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Linking Videos and Languages:

Representations and Their Applications∗

Mayu Otani

Abstract

Mimicking the human ability to understand visual data (images or videos) is

a long-standing goal of computer vision. To achieve visual content understanding

by a computer, many recent works attempt to connect visual and natural language

data including object labels and descriptions. This attempt is important not

only for visual understanding but also for broad applications such as content-

based visual data retrieval and automatic description generation to help visually

impaired people.

While connecting visual data with natural language, e.g., predicting labels

of visual concepts and captioning, was once challenging, the recent growth of

computational resources and vision-language datasets has led to a significant

improvement in these tasks. In particular, deep neural network-based approaches

has become able to annotate captions accurately for static images. However, as

scales of video datasets are so far limited, and videos are more computationally

expensive, understanding visual content in videos still remains challenging.

The goal of this dissertation is to develop cross-modal representations, which

enable us to associate videos with natural language. We explore two directions

for constructing cross-modal representations: hand-crafted representations and

data-driven representation learning. The experiments demonstrate the proposed

representations can be applied to a wide range of practical tasks including query-

focused video summarization and content-based video retrieval with natural lan-

guage queries.

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, NAIST-IS-DD1561005, March 15, 2018.
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Chapter 1 describes the background of research for connecting videos and lan-

guages and detail the goal of this dissertation. In Chapter 2, we summarize prior

attempt for cross modal-representation learning and their applications. Chapter 3

introduces a hand-crafted representation that encodes objects in videos and noun

words in sentences. We also define semantic similarity between the object-based

representation. The object-based representation is applied to video summariza-

tion based on user text. In Chapter 4, cross-modal representation learning is

explored. We introduce deep models that map videos and sentences to a com-

mon feature space, where semantically relevant videos and sentences are located

in a nearby space. Different from the object-based representation, this approach

incorporates various concepts including objects, actions, and attributes. The

performance of the learned representation is evaluated on several tasks: unsu-

pervised video summarization, content-based video and sentence retrieval, and

video captioning. The models are further improved by exploiting web images,

which help to disambiguate the semantics of sentences. Chapter 5 describes a

method to learn frame-level representations for videos. This model is designed

to capture dynamics of content within a video. The main challenge of training

the model is the lack of video-sentence datasets with frame-level annotations. We

alleviate the lack of training data by synthesizing training examples from exist-

ing video-description datasets. We apply this frame-level representation to a task

of content-based video retrieval for multi-clip videos, which we call fine-grained

video retrieval. The experimental results demonstrate that our cross-modal rep-

resentation is useful for content-based video retrieval with a natural language

query.

Keywords:

representation learning, cross-modality, neural network, video retrieval, video

summarization
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Chapter 1

Introduction

Once humans take a brief look at visual data (images or videos), they can easily

and quickly list various concepts in the image and describe the visual content

with natural language. Mimicking this human ability, i.e., understanding and

describing visual content, in a computer is a key technique for various applications

such as content-based image or video retrieval and automatically describing visual

content to help visually impaired people understand the visual content.

One approach for connecting visual and natural language data is to design

a cross-modal embedding space. Figure 1.1 illustrates the idea of cross-modal

embedding space. Both images and texts are represented as points in a common

space so that those with similar semantics are located at close points. For ex-

ample, an image of zebras in the field, as well as a sentence “a flock of zebras

grazing” should be mapped to nearby points.

One straightforward approach to constructing cross-modal representation is to

use visual concept recognition techniques. We can obtain a list of visual concepts

from an image by visual concept classification or detection techniques. As visual

concepts are often described with nouns or verbs in natural language, we can

compute the semantic similarity between text and visual data by matching words

in a text and detected concept labels. Based on this assumption, some work

represents visual data by a set of concept labels and natural language data by

a set of words. This cross-modal representation is often used as an intermediate

representation in description generation methods [14, 22].

While extensive research efforts had been made so far for designing cross-

1



“A man playing a guitar

outside his house”

“A flock of zebras grazing.”

Cross-modal space

Figure 1.1. Illustration of cross-modal embedding space.

modal representations, it was difficult to connect visual and natural language

data because of the limited performance of visual concept recognition models.

