By using such processing elements and learning
method in neuromorphic systems, it is expected that the size can be further compact,
power can be low, and the operation can be robust. Next, we examine some kinds of
thin-film devices, whose characteristics are available to the learning rule. By using
such thin-film devices in neuromorphic systems, it is expected that the size can be
further compact. Finally, we investigate Hopfield neural networks and cellular
neural networks and confirm the correct operations. Although we have not yet
succeeded in integration of an astronomical number of processing elements with
three-dimensional layered structure, the research results suggest that it is possible

in the future.
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1.1 Artificial Intelligence

Artificial intelligences are thinking machines that mimic biological brains [1-5].
They have been already used in present world for various applications, such as,
letter recognition [6], image recognition [7,8], medical diagnosis [9], face
recognition [10], information guide [11], language translation [12], summary
extraction [13], caption generation [14], expert system [15,16], autonomous
driving [17], robot brain [18], etc., and are also promising as key technologies in

future societies.
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Fig. 1-1. Artificial intelligences for various applications.

Neural networks are representative technologies that realize artificial
intelligences [19-23]. The outstanding advantages of the neural networks are
self-organization, self-learning, parallel distributed computing, fault tolerance, etc.
These advantages are obtained by connecting a large number of processing
elements, namely, a large number of neuron elements and a much larger number of
synapse elements, to imitate human brains, where more than 101! neuron elements
and 10'® synapse elements exist.

However, because the conventional neural networks are complicated software

executed on high-spec hardware, the machine size is very bulky, and the power
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consumption is unbelievably huge for not only hardware operation itself but also
air conditioners to cool it, and so on. Moreover, some of the aforementioned
advantages, such as parallel distributed computing and fault tolerance, are not
acquired, because they are executed on conventional Neumann-type computers [24],
which sequentially handle processes and stop only if a physical device is broken.
Furthermore, the computing architecture is not optimized for the neural networks,

and therefore extra circuits occupy a large area and consume large power.

Supervised Learning

Feedforward Neural Network Recurrent Neural Network .
Convolutional Neural Networks
Perceptron Feedback Neural Network
General Purpose natural Language Processing Letter Recognition

Image Recognition

Unsupervised Learning

i

AR
AR
~
~

Auto-encoder

; Hopfield Neural Network Cellular Neural Network
Deep Learning

Almighty

The detailed explanation is written in a prior article [5]. The Hopfield and cellular neural
networks are explained later in this doctoral dissertation.

Fig. 1-2. Neural networks with various architectures.



1.2 Neuromorphic System

Neuromorphic systems are hardware buildups that realize neural networks, which
are real hardware instead of virtual software [25-31]. It should be noted that
technical approaches to enhance computation performance of multiply—accumulate
operation using graphics processing unit (GPU) chips [32] and field-programmable
gate array (FPGA) chips [33] based on the conventional Neumann-type computers
are different from neuromorphic systems. The neuromorphic systems are
biomimetic systems from hardware level, and therefore they have the same
advantages as living brains. First, the machine size can be very compact. It is
known that a machine size of a conventional neural network, Watson [34], which is
one of the most famous cognitive computing system as a winner in a television quiz
show, is the same as that of ten refrigerators, whereas a size of a human brain is
only 1.4 2. Next, the power consumption can be very low. It is known that a power
consumption of Watson is roughly 100 kW, whereas a power consumption of a
human brain is only 20 W. Finally, the robustness can be improved. It is known that
a human brain loses 100,000 neurons each day, but it can keep the needed functions.
It is not certain that neuromorphic systems can catch up the abovementioned
advantages of human brains, but it can be expected that neuromorphic systems can

have more excellent performances than the conventional neural networks from the

Conventional Neuromorphic
Neural Network System
Complicated Software on . Biomimicry from
High-spec Hardware Architecture Hardware Level
Sequentially and . Parallel and
Synchronized X Operation O Distributed
High @) Generality X Low
Bulky X Size @) Compact
High % Power consumption O Low
Low % Robustness O High
- . AloE (Al on Everything)
Limited Targets X Integration @) Autonomous Al

Fig. 1-3. Neuromorphic system compared with conventional neural networks.
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viewpoints of the aforementioned advantages. We named them "brain-type

integrated system™, because we expect that they can be integrated on everything in
future life [35-41].

Some neuromorphic systems are well known, such as, Zeroth Processor from

Qualcomm [42], nn-X from TeraDeep [43], SYNAPSE from DARPA [44], True
North from IBM [45], brain-type integrated system from Kyushu Institute of

s

R

Zeroth Processor, Qualcomm nn-X, TeraDeep

SyNAPSE , DARPA

True North, IBM
— 'v

Brain-type Integrated System, Kyushu Institute of Technology

Fig. 1-4. LSl chips for neuromorphic systems.
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Technology [46], etc. These large scale integration (LSI) chips are hybrid systems
of Neumann-type computers and neuromorphic systems. For example, only a few
neuron elements are actually prepared and a large number of neuron elements are
virtually emulated using time-sharing algorithms, discrete values are actually
saved in digital memory and continuous values are virtually approximated like
analogue memories, etc. Therefore, the abovementioned advantages are only
partially obtained. Moreover, because conventional technologies of the
semiconductor fabrication are used, only two-dimensional structure can be
acquired in principle, whereas three-dimensional structure is utilized in living
brains, where a large number of processing elements are prepared and it is easy to

connect them each other, which is an essence of neuromorphic systems.

1.3 Thin-Film Device

Thin-film semiconductor electronic devices are widely used for flat-panel
displays (FPDs) [47], solar cells [48], etc. The outstanding features of the thin-film
devices are low-temperature fabrication and high material efficiency [49]. As a
result, the notable advantages are that they can be fabricated on large areas and
three-dimensional layered structure can be acquired. Actually, we developed
active-matrix organic light-emitting diode displays (AM-OLEDs), which have a
layered structure of thin-film transistors (TFTs) and OLEDs [50], and

complementally metal-oxide semiconductor (CMOS) device using TFTs, which also

OLED

TFT

Fig. 1-5. AM-OLED with a layered structure of TFTs and OLEDs.
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Fig. 1-6. CMOS device with a layered structure of AOS and organic TFTs.

have a layered structure of amorphous metal-oxide semiconductor (AOS) and
organic TFTs [51]. On the other hand, the unavoidable disadvantages of the
thin-film devices are low performance and low yield owing to the low-temperature
fabrication.

Neuromorphic systems are interesting applications for thin-film devices.
Because neuromorphic systems require an astronomical number of processing
elements, the advantages of the thin-film devices, namely, they can be fabricated
on large areas and three-dimensional layered structure can be acquired, are
available. On the other hand, the disadvantages, namely, low performance and low
yield, are acceptable, because the operation speed of neuromorphic systems do not
have to be so fast and they are robust against the damage of processing elements.

Some thin-film devices are already used in neuromorphic systems [52]. However,
the advantages of the thin-film devices are not employed well, namely, they are
fabricated at high temperature and not uniform because they are poly-crystalline

materials and have just a two-dimensional structure.

1.4 This Study

In this doctoral dissertation, we study neuromorphic systems using thin-film
devices [35-41]. First, we investigate a neuromorphic system, where we simplify
processing elements, such as, neuron elements and synapse elements, and neural
network, to aim at integration of an astronomical number of processing elements.
We propose a novel learning method, modified Hebbian learning, which does not

need additional circuits to control synaptic connection strengths. By using such



processing elements and learning method in neuromorphic systems, it is expected
that the machine size can be further compact, power consumption can be low, and
the operation can be robust. Next, we examine some kinds of thin-film devices,
such as, a low-temperature poly-Si device, amorphous In-Ga-Zn-O (IGZO) device,
amorphous Ga-Sn-O (GTO) device, and SiNy device, whose characteristics are
available to the modified Hebbian learning. We can potentially acquire
three-dimensional layered structure. By wusing such thin-film devices in
neuromorphic systems, it is expected that the machine size can be further compact.
Moreover, because amorphous 1GZO and GTO devices can have extremely low
leakage current, it is also expected that the power consumption can be further low.
Finally, we investigate Hopfield neural networks and cellular neural networks by
combining the aforementioned study and confirm the correct operations. Although
it is pity that we have not yet succeeded in integration of an astronomical number
of processing elements with three-dimensional layered structure, the research

results suggest that it is possible in the future.

