
NAIST-IS-DD1561008

Doctoral Dissertation

A Human Capital Index for

Open Source Software Development

Saya Onoue

March 15, 2018

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Saya Onoue

Thesis Committee:

Professor Kenichi Matsumoto (Supervisor)

Professor Keiichi Yasumoto (Co-supervisor)

Professor Akito Monden (Okayama University)

Assistant Professor Hideaki Hata (Co-supervisor)

Assistant Professor Raula Gaikovina Kula (Co-supervisor)

A Human Capital Index for

Open Source Software Development∗

Saya Onoue

Abstract

Software development is a very human-intensive activity. This dissertation

proposes a framework for Open Source Software (OSS) that represents human

factors as Human Capital. This Human Capital framework is a benchmark to

measure the reliability and sustainability of OSS projects.

To propose a framework for OSS Human Capital, first a systematic mapping

study was carried out that classified 78 studies into four dimensions: (1) capacity

for skill attainment, (2) deployment for a workforce, (3) development for access

to learning, and (4) know-how for knowledge sharing. The key outcome is a set

of 13 indicators and 12 metrics for constructing a Human Capital Index (HCI).

The dimension of deployment and know-how are studied through the popu-

lation structure of 90 OSS projects, using a demographic approach. This disser-

tation proposes software population pyramids, which represent the deployment

and know-how dimensions of Human Capital. The second study investigates the

characteristics of contributors’ activities in OSS development for capacity.

The final study is the construction and evaluation of the HCI framework.

This empirical study evaluates the HCI of OSS projects and clarifies the metrics

that affect OSS Human Capital. Furthermore, the HCI dimension plot is useful

for comparing human activity in OSS projects. This dissertation provides an

evidence-based comprehensive framework to help practitioners understand the

Human Capital in their projects.

Keywords:

Open Source Software, Human Capital, Software Development Community, Soft-

ware Ecosystem, Demography

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, NAIST-IS-DD1561008, March 15, 2018.

i

Φʔϓϯιʔειϑτ΢ΣΞ։ൃʹ͓͚Δ

ਓతࢿຊࢦඪͷఏҊ ∗

ඌ্ɹࣿ໺

಺༰֓ߎ

ਓతࢿຊͱ͸ਓ͕ؒ࣋ͭ஌ೳ΍ٕೳͳͲͷೳྗΛࢿຊͱͯ͠ଊ͑ͨ֓೦Ͱ͋

ΓɼΦʔϓϯιʔειϑτ΢ΣΞ (OSS) ։ൃ͸ਓతࢿຊʹཔͬͨ׆ಈͰ͋Δͱ

͍͑Δɽຊ࿦จͰ͸ɼOSS։ൃͷਓతࢿຊͷࢦඪΛࣔ͢ϑϨʔϜϫʔΫΛఏҊ͢

Δɽ͜ͷϑϨʔϜϫʔΫ͸ɼOSSϓϩδΣΫτͷ৴པੑͱܧଓੑΛܭଌ͢Δ͜ͱ

͕ՄೳͰ͋ΔɽOSS։ൃͷਓతࢿຊͷ࿮૊ΈΛఏҊ͢ΔͨΊʹɼຊ࿦จͰ͸ॳΊ

ʹ 78ฤͷڀݚΛ (1) Capacity (2) Deployment (3) Development (4) Know-howͷ

4ͭͷཁૉʹ෼ྨ͠ɼͦ ͷ݁ՌΛ΋ͱʹ 13ͷई౓ΛఏҊ͠ɼ12ͷࢦඪΛఆٛͨ͠ɽ

ຊ࿦จͰ͸ɼ͸͡ΊʹਓֶޱతΞϓϩʔνΛ༻͍ͨDeploymentͱKnow-howͷ

ϐϥϛουʹΑͬͯޱɽ͜͜Ͱ͸ఏҊͨ͠ιϑτ΢ΣΞਓͨͬߦඪͷఏҊΛࢦ 90

ͷOSSϓϩδΣΫτͷਓߏޱ଄Λ໌Β͔ʹ͠ɼऀݙߩͷ֫ಘɾҡ࣋ʹ͔͔Δࢦඪ

ͱɼऀݙߩͷଟ༷ੑʹ͔͔ΔࢦඪΛఏҊͨ͠ɽ࣍ʹɼCapacityͷࢦඪΛఏҊ͢Δ

ͨΊɼOSS։ൃʹ͓͚Δऀݙߩͷ׆ಈͷಛ௃Λௐࠪ͠ɼऀݙߩͷֶࣗݾशʹ͔͔

ΔࢦඪΛఏҊͨ͠ɽޙ࠷ʹɼఏҊͨ͠ OSSϓϩδΣΫτͷਓతࢿຊࢦඪΛධՁ

͢ΔͨΊɼ1,418ͷOSSϓϩδΣΫτͷਓతࢿຊࢦඪΛࢉग़ͨ͠ɽਓతࢿຊࢦඪ

ͷਪҠ͔ΒɼϓϩδΣΫτΛGrowingɼGrowing after shrinkingɼShrinking after

growingɼShrinkingͷ 4ͭʹ෼ྨ͠ɼ֤ϓϩδΣΫτͷਓతࢿຊࢦඪͷਪҠ෼ੳ

Λ௨ͯ͠ਓతࢿຊʹಛʹӨڹΛ༩͑ΔࢦඪΛ໌Β͔ʹͨ͠ɽ

Ωʔϫʔυ

Φʔϓϯιʔειϑτ΢ΣΞɼਓతࢿຊɼιϑτ΢ΣΞ։ൃίϛϡχςΟɼιϑ

τ΢ΣΞΤίγεςϜɼਓޱ౷ֶܭ

∗ಸྑઌ୺Պֶٕज़େֶӃେֶ ৘ใՊֶڀݚՊ ത࢜࿦จ, NAIST-IS-DD1561008, 2018೥ 3݄

15೔.

ii

List of Major Publications

Journal paper

1. S. Onoue, H. Hata, A. Monden, and K. Matsumoto, “Investigating and Pro-

jecting Population Structures in Open Source Software Projects: A Case

Study of Projects in Github,” IEICE Transactions on Information and Sys-

tems, volume E99-D, number 5, pages 1304–1315, May 2016.

2. ඌ্ࣿ໺,ാल໌,দຊ݈Ұ, “GitHub্ͷ׆ಈཤྺ෼ੳʹΑΔ։ൃऀ෼ྨ,”

৘ใॲཧֶձ࿦จࢽ, volume 56, number 2, pages 715–719, February 2015.

International Conference

1. S. Onoue, H. Hata, and K. Matsumoto, “A Study of the Characteristics of

Developers Activities in Github,” In Proc. of 5th International Workshop

on Empirical Software Engineering in Practice (IWESEP 2013), pages 7-12,

December 2013.

2. S. Onoue, H. Hata, and K. Matsumoto, “Software Population Pyramids:

the Current and the Future of Oss Development Communities,” In Proc.

of 8th International Symposium on Empirical Software Engineering and

Measurement (ESEM 2014), number 34, 4 pages, September 2014.

Domestic Conference

1. ඌ্ࣿ໺, ാल໌, দຊ݈Ұ, ಈཤྺ͔Βͷ׆෼ੳʹΑΔܕݪ“ OSSݙߩ

ऀϓϩϑΝΠϦϯά,” ୈ 22 ճιϑτ΢ΣΞֶ޻ͷૅجϫʔΫγϣοϓ

(FOSE2015), pages 41–46, 2015೥ 11݄.

2. ඌ্ࣿ໺,ാल໌,໳ాڿਓ,দຊ݈Ұ, “ਓޱϐϥϛουʹΑΔOSSϓϩδΣ

Ϋτऀݙߩͷྲྀಈੑ෼ੳ,” ୈ 21ճιϑτ΢ΣΞֶ޻ͷૅجϫʔΫγϣοϓ

(FOSE2014), pages 63–68, 2014೥ 12݄.

iii

List of Other Publications

International Conference

1. N. Lertwittayatrai, R. G Kula, S. Onoue, H. Hata, A. Rungsawang, P.

Leelaprute, and K. Matsumoto, “Extracting Insights from the Topology of

the Javascript Package Ecosystem,” In Proc. of 24th Asia-Pacific Software

Engineering Conference (APSEC2017), pages 298–307, December 2017.

2. K. Nakasai, H. Hata, S. Onoue, and K. Matsumoto, “Analysis of Dona-

tions in Eclipse Project,” In Proc. of 8th IEEE International Workshop on

Empirical Software Engineering in Practice (IWESEP 2017), pages 18-22,

March 2017.

3. H. Hata, T. Todo, S. Onoue and K. Mstasumoto, “Characteristics of Sus-

tainable OSS Projects: A Theoretical and Empirical Study” 8th Interna-

tional Workshop on Cooperative and Human Aspects of Software Engineer-

ing (CHASE 2015), pages 15-21, May 2015.

Domestic Conference

1. தܙ࠽ଠ࿕, ඌ্ࣿ໺, ാल໌, দຊ݈Ұ, “Φʔϓϯιʔειϑτ΢ΣΞʹ

͓͚Δد෇ͷ෼ੳ,” ৘ใॲཧֶձڀݚใࠂ, volume 2016-SE-194, number

5, pages 1-6, 2016೥ 11݄.

2. ୍ຊܙհ, ໳ాڿਓ, ඌ্ࣿ໺, ാल໌, ُҪ༃ߴ, ෼ੳΛ༻͍ͨιϑτܕݪ“

΢ΣΞόά෼ੳ,” ,ࠂใڀݚ৘ใ௨৴ֶձٕज़ࢠి ιϑτ΢ΣΞαΠΤϯ

ε, volume IEICE-116, number 277, pages 91–96, 2016೥ 10݄.

3. ,ӳ࢘ޱࡔ ҏݪজل, ඌ্ࣿ໺, ാल໌, দຊ݈Ұ,ɹʠෳ਺ͷΦʔϓϯιʔε

ϓϩδΣΫτʹࢀՃ͢Δ։ൃऀʹΑΔݙߩͷ෼ੳʡɼ৘ใॲཧֶձڀݚใࠂɼ

ୈ 92ճάϧʔϓ΢ΣΞͱωοτϫʔΫαʔϏεڀݚձɼୈ 9ճηΩϡϦςΟ

৺ཧֶͱτϥετڀݚձɼvolume. 2014-GN-92 No.15, volume 2014-SPT-9

No.15, pages 1-4, 2014೥ 5݄.

iv

Contents

1 Introduction 1

1.1. Background . 1

1.2. Main Results . 2

1.2.1 Systematic Mapping of the Literature 3

1.2.2 Profiling Contributors Based on Activities 3

1.2.3 Measuring Community Structure 4

1.2.4 OSS Human Capital Index (OSS-HCI) 5

1.3. Overview of this Dissertation . 6

2 Human Capital in Software Engineering: A Systematic Mapping

Study 8

2.1. Overview . 8

2.2. Background . 9

2.2.1 Intellectual Capital in Software Engineering 9

2.2.2 Human Capital in Software Engineering 10

2.3. Method . 12

2.3.1 Research Questions . 12

2.3.2 Review Method . 12

2.4. Results . 21

2.4.1 Topics Discussed in Human Capital 21

2.4.2 Theories Used in Human Capital 23

2.4.3 Sources of Human Capital 25

2.4.4 Human Capital Index (HCI) 27

2.5. Summary . 32

v

3 Profiling Contributors Based on Activities 33

3.1. Overview . 33

3.2. Background . 34

3.3. Method . 37

3.3.1 Target Projects . 37

3.3.2 Data Collection . 38

3.3.3 Threats to Validity . 39

3.4. Results . 40

3.4.1 Coding, Commenting, and Issue Handling 40

3.4.2 Expertise of Contribution 41

3.4.3 Workdays . 42

3.4.4 Frequencies of Activities 43

3.4.5 Overall . 43

3.5. Discussion . 44

3.6. Summary . 46

4 Measuring Community Structures 47

4.1. Overview . 47

4.2. Background . 48

4.3. Method . 51

4.3.1 Population Structures . 51

4.3.2 Software Population Pyramids 51

4.3.3 Dataset . 54

4.4. Results . 59

4.4.1 Characteristics of Population Structures 59

4.4.2 Population Projection . 64

4.5. Discussion . 70

4.6. Summary . 72

5 OSS Human Capital Index 74

5.1. Overview . 74

5.2. Human Capital Index Construction 75

5.3. Method . 85

5.3.1 Research Method . 86

vi

5.3.2 Threats to Validity . 90

5.4. Results . 90

5.4.1 Project Classification Based on OSS-HCI 90

5.4.2 Tracking OSS-HCI in OSS Projects 94

5.4.3 Selecting Metrics Useful for Predicting a Future OSS-HCI

Score . 98

5.4.4 Comparing Other Evaluations of OSS Projects 99

5.5. Summary . 100

6 Contributions and Conclusions 102

Acknowledgements . 105

Appendix . 107

A. Reference of Systematic Mapping 107

B. OSS-HCI Scores for Case Studies 118

References . 123

vii

List of Figures

1.1 Summary of Results . 2

2.1 Human Capital vs. Structural Capital 9

2.2 Overview of the Mapping Study 14

2.3 Defined Search String . 15

2.4 A Strict Documentation of the Search (C4) 16

2.5 The Number of Papers in this Field every Year 18

2.6 The Number of Papers Published every Year 18

2.7 Generated Network of Topics for each Dimension (a) capacity, (b)

deployment, (c) development and (d) know-how. 22

2.8 Heatmap Showing the Research Methods Used per Dimension for

Papers with a Theory. 25

3.1 Contributor’s Activities in GitHub. 35

3.2 Distributions of Contributor’s Activities for Three Typical Con-

tributors in the node Project. 37

3.3 Radar Charts of Contributor’s Activities on the jQuery Project . 40

3.4 Frequency of Activities during Days of the Week in the Node Project 42

3.5 Distributions of 300 Activities during Weeks for Four Typical Con-

tributors in the node Project . 43

4.1 General Population Pyramid . 52

4.2 Distribution of Development Periods and the Number of Contrib-

utors. 55

4.3 Distribution of the Number of Coding Contributors and the Num-

ber of non-coding Contributors. 55

viii

4.4 Examples of Software Population Pyramids in t1 and t2 58

4.5 Distribution of CCR and NCR of OSS Projects in GitHub. 60

4.6 Examples of Software Population Pyramids of each Type. (Note

that scales are different) . 62

4.7 Examples of Software Population Pyramids (CCR and NCR are

close to 0). Scales are Different 63

4.8 Comparing Measured and Predicted Values of the Number of Con-

tributors . 69

5.1 Construction of the HCI Index and HCI Dimension Plot 76

5.2 Sample of HCI Dimension Plot 85

5.3 A Classification of Health Types based on the HCI Score. The

Four Patterns Are Classified as: (a) Growing, (b) Growing after

Shrinking, (c) Shrinking after Growing and (d) Shrinking. 86

5.4 HCI Dimension Plot of Growing Projects 92

5.5 HCI Dimension Plot of Growing after Shrinking Projects 93

5.6 HCI Dimension Plot of Shrinking Project 94

5.7 HCI Dimension Plot of Projects of PHP Frameworks 1 96

5.8 HCI Dimension Plot of Projects of PHP Frameworks 2 97

ix

List of Tables

2.1 Definition of the Human Capital Dimensions for SE 10

2.2 Targeted SE Journals and Conferences 15

2.3 Synonyms of Keywords Used in the Search. 16

2.4 Summary of the Consolidated Papers (i.e., method and survey) by

Dimension . 20

2.5 Top 3 Topics of Papers (by highest co-occurrence score). The

Common Topics Are Highlighted by Dimension. 23

2.6 Coverage of Selected Papers with a Theory 24

2.7 The Types of Theory Proposed by Our Selected Papers 24

2.8 Summary of the Data Coverage by Dimension. 26

2.9 Summary of Data Collection of Sources 27

2.10 Proposed Human Capital Indicators Mapped to the Consolidated

Papers (i.e., by method, experiment (exp.) and survey). 28

3.1 Statistics of Target Projects (Aug. 15, 2013) 37

3.2 Characteristics of Contributors’ Activities. Partial Names Are

Used, Because of Privacy Concerns. 38

3.3 Headings: Change Specialty to Specialization, and Activities to

Frequency. 45

4.1 GitHub Development Activities 56

4.2 Example of Data of Activity and Activity Periods of Contributors

in t1 and t2 . 57

4.3 Median of ABRE . 68

4.4 Result of Wilcoxon Test . 68

x

5.1 Proposed Human Capital Indicators. 75

5.2 Classification Patterns Based on HCI Score. Four types (a) Grow-

ing, (b) Growing after Shrinking, (c) Shrinking after Growing and

(d) Shrinking are shown. 87

5.3 Summary of the Selected Projects in Case Study 1 (snapshot as of

December 2017) . 88

5.4 Summary of the Selected Projects in Case Study 2 (snapshot as of

January 2018) . 89

5.5 Results of Classification for RQ1. Note that Coverage Is Based on

1,418 Projects. 91

5.6 Case Studies Classified by Health Type 94

5.7 Result of Regression Analysis . 99

5.8 Summary of each Evaluation . 99

6.1 OSS-HCI Scores in netty . 118

6.2 OSS-HCI Scores in homebrew 119

6.3 OSS-HCI Scores in angular.js 119

6.4 OSS-HCI Scores in rails . 120

6.5 OSS-HCI Scores in parrot . 120

6.6 OSS-HCI Scores in zendfreamwork 121

6.7 OSS-HCI Scores in kohana . 121

6.8 OSS-HCI Scores in cakePHP . 122

6.9 OSS-HCI Scores in symfony . 122

xi

Chapter 1

Introduction

1.1. Background

Software development is a very human-intensive activity. Like most intangible

assets, software development is said to lack physical substance (unlike physical

assets such as machinery and buildings) and is therefore usually more difficult to

evaluate. Thus, evaluating software development in terms of the actual individ-

uals is not practical because it is more related to skills and knowledge that are

created, retained and lost in software development.

By leveraging the concepts of the economic viewpoint of “Human Capital”

various dimensions of Human Capital can be closely analyzed and empirically

measured [97]. Human Capital can be explained as the capability of individuals

to provide solutions (e.g., skills and knowledge). These “skills, knowledge, and

similar attributes affect particular human capabilities to do productive work”

which in turn can be improved through on-the-job training, formal education and

programmed learning. Such capital resides with, and is utilized by individuals.

Many previous studies have focused on human factors, including productivity,

communication structure, or knowledge loss in software engineering. Such studies

approach OSS projects as an ecosystem on their own (citation needed). However,

Crowston and Howison concluded that assessing the health of an OSS project is

not an easy task [26]. They have not studied OSS health comprehensively and

did not discuss the relation of each perspective. In this thesis, I construct an

evaluation of OSS projects that combines several perspectives comprehensively.

1

��
�����

���������������

����	�

���
������������������

��
	��
���
���������

���-���-
��� �������������

���	�
�
����
�

� ������

1 year

2 years

3 years

4 years

600 400 200 0 200 400 600

Software Population Pyramid HCI Dimension Plot

HCI Framework

0.0

0.1

0.2

0.3

0.4

0.5

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

Figure 1.1: Summary of Results

1.2. Main Results

Figure 1.1 shows a summary of the results. This dissertation presents synthetic

perspectives to measure Human Capital in OSS. The term, “Human Capital”

was proposed by Gray Becker in 1964 [9], who discussed dimensions relevant

to knowledge, habits, and social and personality attributes, regardless of the

organization.

In this thesis, I discuss an OSS project community and propose four dimen-

sions of such a community as well as a Human Capital Index (HCI) to measure

and evaluate human activities. The contributions and results of this thesis are as

follows:

2

1.2.1 Systematic Mapping of the Literature

A key outcome of this mapping study is a set of indicators for constructing a

HCI. Four dimensions: capacity, deployment, development, and know-how in

HCI are applied to software engineering. A systematic mapping study from five

top journal articles and four top international conferences published between 2013

to 2017 are undertaken and 78 studies are identified regarding human aspects of

software engineering, which are classified into the four dimensions: capital for

skill attainment (capacity), deployment for a workforce, development for access

to learning, and know-how for knowledge sharing.

For the dimension of capacity, topics related to (a) personality, (b) success,

and (c) performance are discussed. Deployment, the most complex topic, is

discussed in relation to (a) OSS (b) community, (c) communication and (d)

productivity. For a discussion of the dimension of development, (a) user and (b)

OSS are discussed. Finally, the dimension of know-how is discussed as related to

practices, especially with GitHub-related research such as pull requests.

In terms of theories, 77% of papers do not report any theories such psychol-

ogy, game theory ad demography. Experimental research methods are the most

common type of research, and case studies and surveys are applied theories pop-

ularly.

In terms of data, the results of this thesis show that the dimension of capacity

is the least discussed with a low cover of only 3% of papers. Finally, 58% of

papers analyze less than 10 projects with data that covers more than five years.

Moreover, only half of the papers tend to use multiple sources of data, often

combining code and other assets such as mailing lists (ML), bug tracking (BTS)

and issue tracking systems (ITS).

1.2.2 Profiling Contributors Based on Activities

This thesis discusses the characteristics of contributors’ activities in OSS develop-

ment. To clarify the characteristics of contributors’ activities, GitHub activities

used by each contributor to represent the capacity dimensions of OSS Human

Capital are explored. The goal is to indicate that active software projects have

various kinds of contributors characterized by different types of development ac-

tivities.

3

In previous studies, using the Myers-Briggs type indicator (MBTI), Sfetsos

et al. investigated the impact of personality types on pair programming. Their

results showed that pairs with heterogeneous personalities and temperaments had

better communication, pair performance, and pair collaboration-viability [98].

Salleh et al. studied the effects of personality on pair programming using the five-

factor model, which characterizes personality in terms of five broad personality

traits: openness to experience, conscientiousness, extroversion, agreeableness, and

neuroticism [94]. Compared to these personality-based analyses which look at how

differences in individuals are rejected in their activities, this chapter investigates

how contributors could be characterized based on differences in the patterns of

activities extracted from project activity logs.

Contributors were categorized based on measures such as whether they pre-

ferred communication by coding or comments, or whether they are specialists or

generalists. This result indicates that active software projects have various kinds

of contributors characterized by different types of development activities.

1.2.3 Measuring Community Structure

This thesis explores the community structure of OSS projects using a demo-

graphic approach. Software population pyramids are proposed that represent the

deployment and know-how dimensions of Human Capital. The goal is to under-

stand the community structure of OSS projects based on coding contributors and

non-cording contributors.

There are many studies that focus on the social aspects of software de-

velopment. Bird et al. reported some studies about social collaborations in

OSS [13–15]. They reported that developers play a significant social role in email

lists [14]. Similarly, Bird at. el. analyzed email addresses in open source software

projects to examine the community structure among developers [15]. Bogdan

noted the success of an OSS project depends to a large extent on its social as-

pects [109].

In this study, eight cases from four types of projects are investigated and

defined in CCR and NCR. Also, a population in a software community is pre-

dicted and then a future population prediction method using a cohort component

method in demography to a prediction of OSS future communities are given.

4

There are four types of population structures in OSS development communities

in terms of experiences and contributions. This thesis predicted the future popu-

lation accurately using a cohort component population projection method which

predicts a future population using a survival rate calculated from past popula-

tions.

Other authors have also been able to predict a future population of OSS

projects. Rastogi et al. presented a framework that characterizes the stability of

the community in software maintenance projects using community participation

patterns. They modeled the community participation patterns of contributors

and forecast future behavior to help plan and support informed decision-making

[88]. Loyala et al. proposed a methodology that adapts Lotka-Volterra-based

biological models used for describing host-parasite interactions to understand

how the population of OSS contributors evolves over time [64].

On the other hand, there are some studies focused on the activity periods of

contributors. Steinmacher et al., for example, found that 20% of new contributors

become long-term contributors [101]. Zhou and Mockus studied long-term con-

tributors (LTC), and analyzed the behavior of individual participants in Gnome

and Mozilla [125]. They reported that future LTCs tend to be more active and

show more community-oriented attitudes than do other joiners during their first

month.

To the best of my knowledge, this is the first study that applies demography to

the field of OSS research. This approach addresses OSS-related problems based

on demography will hopefully bring new insights since studying population is

novel in OSS research.

1.2.4 OSS Human Capital Index (OSS-HCI)

A HCI is constructed based on a systematic mapping of the literature as shown in

Section 1.2.1. The HCI indicators are based on the results of the mapping study.

The goal is to determine whether or not the defined indexes provide meaningful

and interesting insights into the relationship between the OSS HCI.

Ye et al. examined the structure of Free and Open Source Software (F/OSS)

communities and the co-evolution of F/OSS systems and communities. They

reported that F/OSS systems and communities generally co-evolve, and they co-

5

evolve differently depending on the goal of the system and the structure of the

community [121]. This study also mentions product evolution and community

activities through analyzing the Human Capital in OSS projects. This study can

help to understand the co-evolution of OSS systems and communities.

Pinto et al. analyzed the activities of casual contributors [84]. Casual con-

tributors are contributors who do not want to become active members. They

describe casual contributors as fostering diversity and collaboration. ɹ

This thesis used an empirical study to measure the HCI of OSS projects to

classify 1,418 OSS projects. As a result, projects were classified into (a) Growing,

(b) Growing after Shrinking, (c) Shrinking after Growing and (d) Shrinking. 42%

projects can be categorized as Growing, and 42% as Growing after Shrinking

projects. On the other hand, more Growing after Shrinking projects were found

compared to Shrinking after Growing projects. A project that might once have

been Shrinking will find it hard to be Growing, but even Growing projects can

be Shrinking.

The HCI dimension plot can investigate the development of a project. A

Growing project, for example, increases in each dimension every year. On the

other hand, even if development increases, if a project cannot keep its existing

contributors, a project will be Shrinking. This study also used regression analysis

to show which metrics affect the OSS-HCI score. As a result, we found that

capacity and know-how effect to OSS-HCI score most.

1.3. Overview of this Dissertation

The rest of this dissertation is organized as follows. A mapping study of human

factor studies in software engineering is presented in Chapter 2. In this chapter,

related papers are identified and classified into the four dimensions of Human

Capital.

Chapter 3 presents a study of the characteristics of contributors’ activities

in OSS development. To clarify the characteristics of contributors’ activities,

we used the GitHub activity from each contributor to represent the capacity

dimensions of Human Capital.

Chapter 4 analyzes the community structure of OSS projects using a demo-

6

graphic approach and software population pyramids that represent the deploy-

ment and know-how dimensions of Human Capital are proposed.

Chapter 5 constructs a HCI. The HCI indicators are based on the results of

the mapping study in which the set of indictors are introduced and the metrics

are defined for the HCL.

Finally, Chapter 6 concludes this dissertation.

7

Chapter 2

Human Capital in Software

Engineering: A Systematic

Mapping Study

2.1. Overview

In this chapter, related papers are identified and classified into four dimensions

of Human Capital. A key outcome of this mapping study is a set of indicators

for constructing the Human Capital Index (HCI) shown in Chapter 5. First,

however, the four dimensions of capacity, deployment, development, and know-

how are introduced in HCI. These dimensions are applied to software engineering.

Chapter 3 discusses the dimensions of capacity, while Chapter 4 explores the

deployment and know-how dimensions. The following research questions guide

our study:

RQ1: What are the kinds of topics related to the Human Factors discussed in

SE?

RQ2: What are the Human Factor theories being adapted in SE?

RQ3: Where are the Human Factor origins of the data in SE?

To answer these research questions a systematic mapping study is carried out

from five top journal articles and four top international conferences published

between 2013 to 2017.

8

Intellectual	
capital

Human	
capital

Structural	
capital

Relational	
capital

Capacity Deployment Development Know-how Innovation Process Organization

[70], [116], [120]

[116]

Skill	
attainment

Access	to	
learning Workforce Knowledge

sharing Property Delivery	of	
services

Figure 2.1: Human Capital vs. Structural Capital

2.2. Background

The concept of the Global Human Capital Index (GHCI)1 as defined by the

World Economic Forum2 is applied to the analysis of an OSS community. This

index is termed, OSS Human Capital. The OSS Human Capital proposed in this

dissertation is aimed at providing a synthetic assessment of an OSS’s Human

Capital.

