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S t u dy  o n  Ne ur o mo r phi c  Sys t e ms  
us ing  Thin-Fi lm De vi ce s  *  

 
Mutsumi Kimura 

 
 

Abstract 
 

Artificial intelligences have been used for various applications and are promising 

in future societies, but because the conventional neural networks are software on 

hardware, the size is bulky, and the power is huge. Neuromorphic systems are 

biomimetic systems from hardware level and have the same advantages as living 

brains, especially, compact size, low power, and robust operation. On the other hand, 

thin-film semiconductor electronic devices can be fabricated on large areas, and 

three-dimensional layered structure can be acquired. 

Neuromorphic systems using thin-film devices will be studied in this doctoral 

dissertation. First, a neuromorphic system will be investigated, where a neuron 

element is simplified to three simple circuits and a synapse element is simplified to 

one variable resistor or capacitor, and a tug-of-war method and modified Hebbian 

learning will be proposed, whose advantage is that the synaptic connection strength 

is automatically controlled using the local electrical conditions. Next, 

low-temperature poly-Si (LTPS) device, amorphous In-Ga-Zn-O (α-IGZO) device, and 

amorphous Ga-Sn-O (α-GTO) device will be examined, where it is confirmed that the 

electrical conductance gradually decreases when electric current flows, which is 

available as a synaptic connection strength. Finally, Hopfield neural networks using 

crosspoint-type devices and cellular neural networks using separated architecture, 

surfaced architecture, layered architecture, and planar-type devices will be 

investigate, and the correct operations of simple logic learning and letter 

reproduction is confirmed. It will be believed that these results will be theoretical 

bases to realize ultra-large scale integration for neuromorphic systems. In this 

doctoral dissertation, the correct operations will be confirmed using Hopfield neural 
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networks and cellular neural networks, which are historical neural networks and 

have contrastive properties. According to the history of neural networks, individual 

parts can be implemented to new parts and the peculiar functions of the new parts 

can be obtained. Therefore, it is expected that this study can be adapted to the 

advanced technologies of neural networks. 

Neuromorphic systems using thin-film devices have great potentials that the size 

can be compact, the power can be low, and the operation can be robust. Energy crisis 

can be avoided, and artificial intelligence on everything (AIoE) may be realized. 

Although integration of an astronomical number of processing elements with 

three-dimensional layered structure will not be achieved, the research results will 

suggest that it is possible in the future.  
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1 Introduction 
 

Art if icial in tell igences have been used for  var ious applicat ions and are also  

promising in  future societ ies .  Neural networks are representat ive technologies,  and 

the advantages are self -organ izat ion,  self -learn ing, paral lel dist r ibuted computing, 

fau lt  tolerance, etc . However,  because the convent ional ones are sof tware on 

hardware,  the s ize is  bu lky,  and the power is  huge.  Moreover,  some of  the 

advantages are not acqu ired, because they are execu ted on Neumann-type 

computers . Neuromorph ic systems are biomimetic  systems from hardware level and 

have the same advantages as  living brains,  especially,  compact  s ize,  low power,  and 

robust  operat ion.  Although some neuromorph ic systems are well known ,  because 

they are hybrid systems,  the abovementioned advantages are on ly par t ially obtained.  

On the other  hand,  th in -f i lm semiconductor  electron ic devices are widely u sed,  and 

the advantages are that they can be fabricated on large areas and three-dimensional  

layered st ructure can  be acqu ired,  whereas the unavoidable disadvantages are low 

performance and low yield.  Neuromorph ic systems are interest ing applicat ions for  

th in -f ilm devices, because the advantages are available and the disadvantages are 

acceptable.   

In  th is  doctoral dissertat ion , we study neuromorph ic systems using th in -f ilm  

devices.  Firs t,  we invest igate a neuromorph ic system,  where we simplify 

processing elements and propose neu ral networks and a novel learn ing method,  

modif ied Hebbian learn ing.  By using such processing elemen ts  and learn ing 

method in  neuromorph ic systems,  it  is  expected that  the s ize can  be fu rther  compact,  

power can be low, and the operat ion can be robust.  Next , we examine some kinds of  

th in -f ilm devices,  whose character ist ics  are available to the learn ing ru le.  By using 

such  th in -f ilm devices in  neuromorph ic systems,  it  is  expected that  the s ize can be 

further  compact . Finally,  we invest igate Hopfield neural networks and cellu lar  

neural networks and confirm the correct operat ions. Although we have not yet  

succeeded in  integrat ion  of an ast ronomical number of  processing elements with  

three-dimensional layered st ructure, the research resu lts  suggest that it is  possible 

in  the future.
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1.1 Artificial Intelligence  
Artif icial in tell igences are th inking mach ines that  mimic  biological brain s  [1 -5 ].  

They have been  already used in  present world for  var ious applicat ions, such as,  

le tter  recogn it ion [6] , image recogn it ion  [7,8 ],  medical diagnosis  [9 ],  face 

recogn it ion  [10] , information  gu ide [11] , language t ranslat ion  [12] , summary 

extract ion [13], capt ion generat ion [14], expert system [15,16], autonomous 

dr iving [17],  robot  brain [18],  etc. , and are also promising as key technologies in 

future societ ies.   
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Fig. 1-1. Art if icial intell igences for var ious applicat ions.  

 
Neural networks are representat ive technologies that  realize art if icial  

in tel ligences [19 -23] . The outstanding advan tages of  the neu ral networks are 

self-organ izat ion,  self -learn ing, parallel dis tr ibu ted computing,  fau lt tolerance, etc.  

These advan tages are obtained by connect ing a large number of  processing 

elemen ts , namely, a large number of neu ron elements and a much larger number of  

synapse elements,  to imitate human brains, where more than 1011 neuron elements 

and 1015  synapse elements  exist.   

However, because the convent ional neural networks are complicated sof tware 

executed on h igh -spec hardware, the mach ine s ize is  very bu lky, and the power 
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consumption is  unbelievably huge for not  on ly hardware operat ion  itself  but  also 

air condit ioners  to cool it, and so on. Moreover, some of the aforementioned 

advantages,  such as parallel dis t r ibuted compu ting and fau lt  tolerance,  are not 

acqu ired, because they are executed on convent ional Neumann-type computers  [24] , 

which sequent ially handle processes and stop on ly if  a  physical device is  broken . 

Fu rthermore, the computing arch itecture is not opt imized for the neu ral networks,  

and therefore extra circu its  occupy a large area and consume large power.  
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Th e d et ai l ed  exp lan at ion  is  wr i t t en  in  a p r i o r a rt i c l e [5 ] .  The  Hop f i eld  and  c el lu l a r n eura l  

net work s are exp lain ed  l at er  in  th is  d oct o ral  d is sert at i on .  

Fig. 1-2. Neural networks w ith var ious architectures.  
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1.2 Neuromorphic System  
Neuromorph ic systems are hardware bu ildups that  realize neural networks,  wh ich  

are real hardware instead of  virtual sof tware [25 -31] . It  shou ld be noted that  

techn ical approaches to enhance computat ion performance of  mu lt iply–accumulate 

operat ion using graph ics processing un it  (GPU) ch ips [32] and f ield-programmable 

gate array (FPGA) ch ips [33] based on the convent ional  Neumann-type computers  

a r e  d if f e r en t  f r om  n eu r om or ph ic  s ys t em s .  T h e  n e u r om or ph ic  s ys t em s  a r e 

b iom ime t ic  syst ems f rom ha rdwar e leve l,  and there fore  they have the  s ame 

advantages as  living brains. First ,  the mach ine s ize can be very compact.  It  is  

known that a mach ine s ize of a convent ional neu ral network,  Watson [34] , wh ich is  

one of the most famous cogn it ive compu ting system as a  winner in a  television qu iz 

show, is  the same as that of  ten refr igerators,  whereas a s ize of  a  human brain is  

on ly 1.4 ℓ . Next,  the power consumption can be very low. It is  known that a power 

consumption of Watson is  rough ly 100  kW, whereas a  power consumption of a  

human brain  is on ly 20 W. Finally,  the robustness can be improved. It  is known that  

a human brain  loses 100,000 neurons each day, but  it can  keep the needed funct ions. 

It  is  not  cer tain  that  neuromorph ic systems can  catch up the abovementioned 

advantages of human brains, but it can be expected that neuromorph ic systems can  

have more excellent  performances than  the convent ional neu ral networks from the  
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Fig. 1-3. Neuromorphic system compared with conventional neural networks. 
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viewpoin ts of  the aforementioned advantages. We named them "brain -type 

in tegrated system",  because we expect  that  they can be integrated on  everyth ing in  

future life  [35 -41].  

Some neuromorph ic systems are well known,  such as ,  Zeroth Processor f rom 

Qualcomm [42],  nn -X from TeraDeep [43] , SyNAPSE from DARPA [44] , True 

North from IBM [45], brain -t ype in tegrated system from Kyushu Inst itu te of   

 

    
 

Zeroth Processor, Qualcomm 
 

nn-X, TeraDeep 
 

 
 

 

SyNAPSE , DARPA 
 

True North, IBM 
 

 
 

Brain-type Integrated System, Kyushu Institute of Technology  
Fig. 1-4. LSI chips for neuromorphic systems.  
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Technology [46],  e tc .  These large scale in tegrat ion （LSI) ch ips are hybrid systems 

of  Neumann-type compu ters  and neu romorph ic systems.  For  example, on ly a few 

neuron elemen ts are actually prepared and a large number of  neuron elements are 

virtually emulated using t ime-sharing algorithms,  discrete values are actually 

saved in digital memory and con t inuous values are virtual ly approximated like 

analogue memories , etc. Therefore, the abovementioned advantages are on ly 

part ial ly obtained.  Moreover,  because conven t ional technologies  of  the 

semiconductor fabricat ion are u sed, on ly two-dimensional s tructure can be 

acqu ired in pr inciple,  whereas three-dimensional s tructure is  ut il ized in  living 

brains,  where a  large number of  processing elements are prepared and it is  easy to 

connect them each  other, wh ich is  an essence of  neuromorph ic systems.  

 

1.3 Thin-Film Device  
Thin -f i lm sem iconductor  e lectron ic dev ices  are  widely u sed  for  f lat -pane l 

displays (FPDs) [47], solar cells  [48] , e tc. The outstanding features of the th in -f ilm 

devices are low-temperature fabricat ion and h igh  mater ial eff iciency [49] .  As a 

resu lt,  the notable advantages are that  they can  be fabricated on  large areas and 

th ree-d imens ional  layer ed st ructu re can  be acqu ired.  Actua l ly,  we deve loped 

act ive-matr ix organ ic ligh t-emit t ing diode displays (AM-OLEDs), wh ich  have a 

l a ye r e d  s t r u c t u r e  o f  t h in - f i l m  t r an s i s t o r s  ( T FTs )  an d  O LE D s  [ 5 0 ] ,  an d 

complementally metal-oxide semiconductor (CMOS) device using TFTs, wh ich also  

 

 

TFT 

OLED 

   

Fig. 1-5. AM-OLED w ith a layered structure of TFTs and OLEDs.  
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Fig. 1-6. CMOS device w ith a layered structure of AOS and organic TFTs.  