1.5 Contributions

Neuromorphic systems using thin-film devices have great potentials that the size
can be compact, the power can be low, and the operation can be robust [53-55].
First, energy crisis can be avoided, while artificial intelligences will consumes
60 % of worldwide electricity in 2050 if effective countermeasure is not done. Next,
artificial intelligence on everything (AloE) may be realized, which is an extended
version of internet of things (loT). AlIoE makes everything intelligent, and
telecommunication is conducted only if necessary, which avoid information
explosion. Finally, neuromorphic systems might be equipped in robot brains with
common artificial intelligences as hybrid systems. The detailed explanation will be
given in the last part of this doctoral dissertation. Although we have not yet
succeeded in integration of an astronomical number of processing elements with
three-dimensional layered structure, the research results suggest that it is possible

in the future.
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2 Neuromorphic System

Neuromorphic Systems require simplification of processing elements and neural
networks, which is indispensable to aim at integration of an astronomical number
of processing elements in neural networks, and some corresponding learning rule
must be introduced. We have succeeded in simplification of processing elements,
such as, neuron elements and synapse elements. First, we reduce a neuron element
to "two-inverter two-switch circuit”, "two-inverter one-switch circuit", or
"two-inverter circuit”, where the latter has the same functions as a theoretical
model, namely, the simplest one. Next, we reduce a synapse element only to "one
variable resistor" or "one variable capacitor”. Moreover, we investigate network
architectures and revise Hopfield neural networks and cellular neural networks,
which are remarkably suitable for integration of electron devices. Because they are
historical neural networks and have contrastive properties, once it is confirmed
that they can operate correctly, it is also expected that all kinds of neural networks
can operate correctly. Additionally, we investigate synaptic connections and
propose a "tug-of-war method". Furthermore, the leaning rule is also modified to
"modified Hebbian learning”. The advantage is that the synaptic connection
strength is automatically controlled using the local electrical conditions and any
additional circuits are not needed. Therefore, it is also useful to simplify the
processing elements and neural network from hardware level. Incidentally, this
local behavior is possible by characteristics of electron devices, or, in other words,
it is convenient for integration of electron device. Finally, we confirm the correct
operations of the processing elements, network architectures, synaptic connection,
and learning rule using logic simulation and a field-programmable gate array
(FPGA) chip and trimmer resistors and capacitors arranged on printed circuit
boards (PCBs). Although the current results are very fundamental, it can be
expected that the neural network acquires various abilities. Our results will be

theoretical bases to realize ultra-large scale integration for neuromorphic systems.

2.1 Neuron Element

We consider the operation of a neuron element and come to have an idea that the
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requisite minimum functions for the neuron element are (1) generating a binary
state, which is called fire and stable states, and (2) alternating the binary state
according to the input signal [1,2]. We propose three-type neuron circuits. Figure
2-1 shows the neuron circuits, 2-inverter 2-switch circuit, 2-inverter 1-switch
circuit, and 2-inverter circuit. Because the neuron circuits can be made using
complementary metal-oxide-semiconductor (CMOQOS) circuit, an inverter consists of
a pair of n-type and p-type transistors, and a switch also consists of a pair of the

transistors. Some properties of each neuron circuit are compared in the table in Fig.

2-1.
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Fig. 2-1. Neuron circuits and comparison of the properties.
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The 2-inverter 2-switch circuit is literally a circuit where the two inverters and
two switches are circularly connected. The inverters generate a binary state, and
the binary state is maintained when the switches are on, whereas the binary state is
alternated when the switches are off and some input signal is received. The two
terminals are bi-directional, namely, simultaneously work as both input and output
terminals. One terminal is that for positive logic, whereas the other terminal is that
for negative logic. This neuron circuit consists of eight transistors. The number of
the synapse element per connected neighboring neuron element is two, which is
explained in detail later. Because the switching pulses are periodically applied to
the switches, some switching noise exists. Because there is a feedback loop from
the output terminal to the input terminal, the input signal is also set to a binary
level.

The 2-inverter 1-switch circuit is also literally a circuit where the two inverters
and one switch are circularly connected. In contrast to the 2-inverter 2-switch
circuit, the three terminals are uni-directional, namely, constantly work as either
input or output terminal. One terminal is an input terminal, whereas the other two
terminals are output terminals. One output terminal is that for positive logic,
whereas the other output terminal is that for negative logic. This neuron circuit
consists of six transistors. The number of the synapse element per connected
neighboring neuron element is four, twice of that for the 2-inverter 2-switch circuit,
because a synapse element sending the signal from a neuron element to the
neighboring neuron element and another synapse element sending the signal form
the neighboring neuron element to the neuron element are necessary. Some
switching noise exists, and the input signal is also set to a binary level, which is
similar to the 2-inverter 2-switch circuit.

The 2-inverter circuit is a circuit where the two inverters are connected in series.
The inverters generate a binary state, and the binary state is alternated whenever
some input signal is received. The three terminals are uni-directional. This neuron
circuit consists of four transistors. The number of the synapse element per
connected neighboring neuron element is four. Because the switching pulses are not

applied, no switching noise exists. Because there is no feedback loop, the input
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signal remains analog, which is different from those for the other neuron circuits.
The theoretical model for the neuron element is just a buffer block, whose
function is completely the same as the 2-inverter circuit. It should be noted that the

2-inverter circuit is at least necessary to get the buffer block actually.

2.2 Synapse Element

We consider the operation of a synapse element and come to have an idea that the
requisite minimum functions for the synapse element are (1) sending the signal
from a neuron element to the neighboring neuron element, (2) merging the signals
from the multiple neuron elements for the neuron element to alternate the binary
state following the majority rule, and (3) controlling the synaptic connection
strength, namely, how the signal is effectively sent, on demand [1,2]. We propose
two-type synapse devices. Figure 2-2 shows the synapse devices, namely, variable

register and variable capacitor.

©“l© ©%©
Variable resistor Variable capacitor

Fig. 2-2. Synapse devices using a variable resistor and capacitor.

The variable resistor sends the signal as an electric current. The conductance
corresponds to the synaptic connection strength. The electric currents are easily
added by bundling the variable resistors in parallel, which corresponds to merging
the signals. The advantage of the neural network using the variable resistors is
operation stability, because the constant dc electric currents surely settle all the
conditions in the network circuit.

The variable capacitor sends the signal as a voltage shift through capacitive
coupling. The capacitance corresponds to the synaptic connection strength. The
voltage shifts are also easily added by bundling the variable capacitors in parallel.
The advantage of the neural network using the variable capacitors is low power

consumption, because there is no constant dc electric current.
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2.3 Network Architecture

First, we investigate Hopfield neural networks. Hopfield neural networks are
neural networks where all neuron elements are connected each other and synapse
elements are located at all the connections [3,4]. As a result, in comparison with
the neuron elements, a much larger number of the synapse elements exist, and
connection wiring occupies large areas or volumes.

A Hopfield neural network with the simplification of processing elements is
shown in Fig. 2-3. Here, synapse elements are crosspoint-type devices sandwiched
between top and bottom electrodes corresponding to horizontal and vertical
bar-electrodes. In comparison with the conventional Hopfield neural network, the
vertical bar-electrodes are switched to not only the input but also the output of the

neuron elements, which is necessary for the learning rules explained later.
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Fig. 2-3. Hopfield neural network with the simplification of processing elements.

Next, we investigate cellular neural networks [5-12]. Cellular neural networks

are neural networks where a neuron element is connected to only neighboring
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neuron elements, which are remarkably suitable for integration of electron devices.
They are promising for image processing, pattern recognition, etc. As a result, in
comparison with other neural networks, a relatively larger number of the neuron
elements exist, and a large number of the synapse elements still exist, but
connection wiring occupies little areas or volumes.

Cellular neural networks with the simplification of processing elements is shown
in Fig. 2-4 [1,2,13-16]. Four-direction topology means that a neuron element is
connected to four neighboring neuron elements, namely, upper, lower, right, and
left ones, whereas eight-direction topology means that a neuron element is

additionally connected also to four diagonal neighboring neuron elements.

4 directions 8 directions

Fig. 2-4. Cellular neural networks with the simplification of processing elements.