2.2.1 Intellectual Capital in Software Engineering

Intellectual capital is defined as “the sum of all knowledge firms utilize for com-

petitive advantage” [70,116,120]. Intellectual capital in economic terminology is

the intangible value of a business, covering its people (Human Capital), the value

inherent in its relationships (Relational capital), and everything that is left when

the employees go home (Structural capital).

Wohlin et. al. states that intellectual capital is the umbrella by which Human

Capital is paired with social and organization capital [116]. In other words,

software development is hugely dependent on people [30].

In this thesis, the original concepts are revisited, and a more in-depth analysis

of Human Capital in terms of its four dimensions is provided. Within structural

capital, dimensions of innovation and process are also examined. Complementary

1http://reports.weforum.org/global-human-capital-report-2017/
2https://www.weforum.org

9

Table 2.1: Definition of the Human Capital Dimensions for SE

Dimensions GHCI Definition Our Definition

Capacity
Measures formal educational at-

tainment.

Measures spontaneous learning

attainment.

Deployment

Measures how many people are

able to participate actively in the

workforce.

Measures how many contributors

are able to participate actively in

the community.

Development

Knowledge of application and ac-

cumulation among the adult pop-

ulation.

Knowledge of application

and accumulation among the

community of contributors.

Know-how

Breadth and depth of specialized

skills used in the workforce.

Breadth and depth

of specialized skills

(i.e., work practices) used in

the community.

to the economic definitions, innovation is used to refer to versions that control

silos that contain artifacts such as source code, licenses and anything subject

to copyright. Process capital is then defined as process- related artifacts such

as bugs and issue-reporting systems (i.e., BTS and ITS), communication and

collaboration mechanisms such as mailing lists (i.e., ML) and code review and

other tools used during software development.

2.2.2 Human Capital in Software Engineering

There are four thematic dimensions that form the proposed GHCI— Capacity,

Deployment, Development and Know-how. One of the goals of this thesis is to

quantify and understand how human-related studies relate to these dimensions

so these dimensions are translated into the SE context.

Capacity A more educated population is better prepared to adapt to new tech-

nologies, innovate and compete on a global level. Thus, the Global Human In-

dex (GHI) states that capacity is based on formal education such as primary,

10

secondary and tertiary levels of attainment. Education includes spontaneous ac-

tion [63]. Almost all of OSS development field excludes issues of education and

relies on the spontaneous learning of contributors. In our definition, we conjec-

ture that the capacity dimension is a measurement of the spontaneous learning

attainment by contributors in the community.

Deployment Beyond formal learning, Human Capital is enhanced in the work-

place through learning-by-doing, tacit knowledge, exchange with colleagues and

formal on-the-job learning. Thus, for GHI, the Deployment dimension measures

how many people are able to participate actively in the workforce as well as how

successfully particular segments of the population are able to contribute. A coun-

try’s labor force participation (i.e., employment rates) is the broadest measure of

the share of its people participating in the labor market. In our definition, the

deployment dimension is understanding community structure or social interaction

and a measurement of how many contributors are able to participate actively in

a community.

Development The Development dimension concerns the formal education of

the next-generation workforce and continued upskilling and reskilling of the cur-

rent workforce. In our definition, the development dimension is knowing appli-

cations and accumulation of knowledge among the community of contributors,

through understanding the growth of end-users or the learning curve of new con-

tributors in the community.

Know-how Know-how concerns the breadth and depth of specialized skill use

at work. In GHI, the economic complexity is a measure of the degree of sophistica-

tion of a country’s “productive knowledge” as can be empirically observed in the

quality of its export products. In addition, the Index measures the current level

availability of high- and mid-skilled opportunities and, in parallel, employer’s per-

ceptions of the ease or difficulty of filling vacancies. In the definition, used in this

thesis, the know-how dimensions are about breadth and depth of specialized skill

(i.e., work practices) use in the community, for example, the proportion of core or

peripheral contributors’ performance and knowledge loss caused by contributors’

leaving the community.

11

2.3. Method

2.3.1 Research Questions

The study analyzes current trends that arise from the following research questions:

RQ1: What are the kinds of topics related to the Human Factors discussed in

SE?

The study investigates what topics and common terminology are often used

to describe the different aspects of Human Capital.

RQ2: What are the Human Factor theories being adapted in SE?

This thesis conjectures that there are different kinds of theories being pro-

posed and adapted for Human Capital. Such evidence can improve the

understanding of how researchers design their experiments and interpret

Human Capital.

RQ3: Where are the Human Factor origins of the data in SE?

This thesis seeks to understand the types of assets (i.e., structural capi-

tal) used by researchers to uncover evidence of Human Capital. In detail,

data characteristics such as data collection sizes, duration and diversity are

extracted.

2.3.2 Review Method

In this section, the different steps executed in our mapping study are explained. A

systematic mapping study is a type of systematic literature review. A systematic

literature review is a repeatable method for identifying relevant studies to answer

specific research questions [66]. In particular, a systematic mapping study is

designed to give an overview of a research area through classification and count-

ing contributions in relation to the categories of that classification [55, 81, 82].

Kitchenham et al. [57] contrasted the different characteristics of the process of

systematic literature reviews and mapping studies. A systematic mapping study

follows the same principled process as systematic literature reviews, though there

are different criteria for inclusions/exclusions and quality [115]. Systematic map-

ping studies do not have strict roles compared to systematic literature reviews,

12

however, various types of papers should be reviewed for understanding target

topic area widely.

First, the method for systematic mapping study is introduced based on the

following characteristics [55].

• (C1) a defined search strategy

• (C2) a defined search string, based on a list of synonyms combined by ANDs

and ORs

• (C3) a broad collection of search sources

• (C4) a strict documentation of the search

• (C5) quantitative and qualitative papers should be analyzed separately

• (C6) explicit inclusion and exclusion criteria

• (C7) paper selection should be checked by two researchers

Figure 2.2 presents an overview of the mapping study design, which follows

(C1) a defined search strategy. In detail, the method is comprised of two parts,

the initial phase and the refinement phase. A total of five steps are followed in

this method. Note that Steps 4 and 5 follow two branches, dividing the papers

into method (A-4 and A-5) and survey and meta studies (B-4 and B-5).

Initial Phase

Step 1: Collection of Papers

Table 2.2 shows all 10 search sources and their impact factor (IF) or conference

ranking for our mapping study. A conference ranking is referred to as the CORE

Conference Ranking3. To ensure a high quality of papers and to understand the

state–of–the–art in the field, this thesis searched for papers in the top journals

and five conferences from the software engineering domain. To reduce its selection

bias, a range of digital resources, represented as (C4) were selected from a broad

3http://www.core.edu.au

13

1.	Collection	
of	papers

• 2698	paper	hit	
in	4	sources

• Find	papers	
with	10	journals	
and	conferences

2.Identification	
of	research

• Search	string	
with	two	terms
identified

• 340	paper	hit	

• Exclude	paper	
less	than	8	pages

3.	Manual	
exclusion

• 101	papers	hit

• Different	context
• Different	focus	

A-4.	Second	
manual	exclusion

• 26	papers	were	
selected	
(3	papers	excluded)

• 43	papers	were	
selected	
(29	papers	excluded)

29
	s
ur
ve
ys
	a
nd

	m
et
a	
st
ud

ie
s

72
	m

et
ho

d	
st
ud

ie
s

B-4.	Second	
manual	exclusion

A-5.	Consolidation	
of	result

A-5.	Consolidation	
of	result

C3 C2,	C4,	C6 C6,	C7

C6,	C7

C6 ,	C7 C3,	C5 ,	C7

C3,	C5 ,	C7

Initial	Phase

Refinement	Phase

• 30	papers
(4	papers	were
included)

• Classify	paper
Into	dimensions

• 48	papers
(5	papers	were
included)

• Classify	paper
Into	dimensions

IC1,	EC4

EC1,	EC2 ,	EC3

IC1,	EC1 , EC2 , EC3

Figure 2.2: Overview of the Mapping Study

selection of search sources.; ACMDigital Library4, IEEE Xplore5, Science Direct6,

Springerlink7.

As shown in Figure 2.2, 2,698 papers were extracted from the four search

sources which map to the Top ten publication venues for Software Engineering.

Additionally, only technical papers were included, hence filtering out short papers,

editorials, tutorials, panels, poster sessions and prefaces and opinions (i.e., papers

were automatically filtered out that were shorter than eight pages). Since the

intention is to understand the current trends of Human Capital research, papers

were collected that were published in the last five years (i.e., 2013 ∼ 2017).

Step 2: Identification of Research

4https://dl.acm.org/
5http://ieeexplore.ieee.org/Xplore/home.jsp
6http://www.sciencedirect.com/
7https://link.springer.com/

14

Table 2.2: Targeted SE Journals and Conferences

Journal

(TSE) IEEE Transaction on Software Engineering IF: 2.63

(ASEJ) Automated Software Engineering Journal IF: 3.27

(EMSE) Empirical Software Engineering IF: 3.28

(TOSEM) ACM Transactions on Software Engineering and Methodology IF: 2.87

(IST) Information and Software Technology IF: 2.69

Conference

(ICSE) International Conference On Software Engineering Rank: A*

(MSR) Working Conference on Mining Software Repositories Rank: A

(ICSME) International Conference on Software Maintenance and Evolution Rank: A

(ESEC/FSE) Join Meeting of European Software Engineering Conference and Rank: A*

Symposium on Foundation of Software Engineering

Term	1

Term	2

NOT

(developer)	OR	(contribut*)	OR	(human)	OR	(activit*)	OR
(communi*)	OR	(social)	OR	(collaboration)	OR	(population)

Search	Terms	in	title,	abstract,	keywords

(agile)	OR	(cloud)	OR	(visualization)	OR	(mobile)	OR	
(refactoring)	OR	(framework)	OR	(api)	OR	(design)	OR	
(testing)	OR	(embed)	OR	(reverse	engineering)	OR	
(specification)	OR	(tool)	OR	(debug)

Figure 2.3: Defined Search String

To provide a comprehensive picture of recent research related to Human Capital,

(C2) a defined search string, was used to identify the research area. In this step,

the first automated (C6) explicit inclusion and exclusion criteria were conducted

based on the search results.

Figure 2.3 shows the two terms (Term 1 and Term 2) used in the search string.

To understand Human-related areas in SE, Term 1 was formulated to include

developer OR human OR social OR collaboration OR population. To capture

synonyms and other extensions, as shown in Table 2.3, the keywords contribu*,

activit* and communi* were stemmed and used to expand the search space.

Since, this thesis is interested in more generic Human-related research from the

SE domain, our search string also includes an exclusion list (i.e., Term 2). Words

in Term 2 were excluded to avoid papers that are specific to a particular research

15

Table 2.3: Synonyms of Keywords Used in the Search.

Base Term Synonyms

contribut∗ contributor, contribution

activit∗ activity, activities

communi∗ community, communities, communication

1086 586 583 443

IEEE	Xplore
Science	
Direct

ACM	Digital
Library Springerlink

35/218
ICSME

56/414
ICSE

27/137
MSR

25/317
TSE

28/336
ESEC/FSE

9/99
ICSE14

6/29
MSR14

7/119
TOSEM

8/101
ASEJ

64/342
EMSE

75/586
IST

include	ICSM2013

Figure 2.4: A Strict Documentation of the Search (C4)

topic in SE. Hence, specific topics such as agile, cloud and so on were excluded.

The search string was applied to the title, abstract and keywords sections of the

papers.

As shown in Figure 2.2, 340 papers were collected after our automatic search

execution. For ICSE and MSR conferences, special editions of ICSE14 and

MSR14 were only published in the ACM Digital Library and not the Xplore.

Figure 2.4 shows the details of the remaining papers from the original 2,698 pa-

pers collected in Step 1.

Step 3: Manual exclusion

To complete the initial phase, Step 3 involves the manual exclusions of the collect

340 papers. This step involves an (C6) explicit inclusion and exclusion criteria

16

to remove papers that have a different context and focus of this dissertation’s

research area.

For the manual exclusion, only our inclusion and exclusion criteria were ap-

plied to the abstract of each paper.

Inclusion criteria Only a single inclusion criterion is defined, namely, that

(IC1)- the articles should focus on software developers or contributors.

Exclusion criteria Three exclusion criteria were defined that cover the dataset,

purpose and the evaluation of the study:

• (EC1) the analyzed subjects do not use contributors’ activity data

• (EC2) the purpose is not to collect activity data

• (EC3) the purpose is not an evaluation of a proposed method

To reduce bias following (C7), the paper selection was checked by two researchers.

As a result of Step 3, the collected 340 papers were reduced to 101 papers.

Refinement Phase

The refinement phase includes a separation between (C5) quantitative and qual-

itative papers. As a result, the two steps are divided into two branches (A and

B).

Step 4: Second manual exclusion Similar to Step 3, the same inclusion and

exclusion criteria are used (i.e., IC1, EC1, EC2 and EC3) for method papers in

Step B-4. However, Step 4 includes a full manual reading of all contents of the

paper. Finally, two criteria have been added to Step B-4:

• (EC4) the paper is not product-focused

• (EC5) the paper does not propose a human recommendation technique

For the survey papers (i.e., Step 4-A), extra criteria were added for exclusion

based on the content (EC6) of the paper, which is out of the research scope. In

addition, another researcher was added (i.e., making the total number of reviewers

three people). As a result of Step 3, the initial 101 papers could be reduced to

69 papers (i.e., 26 surveys and 43 method papers).

17

0.0

2.5

5.0

7.5

10.0

12.5

2013 2014 2015 2016 2017

Th
e

N
um

be
r o

f P
ap

er
s

method

survey

Figure 2.5: The Number of Papers in this Field every Year

2

2

1

0

0

0

0

2

0

0

7

0

1

2

2

0

0

4

2

0

5

1

0

1

3

0

0

4

0

1

4

1

0

3

5

1

0

6

1

1

4

0

2

1

6

0

0

1

2

0

ASEJ

EMSE

ESEC/FSE

ICSE

ICSME

IST

MSR

Other

TOSEM

TSE

2013 2014 2015 2016 2017

Figure 2.6: The Number of Papers Published every Year

18

Step 5: Consolidation of results In this step, three steps are performed.

As shown in Figure 2.2, after manual discussions, first, some papers (i.e., four

survey and five method papers) were included that were excluded in the initial

phase, bringing our consolidated papers to 78 in total. Figures 2.5 and 2.6 show

some of the trends of the Human-related research.

Figure 2.5 shows the number of papers identified within the years 2013–2017

to each research type (survey and method). This suggests that method papers

show a gradual increase year by year. Figure 2.6 shows a heat map of the number

of each paper’s publications in each conference or journal by year. This suggests

that many Human Capital papers are submitted to IST, ICSE and FSE.

Next, three researchers classified all sorted papers into the four Human Capital

dimensions. To classify, after reading the title and abstract, a consensus was

reached by reviewers on which dimension best suits the paper. The classification

is non-exclusive. From these papers, key indicators were then derived that are

consistent during the classification process. Below our classification rationales

are listed and borrowed from Table 2.1:

• Capacity - Papers should discuss the formal attainments of contributors

• Deployment - Papers should discuss contributor participation.

• Development - Papers should discuss known application and accumulation

among contributors.

• Know-how - Papers should discuss the breadth and depth of specialized

contributor knowledge use in a software project.

Table 2.4 shows the results of the classifications of selected papers into the four

dimensions. Results indicate that much research has been carried out on the

deployment and know-how dimensions.

To address each of the research questions, the following approach was applied

to analyze the consolidated papers. Each research question identifies characteris-

tics within the four dimensions, with the end goal a mapping from each viewpoint.

Approach to answer RQ1. Topics are extracted from the title, abstract, and

keywords in the primary study and co-occurrences analyzed to answer the first

19

Table 2.4: Summary of the Consolidated Papers (i.e., method and survey) by

Dimension

Dimension method survey # of papers

Capacity

S09 [3], S16 [62], S18

[10], S26 [85], S39

[117], S74 [5]

S47 [100], S65 [60]
8

Deployment

S01 [37], S02 [78], S08

[76], S12 [118], S14

[43], S17 [42], S19 [22],

S27 [50], S29 [79], S34

[75], S42 [35], S43 [27],

S44 [68], S50 [29], S53

[47], S59 [58], S66 [53],

S67 [113], S69 [36],

S70 [49], S71 [95], S76

[110], S78 [106]

S07 [96], S24 [23], S28

[32], S36 [46] S38 [33],

S45 [93], S48 [71], S63

[103],
31

Development

S22 [102], S31 [99],

S33 [34], S49 [54], S55

[18], S72 [122],

S03 [6], S11 [114], S46

[87], S56 [59], S57 [17],

S68 [1],

12

Know-how

S05 [39], S10 [31], S15

[48], S20 [12], S21 [21],

S23 [86], S30 [65], S32

[107], S35 [108], S40

[92], S50 [29], S54 [61],

S60 [24], S64 [4], S73

[8], S75 [11], S74 [5]

S04 [16], S06 [112],

S13 [72], S25 [7], S37

[51], S41 [111], S51

[69], S52 [83], S58

[123], S61 [40], S62

[41], S77 [77],

29

Total
78

(two repetitions)

*Underlines show repetitions.

20

research question. In this research, an N-gram Weighting Scheme tool is used8.

This tool uses enhanced suffix array [2] to enumerate valid N-grams. The output

after applying the N-gram IDF tool to the pre-processed data is an N-gram dic-

tionary, which is a list of all valid N-gram key terms. Similar to Terdchanakul et

al., [105], we use the N-gram technique to formulate the most frequent keywords

used in our corpus (i.e., title, abstract, keywords). Results will be a generated

network of topics, with the edges representing the co-occurrence score. These

generated keywords will provide insights into the common topics discussed in

each Human Capital dimension.

Approach to answer RQ2. The different types of theories to answer research

question two are analyzed. In this analysis, it is important to investigate how

much theory is used for the four dimensions. It is also important to find out what

kinds of theories are proposed as well as the types of research design used in the

studies.

Approach to answer RQ3. The kinds of data sources are analyzed to answer

the last research question. In this analysis, the types of data (code, assets) and

their origins (i.e., GitHub, Jazz, Bug Tracking System (BTS) or Mailing List

(ML)) for the four Human Capital dimensions are found. I then take a closer

look at the collected dataset, analyzing the size of the projects, the period of data

collection, whether or not the projects are open source or closed and if the study

used single or multiple data sources.

2.4. Results

In this section, the results of the mapping study in terms of the topics (i.e., RQ1),

theory (i.e., RQ2) and data (i.e., RQ3) in Human Capital are discussed.

2.4.1 Topics Discussed in Human Capital

Figure 2.7 shows the difference in the network of topics generated for each di-

mension of the consolidated papers. The size of the network is influenced by

either the number of consolidated papers within the dimension and the diversity

8https://github.com/iwnsew/ngweight

21

team

personality

performance

success

(a) capacity

ecosystem

communication

community

OSS

social interaction

GitHub

productivity developer

software quality
performance

network
emotion

GSDteam

(b) deployment

SLR

participationOSS

success

popularity
user

challenge

GitHub

(c) development

GitHub

success

OSS

knowledge

pull request

GSD

practice

community

team

challenge

SLR

(d) know-how

Figure 2.7: Generated Network of Topics for each Dimension (a) capacity, (b)

deployment, (c) development and (d) know-how.

22

Table 2.5: Top 3 Topics of Papers (by highest co-occurrence score). The Common

Topics Are Highlighted by Dimension.

Dimension Top 3 topics discussed (by ↔ score)

Capacity

personality ↔ team

personality ↔ success

performance ↔ success

Deployment

OSS ↔ community

OSS ↔ communication

OSS ↔ productivity

Development
popularity ↔ user

popularity ↔ OSS

Deployment

practice ↔ challenge

practice ↔ OSS

pull request ↔ GitHub

of topics used in the field.

Complementary, Table 2.5 shows the main topics (i.e., top 3) topics for the

consolidated papers. For capacity, the topics relate to personality, team, success

and performance. This result indicates that capacity is a more a team-based

factor that is linked to success and performance. In terms of deployment, the

networks show that the topics have complex interactions, indicating that these

common topics are discussed across the consolidated papers. The four common

topics discussed are OSS, community, communication and productivity. Finally,

much of the know-how topics are strongly related to practices. Also, the GitHub-

related research is popular, with links to pull-requests. Overall, the extracted

topic keywords correspond to the definitions of Human Capital in SE (see Table

2.1), thus providing a validation to this work.

2.4.2 Theories Used in Human Capital

Out of the 78 consolidated papers, only 18 papers described a theory other than

grounded theory in their study. This leaves 77% of the papers not reporting

any theory. From Table 2.6, most papers’ theories were used for the capacity

23

Table 2.6: Coverage of Selected Papers with a Theory

Dimension Coverage of Papers Paper id

Capacity 75% S09, S16, S18, S26, S39, S65

Deployment 16% S01,S14, S34, S67, S71

Development 0%

Know-how 24% S06, S23, S32, S40, S52, S54, S58

Table 2.7: The Types of Theory Proposed by Our Selected Papers

Proposed Theory Paper id

Psychology/Psycholinguistics
S01, S06, S09, S16, S18, S39, S54,

S65, S71

Game Theory S14, S67

Group Dynamics S52, S67

Organization Theory S52, S71

Demography S34

Food Web (Ecology) S23

Financial Risk Management S40

Information Field Theory S26

Knowledge-based theory of the firm S58

Signalling Theory S32

*Underlines show repetitions.

dimension. Interestingly, none of the papers classified from the development

dimension reported a theory usage.

Complementary, Table 2.7 shows that most (i.e., 9) papers had adapted the-

ory from the psychology/psycholinguistics field. For instance, there were several

papers that borrowed concepts from (i.e., S01 - Creation of model for team leader

role with personality types and gender classification, S06 - The success factors in

GSD by questionnaire to expert and S09 - Experiment of personality factors and

group processes) various aspects of the human psychology.

Figure 2.8 shows the types of research methods used in complementary to each

dimension. In this result, the experimental research method is the most common

24

0

3

0

2

1

2

0

2

4

1

0

0

1

0

0

3Know−how

Development

Deployment

Capacity

Action Research Case Study Experiment Survey

Figure 2.8: Heatmap Showing the Research Methods Used per Dimension for

Papers with a Theory.

type of research method among the consolidated papers, and it is also used in

the capacity papers. In addition, in action research, case study and surveys are

popularly used with their theories. Action research represents research methods

that research either initiated to solve an immediate problem or to improve the

way issues are addressed and problems solved [104].

2.4.3 Sources of Human Capital

Table 2.8 shows a breakdown of the data origins for the 36 consolidated papers

(i.e., excluded survey papers). In this result, human capacity dimension papers

have the least source of data (i.e., coverage of 3%). From the table, it can be

seen that researchers used assets such as mailing lists (ML), bug tracking (BTS)

and issue tracking systems (ITS) to complement their code in their datasets (i.e.,

deployment = seven papers used code, while 17 papers used assets, development

= two papers used code, while five papers used assets, know-how = six papers

used code, while 12 papers used assets). Additionally, most data originate from

not only code but also from software assets. Note that in Table 2.8, others refers

to asset sources such as closed company data, stack overflow, code review, web

documents, gerrit code review and Ruby API systems.

Table 2.9 shows a detailed analysis of the data collected statistics (i.e., size,

25

Table 2.8: Summary of the Data Coverage by Dimension.

Dimension Coverage Type Origin Paper ID

Capacity 3% Innovation + Process Capital Jazz S16

Deployment

53%

Innovation Capital VCS S12, S27,

S42, S66,

S69, S70,

S76

Innovation + Process Capital GitHub S02, S14,

S34, S53,

S71

Process Capital ML/Chat log S12, S17,

S19, S29,

S42, S64,

S66, S67,

S69

BTS/ITS S08, S19,

S29, S69

Other S19, S43,

S02, S78

Development 11%

Innovation Capital VCS S31, S49

Innovation + Process Capital GitHub S55

Process Capital ML/Chat log S33

BTS/ITS S72

Other S22, S72

Know-how

33%

Innovation Capital VCS S15, S20,

S21, S23,

S40, S64,

S75

Innovation + Process Capital GitHub S05, S21,

S30, S32,

S35

Jazz S54

Process Capital ML/Chat log S15, S64,

S75

BTS/ITS S20, S23,

S32, S64,

S73

Other S10, S73,

S75

*Underlines show repetitions.

26

Table 2.9: Summary of Data Collection of Sources

Capacity Deployment Development Know-how Coverage (%)

Projects

S (> 10) 1 9 3 8 58%

M (11 ∼ 100) 0 7 0 1 22%

L (101 ∼) 0 3 1 3 19%

Period

S (< 1year) 0 1 2 3 16%

M (< 5year) 1 5 0 2 22%

L (5 year ∼) 0 8 2 3 36%

**unspecified 0 5 0 4 25%

Origin
Company 1 2 1 2 16%

OSS 0 17 3 10 83%

Source
Multi 0 7 1 7 42%

Single 1 12 3 5 58%

period, data origin and sources) for our 36 method papers. Note that some papers

were excluded from this analysis due to their difficulty of classification (i.e., S31,

S33, S40, S75). 58% of papers analyzed less than 10 projects in their study. In

fact, five of these papers only used a single project for analysis (i.e., S10 or S16).

On the other hand, one paper (i.e., S21) used 58,092 projects in their study.

Evidence then suggests that many of the papers collected data that ranged more

than five years, with six papers having data ranging less than a year. Another

interesting finding is that the papers tend to use OSS projects (83%) compared

to closed company data. In regards to the sources, about half of the papers tend

to use multiple sources of data, often combining code and other assets (i.e., as

shown in Table 2.8) in their studies.

2.4.4 Human Capital Index (HCI)

In this section the implications of this study are discussed. A key outcome of this

study is a set of indicators for the different dimensions of Human Capital. Hence,

the set of indicators are introduced first. Next, in this section, the strengths and

weaknesses of the study with threats to validity are discussed.

Table 2.10 describes the proposed indicators and the mapping to their re-

spective inspired consolidated papers. Here, the rationale and definition of each

indicator by dimension is explored.

27

Table 2.10: Proposed Human Capital Indicators Mapped to the Consolidated

Papers (i.e., by method, experiment (exp.) and survey).

Indicator Paper Id

method exp. survey

Capacity Individual Contribute activity profiling

S16 S09, S18, S47, S65

S26, S39,

S74

Deployment

Community Structural Complexity
S14, S27, S59 S07, S36,

S34

Core vs. Peripheral Developer workload equality S76

Contributor Participation rates S53, S78 S38, S63

Productivity rates

S08, S12, S44 S24

S19, S27,

S42, S43,

S66, S71

Community Social Interaction

S02, S08, S50, S45, S48,

S12, S17, S63

S42, S19,

S29, S66,

S67, S69,

S70, S71

Community Diversity S01, S28, S38

Development
End-user participation

S22, S33, S03, S46,

S55, S72 S68, S57

Developer Learning-curve rate S31, S49 S11, S56

Know-how

Maturity of Work Practices
(Documentation & execution

of work practices)

S05, S10, S50, S74 S04, S06,

S23, S30, S13, S25,

S32, S35, S37, S41,

S60, S64, S51, S52,

S73, S75 S58, S61,

S62, S77

Core vs. Peripheral knowledge
S15, S20,

S54

Knowledge loss rates S40

Onboarding rates S21

*Underlines show repetitions.

28

Capacity

1. Individual Contribute activity profiling - This indicator is a rating for

an individual score for a contributor. Examples could include a study about

measuring team personality and climate (i.e., S19). This study measures

neuroticism, extroversion, conscientiousness and all that of developers by

experiment. Another study is related to personality profiles of developers

(i.e., S16). This study analyzes message exchanges or developers’ tasks

using code and assets data source.