 

have a layered structu re of  amorphous metal-oxide semiconductor  (AOS) and 

organ ic TFTs [51].  On the other  hand,  the unavoidable disadvantages of the 

th in -f ilm devices are low performance and low yield owing to the low-temperature 

fabricat ion.  

Neuromorph ic systems are in terest ing appl icat ions for th in -f ilm devices.  

Because neuromorph ic systems requ ire an ast ronomical number of  processing 

elemen ts , the advan tages of  the th in -f ilm devices,  namely,  they can  be fabricated 

on large areas and three-dimensional layered s tructure can be acqu ired, are 

available. On the other hand,  the disadvan tages, namely,  low performance and low 

yield,  are acceptable,  because the operat ion  speed of  neuromorph ic systems do not  

have to be so fast  and they are robust  against  the damage of  processing elemen ts .  

Some th in -f ilm devices are already used in  neu romorph ic systems [52] .  However,  

the advantages of  the th in -f ilm devices are not employed well,  namely,  they are 

fabricated at  h igh temperatu re and not  un iform because they are poly-crystalline 

mater ials  and have ju st  a two-dimensional s tructure.  

 

1.4 This Study 
In  th is  doctoral dissertat ion , we study neuromorph ic systems using th in -f ilm  

devices [35 -41] . Firs t,  we invest igate a neu romorph ic system, where we simplify 

processing elements, such as , neu ron elements  and synapse elements,  and neural 

network,  to aim at  integrat ion  of  an  astronomical number of  processing elements . 

We propose a novel learn ing method,  modif ied Hebbian  learn ing,  wh ich  does not  

need addit ional circu its to con trol synapt ic connect ion  st rengths.  By using such 
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processing elements and learn ing method in neu romorphic systems, it  is expected 

that  the mach ine s ize can be fur ther compact, power consumption can be low,  and 

the operat ion  can  be robust.  Next,  we examine some kinds of th in -f ilm devices, 

such as , a low-temperature poly-Si device, amorphous In-Ga-Zn-O (IGZO) device, 

amorphous Ga-Sn-O (GTO) device, and SiNx device, whose character ist ics  are 

available to the modif ied Hebbian learn ing. We can poten t ially acqu ire 

three-dimensional layered s tructure.  By using such th in -f ilm devices in 

neuromorph ic systems, it is  expected that  the mach ine s ize can be fur ther compact.  

Moreover, because amorphous IGZO and GTO devices can have extremely low 

leakage curren t,  it  is  also expected that  the power consumption  can  be fu rther  low.  

Finally,  we invest igate Hopfield neural networks and cellu lar  neu ral networks by 

combin ing the aforementioned study and confirm the correct  operat ions.  Although  

it  is  pity that  we have not yet  succeeded in  in tegrat ion  of  an ast ronomical number 

of  processing elements  with th ree-dimensional layered st ructure,  the research 

resu lts  suggest  that  it is  possible in the fu ture.  

 
1.5 Contributions  

Neuromorph ic systems using th in -f ilm devices have great potent ials  that the s ize 

can  be compact ,  the power can  be low,  and the operat ion can be robust  [53 -55] . 

Firs t , energy cr is is can be avoided,  wh ile art if icial in tell igences wil l consumes 

60 % of worldwide electr icity in 2050 if effect ive countermeasu re is  not done. Next,  

ar t if icial intell igence on everyth ing (AIoE) may be realized, wh ich  is  an  extended 

version of in ternet of  th ings (IoT). AIoE  makes everyth ing in tell igen t, and 

telecommunicat ion is conducted on ly if necessary, which avoid in formation  

explosion.  Finally,  neuromorph ic systems migh t be equ ipped in robot brain s with 

common art if icial in tell igences as  hybrid systems.  The detailed explanat ion  will be 

given in  the last  part  of  th is  doctoral dissertat ion .  Although we have not  yet 

succeeded in  integrat ion  of an ast ronomical number of  processing elements with  

three-dimensional layered st ructure, the research resu lts  suggest that it is  possible 

in  the future.  
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2 Neuromorphic System 
 
Neuromorph ic Systems requ ire s implif icat ion  of processing elements and neural 

networks,  wh ich  is  indispensable to aim at  integrat ion  of  an ast ronomical number 

of  processing elements  in  neural networks, and some corresponding learn ing ru le 

must  be introduced. We have succeeded in  s implif icat ion of processing elements,  

such as , neuron elements and synapse elements . Firs t , we reduce a neuron element  

to " two-inverter two-switch circu it",  " two-inverter  one-switch  circu it" , or  

"two-inverter circu it",  where the latter has the same funct ions as a theoret ical  

model,  namely,  the s implest  one.  Next,  we reduce a synapse element  on ly to "one 

var iable resistor"  or  "one var iable capacitor" . Moreover, we invest igate network 

arch itectu res and revise Hopfield neural networks and cellu lar  neural networks,  

which are remarkably su itable for  integrat ion  of  electron devices.  Because they are 

histor ical neural networks and have contrast ive propert ies ,  once it  is  confirmed 

that  they can operate correct ly,  it is also expected that all kinds of  neural networks 

can operate correct ly. Addit ionally,  we invest igate synapt ic  connect ions and 

propose a "tug-of-war  method" . Furthermore,  the lean ing ru le is  also modif ied to 

"modif ied Hebbian  learn ing" .  The advantage is  that  the synapt ic  connect ion  

st rength  is  automatically controlled using the local electr ical condit ions and any 

addit ional circu its are not  needed.  Therefore,  it is  also usefu l to s implify the 

processing elements and neural network from hardware level. Inciden tally, th is 

local behavior  is possible by character is t ics  of  electron  devices,  or,  in  other  words,  

it is conven ient for in tegrat ion of electron device. Finally, we con firm the correct  

operat ions of the processing elemen ts , network arch itectures, synapt ic  connect ion ,  

and learn ing ru le u sing logic s imu lat ion  and a f ield-programmable gate array 

(FPGA) ch ip and tr immer resistors  and capacitors  arranged on  pr in ted circu it  

boards (PCBs). Although the current  resu lts are very fundamental, it can be 

expected that  the neu ral network acqu ires var ious abi l it ies.  Our resu lts wil l be 

theoret ical bases to realize u lt ra- large scale integrat ion  for  neuromorph ic systems.  
 

2.1 Neuron Element  
We consider the operat ion of a neuron element and come to have an idea that  the 
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requ isite min imum funct ions for the neu ron element are (1 ) generat ing a binary 

state , wh ich is  called f ire and stable s tates , and (2) alternat ing the binary state  

according to the input  s ignal [1,2 ].  We propose three-type neu ron  circu its.  Figure 

2-1  shows the neuron circu its,  2 -inverter  2 -switch  circu it , 2 -inverter  1 -switch 

circu it , and 2 -inverter  circu it . Because the neuron circu its can be made using 

complementary metal-oxide-semiconductor (CMOS) circuit,  an inverter consists  of  

a pair  of  n -type and p-type t ransistors ,  and a switch  also consists  of a  pair  of  the 

transis tors.  Some propert ies  of  each  neu ron  circu it  are  compared in  the table in  Fig.  

2-1.  
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Fig. 2-1. Neuron circuits and compar ison of the properties.  
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The 2-inverter 2 -switch circu it is literally a circu it where the two inverters and 

two switches are circu lar ly connected. The inverters  generate a binary state , and 

the binary s tate is maintained when the switches are on, whereas the binary s tate is  

alternated when  the switches are off  and some input  s ignal is  received.  The two 

terminals  are bi-direct ional,  namely,  s imu ltaneously work as  both input  and output  

terminals.  One terminal is  that for  posit ive logic,  whereas the other  terminal is  that  

for negat ive logic. Th is neuron circu it consis ts of eight transis tors. The number of  

the synapse element  per connected neighboring neu ron  element  is  two,  wh ich  is  

explained in  detail la ter.  Because the switch ing pu lses are per iodically applied to 

the switches, some switch ing noise exists.  Because there is  a feedback loop from 

the output  terminal to the input  terminal,  the input  s ignal is  also set  to a  binary 

level.  

The 2 -inverter 1 -switch circu it is also literally a  circu it where the two inverters  

and one switch are circu lar ly connected.  In contrast  to the 2 -inverter 2 -switch  

circu it , the th ree terminals  are un i-direct ional,  namely,  constant ly work as either  

input  or  output  terminal.  One terminal is  an  input  terminal,  whereas the other  two 

terminals  are output  terminals.  One ou tput  terminal is  that  for  posit ive logic,  

whereas the other output  terminal is  that for negat ive logic. Th is neuron circu it  

consists  of s ix t ransis tors.  The number of  the synapse element  per connected 

neighboring neuron element is  four,  twice of that for the 2-inverter  2 -switch circu it , 

because a synapse element sending the s ignal f rom a neu ron  element  to the 

neighboring neuron element and another synapse element sending the s ignal form 

the neighboring neuron element to the neuron element are necessary. Some 

switch ing noise exists, and the inpu t s ignal is  also set to a binary level, wh ich is 

s imilar  to the 2 -inverter  2 -switch circu it.  

The 2-inverter circu it is a circu it where the two inverters  are connected in ser ies .  

The inverters  generate a  binary state , and the binary s tate is  alternated whenever  

some input s ignal is  received. The three terminals  are uni-direct ional. Th is neu ron  

circu it consists  of fou r t ransis tors. The number of  the synapse elemen t per 

connected neighboring neu ron  elemen t is  four. Because the switch ing pu lses are not 

applied, no switch ing noise exists . Because there is no feedback loop,  the input  
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s ignal remains analog, wh ich is  different f rom those for  the other neu ron  circu its .  

The theoret ical model for  the neuron element  is just  a  buffer  block, whose 

funct ion is  completely the same as the 2 -inverter circu it . It shou ld be noted that the 

2-inverter  circu it is  at  least necessary to get  the buffer  block actually.  

 

2.2 Synapse Element  
We consider the operat ion of a synapse element and come to have an idea that the 

requ isite min imum funct ions for the synapse elemen t are (1)  sending the s ignal 

from a neu ron  element  to the neighboring neuron  element,  (2)  merging the s ignals  

from the mu lt iple  neuron elements  for  the neuron  element  to alternate the binary 

state  following the majority ru le,  and (3)  controlling the synapt ic  connect ion 

st rength , namely,  how the s ignal is  effect ively sen t,  on  demand [1 ,2].  We propose 

two-type synapse devices. Figu re 2 -2  shows the synapse devices,  namely,  var iable 

register and variable capacitor.  
 

 

 

 

 

 

Var iable resis tor  
 

Var iable capacitor  
 

F ig. 2-2. Synapse devices using a var iable resistor and capacitor.  
 

The var iable resistor sends the s ignal as  an electr ic  cu rrent . The conductance 

corresponds to the synapt ic  connect ion  s trength.  The electr ic  cu rrents are easi ly 

added by bundling the var iable resis tors  in parallel,  wh ich corresponds to merging 

the s ignals.  The advantage of  the neu ral network using the var iable resis tors  is  

operat ion s tabil ity, because the constant dc electr ic currents surely sett le all the 

condit ions in  the network circu it.  