Comparison between the Hopfield neural network and Cellular neural network is
shown in Fig. 2-5. As aforementioned, in general, Hopfield neural networks have
fewer neuron elements and more synapse elements, whereas cellular neural
networks have more neuron elements and fewer synapse elements. It is checked that
Hopfield neural networks can be used for various applications, whereas it is only

checked that cellular neural networks can be mainly used for image recognition,

26



but this is just because systematic evaluation is not done very much. As
aforementioned, Hopfield neural networks are not suitable for integration electron
devices very much, because all neuron elements are connected each other and
connection wiring occupies large areas or volumes, whereas cellular neural
networks are remarkably suitable for integration of electron devices, because a
neuron element is connected to only neighboring neuron elements and connection
wiring occupies little areas or volumes. Because Hopfield neural networks and
cellular neural networks are historical and typical neural networks described in all
text books and they have contrastive properties, once it is confirmed that they can

operate correctly, it is also expected that all kinds of neural networks can operate

correctly.
Hopfield Cellular
Neural Network Neural Network
Single Layer . Single Layer
All Connection Architecture Neighboring Connection
Few Neuron Many
Many Synapse Few
Almighty O Application X Image R(gcognmon

Difficult X Integration @) Easy

Fig. 2-5. Comparison between the Hopfield neural network and Cellular neural network.

2.4 Synaptic Connection

We investigate synaptic connections and propose a tug-of-war method [1,2]. The
tug-of-war method for synaptic connection is shown in Fig. 2-6. We prepare
two-type synapse connections, concordant connection and discordant connection.
The concordant connection connects the same logics of the two neuron elements,
namely, positive and positive logics or negative and negative logics, and tends to
make the states of the two neuron elements the same. On the other hand, the
discordant connection connects the different logics of the two neuron elements,
namely, positive and negative logics, and tends to make the states of the two

neuron elements different. The reason why we prepare two-type synapse
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connections is to obtain the same effect that the synaptic connection strength
becomes both stronger and weaker even if the actual strength becomes either one.
For example, the effect that the synaptic connection strength becomes stronger is

gotten, if the discordant connection becomes weaker.

@
= O Neuron
&/

Conventional Tug-of-war

Fig. 2-6. Tug-of-war method for synaptic connection.

The tug-of-war method is more effective for cellular neural networks, because
Hopfield neural networks have a much larger synapse elements whereas cellular
neural networks have fewer synapse elements and the tug-of-war method partially
compensates the disadvantage. Therefore, we show examples of the tug-of-war
method using cellular neural networks. The tug-of-war method in cellular neural

networks is shown in Fig. 2-7. Here, cellular neural networks with four-direction
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Fig. 2-7. Tug-of-war method in cellular neural networks.

28



topology are shown when the 2-inverter 2-switch, 2-inverter 1-switch, and
2-inverter circuits are used for neuron elements.

The cellular neural network for the 2-inverter 2-switch circuit has two synaptic
connections, concordant and discordant connections, between a pair of the
neighboring neuron elements. As a result, the cellular neural network having n
neurons approximately has 8-n transistors and 4-n synapse devices by neglecting
the exception of the connection at the peripheral neuron elements.

The cellular neural network for the 2-inverter 1-switch and 2-inverter circuits
has four synaptic connections, forward and reverse connections in addition to the
concordant and discordant connections, between a pair of the neighboring neuron
elements. As a result, the cellular neural network for the 2-inverter 2-switch circuit
having n neuron elements approximately has 6-n transistors and 8-n synapse
devices, and the cellular neural network for the 2-inverter circuit approximately
has 4-n transistors and 8-n synapse devices. Because the structure of the transistors
is usually more complicated than that of synapse devices if the synapse devices are
made using simple devices, the 2-inverter circuit is more suitable to realize

ultra-large scale integration.

2.5 Modified Hebbian Learning

Hebbian learning is a typical learning rule in biological and artificial neural
networks [17]. The synaptic connection strength is enhanced, when both neuron
elements connected to the synapse connection are in the fire state, but impaired
otherwise. Since the processing elements, such as, neuron elements and synapse
element, are dramatically simplified, the leaning rule is also modified. Modified
Hebbian learning is shown in Fig. 2-8 [1,2]. Here, "F" means the fire state, whereas
"S" means the stable state. As an example, consider the NOT logic. The left and
right neuron elements are assigned to the input and output elements, respectively.
Initially, in the initial recognizing stage, a stable state is applied to the input
element, and a stable state arises from the output element, and vice versa, because
the synaptic connection strength of the concordant connection is accidentally

slightly stronger than that of the discordant connection, which is not the NOT logic.
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Next, in the first learning stage, a stable state is applied to the input element, and a
fire state is applied to the output element. Since the concordant connection
connects the two terminals for the same logic in the two neuron elements and the
binary states at both terminals in the two neuron elements are different, some
voltage occurs through the concordant connection, or the electric current flows
through the concordant connection due to the voltage, but any voltage does not
occur through the discordant connection, or the electric current does not flow
through the discordant connection. If the synapse elements are designed so that the
synaptic connection strength is continuously impaired when some voltage occurs or
the electric current flows, only the synaptic connection strength of the concordant
connection gradually weakens. In the second learning stage, a fire state is applied
to the input element, and a stable state is applied to the output element. Similarly,
only the synaptic connection strength of the concordant connection gradually
weakens. Finally, in the final recognizing stage, a stable state is applied to the
input element, and a fire state arises from the output element, and vice versa,
because the synaptic connection strength of the concordant connection becomes

slightly weaker than that of the discordant connection, which is the NOT logic.
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Fig. 2-8. Modified Hebbian learning.

The outstanding advantage of the modified Hebbian learning is that the synaptic

connection strength is automatically controlled using the local voltage or electric
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current and any additional circuits are not needed to control synaptic connection
strengths. Therefore, it is believed that the modified Hebbian learning is also
useful to simplify the processing elements and neural network from hardware level.
Incidentally, this local behavior is possible by characteristics of electron devices,
or, in other words, it is convenient for integration of electron device, which is
explained in detail in the following chapers. On the other hand, the minor
disadvantage of the modified Hebbian learning is that because the synaptic
connection strength usually changes in the direction that it is impaired, the
synaptic connection strength cannot be enhanced even if both neuron elements
connected to the synapse connection are in the fire state. However, the relative
values of the synaptic connection strength can be enhanced. In any case, by
employing modified Hebbian learning and the characteristic change of the synapse
devices, we successfully create a synapse device that consists of just one variable

resistor or variable capacitor.

2.6 Operation Confirmation

We confirm the operations of the abovementioned processing elements, such as,
neuron elements and synapse elements, network architectures, especially, cellular
neural network, because it is revised more than the conventional ones, synaptic

connection, namely, tug-of-war method, and learning rule, namely, modified

Fig. 2-9. Trial example for the operation confirmation.

2-11



Hebbian learning, using logic simulation and an FPGA chip and trimmer resistors
and capacitors arranged on PCBs [1,18]. A trial example for the operation
confirmation is shown in Fig. 2-9. Here, a cellular neural network, which has 3x3
neuron elements, four-direction topology, tug-of-war method, and modified
Hebbian learning are used. Arbitrary two-input one output logics, such as, AND,
OR, and XOR, are learnt, where two input neuron elements and one output neuron
element are assigned, namely, the left upper neuron element is that for Inl, the left
lower neuron element is that for In2, and right middle neuron element is that for
Out.

We execute logic simulation to determine the entire pattern of the synaptic
connection strength. First, we apply Inl, In2, and Out to the neuron elements for
them. Next, we calculate a steady pattern for the states of the neuron elements
based on the normal theory of the dynamics of the neural network and by repeating
calculation of alternating the state. After that, the synaptic connection strength of
the concordant connection is kept the same when both neuron elements connected
to the synapse element are in the same states, and is impaired otherwise, whereas
the synaptic connection strength of the discordant connection is kept the same
when both neuron elements connected to the synapse element are in the different
states, and is impaired otherwise. Finally, we obtain the entire pattern of the
synaptic connection strength. Figure 2-10 shows the entire pattern of the synaptic

connection strength for AND, OR, and XOR logics.
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Fig. 2-10. Synaptic connection strength calculated using logic simulation.
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We compose the neuron elements in an FPGA chip and compose the synapse
elements by trimmer resistors and capacitors arranged on PCBs. Figure 2-11 shows
the actual hardware for the operation confirmation, namely, FPGA, trimmer
resistors, and trimmer capacitors. Here, in addition to the conditions in the logic
simulation, neuron elements, such as, two-inverter two-switch circuit, two-inverter
one-switch circuit, and two-inverter circuit, synapse elements, such as, variable
registers and capacitors, are used. It should be noted that although discrete parts,
such as, trimmer resistors and capacitors, are used as variable registers and
capacitors, this approach is only for the evaluation, and they should be
undoubtedly replaced by some actual electron devices, such as, memristors and
ferroelectric capacitors, to realize ultra-large scale integration. The entire patterns
of the resistances and capacitances in the trimer resistors and capacitors are set to
the entire patterns of the synaptic connection strength calculated using the logic

simulation.