Deployment

1. Community Structural Complexity - This indicator rates the com-

plexity of the community of contributors and how they actively participate.

An example is studying about population structure in OSS projects (i.e.,

S34). In detail, this study creates a population pyramid by the contribu-

tors’ activity period in OSS projects. Another example is a study about

the impacts of organizational factors on software quality (i.e., S59), where

authors conduct observations of an in-house software development project

within a large telecommunications company.

2. Core Developer vs. Peripheral Developer workload equality -

These rates are in regard to the work activities of developers in the commu-

nity. Example studies include observation of the variation and specializa-

tion of workload in an ecosystem community to identify developers’ activity

types and comparing the number of files that developers modify (i.e., S76).

3. Contributor Participation rates - This indicator describes contributors

participation in a particular activity such as code review (i.e., S53, S78).

S53 investigates the phenomena of inactive code review contributors from

activities such as pull requests, while S78 is a study about review partici-

pation in code review, introducing several metrics such as purpose, history,

and prior activity of reviewers and patch authors.

4. Productivity rates - This indicator measures the productivity of contribu-

tors. For instance, study S24 evaluates developer performance for software-

intensive products. This study interviews managers to understand from a

29

managerial perspective how they engage in software product development

activities, and to evaluate performance in large organizations. On the other

hand, study S44 is about sensing developers’ emotions, progress and the use

of biometric measures.

5. Community Social Iteration - The social interaction indicator is a mea-

sure of contributor collaboration and communication within the community.

Examples include a study about communication in open source software

development mailing lists (i.e., S17) and a study about identification of

contributors’ collaborations from different sources (i.e., S29) by analyzing

source code co-changes.

6. Community Diversity - This indicator measures the diversity within the

community. For example, S01 studies team leadership roles with personality

types and gender classification. It uses experimental data to develop a

model for software development team composition by keeping gender as a

major effecting variable with personality. Furthermore, study S38 identifies

barriers for female participation on stack overflow. It interviews female

contributors about contribution barriers in online communities.

Development

1. End-user participation - This indicator is user centric, measuring from a

user’s perspective of skills development. For instance, there are some studies

that involve discovering how end-user programmers and their communities

use public repositories (i.e., S22). This study analyzes end-user program-

mer communities, the characteristics of artifacts in community repositories,

and how authors evolve over time. More recently, there is work that in-

vestigates factors that impact the popularity of GitHub repositories (i.e.,

S55). This work analyzes stars awarded to GitHub projects and identifies

the popularity growth of these repositories.

2. Developer Learning-curve rate - This indicator is developer centric,

measuring from a developer’s perspective of skills development. For exam-

ple, study S31 investigates the effect of the Google summer of code. This

study compares developers’ activity in OSS projects to before and after

participation the Google summer of code event. Another study conducts

30

a questionnaire to investigate the impressions, motivations, and barriers of

one time code contributors to FLOSS projects (i.e., S56).

Know-how

1. Maturity of Work Practice - This indicator measures the degree of

work practices used in contributors’ software development processes. For

instance, study S05 is concerned with a pull-based software development

model. It explores how pull-based software development works by analyzing

pull requests and comments history. On the other hand, study S10 explores

the prior beliefs of developers at Microsoft, confirming beliefs to actual

empirical data. It is a survey to understand a priori opinions on issues such

as cost, quality, and interval related to the project.

2. Core vs. Peripheral knowledge - This indicator explores the knowledge

of core vs. peripheral developers. For instance, study S15 classifies devel-

opers into core and peripheral by count and network metrics. This study

measures metrics related to commits and emails within the project. An-

other example is a study about determining developers’ expertise and roles

(i.e., S20). This study analyzes bug tracker and source code repository to

characterize developers.

3. Knowledge loss rates - This indicator investigates the loss of knowledge

by a contributor leaving the community. For instance, study S40 quantifies

and investigates how to mitigate turnover-induced knowledge loss. In detail,

it quantifies the extent of abandoned source files using source code history

and assesses knowledge loss by turnover.

4. Onboarding rates - This indicator measures the retention of contributors

to a project. In this thesis, we identified a study that explores a precursor

to joining a project. The study analyzes the technical factors of past expe-

rience and social factors of past connections to understand onboarding in

software projects.

31

2.5. Summary

In this chapter, related papers were identified and classified into four dimensions

of Human Capital. 78 studies regarding human aspects in software engineering

were classified into four dimensions: capital for skill attainment, deployment for

a workforce, development for access to learning, and know-how for knowledge

sharing.

RQ1:What are the kinds of topics related to the Human Factors discussed in

SE?

For the capacity dimension, topics related to (a) personality, (b) success, and

(c) performance were the most discussed. In terms of the deployment of the

most complex topics, these were discussed in (a) OSS (b) community, (c) com-

munication and (d) productivity. In terms of development, the most of topics

were discussed (a) user and (b) OSS. Finally, know-how topics were related to

practices, especially with GitHub related research such as pull requests.

RQ2:What are the Human Factor theories being adapted in SE?

77% of papers did not report any theory. Also, the experimental research method

was the most common type of research, with case studies and surveys popularly

used with their theories.

RQ3:Where are the Human Factor origins of the data in SE?

The results showed that papers in the capacity dimension have less sources of

papers (i.e., coverage of 3%). We also show that 58% of papers analyze less than

10 projects with data ranging more than five years. Finally, half the of papers

tend to use multiple sources of data, often combining code and other assets.

A key outcome of this mapping study is a set of indicators for constructing

HCI.

32

Chapter 3

Profiling Contributors Based on

Activities

3.1. Overview

In this chapter a study of the characteristics of contributors’ activities in OSS

development is presented. To clarify the characteristics of contributors’ activities,

the GitHub activity by each contributor is used to clarify the capacity dimensions

of the Human Capital discussed in Chapter 2.

In this study, a case study of the OSS contributors is conducted. The goal is

to indicate that active software projects have various kinds of developers charac-

terized by different types of development activities.

19 contributors’ activities from two projects were investigated. In detail, we

analyze GitHub contributor events of (a) push, (b) pull request, (c) issues, (d)

create, (e) delete, (f) pull request comment, (g) commit comment, and (h) issues

comments.

33

3.2. Background

When trying to identify good contributors and understand how contributors set

goals in life, the different types of contributors are an interesting topic for investi-

gation. For example, the blog article “Are You a Good Programmer?,”1 describes

four types of good programmers.

This article suggests that the four types of programmers approach code in

different ways based on their motivation. The Philosopher, driven by a need

for safety and security, writes tightly controlled code. The Inventor, driven to

explore, creates quirky and unique code. The Conqueror, driven to compete,

looks for harder challenges. Finally, The Problem Solver, motivated to create

value, tries to deliver the desired outcome.

Similarly, the article “The 6 Types of Software Engineers: Identification, Care

and Feeding2,” introduces the following six types of software engineers: The

Veteran, The Hotshot (smart and young engineer), The Great One (always

delivers on schedule, writes solid code, and so on), The Teflon-gineer (will

do anything to reduce his work), Offshore, The Maverick (smart, creative, de-

pendable, does not want to build on or maintain the existing codebase). Then the

article “10 Types of Programmers You’ll Encounter in the Field3:” presents 10

types: Gandalf (as adept at working magic as Gandalf), The Martyr (a worka-

holic), Fanboy, Vince Neil, The Ninja (the team’s MVP, and no one knows

it), The Theoretician, The Code Cowboy, The Paratrooper, Mediocre

Man, and The Evangelist.

These lists of contributor types are neither complete nor comprehensive, nor

do contributors have to fit these categories. The point is that there are many

different types of contributors, with many different ways of making valuable con-

tributions. This research studied types of contributors based on actual contribu-

tors’ activities. We did not investigate the social structure in software projects,

nor did we analyze the roles of contributors in such projects. Instead, we tried to

1http://techiferous.com/2011/08/are-you-a-good-programmer/
2http://crankypm.com/2008/08/the-6-types-of-software-engineers-identification-

care-and-feeding/
3http://www.techrepublic.com/blog/10-things/10-types-of-programmers-youll-

encounter-in-the-field/

34

Code Issue

Code Issue

Fork
PullRequest

Issue

Issue

User

(b)OtherUser/Project

(c)User/OtherProject

(d)OtherUser/OtherProject

(a)User/Project

…

…

PullRequest
ReviewComment

Create/
Delete/
Push

CommitComment Issue
Comment …

PullRequest
ReviewComment

CommitComment Issue
Comment

…

…

…

Figure 3.1: Contributor’s Activities in GitHub.

characterize contributors based on their observed activities.

As case studies for this research, we chose two active software projects, node

and jQuery. Both of these use GitHub4, which is a widely-used hosting service for

software development projects that used the Git revision control system. GitHub

provides “social coding” services for contributors to collaborate with each other.

GitHub provides APIs (GitHub API v35) which allowed us to collect contributors’

activity data.

Our study collected data from the two projects, which we then analyzed to

investigate the characteristics of contributors’ activities. We analyzed the fre-

quencies of types of activities, such as code-related, comments-related, and issue

handling. We also investigated the specialization of the projects and the rates of

the activities. Our study showed that the top contributors in these projects in-

clude different kinds of contributors with different characteristics of development

activities.

Figure 3.1 provides an overview of a contributor’s activities in GitHub. A

project is identified by the owner and the name of the project (owner/project name).

In GitHub, a contributor can work on various projects. Also, in our study, we

consider (a) and (b) projects as target projects and (c) and (d) as other projects.

Therefore, we classify contributor’s activities in terms of target projects and other

projects. This means that for a contributor User who is a contributor to one spe-

cific project Project , there are four categories of working projects:

4https://github.com/
5http://developer.github.com/

35

(a) Target project TargetProject belonging to the contributor User. This

code repository may have been forked from another user’s repository.

(b) Target project TargetProject belonging to another contributorOtherUser,

who may be the owner of the project.

(c) Non-target projects OtherProject belonging to the contributor User. These

code repositories have been forked from the original repositories.

(d) Non-target projects OtherProject belonging to another contributor OtherUser.

Each project has a code repository and an issue repository. Although a con-

tributor can directly access their own code repositories, they cannot directly push

their changes to code repositories belonging to another contributors’ account. To

work with code from another contributor’s code repositories, a contributor can

make cloned repositories in their own account. This operation is called forking.

Similarly, a contributor can create or delete branches and tags in their own

repositories. A contributor can also push changes from their local code reposito-

ries to the GitHub code repositories. As shown in Figure 3.1, when a contributor

wants to apply changes from their own code repositories ((a) or (c)) to another

contributor’s code repositories ((b) or (d)), a PullRequest is sent to the other

contributor’s projects.

Issue repositories contain reports of issues including bugs and feature requests.

As shown in Figure 3.1, a contributor can open, close, or reopen any issues in her

issue repositories for (a), (b), (c) or (d). Contributors can also make comments

on commits (CommitComment), pull requests (PullRequestReviewComment) and

issues (IssueComment).

In our study, we consider (a) and (b) projects as target projects and (c) and

(d) as other projects. Therefore, we classify contributor’s activities in terms of

target projects and other projects.

36

0

50

100

150

200

250

300

el *oi* *no*

 �
��

�
	
��
���

���
��

�

��
��������

Issue

PullRequestComment

IssueComment

CommitComment

Push

PullRequest

Create/Delete

Figure 3.2: Distributions of Contributor’s Activities for Three Typical Contribu-

tors in the node Project.

Table 3.1: Statistics of Target Projects (Aug. 15, 2013)

Project Language Commits Stars Forks Contributors

node JavaScript 8, 974 23, 984 4, 572 447

jQuery JavaScript 5, 270 22, 305 4, 587 168

3.3. Method

3.3.1 Target Projects

To investigate various contributors’ activities, in this study we selected two active

projects, node6 (joyent/node. Description: evented I/O for v8 javascript http:

//nodejs.org/) and jQuery7 (jquery/jquery. Description: jQuery JavaScript

Library http://jquery.com/). We chose these projects because they have many

stars and forks, and they appear in the trending repositories. Table 3.1 presents

statistics for these two projects. These projects also have many contributors who

have participated in many GitHub activities, as explained in Section 3.2.

Table 3.2 shows the top contributors with more than 100 commits in these

two projects, and how many commits each has made. Each project webpage

6https://github.com/joyent/node
7https://github.com/jquery/jquery

37

Table 3.2: Characteristics of Contributors’ Activities. Partial Names Are Used,

Because of Privacy Concerns.

node jQuery

1 *ry* 2, 941 *er* 1, 591

2 *sa* 1, 413 *me* 436

3 *no* 1, 208 *za* 318

4 *is* 502 *wl* 297

5 *nd* 288 *im* 267

6 *oo* 177 *au* 266

7 *oi* 157 *ra* 248

8 *el* 119 *le* 200

9 *re* 114 *ib* 145

10 —— *rk* 117

shows such information. We only show partial names of contributors because of

privacy concerns. In this study, we selected data about such top contributors

from the two target projects for our analysis of contributors’ activities. While

GitHub identifies the contributors to projects based on the cumulative number of

commits, we intended our study to clarify the differences in contributions between

contributors.

3.3.2 Data Collection

Using the GitHub APIs, we collected data about the contributors’ activities.

There are various APIs for different kinds of GitHub data, such as Git revision

control data, issues, repositories, and users. All API access is over HTTPS, and

all data is received as JSON data structures. We collected data on Aug. 14, 2013

in two phases, first identifying contributors and second extracting activities.

Phase 1: Identifying Contributors. When we identified a repository,

such as joyent/node or jquery/jquery, the repository-related API provided a list

38

of contributors8 to that repository. This list included the contributors’ names and

number of contributions, which is the number of activities related to the project.

For our study, we limited the contributors to contributors who have made more

than 100 contributions because we wanted to investigate active contributors. In

this phase, we identified 9 contributors for the node project and 10 contributors

for the jQuery project. Table 3.2 shows all the contributors for both projects.

Phase 2: Extracting Activities. Using the names of the contributors, the

activity-related API provided a list of each contributor’s activity events9. GitHub

has 18 different types of activity events. However, because some types of events

seldom occurred in our data collection, we ignored them. In our study, we in-

vestigated these eight activity events: CreateEvent, DeleteEvent, PushEvent,

PullRequestEvent, CommitCommentEvent, IssueCommentEvent, PullRequest-

ReviewComment, and IssueEvent. Section 3.2 discussed the relationships be-

tween the events and the projects. For each event, the event lists include the

date and touched repositories. The activity-related API limits the number of

events to the most recent 300.

3.3.3 Threats to Validity

Construct Validity. The major threat to the construct validity is the limita-

tion of available event data to the most recent 300 events in the activity-related

GitHub API. In our study, we found that 300 events was not large enough for

some contributors because these contributors produce 300 events or more within

a few weeks, so the most recent 300 may not be representative activities for these

contributors. As a result, our study may have only clarified the characteristics of

activities in a short-term window. For more representative analysis, data obtained

over a longer term is desirable.

External Validity. Our study is limited to two projects written in JavaScript

using the GitHub environment, so our results cannot be generalized to other

projects and development languages. In addition, these were open source software

projects, and contributors’ activities in industry software development may be

different.

8http://developer.github.com/v3/repos/#list-contributors
9http://developer.github.com/v3/activity/events/

39

0
10
20
30
40
50
60
70
80

Create/Delete

Push

PullRequest

Commit
Comment

Issue
Comment

PullRequest
Comment

Issue

other

jquery

(a) Contributor *rk*.

0
10
20
30
40
50
60
70
80

Create/Delete

Push

PullRequest

Commit
Comment

Issue
Comment

PullRequest
Comment

Issue

other

jquery

(b) Contributor *au*.

0
10
20
30
40
50
60
70
80

Create/Delete

Push

PullRequest

Commit
Comment

Issue
Comment

PullRequest
Comment

Issue

other

jquery

(c) Contributor *me*.

0
10
20
30
40
50
60
70
80

Create/Delete

Push

PullRequest

Commit
Comment

Issue
Comment

PullRequest
Comment

Issue

other

jquery

(d) Contributor *im*.

Figure 3.3: Radar Charts of Contributor’s Activities on the jQuery Project

3.4. Results

We investigated contributors’ activities in terms of four areas, the type of activity,

the specialization of contributions, contributions relative to the day of the week,

and the frequency of activity.

3.4.1 Coding, Commenting, and Issue Handling

First, we investigated the frequencies of the extracted eight events in the 300

events for each contributor to identify their major focus of activities. For con-

venience, the CreateEvent and DeleteEvent counts were combined. Figure 3.2

presents a bar chart of the characteristic activities of three typical contributors

from the node project. These three contributors were chosen because they repre-

sent a variety of approaches. In the bar chart, large areas of each bar represent

high numbers of those types of activity events.

The events Create, Delete, Push, and PullRequest are related to coding,

while the events CommitComment, IssueComment, and PullRequestReviewComment

are related to commenting. As can be seen in Figure 3.2, the first contributor,

40

el has many IssueComment and Push events. Similarly, the second contribu-

tor, *oi*, has many Push and PullRequest events. The third contributor, *no*,

has a relatively balanced mix of activities. Based on this categorization of events,

we can identify the majority of the first contributor’s activities as related to com-

menting, the second contributor’s activities as related to coding, while the third

contributor has a balance of activities including both coding and commenting

activities. Similarly, for every contributor on both projects, we identified the

majority focus of their activities. Table 3.3 summarizes these results.

3.4.2 Expertise of Contribution

Second, we investigated how much contributors contribute to their own target

projects and other projects. As explained in Section 3.2, we classified projects

into target projects and other projects. Figure 3.3 shows the radar charts of the

activity events for four typical contributors on the jQuery project. In these radar

charts, we separately plotted the contributors’ activities on their target projects

and other projects. The blue lines represent the activities for the target project,

the jQuery project, while the red lines represent activities for other projects. Each

axis shows the number of events for a specific activity. These charts allow us to

easily see the differences in characteristics of contributors’ activities between their

target project and other projects.

For example, in Figure 3.3 (a), the contributor contributes mostly to their

target project, particularly with code-related activities such as creates, deletes,

pushes, and pull requests. In Figure 3.3 (b), the contributor also makes most

contributions to their target project, but with comment-related activities such as

commit comments, issue comments, and pull request comments. This contributor

does not make so many code-related activities such as create, delete, or push. For

other projects, this contributor also has some push and issue comment activities.

In Figure 3.3 (c), while the contributor makes code-related and issue comment

contributions to their target project, most of their activities are on other projects

with pushes, issues, and issue comments. In Figure 3.3 (d), the contributor shows

similar characteristics, but contributions to their target project are less than other

projects, and most of the activities are either pushes or issue comments.

This analysis reveals that top contributors contribute differently to target and

41

0

10

20

30

40

50

60

70

Mon Tue Wed Thu Fri Sat Sun

Ev
en
ts

(a) Contributor *sa*.

0

10

20

30

40

50

60

70

80

90

Mon Tue Wed Thu Fri Sat Sun

Ev
en
ts

(b) Contributor *re*.

0

20

40

60

80

100

120

Mon Tue Wed Thu Fri Sat Sun

Ev
en
ts

(c) Contributor *is*.

0

20

40

60

80

100

120

140

160

180

200

Mon Tue Wed Thu Fri Sat Sun

Ev
en
ts

(d) Contributor *oi*.

Figure 3.4: Frequency of Activities during Days of the Week in the Node Project

other projects. Some contributors contribute most of their development activities

to their target projects, while others contribute most of their activities to other

projects. In our analysis, the rest of the contributors showed similar patterns of

activities.

3.4.3 Workdays

Figure 3.4 shows the number of contributors’ activities divided across the days

of the week. Charts of four typical contributors in the node project are shown.

In Figure 3.4 (a), the contributor works Monday through Saturday. In Figure

3.4 (b), the contributor works Monday through Friday and does not work on

weekends (Saturday and Sunday). In Figure 3.4 (c), the contributor mainly

works on Wednesday, while in Figure 3.4 (d), the contributor works mostly on

Saturday. The rest of the contributors have similar distributions. We found

42

Figure 3.5: Distributions of 300 Activities during Weeks for Four Typical Con-

tributors in the node Project

that some contributors work mostly on weekdays, while others work mainly on

weekends. This analysis may allow us to distinguish professional contributors

from volunteer contributors.

3.4.4 Frequencies of Activities

Figure 3.5 shows the frequencies of activity events over a range of months for

four typical contributors. Because the activity-related GitHub API limits the

number of events per contributor to 300, the date of the first recorded event

for each contributor differed. For example, in this figure, the contributor *no*

worked frequently in GitHub, with over 200 activities in a week. For comparison,

the contributor *oi* worked only a little bit in GitHub each week, so that their

300 activities covers over a year. We found several patterns of work among the

contributors, with some contributors producing 300 events in a few weeks, while

others took months for 300 events. Table 3.3 summarizes these results in the

Activities column.

3.4.5 Overall

Table 3.3 summarizes the analysis results in three key areas, type of activities,

specialization, and frequency of activities for the activities of the top contributors

with more than 100 contributions to the target projects. The majority column

43

shows the distribution of activities discussed in Section 3.4.1. If contributors

have a mixture of coding, commenting, and issue handling activities, we identified

that as balanced. He specialization column shows the contributions to the target

and other projects as discussed in Section 3.4.2. We identify contributors as

specialists if they work mainly on their target project, others if they work mainly

on other projects, both if they work on both the target and other projects, and

no contribution when the contributor has not contributed to their target project

within their 300 activities. The frequency column shows the periods of time

needed for each of the contributors to produce 300 activity events as described

in Section 3.4.4.

As compared to Table 3.2, which only identified the top contributors and

numbers of cumulative comments, Table 3.3 shows the various characteristics

of contributions for different contributors. In this table, we can see that some

contributors concentrate on coding and/or commenting, while others contribute

with a mix of activities including coding, commenting, and issue handling. Top

contributors may mainly work on their target projects, some mainly work on

other projects, and some have not contributed to their target projects recently.

In addition, the activity rates of contributors are very different, with some very

active while others are much less active. In each of the two target projects,

different contributors have different characteristics of development activities.

3.5. Discussion

This study examined the characteristics of contributors’ activities by collecting

and analyzing data from two active software projects in GitHub. This included

code-related, comment-related, and issue handling activities. While GitHub pro-

vides a list of top contributors in each project based on the number of commits, we

found that various contributors had different characteristics in their development

activities.

In both projects in this study, the top contributors had a mixture of charac-

teristics. For example, some contributors were balanced in doing coding, com-

menting, and issue handling, while others focused more on code or comments.

Further, some contributors were specialists, doing most of their work on their

44

Table 3.3: Headings: Change Specialty to Specialization, and Activities to Fre-

quency.

node

Contributor Commits Majority Specialty Activities

1 *ry* 2, 941 Balanced Specialist Years

2 *sa* 1, 413 Code/comments Both Weeks

3 *no* 1, 208 Balanced Specialist Days

4 *is* 502 Code/comments Others Months

5 *nd* 288 Code/comments Both Weeks

6 *oo* 177 Code/comments Others Months

7 *oi* 157 Code Both A year

8 *el* 119 Comments No contribution Months

9 *re* 114 Code Specialist Weeks

jQuery

Contributor Commits Majority Specialty Activities

1 *er* 1, 591 Code/comments No contribution Months

2 *me* 436 Balanced Others Months

3 *za* 318 Comments No contribution Months

4 *wl* 297 Balanced No contribution Days

5 *im* 267 Code Others Weeks

6 *au* 266 Comments Specialist Months

7 *ra* 248 Code No contribution Weeks

8 *le* 200 Balanced No contribution A year

9 *ib* 145 Code/comments Specialist Months

10 *rk* 117 Code Specialist Months

45

own target project, some did most of their work on other projects, and others

mixed target and other project contributions. Finally, activity rates varied from

days to a year between contributors.

While these results are specific to these projects and GitHub as a development

environment, they suggest that active software projects need a mixture of con-

tributors’ characteristics, including generalists and specialists in activities such

as coding, commenting, and issue handling, as well as contributors who focus on

one project and transients who look in on multiple projects. Even the differences

in activity levels, while complicating attempts at project management, are part

of the open source software environment and should be expected.

3.6. Summary

In this chapter, a study of the characteristics of contributors’ activities in OSS

development is presented. To clarify the characteristics of contributors’ activi-

ties, the GitHub activity by each contributor is used to represent the capacity

dimensions of the Human Capital discussed in Chapter 2.

Developers were categorized based on measures such as whether they prefer

communication by coding or comments, or whether they are specialists or gen-

eralists. This study indicates that active software projects have various kinds of

developers characterized by different types of development activities.

Capacity in the OSS-HCI means whether contributors learned know-how as a

contributor, in other projects before participating in the current the project. In

this section, contributors’ contributions such as comment, bug report and coding

to other projects are clarified. Particularly, we focus on type of contributors’

activities and apply to capacity in OSS-HCI.

46

Chapter 4

Measuring Community

Structures

4.1. Overview

In this chapter, the community structure of OSS projects is analyzed using a

demographic approach. Software population pyramids are proposed that involve

a portion of the deployment and know-how dimensions of Human Capital that

were discussed in Chapter 2. Later, these metrics will be used in Chapter 5 to

building the HCI.

In this chapter, a case study on the software population pyramids was con-

ducted. Also, future populations in OSS projects are predicted. The goal is to

understand the community structure of OSS projects based on the coding con-

tributors and noncoding contributors.

In this chapter, eight case studies from four types of projects were investigated

for the two definitions of CCR and NCR. Also, the prediction of a population in

a software community is proposed. Then, a future population prediction method

using a cohort component method in demography to a prediction of OSS future

communities is given.

47

4.2. Background

As of 2014, GitHub reported having over 3.4 million users and 16.7 million repos-

itories1. Why does GitHub attract so many developers? Several studies have

identified the essence of this success [19]. GitHub is a distributed version control

system (DVCS) and a web-based hosting service for Git repositories. Brindescu et

al. assessed the differences between the centralized version control system (CVCS)

and DVCS [19]. They reported that developers prefer DVCS because of its useful

features, such as the ability to commit locally, work offline while retaining full

project history, and create merging branches cheaply. Muşlu et al. reported that

developers moved from CVCS to DVCS because DVCS has the ability to work

offline, to work incrementally, and to context switch and do exploratory coding

efficiently [69]. GitHub has tapped into the opportunity to facilitate pull-based

development by offering workflow support tools, such as code reviewing systems

and integrated issue trackers. Gousios et al. reported the impacts of pull-based

development based on mining repository data: fast development, transparency

in project management, attracting contributions, crowd sourcing of code review,

and democratizing development [39]. GitHub is also considered as a developers’

social networking service, and it promotes software development through formal

and informal collaboration, called social coding. Dabbish et al. examined the

value of transparency and collaboration in OSS, reporting that developers form

a rich set of social inferences, including inferring technical goals and vision and

trying to identify projects with similar, and developers combine these inferences

into effective strategies for coordinating work, advancing technical skills, and

managing their reputations [28].

Although GitHub has many attractive features and many users and reposito-

ries, most projects are inactive and have very few commits. Based on a qualitative

manual analysis of GitHub repositories, Kalliamvakou et al. reported that the

majority of the projects are personal and inactive [52]. To survive and succeed,

software development communities need to attract and retain contributors. Ya-

mashita et al. proposed a pair of population metrics, namely, magnetism and

1Marisa Whitaker, “Former UC student establishes a celebrated website in GitHub that

simplifies coding collaboration for millions of users,” University of Cincinnati, April 2014,

http://magazine.uc.edu/favorites/web-only/wanstrath.html.

48

stickiness [119]. Magnet projects are defined as those that attract a large propor-

tion of new contributors, and sticky projects as those where a large proportion

of the contributors will continue to make contributions. With the two values of

magnetism and stickiness, OSS projects are classified into the following four cat-

egories: (1) Attractive projects have high magnet and high sticky values. These

projects are successful both at attracting new contributors and at retaining ex-

isting ones. (2) Fluctuating projects have high magnet but low sticky values.