The var iable capacitor  sends the s ignal as  a voltage shift  through capacit ive 

coupling. The capacitance corresponds to the synapt ic  connect ion st rength.  The 

voltage sh ifts are also easily added by bundling the var iable capacitors  in  parallel.  

The advan tage of the neural network using the var iable capacitors  is  low power 

consumption,  because there is  no constant dc electr ic  cu rrent .
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2.3 Network Architecture 
First , we invest igate Hopfield neural networks. Hopfield neural networks are  

neural networks where all neuron elements  are connected each other and synapse 

elemen ts  are located at all the connect ions [3,4] . As a resu lt,  in comparison with  

the neuron  elements , a  much  larger  number of  the synapse elements  exist ,  and 

connect ion wir ing occupies large areas or  volumes.   

A Hopfield neural network with the s implif icat ion  of  processing elements  is  

shown in Fig.  2 -3. Here, synapse elements are crosspoin t-type devices sandwiched 

between top and bot tom electrodes corresponding to horizontal and vert ical 

bar-electrodes. In comparison with the convent ional Hopfield neural network, the 

vert ical bar-electrodes are switched to not  on ly the input  bu t also the output of the 

neuron  elements,  wh ich is necessary for the learn ing ru les  explained later.  
 

 
 

Learning 

Recognizing 

In Out 

Synapse 
 

Neuron 

 

Fig. 2-3. Hopfield neural network with the simplification of processing elements. 

 

Next,  we invest igate cellu lar  neu ral networks [5 -12] . Cellu lar  neural networks 

are neu ral networks where a  neuron elemen t is connected to on ly neighboring 



2-6 

neuron  elements,  wh ich are remarkably su itable for  in tegrat ion of electron devices .  

They are promising for  image processing,  pattern  recognit ion,  etc .  As a resu lt ,  in  

comparison with  other  neural networks,  a  relat ively larger  number of  the neuron  

elemen ts  exist ,  and a large number of  the synapse elemen ts  st il l exis t , but  

connect ion wir ing occupies lit t le  areas or volumes.   

Cellu lar neural networks with the s implif icat ion  of processing elements is  shown  

in  Fig. 2 -4  [1,2 ,13 -16]. Four-direct ion topology means that a neu ron element is  

connected to four neighboring neuron elements, namely, upper, lower,  r igh t, and 

left  ones, whereas eigh t-direct ion topology means that a neuron element  is  

addit ionally connected also to four diagonal neighboring neuron elemen ts .   
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Fig. 2-4. Cellular neural networks with the simplification of processing elements. 

 

Comparison between the Hopfield neural network and Cellu lar neu ral network is  

shown in Fig. 2 -5 . As aforemen tioned,  in general, Hopfield neural networks have 

fewer neuron elemen ts  and more synapse elemen ts ,  whereas cellu lar  neural 

networks have more neuron  elements  and fewer synapse elements.  It  is  checked that  

Hopfield neural networks can be used for  var ious applicat ions,  whereas it  is  on ly 

checked that  cellu lar neural networks can be main ly u sed for  image recogn it ion , 
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but  th is  is  ju st because systematic  evaluat ion is  not  done very much .  As 

aforementioned, Hopfield neu ral networks are not su itable for in tegrat ion electron 

devices very much, because all neu ron elements are connected each other and 

connect ion wir ing occupies large areas or  volumes,  whereas cellu lar  neural  

networks are remarkably su itable for  in tegrat ion of  electron devices,  because a 

neuron element is connected to on ly neighboring neu ron elements and connect ion  

wir ing occupies lit t le  areas or volumes. Because Hopfield neural networks and 

cellu lar  neural networks are h is tor ical and typical neu ral  networks descr ibed in  all  

text  books and they have contrast ive propert ies,  once it is  confirmed that  they can  

operate  correct ly, it  is also expected that all kinds of neural networks can operate 

correct ly.  
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Fig. 2-5. Comparison between the Hopfield neural network and Cellular neural network. 

 

2.4 Synaptic Connection 
We invest igate synapt ic  connect ions and propose a tug-o f-war  method [1,2] .  The 

tug-of-war  method for  synapt ic connect ion  is  shown in  Fig.  2 -6.  We prepare 

two-type synapse connect ions,  concordant  connect ion  and discordant  connect ion .  

The concordan t connect ion  connects  the same logics  of  the two neuron elements,  

namely,  posit ive and posit ive logics  or  negat ive and negat ive logics ,  and tends to 

make the states of the two neuron elements the same. On the other hand, the 

discordant  connect ion  connects the differen t logics of the two neu ron elements,  

namely, posit ive and negat ive logics , and tends to make the states of the two 

neuron  elements  differen t.  The reason  why we prepare two-type synapse 
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connect ions is  to obtain the same effect that the synapt ic  connect ion  st rength  

becomes both st ronger and weaker even if the actual s trength becomes either  one.  

For example, the effect that the synapt ic  connect ion  s trength becomes stronger is  

gotten,  if the discordant  connect ion  becomes weaker.  
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Fig. 2-6. Tug-of-war method for synapt ic connect ion.  

 

The tug-of-war method is  more effect ive for cellu lar  neural networks,  because  

Hopfield neu ral networks have a much  larger synapse elemen ts  whereas cellu lar  

neural networks have fewer synapse elements  and the tug-of-war  method part ially 

compensates  the disadvantage.  Therefore,  we show examples of  the tug-of-war 

method using cellu lar  neural networks.  The tug-of-war method in  cellu lar neural 

networks is shown in  Fig.  2 -7.  Here, cel lu lar neural networks with fou r-direct ion  
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Fig. 2-7. Tug-of-war method in cellular neural networks.  
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topology are shown when the 2 -inverter 2 -switch, 2-inverter  1 -switch,  and 

2-inverter  circu its  are u sed for  neu ron elements.  

The cellu lar neural network for the 2 -inverter  2 -switch circu it has two synapt ic  

connect ions, concordan t and discordant connect ions,  between  a pair  of the 

neighboring neuron elements . As a resu lt , the cellu lar  neural network having n  

neurons approximately has 8 ⋅n  t ransistors  and 4 ⋅n  synapse devices by neglect ing 

the except ion  of  the connect ion  at  the per ipheral neuron elemen ts .  

The cel lu lar neu ral network for the 2 -inverter  1 -switch  and 2 -inverter circu its  

has four  synapt ic  connect ions,  forward and reverse connect ions in  addit ion  to the 

concordan t and discordan t connect ions, between a pair  of  the neighboring neuron 

elemen ts . As a resu lt , the cel lu lar neural network for the 2-inverter 2 -switch circu it  

having n  neuron elements approximately has 6 ⋅n  t ransistors and 8 ⋅n  synapse 

devices, and the cellu lar neu ral network for the 2 -inverter  circu it approximately 

has 4 ⋅n  t ransistors  and 8 ⋅n  synapse devices.  Because the st ructure of the transis tors  

is  usually more complicated than  that  of synapse devices if  the synapse devices are 

made using simple devices, the 2 -inverter circu it  is  more su itable to realize 

ultra-large scale in tegrat ion.  

 

2.5 Modified Hebbian Learning 
Hebbian learn ing is a typical learn ing ru le in  biological and art if icial neural 

networks [17] . The synapt ic connect ion s t rength is enhanced, when both neuron 

elemen ts  connected to the synapse connect ion are in the f ire state, but impaired 

otherwise.  Since the processing elements , such  as,  neu ron  elements  and synapse 

elemen t,  are dramatically s implif ied, the lean ing ru le is also modif ied.  Modif ied 

Hebbian learn ing is  shown in Fig.  2 -8 [1,2 ]. Here, "F"  means the f ire s tate , whereas 

"S"  means the stable s tate. As an example, consider the NOT logic. The lef t and 

r ight neuron elements are assigned to the input  and output elements, respect ively.  

In it ial ly,  in the in it ial recogn izing stage, a stable state is applied to the input  

elemen t, and a stable state ar ises f rom the ou tpu t element, and vice versa, because 

the synapt ic  connect ion s trength of  the concordant  connect ion  is accidentally 

s ligh t ly s tronger  than that  of  the discordant  connect ion , which is  not the NOT logic.  
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Next,  in  the f irs t learn ing stage,  a stable s tate  is  applied to the input  element , and a 

f ire s tate  is applied to the output element. Since the concordant connect ion  

connects  the two terminals  for  the same logic in  the two neuron elements and the 

binary states at both terminals in the two neu ron elements  are different , some 

voltage occurs th rough the concordant  connect ion , or the electr ic current  f lows 

through the concordant  connect ion due to the voltage,  but any voltage does not  

occur through the discordant connect ion, or the electr ic cu rrent does not f low 

through the discordant connect ion. If the synapse elemen ts are designed so that the 

synapt ic connect ion st rength is con t inuously impaired when some voltage occu rs or  

the electr ic  cu rrent  f lows, on ly the synapt ic  connect ion  st rength  of the concordan t 

connect ion gradually weakens.  In  the second learn ing stage, a  f ire  state  is  applied 

to the input elemen t,  and a s table s tate is applied to the output element.  Similar ly,  

on ly the synapt ic  connect ion st rength of  the concordant  connect ion  gradually 

weakens.  Finally, in the f inal recogn izing stage,  a s table state is  applied to the 

input  element,  and a f ire  state  ar ises  f rom the output  elemen t,  and vice versa,  

because the synapt ic  connect ion  strength  of  the concordant  connect ion becomes 

sligh t ly weaker  than that of  the discordan t connect ion,  which is  the NOT logic.   
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Fig. 2-8. Modif ied Hebbian learning.  
 

The outstanding advantage of  the modif ied Hebbian  learning is  that  the synapt ic  

connect ion s trength is  automatically controlled using the local voltage or  electr ic  
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current  and any addit ional circu its are not needed to control synapt ic connect ion 

st rengths.  Therefore, it  is believed that  the modif ied Hebbian  learn ing is  also 

usefu l to s implif y the processing elemen ts  and neural network from hardware level.  

Incidentally,  th is  local behavior is  possible by character is t ics of electron devices, 

or,  in  other  words,  it  is conven ient  for integrat ion  of  electron  device,  wh ich is  

explained in detail in the following chapers. On the other hand, the minor  

disadvantage of the modif ied Hebbian  learn ing is  that  because the synapt ic  

connect ion s trength usually changes in the direct ion  that  it is impaired, the 

synapt ic  connect ion  s trength cannot  be enhanced even  if both neuron elements  

connected to the synapse connect ion are in the f ire s tate.  However, the relat ive 

values of the synapt ic  connect ion  s trength can be enhanced.  In any case, by 

employing modif ied Hebbian learn ing and the character ist ic change of the synapse 

devices,  we successfu lly create a  synapse device that  consists  of  ju st  one var iable 

resis tor or var iable capacitor.  