Trimmer Resistors Trimmer capacitors

Fig. 2-11. Actual hardware for the operation confirmation.
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Fig. 2-12. Input and output waveforms of the actual hardware.
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Figure 2-12 shows the input and output waveforms of the actual hardware. Inl and
In2 are periodic rectangle pulses, which make all four combinations of high voltage
(H) and low voltage (L), and applied to the input terminals of the neuron elements
for Inl and In2. Out is measured at the output terminal of the neuron elements for
Out. It is confirmed that the correct operations are achieved for all logics, namely,
AND, OR, and XOR, all neuron circuits, namely, 2-inverter 2-switch, 2-inverter
1-switch, and 2-inverter circuits, and all synapse elements, namely, variable
resistor and capacitor. For the 2-inverter 2-switch and 2-inverter 1-switch circuits,
although some switching noise exists, after the switching pulses are off and states
are settled, the correct operations are achieved. For the 2-inverter circuit, no
switching noise exists. For the variable capacitor, only the 2-inverter l-switch
circuit is used, because the input terminals become floating if the 2-inverter circuit
is used and unexpected behavior is unavoidable if some electric charges are
accumulated in the input terminals during the network operation. In any case, it is
confirmed that the correct operations are achieved for all logics, neuron elements,
and synapse elements.

Although the current results are very fundamental, it can be expected that the
neural network acquires various abilities, if a lot of processing elements are
provided, which is possible because we succeeded in simplification of processing
elements. In summary, our results will be theoretical bases to realize ultra-large
scale integration for neuromorphic systems. Although we need great effort to
develop actual electron devices having the requisite minimum functions especially
for the synapse elements, our results indicates that the researchers solely focus on
the development of the circuits and devices having the requisite minimum
functions, because the correct operation of the neural networks has been already

guaranteed once such circuits and devices are realized.
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3 Thin-Film Device

Thin-film devices may be suitable devices for neuromorphic systems from some
viewpoints. First, the outstanding features of the thin-film devices are
low-temperature fabrication and high material efficiency. As a result, the notable
advantages are that they can be fabricated on large areas and three-dimensional
layered structure can be acquired. Therefore, an astronomical number of processing
elements may be integrated, when thin-film devices are used for neuromorphic
systems. Next, the unavoidable disadvantages of the thin-film devices are low
performance and low yield owing to the low-temperature fabrication. However,
they may be acceptable, because the operation speed of neuromorphic systems do
not have to be so fast and they are robust against the damage of processing
elements. In this chapter, we enumerate some kinds of thin-film devices available
for neuromorphic systems, such as, low-temperature poly-Si (LTPS) device,
amorphous metal-oxide semiconductor (AOS) devices, namely, amorphous
In-Ga-Zn-0O (a-1GZ0) device and amorphous Ga-Sn-O (a-GTO) device, and Taz0s
device. In any case, it is confirmed that the electrical conductance gradually
decreases when electric current flows, which is available as a synaptic connection
strength based on an operation theory of the modified Hebbian learning. By using
such thin-film devices in neuromorphic systems, it is expected that the machine
size can be further compact. Moreover, because amorphous IGZO and GTO devices
can have extremely low leakage current, it is also expected that the power

consumption can be further low.

3.1 Low-Temperature Poly-Si Device

LTPS devices are widely used as thin-film transistors (TFTs) [1-3] for flat-panel
displays (FPDs), such as, high-resolution liquid-crystal displays (LCDs) and
light-emitting diode displays (OLEDs). These FPDs are mainly used for mobile
applications because they are very tough ageist rough handling.

A transistor-type LTPS device is shown in Fig. 3-1. First, an amorphous-Si thin

film is deposited using low-pressure chemical-vapor deposition (LPCVD) of Si;Hs
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and crystallized using XeCl excimer laser to form a poly-Si thin film. The
thickness of the poly-Si thin film is 50 nm, and the grain size is 500 nm or less.
Next, a SiO, thin film is deposited using plasma-enhanced chemical-vapor
deposition (PECVD) of tetraethyl orthosilicate (TEOS) to form a gate-insulator
thin film. The thickness of the gate-insulator thin film is 75 nm. Next, phosphorous
ions are pseudo-selfalignedly implanted and thermally activated to form source and
drain regions, and a gate-metal thin film is deposited and patterned to form a gate
terminal. Finally, a SiO; thin film is deposited and patterned to prepare an
interlayer-insulator thin film, and a source-drain metal thin film is deposited and
patterned to form source and drain terminals. Consequently, top-gate, coplanar, and
n-type poly-Si TFTs are fabricated. Here, the gate width (W) / gate length (L) =5/
5 um. The field-effect mobility (x) = 90 cm?-V-1.s-1, and threshold voltage (Vin) =
4.0 V.

Source Drain

Fig. 3-1. Transistor-type LTPS device.

The degradation characteristics of the LTPS device are investigated to find a
suitable condition for the modified Hebbian learning. The degradation
characteristics of the LTPS device is shown in Fig. 3-2 [4]. First, initial transfer
and output characteristics are measured. Next, stress tests are executed by applying
Vgs=0~15Vand Vds =0 ~ 12 V during 0 ~ 3 hr. Afterward, normal transfer and
output characteristics are measured, where the normal characteristic is defined as
the transistor characteristic when the source and drain terminals for the
measurement are the same as those for the stress test. Next, reverse characteristics
are also measured, where the reverse characteristic is defined as the transistor

characteristic when the source and drain terminals for the measurement are



opposite to those for the stress test. Here, since the grain size is as small as 500 nm
or less as aforementioned, it can be assumed that the grains are uniformly
distributed within the poly-Si thin film and there is little unbalance between the

normal and reverse characteristics from the viewpoint of the number and location

of the grain boundaries.

Fig. 3-2. Degradation characteristics of the LTPS device.
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The Joule-heating and hot-carrier degradations are indicated in Fig. 3-2. Here,
logarithmic and linear graphs of the transfer characteristics are shown to observe
Vin shifts and x4 decreases, whereas normal and reverse characteristics of the output
characteristics are shown to check whether they are symmetrical or asymmetrical.
The symmetrical characteristics are defined when the degradation in the normal
characteristics are similar to the degradation in the reverse characteristics, whereas
the asymmetrical characteristics are defined when the degradation of the normal
characteristics are less than halves of the degradation in the reverse characteristics.
First, no degradation is observed for low Vgs and Vgs. On the contrary, Vi, shifts are
mainly observed during the range of hours for high Vgs and medium Vg4s as shown by
yellow areas in Fig. 3-2. It is supposed that Joule-heating degradation occurs
because the power consumption is large in the poly-Si thin films but the lateral
electric fields are not strong near the drain junctions [5,6]. The Si-H bonds are
broken in the poly-Si thin films and at their interfaces, and the dangling bonds are
generated there. In addition, the normal and reverse output characteristics are
symmetrical because the entire poly-Si thin films are uniformly heated and
degraded. Therefore, it is suggested that the symmetrical normal and reverse
characteristics indicate the Joule-heating degradation. On the other hand, not only
Vin shift but also ux decreases are observed during the range of minutes for high Vs
as shown by green areas in Fig. 3-2. It is supposed that hot-carrier degradation
occurs because the lateral electric fields are strong near the drain junctions [7,8].
The charges are injected into the gate-insulator thin films, and traps are generated
in the poly-Si thin films and at their interfaces. In addition, the normal and reverse
output characteristics are asymmetrical because the poly-Si thin films,
gate-insulator thin films, and their interfaces only near the drain junctions are
locally degraded. Therefore, it is suggested that the asymmetrical normal and
reverse characteristics indicate the hot-carrier degradation. Although the hot
carrier degradation and Joule-heating degradation are expected to simultaneously
occur especially for high Vgs and Vgs, the hot carrier degradation rapidly occurs as
aforementioned and is therefore dominant. Since the symmetrical normal and

reverse characteristics indicate the Joule-heating degradation whereas the
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asymmetrical characteristics indicate the hot-carrier degradation, they can be
clearly and easily classified as shown in Fig. 3-2. It qualitatively coincides with
the previous report [6]. Since electric currents flow in alternating directions
through the synapse elements in the neural networks, it is preferable to use the

Joule-heating effect because the characteristic variations are symmetrical.