These projects are successful at attracting new contributors but unsuccessful at

retaining them. Therefore, the members of these OSS development communi-

ties fluctuate from year to year. (3) Stagnant projects have low magnet but high

sticky values. In contrast to fluctuating projects, stagnant projects retain existing

contributors but cannot attract new ones. (4) Terminal projects have low magnet

and low sticky values. Based on this classification, Yamashita et al. empirically

studied OSS project histories and identified at-risk projects.

The work of Yamashita et al. suggests that we should go further to analyze

moving human resources of OSS projects in more details not only for the evalua-

tion of project sustainability but also for providing actionable information to help

practitioners monitor a project, know what is really working, improve efficiency,

manage risk, anticipate changes, and evaluate past decisions [20]. For example,

if one could know that a project is attracting new contributors but loosing ex-

perienced contributors, then it can be considered that the project is changing its

direction originally intended by the experienced contributors. For a straightfor-

ward way to analyze such moving human resources, this paper focuses on the

populations of development communities. And, to conduct software analytics in

populations of OSS development communities, we apply an approach taken from

demography. Demography is the scientific study of population. Demographers

seek to uncover the levels and trends in a population’s size and components [44].

Every population has a different composition: the number and proportion of

males and females in each age group. This structure can have considerable impact

on the population’s current and future social and economic situation. Govern-

ment policymakers and planners worldwide use population projections to gauge

future demand for services and to forecast future demographic characteristics. We

believe this perspective, that is, demography for actionable information, is also

49

important for OSS projects to manage sustainable development communities.

A population pyramid is a graphical illustration of the distribution of the

various age groups in a population. Depending on the countries’ conditions, the

shape of population pyramids varies. Population pyramids are used to show the

current status of a country’s population and provide insights about political and

social stability, as well as economic growth. Population projection is a powerful

approach to discuss future populations [80]. In a previous study, we applied pop-

ulation pyramids to OSS development communities. We dubbed this approach

software population pyramids [74]. In software population pyramids, contribu-

tors are grouped by their experiences in the communities. Extending the previous

study [74], this paper investigates the characteristics of the population structures

observed in OSS projects in GitHub by introducing demographic analysis. In ad-

dition, we project the future of population structures using the well-known cohort

component method. We address the following research questions in this paper:

What characteristics of population structures exist in OSS projects in GitHub,

and can we project future population structures? The differences between this

study and the Yamashita et al. study [119] can be summarized as follows:

• The study of Yamashita et al. is based on population migration metrics.

Therefore, their research specialized in the migration and remaining of de-

velopers. In contrast, we introduced the demographic approach. Therefore,

we can investigate population structures deeply and predict the future of

development communities with a well-known method.

• Yamashita et al. considered developers to be authors of code changes, so

they focused only on the commit and pull request activities. However, we

are also interested in other contributors who send issues and comments. So

we analyze other activities as well as commit and pull request activities,

which makes it possible to understand development communities in detail.

• Our software population pyramids consist of various experience groups in a

software development communities. Our method thus allows us to see long-

term contributors, though the previous study did not distinguish between

the experiences of individual developers.

50

4.3. Method

4.3.1 Population Structures

Age and sex are the most basic characteristics of a population. Every population

has a different age and sex composition, and this population structure can have

considerable impact on the population’s current and future social and economic

situation [44]. A population pyramid graphically displays a population’s age and

sex composition.

In a general population pyramid, the population is distributed along the hor-

izontal axis, with males shown on the left and females on the right. The male

and female populations are broken down into five-year age groups represented

by horizontal bars along the vertical axis, with the youngest age groups at the

bottom and the oldest at the top. The shape of the population pyramid gradually

evolves over time, following trends in fertility, mortality, and international migra-

tion. We can understand the status of a country just by looking at population

pyramids. Figure 4.1 (a) shows the population pyramid of India in 2010. This

pyramid is large toward bottom, a form that is common in developing countries.

Population pyramids are also useful for predicting the future composition of a

population. Figure 4.1 (b) shows the projected population pyramid of Japan in

2050. It seems like a tower rather than a pyramid. This form is common in low

birth rate and high longevity countries. Depending on the countries’ status, the

shape of population pyramids varies.

4.3.2 Software Population Pyramids

There are various contributors to the OSS project. There are, for example, bug

reporters, commenters, reviewers, and coding contributors. All contributions and

various contributors are important for OSS projects. For example, bug reporters

assume an important role in improving the quality of OSS [89]. Also, develop-

ers can keep up motivation by getting some comments of thanks, admiration,

or opinion. However, coding contributors, bug reporters, and commenters differ

essentially. Contributors can comment or report bugs without a deep understand-

ing of source code files, but coding contributors need to understand them. So,

51

ʢa) India in 2010

ʢbʣ Japan in 2050

Figure 4.1: General Population Pyramid

(https://www.populationpyramid.net)

52

coding contributors are considered to be required to have specific skills, unlike

bug reporters or commenters. Therefore, in this study, we distinguish coding

contributors with other, non-coding contributors.

It is often the case that core developers contribute to both coding and non-

coding activities. We identify individuals as coding contributors if the contrib-

utors have experienced code-related activities at least once in his/her existing

period. If a contributor only has non-coding activities in a given period, he/she is

regarded as a non-coding contributor. Then if the contributor begins code-related

activities later, he/she will be classified as a coding contributor. To clarify such

transitions, we call such contributors “moved contributors”. End users play an

important role in maintaining contributors’ motivation [124]. However, because

contributions of end users are not recorded in software repositories in general,

our study do not consider them.

We have proposed software population pyramids: population pyramids of

software development communities [74]. Contributors are considered to be the

constituent member of the communities, and the contribution periods are re-

garded as existing periods or lifetimes. A software population pyramid consists

of two back-to-back bar graphs, with the population plotted on the X-axis and

experience on the Y-axis. The bar graph on the right shows coding contributors,

and the bar graph on the left shows non-coding contributors in a particular pop-

ulation in three-month experience groups. In a general population pyramid, the

populations are broken down into five-year age groups. However, we should make

software population pyramids with shorter periods because the five-year length is

too long for OSS projects. In our previous study, we analyzed software popula-

tion pyramids in one year length [74]. However, we found that many contributors

leave projects within a year. In addition, less than three months is too short

for many projects to obtain enough data to draw a population pyramid. So, in

this study, we make software population pyramids with three months groups, and

analyze population of contributors in OSS projects.

There are some differences between our software population pyramids and the

general population pyramids.

• Whereas a population pyramid consists of bars for males and females, a

software population pyramid consists of coding bars for contributors and

53

non-coding contributors.

• In a general population pyramid, people appear at birth and disappear when

they die, but in a software population pyramid, contributors start their

experiences when they enter and finish when they leave the development

communities. In this study, we consider that a contributor left a project

when he/she did not give any contribution on that project for more than

three months. However, very few contributors might come back to the

project after three-month (or more) interval. They disappear from the

pyramids while they are inactive temporarily. In that case, we consider

them as experienced contributors when they come back to the project.

• The height of general population pyramids are similar to each other, because

maximal life-span of human is not so different in each country. However,

software population pyramids have different heights, because OSS projects

have different existing periods and people can leave freely.

• Because the parent-child relationships exist in population pyramids, there

are correlations between the volume of the parent population and the pop-

ulation of children. However, software population pyramid do not exhibit

such relationships. This can cause the pyramid to change dramatically.

4.3.3 Dataset

We analyze the GitHub dataset provided by Gousios [38] in MSR mining challenge

20142. This dataset includes developers’ activity histories for 90 OSS projects.

Figures 4.2 and 4.3 show point diagrams that plot metrics of projects. Figure 4.2

shows the distribution of development periods and the number of contributors.

From Figure 4.2, we can see that homebrew has many contributors and that

the development period of rails is long. Figure 4.3 shows the distribution of the

number of coding contributors and the number of non-coding contributors by

project. From Figure 4.3, we see that homebrew and rails have many coding and

non-coding contributors. From small to large-scale projects, this dataset includes

various types of projects.

2http://2014.msrconf.org/challenge.php

54

Figure 4.2: Distribution of Development Periods and the Number of Contributors.

Figure 4.3: Distribution of the Number of Coding Contributors and the Number

of non-coding Contributors.

55

Table 4.1: GitHub Development Activities

Development Activities Overview Separation

commits Commit to the repository coding

pull requests Request a commit to com-

mitters

commit comments Comment against commit

issues An issue associated with a

repository

non-coding

issue comments Comment against commit

pull request comments Comment against commit

pull request

events This is a read-only API to

the GitHub events.

followers A follower to a user.

forks A copy of a repository

org members Users that are members of

an organization.

repo collaborators Users with access to the

repository.

excluded in this study

repo labels Label list is labeled to the

repositories

repos A dump of every public

repository

issues events An event on an issue

users Github users.

watchers Users that have starred

(was watched) a project

56

Table 4.2: Example of Data of Activity and Activity Periods of Contributors in

t1 and t2

Pyramids in t1 Pyramids in t2
Working months Working months

Contributor coding non-coding coding non-coding

C1 1 - 4 -

C2 - - - 2

C3 - 3 2 6

C4 5 2 8 5

C5 - 4 - 7

C6 3 5 6 8

In total, this dataset includes 16 development activities, but to focus on con-

tributors’ activities, we use only six development activities. Table 4.1 shows the

name of 16 development activities and an explanation of the content of these

activities. Pull request and commits are considered to be coding-related activi-

ties, whereas commit comments, issue comments, pull request comments and is-

sue events are considered non-coding activities. Events, followers, org members,

repo collaborators, repo labels, repos, users and watchers are not related to con-

tributors’ activities. “Forks” is generally a contributor’s activity; however, fork

itself does not contribute to the development, and also fork is often done by a per-

son before he/she participate in a development as a contributor. So we excluded

it from the contributors’ activity list.

We classified contributors as coding and non-coding contributors. Coding

contributors are contributors who have at least one code-related activity in their

existing periods. Non-coding contributors are contributors who have not ex-

perienced code-related activities but have experienced non-coding activities. We

obtained the dates of those events for each contributor, and identified the contri-

bution period from the first event until the last event. Details of how to obtain

the data are explained in Appendix A. Contribution periods are divided into cod-

ing periods and non-coding periods based on the classification of the activity

events. If a contributor has only non-coding activities in his/her early period, the

57

3 months

6 months

9 months

3 0 3
Number of contributors

Ac
tiv

ity
 p

er
io

d

C6 C1

C4C5

C3

(a) Pyramids in t1.

3 months

6 months

9 months

3 0 3
Number of contributors

Ac
tiv

ity
 p

er
io

d

C3

C6 C1

C4C5

C2

(b) Pyramids in t2.

Figure 4.4: Examples of Software Population Pyramids in t1 and t2

period is regarded as a non-coding period and he/she is regarded as a non-coding

contributor. If a contributor has coding-related activities, the period is regarded

as a coding period and he/she is regarded as a coding contributor.

Table 4.2 shows an example of data of activity and activity periods of con-

tributors, and Figure 4.4 shows software population pyramids that plot the data

of Table 4.2. The time t2 is three months later to the time t1. The X-axis is

the number of contributors. The center is zero, the right side shows the number

of coding contributors, and left side shows non-coding contributors. The Y-axis

is the activity period of contributors. For example, contributor C1 has coding

activity periods of one month in t1 and four months in t2. Therefore, he/she

is plotted as C1 in location in Figure 4.4 (a) and Figure 4.4 (b) as a coding

58

contributor. Contributor C2 has a non-coding activity period of two months in

t2. He/she is plotted as C2 in location in Figure 4.4 (b) as a non-coding con-

tributor. In contrast, contributor C3 has a non-coding activity period of three

months in t1. He/she is plotted as C3 in location in Figure 4.4 (a) as a non-coding

contributor. However, he/she has a coding activity period of two months in t2.

Therefore, he/she is plotted as C3 in location in Figure 4.4 (b), having moved to

the contributor side.

The method of calculating activity periods used here does not take into ac-

count actual activity between start and end. In a previous study, we analyzed the

frequency of activities of contributors, finding that, although some contributors

continued to make small contributions for long periods, there is no contributor

that stops activities in a project and then rejoins the project later [73]. However,

it is important to take into account the frequencies of contributions. This could

be the future work of this study.

4.4. Results

4.4.1 Characteristics of Population Structures

We classify the shapes of software population pyramid, and investigate their char-

acteristics. For this purpose, we propose two new measures. One is the proportion

of the number of non-coding contributors (non) to the number of coding contrib-

utors (coding), called the Coding Contributors Ratio (CCR). CCR is defined as

follows:

CCR =

⎧
⎪⎨

⎪⎩

coding − non

coding
(coding ≥ non)

coding − non

non
(coding < non)

CCR ranges from −1 to 1. Higher values mean that more contributors are

coding contributors, and lower values mean that more contributors are non-coding

contributors. If the value is close to 0, the number of coding contributors and the

number of non-coding contributors are similar.

The other proposed measure is the proportion of the number of experienced

contributors to the number of newcomers (new contributors), called the New

59

Figure 4.5: Distribution of CCR and NCR of OSS Projects in GitHub.

60

Contributors Ratio (NCR). In this study, we define newcomers as contributors

who have less than three months of activity periods, and we define experienced

contributors as those with longer activity periods. NCR is defined as follows:

NCR =

⎧
⎪⎨

⎪⎩

new − experience

new
(new ≥ experience)

new − experience

experience
(new < experience)

NCR ranges from −1 to 1. Higher values mean that more contributors are

new contributors, and lower values mean that more contributors are experienced

contributors. If the value is close to 0, the number of new contributors and the

number of experienced contributors are similar.

Figure 4.5 shows the distribution of the projects using the CCR and the NCR

in September 2013. Because four projects did not have any contributors in this

period, we could not plot them. For that reason, there are 86 projects displayed in

Figure 4.5. With this distribution, we can classify the projects into the following

four types:

• Type A: There are more newcomers than experienced contributors, and

more coding contributors than non-coding ones in a project. So, the shape

of software population pyramid on the right side is larger than the left

side, and the bottom is larger than others, also experienced contributors

are plotted intermittently.

• Type B: There are more newcomers than experienced contributors, and

more non-coding contributors than coding ones in a project. So, the shape

of software population pyramid on the right side is larger than the left

side,and the bottom part is larger than other parts. Also, experienced

contributors are plotted intermittently.

• Type C: There are more experienced contributors than newcomers, and

more coding contributors than non-coding ones in a project. So, the shape

of software population pyramid on the left side is larger than the right

side, and the bottom part is larger than other parts. Also, experienced

contributors are plotted intermittently.

61

1 year
2 years
3 years
4 years
5 years
6 years
7 years

30 15 0 15 30

jquery

1 year
2 years
3 years
4 years
5 years

30 15 0 15 30

django-cms
(a) Type A

1 year

2 years

750 500 250 0 250 500 750

Font-Awsome

1 year

2 years

500 250 0 250 500

gitlabhq
(b) Type B

1 year
2 years
3 years
4 years
5 years
6 years

50 25 0 25 50

cakephp

1 year

2 years

3 years

30 15 0 15 30

CraftBukkit
(c) Type C

Figure 4.6: Examples of Software Population Pyramids of each Type. (Note that

scales are different)

62

1 year

2 years

3 years

4 years

600 400 200 0 200 400 600

homebrew

1 year
2 years
3 years
4 years
5 years
6 years

300 200 100 0 100 200 300

rails

Figure 4.7: Examples of Software Population Pyramids (CCR and NCR are close

to 0). Scales are Different

• Type D: There are more experienced contributors than newcomers, and

more non-coding contributors than coding ones in a project. So, the shape

of software population pyramid on the left side is larger than the right side,

and experienced contributors are plotted continuously.

There are 23 projects categorized Type A, 42 projects as Type B, 18 projects

as Type C, and three projects as Type D. Figure 4.6 presents examples of software

population pyramids belonging to Type A, Type B, and Type C.

(a) Type A In these projects, there are few experienced non-coding contribu-

tors. In django-cms, there are many moved contributors. Because many

developers moved from non-coding to coding, these projects have many

coding contributors.

(b) Type B Font-Awesome has many non-coding contributors. This project

makes Web icon fonts, and many people sent requests for new icons to

this project. Therefore, many non-coding contributors leave this project

immediately following a short period of contribution.

(c) Type C There are many moved contributors in CraftBukkit. Also, there

are many coding newcomers. However, many coding contributors continue

their activities, because there are more experienced contributors than there

are newcomers.

In Figure 4.6, we see that the shapes of the pyramids are different from each

other. OSS projects are managed by voluntary contributors, so contributors may

63

not correspond to the many bug reports in projects of Type B. Additionally, it

is difficult to obtain coding newcomers, because there are no moved newcomers.

However, there are a few contributors that report bugs, such as in Type A or C,

so these projects have little chance of improving the quality of the OSS through

bug reports.

Figure 4.7 shows the software population pyramids of homebrew and rails.

Homebrew belongs to Type A, and rails belongs to Type D. In these projects,

both CCR and NCR values are close to 0. These projects are continually gaining

contributors because their software population pyramids do not have intermittent

bars. In addition, there are many moved contributors. We can see that these

projects succeeded in attracting and retaining new/experienced and coding/non-

coding contributors.

Projects that are plotted close to the center of the graph are well balanced

in CCR and NCR. In these projects, there are an almost equal the number of

contributors and newcomers, and almost equal the number of non-coding con-

tributors and coding ones too. It is our important future work to consider adding

another (5th) project type to distinguish such projects from others. For exam-

ple, if we distinguish the projects that plotted around the origin belonging to

the top 10% and others, six project such as homebrew, rails, bitcoin, diaspora,

openFrameworks and redis meet that definition.

4.4.2 Population Projection

For project managers, it is important to maintain experienced contributors. There-

fore, we propose a population projection method of the number of contributors

in OSS projects using demographic methods.

Cohort component population projection

We predict the number of contributors using a simplified cohort component popu-

lation projection. In demography, a cohort is a group of subjects share a particular

event during a particular time span. Cohort component population projection is

the simplest population projection method. Isserman offers a way to project the

64

size of populations [45]. Isserman’s method uses the survival rate [90], as well as

fertility, mortality, and migration data. We can project the size of populations

at a certain age cohort using following formulas:

Population of age (X + n) in year (T + n) =

Survival Rate× Population of age X in year T

where

Survival Rate =

Population of age (X + n) in year T

Population of age X in year (T − n)

X is the age of the cohort being examined, n is an interval of time usually set at

ten years representing the period of time between the two most recent censuses,

and T is the year of the most recent census. We replace each variable in our

software population pyramids such that X is the activity period of the cohort

being examined, n is an interval of time set at three months representing the

period of time between the two most recent contributors counting, and 3 m in

year T is the month of most recent contributors counting.

For example, we consider a case of a projection 10 to 19 year-old population

in 2020. In this projection, we use 0 to 9 year-old population in 2000 and 10

to 19 year-old population in 2010 to calculate a survival rate of 0 to 9 year-old

population. Here, the survival rate is calculated as follows.

Survival Rate =

Population of age (10 to 19) in 2010

Population of age (0 to 9) in 2000

where

Population of age (10 to 19) in 2020 =

Survival Rate of 0 to 9×
Population of age (0 to 9) in 2010

65

In this way, to calculate the population of each cohort and to sum them. The

cohort component method includes birth and net migrants in general. Births are

the same as newcomers to an OSS project in our study. Births are derived from

the number of mothers and the birth rate. However, these input data do not

exist for the number of contributors, so we use following very simple formula to

calculate newcomers:

newcomer =

(P {T} + P {T − n}) / 2

where

P {T} = Population activity period 3 m in year T

Additionally, we do not consider that contributors move to other projects in

our study, so we do not calculate net migration.

Evaluation

With the cohort component population projection method, we project a future

population size for the 36 projects that have more than 100 contributors. There

are four projects categorized as Type A, 21 projects as Type B, nine projects as

Type C, and two projects as Type D. In this study, we project the number of

contributors of September 2013 by calculating the survival rate from the number

of contributors of March and June 2013. In order to verify the projection accu-

racy of our proposed method, we compared it with the baseline method, which

assumes that the number of contributors of September and June 2013 are the

same. Populations are projected for non-coding, moved, and coding contribu-

tors, separately.

To evaluate the projection accuracy, we compare the projection error of our

propose method to the baseline method one. MRE (Magnitude of Relative Error)

[25] or MER (Magnitude of Error Relative to estimate) [56] are used to evaluate

the prediction accuracy. We use ABRE (Absolute Balanced Relative Error) [67]

as an evaluation metric of the prediction accuracy for the number of contributors

remaining.

66

Measured values of the number of contributors is denoted as x, and the pre-

dicted value of the number of contributors is denoted as x̂. Each indicator is

determined by the following equation:

MRE =
|x− x̂|

x

MER =
|x− x̂|

x̂

ABRE =

⎧
⎪⎨

⎪⎩

|x̂− x|
x

(x̂− x ≥ 0)

|x̂− x|
x̂

(x̂− x < 0)

For these metrics, lower values indicate higher accuracy. MRE is the relative

error of the predicted value to the actual value and MER is the relative error

between predicted and actual values to the predicted value. However, MRE and

MER share the problem that these measures cannot distinguish excessive predic-

tion and too little prediction. In this study, we evaluated projection accuracy by

using the ABRE to evaluate the balance between excessive prediction and too

little prediction.

To investigate the projection accuracy, we used the Wilcoxon non-parametric

statistical hypothesis test. Wilcoxon test is generally used when comparing two

related samples to assess whether their population mean ranks differ. It can be

used as an alternative to the paired Student’s t-test, t-test for matching pairs,

or the t-test for dependent samples when the population cannot be assumed to

be normally distributed. With the Wilcoxon test, we test the difference between

the ABREs of our propose method and the ABREs of the baseline method. In

particular, we test each project type (Type A-D) and each contribution type

(non-coding, moved, coding). Then, we test their measures of central tendency,

and investigate whether there are significant differences in projection accuracy.

Table 4.3 shows the median of the ABREs. If the ABRE value is close to 0, the

projection accuracy is high. In Table 4.3, projection accuracies of our proposed

method are higher than the baseline method in all predictions. Table 4.4 shows

the result of the Wilcoxon test (95% confidence), where bold numbers indicate the

67

Table 4.3: Median of ABRE

non-coding moved

cohort baseline method cohort baseline method

Type A 0.4993 0.5000 0.3027 0.5000

Type B 0.5000 0.6332 0.3923 0.5000

Type C 0.6711 1.0000 0.2500 0.7179

Type D 0.3137 1.0000 0.2378 0.2500

All types 0.5000 0.6667 0.3299 0.5000

coding All

cohort baseline method cohort baseline method

Type A 0.1865 0.3731 0.2534 0.5000

Type B 0.5000 0.5750 0.5000 0.5917

Type C 0.3684 0.6250 0.3333 0.7500

Type D 0.4808 0.6154 0.2875 0.6667

All types 0.4074 0.5417 0.4000 0.6000

Table 4.4: Result of Wilcoxon Test

p-value

non-coding moved coding All

Type A 0.02748 0.00158 0.26867 0.00014

Type B 0.00037 0.01845 0.06200 0.00001

Type C 0.05935 0.00035 0.16000 0.00013

Type D 0.00001 0.02700 0.02901 0.00000

All types 0.00000 0.00000 0.00116 0.00000

68

1 year

2 years

3 years

150 100 50 0 50 100 150

ʢaʣ elasticsearch

1 year

2 years

600 300 0 300 600

ʢbʣ gitlabhq

1 year

2 years

3 years

4 years

500 250 0 250 500

ʢcʣ homebrew

1 year
2 years
3 years
4 years
5 years

500 250 0 250 500

ʢdʣ rails

1 year

2 years

3 years

4 years

250 200 150 100 50 0 50 100 150 200 250

ʢeʣ symfony

1 year

2 years

3 years

4 years

75 50 25 0 25 50 75

ʢfʣ TrinityCore

Figure 4.8: Comparing Measured and Predicted Values of the Number of Con-

tributors

69

statistical significant improvements by the proposed (cohort) method. In Table

4.4, projection of non-coding contributors has no significant difference in Type C,

and projections of coding contributors have no significant difference in Type A,

B, and C. However, projection of all contributors and all types have significant

difference. In this result, the projection accuracy of our proposed method was

higher than the baseline method. On the other hand, there was no difference in

the predictive accuracy between different project types in this projection. This

result shows the possibility that the reduction of contributors depends little on

type of activities, the number of newcomers or experienced contributors.

Figure 4.8 shows actual software population pyramids and lines of predicted

values. We can see that most of the lines are surprisingly well fitted to the

observed data, especially near the top of each pyramid. In this study, we define

short-term contributors as contributors that have activity period of less than

one year, and define long-term contributors as contributors that have activity

period of equal to or more than one year. The median of ABRE of short-term

contributors is 0.4055, and median of ABRE of long-term contributors is 0.3333.

The result of the Wilcoxon rank test (95% confidence) showed that the difference

is significant (p-value = 0.0460), which indicates that the projection of the number

of long-term contributors is higher accuracy than the projection of the number

of short-term contributors.

4.5. Discussion

In this study, we focus on contributors to OSS projects using a demographic

approach. In OSS projects, many people are involved in development, meaning

that human resources are very important for OSS. We conclude that we can

predict the future of participation in OSS projects by analyzing them from a

demographic perspective.

In the field of demography, researchers create population pyramids to analyze

the current situation of selected countries. We proposed a population pyramid for

OSS projects called the software population pyramid. Contributors are consid-

ered the constituent member of the communities, and the contribution periods are

regarded as experience periods or lifetimes. A software population pyramid con-

70

sists of two back-to-back bar graphs, with the population plotted on the X-axis

and experience on the Y-axis. One of the bar graphs shows coding contribu-

tors and the other shows non-coding contributors in a particular population in

three-month experience groups.

We classified shapes of the software population pyramid and compared them.

To classify the shape of these pyramids, we proposed two new measures, CCR

and NCR. CCR is the proportion of the number of non-coding to the number

of coding contributors, and NCR is the proportion of the number of experienced

contributors to the number of newcomers. Using these measures, we classified 86

software population pyramids into four types as follows.

• Type A: There are more newcomers than experienced contributors, and

more coding contributors than non-coding ones in a project.

• Type B: There are more newcomers than experienced contributors, and

more non-coding contributors than coding ones in a project.

• Type C: There are more experienced contributors than newcomers, and

more coding contributors than non-coding ones in a project.

• Type D: There are more experienced contributors than newcomers, and

more non-coding contributors than coding ones in a project.

There were 23 projects categorized as Type A, 42 projects as Type B, 18 projects

as Type C, and three projects as Type D. The result indicates that, for projects

in Type A and Type B, contributors do not stay long time in their projects after

their contributions. For projects of Type C and Type D, they cannot get enough

newcomers; thus, they should consider how to recruit newcomers. So, those

projects should consider how to get newcomers. Especially, Type C projects

should attract non-coding newcomers, e.g. who post many issues, so that some

of them might become coding newcomers as well.

Through empirical research, we found that the shapes and the transitions of

software population pyramids vary depending on the status of the development

communities. However, it is difficult to clarify the components of the contributor

population of OSS projects using only these values. Other, new metrics are

71

needed to clarify contributors’ components in OSS projects. For example, the

number of activities or frequency of activities should be considered.

The demographic approach of population projection is a powerful way to

predict future population dynamics. In this study, we projected the number of

contributors of September 2013 using the simplified cohort component population

projection that calculates the survival rate from the number of contributors of

March and June 2013. In order to verify the projection accuracy of our proposed

method, we compare it with the baseline method, which assumes that the num-

ber of contributors of September and June 2013 are the same. To statistically

compare the projection accuracy, we used the Wilcoxon non-parametric statisti-

cal hypothesis test. As a result, the projection accuracy of our proposed method

was higher than the baseline method. However, this projection method cannot

predict long-term contribution patterns because it does not predict newcomers in

a narrow sense. Therefore, our future work includes improving the accuracy of

these predictions and expanding the prediction to account for newcomers and to

extend predictions into the long-term future. We believe this perspective is also

important for OSS projects to manage sustainable development communities.