 

2.6 Operation Confirmation 
We confirm the operat ions of the abovementioned processing elemen ts , such  as,  

neuron elements and synapse elemen ts , network arch itectures, especially,  cellu lar  

neural network, because it  is revised more than the convent ional ones, synapt ic  

connect ion ,  name ly,  tug -of -war method,  and learn in g ru le,  name ly,  mod if ied  
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Fig. 2-9. Tr ial example for the operat ion conf irmat ion.  
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Hebbian  learn ing,  using logic s imu lat ion  and an FPGA ch ip and tr immer resis tors  

and capacitors arranged on PCBs [1,18] . A t r ial example for the operat ion  

con firmat ion  is  shown in  Fig.  2 -9 .  Here,  a  cellu lar  neural network,  wh ich  has 3×3 

neuron  elemen ts ,  four-direct ion  topology,  tug-of-war method,  and modif ied 

Hebbian  learn ing are used.  Arbit rary two-input  one output  logics,  such  as ,  AND, 

OR, and XOR, are learnt,  where two input  neu ron  elements  and one output  neu ron  

elemen t are assigned,  namely,  the left upper neuron element is that for In1, the lef t 

lower neuron element is  that for In2, and r ight  middle neuron  element  is that for  

Out.  

We execute logic s imu lat ion  to determine the en t ire  pattern of  the synapt ic  

connect ion s t rength.  Firs t, we apply In1, In2, and Out to the neu ron elements for  

them.  Next,  we calcu late  a steady pattern  for the s tates  of  the neuron elemen ts  

based on the normal theory of the dynamics of  the neural network and by repeat ing 

calcu lat ion  of  alternat ing the state . After that,  the synapt ic  connect ion  st rength  of  

the concordant  connect ion  is  kept  the same when both  neuron elemen ts  connected 

to the synapse element  are in the same states,  and is  impaired otherwise, whereas 

the synapt ic  connect ion  s trength  of  the discordant  connect ion  is  kept  the same 

when both neu ron  elements  connected to the synapse element  are in  the different  

states,  and is  impaired otherwise.  Finally,  we obtain  the ent ire  pat tern of the 

synapt ic connect ion st rength . Figure 2 -10 shows the ent ire pattern of the synapt ic  

connect ion st rength  for  AND, OR, and XOR logics.  
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We compose the neuron elemen ts in an FPGA ch ip and compose the synapse 

elemen ts  by t r immer resis tors and capacitors arranged on PCBs. Figure 2 -11 shows 

the actual hardware for the operat ion con firmat ion,  namely, FPGA, tr immer 

resis tors ,  and tr immer capacitors.  Here,  in  addit ion to the condit ions in  the logic 

s imu lat ion,  neu ron  elements ,  such as ,  two-inverter two-switch circu it ,  two-inverter  

one-switch circu it , and two-inverter circu it , synapse elements , such as , var iable 

registers  and capacitors , are used.  It shou ld be noted that  although  discrete par ts ,  

such as,  t r immer resistors  and capacitors,  are u sed as  var iable registers and 

capacitors ,  th is  approach  is  on ly for  the evaluat ion,  and they shou ld be 

undoubtedly replaced by some actual electron devices,  such as , memristors and 

ferroelectr ic capacitors,  to realize u lt ra-large scale integrat ion.  The ent ire  patterns 

of  the resistances and capacitances in  the t r imer resis tors and capacitors are set to 

the ent ire  patterns of  the synapt ic  connect ion st rength calcu lated using the logic 

s imu lat ion.   
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Fig. 2-11. Actual hardware for the operat ion conf irmat ion.  
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Fig. 2-12. Input and output waveforms of the actual  hardware.  
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Figure 2 -12 shows the inpu t  and output  waveforms of  the actual hardware.  In1  and 

In2 are per iodic rectangle pu lses, wh ich make all fou r combinat ions of h igh voltage 

(H) and low voltage (L), and applied to the inpu t terminals of the neuron elements 

for In1 and In2. Ou t is  measured at the outpu t terminal of  the neuron elements  for  

Out. It  is  confirmed that the correct  operat ions are ach ieved for all logics , namely,  

AND, OR, and XOR, all neuron circu its,  namely,  2 -inverter 2 -switch,  2 -inverter  

1-switch , and 2 -inverter  circu its,  and all synapse elements , namely,  var iable 

resis tor and capacitor.  For the 2 -inverter  2 -switch  and 2 -inverter  1 -switch circu its , 

a lthough some switch ing noise exists ,  after the switch ing pu lses are off  and states  

are sett led, the correct operat ions are ach ieved.  For the 2 -inverter circu it , no 

switch ing noise exists . For  the var iable capacitor, on ly the 2 -inverter  1 -switch  

circu it  is u sed, because the input  terminals  become f loat ing if  the 2 -inverter  circu it  

is u sed and unexpected behavior is  unavoidable if some electr ic charges are 

accumulated in the inpu t terminals during the network operat ion . In  any case, it  is  

con firmed that the correct  operat ions are ach ieved for  all logics,  neuron elements,  

and synapse elements .  

Although the current  resu lts  are very fundamental,  it  can be expected that  the  

neural network acqu ires var ious abi lit ies , if  a  lot  of  processing elemen ts  are 

provided,  wh ich is  possible  because we succeeded in  s implif icat ion  of  processing 

elemen ts . In summary, our resu lts will be theoret ical bases to realize u ltra-large 

scale in tegrat ion for  neu romorph ic systems.  Although  we need great  effort  to 

develop actual electron devices having the requ isite min imum funct ions especial ly 

for the synapse elements, our  resu lts indicates that the researchers  solely focus on 

the development of the circu its and devices having the requ isite  min imum 

funct ions,  because the correct operat ion  of the neural networks has been  already 

guaranteed once such circu its  and devices are realized.  
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3 Thin-Film Device 
 

Thin -f ilm devices may be su itable devices for  neuromorph ic systems from some  

viewpoin ts.  Firs t,  the outstanding features of  the th in -f ilm devices are 

low-temperature fabricat ion and h igh mater ial eff iciency. As a resu lt,  the notable 

advantages are that they can be fabricated on large areas and three-dimensional 

layered s tructu re can be acqu ired. Therefore, an astronomical number of processing 

elemen ts may be integrated, when th in -f ilm devices are u sed for neuromorph ic 

systems. Next , the unavoidable disadvantages of the th in -f ilm devices are low 

performance and low yield owing to the low-temperature fabricat ion.  However,  

they may be acceptable, because the operat ion speed of  neuromorph ic systems do 

not have to be so fast and they are robust  against  the damage of  processing 

elemen ts . In  th is  chapter,  we enumerate some kinds of  thin -f ilm devices available  

for neuromorph ic systems, such as,  low-temperatu re poly-Si (LTPS) device,  

amorphous metal-oxide semiconductor  (AOS) devices,  namely,  amorphous 

In -Ga-Zn-O (α-IGZO) device and amorphous Ga-Sn-O (α-GTO) device,  and Ta2O5 

device.  In  any case,  it  is  con firmed that  the electr ical conductance gradually 

decreases when electr ic  current  f lows,  wh ich is  available as a  synapt ic  connect ion  

st rength based on an operat ion theory of  the modif ied Hebbian learn ing. By using 

such th in -f ilm devices in neuromorph ic systems,  it is  expected that  the mach ine 

s ize can be fur ther compact. Moreover, because amorphous IGZO and GTO devices 

can  have extremely low leakage curren t,  it is  also expected that  the power 

consumption can  be fur ther low.  

 

3.1 Low-Temperature Poly-Si Device  
LTPS devices are widely u sed as th in -f ilm transis tors (TFTs)  [1 -3 ] for f lat -panel 

displays (FPDs),  such as ,  h igh -resolut ion  liqu id-crystal displays (LCDs) and 

ligh t-emit t ing diode displays (OLEDs).  These FPDs are main ly u sed for  mobile  

applicat ions because they are very tough  ageist  rough handling.  

A t ransis tor-type LTPS device is  shown in  Fig.  3 -1.  Firs t,  an amorphous-Si th in  

f ilm is deposited using low-pressure chemical-vapor deposit ion  (LPCVD) of Si2H6 
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and crystall ized using XeCl excimer laser  to form a poly-S i th in f ilm. The 

th ickness of  the poly-Si th in f ilm is  50 nm,  and the grain  s ize is 500 nm or  less .  

Next,  a  SiO 2 th in f ilm is  deposited using plasma-enhanced chemical-vapor  

deposit ion  (PECVD) of tetraethyl orthosi licate (TEOS) to form a gate-insu lator  

th in f i lm. The th ickness of  the gate-in su lator th in f ilm is  75 nm. Next , phosphorous 

ions are pseudo-selfalignedly implan ted and thermally act ivated to form source and 

drain  regions, and a gate-metal th in f ilm is  deposited and pat terned to form a gate 

terminal.  Finally,  a  SiO 2 th in  f ilm is  deposited and patterned to prepare an 

in ter layer-in su lator  th in  f ilm, and a source-drain metal th in f ilm is deposited and 

patterned to form source and drain terminals.  Consequent ly,  top-gate, coplanar, and 

n-type poly-S i TFTs are fabricated.  Here,  the gate width  (W) / gate length (L ) = 5  /  

5 µm. The f ield-effect  mobil ity (µ) ≅  90 cm2 ⋅V- 1⋅s- 1,  and threshold voltage (Vt h) ≅  

4 .0 V.  

 
 

Gate 

poly-Si 
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Source Drain 
Gate 

poly-Si 
Drain 

 
 

Fig. 3-1. Transistor-type LTPS device.  

 

The degradation character ist ics  of the LTPS device are invest igated to f ind a 

su itable condit ion  for the modif ied Hebbian le arn ing.  The degradation 

character ist ics  of  the LTPS device is  shown in  Fig.  3 -2  [4 ].  Firs t,  in it ial t ransfer  

and output  character is t ics are measured.  Next , st ress tests are executed by applying 

Vgs =  0 ∼ 15 V and Vds = 0 ∼ 12  V during 0 ∼ 3  h r.  Afterward, normal transfer and  

output  character is t ics  are measured,  where the normal character is t ic  is  def ined as 

the t ransistor character is t ic  when the sou rce and drain  terminals  for  the 

measuremen t are the same as those for the st ress test.  Next,  reverse character is t ics  

are also measu red,  where the reverse character is t ic is  def ined as the t ransis tor  

character ist ic  when the source and drain terminals  for the measurement  are 
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opposite  to those for the s tress test.  Here, s ince the grain  s ize is  as small as  500 nm 

or  less  as  aforemen tioned, it  can be assumed that  the grains are un iformly 

dist r ibuted with in  the poly-S i th in f ilm and there is  lit t le unbalance between the 

normal and reverse character is t ics  f rom the viewpoin t  of the number and locat ion  

of  the grain  boundaries .  
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Fig. 3-2. Degradat ion character ist ics of the LTPS device.  
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The Jou le-heat ing and hot-carr ier  degradat ions are indicated in  Fig.  3 -2.  Here,  

logarithmic and linear graphs of the t ransfer character is t ics are shown to observe 

Vth  sh ifts and µ decreases, whereas normal and reverse character is t ics  of  the ou tput  

character ist ics are shown to check whether they are symmetr ical or asymmetr ical.  

The symmetr ical character is t ics are def ined when the degradat ion in the normal  

character ist ics are s imilar  to the degradat ion in the reverse character is t ics, whereas 

the asymmetr ical character is t ics  are def ined when the degradat ion of the normal 

character ist ics  are less  than  halves of  the degradat ion  in the reverse character is t ics.  