3.2 Amorphous In-Ga-Zn-O Device

AOQOS devices are promising because they have excellent and uniform performances
even when they are deposited at low temperature and in amorphous phase [9].
Moreover, AOS devices can be potentially formed using printing methods [10],
which is convenient to realize three-dimensional layered structure for neuromorphic
systems [11]. a-1GZO devices are representative devices [12] and recently used as
TFTs for FPDs, such as, high-resolution LCDs and OLEDs [13-16].

Planar-type a-1GZO devices are shown in Fig. 3-3 [17]. First, a quartz glass
substrate is used. The thickness is 1mm, and the size is 3x3 cm. Next, an a-1GZO
thin film is deposited using radio-frequency (RF) magnetron sputtering. The
sputtering target is an 1GZO ceramic whose composition is In:Ga:Zn=1:1:1, and the
sputtering gas is Ar. The a-1GZO thin film is patterned through a metal mask as
shown by the dotted line in Fig. 3-3. The thickness of the a-1GZO thin film is

Fig. 3-3. Planar-type a-1GZO devices.
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70nm. These fabrication conditions are the same as those for the TFTs having the
best performance [18]. Finally, Ti and Au thin films are sequentially deposited
using vacuum evaporation. Ti and Au thin films are also patterned through a metal
mask as shown in Fig. 3-3. The thicknesses of Ti and Au thin films are 50nm each.
Ti thin film is used to obtain ohmic contact to the a-1GZO thin film because it has a
proper work function and improve adherence, and Au thin film is used to avoid the
surface oxidation and make probing easy. No additional annealing is executed.
The electrical current through the planar-type a-1GZO device is shown in Fig.
3-4 [19]. Here, we apply 3.3 V between the right and left terminals of the Ti and Au
thin films and measure the electrical current through the planar-type a-1GZO
device. It is found that the electrical conductance continuously decrease when the
electric current flows. The conductance decrease is irreversible. The modified
Hebbian learning can be employed using this phenomenon. As shown in Fig. 3-4,
the conductance decrease is not so fast. However, because the operation of the
neural network is based on the delicate balance of the majority rule, the slow

change is sometimes convenient also to avoid the excess learning.
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Fig. 3-4. Electrical current through the planar-type a-1GZO device.

The mechanisms for the conductance decrease are shown in Fig. 3-5. It is
supposed that this phenomenon is caused by either the generation of trap states in
the a-1GZO thin film or injection of the electric charge into the interface between

the a-1GZ0O thin film and quartz glass substrate. In the case of the generation of
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trap states, first, free electrons are accelerated and collide to the a-1GZO crystal.
Next, trap states are generated and capture free electrons. Finally, free electrons
decrease because of the fixed charge in the trap states and are simultaneously
scattered by them, which induces the conductance decrease. On the other hand, in
the case of the injection of the electric charge, first, free electrons are again
accelerated near the interface and are casually injected into the interface between
the 1GZO thin film and quartz glass substrate. Next, the free electrons are captured
at the interface. Finally, free electrons decrease because of the fixed charge of the

injected electrons, which also induces the conductance decrease.
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Fig. 3-5. Mechanisms for the conductance decrease.

The planar-type a-1GZO device is a kind of memristor, because the definition of
the memristor is that the present value of electric current changes by the historical
summation of flowing electric charges. However, in comparison with the
conventional memristers used as resistive memories [20], the planar-type a-1GZO
device shows the continuous change of the electric conductance, which is
preferable for our neural network. Moreover, it does not need high temperature for
fabrication process and can be potentially formed using printing methods.
Furthermore, in comparison with the conventional floating-gate transistors [21],
the device structure is quite simple, which is convenient to realize

three-dimensional layered structure for neuromorphic systems.



3.3 Amorphous Ga-Sn-O Device

a-GTO devices are newcomer devices and expected to be gotten at low cost
because they do not include In [22]. Therefore, a-GTO devices may be more
suitable for neuromorphic systems, because a lot of material are consumed when
three-dimensional layered structure are built.

Crosspoint-type a-GTO devices are shown in Fig. 3-6. First, a quartz glass
substrate is used. Next, Ti thin film is deposited using vacuum evaporation. The Ti
thin film is patterned through a metal mask, and fine multiple stripe patterns are
formed as bottom electrodes. Next, an a-GTO thin film is deposited using RF
magnetron sputtering. The sputtering target is a GTO ceramic, and the sputtering
gasis Ar: O, =20 :1sccm. The a-GTO thin film is patterned through a metal mask,
and peripheral areas are exposed to contact the bottom electrodes. The thickness of
the a-GTO thin film is 70nm. Finally, Ti thin film is again deposited. Fine multiple
stripe patterns are again formed as top electrodes, which is perpendicular to the

bottom electrodes. Post-annealing is executed at 350 °C for 1 hr.

Fig. 3-6. Crosspoint-type a-GTO devices.

The electrical current through the crosspoint-type a-GTO devices is shown in
Fig. 3-7. Here, we apply 3.3 V between the top and bottom terminals of Ti thin

films and measure the electrical current through the crosspoint-type a-GTO device.

It should be noted that the horizontal axis is a logarithmic axis in contrast with Fig.

38



3-4. It is found that the electrical conductance continuously decrease when the
electric current flows and the decrease speed is faster than the planar-type a-1GZ0O
device because the voltage is applied to the a-GTO thin film and strong. The
modified Hebbian learning can be employed also using this phenomenon. It is
supposed that the mechanism for the conductance decrease is the generation of trap

states in the a-GTO thin film.
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Fig. 3-7. Electrical current through the crosspoint-type a-GTO device.

3.4 Ta;0s Device

Ta,Os devices are begun to be used as resistive memories [23]. Because
memristor devices are often considered to be used for neural networks [24], Ta20s
devices are used also in this study. Crosspoint-type Ta,Os devices are similar to
crosspoint-type a-GTO devices, and the electrical current is also similar, namely,
the electrical conductance continuously decrease. We will submit the results to

some journal soon.
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4 Hopfield Neural Network

Hopfield neural networks are neural networks where all neuron elements are
connected each other through synapse elements. Because a large number of the
synapse elements exist, it is important to confirm the correct operations of the
simplified synapse elements. Neuron elements are virtually composed in a
field-programmable gate array (FPGA) chip, whereas synapse elements are actually
composed of crosspoint-type devices. In the learning stage, voltages appear and
electric currents flow in some crosspoint devices, and the synaptic connection
strength, such as, the electric conductance, etc., is weakened. In the recognition
stage, output signals are detected, which is the response from the Hopfield neural
network. The electric conductance is weakened in the learning stage because the
voltages are applied for a long time, whereas the electric conductance is not
changed very much in the recognition stage because the voltages are applied for an
instant. Letter reproduction is executed to confirm the operation of the Hopfield
neural network. Crosspoint-type a-GTO devices is used as synapse elements. First,
it is found that the standard patterns of two numeral letters can be completely
reproduced in the revised patterns. However, an issue is that the success
probability is not so high. Therefore, majority-rule handling is invented. It is found
that the standard patterns of three alphabet letters can be reproduced in the revised
patterns. Moreover, the success probability is high. This means that we have
succeeded in letter reproduction. In addition, crosspoint-type Ta;Os devices are

used, and we have also succeeded in letter reproduction.

4.1 System Architecture

Hopfield neural networks are neural networks where all neuron elements are
connected each other and synapse elements are located at all the connections [1,2].
As a result, in comparison with the neuron elements, a much larger number of the
synapse elements exist, and connection wiring occupies large areas or volumes.
Therefore, whereas various structures are usually acceptable for the neuron

elements, it is important to simplify the synapse elements and confirm the
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operations.