Visual concept recognition has been a challenging task, although it looks quite

simple. Inferring visual concepts of an image involves finding patterns that might

be relevant to the visual concepts. Since humans are not aware of how they find

and generalize the visual patterns, implementing how to recognize visual concepts

in a computer has been quite difficult.

The recent emergence of large-scale datasets and deep neural networks (DNNs)

facilitate visual concept recognition. In computer vision, convolutional neural

network-based classification models have shown substantial improvement in vi-

sual concept recognition tasks including object recognition [42, 80, 26] and action

recognition [35, 33]. Now, the state-of-the-art models can even distinguish thou-

sands of visual concepts [71].

An important advantage of the DNN-based approach is the integration of the

whole process involved in a task in a deep model, which can be trained in an

end-to-end manner. For example, previous object recognition involves several

processes: low-level feature extraction, feature transformation, and classification.

They are separately designed, and tuning low-level processing (e.g., low-level

feature extraction) to maximize the performance of final output is hardly feasible.

On the other hand, DNN-based approach integrates these process into one deep

model, and the whole process can be optimized by fitting to large-scale data.

Given pairs of input and correct output, deep models can learn useful features

2



and how to use them.

This also accelerated the research for tasks that involve different modalities,

such as image or video captioning [6, 107]. Recent works propose to associate

embeddings of visual data and natural languages with DNNs. In end-to-end

learning, how to extract features from different modalities, as well as how to

fuse them can be learned seamlessly. This leads the improvement in learning

cross-modal embedding spaces for visions and language [39, 108]. In DNN-based

approach, one may not need to extract concepts from images or natural language

explicitly. Instead, one will model how to map images and text to a common

space.

The goal of this dissertation is to develop cross-modal representations for

videos and natural languages. The representation should capture complex se-

mantics, and their similarity should follow human intuition on semantic similar-

ity. Most works in this direction have tried to connect static images and short

phrases or sets of keywords [39, 34], and videos and natural language have still

significant room to explore. Different from static images, videos have additional

challenges to capture semantics because they have temporal changes. Due to the

temporal changes, the semantics of videos are more complex. This complexity

of content makes modeling video understanding more difficult. Similar challenge

exists in natural language understanding. Since a sentence in natural language

may include various words, and the semantics of each word highly depends on

context, modeling the semantics of sentences is also difficult.

As we mentioned above, techniques to connect videos and text have some

practical applications. To evaluate the performance of our cross-modal represen-

tations, we will apply them to several tasks, which involve videos and natural

languages, such as query-focused video summarization, video captioning, and

content-based video retrieval. By showing the results of these applications, we

will investigate the capability of our cross-modal embedding space.

This dissertation is organized as follows. First, we discuss related works for

connecting videos and languages in Chapter 2. We introduce object-focused rep-

resentations for videos and paragraphs in Chapter 3. In this work, we develop

video summarization based on user text, which uses the proposed representations

and the similarity metric for creating video summaries based on the input text.

3



In Chapter 4, we address joint representation learning for videos and sentences.

We also propose sentence embedding method that exploits a web image search

engine, which helps to disambiguate semantics of sentences. Learned cross-modal

embedding spaces are evaluated on the task of content-based video retrieval. We

also show that the learned embedding space is beneficial for unsupervised video

summarization. In Chapter 5, we address encoding a video into a sequential

vector representation, instead of a single vector representation. We demonstrate

a content-based video retrieval application, which finds video parts relevant to

a natural language query. Finally, Chapter 6 summarizes this dissertation and

remaining challenges. We also discuss a future path of this work.

4



Chapter 2

Related Work and Contributions

The work in this dissertation is motivated by many previous works that address to

link vision and language modalities. This chapter gives the overview of existing

cross-modal representations and applications that involve visual and language

data.

1. Cross-modal Representations for Videos and

Languages

Some early works proposed to use a set of concept labels as cross-modal represen-

tations for static images and text [14, 51]. Farhadi et al. [14] introduced triplets

of concept labels (object, action, and scene) as representations, which represent

the abstract semantics of images and sentences. For videos, the approach by Lin

et al. [51] associates a parsed semantic graph of a query sentence and visual cues

based on object detection and tracking.

These works require explicit concept detection to construct representations.