First , no degradat ion  is  observed for  low Vg s  and Vd s .  On the contrary, Vt h  sh ifts  are 

main ly observed during the range of hou rs for h igh Vg s  and medium Vd s  as shown by 

yellow areas in Fig.  3 -2.  It  is supposed that  Jou le-heat ing degradat ion occurs  

because the power consumption is  large in the poly-Si  th in f ilms but the lateral  

electr ic  f ields are not st rong near  the drain  junct ions [5,6] . The Si-H bonds are 

broken  in  the poly-Si th in  f ilms and at  their  interfaces,  and the dangl ing bonds are 

generated there.  In addit ion ,  the normal and reverse output character is t ics are 

symmetr ical because the en t ire  poly-S i th in  f ilms are un iformly heated and 

degraded. Therefore, it  is  suggested that the symmetr ical normal and reverse 

character ist ics  indicate the Jou le-heat ing degradat ion . On the other hand,  not on ly 

Vth  sh if t but also µ decreases are observed du ring the range of minu tes for h igh Vd s  

as  shown  by green  areas in  Fig.  3 -2.  It  is  supposed that  hot-carr ier  degradat ion 

occurs because the lateral electr ic  f ields are st rong near  the drain junct ions [7,8] . 

The charges are in jected into the gate-insu lator th in f ilms, and t raps are generated 

in  the poly-Si th in  f ilms and at  their  in terfaces.  In  addit ion,  the normal and reverse 

output character ist ics are asymmetr ical because the poly-Si th in f ilms,  

gate-in su lator  th in  f ilms,  and their  interfaces on ly near  the drain  junct ions are 

locally degraded.  Therefore, it is  suggested that  the asymmetr ical normal and 

reverse character is t ics indicate the hot-carr ier degradat ion.  Although the hot  

carr ier  degradat ion  and Jou le-heat ing degradat ion  are expected to s imu ltaneously 

occur  especially for h igh Vg s  and Vd s , the hot carr ier  degradat ion rapidly occurs as  

aforementioned and is therefore dominant . Since the symmetr ical normal and 

reverse character is t ics  indicate the Jou le-heat ing degradat ion  whereas the 
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asymmetr ical character is t ics  indicate the hot-carr ier  degradat ion , they can  be 

clear ly and easily classif ied as shown in Fig. 3 -2 . It qualitat ively coincides with  

the previous report [6].  Since electr ic currents f low in alternat ing direct ions 

through  the synapse elemen ts  in  the neural networks,  it is  preferable to use the 

Jou le-heat ing effect because the character is t ic  var iat ions are symmetr ical.  

 

3.2 Amorphous In-Ga-Zn-O Device  
AOS devices are promising because they have excellent and uniform performances 

even when they are deposited at low temperature and in amorphous phase [9]. 

Moreover, AOS devices can be potent ially formed using pr int ing methods [10], 

which is conven ient to realize three-dimensional layered structure for neuromorphic 

systems [11]. α-IGZO devices are representat ive devices  [12] and recent ly used as  

TFTs for FPDs, such as, h igh -resolut ion LCDs and OLEDs [13-16]. 

Planar-type α-IGZO devices are shown in  Fig.  3 -3  [17]. Firs t,  a  quartz  glass  

substrate is  u sed.  The th ickness is  1mm, and the s ize is  3×3 cm.  Next ,  an  α-IGZO 

th in  f i lm is  depos ited using radio -frequency (RF) magnetron spu t ter ing. The 

spu tter ing target  is an IGZO ceramic whose composit ion is In :Ga:Zn=1 :1 :1 , and the 

spu tter ing gas is  Ar. The α-IGZO th in f ilm is pat terned th rough a metal mask as  

shown by the dotted line in Fig.  3 -3. The th ickness of  the α-IGZO th in f ilm is   
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F ig. 3-3. Planar-type α - IGZO devices.  
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70nm. These fabricat ion condit ions are the same as those for  the TFTs having the 

best performance [18]. Finally,  Ti and Au th in f ilms are sequen t ially deposited 

using vacuum evaporat ion.  Ti and Au  th in  f ilms are also patterned through  a metal  

mask as shown in Fig.  3 -3 . The th icknesses of Ti and Au  th in  f ilms are 50nm each.  

Ti th in  f ilm is  used to obtain  ohmic contact  to the α-IGZO th in  f ilm because it  has a  

proper work funct ion and improve adherence, and Au  th in f ilm is  used to avoid the 

surface oxidat ion and make probing easy.  No addit ional annealing is  executed.  

The electr ical curren t th rough the planar-type α-IGZO device is shown in Fig.  

3-4 [19]. Here, we apply 3.3 V between the r ight and lef t terminals of the Ti and Au 

th in f ilms and measure the electr ical current  through  the planar-type α-IGZO 

device. It  is found that the electr ical conductance cont inuously decrease when the 

electr ic  cu rrent  f lows.  The conductance decrease is  i rreversible.  The modif ied 

Hebbian learn ing can be employed using th is phenomenon. As shown in Fig. 3 -4,  

the conductance decrease is not so fast. However, because the operat ion  of the 

neural network is based on the delicate balance of the majority ru le, the s low 

change is sometimes conven ient  also to avoid the excess learn ing.  
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F ig. 3-4. Electr ical current through the planar-type α - IGZO device.  

 

The mechan isms for  the conductance decrease are shown in  Fig.  3 -5.  It  is  

supposed that  th is  phenomenon  is  caused by either  the generat ion  of  t rap states  in  

the α-IGZO th in f ilm or  in ject ion  of  the electr ic charge in to the interface between  

the α-IGZO th in  f ilm and quartz glass substrate.  In  the case of  the generat ion  of  
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trap s tates , f irst , free electrons are accelerated and collide to the α-IGZO crystal.  

Next,  t rap s tates  are generated and capture free electrons. Finally,  free electrons 

decrease because of the f ixed charge in the t rap s tates and are s imu ltaneously 

scat tered by them, wh ich induces the conductance decrease.  On the other hand,  in  

the case of  the in ject ion  of the electr ic charge,  f irst ,  free electrons are again  

accelerated near the interface and are casually in jected in to the interface between  

the IGZO th in  f ilm and quartz  glass  substrate.  Next,  the free electrons are captu red 

at the interface. Final ly,  f ree electrons decrease because of the f ixed charge of the 

in jected electrons, wh ich also induces the conductance decrease.   

 

 
 

Glass 

IGZO trap 
generation 

charge 
injection 

 

Fig. 3-5. Mechanisms for the conductance decrease. 

 

The planar-type α-IGZO device is a  kind of memristor,  because the def in it ion of  

the memristor  is  that  the present  value of electr ic  cu rren t changes by the h istor ical 

summation  of  f lowing electr ic  charges. However,  in  comparison  with the 

conven t ional memristers  used as  resist ive memories  [20],  the planar-type α-IGZO 

device shows the cont inuous change of the electr ic conductance, wh ich is  

preferable for our  neural network.  Moreover,  it  does not  need h igh temperature for  

fabricat ion process and can be poten t ially formed using pr int ing methods.  

Fu rthermore, in  comparison with the convent ional f loat ing-gate t ransis tors [21] ,  

the device s tructure is  qu ite  s imple,  wh ich is  conven ient  to realize 

three-dimensional layered structure for  neuromorph ic systems.
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3.3 Amorphous Ga-Sn-O Device  
α-GTO devices are newcomer devices and expected to be gotten at low cost  

because they do not include In [22] . Therefore, α-GTO devices may be more 

su itable for  neuromorph ic systems,  because a lot  of  mater ial are consumed when  

three-dimensional layered structure are bu ilt.   

Crosspoin t-type α-GTO devices are shown in Fig. 3 -6. Firs t,  a  quartz glass  

substrate is u sed. Next,  Ti th in f ilm is  deposited using vacuum evaporat ion . The T i  

th in f ilm is  pat terned th rough a metal mask,  and f ine mult iple  s t r ipe pat terns are 

formed as bot tom electrodes. Next,  an  α-GTO th in f ilm is  deposited using RF 

magnetron  sput ter ing. The spu tter ing target is  a  GTO ceramic,  and the sputter ing 

gas is  Ar  : O 2 = 20  : 1  sccm.  The α-GTO th in  f ilm is  pat terned through  a metal mask,  

and per ipheral areas are exposed to contact  the bottom electrodes. The th ickness of  

the α-GTO th in  f i lm is  70nm. Final ly,  Ti th in f ilm is again deposited. Fine mu lt iple  

st r ipe patterns are again formed as top electrodes, wh ich is perpendicu lar to the 

bottom electrodes.  Post-anneal ing is  executed at  350 °C for 1  hr.  

 

 
 

Ti 

Ti / Al 

GTO 

150µm 

150µm 

GTO 

Glass 
Ti 

Ti 

Ti 

 
 

F ig. 3-6. Crosspoint-type α -GTO devices.  

 

The electr ical cu rrent  through the crosspoint-type α-GTO devices is  shown in  

Fig.  3 -7. Here, we apply 3.3 V between the top and bot tom terminals of Ti th in 

f ilms and measure the electr ical curren t th rough the crosspoin t-type α-GTO device.  

It shou ld be noted that the horizontal axis is a logarithmic axis in  contrast  with Fig.  
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3-4.  It is  found that the electr ical conductance cont inuously decrease when the 

electr ic current f lows and the decrease speed is faster than the planar-type α-IGZO 

device because the voltage is  applied to the α-GTO thin f ilm and st rong. The 

modif ied Hebbian  learn ing can be employed also u sing th is  phenomenon.  It  is  

supposed that the mechan ism for  the conductance decrease is  the generat ion  of  t rap 

states in  the α-GTO th in  f ilm.  
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Fig. 3-7. Electr ical current through the crosspoint-type α -GTO device.  

 
3.4 Ta2O5 Device  

Ta2O 5 devices are begun to be used as  resis t ive memories [23].  Because 

memristor devices are often considered to be used for neural networks [24],  Ta2O5 

devices are used also in  th is  s tudy.  Crosspoint-type Ta2O5 devices are s imilar  to 

crosspoint-type α-GTO devices,  and the electr ical cu rrent is  also s imilar,  namely,  

the electr ical conductance cont inuously decrease. We will submit  the resu lts  to 

some jou rnal soon .  
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4 Hopfield Neural Network 
 

Hopfield neural networks are neu ral networks where all neuron  elements  are 

connected each other through synapse elements. Because a large number of the 

synapse elements  exist,  it  is  importan t  to confirm the correct  operat ions of  the 

s implif ied synapse elements . Neuron  elements  are virtually composed in  a 

f ield-programmable gate array (FPGA) ch ip,  whereas synapse elemen ts are actually 

composed of  crosspoint-type devices.  In  the learn ing stage,  voltages appear  and 

electr ic  cu rrents  f low in  some crosspoin t  devices,  and the synapt ic  connect ion  

st rength ,  such  as ,  the electr ic  conductance,  etc .,  is  weakened.  In  the recogn it ion 

stage, output s ignals  are detected, wh ich is the response from the Hopfield neu ral  

network.  The electr ic  conductance is  weakened in  the learn ing stage because the 

voltages are applied for  a long t ime,  whereas the electr ic  conductance is not  

changed very much in  the recogn it ion stage because the voltages are applied for an  

in stant . Let ter  reproduct ion  is  execu ted to confirm the operat ion of the Hopfield 

neural network.  Crosspoin t-type α-GTO devices is  u sed as  synapse elemen ts .  Firs t,  

it is  found that  the standard pat terns of two numeral letters can be completely 

reproduced in  the revised patterns.  However,  an is sue is that the success 

probabil ity is not so h igh . Therefore, majority-ru le handl ing is invented. It is found 

that  the s tandard patterns of th ree alphabet let ters  can be reproduced in the revised 

patterns.  Moreover,  the success probabil ity is  h igh.  This  means that  we have 

succeeded in  letter  reproduct ion .  In  addit ion ,  crosspoint-type Ta2O5 devices are 

used,  and we have also succeeded in  let ter  reproduct ion.  