System architecture of a Hopfield neural network is shown in Fig. 4-1 [3].
Eighty neuron elements are virtually composed in a personal computer (PC),
peripheral component interconnect (PCI) board, and FPGA chip using hardware
description language (HDL), whereas 80 x 80 synapse elements are actually

composed of crosspoint-type devices, and they are connected through a connection

Neuron elements in Synapse elements by
PC, PCl board and FPGA chip Crosspoint-type device

Nexel Neuron
80

F ¢ ¢ ¢ 94

Learning
—

05

Recognizing

Crosspoint-

type device

Fig. 4-1. System architecture of a Hopfield neural network.
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socket to confirm operations of crosspoint devices with various materials by
replacing them in the connection socket. The crosspoint-type devices have top and
bottom electrodes as aforementioned, and they correspond to horizontal and
vertical bar-electrodes. The bus groups of the horizontal and wvertical
bar-electrodes are each connected to the neuron elements. Output signals from the
neuron elements are outputted to the bus group of the horizontal bar-electrodes,
and they are also outputted to the bus group of the vertical bar-electrodes in
learning stage. Output signals from the bus group of the vertical bar-electrodes are
inputted into the neuron elements in recognizing stage. "Nexel" is an abbreviation
of "neuron cell”, which is similar to that "pixel™ is an abbreviation of "picture cell”,
and in-out interface to a neuron element. In summary, a conventional architecture
of the Hopfield neural network is used with the novel architecture of the
crosspoint-type devices.

The operation principle of the crosspoint-type devices is shown in Fig. 4-2. First,
in the learning stage, high voltage, for example, 3.3 V, is applied to the
corresponding horizontal and vertical bar-electrodes for the neuron elements in the
fire state, as shown in bright blue in Fig. 4-2, whereas low voltage, for example,
GND, is applied to the bar-electrodes in the stable state, as shown in dark blue in
Fig. 4-2. As a results, voltages appear in some crosspoint devices, and electric
currents flow, as shown in bright brown in Fig. 4-2. After a while, the synaptic
connection strength, such as, the electric conductance, etc., is weakened. Finally,
in the recognition stage, high and low voltages are applied to the corresponding

horizontal bar-electrodes, and high and low voltages are detected from the vertical

Fig. 4-2. Operation principle of the crosspoint-type devices.



bar-electrodes, which is the response from the Hopfield neural network. It should
be noted that the electric conductance is weakened in the learning stage because the
voltages are applied for a long time, whereas the electric conductance is not
changed very much in the recognition stage because the voltages are applied for an
instant.

Letter reproduction is executed to confirm the operation of the Hopfield neural
network. The letter reproduction is a part of the letter recognition [4], where
distorted letters is reproduced to standard letters, which is available for
hand-writing reading, optical character recognition (OCR), etc., and also an
often-used criterion to check neural networks [5]. Mapping from a two-dimensional
pattern for image expression to a one-dimensional pattern for computer interface is
necessary for the letter reproduction. Mapping from a two-dimensional pattern to a
one-dimensional pattern is shown in Fig. 4-3. Although the two-dimensional
pattern includes 9x9=81 units, because the one-dimensional computer interface
includes only 80 units, one unit in the image description is neglected. In
comparison with convolutional neural networks (CNNs) [6], the advantage of this
study is that, whereas the CNNs need deep multiple layer neural networks, the
Hopfield neural network needs an only single layer neural network, which is simple

and speedy in both learning and recognizing stages.
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Fig. 4-3. Mapping from atwo-dimensional pattern to a one-dimensional pattern.
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4.2 Amorphous Ga-Sn-O Device
Crosspoint-type a-GTO devices are used as synapse elements. An experimental
result of the letter reproduction is shown in Fig. 4-4. Here, the pixel pattern

corresponds to the nexel pattern one to one. First, in the learning stage, standard

Standard Distorted Revised
Learning Recognizing

Fig. 4-4. Letter reproduction using complete matching.



patterns of numeral letters of "O" and "1" are prepared. These on-pixels, which is
shown in green squares in Fig. 4-4, and off-pixels, which is shown in invisible
squares in Fig. 4-4, are inputted into the neuron elements as binary states in several
minutes multiple times. Next, in the recognizing stage, slightly distorted patterns
of numeral letters of "O" and "1" are prepared, where the distorted pixels are
indicated by white squares in Fig. 4-4. These on-pixels and off-pixels are inputted
into the neuron elements in an instant. Next, revised patterns are outputted from
the neuron elements immediately. As aforementioned, the electric conductance is
weakened in the learning stage because the voltages are applied for a long time,
whereas the electric conductance is not changed very much in the recognition stage
because the voltages are applied for an instant and additionally the slightly
distorted patterns are random. Finally, it is checked that the standard patterns of
numeral letters of "O" and "1" are completely reproduced in the revised patterns.
As shown in Fig. 4-4, it is found that the standard patterns can be reproduced in the
revised patterns. This means that we have succeeded in letter reproduction.
However, an issue is that the success probability is not so high, namely, the
experimental result shown in Fig. 4-4 is indeed an only example. This is because
the complete matching between the standard and revised patterns requires complete
fabrication of all synapse elements and horizontal and vertical bar-electrodes,
which is almost impossible from the viewpoint of our fabrication abilities.
Majority-rule handling is invented to solve the issue of the complete matching.
Majority-rule handling is shown in Fig. 4-5. For the one-to-one handling in the
complete matching, one pixel corresponds to one nexel. On the other hand, for the

majority-rule handling, one pixel corresponds to multiple nexels, for example, 3 x
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Fig. 4-5. Majority-rule handling.
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3 nexels. First, when the distorted pattern is inputted, from the pixel pattern, the
nexel pattern is generated. For the example of 3 x 3 nexels, in each on-pixel, five
nexels are randomly selected and set to on-nexels, whereas the other nexels are set
to off-nexels. On the other hand, in each off-pixel, five nexels are randomly
selected and set to off-nexels, whereas the other nexels are set to on-nexels. These
on-nexels and off-nexels are inputted into the neuron elements as binary states.
Next, when the revised pattern is outputted, from the nexel pattern, the pixel
pattern is generated. Either on-pixel or off-pixel is determined by the majority rule
between on-nexels and off-nexels in the pixel. The majority-rule handling seems
suitable for neural networks because it seems robust against the damage of
processing elements.

An experimental result of the letter reproduction using majority-rule handling
for two letters is shown in Fig. 4-6. First, in the learning stage, standard patterns of
alphabet letters of "T" and "L" are prepared. Here, the majority-rule handling is
not used, namely, in each on-pixel, nine nexels are set to on-nexels, and vice versa.
These on-nexels and off-nexels are inputted into the neuron elements in several
minutes multiple times. Next, in the recognizing stage, slightly distorted patterns
of alphabet letters of "T" and "L" are prepared, where the distorted pixels are
indicated by white squares in Fig. 4-6. Here, the majority-rule handling is used,
namely, in each on-pixel, five nexels are randomly selected and set to on-nexels,
and vice versa. These on-nexels and off-nexels are inputted into the neuron
elements in an instant. Next, revised patterns are outputted from the neuron
elements immediately. Here, the majority-rule handling is used again, namely,
either on-pixel or off-pixel is determined by the majority rule between on-nexels
and off-nexels in the pixel. Finally, it is checked that the standard patterns of
alphabet letters of "T" and "L" are reproduced in the revised patterns. As shown in
Fig. 4-6, it is found that the standard patterns can be reproduced in the revised
patterns. This means that we have succeeded in letter reproduction using the
majority-rule handling. Moreover, the success probability is high, namely, there is
no failure.

Another experimental result of the letter reproduction using majority-rule
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handling for three letters is shown in Fig. 4-7. The experimental method is the
same as that for two letters except that alphabet letters of "T", "L", and "X" are
used. As shown in Fig. 4-7, it is found that the standard patterns can be reproduced

in the revised patterns also for three letters. This also means that we have

succeeded in letter reproduction using the majority-rule handling.

= &
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Fig. 4-6. Letter reproduction using majority-rule handling for two letters.
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Fig. 4-7. Letter reproduction using majority-rule handling for three letters.
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It is theoretically known that m = 0.14 x n [7J orm =n / 4 log n [8], where n is
the number of units and m is the maximum of letters that can be learned in the
Hopfield neural network. Although this Hopfield neural network is not a simple
Hopfield neural network, because n = 9, number of pixel, ~ 80, number of nexel, m
=0.14x9~0.14x80=126~11.20orm=9/410g9~80/41og80=1.02~4.56.
Therefore, it is good result that the standard patterns can be reproduced in the

revised patterns for three letters.