Therefore, they cannot handle images or text with unseen concepts. To achieve

more flexible representations, some works propose to develop a common embed-

ding space, in which visual and language data can be mapped [16, 82, 36]. This

approach enables us to compute the semantic similarity between images and text

based on the distance in the embedding space without explicit concept detectors.

For example, Socher et al. [82] proposed to embed low-level image representa-

5



tions and word vectors of object labels into a common embedding space with

neural network-based models. They demonstrated classification of unseen visual

concepts in the embedding space, which is called as zero-shot learning.

The recent success of deep convolutional neural networks (CNNs) together

with large-scale visual datasets [69, 6, 75] has led to several powerful models for

image understanding [10, 103, 111]. These models showed not only significant

improvement in object classification, but also highly generalized visual represen-

tations obtained from hidden layers of the deep models [10]. Deep neural networks

have also been used in the field of natural language processing [45, 39]. These

works demonstrated that neural network-based models are capable of encoding

semantics of text. For example, Kiros et al. [39] proposed sentence representa-

tion learning using recurrent neural networks (RNNs). They also demonstrated

joint learning of image and sentence embedding models, which convert images

and sentences to cross-modal representations.

Cross-modal representation learning using deep neural networks is explored in

many tasks [52, 16, 36, 108, 117]. Frome et al. [16] proposed image classification

by computing similarity between joint representations of images and labels, and

Zhu et al. [117] addressed alignment of movie scenes with sentences in a book

using joint representations for video clips and sentences. Their approach also

computes the similarity between sentences and subtitles of video clips to improve

the performance of video-sentence alignment.

2. Applications

Video Summarization

In this dissertation, we develop video summarization methods as applications of

the proposed representations in Chapters 3 and 4. Video summarization is a

technique to generate a compact representation of long videos, which help users

quickly understand the content. Various methods for video summarization have

been proposed for different domains, including sports videos [4], movies [76, 43],

documentaries [89], e-sports [83] and user videos [24]. There are also surveys

of the literature available [94, 59, 56]. Video summaries are categorized into

6



two types, i.e., storyboards and video skimming. Storyboards are static video

summaries, which consist of keyframes [96, 20, 27]. Dynamic video skimming

involves generating a short video, which consists of excerpts from the original

videos [63, 110]. Our work in this dissertation falls into the category of dynamic

video skimming.

To automatically select video excerpts from input videos, various ideas to asses

the importance of video clips have been proposed. Attractiveness is a widely em-

ployed selection criterion, representing how well a clip attracts the attention of

the audience. Attractiveness is often computed from dynamics of pixel values

in early video summarization works. Specifically, temporal changes in repre-

sentations (e.g., the Hessian of pixel values [43] or coordinates of blobs [9]) are

tracked, and clips with significant changes are selected [43, 64]. Rather than using

low-level representations, more sophisticated saliency-based approaches have also

been employed [54, 12]. For example, Ma et al. [54] proposed the combination of

visual and audio saliency, with which highly salient clips are selected for a video

summary. Gygli et al.[24] proposed a combination of multiple properties, such as

saliency, aesthetics, and camera motion, which are then used to select attractive

video clips.

Another criterion for video clip selection is representativeness; video clips

in a summary should be less redundant but cover most of the original content.

Many methods have been proposed to find representative yet diverse clips [9, 115,

25, 19, 108]. One major approach to retrieving representative clips is video-clip

clustering. Earlier work by Gong et al. [20] proposed clustering of the video frames

in the input videos using singular value decomposition. With their method, clips

that include frames close to the cluster centers are included in the video summary.

Gygli et al. [25] cast the selection of representative clips as a k-medoids problem,

which can be efficiently optimized due to its sub-modularity. Zhao et al. [115]

proposed an online video summarization method. Their method generates a video

summary by picking out video clips that are able to reconstruct the remaining

clips. For diverse clip selection, determinantal point processes are attracting the

attention of video summarization research [19, 108]. As this approach is often

used for unsupervised video summarization, we also employ representativeness

criterion in Chapter 4 to demonstrate how our representation can benefit a basic
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video summarization method.