 

4.1 System Architecture 
Hopfield neural networks are neu ral networks where all neuron  elements  are 

connected each other and synapse elements  are located at all the connect ions [1 ,2].  

As a resu lt , in comparison with the neuron elements , a much larger number of the 

synapse elements  exist,  and connect ion wir ing occupies large areas or volumes.  

Therefore,  whereas var ious st ructures are usually acceptable for the neuron  

elemen ts , it  is  important  to s implif y the synapse elements and con firm the 
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operat ions.   

System arch itecture of a  Hopfield neural network is  shown in  Fig.  4 -1  [3] .  

E igh ty neu ron  elements  are vir tually composed in  a  personal compu ter  (PC),  

per ipheral component interconnect  (PCI) board,  and FPGA ch ip using hardware 

descr ipt ion language (HDL),  whereas 80 ×  80 synapse e lemen ts  are actua l ly 

composed of crosspoin t-type devices, and they are connected th rough a connect ion  
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F ig. 4-1. System architecture of a Hopf ield neural network.  
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socket  to con firm operat ions of  crosspoin t  devices with  var ious mater ials  by 

replacing them in the connect ion  socket . The crosspoin t-type devices have top and 

bottom electrodes as aforementioned, and they correspond to horizontal and 

vert ical bar-electrodes. The bus groups of the horizontal and vert ical  

bar-electrodes are each  connected to the neuron  elements.  Output  s ignals  f rom the 

neuron elements are output ted to the bus group of  the horizontal bar-electrodes,  

and they are also output ted to the bus group of the vert ical bar-electrodes in  

learn ing stage. Ou tput  s ignals  f rom the bus group of  the vert ical bar-electrodes are 

input ted into the neuron  elements  in recogn izing stage. "Nexel"  is an abbreviat ion  

of  "neu ron cel l",  wh ich is  s imilar  to that "pixel" is an abbreviat ion  of "picture cell" ,  

and in -out  in terface to a  neuron element.  In  summary, a  convent ional arch itectu re 

of  the Hopfield neu ral network is  used with the novel arch itecture of  the 

crosspoint-type devices.  

The operat ion pr inciple of the crosspoint-type devices is  shown in Fig. 4 -2 .  Firs t,  

in  th e le a rn ing  s tage ,  h igh  vo l t age,  f o r  exam ple ,  3 .3  V,  is  app l ied  t o  th e 

corresponding horizontal and ver t ical bar-electrodes for the neu ron elements  in the 

f ire  s tate, as shown in br ight blue in  Fig. 4 -2 , whereas low voltage,  for  example,  

GND, is applied to the bar-electrodes in the s table s tate , as shown in dark blue in 

Fig.  4 -2 .  As a resu lts ,  voltages appear  in  some crosspoint  devices,  and electr ic  

currents f low, as shown in br ight brown in Fig.  4 -2. After  a  wh ile,  the synapt ic  

connect ion s trength, such as , the electr ic  conductance, etc. , is weakened. Finally,  

in  the recogn it ion  stage,  h igh and low voltages are applied to the corresponding 

horizontal bar-electrodes, and h igh and low voltages are detected from the vert ical 
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F ig. 4-2. Operat ion pr inciple of the crosspoint-type devices.  
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bar-electrodes, wh ich is  the response from the Hopfield neural network.  It  shou ld 

be noted that  the electr ic  conductance is  weakened in  the learn ing stage because the  

voltages are applied for  a long t ime,  whereas the electr ic  conductance is not  

changed very much in  the recogn it ion stage because the voltages are applied for an  

in stant .  

Letter reproduct ion  is  executed to confirm the operat ion of the Hopfield neural  

network.  The letter reproduct ion is  a  part  of the let ter  recogn it ion [4],  where 

distorted let ters is reproduced to s tandard letters,  which is available for  

hand-writ ing reading, opt ical character recogn it ion (OCR), etc. , and also an 

of ten -used cr iter ion to check neural networks [5 ]. Mapping from a two-dimensional 

pattern for  image expression to a  one-dimensional pattern for  computer interface is  

necessary for the letter reproduct ion. Mapping from a two-dimensional pattern to a  

one-dimensional pat tern is  shown in Fig. 4 -3 . Although the two-dimensional  

pattern includes 9×9=81 un its , because the one-dimensional compu ter  interface 

includes on ly 80  un its,  one un it  in  the image descr ipt ion  is  neglected.  In  

comparison with  convolut ional neu ral networks (CNNs) [6 ],  the advantage of  th is  

study is that , whereas the CNNs need deep mult iple  layer neural networks, the 

Hopfield neural network needs an on ly s ingle layer neu ral network, wh ich is s imple 

and speedy in  both learn ing and recogn izing stages.   
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Fig. 4-3.  Mapping from a two-dimensional pattern to a one-dimensional pattern. 
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4.2 Amorphous Ga-Sn-O Device  
Crosspoin t-type α-GTO devices are used as  synapse elements .  An  experimental 

resu lt of the let ter  reproduct ion is  shown in Fig. 4 -4 . Here,  the pixel pat tern  

corresponds to the nexel pattern one to one. Firs t , in  the learn ing stage, standard  
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Fig. 4-4. Letter reproduct ion using complete matching.  
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patterns of  numeral le tters  of  "0"  and "1"  are prepared.  These on -pixels ,  wh ich  is  

shown in green squares in Fig.  4 -4,  and off-pixels , which is shown in  invisible 

squares in Fig. 4 -4 , are input ted in to the neuron elements  as binary states in several 

minutes mu lt iple  t imes.  Next ,  in  the recogn izing stage,  s ligh t ly dis torted pat terns 

of  numeral let ters  of  "0"  and "1"  are prepared,  where the dis tor ted pixels  are 

indicated by wh ite squares in Fig.  4 -4.  These on -pixels and off-pixels  are input ted 

in to the neu ron elements  in an in stant . Next, revised pat terns are ou tpu tted from 

the neu ron elements  immediately. As aforementioned, the electr ic conductance is  

weakened in  the learn ing stage because the voltages are applied for  a  long t ime,  

whereas the electr ic  conductance is not  changed very much in  the recogn it ion s tage 

because the  voltages are applied for  an  instant  and addit ionally the s light ly 

distorted patterns are random. Finally,  it is checked that the standard pat terns of  

numeral let ters of "0"  and "1"  are completely reproduced in  the revised patterns.  

As shown in Fig. 4 -4 , it is  found that the standard patterns can be reproduced in the 

revised pat terns. Th is means that we have succeeded in let ter reproduct ion.  

However, an issue is  that  the success probabilit y is not so h igh, namely,  the 

experimen tal resu lt shown in Fig.  4 -4 is indeed an on ly example. Th is  is because 

the complete match ing between the s tandard and revised patterns requ ires  complete 

fabricat ion of all synapse elements  and horizontal and vert ical bar-electrodes,  

which is  almost impossible from the viewpoin t of our  fabricat ion abi lit ies .  

Majority-ru le handling is invented to solve the issue of  the complete match ing.  

Majority-ru le handling is  shown in  Fig.  4 -5.  For  the one-to-one handling in  the 

complete match ing, one pixel corresponds to one nexel. On the other  hand, for the 

majority-ru le handling,  one pixel corresponds to mu lt iple nexels,  for example,  3 ×   
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Fig. 4-5. Major ity-rule handling.  
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3 nexels.  Firs t, when the distorted pattern is  inputted,  f rom the pixel pattern, the 

nexel pat tern is  generated. For  the example of  3 ×  3  nexels,  in  each  on -pixel,  f ive 

nexels are randomly selected and set  to on -nexels ,  whereas the other  nexels  are set  

to off-nexels . On the other  hand, in each off-pixel,  f ive nexels are randomly 

selected and set  to off-nexels ,  whereas the other nexels  are set  to on -nexels.  These 

on -nexels and off-nexels  are inputted in to the neuron elemen ts as binary s tates .  

Next,  when the revised pat tern is  ou tput ted, from the nexel pat tern, the pixel  

pattern is  generated. E ither  on -pixel or  off-pixel is  determined by the majority ru le 

between on -nexels  and off-nexels  in  the pixel. The majority-ru le handl ing seems 

su itable for  neu ral networks because it  seems robust against the damage of  

processing elemen ts .  

An experimental resu lt of the let ter reproduct ion using majority-ru le handling 

for two letters is shown in Fig. 4 -6. First , in the learn ing stage, s tandard patterns of  

alphabet let ters  of "T" and "L" are prepared.  Here, the majority-ru le handling is  

not u sed, namely,  in  each on -pixel,  n ine nexels  are set to on -nexels , and vice versa.  

These on -nexels  and off-nexels  are inpu tted into the neuron elements  in  several  

minutes mu lt iple  t imes.  Next ,  in  the recogn izing stage,  s ligh t ly dis torted pat terns 

of  alphabet letters of "T"  and "L"  are prepared,  where the distorted pixels  are 

indicated by wh ite  squares in  Fig.  4 -6 . Here, the majority-ru le handling is  used,  

namely,  in  each  on -pixel,  f ive nexels are randomly selected and set  to on -nexels ,  

and vice versa.  These on -nexels and off-nexels  are input ted in to the neuron  

elemen ts in an instan t. Next , revised pat terns are output ted from the neu ron  

elemen ts  immediately.  Here,  the majority-ru le handling is  used again ,  namely,  

either on -pixel or  off-pixel is  determined by the majori ty ru le between on -nexels  

and off-nexels  in  the pixel.  Finally,  it  is  checked that  the s tandard pat terns of  

alphabet let ters  of "T" and "L"  are reproduced in the revised patterns.  As shown in  

Fig.  4 -6 , it  is  found that  the standard patterns can be reproduced in  the revised 

patterns.  Th is  means that  we have succeeded in  letter  reproduct ion  using the 

majority-ru le handling. Moreover, the success probabil ity is h igh , namely, there is  

no failure.  

Another experimen tal resu lt of  the letter reproduct ion using majority-ru le  
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handling for  th ree letters  is  shown  in  Fig.  4 -７.  The experimental method is  the 

same as that for  two let ters except  that  alphabet  let ters  of  "T" , "L",  and "X"  are 

used.  As shown  in  Fig.  4 -7 ,  it  is  found that  the s tandard patterns can  be reproduced 

in  the revised patterns also for  three let ters.  Th is also means that  we have 

succeeded in letter reproduct ion using the majority-ru le handling.  
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Fig. 4-6. Letter reproduct ion using major ity-rule handling for two letters.  
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Fig. 4-7. Letter reproduct ion using major ity-rule handling for three letters.  
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It is theoret ically known that m = 0.14 ×  n  [7 ] or m = n / 4 log n [8],  where n is  

the number of  un its and m is  the maximum of  letters that can be learned in the 

Hopfield neural network.  Although th is  Hopfield neural network is  not a  s imple 

Hopfield neural network, because n = 9 , number of pixel, ∼ 80, number of nexel, m 

= 0.14 × 9  ∼ 0 .14 × 80 = 1.26 ∼ 11.2 or m = 9 / 4 log 9 ∼ 80 / 4 log 80 = 1 .02 ∼ 4 .56.  