4.3 Ta,0s5 Device

Crosspoint-type Ta,0s devices are used as synapse elements. An experimental
result of the letter reproduction using the majority-rule handling for the two letters
for the Ta,Os devices is similar to that for the a-GTO devices. It is found that the
standard patterns can be reproduced in the revised patterns. This means that we
have succeeded in letter reproduction also for the Ta;Os devices. We will submit

the results to some journal soon.
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5 Cellular Neural Network

Cellular neural networks are neural networks where a neuron element is
connected to only neighboring neuron elements and remarkably suitable for
integration of electron devices. Because the cellular neural networks are quite
different from the Hopfield neural networks, namely, a relatively larger number of
the neuron elements exist, etc., it is again important to confirm the correct
operations of the simplified processing elements, namely, both neuron and synapse
elements, synaptic connection, and modified Hebbian learning. First, a separated
architecture with the amorphous 1GZO (a-1GZ0O) devices is evaluated, whose
advantage is that either the neuron or synapse elements can be independently
replaced from the viewpoint of practical use and respective evaluations. We have
confirmed that the cellular neural network can learn simple logic functions. Next, a
surfaced architecture with low-temperature poly-Si (LTPS) devices is evaluated,
where flexible film substrate can be potentially used, which can be crumpled like
brain wrinkles. We have again confirmed that the cellular neural network can learn
simple logic functions. Moreover, another surfaced architecture with the LTPS
devices is evaluated. We have succeeded in letter reproduction. Finally, a layered
architecture with amorphous Ga-Sn-O (a-GTO) devices is evaluated, whose
advantage is that a large number of processing elements can be potentially prepared
and it is easy to connect them each other. We have partially succeeded in letter
reproduction, although the success probability is not so high, which should be

clarified in the near future.

5.1 Separated Architecture and Amorphous In-Ga-Zn-O Device
Cellular neural networks are neural networks where a neuron element is
connected to only neighboring neuron elements [1-8], which are remarkably
suitable for integration of electron devices. They are promising for image
processing, pattern recognition, etc. As a result, in comparison with other neural
networks, a relatively larger number of the neuron elements exist, and a large

number of the synapse elements still exist, but connection wiring occupies little
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areas or volumes. Therefore, it is again important to simplify the processing
elements, namely, both neuron and synapse elements, verify the synaptic
connection and modified Hebbian learning, and confirm the operations. We
evaluate several architectures of cellular neural networks and thin-film devices for
synapse elements

Separated architecture means that neuron elements are composed somewhere,
synapse elements are separately composed elsewhere, and they are connected
through peripheral wiring [9]. The advantage is that either the neuron or synapse
elements can be independently replaced from the viewpoint of practical use and

respective evaluations. Here, a-1GZO devices are used as the synapse elements.
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Fig. 5-1. Separated architecture with the a-1GZO devices.

A separated architecture with the a-1GZO devices is shown in Fig. 5-1. Here, the
neuron elements are the abovementioned 2-inverter 2-switch circuits, which are

composed in a field-programmable gate array (FPGA), Cyclone Il FPGA supplied
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from Altera and designed by hardware description language (HDL) [10], and they
can be easily formed because they are general digital circuits. 3 x 3 neuron
elements are formed because we believe that this is the minimum number for the
simple logic learning explained later and it is also important to evaluate how small
neural network can get the required functions. The synapse elements are
planar-type a-1GZO devices. The neuron and synapse elements are properly
connected through a printed circuit board (PCB), and a cellular neural network with
four-direction topology and tug-of-war method is realized. Moreover, modified
Hebbian learning is used by utilizing the conductance decrease of the planar-type
a-1GZO devices.

We teach simple logic functions, such as, AND and OR, to the cellular neural
network. First, we assign Inl, In2, and Out as shown in Fig. 5-1. Next, we apply
combinations of high voltage (H), namely, 3.3 V, and low voltage (L), namely,
GND, to Inl and In2 and corresponding voltage to Out. As a result, the continuous
change of the electric conductance occurs in each a-1GZO device. Finally, we
apply the combinations of the voltages to only Inl1 and In2 and check the voltage at
Out. Similar to the Hopfield neural network, the electric conductance is weakened
in the learning stage because the voltages are applied for a long time, whereas the
electric conductance is not changed very much in the recognition stage because the

voltages are applied for an instant.
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Fig. 5-2. Logic learning by the separated architecture with the a-IGZO devices.



The logic learning by the separated architecture with the a-1GZO devices is
shown in Fig. 5-2. Because the fine oscillations are noises from the switching
pulses to the switches, ignore them. It is found that although Out is initially not
correct before the learning, Out becomes finally correct after the learning for both
AND and OR. A problem is that it takes as long as one hour for the learning. We
expect that this problem can be solved by optimizing the electrical characteristic of
the a-1GZO devices and speeding up the conductance decrease. In any case, this

means that we have confirmed that the cellular neural network can learn simple
logic functions.

5.2 Surfaced Architecture and Low-Temperature poly-Si Device

Surfaced architecture means that all processing elements are composed and
connected on flat surfaces [11,12]. Although rigid glass substrates are used in this
study, flexible film substrate can be potentially used, which can be crumpled like
brain wrinkles. Here, LTPS devices are used as the processing elements, namely,
both neuron and synapse elements.
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Fig. 5-3. Surfaced architecture with the LTPS devices.
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A surfaced architecture with the LTPS devices is shown in Fig. 5-3. Here, the
neuron elements are the abovementioned 2-inverter 2-switch circuits, which are
composed by LTPS thin-film transistors (TFTs) [13-15], where the field effect
mobility (x) and threshold voltage (Vin) of the n-type transistors are 93 cm?.V-1.s't and 3.6
V while those of the p-type transistors are 47 cm2.V-1.s1 and -2.9 V respectively, and they
can be easily formed because they are general digital circuits. 3 x 3 neuron
elements are formed. The synapse elements are transistor-type LTPS devices. The
neuron and synapse elements are simultaneously fabricated on a flat surface, and a
cellular neural network with four-direction topology and tug-of-war method is
realized. Moreover, modified Hebbian learning is used by utilizing the conductance
decrease of the transistor-type LTPS devices.

We teach simple logic functions, such as, AND, OR, and XOR, to the cellular
neural network. The teaching sequence is the same as that for the separated
architecture with the a-1GZO devices except that the driving voltages are +5 V, the
switching pulses are +10 V, the control voltages to control the degradation
characteristics are 15 and 10 V for the learning and recognizing stages,
respectively, and the logic voltages are £5 V for the H and L, respectively.

The logic learning by the surfaced architecture with the LTPS devices is shown
in Fig. 5-4. It is found that although Out is initially not correct before the learning,

Out becomes finally correct after the learning for all AND, OR, and XOR. This
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Fig. 5-4. Logic learning by the surfaced architecture with the LTPS devices.
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means that we have confirmed that the cellular neural network can learn simple
logic functions.

Another surfaced architecture with the LTPS devices is shown in Fig. 5-5 [16,17].
Here, an only difference is that 3 x 3 neuron elements are formed in Fig. 5-3,
whereas 7 x 7 neuron elements and corresponding synapse elements are formed in
Fig. 5-5.
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Fig. 5-5. Another surfaced architecture with the LTPS devices.
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We teach letter recognition to the cellular neural network. The teaching sequence
is similar to that for the Hopfield neural networks. We assign input and output
(1/0) neuron elements as shown in Fig. 5-5. The cellular neural network has 7 x 7
neuron elements, including 3 x 3 1I/O neuron elements, to which the standard
patterns are inputted and from which the revised patterns are outputted, and hidden
neuron elements between them. The driving voltages are 8 V, and the control
voltages are 15 and 10 V for the learning and recognizing stages, respectively. First,
in the learning stage, standard patterns of alphabet letters of "T" and "L" are
inputted into the I/O neuron elements. A steady pattern of the binary states is
generated in the hidden neuron elements based on the normal theory of the
dynamics of the neural network. After that, the synaptic connection strengths are
changed, obeying modified Hebbian learning. Next, in the recognizing stage,
slightly distorted patterns of alphabet letters of "T" and "L" are inputted into the
I/0 neuron elements and immediately released. Next, revised patterns are
automatically outputted from the 1/0 neuron elements. Finally, it is checked the
standard patterns of alphabet letters of "T" and "L" are reproduced in the revised
patterns.