4.6. Summary

In this chapter, the community structure of OSS projects is analyzed using a

demographic approach. There are four types of population structures in OSS

development communities in terms of experiences and contributions. In addition,

the future population was predicted accurately using a cohort component popu-

lation projection method. This method predicts a population of the next period

using a survival rate calculated from past populations.

To the best of my knowledge, this is the first study that applied demography

to the field of OSS research. This new approach addressing OSS-related problems

based on demography will hopefully bring new insights, since studying population

is novel in OSS research. Understanding current and future structures of OSS

projects can help practitioners to monitor a project, gain awareness of what is

happening, manage risks, and evaluate past decisions.

72

Deployment in this OSS-HCI represents the workforce in a project. In this

section, a measure that shows the balance between coding contributors and non-

coding contributors is defined. This measure analyzes whether a project has

various workforces. Also, know-how in the OSS-HCI represents maintaining and

obtaining contributors. In this section, measures that show the balance between

new contributors and existing contributors are defined. These measures analyze

whether a project can maintain and obtain contributors. These points are applied

to deployment and know-how in OSS-HCI.

73

Chapter 5

OSS Human Capital Index

5.1. Overview

In this chapter, an OSS Human Capital Index (OSS-HCI) is constructed. The

HCI indicators are based on the results of the mapping study in Chapter 2.

In detail, the set of indicators are introduced and metrics are defined for the

HCI. Some of the metrics are derived from the previous studies of contributors’

activities (Chapter 3) and community structure (Chapter 4).

In this thesis, OSS projects are assessed based on the four dimensions of OSS

Human Capital. The goal is to determine whether or not the defined indexes

provide meaningful and interesting insights into the relationship between the

OSS HCI. The following research questions guide this thesis:

RQ1: Can projects be classified based on the OSS Human Capital Index (HCI)?

RQ2: How effective is HCI in identifying and tracking OSS projects?

RQ3: Which metrics affect OSS-HCI?

RQ4: Is the OSS-HCI useful compared to other evaluations of OSS projects?

To answer RQ1, an index using indicators was constructed. Then, the index

was used to classify 1,418 OSS projects. To answer RQ2, case studies that depict

different patterns of Human Capital over time were investigated. To answer RQ3,

a regression analysis was conducted to choose the valid metrics. To answer RQ4,

other evaluations of OSS projects and the OSS-HCI were compared.

74

Table 5.1: Proposed Human Capital Indicators.

Dimension Metrics Indicator

Capacity

CAP1

Individual Developer activity profiling
CAP2

CAP3

CAP4

Deployment

DEP1 Community Structural Complexity

DEP2 Core vs. Peripheral Developer workload equality

DEP3 Contributor Participation rates

DEP4 Productivity rates

Development DEV1 End-user Participation

Know-how

KH1 Core vs. Peripheral knowledge

KH2 Knowledge loss rates

KH3 Onboarding rates

5.2. Human Capital Index Construction

Table 5.1 describes the proposed indicators and is mapped to respective inspired

consolidated papers from the mapping study in Chapter 2. Figure 5.1 depicts

an overview of the process used to construct the HCI Score. Comprised of three

steps, first the indicator metrics are calculated (Step1), then (Step2) they are

normalized and a score based on the three dimensions is summarized (i.e., de-

ployment, development and know-how). Finally, (Step3) the HCI Index score for

each project is calculated.

Indicator Metrics (Step1)

The rationale and definition of each indicator is described by dimension. Then,

the metrics used to calculate each indicator are explained.

Capacity Individual Developer activity profiling This indicator shows the

individual rating score of the developer. Examples could include a study about

measuring team personality and climate (i.e., S19). This study measures neuroti-

cism, extroversion and the conscientiousness of developers through experiment.

Another study is related to the personality profiles of developers (i.e., S16). This

study analyzes message exchanges or developers’ tasks using code and assets data

75

Step 1. Indicator Metrics Step 2. HCI Dimensions Step 3. HCI Project Index Score
CAP1

CapDim
CAP2
CAP3
CAP4
DEP 1

DepDim
DEP 2
DEP 3
DEP 4
DEV 1 DevDim
KH 1

KHDimKH 2
KH 3

OSS-HCI Index Score

Figure 5.1: Construction of the HCI Index and HCI Dimension Plot

sources.

In this thesis study, four metrics regarding individual developer activity as

capacity are defined.

1. (CAP1) The Number of Private Repositories by Each User - This

measure shows whether a contributor learns software development in his or

her own repositories. CAP1 is expressed by how many private repositories

a contributor has. This measure is the proportion of contributors that have

a certain number of repositories. A certain number is based on the median

of the number of repositories that a contributor has. In this measure, the

median is four. At that time, this measure is expressed by the proportion of

the number of contributors in a year y on contributors (i) that create (i.e.,

Labori, r; r for r repositories) over four repositories in a year y-1. Then,

CAP1y is given by:

CAP1y =
n∑

i=1

i.year = y − 1 ∧ Labori,r>4

i.year = y
(5.1)

This maximum value is 1, and the minimum value is 0.

2. (CAP2) The Number of Available Languages by Each User -CAP2

is expressed by how many languages a contributor can use. This measure

76

is calculated from the language in the project that submitted commits by

contributors. It is the ratio of contributors that have a certain number

of languages that contributors can use. A certain number is based on the

median of the number of languages that a contributor can use. In this

measure, the median is two. At that time, this measure is expressed by

the proportion of the number of contributors in a year y on contributors (i)

that can use (i.e., Labori, r; r for l languages) over two language in a year

y-1. Then, CAP1y is given by:

CAP2y =
n∑

i=1

i.year = y − 1 ∧ Labori,l>2

i.year = y
(5.2)

The maximum of this value is 1, and the minimum value is 0.

3. (CAP3) The Number of Repositories that Submitted Issues by

Each User - CAP3 is expressed by how many repositories a contributor

contributed to issues. This measure is the ratio of contributors that have

a certain number of repositories that contributors contribute to issues. A

certain number is based on the median of the number of repositories that

a contributor contributes to issues. In this measure, the median is three.

At that time, this measure is expressed the proportion of the number of

contributors in a year y on contributors (i) that contribute (i.e., Labori, r

for r repositories) to issues over three repositories in a year y-1. Then,

CAP1y is given by:

CAP3y =
n∑

i=1

i.year = y − 1 ∧ Labori,r>3

i.year = y
(5.3)

This maximum value is 1, and the minimum value is 0.

4. (CAP4) The Number of Repositories that Submitted Comments

by Each User -CAP4 is expressed by how many repositories a contributor

contributed to comment. This measure is the ratio of contributors that have

a certain number of repositories that contributors contribute to comments.

A certain number is based on the median of the number of repositories

77

that a contributor contributes to comments. In this measure, the median

is three. At that time, this measure is expressed by the proportion of the

number of contributors in a year y on contributors (i) that contribute (i.e.,

Labori, r for r repositories) to comments over four repositories in a year y-1.

Then, CAP1y is given by:

CAP4y =
n∑

i=1

i.year = y − 1 ∧ Labori,r>3

i.year = y
(5.4)

This maximum value is 1, and the minimum value is 0.

Deployment

1. (DEP1) Community Structural Complexity - This indicator rates

the complexity of the community of contributors and how they actively

participate. An example is studying about population structure in OSS

projects (i.e., S34). In detail, this study creates a population pyramid by

contributors’ activity periods in OSS projects. Another example is the study

about the impacts of organizational factors on software quality (i.e., S59),

where authors conduct observations of an in-house software development

project within a large telecommunications company.

To calculate DEP1, CCR is used as described in Chapter 4. This value

is close to 0 when the number of coding contributors and the number of

non-coding contributors are similar. We judge that the project has a high

score, in the case where the number of coding contributors and non-coding

contributors is equal. Then, in this section, DEP1 in year y is changed as

follows:

DEP1y = 1 − |CCRy| (5.5)

The maximum of this value is 1, and the minimum value is 0.

2. (DEP2) Core Developer vs. Peripheral Developer workload equal-

ity - These rates are in regard to the work activities of developers in the

78

community. Example studies include observation of the variation and spe-

cialization of the workload in an ecosystem community to identify develop-

ers’ activity types and comparing the number of files that developers modify

(i.e., S76).

The developer workload equality is defined as an indicator of the three

factors of how community activities are performed in a project based on our

previous studies: (a) workrate (defined as labor) of each contributor [73],

(b) attractiveness of new contributors to a community [73], and (c) active

retention of experienced members [75]. Labor is measured as community

contributions within the projects. Similar to Rigby et al. [91], this thesis

takes into account the contributor experience to evaluate attractiveness and

retention factors. Any source code changes as contributions (i.e., comments

made by contributors are ignored) are also considered. Let Labori,m be

the number of contributions an individual i has made in year y. This is

the weighted measure of Labor as Workforce, where the Workforce for a

contributor i in year y, who has the experience of working period ei years,

is formally defined as follows:

Using ei as the number of years since a contributor i first joined the project,

the function WF (m) describes the yearly contributions of the member to

the OSS project. A linear decay function is used to consider a factor of

the contributor’s experience (i.e., a more experienced contributor will have

less weight than a newcomer to the projects in their recent contributions).

The Gini coefficient of all WFm(ei) of contributors in year y is used as

the indicator of DEP2 in a year y. The Gini coefficient is a measure of

statistical dispersion intended to represent the income or wealth distribution

of a nation’s residents. This measure is a commonly used measure for the

investigation of rich-poor gap.

The original Gini coefficient is calculated from the Lorenz curve which plots

the total income of a population (y-axis) and the number of populations

(x-axis). The Lorenz curve L(F) can be define using the probability density

function WF y(ei) as follows:

79

G =

∫WF y

0 ei(WF ′
y)dWF ′

y∫ 1

0 ei(WF ′
y)dWF ′

y

(5.6)

The Gini coefficient is used for the workforce. In this thesis, Workforce is

compatible with income in the original Gini coefficient. The Gini coefficient

ranges from 0 (complete equality) to 1 (complete inequality). When a

project has a workload equality, it has a high score. Therefore, in this

section, DEP2y is changed as follows:

DEP2y = 1 − G (5.7)

The maximum of this value is 1, and the minimum value is 0.

3. (DEP3) Contributor Participation rates - This indicator describes

contributors’ participation in a particular activity such as code review (i.e.,

S53, S78). S53 investigates the phenomena of inactive code review develop-

ers from activities such as pull requests, while S78 is a study about review

participation in code review, introducing several metrics such as purpose,

history, and the prior activity of reviewers and patch authors.

Participation Rate is the proportion of contributors working on the project

throughout the year. This measure is expressed by the proportion of the

number of contributors in a year y on contributors (i) that work (i.e.,

Labori,m for m months) over three months in a year y. Then, DEP3y

is given by:

DEP3y =
n∑

i=1

i.year = y ∧ Labori,m>3

i.year = y
(5.8)

The maximum of this value is 1, and the minimum value is 0.

4. (DEP4) Productivity rates - This indicator measures the productivity

of developers. For instance, study S24 evaluates developer performance for

software-intensive products. This study interviews managers to understand

from a managerial perspective how they engage in software product devel-

opment activities, and to evaluate performance in large organizations. On

80

the other hand, study S44 is about sensing developers’ emotions, progress

and the use of biometric measures.

In country economics, Gross Domestic Product (GDP) measures the total

of goods and services produced in a given year within the borders of a given

country [84]. In this thesis, DEP4 is simply expressed as the number of

commits(Commiti,y) in a year (y) for any contributor (i). Then, DEP4y is

given by:

DEP4y =
n∑

i=1

Commiti,y (5.9)

This measure is not from 0 to 1 unlike other values since this measure is

normalized. The maximum value is 20,066 and the minimum value is 0.

Development

1. (DEV1) End-user participation - This indicator is user centric, mea-

suring from a user’s perspective of skills development. For instance, there

are studies that involve discovering how end-user programmers and their

communities use public repositories (i.e., S22). This thesis analyzes end-

user programmer communities, the characteristics of artifacts in community

repositories, and how authors evolve over time. More recently, there is work

that investigates factors that impact the popularity of GitHub repositories

(i.e., S55). This work analyzes stars awarded to GitHub projects and iden-

tifies the popularity growth of these repositories.

DEV1 is expressed as whether the contributor who made a fork submitted

the pull requests. This measure is the proportion of the cumulative total of

unique forks on the cumulative total of unique new pull requests made by

the submitter in year y. Then, DEV1y is given by:

DEV1y =
∑

y

PRy∧ ̸ ∃PRy−1

Forksy
(5.10)

The maximum of this value is 1, and the minimum value is 0.

81

Know-how

1. (KH1) Core vs. Peripheral knowledge - This indicator explores the

knowledge of core vs. peripheral developers. In this chapter, this measure is

called Issue Solving Power. For instance, study S15 classifies developers

into core and peripheral by count and network metrics. This study mea-

sures metrics related to commits and emails within the project. Another

example of comparison of core contributors with peripheral contributors is

a study about determining developers’ expertise and roles (i.e., S20). This

study analyzes bug trackers and source code repositories to characterize

developers.

Our definition of OSS knowledge is based on the evolution of product, and

accumulated source code patches. One approach to measure the evolution,

especially for projects that use Git version control system, is by the number

of Pull Requests (PR). PR tells other contributors about changes that they

wish to make to the product. Once a PR is opened, contributors can discuss

and review the potential changes with the community and can add follow-

up commits before the changes are merged into the product source code.

After the change is merged, the PR will be closed.

KH1 is defined as the number of completed Pull Request in year y. To add

weight to more recent PRs, a weighted measure PRm(pr) is used to return

the number of years that a PR (pr) took to close (i.e., PRy ≥1). Thus, PRs

taking more than a year to complete have less weighting. KH1y is formally

defined as:

KH1y =
∑

pr∈KH1

1

PRy(pr)
(5.11)

It is important to note that neither the sizes nor the difficulties of Pull

Requests are distinguished from other Pull Request in this thesis.

This measure is not from 0 to 1 unlike other values since this measure is

normalized. The maximum value is 9,334 and the minimum value is 0.

82

2. (KH2) Knowledge loss rates - This indicator investigates the loss of

knowledge by a contributor leaving the community. For instance, study

S40 quantifies and investigates how to mitigate turnover-induced knowledge

loss. In detail, it quantifies the extent of abandoned source files using source

code history and assesses knowledge loss by turnover. KH2 is expressed as

whether a project can keep existing contributors or not. This measure is

the proportion of the number of contributors who worked over a year in the

previous year on the number of contributors (i) that continue to work in

the next year y (over a two year period). Then, KH2y is defined as:

KH2y =
n∑

i=1

i.year = y ∧ Labori,m>24

i.year = y − 1 ∧ Labori,m>12
(5.12)

The maximum of this value is 1, and the minimum value is 0.

3. (KH3) Onboarding rates - This indicator measures the retention of con-

tributors to a project. In our thesis, a study that explores a precursor to

joining a project was identified. That study analyzed the technical factors

of past experience and social factors of past connections to understand on-

boarding in software projects. Onboarding rates are expressed as whether

a project can keep newcomers or not. This measure is the proportion of the

number of contributors that start to work from the previous year over the

number of contributors that continue to work that year y (over a one year

period). Then, KH3 is defined as:

KH3y =
n∑

i=1

i.year = y ∧ Labori,m>24

i.year = y − 1 ∧ Labori,m<12
(5.13)

The maximum of this value is 1, and the minimum value is 0.

Normalization of Metrics (using harmonic mean) To standardize the

data within all the projects in this thesis, the harmonic mean was used. This

mean was used to reduce bias against projects with too few contributors. For

example, a small project may have an easier time balancing DEP1 is 1 when the

project only has one non-coding contributor and one coding contributor. In this

83

thesis, however, a project with many contributors is considered healthier than a

project which has few contributors.

Therefore, the harmonic mean of values that are affected by the number of

contributors, DEP1, DEP3, KH2 and KH3 are considered. Also, in the metrics

of DEV1, the harmonic mean of the number of forks is used. The value of the

number of contributors (contrib.) is very large because the number of contributors

(contrib’) is normalized.

Therefore, each metric (i.e., value) is normalized by the formula value′ =
2×value×contrib′.
value+contrib′ where we use normalized rescaling contrib′ = contrib−min(contrib)

max(contrib)−min(contrib) .

In this case, the maximum (contrib) is 5,659 and the min (contrib) number of

contributors is 1. Also, the above definition to forks is used. In this case, then,

the maximum number of (forks) is 5,775 and the min (forks) number of forks is

0.

HCI Dimensions (Step 2)

Deployment dimensions and know-how in a year y metric should be summarized,

but outliers significantly affect arithmetic means. Hence, the geometric mean to

each metric is taken as:

DepDimy = 4
√
DEP1y × DEP2y × DEP3y × DEP4y (5.14)

DevDimy = DEV1y (5.15)

KHDimy = 3
√
KH1y × KH2y × KH3y (5.16)

Development has only one metric DEV1 since we use DEV1 is used as the

DevDim directory.

HCI Project Index Score (Step 3)

To calculate the final score, an arithmetic mean for each dimension is used since

the outliers’ problem is solved using geometric means in the summarization of

dimensions. Finally, the HCI Score is as follows:

84

0.0

0.1

0.2

0.3

0.4

0.5

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

Figure 5.2: Sample of HCI Dimension Plot

HCI Scorey =
DepDimy + DevDimy + KHDimy

3
(5.17)

HCI Dimension Plot Figure 5.2 shows a sample of the HCI Dimension Plot

used to describe the discovery. The HCI Dimension Plot has a period in the

x-axis and each dimension and OSS-HCI score in the y-axis. In this sample, the

dimensions increase together from 2010 to 2014, and decrease from 2014 to 2016.

The development process of each project can be seen above.

5.3. Method

To answer the four research questions in this dissertation, a quantitative (RQ1),

case study (RQ2) and evaluation (RQ3, RQ4) approaches are used. Below, the

approach, a dataset method of analysis used for this thesis, is discussed.

85

timeA

timeB

Growing

Growing after shrinking

Shrinking after growing

Shrinking
t

H
C

I S
co

re

Figure 5.3: A Classification of Health Types based on the HCI Score. The Four

Patterns Are Classified as: (a) Growing, (b) Growing after Shrinking, (c) Shrink-

ing after Growing and (d) Shrinking.

5.3.1 Research Method

Research Method for RQ1

Approach The approach in this thesis to answering RQ1 is through a quanti-

tative evaluation of GitHub projects by calculating the HCI score for the target

projects. To do this, first the HCI index is generated and then analyzed and

projects.

Dataset Collection and Preprocessing For this empirical study, 1,418 OSS

projects provided by the Gousios [38] were first collected and analyzed. From this

dataset, two of the related contribution activities (i.e., commits, pull requests

or comments) for metrics calculations were selected. These 1,418 OSS projects

had over pull requests every year consistently from 2010 to 2016 since there are

no absolutely dead projects naturally.

86

Table 5.2: Classification Patterns Based on HCI Score. Four types (a) Growing,

(b) Growing after Shrinking, (c) Shrinking after Growing and (d) Shrinking are

shown.

Health Type Pattern MM vector direction

Growing

A project ascends from the first

three years, also ascending from the

middle three years.

+MMtimeA ∧+MMtimeB

Growing after Shrinking

This project ascends from the first

three years, but declines from the

middle three years.

+MMtimeA ∧ −MMtimeB

Shrinking after Growing

This project declines from the first

three years, but ascends from the

middle three years.

−MMtimeA ∧+MMtimeB

Shrinking

This project declines from the first

three years, but also declines from

the middle three years.

−MMtimeA ∧ −MMtimeB

HCI Score Over Time To evaluate and classify OSS health, the development

of each project was calculated over a year. First, the moving mean (MM) of

HCI Scorey was calculated at triennial time intervals. As shown in Figure 5.3,

the time intervals are at two points (timeA and timeB). A is the full length

of the time sequence (i.e., timeA), while B is the second half of the time series

(i.e., timeB). MMtimeA represents the growth of last three years compared to the

first three years (i.e., 2010, 2011, 2012 and 2014, 2015, 2016). Also, MMtimeB

represents the growth of the last three years compared to the middle three years

(i.e., 2012, 2013, 2014 and 2014, 2015, 2016).

As shown in Table 5.2, the four types for each project can be classified based on

the MM. The direction of the MM vector is what is of interest here. A negative

MM (-MM) indicates a Shrinking or Shrinking after Growing project, while a

positive MM (+MM) indicates a Growing or becoming Growing project.

Therefore, to answer RQ1, 1,418 projects were calculated and classified into

the four groups and then project summary characteristics were analyzed (i.e.,

87

Table 5.3: Summary of the Selected Projects in Case Study 1 (snapshot as of

December 2017)

project Life Span # of Committers # of Commits # of Pull Requests # of Issues

homebrew1 8 years and 9 months 5,591 63,881 33,606 17,046

rails2 13 years and 1 month 3,421 65,619 20,490 7,305

netty3 9 years and 4 months 299 8,550 3,618 3.862

angular.js4 7 years and 11 months 1,604 8,639 7,634 8,699

parrot5 16 years and 4 months 113 49,488 300 920

averages # contributors and # commits per project).

Research Method for RQ2

Approach The approach in this thesis to answering RQ2 is through a case

study of GitHub projects from RQ1. Then, the HCI index is generation and

HCI Dimension Plots for each project analyze any patterns or insights within the

project.

To answer RQ2, the effectiveness is analyzed to show different patterns and

insights that can be drawn from the HCI Dimension Plots. The projects are

classified by health type.

In this thesis, two types of case studies were conducted as follows:

1. Examples of tracking of some OSS projects through the result of classifica-

tion in RQ1.

2. The use case in the OSS-HCI.

Use case In this use case, a situation is assumed in which the best PHP frame-

work from the OSS-HCI score is chosen by users. There are many PHP frame-

works, and some users may be confused as to which frameworks they should use.

This case study verifies whether this OSS-HCI can help users choose the best

OSS from other OSSs that have similar functions.

Dataset From the selected 1,418 projects in RQ1, five projects were chosen as

examples of each classification of health types and four projects were chosen to

compare PHP frameworks. Tables 5.3 and 5.4 show detailed information for each

88

Table 5.4: Summary of the Selected Projects in Case Study 2 (snapshot as of

January 2018)

project Life Span # of Committers # of Commits # of Pull Requests # of Issues

zendfreamwork6 8 years and 10 months 688 27,056 5,631 2,133

symfony7 8 years and 1 month 1,569 35,189 16,170 9,757

cakePHP8 12 years and 10 months 496 34,187 6,939 4.710

kohana9 9 years and 2 months 23 1,269 69 43

of these projects. It is difficult to judge whether or not these selected projects

are successful. However, considering that the four projects have been active for

6 to 16 years, it may be assumed that they are representatives of typical OSS

projects and their communities.

Research Method for RQ3

Approach The approach in this thesis to answering RQ3 is to conduct regres-

sion analysis to OSS-HCI metrics, and clarify which metrics affect the OSS-HCI

score. To do this, first each metric is combined and valid metrics are chosen.

Data setting The result of OSS-HCI metrics in 1,418 projects is used. The

regression analysis predicts an average of OSS-HCI scores from 2014 to 2016

as objective variables. Each metric is averaged every two years as explanatory

variables. This means that the averages of each metric of 2010, 2011 and 2012,

2013 are used. Formerly 48 metrics through seven years were used, but 24 metrics

are used as explanatory variables in this thesis. In this thesis, each metric such

as CAP1 1011 and CAP1 1213 are shown.

Evaluation In this thesis, regression analysis is conducted in a round robin

and optimal metrics and the number by Akaike’s Information Criterion (AIC)

are chosen. AIC is an estimator of the relative quality of statistical models for

a given set of data. This measure has a lower value compared to other models,

which is better.

89

Research Method for RQ4

Approach The approach in this thesis to answering RQ4 is to compare the

OSS-HCI and other evaluations of OSS projects. For this study, two evaluations

of OSS projects, Git Awards10 and Libraries.io11 were used to evaluate the OSS-

HCI.

• Libraries.io monitors project releases, analyses each project’s code, com-

munity, distribution and documentation.

• Git Awards ranks GitHub users by their own approach.

5.3.2 Threats to Validity

In this chapter, 1,418 projects were selected from GHTorrent. To analyze tempo-

ral transition, only consistent projects from 2010 to 2016 were selected. Therefore,

really dead projects and new projects were exempt. Also, only nine projects were

chosen for the case studies since the result is not generalized.

12 indicators are defined in this chapter based on our mapping study. Al-

though these indicators are created from many primary studies, it is difficult to

know whether effective indicators were chosen or not.

The 1,418 projects were analyzed based on the 12 indicators. However, it is

not clear if the actual result is correct. To identify whether the result is correct or

not, interviews regarding questionnaires should be sent to project’s contributors.

5.4. Results

5.4.1 Project Classification Based on OSS-HCI

Table 5.5 shows the results of the classification and summary about contributors

and commits. Based on the evaluation in Section 5.3.1, the projects are classified

into four types. From this table, it is clear that many projects are Growing or

Growing after Shrinking and 288 projects are Shrinking. Also, many projects

10http://git-awards.com/
11https://libraries.io

90

Table 5.5: Results of Classification for RQ1. Note that Coverage Is Based on

1,418 Projects.

Health Type # Projects Coverage (%)
avg. (med.)
contributors

avg. (med.)
commits

avg. (med.)
HCI Score

Growing 595 42.0% 72 (21) 288 (35) 0.016 (0.007)

Growing after Shrinking 594 41.9% 71 (23) 172 (26) 0.015 (0.007)

Shrinking after Growing 1 0.1% 7 (6) 23 (16) 0.001 (0.001)

Shrinking 228 16.0% 52 (20) 122 (20) 0.012 (0.006)

1,418 100% 68 (22) 212 (28) 0.015 (0.007)

change from Growing to Growing after Shrinking and a few projects change from

Shrinking to Shrinking after Growing. From this result, the project shows Shrink-

ing, and a difficulty in Growing, except for Growing projects which can shrink

(Shrinking). As mentioned in Section 5.3.1, this analysis is used only in ongoing

projects since there are few Shrinking projects compared to Growing projects.

In regard to the number of contributors, Growing after Shrinking projects

have many contributors, and the number of commits per person is high. Also,

the value of HCI score is high compared to other projects. In this result, many

Growing after Shrinking projects rapidly grow like Growing projects, and shrink

after growing later. On the other hand, the Shrinking project has only a few

contributors and commits.

Thus, an answer to the RQ1 can be found; namely, “Can projects be classified

based on the OSS Human Capital Index (HCI)?”:

“Yes, projects could be classified into (a) Growing, (b) Growing af-

ter Shrinking, (c) Shrinking after Growing and (d) Shrinking. 42%

of projects are Growing, and there are 42% Shrinking after Growing

projects. On the other hand, there are many Shrinking projects com-

pared to Shrinking after Growing projects. Once the project shrinks,

it is difficult to become a Growing project, but Growing projects can

shrink (Shrinking projects).”

91

0.00

0.05

0.10

0.15

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

(a) netty

0.0

0.2

0.4

0.6

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

(b) homebrew

Figure 5.4: HCI Dimension Plot of Growing Projects

92

0.0

0.1

0.2

0.3

0.4

0.5

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

(a) angular.js

0.2

0.4

0.6

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

(b) rails

Figure 5.5: HCI Dimension Plot of Growing after Shrinking Projects

93

Table 5.6: Case Studies Classified by Health Type

Health type OSS project

Growing homebrew, netty, cakePHP

Growing after Shrinking rails, angular.js, zendfreamwork, symfony

Shrinking after Growing -

Shrinking parrot, kohana

0.00

0.01

0.02

0.03

0.04

0.05

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

parrot

Figure 5.6: HCI Dimension Plot of Shrinking Project

5.4.2 Tracking OSS-HCI in OSS Projects

Case Study 1 Table 5.6 shows the result of the classification of selected projects.