Therefore,  it  is  good resu lt  that  the s tandard patterns can  be reproduced in  the 

revised patterns for  th ree let ters .    

 

4.3 Ta2O5 Device  
Crosspoin t-type Ta2O5 devices are used as  synapse elements . An experimental 

resu lt of  the letter reproduct ion  using the majority-ru le handling for  the two let ters  

for the Ta2O 5 devices is  s imilar  to that for  the α-GTO devices.  It is  found that  the 

standard patterns can be reproduced in  the revised pat terns. Th is means that  we 

have succeeded in  let ter  reproduct ion  also for  the Ta2O 5 devices.  We will submit  

the resu lts to some jou rnal soon .  
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5 Cellular Neural Network 
 

Cellu lar  neu ral networks are neu ral networks where a  neuron  element  is  

connected to on ly neighboring neuron elements and remarkably su itable for  

in tegrat ion  of  electron  devices.  Because the cellu lar  neural networks are qu ite 

different from the Hopfield neural networks,  namely, a relat ively larger number of 

the neuron elemen ts  exist , etc. ,  it is  again  importan t to con firm the correct  

operat ions of  the s implif ied processing elemen ts , namely, both neuron and synapse 

elemen ts , synapt ic  connect ion , and modif ied Hebbian  learn ing. First , a separated 

arch itectu re with  the amorphous IGZO (α-IGZO) devices is  evaluated,  whose 

advantage is  that  either  the neuron  or  synapse elements  can  be independent ly 

replaced from the viewpoin t of  pract ical u se and respect ive evaluat ions.  We have 

con firmed that the cellu lar  neural network can learn  s imple logic funct ions.  Next , a  

surfaced arch itecture with low-temperature poly-Si (LTPS) devices is  evaluated,  

where f lexible f ilm substrate  can  be poten t ially used,  which can be crumpled like 

brain  wrinkles.  We have again con firmed that the cellu lar neu ral network can learn  

s imple logic funct ions. Moreover, another  surfaced arch itectu re with the LTPS 

devices is  evaluated.  We have succeeded in  letter  reproduct ion.  Final ly,  a  layered 

arch itectu re with  amorphous Ga-Sn-O (α-GTO) devices is  evaluated,  whose 

advantage is  that  a  large number of  processing elements  can  be potent ially prepared 

and it  is  easy to connect them each  other.  We have part ially succeeded in  let ter  

reproduct ion, although the success probability is  not so h igh , wh ich shou ld be 

clar if ied in  the near future.  

 

5.1 Separated Architecture and Amorphous In-Ga-Zn-O Device  
Cellu lar  neu ral networks are neu ral networks where a  neuron  element  is  

connected to on ly neighboring neuron elemen ts  [1 -8 ], wh ich are remarkably 

su itable for integrat ion  of  electron  devices.  They are promising for  image 

processing,  pattern  recogn it ion,  etc . As a resu lt,  in comparison with  other  neural 

networks, a relat ively larger  number of  the neuron elements exist , and a large 

number of  the synapse elemen ts  st il l exis t,  but  connect ion  wir ing occupies lit t le  
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areas or  volumes. Therefore, it  is again important to s implify the processing 

elemen ts ,  namely,  both neu ron  and synapse elements,  ver ify the synapt ic  

connect ion and modif ied Hebbian learn ing, and con firm the operat ions. We 

evaluate several arch itectures of cellu lar neural networks and th in -f ilm devices for  

synapse elements  

Separated arch itecture means that  neuron elemen ts  are composed somewhere,  

synapse elements  are separately composed elsewhere,  and they are connected 

through peripheral wir ing [9 ]. The advantage is  that either the neuron or synapse 

elemen ts  can be independen t ly replaced from the viewpoint  of  pract ical use and 

respect ive evaluat ions.  Here,  α-IGZO devices are used as the synapse elements.   
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Fig. 5-1. Separated architecture w ith the α - IGZO devices.  

 
 
 

A separated arch itecture with the α-IGZO devices is  shown in Fig.  5 -1 . Here,  the 

neuron  elements  are the abovemen tioned 2 -inverter  2 -switch  circu its,  wh ich are 

composed in a f ield-programmable gate array (FPGA), Cyclone II FPGA supplied 
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from Altera and designed by hardware descr ipt ion  language (HDL) [10] ,  and they 

can  be easily formed because they are general digital circu its.  3  × 3  neu ron  

elemen ts  are formed because we believe that  th is is  the min imum number for  the 

s imple logic learn ing explained later  and it is also important  to evaluate how small  

neural network can get the requ ired funct ions.  The synapse elements  are 

planar-type α-IGZO devices.  The neuron and synapse elemen ts  are properly 

connected th rough a pr in ted circu it  board (PCB),  and a cellu lar  neu ral network with  

fou r-direct ion topology and tug-of-war method is  realized. Moreover, modif ied 

Hebbian  learn ing is  u sed by u t il iz ing the conductance decrease of  the planar-type 

α-IGZO devices.  

We teach simple logic funct ions, such  as , AND and OR, to the cellu lar  neu ral  

network.  Firs t, we assign In1, In2 , and Out  as shown in Fig. 5 -1.  Next , we apply 

combinat ions of  h igh voltage (H), namely, 3.3 V, and low voltage (L) , namely,  

GND, to In1  and In2 and corresponding voltage to Out.  As a resu lt , the con t inuous 

change of  the electr ic conductance occurs  in  each  α-IGZO device.  Finally,  we 

apply the combinat ions of the voltages to on ly In1  and In2 and check the voltage at  

Out. Similar  to the Hopfield neural network, the electr ic  conductance is  weakened 

in  the learn ing stage because the voltages are appl ied for a long t ime,  whereas the 

electr ic conductance is not changed very much in the recogn it ion stage because the  

voltages are applied for an in stant .  
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The logic learn ing by the separated arch itecture with the α-IGZO devices is  

shown  in  Fig.  5 -2 .  Because the f ine oscillat ions are noises f rom the switch ing 

pu lses to the switches,  ignore them.  It  is  found that  although Ou t  is  in it ially not  

correct  before the learn ing,  Ou t  becomes f inally correct  af ter  the learn ing for  both 

AND and OR. A problem is  that  it  takes as  long as  one hour  for  the learn ing.  We 

expect that th is problem can be solved by opt imizing the electr ical character ist ic  of  

the α-IGZO devices and speeding up the conductance decrease. In any case,  th is  

means that we have confirmed that the cellu lar neural network can learn  s imple 

logic funct ions.  

 
5.2 Surfaced Architecture and Low-Temperature poly-Si Device  

Surfaced arch itecture means that all processing elements are composed and 

connected on f lat surfaces [11,12]. Although r igid glass substrates are u sed in  th is  

study,  f lexible f ilm substrate  can  be poten t ially used,  which can be crumpled like 

brain wrinkles. Here,  LTPS devices are used as the processing elements,  namely,  

both neuron  and synapse elements.   
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A surfaced arch itecture with the LTPS devices is  shown in Fig.  5 -3 . Here, the 

neuron  elements  are the abovemen tioned 2 -inverter  2 -switch  circu its,  wh ich are 

composed by LTPS th in -f ilm t ransistors  (TFTs)  [13-15], where the field effect 

mobility (µ) and threshold voltage (Vth) of the n-type transistors are 93 cm2⋅V-1⋅s-1 and 3.6 

V while those of the p-type transistors are 47 cm2⋅V-1⋅s-1 and -2.9 V respectively,  and they 

can  be easily formed because they are general digital circu its.  3  × 3  neu ron  

elemen ts  are formed.  The synapse elements  are transis tor-type LTPS devices.  The 

neuron  and synapse elements  are s imu ltaneously fabricated on a f lat surface,  and a 

cellu lar neural network with  fou r-direct ion topology and tug-of-war method is  

realized.  Moreover,  modif ied Hebbian learn ing is u sed by ut il iz ing the conductance 

decrease of the t ransis tor-type LTPS devices.   

We teach simple logic funct ions, such as,  AND, OR, and XOR, to the cellu lar  

neural network. The teach ing sequence is  the same as that  for the separated 

arch itectu re with  the α-IGZO devices except  that  the dr iving voltages are ±5 V,  the 

switch ing pu lses are ±10 V,  the control voltages to con trol the degradat ion  

character ist ics are 15 and 10 V for  the learn ing and recogn izing stages,  

respect ively,  and the logic voltages are ±5  V for  the H and L,  respect ively.  

The logic learn ing by the surfaced arch itecture with the LTPS devices is shown 

in  Fig.  5 -4.  It is  found that  although  Out is  in it ially not correct before the learn ing,  

Out becomes f inally correct after  the learn ing for all AND, OR, and XOR. Th is  
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means that we have confirmed that the cellu lar neural network can learn  s imple 

logic funct ions.  

Another surfaced arch itecture with the LTPS devices is shown in Fig. 5 -5 [16,17].  

Here,  an  on ly difference is  that  3  ×  3  neu ron  elemen ts  are formed in  Fig.  5 -3 , 

whereas 7 × 7  neuron elemen ts and corresponding synapse elements are formed in  

Fig.  5 -5 .  
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Fig. 5-5. Another surfaced architecture w ith the LTPS devices.  
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We teach letter recogn it ion to the cellu lar neural network. The teach ing sequence  

is  s imilar  to that  for  the Hopfield neural networks. We assign  input and output  

( I/O) neuron elements as shown  in Fig.  5 -5.  The cellu lar neural network has 7 ×  7 

neuron  elements , including 3  × 3  I/O  neuron elements,  to wh ich the standard 

patterns are inputted and from which the revised pat terns are ou tpu tted,  and h idden  

neuron  elements between  them. The dr iving voltages are ±8 V, and the control  

voltages are 15 and 10 V for the learn ing and recogn izing stages, respect ively. Firs t , 

in  the learn ing stage, standard patterns of  alphabet letters of "T"  and "L" are 

input ted in to the I/O  neuron  elemen ts .  A steady pat tern of  the binary s tates  is  

generated in  the h idden neu ron  elements  based on the normal theory of  the 

dynamics of  the neural network.  After that,  the synapt ic connect ion st rengths are 

changed,  obeying modif ied Hebbian  learn ing.  Next, in  the recogn izing stage,  

s ligh t ly dis tor ted patterns of  alphabet  let ters of "T" and "L"  are input ted in to the 

I/O neuron elements and immediately released.  Next , revised patterns are 

automatically ou tpu tted from the I/O  neuron elemen ts .  Finally,  it  is checked the 

standard pat terns of  alphabet let ters of  "T"  and "L" are reproduced in the revised 

patterns.   