The letter recognition by the surfaced architecture with the LTPS devices is
shown in Fig. 5-6. Only the standard, distorted, and revised patterns in the 1/O
neuron elements are shown, although steady patterns in the hidden neuron elements
are between them. It is found that the standard patterns can be reproduced in the

revised patterns. This means that we have succeeded in letter reproduction.
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Fig. 5-6. Letter recognition by the surfaced architecture with the LTPS devices.



5.3 Layered Architecture and Amorphous In-Ga-Zn-O Device

Layered architecture means that processing elements are composed in

three-dimensional layered structure [18-21]. The advantage is that a large number
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Fig. 5-7. Layered architecture with the a-1GZO devices.
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of processing elements can be potentially prepared and it is easy to connect them
each other, which is an essence of neuromorphic systems. Here, a large scale
integration (LSI) chip is used as the neuron elements, whereas a-1GZO devices are
deposited on the LSI chip and used as the synapse elements. Although this layered
architecture has only two layers, it is potentially practicable that it has more layers
by repeating the deposition of the thin-film devices.

A layered architecture with the a-1GZO devices is shown in Fig. 5-7. Here, the

neuron elements are the abovementioned 2-inverter circuits, which are

Standard Distorted Revised
Learning Recognizing

Fig. 5-8. Letter reproduction by the layered architecture with the a-1GZO devices.



manufactured by VLSI Design and Education Center (VDEC) [22], and they can be
asily formed because they are general digital circuits. The synapse elements are
planar-type a-1GZO devices, which are directly deposited on the LSI chip using
radio-frequency (RF) magnetron sputtering. A cellular neural network with
eight-direction topology and tug-of-war method is realized. Moreover, modified
Hebbian learning is used by utilizing the conductance decrease of the planar-type
a-1GZO devices. The total system is controlled using a personal computer (PC),
peripheral component interconnect (PCIl) board, and FPGA chip using hardware
description language (HDL).

We teach letter recognition to the cellular neural network. The teaching sequence
is similar to that for the surfaced architecture with the LTPS devices. The cellular
neural network has 25 x 25 neuron elements, including 12 x 12 1/O neuron elements
and hidden neuron elements between them. The majority-rule handling is similar to
that for the Hopfield neural networks, namely, one pixel corresponds to 4 x 4
nexels.

The letter recognition by the layered architecture with the a-1GZO devices is
shown in Fig. 5-8. It is found that the standard patterns can be reproduced in the
revised patterns for some distorted patterns, although the success probability is not

so high, which should be clarified in the near future.
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6 Conclusion

6.1 Conclusion

Artificial intelligences have been used for various applications and are
promising in future societies, and neural networks are representative technologies.
However, because the conventional ones are software on hardware, the size is bulky,
and the power is huge. Neuromorphic systems are biomimetic systems from
hardware level and have the same advantages as living brains, especially, compact
size, low power, and robust operation. On the other hand, thin-film semiconductor
electronic devices can be fabricated on large areas, and three-dimensional layered
structure can be acquired.

In this doctoral dissertation, we studied neuromorphic systems using thin-film
devices. First, we investigated a neuromorphic system, where we simplified a
neuron element to three simple circuits and synapse element to one variable
resistor or capacitor, and proposed tug-of-war method and modified Hebbian
learning, whose advantage is that the synaptic connection strength is automatically
controlled using the local electrical conditions. By using such processing elements
and learning method in neuromorphic systems, it is expected that the size can be
further compact, power can be low, and the operation can be robust. Next, we
examined low-temperature poly-Si (LTPS) device, amorphous In-Ga-Zn-O
(a-1GZ0O) device, and amorphous Ga-Sn-O (a-GTO) device, where, it was
confirmed that the electrical conductance gradually decreases when electric current
flows, which is available as a synaptic connection strength. By using such thin-film
devices in neuromorphic systems, it is expected that the size can be further
compact. Finally, we investigated Hopfield neural networks using crosspoint-type
devices and cellular neural networks using separated architecture, surfaced
architecture, layered architecture, and planar-type devices and confirmed the
correct operations of simple logic learning and letter reproduction. It is believed
that these results will be theoretical bases to realize ultra-large scale integration

for neuromorphic systems.
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6.2 Adaptation

In this doctoral dissertation, we confirmed the correct operations using Hopfield
neural networks and cellular neural networks, which are historical and typical
neural networks described in all text books and have contrastive properties, as
abovementioned. According to the technological history of neural networks,
individual parts can be implemented to new parts and the peculiar functions of the
new parts can be obtained as they are. Therefore, it is expected that this study can
be adapted to the advanced technologies, such as, multi-layer perceptrons [1],
recurrent neural network [2], convolutional neural networks [3], auto-encoders [4],
reservoir neural networks [5], spiking neural networks [6], chaotic neural networks
[7], etc., except the Hebbian learning, which should be considered to be adapted for
each case. Unfortunately, this study cannot be adopted to deep learning [8] as it is,
because the layer re-construction is difficult for neuromorphic systems from
hardware level, but it might be possible by revising three-dimensional layered
structure. Moreover, this study can be adapted to analog output by outputting direct
outputs from synapse connections and rectified linear units (ReLU) [9] by

exchanging neuron elements.

6.3 Future

Neuromorphic systems using thin-film devices have great potentials that the size
can be compact, the power can be low, and the operation can be robust [10-12].
Comparison of the hardware size and power consumption between a human brain
and various neural networks is shown in Fig. 6-1. Rough estimations for this study
in the future are listed. (This comparison is slightly unfair because current abilities
of the conventional ones and future abilities of this study are listed.) It is again
confirmed that neuromorphic systems using thin-film devices have great potentials
that the size can be compact, the power can be low. As a result, the following

contributions are promising in the future.



Human  Soft on Hard Conventional  This study This study
Brain (Watson) Neuromorphic  (R-type) (C-type)

(True North) in future in future
Element Neuron 2x10% 1.5x10%3 1x108 2x10% 2x10%
(NumbernUnit) ~ Synapse 2x10%4 (Memory) 3x108 2x104 2x10%4
Size (Assumption of Brain) 15¢ 10 Refigeraios 2x10* CPUs 11 0.2¢
Power (Assumption of Brain) 20 W 85 kw 6 kW 30 W 20 W

Fig. 6-1. Comparison of size and power between a brain and various neural networks.

First, energy crisis can be avoided. If no effective countermeasure is done, it is
forecasted that artificial intelligences will consumes 60 % of worldwide electricity
in 2050. The future possibilities of the power in a neuromorphic system can be
forecasted as follows. If variable capacitors are used as synapse elements, the
electric capacitance is 10 fF, operation voltage is 0.1 V, and an average value of the
operation frequency is 1 kHz, the dynamic current can be calculated by 10 fF x 0.1
V x 1 kHz = 10-'2 A, and the power in a synapse element can be calculated by 0.1 V
x 1012 A = 10-13 W. If the number of the synapse elements is 2 x 104, which is the
number of the synapse elements in a human brain, the power can be calculated by
1013 W x 2 x 104 =20 W, which is similar to that in a human brain and 1 / 5,000 of
that in Watson, as shown in Fig. 6-1.

Next, artificial intelligence on everything (AloE) may be realized, which is an
extended version of internet of things (IoT). AloE makes everything intelligent,
and telecommunication is conducted only if necessary, which avoid information
explosion. The future possibilities of the size of a neuromorphic system can be
forecasted as follows. If the device size of the synapse element is 1 um?® and the
number of the synapse elements is 2 x 104, the system size can be calculated by 1
um3 x 2 x 10'% =0.2 ¢, which is 1/ 10 of that of a human brain, as shown in Fig.
6-1. Namely the same function can be realized with more compact size using
neuromorphic systems than living brains.

Finally, neuromorphic systems might be equipped in robot brains with common
artificial intelligences. Although mobile robots cannot carry heavy and high-power

super computers, even if internet networks are disconnected, they have to work by



themselves. Therefore, it seems better that elementary functions are executed in the
neuromorphic systems and advanced functions are executed through the internet
networks, which is hybrid systems of the neuromorphic system and common
artificial intelligences. It is also useful that the operation can be robust.

Although we have not yet succeeded in integration of an astronomical number of
processing elements with three-dimensional layered structure, the research results

suggest that it is possible in the future.
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Fig. 6-2. Artificial intelligence on everything.
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