Figure 5.4 shows the HCI dimension plot of Growing projects. Figure 5.4 (a)

shows an ascendant process of the projects. This project increase capacity, de-

ployment, development, and know-how every year. On the other hand, although

homebrew is classified as Growing, the shape shows it Shrinking. In particular,

deployment greatly decreases since this project turned into a legacy in 2016. This

is an example of an exception to a false positive. This phenomenon was caused

by placing too high a value on the HCI scores in 2014 and 2015.

Figure 5.5 shows the HCI dimension plot of Growing after Shrinking projects.

94

In Figure 5.5 (a), a peak can be seen. This project has the peak of capacity,

development, and deployment in the same year. Also, the four dimensions of

this project decrease slowly after its peak. Although rails is a large project, this

project is classified as Growing after Shrinking project. Actually, deployment, de-

velopment, and know-how have decreased in recent years in this project. These

are large projects that are no longer in development but just remain in mainte-

nance. On the other hand, this project still has the capacity to increase. Then,

experienced contributors go on increasing year after year in this project. From

this result, this project can be seen as keeping richly experienced contributors.

Figure 5.6 shows the HCI dimension plot of the Shrinking projects. The

four dimensions decrease consistently every year in parrot. Deployment, in

particular, greatly decreases in this project. However, development increased

rapidly in 2013, and this project could not continue into the next year. Even if

development greatly increases, it is difficult to become a Growing project.

Case Study 2 Figures 5.7 and 5.8 show the HCI dimension plot of the PHP

framework projects. Figure 5.7 (a), the ascendant and descendant processes of

the project can be seen. This project increased in the four dimensions in the

first half and decreased in the four dimensions in the last half. According to

the result, this project may be in decline. In addition, Figure 5.7 (b) shows an

increase and decrease of each dimension. Finally, each dimension of this project

decreased compared to the peak, and each dimension increased compared to first

period. From this result, it can be seen that this project did decline completely,

but may do so in the future.

On the other hand, each dimension in Figure 5.8 (a) constantly increased

each year. This project is developing now, so it is not clear if this project will

be stable or if it will decline in the future. Although Figure 5.8 (b) illustrates

a large project and is classified as a Growing after Shrinking project. In reality,

deployment, development and know-how remained the same from 2012 in this

project. This project has equally maintained as rails. On the other hand, this

project capacity keeps increasing; therefore, this project will maintain enough

experienced contributors, and become stable.

Based on the above results, in this case study, it can be concluded that sym-

95

0.00

0.05

0.10

0.15

0.20

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

(a) zendfreamwork

0.000

0.005

0.010

0.015

0.020

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

(b) kohana

Figure 5.7: HCI Dimension Plot of Projects of PHP Frameworks 1

96

0.00

0.05

0.10

0.15

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

(a) cakePHP

0.0

0.1

0.2

0.3

0.4

2010 2012 2014 2016
date

va
lu

e

variable
capacity

deployment

development

knowhow

OSS−HCI score

(b) symfony

Figure 5.8: HCI Dimension Plot of Projects of PHP Frameworks 2

97

fony is the best in the PHP frameworks since this project is stable. Also,

cakePHP seems to do well in recently, it should be observed carefully in the

days ahead.

Thus, an answer to RQ2 can be found; “How effective is HCI in identifying

and tracking OSS projects?”:

• “The HCI dimension plot can investigate the development of a

project. In particular, a Growing project increases in each of the

four dimensions every year. On the other hand, even if develop-

ment increases, if a project cannot keep existing contributors, a

project will be considered Shrinking.”

• “The OSS-HCI can help choose the best of the OSS projects from

OSSs that have similar functions. Whether the project is stable

or not can be cited as an important indicator.”

5.4.3 Selecting Metrics Useful for Predicting a Future OSS-

HCI Score

Through the results of regression analysis and by calculating each AIC, the met-

rics shown in Table 5.7 are the most valid in all combinations of metrics. This

result shows CAP4 1213 is most influential metric on the OSS-HCI score. This

metric and CAP4 1011 also has a negative effect on the OSS-HCI score. CAP4

is a metric of the ratio of contributors who contribute to comments at a certain

number of repositories.

On the other hand, CAP2 1213 and CAP2 1011 have a positive effect on the

OSS-HCI score. These metrics are the ratio of contributors who can use a certain

number of languages. Also, KH3 1213 has a positive effect on the OSS-HCI

score. This measure is the proportion of contributors working from the previous

year and contributors working for more than one year. Also, Table 5.7 shows the

p-value of each metric in the t-test. The result of the t-test (95% confidence)

shows that the difference is significant.

Thus, an answer to RQ3 can be found; namely, “Which metrics affect OSS-

HCI?” as follows:

98

Table 5.7: Result of Regression Analysis

Metrics Estimate p-value

CAP1 1213 0.48564 0.01718

CAP2 1011 0.32741 0.01530

CAP2 1213 0.69379 8.9E-05

CAP4 1011 -0.45655 1.2E-05

CAP4 1213 -0.82258 2.6E-10

DEP1 1213 -0.18660 0.00195

DEP3 1011 -0.23390 0.01038

DEP3 1213 -0.16154 0.01110

DEP4 1011 0.04729 0.03709

DEP4 1213 0.08449 6.8E-06

DEV1 1011 -0.14915 0.02920

DEV1 1213 0.26009 7.0E-18

KH1 1213 0.11144 7.1E-08

KH3 1213 0.65710 4.5E-18

Table 5.8: Summary of each Evaluation

item Git Awards Libraries.io OSS-HCI

of targeted repositories - 2,580,249 59,366,947

of metrics 1 14 12

“CAP4 has a negative effect on the OSS-HCI score. On the other

hand, CAP2 and KH3 1213 have a positive effect on the OSS-HCI

score.”

5.4.4 Comparing Other Evaluations of OSS Projects

Table 5.8 shows a summary of each evaluation. The targeted repositories of the

Git Awards are the only active repositories at that time since they are used by the

GitHub API that only collected data recently. The Git Awards has one metric

that calculates the popularity of the repositories. This measure is expressed as the

99

number of stars in the user’s repositories. Therefore, the number of repositories

is n, and the popularity of repositories is defined as:

n∑

i=1

starsi + (1.0− 1.0

n
)

In this evaluation, homebrew is ranked first, and rails is ranked third in the

ruby ranking. However, this evaluation only entertains stars in each repository

since it cannot understand inside situations. On the other hand, the OSS-HCI

in this dissertation can grasp inside situations by the metrics of deployment and

know-how, and outside situations by the metrics of development.

Libraries.io has 14 metrics. For example, whether a project presents read me,

basic information, source repository and license, and whether there are recent

releases, dependent projects or repositories. Most of metrics are evaluated “yes”

or “no”. Certainly, these perspectives are important; however, these perspectives

can easily be found by simply going to the GitHub page of a project. Also, this

evaluation cannot understand the details of human factors in a project. The

OSS-HCI in this work is able to consider human aspects in a project based on 12

metrics.

Thus, an answer to the RQ4 can be found; namely, “Is the OSS-HCI useful

compared to other evaluations of OSS projects?” as follows:

“Yes. This OSS-HCI can grasp outside and inside situations of human

factors compared to other evaluations.”

5.5. Summary

In this study, an empirical study was conducted to measure the HCI of OSS

projects. The goal was to determine whether or not the defined indexes provide

meaningful and interesting insights into the relationship between the OSS HCI.

To answer RQ1, an index was constructed using the indicators. The answer

to the RQ1; namely, “Can projects be classified based on the OSS Human Capital

Index (HCI)?” as follows:

“Yes, projects could be classified into (a) Growing, (b) Growing af-

ter Shrinking, (c) Shrinking after Growing and (d) Shrinking. 42%

100

of projects are Growing, and there are 42% Growing after Shrinking

projects. On the other hand, there are many Shrinking projects com-

pared to Shrinking after Growing projects. Once the project shrinks,

it is difficult to become a Growing project, but Growing projects can

shrink (Shrinking projects).”

To answer RQ2, two case studies that depicted different patterns of Human

Capital over time were investigated. The answer to RQ2; namely, “How effective

is HCI in identifying and tracking OSS projects?” as follows:

• “The HCI dimension plot can investigate the development of a

project. In particular, a Growing project increases in each of the

four dimensions every year. On the other hand, even if develop-

ment increases, if a project cannot keep existing contributors, a

project will be considered Shrinking.”

• “The OSS-HCI can help choose the best of the OSS projects from

OSSs that have similar functions. Whether the project is stable

or not can be cited as an important indicator.”

To answer RQ3, a regression analysis as to which metrics affect the OSS-HCI

score was conducted. The answer to the RQ3; namely, “Which metrics affect

OSS-HCI?” as follows:

“CAP4 has a negative effect on the OSS-HCI score. On the other

hand, CAP2 and KH3 1213 have a positive effect on the OSS-HCI

score.”

To answer RQ4, the OSS-HCI in this thesis and other evaluations of OSS

projects were compared. The answer to the RQ4; namely, “Is the OSS-HCI

useful compared to other evaluations of OSS projects?” as follows:

“Yes. This OSS-HCI can grasp outside and inside situations of human

factors compared to other evaluations.”

101

Chapter 6

Contributions and Conclusions

In this dissertation, human activities as Human Capital in OSS development were

categorized. In sum, this dissertation contributes to the following:

• A framework for OSS Human Capital that consists of four dimensions.

• Metrics (software population pyramid) from two case studies that measure

community structure and contributors’ retention.

• Metrics for the Human Capital Index (HCI), which identify four types of

OSS projects.

To propose a framework for OSS Human Capital, a systematic mapping study

was carried out and previous studies were classified into four dimensions: capital

for skill attainment, deployment for the workforce, development for access to

learning, and know-how for knowledge sharing. A key outcome of this mapping

study is a set of indicators for constructing a HCI. These dimensions were applied

to software engineering.

Based on these dimensions, several case studies were conducted. First, a study

of the characteristics of contributors’ activities in OSS development for capacity

were conducted. To clarify the characteristics of contributors’ activities, GitHub

activity by each contributor to represent the capacity dimensions of Human Cap-

ital was used.

102

Contributors were categorized based on measures such as whether they prefer

communication by coding or comments, or whether they are specialists or gen-

eralists. This dissertation shows that active software projects have various kinds

of contributors characterized by different types of development activities.

Second, the community structure of OSS projects using a demographic ap-

proach was analyzed and software population pyramids that represent the de-

ployment and know-how dimensions of Human Capital were proposed.

In this dissertation, eight case studies from four types of project in our de-

fined two definitions CCR and NCR were investigated. Also, a prediction of a

population in a software community was given. Next, a future population pre-

diction method using a cohort component method in demography was applied to

a prediction of future OSS communities.

Four types of population structures were found in OSS development commu-

nities in terms of experiences and contributions. In addition, the future popu-

lation was predicted accurately using a cohort component population projection

method. This method predicts a population of the next period using a survival

rate calculated from past populations.

To the best of my knowledge, this is the first study that applied demography to

the field of OSS research. This approach addressing OSS-related problems based

on demography will hopefully bring new insights because studying population is

novel in OSS research.

Finally, a HCI was constructed and an empirical study was conducted to

measure the HCI of OSS projects to classify 1,418 OSS projects. As a result, it is

clear that once a project shrinks (Shrinking), it is difficult for the project to grow

(Growing), but Growing projects can shrink again (Shrinking). Furthermore, the

HCI dimension plot can be used to investigate the development of a project. In

particular, a Growing project increases in each dimension every year. On the

other hand, even if development increase, if a project cannot keep its existing

contributors, a project will shrink (Shrinking). In addition, a regression analysis

which includes capacity and know-how metrics, was conducted it was found that

these metrics affect the OSS-HCI score.

103

This dissertation presents a measure of contributors’ activities as Workload.

This measure should be important in clarifying whether a project has experienced

contributors and/or casual contributors.

This dissertation provides an evidence-based comprehensive framework to help

practitioners understand the Human Capital used in their projects.

104

Acknowledgements

ຊڀݚΛਐΊΔʹ͋ͨΓɼଟ͘ͷํʑ͔Β͝ࢦಋɼ͝ྗڠɼ͝ॿݴΛ͍͖ͨͩ·

ͨ͠ɽ͜ͷ৔Λ͓आΓͯ͠ɼਂ͓͘ྱਃ্͛͠·͢ɽ

ಸྑઌ୺Պֶٕज़େֶӃେֶ ৘ใՊֶڀݚՊ দຊ ݈Ұ तʹ͸ຊ࿦จͷओڭ

՝ఔ͔ΒͷظΛ୲౰͍͖ͯͨͩ͠·ͨ͠ɽઌੜʹ͸ത࢜લ׭ڭಋࢦ 5೥ؒɼ௕͖

ʹ౉Γࢦಋ͍͖ͯͨͩ͠ɼڀݚͷ૬ஊ΍ൃද࿅शͳͲͷ৔໘Ͱஸೡͳ͝ࢦಋɼ͝

ॿݴΛ͍͖ͨͩ·ͨ͠ɽ·ͨɼ೔ʑͷ͚ͩڀݚͰ͸ͳ͘ɼଟํ໘ʹ౉Γଟେͳ͝

ɽ͢·͍ͨ͠ँײԉΛ͍͖ͨͩ·ͨ͠ɽਂ͘ࢧ

ಸྑઌ୺Պֶٕज़େֶӃେֶ ৘ใՊֶڀݚՊ ҆ຊ Ұܚ तʹ͸ຊ࿦จͷ෭ڭ

Λ୲׭ڭಋࢦ՝ఔ͔Β෭ظΛ୲౰͍͖ͯͨͩ͠·ͨ͠ɽઌੜʹ͸ത࢜લ׭ڭಋࢦ

౰͍͖ͯͨͩ͠ɼֶ಺Ͱͷൃදʹ͓͍ͯɼଟ਺ͷ࣭͝໰ͱ͝ࢦಋΛ͍͖ͨͩ·͠

ͨɽઌੜ͔Β͍͍ͨͩͨҟͳΔ෼໺͔ΒͷӶ͍͝ࢦఠ΍վળ఺͸ɼڀݚΛ؍٬త

ਃ্͛͠·͢ɽँײΊͳ্͓͢Ͱॏཁͳ΋ͷͱͳΓ·ͨ͠ɽ৺ΑΓͭݟʹ

Ԭࢁେֶ ࣗવՊֶڀݚՊ ໳ా ਓڿ तʹ͸,ຊ࿦จͷ৹ࠪҕһΛ͝୲౰͍ڭ

͖ͨͩ·ͨ͠ɽઌੜʹ͸ത࢜લظ՝ఔ͔Β৹ࠪҕһΛ͝୲౰͍͖ͨͩɼԬࢁେֶ

ग़ுͷࡍʹ΋େม͓ੈ࿩ʹͳΓ·ͨ͠ɽઌੜͷత֬ͳ͝ࢦఠ΍ΞυόΠε͸ɼݚ

ਃँײͷେ͖ͳॿ͚ͱͳΓ·ͨ͠ɽਂ࣌ͨͬ͘·٧͖ߦ਑΍࿦จࣥචͳͲͰํڀ

্͛͠·͢ɽ

ಸྑઌ୺Պֶٕज़େֶӃେֶ ৘ใՊֶڀݚՊ ാ ल໌ ॿڭʹ͸ຊ࿦จͷ෭

͍͓ͯʹͷେ෦෼׆΍ֶੜੜڀݚΛ୲౰͍͖ͯͨͩ͠·ͨ͠ɽઌੜʹ͸׭ڭಋࢦ

ଟ͘ͷαϙʔτΛ͍͖ͨͩ·ͨ͠ɽಛʹڀݚʹ͓͍ͯ͸ɼԿ౓΋ਂ͍σΟεΧο

γϣϯΛॏͶ͍ͯͩ͘͞·ͨ͠ɽ5೥ؒΛ௨ͯ͠ɼਓؒͱͯ͠΋ऀڀݚͱͯ͠΋ɼ

େ͖͘੒௕Ͱ͖ͨͱ͍ͯ͡ײ·͢ɽ৺ΑΓँײਃ্͛͠·͢ɽ

ಸྑઌ୺Պֶٕज़େֶӃେֶ ৘ใՊֶڀݚՊ Raula Gaikovina Kula ॿڭʹ

͸ຊ࿦จͷ෭ࢦಋ׭ڭΛ୲౰͍͖ͯͨͩ͠·ͨ͠ɽ1೥ͱ͍͏୹͍ؒظͰ͸͋Γ

·͕ͨ͠ɼઌੜͱͷٞ࿦͸ඇৗʹ༗ҙٛͰɼڀݚͷਐΊํ΍ίϥϘϨʔγϣϯͷ

͋ΓํΛࠜຊ͔ΒͭݟΊ௚͢͜ͱ͕Ͱ͖·ͨ͠ɽमྃޙ΋ɼ͝ࢦಋ͍͍ͨͩͨ͜

ͱΛ๨ΕΔ͜ͱແ͘׆ڀݚಈΛଓ͚͍ͨͱ͍ࢥ·͢ɽ͋Γ͕ͱ͏͍͟͝·ͨ͠ɽ

ಸྑઌ୺Պֶٕज़େֶӃେֶ৘ใՊֶڀݚՊੴඌོ।ڭतʹ͸ɼڀݚʹ͓͍

ͯ਺ʑͷ͝ࢦಋΛ͍͖ͨͩ·ͨ͠ɽઌੜ͕ఏҊͯͩͬͨ͘͠͞ڀݚʹର͢Δ༷ʑ

ͳ͝ҙݟ͸ɼڀݚΛຏ্͖͛Δ্Ͱେ͖ͳॿ͚ͱͳΓ·ͨ͠ɽ৺ΑΓ͓ྱਃ্͠

͛·͢ɽ

ಸྑઌ୺Պֶٕज़େֶӃେֶ ৘ใՊֶڀݚՊ ҏݪ জل ॿڭʹ͸ɼڀݚ΍

105

ֶੜੜ׆ʹ͓͍ͯ਺ʑͷ͝ࢦಋΛ͍͖ͨͩ·ͨ͠ɽઌੜͷ͝ࢦಋ͸͍͠ݫͳ͕Β

΋త֬ͳ΋ͷ͹͔ΓͰɼࣗ਎Λେ͖͘੒௕ͤͯ͘͞Ε·ͨ͠ɽ৺ΑΓ͍ͨ͠ँײ

·͢ɽ

ಸྑߴۀ޻౳ઐ໳ֶߍ ৘ใֶ޻Պ ্໺ ल߶ ।ڭतʹ͸ɼֶ͔࣌ࡏΒ௕͖ʹ

౉Γखࢦ͘͝޿ಋɾαϙʔτΛ͍͖ͯͨͩ͠·ͨ͠ɽڀݚ΍ֶੜੜ׆Ͱ೰Ήࢲ΁

ͷઌੜͷݙ਎తͳΞυόΠε͸ɼେֶӃͰͷ׆ಈΛ༗ҙٛͳ΋ͷʹ͢ΔͨΊͷॿ

͚ͱͳΓ·ͨ͠ɽਂ͘ँײਃ্͛͠·͢ɽ

Adelaideେֶ ຊࣉ ༟ඒ ઌੜʹ͸ɼຊ࿦จࣥචʹ͋ͨΓଟ͘ͷ͝ॿݴΛ͍ͨ

͖ͩ·ͨ͠ɽઌੜʹ͸ϓϨθϯ΍࿦จͷఴ࡟ͳͲͰɼଟ͘ͷ͝ࢦಋΛ͍ͯͨͩ͠

͖·ͨ͠ɽ৺ΑΓ͍ͨ͠ँײ·͢ɽ

ιϑτ΢ΣΞࣨڀݚֶ޻ ൿॻͷ͞ࢠৃ؛ߴΜʹ͸ɼֶੜੜ׆΍ֶձൃදʹ͓

͍ͯɼ༷ʑͳ໘Ͱαϙʔτ͍͖ͯͨͩ͠·ͨ͠ɽ͞؛ߴΜͷ͓͔͛Ͱɼֶੜੜ׆

ʹ͓͚Δखଓ͖ΛେมεϜʔζʹ͜͏ߦͱ͕Ͱ͖ɼ׆ڀݚಈʹઐ೦͢Δ͜ͱ͕Ͱ

͖·ͨ͠ɽ͋Γ͕ͱ͏͍͟͝·ͨ͠ɽ

ಉࣨڀݚͷֶੜͷօ༷ʹ͸ɼൃද࿅श΍࿦จͷఴ࡟ʹ͓෇͖߹͍͍ͨͩ͘ͳ

ͲɼଟେͳΔ͝ࢧԉͱ͝ྗڠΛ͍͖ͨͩ·ͨ͠ɽօ༷ͷ͓͔͛Ͱɼඇৗʹॆ࣮͠

ͨ 5೥ؒΛա͢͜͝ͱ͕Ͱ͖·ͨ͠ɽ৺ΑΓँײΛਃ্͛͠·͢ɽ

ത࢜՝ఔͷ༑ਓɼଔͨ͠ʹڞकͬͯͩͬͨ͘͞Ո଒ɼָۤΛݟΛࢲɼʹޙ࠷

׆ઐɾେֶɾେֶӃͷ༑ਓɼझຯߴ΋มΘΒͣަྲྀͯͩͬͨ͘͠͞ޙɾमྃޙۀ

ಈΛڞʹͯͩͬͨ͘͠͞օ༷ͱͷؔΘΓ͸ɼ٧͖ߦʹڀݚ·ͬͨͱ͖ͷ৺ͷ͑ࢧ

ͱͳΓ·ͨ͠ɽ͋Γ͕ͱ͏͍͟͝·ͨ͠ɽ

106

Appendix

A. Reference of Systematic Mapping

SMS01 [37] Abdul Rehman Gilal, Jafreezal Jaafar, Mazni Omar, Shuib Basri,

and Ahmad Waqas. A rule-based model for software development team compo-

sition: Team leader role with personality types and gender classification. Infor-

mation and Software Technology, Volume 74, pages 105–113, 2016.

SMS02 [78] Marc Palyart, Gail C. Murphy, and Vaden Masrani. A Study

of Social Interactions in Open Source Component Use. IEEE Transactions on

Software Engineering, Volume PP, Number 99, pages 1–14, 2017.

SMS03 [6] Muneera Bano and Didar Zowghi. A systematic review on the

relationship between user involvement and system success. Information and

Software Technology, Volume 58, pages 148–169, 2015.

SMS04 [16] Elizabeth Bjarnason, Kari Smolander, Emelie Engström, and Per

Runeson. A theory of distances in software engineering. Information and Soft-

ware Technology, Volume 70, pages 204–219, 2016.

SMS05 [39] Georgios Gousios, Martin Pinzger, and Arie Van Deursen. An

Exploratory Study of the Pull-Based Software Development Model. Proceedings

of the 36th International Conference on Software Engineering, pages 345–355,

2014.

SMS06 [112] Aurora Vizcáıno, Félix Garćıa, José Carlos Villar, Mario Piattini,

and Javier Portillo. Applying Q-methodology to analyse the success factors in

GSD. Information and Software Technology, Volume 55, pages 1200–1211, 2013.

SMS07 [96] Klaus-Benedikt Schultis, Christoph Elsner, and Daniel Lohmann.

Architecture Challenges for Internal Software Ecosystems: A Large-Scale Indus-

try Case Study. Proceedings of the 22nd ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering, pages 279–288, 2014.

107

SMS08 [76] Marco Ortu, Bram Adams, Giuseppe Destefanis, Parastou Tourani,

Michele Marchesi, and Roberto Tonelli. Are Bullies more Productive? Empir-

ical Study of Affectiveness vs. Issue Fixing Time. IEEE/ACM 12th Working

Conference on Mining Software Repositories, pages 303–313, 2015.

SMS09 [3] Silvia T Acuña, Marta N Gómez, Jo E Hannay, Natalia Juristo,

and Dietmar Pfahl. Are team personality and climate related to satisfaction

and software quality? Aggregating results from a twice replicated experiment.

Information and Software Technology, Volume 57, pages 141–156, 2015.

SMS10 [31] Prem Devanbu, Thomas Zimmermann, and Christian Bird. Belief

& Evidence in Empirical Software Engineering. IEEE/ACM 38th International

Conference on Software Engineering, pages 108–119, 2016.

SMS11 [114] Krzysztof Wnuk, Per Runeson, Matilda Lantz, and Oskar Weij-

den. Bridges and barriers to hardware-dependent software ecosystem participa-

tion - A case study. Information and Software Technology, Volume 56, Num-

ber 11, pages 1493–1507, 2014.

SMS12 [118] Qi Xuan and Vladimir Filkov. Building It Together: Synchronous

Development in OSS. Proceedings of the 36th International Conference on Soft-

ware Engineering, pages 222–233, 2014.

SMS13 [72] Mahmood Niazi, Sajjad Mahmood, Mohammad Alshayeb, Mo-

hammed Rehan Riaz, Kanaan Faisal, Narciso Cerpa, Siffat Ullah Khan, and Ita

Richardson. Challenges of project management in global software development:

A client-vendor analysis. Information and Software Technology, Volume 80, pages

1–19, 2016.

SMS14 [43] Hideaki Hata, Taiki Todo, Saya Onoue, and Kenichi Matsumoto.

Characteristics of Sustainable OSS Projects : A TAheoretical and Empirical

Study. Proceedings of the Eighth International Workshop on Cooperative and

Human Aspects of Software Engineering, pages 15–21, 2015.

108

SMS15 [48] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer.

Classifying Developers into Core and Peripheral: An Empirical Study on Count

and Network Metrics. IEEE/ACM 39th International Conference on Software

Engineering, pages 164–174, 2017.

SMS16 [62] Sherlock A Licorish and Stephen G Macdonell. Communication

and personality profiles of global software developers. Information and Software

Technology, Volume 64, pages 113–131, 2015.

SMS17 [42] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and

Arie Van Deursen. Communication in open source software development mailing

lists. IEEE International Working Conference on Mining Software Repositories,

pages 277–286, 2013.

SMS18 [10] G R Bergersen, D I K Sjoberg, and T Dyba. Construction and Val-

idation of an Instrument for Measuring Programming Skill. IEEE Transactions

on Software Engineering, Volume 40, Number 12, pages 1163–1184, 2014.

SMS19 [22] Marcelo Cataldo and James D. Herbsleb. Coordination break-

downs and their impact on development productivity and software failures. IEEE

Transactions on Software Engineering, Volume 39, Number 3, pages 343–360,

2013.

SMS20 [12] Pamela Bhattacharya, Iulian Neamtiu, and Michalis Faloutsos.

Determining developers’ expertise and role: A graph hierarchy-based approach.

Proceedings - 30th International Conference on Software Maintenance and Evo-

lution, pages 11–20, 2014.

SMS21 [21] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and

Vladimir Filkov. Developer onboarding in github: The role of prior social links

and language experience. In Proceedings of the 10th Joint Meeting on Founda-

tions of Software Engineering, pages 817–828, 2015.

109

SMS22 [102] T Stolee, Kathryn, Sebastian Elbaum, and Anita Sarma. Discov-

ering how end-user programmers and their communities use public repositories:

A study on Yahoo! Pipes. Information and Software Technology, Volume 55,

pages 1289–1303, 2013.

SMS23 [86] Daryl Posnett, Raissa D ’souza, Premkumar Devanbu, and Vladimir

Filkov. Dual Ecological Measures of Focus in Software Development. 35th In-

ternational Conference on Software Engineering, pages 452–461, 2013.

SMS24 [23] Stefan Cedergren and Stig Larsson. Evaluating performance in

the development of software-intensive products. Information and Software Tech-

nology, Volume 56, pages 516–526, 2014.

SMS25 [7] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. Fac-

tors Influencing Code Review Processes in Industry. Proceedings of the 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineer-

ing, pages 85–96, 2016.

SMS26 [85] David Piorkowski, Austin Z Henley, Tahmid Nabi, Scott D Flem-

ing, Christopher Scaffidi, and Margaret Burnett. Foraging and Navigations,

Fundamentally: Developers’ Predictions of Value and Cost. Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 97–108, 2016.