The let ter recogn it ion by the surfaced arch itectu re with the LTPS devices is  

shown in Fig. 5 -6.  On ly the s tandard, dis tor ted, and revised patterns in  the I/O 

neuron  elements are shown,  although steady patterns in the h idden  neuron elements  

are between  them. It  is  found that  the standard patterns can be reproduced in  the 

revised patterns.  Th is means that we have succeeded in  let ter reproduct ion .  
  

T       

L       

  Standard  Distorted  Revised 

  Learning  Recalling 
  

Fig. 5-6. Letter recognition by the surfaced architecture with the LTPS devices.  
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5.3 Layered Architecture and Amorphous In-Ga-Zn-O Device  
La ye r e d  a r ch i t e c t u r e  m e an s  t h a t  p r o ce s s in g  e l em en t s  a r e  com po se d  in  

three-dimensional layered st ructure [18 -21] . The advan tage is  that  a  large number  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

LSI 

α-IGZO 

 

 

Synapse 

 

Neuron 

Synapse 
Sy

na
ps

e 

Sy
na

ps
e 

 

 

 
 

LSI Neuron 
PC 

PCI 
board 

FPGA 
chip 

 

Fig. 5-7. Layered architecture w ith the α - IGZO devices.  



5-9 

of  processing elements can be potent ially prepared and it  is  easy to connect  them 

each other,  wh ich is an essence of neu romorph ic sys tems.  Here, a  large scale 

in tegrat ion  （LSI)  ch ip is  u sed as the neuron elements,  whereas α -IGZO devices are 

deposited on  the LSI ch ip and used as  the synapse elements.  Although  th is  layered 

arch itectu re has on ly two layers , it  is  poten t ially pract ic able that it  has more layers 

by repeat ing the deposit ion of the th in -f ilm devices.  

A layered arch itecture with the α-IGZO devices is  shown in Fig.  5 -7.  Here, the  

n eu r on  e l e m en t s  a r e  t h e  a b o v em en t i o n e d  2 - i n v e r t e r  c i r cu i t s ,  w h i c h  a r e  
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manufactu red by VLSI Design  and Educat ion  Center (VDEC) [22] , and they can be 

asily formed because they are general digital circu its. The synapse elements are 

planar-type α-IGZO devices, wh ich are direct ly deposited on the LSI ch ip using 

radio-frequency (RF) magnetron sputter ing. A cellu lar neu ral network with  

eight-direct ion topology and tug-of-war method is realized. Moreover, modif ied 

Hebbian  learn ing is  u sed by u t il izing the conductance decrease of  the planar-type 

α-IGZO devices.  The total system is  controlled using a personal computer  (PC),  

per ipheral component interconnect  (PCI) board,  and FPGA ch ip using hardware 

descr ipt ion language (HDL).  

We teach letter recogn it ion to the cellu lar neural network. The teach ing sequence  

is  s imilar  to that  for  the surfaced arch itecture with the LTPS devices.  The cellu lar  

neural network has 25  ×  25 neu ron  elemen ts ,  including 12 ×  12 I/O  neu ron  elements  

and h idden  neuron elements between  them.  The majority-ru le handling is  s imilar  to 

that  for the Hopfield neural networks, namely, one pixel corresponds to 4 × 4  

nexels.  

The let ter  recogn it ion by the layered arch itectu re with  the α-IGZO devices is  

shown in Fig.  5 -8. It is  found that the s tandard patterns can be reproduced in  the 

revised pat terns for some distor ted patterns, although the success probabil ity is  not  

so h igh,  wh ich  shou ld be clar if ied in  the near  future.  
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6 Conclusion 
 

6.1 Conclusion 
Artif icial intelligences have been used for var ious applicat ions and are  

promising in  fu ture societ ies,  and neu ral networks are representat ive technologies. 

However, because the convent ional ones are sof tware on hardware, the s ize is  bu lky,  

and the power is  huge.  Neuromorph ic systems are biomimetic  systems from 

hardware level and have the same advantages as  living brains, especial ly,  compact 

s ize, low power, and robust  operat ion.  On the other  hand,  th in -f ilm semiconductor  

electron ic devices can  be fabricated on  large areas,  and three-dimensional layered 

st ructure can  be acqu ired.   

In  th is  doctoral dissertat ion ,  we studied neu romorph ic systems using th in -f ilm 

devices. Firs t , we invest igated a neuromorph ic system, where we simplif ied a 

neuron  elemen t to three s imple circu its  and synapse elemen t to one var iable 

resis tor or capacitor, and proposed tug-of-war method and modif ied Hebbian  

learn ing, whose advantage is  that the synapt ic  connect ion st rength is automatically 

con trolled using the local electr ical condit ions.  By using such processing elements  

and learn ing method in  neu romorph ic systems, it  is  expected that  the s ize can be 

further  compact,  power can  be low,  and the operat ion  can  be robust.  Next,  we 

examined low-temperature poly-Si (LTPS) device,  amorphous In -Ga-Zn-O 

(α-IGZO) device, and amorphous Ga-Sn-O (α-GTO) device,  where, it  was 

con firmed that the electr ical conductance gradually decreases when electr ic  current  

f lows,  wh ich is  avai lable as  a  synapt ic  connect ion  strength. By using such  th in -f ilm 

devices in neuromorph ic systems, it  is  expected that  the s ize can  be further  

compact.  Finally,  we invest igated Hopfield neural networks using crosspoint-type 

devices and cellu lar  neural networks u sing separated arch itecture,  surfaced 

arch itectu re,  layered arch itectu re,  and planar-type devices and confirmed the 

correct  operat ions of s imple logic learn ing and letter  reproduct ion . It  is  believed 

that  these resu lts wil l be theoret ical bases to realize u ltra-large scale in tegrat ion  

for neuromorph ic systems.  
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6.2 Adaptation 
In th is doctoral dissertat ion, we con firmed the correct  operat ions using Hopfield  

neural networks and cellu lar neural networks, wh ich are h istor ical and typical  

neural networks descr ibed in  all text  books and have con trast ive propert ies,  as  

abovementioned.  According to the technological h istory of  neural networks,  

individual par ts can be implemented to new parts and the pecu liar funct ions of the 

new parts  can be obtained as they are. Therefore, it is expected that th is s tudy can 

be adapted to the advanced technologies , such as,  mult i-layer perceptrons [1] ,  

recurren t neural network [2] ,  convolu t ional neural networks [3 ],  au to-encoders  [4],  

reservoir  neural networks [5 ],  spiking neural networks [6 ],  chaot ic  neural networks 

[7],  etc .,  except  the Hebbian  learn ing,  wh ich  shou ld be considered to be adapted for  

each case. Unfortunately,  th is  s tudy cannot be adopted to deep learn ing [8] as it is ,  

because the layer  re-construct ion  is diff icu lt for  neuromorph ic systems from 

hardware level, but  it  might  be possible by revising three-dimensional layered 

st ructure. Moreover, th is s tudy can be adapted to analog output by output t ing direct 

outputs f rom synapse connect ions and rect if ied linear un its (ReLU) [9] by 

exchanging neuron elements .  

 

6.3 Future  
Neuromorph ic systems using th in -f ilm devices have great potent ials  that the s ize 

can  be compact ,  the power can  be low,  and the operat ion can be robust  [10 -12] . 

Comparison of the hardware s ize and power consumption between a human brain  

and var ious neural networks is  shown in Fig.  6 -1 . Rough  est imat ions for  th is  s tudy 

in  the futu re are lis ted. (Th is  comparison is s ligh t ly unfair because curren t abil it ies  

of  the conven t ional ones and futu re abil it ies of th is study are lis ted.)  It is  again  

con firmed that  neuromorph ic systems using th in -f ilm devices have great  poten t ials  

that  the s ize can  be compact,  the power can  be low.  As a resu lt ,  the following 

con tr ibu t ions are promising in the fu ture.   
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 Human 

Brain 
Soft on Hard 

(Watson) 

Conventional  
Neuromorphic 
(True North) 

This study 
(R-type) 
in future 

This study 
(C-type) 
in future 

Element 
(Number in Unit) 

Neuron 2×1010 1.5×1013 

(Memory) 
1×106 2×1010 2×1010 

Synapse 2×1014 3×108 2×1014 2×1014 
Size (Assumption of Brain) 1.5 ℓ 10 Refrigerators 2×104 CPUs 1 ℓ 0.2 ℓ 

Power (Assumption of Brain) 20 W 85 kW 6 kW 30 W 20 W 
  

Fig. 6-1. Comparison of size and power between a brain and various neural networks. 

 

Firs t , energy cr is is  can be avoided. If  no effect ive countermeasure is  done,  it is  

forecasted that ar t if icial in tell igences will consumes 60 % of worldwide electr icity 

in  2050.  The futu re possibil it ies  of  the power in  a  neuromorph ic system can  be 

forecasted as follows. If  var iable capacitors  are used as synapse elements,  the 

electr ic capacitance is 10 fF,  operat ion voltage is  0.1 V, and an average value of the 

operat ion frequency is  1 kHz, the dynamic cu rrent can be calcu lated by 10 fF × 0 .1  

V ×  1  kHz =  10-1 2 A,  and the power in  a  synapse element  can be calcu lated by 0.1 V 

× 10-1 2 A =  10-1 3 W. If the number of the synapse elements is  2 × 101 4,  wh ich is  the 

number of the synapse elemen ts in a human brain,  the power can be calcu lated by 

10-13  W ×  2  ×  101 4  =  20 W, wh ich  is  s imilar  to that  in  a  human brain  and 1  /  5,000 of  

that  in  Watson, as shown in Fig.  6 -1 .  

Next,  ar t if icial in telligence on everyth ing (AIoE) may be realized,  wh ich is  an  

extended version  of  internet of  th ings (IoT).  AIoE  makes everyth ing intell igent , 

and telecommunicat ion  is  conducted on ly if  necessary,  wh ich avoid in formation  

explosion.  The future possibil it ies of  the s ize of a neuromorph ic system can be 

forecasted as  follows. If  the device s ize of  the synapse element  is  1 µm 3 and the 

number of  the synapse elements  is  2 ×  1014 ,  the system size can  be calcu lated by 1  

µm3 ×   2  ×  101 4 =  0.2 ℓ ,  wh ich  is  1 /  10 of  that  of  a human brain , as shown in Fig.  

6-1.  Namely the same funct ion  can  be realized with  more compact  s ize using 

neuromorph ic systems than living brains.  

Finally,  neuromorph ic systems migh t  be equ ipped in  robot  brain s with common  

ar t if icial in telligences. Although mobile  robots  cannot  carry heavy and h igh -power 

super compu ters , even if internet networks are disconnected, they have to work by 
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themselves.  Therefore,  it  seems better  that  elementary funct ions are executed in  the 

neuromorph ic systems and advanced funct ions are executed through the internet  

networks,  wh ich is  hybrid systems of  the neuromorph ic system and common  

ar t if icial intelligences. It  is  also usefu l that  the operat ion can be robust .  

Although we have not yet succeeded in  integrat ion of an astronomical number of  

processing elements with three-dimensional layered st ructure, the research resu lts 

suggest that  it  is possible in  the future.  

 

 
Fig. 6-2. Art if icial intell igence on everything.  
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