SMS27 [50] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund,

and Dirk Riehle. From Developer Networks to Verified Communities: A Fine-

Grained Approach. IEEE/ACM 37th IEEE International Conference on Software

Engineering, pages 563–573, 2015.

SMS28 [32] Anna Filippova, Erik Trainer, and James D Herbsleb. From Di-

versity by Numbers to Diversity as Process: Supporting Inclusiveness in Software

Development Teams with Brainstorming. IEEE/ACM 39th International Con-

ference on Software Engineering, pages 152–163, 2017.

110

SMS29 [79] Sebastiano Panichella, Gabriele Bavota, Massimiliano Di Penta,

Gerardo Canfora, and Giuliano Antoniol. How developers’ collaborations iden-

tified from different sources tell us about code changes. Proceedings - 30th In-

ternational Conference on Software Maintenance and Evolution, pages 251–260,

2014.

SMS30 [65] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and

Baowen Xu. How do Developers Fix Cross-project Correlated Bugs? A case

study on the GitHub scientific Python ecosystem. IEEE/ACM 39th International

Conference on Software Engineering, pages 381–392, 2017.

SMS31 [99] Jefferson O. Silva, Igor Wiese, Daniel German, Igor Steinmacher,

and Marco A Gerosa. How Long and How Much : What to Expect from Summer

of Code Participants ? Proceedings of 33rd International Conference on Software

Maintenance and Evolution, pages 69–79, 2017.

SMS32 [107] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of

Social and Technical Factors for Evaluating Contribution in GitHub. Proceedings

of the 36th International Conference on Software Engineering, pages 356–366,

2014.

SMS33 [34] Santiago Gala-Pérez, Gregorio Robles, Jesús M González-Barahona,

and Israel Herraiz. Intensive Metrics for the Study of the Evolution of Open

Source Projects: Case Studies from Apache Software Foundation Projects. 10th

Working Conference on Mining Software Repositories, pages 159–168, 2013.

SMS34 [75] Saya Onoue, Hideaki Hata, Akito Monden, and Kenichi Mat-

sumoto. Investigating and projecting population structures in open source soft-

ware projects: A case study of projects in GitHub. IEICE Transactions on

Information and Systems, Volume E99D, Number 5, pages 1304–1315, 2016.

SMS35 [108] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s Talk

About It: Evaluating Contributions through Discussion in GitHub. Proceedings

111

of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 144–154, 2014.

SMS36 [46] Slinger Jansen. Measuring the health of open source software

ecosystems: Beyond the scope of project health. Information and Software

Technology, Volume 56, Number 11, pages 1508–1519, 2014.

SMS37 [51] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer,

and Daniel M German. Open Source-Style Collaborative Development Practices

in Commercial Projects Using GitHub. IEEE/ACM 37th IEEE International

Conference on Software Engineering, pages 574–585, 2015.

SMS38 [33] Denae Ford, Justin Smith, Philip J Guo, and Chris Parnin. Par-

adise Unplugged: Identifying Barriers for Female Participation on Stack Over-

flow. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 846–857, 2016.

SMS39 [117] Xin Xia, David Lo, Lingfeng Bao, Abhishek Sharma, and Shan-

ping Li. Personality and Project Success : Insights from a Large-Scale Study

with Professionals. IEEE International Conference on Software Maintenance

and Evolution, pages 318–328, 2017.

SMS40 [92] Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris

Mockus. Quantifying and Mitigating Turnover-Induced Knowledge Loss: Case

Studies of Chrome and a project at Avaya. IEEE/ACM 38th International

Conference on Software Engineering, pages 1006–1016, 2016.

SMS41 [111] J M Verner, O P Brereton, B A Kitchenham, M Turner, and

M Niazi. Risks and risk mitigation in global software development: A tertiary

study. Information and Software Technology, pages 54–78, 2014.

SMS42 [35] Mohammad Gharehyazie and Vladimir Filkov. Tracing distributed

collaborative development in apache software foundation projects. Empirical

Software Engineering, Volume 22, Number 4, pages 1795–1830, 2017.

112

SMS43 [27] Ricardo M Czekster, Paulo Fernandes, Lucelene Lopes, Afonso

Sales, Alan R Santos, and Thais Webber. Stochastic Performance Analysis of

Global Software Development Teams. ACM Transactions on Software Engineer-

ing and Methodology, Volume 25, Number 3, pages 26:1–26:32, 2016.

SMS44 [68] Sebastian C Müller and Thomas Fritz. Stuck and Frustrated or In

Flow and Happy: Sensing Developers’ Emotions and Progress. IEEE/ACM 37th

IEEE International Conference on Software Engineering, pages 688–699, 2015.

SMS45 [93] Julia Rubin and Martin Rinard. The Challenges of Staying To-

gether While Moving Fast: An Exploratory Study. IEEE/ACM 38th Interna-

tional Conference on Software Engineering, pages 982–993, 2016.

SMS46 [87] Paul Ralph and Paul Kelly. The Dimensions of Software Engi-

neering Success. Proceedings of the 36th International Conference on Software

Engineering, pages 24–35, 2014.

SMS47 [100] Arjumand Bano Soomro, Norsaremah Salleh, Emilia Mendes,

John Grundy, Giles Burch, and Azlin Nordin. The effect of software engineers’

personality traits on team climate and performance: A Systematic Literature

Review. Information and Software Technology, Volume 73, pages 52–65, 2016.

SMS48 [71] Anh Nguyen-Duc, Daniela S Cruzes, and Reidar Conradi. The im-

pact of global dispersion on coordination, team performance and software quality

– a systematic literature review. Information and Software Technology, Vol-

ume 57, pages 277–294, 2015.

SMS49 [54] Youngsoo Kim and Lingxiao Jiang. The Learning Curves in Open-

Source Software (OSS) Development Network. Proceedings of the 36th Interna-

tional Conference on Software Engineering, pages 41:41–41:48, 2014.

SMS50 [29] Daniela Damian, Remko Helms, Irwin Kwan, Sabrina Marczak,

and Benjamin Koelewijn. The Role of Domain Knowledge and Cross-Functional

113

Communication in Socio-Technical Coordination. 35th International Conference

on Software Engineering, pages 442–451, 2013.

SMS51 [69] Kivanç Muşlu, Christian Bird, Nachiappan Nagappan, and Jacek

Czerwonka. Transition from Centralized to Decentralized Version Control Sys-

tems: A Case Study on Reasons, Barriers, and Outcomes. IEEE/ACM 36th

IEEE International Conference on Software Engineering, pages 334–344, 2014.

SMS52 [83] Shaun Phillips, Thomas Zimmermann, and Christian Bird. Un-

derstanding and Improving Software Build Teams. Proceedings of the 36th In-

ternational Conference on Software Engineering, pages 735–744, 2014.

SMS53 [47] Jing Jiang, David Lo, Xinyu Ma, Fuli Feng, and Li Zhang. Under-

standing inactive yet available assignees in GitHub. Information and Software

Technology, Volume 91, pages 44–55, 2017.

SMS54 [61] Sherlock A Licorish and Stephen G Macdonell. Understanding

the attitudes, knowledge sharing behaviors and task performance of core devel-

opers: A longitudinal study. Information and Software Technology, Volume 56,

Number 12, pages 1578 – 1596, 2014.

SMS55 [18] Hudson Borges, Andre Hora, and Marco Tulio Valente. Under-

standing the factors that impact the popularity of GitHub repositories. Pro-

ceedings - 2016 IEEE International Conference on Software Maintenance and

Evolution, pages 334–344, 2016.

SMS56 [59] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. Understand-

ing the Impressions, Motivations, and Barriers of One Time Code Contributors

to FLOSS Projects: A Survey. IEEE/ACM 39th International Conference on

Software Engineering, pages 187–197, 2017.

SMS57 [17] Kelly Blincoe, Jyoti Sheoran, Sean Goggins, Eva Petakovic, and

Daniela Damian. Understanding the popular users: Following, affiliation in-

114

fluence and leadership on GitHub. Information and Software Technology, Vol-

ume 70, pages 30–39, 2016.

SMS58 [123] Mansooreh Zahedi and Muhammad Ali Babar. Why does site

visit matter in global software development: A knowle dge-base d perspective.

Information and Software Technology, Volume 80, pages 36–56, 2016.

SMS59 [58] Mathieu Lavallée and Pierre N Robillard. Why Good Developers

Write Bad Code: An Observational Case Study of the Impacts of Organizational

Factors on Software Quality. IEEE/ACM 37th IEEE International Conference

on Software Engineering, pages 677–687, 2015.

SMS60 [24] Jailton Coelho and Marco Tulio Valente. Why Modern Open

Source Projects Fail. Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering, pages 186–196, 2017.

SMS61 [40] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli.

Work Practices and Challenges in Pull-Based Development: The Contributor’s

Perspective. IEEE/ACM 38th International Conference on Software Engineering,

pages 285–296, 2016.

SMS62 [41] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie

Van Deursen. Work Practices and Challenges in Pull-Based Development: The

Integrator’s Perspective. 2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, pages 358–368, 2015.

SMS63 [103] Margaret Anne Storey, Alexey Zagalsky, Fernando Figueira Filho,

Leif Singer, and Daniel M. German. How Social and Communication Channels

Shape and Challenge a Participatory Culture in Software Development. IEEE

Transactions on Software Engineering, Volume 43, Number 2, pages 185–204,

2017.

115

SMS64 [4] Bram Adams, Ryan Kavanagh, Ahmed E. Hassan, and Daniel M.

German. An empirical study of integration activities in distributions of open

source software. Empirical Software Engineering, Volume 21, Number 3, pages

960–1001, 2016.

SMS65 [60] Per Lenberg, Lars Göran Wallgren Tengberg, and Robert Feldt.

An initial analysis of software engineers’ attitudes towards organizational change.

Empirical Software Engineering, Volume 22, Number 4, pages 2179–2205, 2017.

SMS66 [53] David Kavaler and Vladimir Filkov. Stochastic actor-oriented

modeling for studying homophily and social influence in OSS projects. Empirical

Software Engineering, Volume 22, Number 1, pages 407–435, 2017.

SMS67 [113] Yi Wang and David Redmiles. Cheap talk, cooperation, and

trust in global software engineering. Empirical Software Engineering, Volume 21,

Number 6, pages 2233–2267, 2016.

SMS68 [1] Ulrike Abelein, Barbara Paech, Daniela Damian, U Abelein, and

B Paech. Understanding the Influence of User Participation and Involvement on

System Success – A Systematic Mapping Study. Empirical Software Engineering,

Volume 20, pages 28–81, 2015.

SMS69 [36] Mohammad Gharehyazie, Daryl Posnett, Bogdan Vasilescu, Vladimir

Filkov, Yann-Gaël Guéhéneuc, Tom Mens, M Gharehyazie, D Posnett, V Filkov,

and B Vasilescu. Developer initiation and social interactions in OSS: A case

study of the Apache Software Foundation. Empirical Software Eng, Volume 20,

pages 1318–1353, 2015.

SMS70 [49] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. Evolution-

ary trends of developer coordination: a network approach. Empirical Software

Engineerings, Volume 22, Number 4, pages 2050–2094, 2017.

116

SMS71 [95] Ingo Scholtes, Pavlin Mavrodiev, and Frank Schweitzer. From

Aristotle to Ringelmann: a large-scale analysis of team productivity and coor-

dination in Open Source Software projects. Empirical Software Engineering,

Volume 21, Number 2, pages 642–683, 2016.

SMS72 [122] Alexey Zagalsky, Daniel M. German, Margaret Anne Storey, Car-

los Gómez Teshima, and Germán Poo-Caamaño. How the R community creates

and curates knowledge: an extended study of stack overflow and mailing lists.

Empirical Software Engineering, pages 1–34, 2017.

SMS73 [8] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W.

Godfrey. Investigating technical and non-technical factors influencing modern

code review. Empirical Software Engineering, Volume 21, Number 3, pages 932–

959, 2016.

SMS74 [5] Özlem Albayrak and Jeffrey C Carver. Investigation of individ-

ual factors impacting the effectiveness of requirements inspections: a replicated

experiment. Empirical Software Engineering, Volume 19, pages 241–266, 2014.

SMS75 [11] Nicolas Bettenburg, Ahmed E Hassan, Bram Adams, Daniel M

German, N Bettenburg, A E Hassan, B Adams, and D M German. Management

of community contributions A case study on the Android and Linux software

ecosystems. Empirical Software Engineering, Volume 20, pages 525–289, 2015.

SMS76 [110] Bogdan Vasilescu, Alexander Serebrenik, Mathieu Goeminne, and

Tom Mens. On the variation and specialisation of workload—A case study of the

GNOME ecosystem community. Empirical Software Engineering, Volume 19,

pages 955–1008, 2014.

SMS77 [77] Cristina Palomares, Carme Quer, and Xavier Franch. Require-

ments reuse and requirement patterns: a state of the practice survey. Empirical

Software Engineering, pages 1–44, 2017.

117

SMS78 [106] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan,

and Hajimu Iida. Review participation in modern code review: An empirical

study of the android, Qt, and OpenStack projects. Empirical Software Engineer-

ing, Volume 22, Number 2, pages 768–817, 2017.

B. OSS-HCI Scores for Case Studies

Table 6.1: OSS-HCI Scores in netty

date 2010 2011 2012 2013 2014 2015 2016

of Contributors 4 62 252 448 424 482 577

CAP1 0.00000 0.02033 0.06404 0.10593 0.11848 0.13429 0.16145

CAP2 0.00106 0.02033 0.06725 0.11700 0.12255 0.14025 0.16512

CAP3 0.00000 0.01968 0.05691 0.10392 0.11984 0.13821 0.16436

CAP4 0.00000 0.01902 0.06341 0.10954 0.12143 0.14123 0.16722

DEP1 0.00000 0.02121 0.07811 0.12228 0.12736 0.13984 0.15914

DEP2 0.25179 0.10846 0.06486 0.03901 0.03809 0.03857 0.03422

DEP3 0.00106 0.01968 0.06575 0.09938 0.10000 0.10237 0.12265

DEP4 0.01824 0.01460 0.09349 0.14383 0.19237 0.14353 0.12135

DEV1 0.00172 0.02119 0.06753 0.12577 0.11232 0.12597 0.14122

KH1 0.00039 0.00849 0.02658 0.03712 0.05748 0.07666 0.09618

KH2 0.00106 0.02133 0.08319 0.14259 0.13281 0.14660 0.16891

KH3 0.00106 0.02133 0.07958 0.11643 0.10530 0.11294 0.12777

Capacity 0.00000 0.01983 0.06279 0.10899 0.12057 0.13847 0.16453

Deployment 0.00000 0.02852 0.07470 0.09087 0.09828 0.09435 0.09489

Development 0.00172 0.02119 0.06753 0.12577 0.11232 0.12597 0.14122

Know-how 0.00076 0.01569 0.05604 0.08510 0.09298 0.10827 0.12756

OSS-HCI Score 0.00062 0.02131 0.06526 0.10268 0.10604 0.11677 0.13205

118

Table 6.2: OSS-HCI Scores in homebrew

date 2010 2011 2012 2013 2014 2015 2016

of Contributors 410 1918 2472 3015 5659 5470 1661

CAP1 0.10585 0.31244 0.38803 0.47292 0.61503 0.66791 0.40340

CAP2 0.06469 0.24114 0.40164 0.52203 0.69893 0.74719 0.42350

CAP3 0.04638 0.16190 0.30832 0.44296 0.60133 0.67430 0.41019

CAP4 0.03647 0.16250 0.32857 0.47435 0.64617 0.72504 0.42152

DEP1 0.08759 0.25606 0.36021 0.42129 0.87762 0.86503 0.42050

DEP2 0.52338 0.36594 0.30583 0.28856 0.07879 0.05908 0.07330

DEP3 0.05825 0.19204 0.20826 0.20428 0.17304 0.20202 0.10074

DEP4 0.00025 0.00219 0.00274 0.03095 0.84247 1.00000 0.27260

DEV1 0.05269 0.20638 0.15819 0.39081 0.45880 0.51679 0.14046

KH1 0.06925 0.39744 0.50544 0.58109 0.72061 1.00000 0.26248

KH2 0.00000 0.00000 0.54622 0.59815 0.78662 0.67795 0.27760

KH3 0.00000 0.40861 0.38572 0.36959 0.39046 0.21084 0.10727

Capacity 0.05834 0.21100 0.35447 0.47724 0.63929 0.70281 0.41457

Deployment 0.02856 0.07926 0.08905 0.16650 0.31686 0.31877 0.17057

Development 0.05269 0.20638 0.15819 0.39081 0.45880 0.51679 0.14046

Know-how 0.00000 0.00000 0.47399 0.50458 0.60489 0.52286 0.19846

OSS-HCI Score 0.03490 0.12416 0.26892 0.38478 0.50496 0.51531 0.23101

Table 6.3: OSS-HCI Scores in angular.js

date 2010 2011 2012 2013 2014 2015 2016

of Contributors 23 78 834 3910 5073 3854 2204

CAP1 0.00000 0.02461 0.14615 0.32267 0.46532 0.44461 0.39536

CAP2 0.00000 0.02010 0.12129 0.32417 0.47880 0.45989 0.40184

CAP3 0.00000 0.02010 0.12768 0.32417 0.48197 0.46935 0.39971

CAP4 0.00000 0.02245 0.13144 0.34243 0.52617 0.50917 0.42120

DEP1 0.00769 0.02677 0.18904 0.41966 0.46421 0.31737 0.27372

DEP2 0.17224 0.08444 0.07046 0.13764 0.09236 0.08091 0.05047

DEP3 0.00770 0.02607 0.12045 0.19693 0.15849 0.11149 0.07614

DEP4 0.03419 0.05751 0.04555 0.09215 0.23747 0.11582 0.11801

DEV1 0.00476 0.01526 0.16385 0.29024 0.30889 0.26702 0.22958

KH1 0.00921 0.02524 0.04542 0.20132 0.26865 0.14206 0.09496

KH2 0.00000 0.00000 0.25204 0.64719 0.58620 0.43644 0.33687

KH3 0.00000 0.02619 0.17909 0.40742 0.31618 0.16733 0.10744

Capacity 0.00000 0.02174 0.13133 0.32826 0.48754 0.47016 0.40441

Deployment 0.02430 0.04290 0.09246 0.17993 0.20043 0.13494 0.10555

Development 0.00476 0.01526 0.16385 0.29024 0.30889 0.26702 0.22958

Know-how 0.00000 0.00000 0.12704 0.37582 0.36789 0.21810 0.15091

OSS-HCI Score 0.00727 0.01998 0.12867 0.29356 0.34119 0.27256 0.22261

119

Table 6.4: OSS-HCI Scores in rails

date 2010 2011 2012 2013 2014 2015 2016

of Contributors 204 2519 3321 3654 3404 3249 3022

CAP1 0.06496 0.33234 0.43980 0.50577 0.56461 0.58609 0.57927

CAP2 0.05551 0.18493 0.38051 0.50129 0.57757 0.60477 0.59483

CAP3 0.04309 0.21952 0.43243 0.53029 0.57310 0.58357 0.56851

CAP4 0.05016 0.23665 0.45434 0.56373 0.60505 0.62109 0.60124

DEP1 0.05729 0.48878 0.50201 0.54031 0.55313 0.55611 0.51204

DEP2 0.08069 0.08583 0.08786 0.08131 0.07683 0.07793 0.06998

DEP3 0.06066 0.21907 0.25575 0.22095 0.20152 0.20773 0.19168

DEP4 0.29682 0.36754 0.23941 0.26986 0.37426 0.28745 0.23742

DEV1 0.03915 0.21163 0.32618 0.34188 0.29342 0.31768 0.28275

KH1 0.01436 0.22687 0.35124 0.34701 0.33365 0.33802 0.28206

KH2 0.06917 0.55106 0.67583 0.63240 0.63423 0.60106 0.54984

KH3 0.06744 0.47092 0.46817 0.40958 0.32435 0.26630 0.22856

Capacity 0.05284 0.23771 0.42582 0.52469 0.57989 0.59869 0.58582

Deployment 0.09552 0.24108 0.22796 0.22623 0.23794 0.22555 0.20095

Development 0.03915 0.21163 0.32618 0.34188 0.29342 0.31768 0.28275

Know-how 0.04062 0.38902 0.48078 0.44794 0.40944 0.37822 0.32849

OSS-HCI Score 0.05703 0.26986 0.36519 0.38519 0.38017 0.38004 0.34950

Table 6.5: OSS-HCI Scores in parrot

date 2010 2011 2012 2013 2014 2015 2016

of Contributors 63 81 50 33 21 15 7

CAP1 0.02017 0.02675 0.01693 0.01120 0.00703 0.00493 0.00212

CAP2 0.02050 0.02717 0.01708 0.01122 0.00704 0.00493 0.00212

CAP3 0.01297 0.02430 0.01666 0.01115 0.00703 0.00493 0.00212

CAP4 0.01629 0.02430 0.01672 0.01117 0.00703 0.00493 0.00212

DEP1 0.02159 0.02766 0.01699 0.01117 0.00704 0.00493 0.00212

DEP2 0.31923 0.34988 0.22082 0.23315 0.13149 0.16189 0.22668

DEP3 0.02115 0.02694 0.01697 0.01116 0.00697 0.00486 0.00211

DEP4 0.00698 0.02203 0.05960 0.01480 0.04879 0.02233 0.00279

DEV1 0.00514 0.00724 0.00621 0.00517 0.00311 0.00276 0.00104

KH1 0.00734 0.01341 0.00502 0.00363 0.00241 0.00021 0.00011

KH2 0.02145 0.02758 0.01697 0.01121 0.00702 0.00493 0.00211

KH3 0.02149 0.02740 0.01676 0.01093 0.00695 0.00000 0.00000

Capacity 0.01719 0.02559 0.01685 0.01118 0.00704 0.00493 0.00212

Deployment 0.03176 0.04895 0.04414 0.02561 0.02369 0.01715 0.00729

Development 0.00514 0.00724 0.00621 0.00517 0.00311 0.00276 0.00104

Know-how 0.01501 0.02164 0.01126 0.00763 0.00490 0.00000 0.00000

OSS-HCI Score 0.01728 0.02586 0.01961 0.01240 0.00968 0.00621 0.00261

120

Table 6.6: OSS-HCI Scores in zendfreamwork

date 2010 2011 2012 2013 2014 2015 2016

of Contributors 104 151 545 916 749 429 87

CAP1 0.01258 0.04292 0.09092 0.15362 0.17091 0.12232 0.02932

CAP2 0.01258 0.03373 0.08555 0.15540 0.17913 0.12774 0.02935

CAP3 0.00000 0.02271 0.08083 0.16994 0.18626 0.12989 0.02951

CAP4 0.00000 0.02650 0.08884 0.16845 0.18896 0.13137 0.02962

DEP1 0.02988 0.04423 0.15365 0.27611 0.23330 0.13587 0.02611

DEP2 0.17600 0.14231 0.09299 0.07111 0.07063 0.06723 0.25786

DEP3 0.03431 0.04696 0.12703 0.18421 0.16293 0.10763 0.02285

DEP4 0.08527 0.06673 0.22107 0.14218 0.20801 0.05816 0.00015

DEV1 0.02516 0.07441 0.15725 0.20680 0.14003 0.10270 0.00241

KH1 0.00905 0.06113 0.26014 0.16358 0.10040 0.03273 0.00036

KH2 0.00000 0.00000 0.17016 0.24144 0.20519 0.12408 0.02093

KH3 0.03540 0.04912 0.15121 0.21121 0.14681 0.08504 0.01933

Capacity 0.00000 0.03055 0.08645 0.16168 0.18118 0.12778 0.02945

Deployment 0.06263 0.06664 0.14153 0.15059 0.15373 0.08696 0.01231

Development 0.02516 0.07441 0.15725 0.20680 0.14003 0.10270 0.00241

Know-how 0.00000 0.00000 0.18846 0.20281 0.14461 0.07016 0.00525

OSS-HCI Score 0.02195 0.04290 0.14342 0.18047 0.15489 0.09690 0.01236

Table 6.7: OSS-HCI Scores in kohana

date 2010 2011 2012 2013 2014 2015 2016

of Contributors 6 14 9 14 32 34 20

CAP1 0.00176 0.00457 0.00282 0.00457 0.01085 0.01153 0.00665

CAP2 0.00000 0.00452 0.00282 0.00457 0.01086 0.01153 0.00663

CAP3 0.00000 0.00445 0.00282 0.00457 0.01086 0.01156 0.00667

CAP4 0.00000 0.00456 0.00282 0.00457 0.01086 0.01157 0.00667

DEP1 0.00176 0.00455 0.00281 0.00457 0.01088 0.01156 0.00665

DEP2 0.58788 0.38622 0.26885 0.41732 0.35345 0.31195 0.48658

DEP3 0.00000 0.00455 0.00282 0.00455 0.01065 0.01138 0.00661

DEP4 0.00115 0.00369 0.00977 0.00184 0.00329 0.00125 0.00030

DEV1 0.00000 0.01004 0.01240 0.02265 0.01799 0.01552 0.01359

KH1 0.00032 0.00032 0.00032 0.00075 0.00319 0.00161 0.00023

KH2 0.00000 0.00000 0.00282 0.00457 0.01087 0.01133 0.00667

KH3 0.00000 0.00458 0.00282 0.00000 0.01074 0.01148 0.00649

Capacity 0.00000 0.00453 0.00282 0.00457 0.01086 0.01155 0.00665

Deployment 0.00000 0.01310 0.01201 0.01124 0.01916 0.01504 0.00894

Development 0.00000 0.01004 0.01240 0.02265 0.01799 0.01552 0.01359

Know-how 0.00000 0.00000 0.00137 0.00000 0.00719 0.00594 0.00216

OSS-HCI Score 0.00000 0.00692 0.00715 0.00962 0.01380 0.01201 0.00784

121

Table 6.8: OSS-HCI Scores in cakePHP

date 2010 2011 2012 2013 2014 2015 2016

of Contributors 29 133 198 317 615 795 653

CAP1 0.00923 0.04089 0.06105 0.08750 0.14266 0.16704 0.16484

CAP2 0.00000 0.02294 0.05790 0.09146 0.14958 0.18679 0.17072

CAP3 0.00000 0.02628 0.05035 0.08114 0.14958 0.17544 0.17010

CAP4 0.00000 0.03075 0.05547 0.08779 0.15201 0.18623 0.17665

DEP1 0.00000 0.03263 0.04666 0.10030 0.18728 0.21599 0.18556

DEP2 0.08251 0.08089 0.08268 0.05686 0.04402 0.04095 0.04652

DEP3 0.00976 0.04254 0.05982 0.08160 0.14110 0.15570 0.14597

DEP4 0.05008 0.09743 0.08776 0.11916 0.28860 0.18040 0.14373

DEV1 0.02133 0.08069 0.14519 0.17212 0.13123 0.13298 0.10447

KH1 0.00210 0.03823 0.07443 0.10171 0.17706 0.12832 0.10223

KH2 0.00978 0.04549 0.06676 0.10376 0.18775 0.23218 0.18811

KH3 0.00981 0.04458 0.06406 0.09459 0.15116 0.18180 0.13133

Capacity 0.00000 0.02951 0.05605 0.08689 0.14842 0.17868 0.17053

Deployment 0.00000 0.05751 0.06708 0.08629 0.13536 0.12555 0.11601

Development 0.02133 0.08069 0.14519 0.17212 0.13123 0.13298 0.10447

Know-how 0.00586 0.04264 0.06828 0.09994 0.17128 0.17562 0.13618

OSS-HCI Score 0.00680 0.05259 0.08415 0.11131 0.14657 0.15321 0.13180

Table 6.9: OSS-HCI Scores in symfony

date 2010 2011 2012 2013 2014 2015 2016

of Contributors 36 851 1457 1812 1932 1927 1918

CAP1 0.01113 0.09705 0.15190 0.25739 0.33243 0.35315 0.38206

CAP2 0.01012 0.07023 0.17066 0.27757 0.36989 0.39797 0.41088

CAP3 0.00000 0.02380 0.18421 0.31898 0.38557 0.40134 0.41735

CAP4 0.00000 0.04065 0.17904 0.33731 0.39761 0.42251 0.43605

DEP1 0.01158 0.26090 0.37474 0.40877 0.41587 0.38342 0.37618

DEP2 0.54858 0.19054 0.13215 0.08722 0.07675 0.06134 0.05174

DEP3 0.01184 0.17999 0.23619 0.22251 0.23757 0.23151 0.22311

DEP4 0.00169 0.08223 0.15324 0.15369 0.23144 0.26368 0.18868

DEV1 0.02179 0.15153 0.25431 0.26816 0.22335 0.21621 0.21141

KH1 0.00415 0.22070 0.23739 0.21198 0.19273 0.27058 0.25897

KH2 0.00000 0.00000 0.33979 0.42428 0.43771 0.44052 0.42191

KH3 0.00000 0.24117 0.31095 0.32643 0.28768 0.27847 0.23784

Capacity 0.00000 0.05068 0.17100 0.29610 0.37054 0.39291 0.41112

Deployment 0.01890 0.16469 0.20576 0.18687 0.20467 0.19466 0.16918

Development 0.02179 0.15153 0.25431 0.26816 0.22335 0.21621 0.21141

Know-how 0.00000 0.00000 0.29272 0.30849 0.28952 0.32138 0.29620

OSS-HCI Score 0.01017 0.09173 0.23095 0.26491 0.27202 0.28129 0.27198

122

References

[1] Ulrike Abelein, Barbara Paech, Daniela Damian, U Abelein, and B Paech.

Understanding the Influence of User Participation and Involvement on Sys-

tem Success – A Systematic Mapping Study. Empirical Software Engineer-

ing, 20:28–81, 2015.

[2] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Re-

placing suffix trees with enhanced suffix arrays. Journal of Discrete Algo-

rithms, 2(1):53 – 86, 2004.

[3] Silvia T Acuña, Marta N Gómez, Jo E Hannay, Natalia Juristo, and Di-

etmar Pfahl. Are team personality and climate related to satisfaction and

software quality? Aggregating results from a twice replicated experiment.

Information and Software Technology, 57:141–156, 2015.

[4] Bram Adams, Ryan Kavanagh, Ahmed E. Hassan, and Daniel M. German.

An empirical study of integration activities in distributions of open source

software. Empirical Software Engineering, 21(3):960–1001, 2016.

[5] Özlem Albayrak and Jeffrey C Carver. Investigation of individual factors

impacting the effectiveness of requirements inspections: a replicated exper-

iment. Empirical Software Engineering, 19:241–266, 2014.

[6] Muneera Bano and Didar Zowghi. A systematic review on the relationship

between user involvement and system success. Information and Software

Technology, 58:148–169, 2015.

[7] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. Factors Influ-

encing Code Review Processes in Industry. Proceedings of the 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineer-

ing, pages 85–96, 2016.

[8] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey.

Investigating technical and non-technical factors influencing modern code

review. Empirical Software Engineering, 21(3):932–959, 2016.

[9] Gary Becker. Human capital. National Bureau of Economic Research, 1964.

123

[10] G R Bergersen, D I K Sjoberg, and T Dyba. Construction and Validation

of an Instrument for Measuring Programming Skill. IEEE Transactions on

Software Engineering, 40(12):1163–1184, 2014.

[11] Nicolas Bettenburg, Ahmed E Hassan, Bram Adams, Daniel M German,

N Bettenburg, A E Hassan, B Adams, and D M German. Management of

community contributions A case study on the Android and Linux software

ecosystems. Empirical Software Engineering, 20:525–289, 2015.

[12] Pamela Bhattacharya, Iulian Neamtiu, and Michalis Faloutsos. Determin-

ing developers’ expertise and role: A graph hierarchy-based approach. Pro-

ceedings - 30th International Conference on Software Maintenance and Evo-

lution, pages 11–20, 2014.

[13] Christian Bird. Sociotechnical coordination and collaboration in open

source software. IEEE International Conference on Software Maintenance,

pages 568–573, 2011.

[14] Christian Bird, Alex Gourley, Premkumar Devanbu, Michael Gertz, and

Anand Swaminathan. Mining email social networks. International Work-

shop on Mining Software Repositories, pages 137–143, 2006.

[15] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and

Premkumar Devanbu. Latent Social Structure in Open Source Projects.

Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, pages 24–35, 2008.

[16] Elizabeth Bjarnason, Kari Smolander, Emelie Engström, and Per Runeson.

A theory of distances in software engineering. Information and Software

Technology, 70:204–219, 2016.

[17] Kelly Blincoe, Jyoti Sheoran, Sean Goggins, Eva Petakovic, and Daniela

Damian. Understanding the popular users: Following, affiliation influence

and leadership on GitHub. Information and Software Technology, 70:30–39,

2016.

[18] Hudson Borges, Andre Hora, and Marco Tulio Valente. Understanding the

factors that impact the popularity of GitHub repositories. Proceedings -

124

2016 IEEE International Conference on Software Maintenance and Evolu-

tion, pages 334–344, 2016.

[19] Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig. How

Do Centralized and Distributed Version Control Systems Impact Software

Changes? Proceedings of the 36th International Conference on Software

Engineering, pages 332–333, 2014.

[20] Raymond P L Buse and Thomas Zimmermann. Information needs for soft-

ware development analytics. Proceedings of the 34th International Confer-

ence on Software Engineering, pages 987–996, 2012.

[21] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir

Filkov. Developer onboarding in github: The role of prior social links and

language experience. In Proceedings of the 10th Joint Meeting on Founda-

tions of Software Engineering, pages 817–828, 2015.

[22] Marcelo Cataldo and James D. Herbsleb. Coordination breakdowns and

their impact on development productivity and software failures. IEEE

Transactions on Software Engineering, 39(3):343–360, 2013.

[23] Stefan Cedergren and Stig Larsson. Evaluating performance in the develop-

ment of software-intensive products. Information and Software Technology,

56:516–526, 2014.

[24] Jailton Coelho and Marco Tulio Valente. Why Modern Open Source

Projects Fail. Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering, pages 186–196, 2017.

[25] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics

and Models. Benjamin-Cummings Publishing Co., Inc., Redwood City, CA,

USA, 1986.

[26] Kevin Crowston and James Howison. Assesing the Health of Open Source

Communities. IEEE Computer, 39(5):89–91, 2006.

[27] Ricardo M Czekster, Paulo Fernandes, Lucelene Lopes, Afonso Sales,

Alan R Santos, and Thais Webber. Stochastic Performance Analysis of

125

Global Software Development Teams. ACM Transactions on Software En-

gineering and Methodology, 25(3):26:1–26:32, 2016.

[28] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social

Coding in GitHub: Transparency and Collaboration in an Open Software

Repository. Proceedings of the ACM 2012 Conference on Computer Sup-

ported Cooperative Work, pages 1277–1286, 2012.

[29] Daniela Damian, Remko Helms, Irwin Kwan, Sabrina Marczak, and Ben-

jamin Koelewijn. The Role of Domain Knowledge and Cross-Functional

Communication in Socio-Technical Coordination. 35th International Con-

ference on Software Engineering, pages 442–451, 2013.

[30] Tom DeMarco and Tim Lister. Peopleware: Productive Projects and Teams

(3rd Edition). Addison-Wesley Professional, 3rd edition, 2013.

[31] Prem Devanbu, Thomas Zimmermann, and Christian Bird. Belief & Evi-

dence in Empirical Software Engineering. IEEE/ACM 38th International

Conference on Software Engineering, pages 108–119, 2016.

[32] Anna Filippova, Erik Trainer, and James D Herbsleb. From Diversity by

Numbers to Diversity as Process: Supporting Inclusiveness in Software De-

velopment Teams with Brainstorming. IEEE/ACM 39th International Con-

ference on Software Engineering, pages 152–163, 2017.

[33] Denae Ford, Justin Smith, Philip J Guo, and Chris Parnin. Paradise Un-

plugged: Identifying Barriers for Female Participation on Stack Overflow.

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 846–857, 2016.

[34] Santiago Gala-Pérez, Gregorio Robles, Jesús M González-Barahona, and

Israel Herraiz. Intensive Metrics for the Study of the Evolution of Open

Source Projects: Case Studies from Apache Software Foundation Projects.

10th Working Conference on Mining Software Repositories, pages 159–168,

2013.

[35] Mohammad Gharehyazie and Vladimir Filkov. Tracing distributed col-

126

laborative development in apache software foundation projects. Empirical

Software Engineering, 22(4):1795–1830, 2017.

[36] Mohammad Gharehyazie, Daryl Posnett, Bogdan Vasilescu, Vladimir

Filkov, Yann-Gaël Guéhéneuc, Tom Mens, M Gharehyazie, D Posnett,

V Filkov, and B Vasilescu. Developer initiation and social interactions in

OSS: A case study of the Apache Software Foundation. Empirical Software

Eng, 20:1318–1353, 2015.

[37] Abdul Rehman Gilal, Jafreezal Jaafar, Mazni Omar, Shuib Basri, and Ah-

mad Waqas. A rule-based model for software development team compo-

sition: Team leader role with personality types and gender classification.

Information and Software Technology, 74:105–113, 2016.

[38] Georgios Gousios. The GHTorent dataset and tool suite. IEEE Interna-

tional Working Conference on Mining Software Repositories, pages 233–

236, 2013.

[39] Georgios Gousios, Martin Pinzger, and Arie Van Deursen. An Exploratory

Study of the Pull-Based Software Development Model. Proceedings of the

36th International Conference on Software Engineering, pages 345–355,

2014.

[40] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work

Practices and Challenges in Pull-Based Development: The Contributor’s

Perspective. IEEE/ACM 38th International Conference on Software Engi-

neering, pages 285–296, 2016.

[41] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van

Deursen. Work Practices and Challenges in Pull-Based Development: The

Integrator’s Perspective. 2015 IEEE/ACM 37th IEEE International Con-

ference on Software Engineering, pages 358–368, 2015.

[42] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and Arie

Van Deursen. Communication in open source software development mailing

lists. IEEE International Working Conference on Mining Software Reposi-

tories, pages 277–286, 2013.

127

[43] Hideaki Hata, Taiki Todo, Saya Onoue, and Kenichi Matsumoto. Char-

acteristics of Sustainable OSS Projects : A TAheoretical and Empirical

Study. Proceedings of the Eighth International Workshop on Cooperative

and Human Aspects of Software Engineering, pages 15–21, 2015.

[44] A. Haupt, T. Kane, and C. Haub. PRB’s Population Handbook 6th ed.

Population Reference Bureau, 2011.

[45] Andrew M. Isserman. The Right People, the Right Rates, pages 43–60.

Journal of the American Planning Association 59.1, 1993.

[46] Slinger Jansen. Measuring the health of open source software ecosystems:

Beyond the scope of project health. Information and Software Technology,

56(11):1508–1519, 2014.

[47] Jing Jiang, David Lo, Xinyu Ma, Fuli Feng, and Li Zhang. Understand-

ing inactive yet available assignees in GitHub. Information and Software

Technology, 91:44–55, 2017.

[48] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. Classify-

ing Developers into Core and Peripheral: An Empirical Study on Count and

Network Metrics. IEEE/ACM 39th International Conference on Software

Engineering, pages 164–174, 2017.

[49] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. Evolutionary trends of

developer coordination: a network approach. Empirical Software Engineer-

ings, 22(4):2050–2094, 2017.

[50] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk

Riehle. From Developer Networks to Verified Communities: A Fine-Grained

Approach. IEEE/ACM 37th IEEE International Conference on Software

Engineering, pages 563–573, 2015.

[51] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and

Daniel M German. Open Source-Style Collaborative Development Prac-

tices in Commercial Projects Using GitHub. IEEE/ACM 37th IEEE Inter-

national Conference on Software Engineering, pages 574–585, 2015.

128

[52] Eirini Kalliamvakou, Georgios Gousios, Tudelftnl Kelly Blincoe, Leif Singer,

Daniel M German, and Daniela Damian. The Promises and Perils of Mining

GitHub. Proceedings of the 11th Working Conference on Mining Software

Repositories, pages 92–101, 2014.

[53] David Kavaler and Vladimir Filkov. Stochastic actor-oriented modeling

for studying homophily and social influence in OSS projects. Empirical

Software Engineering, 22(1):407–435, 2017.

[54] Youngsoo Kim and Lingxiao Jiang. The Learning Curves in Open-Source

Software (OSS) Development Network. Proceedings of the 36th Interna-

tional Conference on Software Engineering, pages 41:41–41:48, 2014.

[55] B. Kitchenham and S Charters. Guidelines for performing systematic lit-

erature reviews in software engineering, 2007.

[56] B a Kitchenham, S G MacDonell, L Pickard, and M J Shepperd. What

accuracy statistics really measure. IEE Proceedings - Software, 148(3):81–

85, 2001.

[57] Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. The value

of mapping studies: A participantobserver case study. In Proceedings of the

14th International Conference on Evaluation and Assessment in Software

Engineering, pages 25–33, 2010.

[58] Mathieu Lavallée and Pierre N Robillard. Why Good Developers Write Bad

Code: An Observational Case Study of the Impacts of Organizational Fac-

tors on Software Quality. IEEE/ACM 37th IEEE International Conference

on Software Engineering, pages 677–687, 2015.

[59] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. Understanding the

Impressions, Motivations, and Barriers of One Time Code Contributors to

FLOSS Projects: A Survey. IEEE/ACM 39th International Conference on

Software Engineering, pages 187–197, 2017.

[60] Per Lenberg, Lars Göran Wallgren Tengberg, and Robert Feldt. An ini-

tial analysis of software engineers’ attitudes towards organizational change.

Empirical Software Engineering, 22(4):2179–2205, 2017.

129

[61] Sherlock A Licorish and Stephen G Macdonell. Understanding the at-

titudes, knowledge sharing behaviors and task performance of core de-

velopers: A longitudinal study. Information and Software Technology,

56(12):1578 – 1596, 2014.

[62] Sherlock A Licorish and Stephen G Macdonell. Communication and per-

sonality profiles of global software developers. Information and Software

Technology, 64:113–131, 2015.

[63] G. Liu and B.M. Fraumeni. Growth and stagnation in the world economy.

The World Economy: Growth or Stagnation?, pages 429–468, 2016.

[64] Pablo Loyola and In-Young Ko. Population Dynamics in Open Source

Communities : An Ecological Approach Applied to Github. Proceedings

of the 23rd International Conference on World Wide Web, pages 993–998,

2014.

[65] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and Baowen

Xu. How do Developers Fix Cross-project Correlated Bugs? A case study

on the GitHub scientific Python ecosystem. IEEE/ACM 39th International

Conference on Software Engineering, pages 381–392, 2017.

[66] Stephen MacDonell, Martin Shepperd, Barbara Kitchenham, and Emilia

Mendes. How reliable are systematic reviews in empirical software en-

gineering? IEEE Transactions on Software Engineering, 36(5):676–687,

2010.

[67] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki. Robust regression for

developing software estimation models. Journal of Systems and Software,

27:3–16, 1994.

[68] Sebastian C Müller and Thomas Fritz. Stuck and Frustrated or In Flow

and Happy: Sensing Developers’ Emotions and Progress. IEEE/ACM 37th

IEEE International Conference on Software Engineering, pages 688–699,

2015.

[69] Kivanç Muşlu, Christian Bird, Nachiappan Nagappan, and Jacek Czer-

wonka. Transition from Centralized to Decentralized Version Control Sys-

130

tems: A Case Study on Reasons, Barriers, and Outcomes. IEEE/ACM

36th IEEE International Conference on Software Engineering, pages 334–

344, 2014.

[70] Janine Nahapiet and Sumantra Ghoshal. Chapter 6 - social capital, intel-

lectual capital, and the organizational advantage*. In Eric L. Lesser, editor,

Knowledge and Social Capital, pages 119 – 157. Butterworth-Heinemann,

Boston, 1998.

[71] Anh Nguyen-Duc, Daniela S Cruzes, and Reidar Conradi. The impact of

global dispersion on coordination, team performance and software quality

– a systematic literature review. Information and Software Technology,

57:277–294, 2015.

[72] Mahmood Niazi, Sajjad Mahmood, Mohammad Alshayeb, Mohammed Re-

han Riaz, Kanaan Faisal, Narciso Cerpa, Siffat Ullah Khan, and Ita

Richardson. Challenges of project management in global software devel-

opment: A client-vendor analysis. Information and Software Technology,

80:1–19, 2016.

[73] Saya Onoue, Hideaki Hata, and Ken Ichi Matsumoto. A study of the charac-

teristics of developers’ activities in GitHub. Proceedings of 5th International

Workshop on Empirical Software Engineering in Practice, IWESEP’ 2013,

pages 7–12, 2013.

[74] Saya Onoue, Hideaki Hata, and Kenichi Matsumoto. Software Population

Pyramids : The Current and the Future of OSS Development Communi-

ties. Proceedings - 2016 IEEE International Conference on Software Main-

tenance and Evolution, ICSME 2016 of 8th International Symposium on

Empirical Software Engineering and Measurement, pages 1–4, 2014.

[75] Saya Onoue, Hideaki Hata, Akito Monden, and Kenichi Matsumoto. In-

vestigating and projecting population structures in open source software

projects: A case study of projects in GitHub. IEICE Transactions on In-

formation and Systems, E99D(5):1304–1315, 2016.

[76] Marco Ortu, Bram Adams, Giuseppe Destefanis, Parastou Tourani, Michele

131

Marchesi, and Roberto Tonelli. Are Bullies more Productive? Empirical

Study of Affectiveness vs. Issue Fixing Time. IEEE/ACM 12th Working

Conference on Mining Software Repositories, pages 303–313, 2015.

[77] Cristina Palomares, Carme Quer, and Xavier Franch. Requirements reuse

and requirement patterns: a state of the practice survey. Empirical Software

Engineering, pages 1–44, 2017.

[78] Marc Palyart, Gail C. Murphy, and Vaden Masrani. A Study of Social In-

teractions in Open Source Component Use. IEEE Transactions on Software

Engineering, PP(99):1–14, 2017.

[79] Sebastiano Panichella, Gabriele Bavota, Massimiliano Di Penta, Gerardo

Canfora, and Giuliano Antoniol. How developers’ collaborations identi-

fied from different sources tell us about code changes. Proceedings - 30th

International Conference on Software Maintenance and Evolution, pages

251–260, 2014.

[80] Sophie Pennec. APPSIM - Cohort component population projections to

validate and align the dynamic microsimulation model APPSIM. National

Centre for Social and Economic Modelling, 2009.

[81] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Sys-

tematic mapping studies in software engineering. In Proceedings of the 12th

International Conference on Evaluation and Assessment in Software Engi-

neering, pages 68–77, 2008.

[82] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for

conducting systematic mapping studies in software engineering: An update.

Information and Software Technology, 64:1–18, 2015.

[83] Shaun Phillips, Thomas Zimmermann, and Christian Bird. Understanding

and Improving Software Build Teams. Proceedings of the 36th International

Conference on Software Engineering, pages 735–744, 2014.

[84] Thomas Piketty. Capital in the Twenty-First Century, pages 43, 385–390.

Éditions du Seuil, Belknap Press, 2013.

132

[85] David Piorkowski, Austin Z Henley, Tahmid Nabi, Scott D Fleming,

Christopher Scaffidi, and Margaret Burnett. Foraging and Navigations,

Fundamentally: Developers’ Predictions of Value and Cost. Proceedings of

the 2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, pages 97–108, 2016.

[86] Daryl Posnett, Raissa D ’souza, Premkumar Devanbu, and Vladimir Filkov.

Dual Ecological Measures of Focus in Software Development. 35th Inter-

national Conference on Software Engineering, pages 452–461, 2013.

[87] Paul Ralph and Paul Kelly. The Dimensions of Software Engineering Suc-

cess. Proceedings of the 36th International Conference on Software Engi-

neering, pages 24–35, 2014.

[88] Ayushi Rastogi and Ashish Sureka. What Community Contribution Pat-

tern Says about Stability of Software Project? 21st Asia-Pacific Software

Engineering Conference, pages 31–34, 2014.

[89] E.S. Raymond. The cathedral and the bazaar : musings on linux and open

source by an accidental revolutionary. ” O’Reilly Media, Inc.”, Sebastapol,

CA, O’ Reilly Media, 1990.

[90] James C. Raymondo. Survival Rates: Census and Life Table Methods, pages

43–60. Population Estimation and Projection, Quorum Books, New York,

1992.

[91] Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-Anne

Storey. Peer Review on Open-Source Software Projects. ACM Transac-

tions on Software Engineering and Methodology, 23(4):35:1–35:33, 2014.

[92] Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus.

Quantifying and Mitigating Turnover-Induced Knowledge Loss: Case Stud-

ies of Chrome and a project at Avaya. IEEE/ACM 38th International

Conference on Software Engineering, pages 1006–1016, 2016.

[93] Julia Rubin and Martin Rinard. The Challenges of Staying Together While

Moving Fast: An Exploratory Study. IEEE/ACM 38th International Con-

ference on Software Engineering, pages 982–993, 2016.

133

[94] Norsaremah Salleh, Emilia Mendes, John Grundy, and Giles St. J Burch.

An empirical study of the effects of conscientiousness in pair programming

using the five-factor personality model. ACM/IEEE 32nd International

Conference on Software Engineering, 1:577–586, 2010.

[95] Ingo Scholtes, Pavlin Mavrodiev, and Frank Schweitzer. From Aristotle to

Ringelmann: a large-scale analysis of team productivity and coordination in

Open Source Software projects. Empirical Software Engineering, 21(2):642–

683, 2016.

[96] Klaus-Benedikt Schultis, Christoph Elsner, and Daniel Lohmann. Architec-

ture Challenges for Internal Software Ecosystems: A Large-Scale Industry

Case Study. Proceedings of the 22nd ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering, pages 279–288, 2014.

[97] See T.W. Schultz. Investment in human capital. American Economic Re-

view, (51):1–16, 1961.

[98] Panagiotis Sfetsos, Ioannis Stamelos, Lefteris Angelis, and Ignatios Deli-

giannis. An experimental investigation of personality types impact on

pair effectiveness in pair programming. Empirical Software Engineering,

14(2):187–226, 2009.

[99] Jefferson O. Silva, Igor Wiese, Daniel German, Igor Steinmacher, and

Marco A Gerosa. How Long and How Much : What to Expect from Sum-

mer of Code Participants ? Proceedings of 33rd International Conference

on Software Maintenance and Evolution, pages 69–79, 2017.

[100] Arjumand Bano Soomro, Norsaremah Salleh, Emilia Mendes, John Grundy,

Giles Burch, and Azlin Nordin. The effect of software engineers’ personality

traits on team climate and performance: A Systematic Literature Review.

Information and Software Technology, 73:52–65, 2016.

[101] Igor Steinmacher, Igor Wiese, and Ana Paula Chaves. Why Do Newcomers

Abandon Open Source Software Projects? 2013 6th International Work-

shop on Cooperative and Human Aspects of Software Engineering, CHASE’

2013, pages 25–32, 2013.

134

[102] T Stolee, Kathryn, Sebastian Elbaum, and Anita Sarma. Discovering how

end-user programmers and their communities use public repositories: A

study on Yahoo! Pipes. Information and Software Technology, 55:1289–

1303, 2013.

[103] Margaret Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif

Singer, and Daniel M. German. How Social and Communication Channels

Shape and Challenge a Participatory Culture in Software Development.

IEEE Transactions on Software Engineering, 43(2):185–204, 2017.

[104] Ernest T Stringer. Action research. Thousand Oaks, California : SAGE,

2014.

[105] Pannavat Terdchanakul, Hideaki Hata, Passakorn Phannachitta, and

Kenichi Matsumoto. Bug or not? bug report classification using n-gram

IDF. In Proc. of 33rd IEEE International Conference on Software Mainte-

nance and Evolution, pages 534–538, 2017.

[106] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Ha-

jimu Iida. Review participation in modern code review: An empirical study

of the android, Qt, and OpenStack projects. Empirical Software Engineer-

ing, 22(2):768–817, 2017.

[107] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of Social and

Technical Factors for Evaluating Contribution in GitHub. Proceedings of

the 36th International Conference on Software Engineering, pages 356–366,

2014.

[108] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s Talk About It:

Evaluating Contributions through Discussion in GitHub. Proceedings of the

22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 144–154, 2014.

[109] Bogdan Vasilescu. Human aspects, gamification, and social media in col-

laborative software engineering. Companion Proceedings of the 36th Inter-

national Conference on Software Engineering, pages 646–649, 2014.

135

[110] Bogdan Vasilescu, Alexander Serebrenik, Mathieu Goeminne, and Tom

Mens. On the variation and specialisation of workload—A case study of the

GNOME ecosystem community. Empirical Software Engineering, 19:955–

1008, 2014.

[111] J M Verner, O P Brereton, B A Kitchenham, M Turner, and M Niazi.

Risks and risk mitigation in global software development: A tertiary study.

Information and Software Technology, pages 54–78, 2014.

[112] Aurora Vizcáıno, Félix Garćıa, José Carlos Villar, Mario Piattini, and

Javier Portillo. Applying Q-methodology to analyse the success factors

in GSD. Information and Software Technology, 55:1200–1211, 2013.

[113] Yi Wang and David Redmiles. Cheap talk, cooperation, and trust in global

software engineering. Empirical Software Engineering, 21(6):2233–2267,

2016.

[114] Krzysztof Wnuk, Per Runeson, Matilda Lantz, and Oskar Weijden. Bridges

and barriers to hardware-dependent software ecosystem participation - A

case study. Information and Software Technology, 56(11):1493–1507, 2014.

[115] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Reg-

nell, and Anders Wesslén. Experimentation in Software Engineering: An

Introduction. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[116] Claes Wohlin, Darja Šmite, and Nils Brede Moe. A general theory of

software engineering: Balancing human, social and organizational capitals.

Journal of Systems and Software, 109(Supplement C):229 – 242, 2015.

[117] Xin Xia, David Lo, Lingfeng Bao, Abhishek Sharma, and Shanping Li.

Personality and Project Success : Insights from a Large-Scale Study with

Professionals. IEEE International Conference on Software Maintenance

and Evolution, pages 318–328, 2017.

[118] Qi Xuan and Vladimir Filkov. Building It Together: Synchronous Develop-

ment in OSS. Proceedings of the 36th International Conference on Software

Engineering, pages 222–233, 2014.

136

[119] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, and Naoyasu

Ubayashi. Magnet or sticky? an OSS project-by-project typology. Pro-

ceedings of the 11th Working Conference on Mining Software Repositories,

pages 344–347, 2014.

[120] Mark A. Youndt, ohan Subramaniam, and Scott A. Snell. Intellectual cap-

ital profiles: An examination of investments and returns. Journal of man-

agement studies : JMS, 41(2):335, 2004.

[121] Yasuhiro Yamamoto Yunwen Ye, Kumiyo Nakakoji and Kouichi Kishida.

The co-evolution of systems and communities in free and open source soft-

ware development. Free/Open Source Software Development, pages 59–82,

2004.

[122] Alexey Zagalsky, Daniel M. German, Margaret Anne Storey, Carlos Gómez

Teshima, and Germán Poo-Caamaño. How the R community creates and

curates knowledge: an extended study of stack overflow and mailing lists.

Empirical Software Engineering, pages 1–34, 2017.

[123] Mansooreh Zahedi and Muhammad Ali Babar. Why does site visit matter in

global software development: A knowle dge-base d perspective. Information

and Software Technology, 80:36–56, 2016.

[124] Minghui Zhou and Audris Mockus. Does the initial environment impact

the future of developers. 33rd International Conference on Software Engi-

neering, pages 271–280, 2011.

[125] Minghui Zhou and Audris Mockus. What Make Long Term Contributors:

Willingness and Opportunity in OSS Community. 34rd International Con-

ference on Software Engineering, pages 518–528, 2012.

137