Attractiveness and representativeness are general criteria that can be applied

to videos in any domain. However, an ideal video summary can depend much

on the domain of the video. Several works of Video summarization for a specific

domain have demonstrated the effectiveness of domain knowledge. For exam-

ple, a work for American football video summarization detects replay shots and

scoring events [4], and egocentric video summarization uses a set of daily object

detectors [53, 47]. Hu et al. [29] demonstrated character-based summarization

for TV series using a speaker-identification method. Potapov et al. [68] proposed

a supervised video summarization method that takes account of event categories

such as “birthday party.” Given a training dataset of videos and associated event

categories, event classifiers are trained to predict the importance of a clip based on

its event category. Lee et al. [47] proposed a method for learning the importance

of objects in egocentric videos.

Another interesting research direction in video summarization is text-focused

summarization, which controls the content of video summaries using textual cues.

For example, Babaguchi et al. [4] incorporated user profiles that reveal the user’s

favorite teams, players, and events. Sharghi et al. [78] proposed to extract video

clips based on the relevance to keywords. Research in this line attempts to asso-

ciate video content and text, such as scripts and query words, to generate a video

summary based on the input text. In Chapter 3, we propose an object-based

representation for videos and text for text-focused video summarization.

Content-based Video and Language Retrieval

Due to the explosive growth of images and videos on the web, visual retrieval has

become a hot topic in computer vision and machine learning [8, 56, 46, 49]. Early

work addressed content-based video retrieval by detecting predefined concepts in

videos, such as objects, actions, and events [81, 102]. A single visual concept

may not be enough to spot the desired video, so users are more likely to query

with their combinations. Video retrieval by natural language queries provides an

intuitive way to make a combination of concepts in a specific context represented

in a query. One possible approach is to detect visual concepts and match them

to keywords extracted from a natural language query [105, 44, 97, 51], but as
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they require pre-trained concept detectors, such as [26, 116, 93], unseen or rare

concepts might be missed.

To overcome such limitations, Socher et al. [82] proposed to learn to embed

images and concept labels into a common space, which can handle unseen con-

cepts. Several approaches in this direction have been proposed on both image

retrieval [16, 39] and video retrieval [117, 108, 65]. Xu et al. [108] proposed a

deep neural network for video retrieval by sentence queries and vise versa. They

embed a video clip and a sentence into a common space to compute the similar-

ity between them. Yu et al.’s approach [113] learns a similarity metric between

a whole video content and a query sentence. In contrast to these methods, we

address to estimate the relevance that may vary within a video in Chapter 5.

A similar task has been studied in the community of action localization, which

finds when a certain action occurs in a video [40, 17, 31, 104]. While action

localization focuses on human actions, our video retrieval tasks in Chapter 5 use

a natural language sentence, which describes various concepts including actions,

as a query. Therefore, the action localization can be regarded as a special case of

video retrieval that localizes content in a video.

3. Video and Natural Language Datasets

To promote research to associate videos and natural language data, the research

community has provided various datasets involving videos and natural language

data, such as descriptions [77, 72, 106, 5, 114], video titles [114, 84], and visual

concept labels [47, 70, 1]. Chen et al. [5] provide 1,967 short YouTube video

clips capturing a single activity. Each video in this dataset is annotated with

descriptions. Xu et al. [106] released a larger-scale YouTube video dataset, which

contains 10K video clips collected with a video search engine and natural language

descriptions annotated by crowdsource workers.

There are several datasets for specific domains. Movie datasets aligned with

descriptions are introduced in [72, 73, 91, 55]. Senina et al. [77] collected cooking

video clips and their descriptions. Zeng et al. collected 18K user-generated videos

and their titles [114]. The averaged length of the videos in this dataset is approx-

imately 1.5 minutes (longer than most other datasets), and they are not edited.
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The movie datasets in [72, 77] have alignment of description and video frames.

Their vocabulary and content in video clips are fairly different from other videos,

such as online videos or broadcast programs, since the movies include fantasy,

sci-fi, etc. Several works collect videos by asking crowdsource workers to capture

videos according to given scenarios [79, 21]. Compared to web videos, videos

in these datasets are well controlled for a task of activity recognition and more

suitable for learning-based approaches.

4. Contributions

In this dissertation, we develop cross-modal representations for videos and lan-

guages. There are two different approaches to develop cross-modal represen-

tations. One is manually designing representations, and the other is a learning-

based approach which automatically learns cross-modal representation extractors

from data. We investigate hand-crafted cross-modal representations in Chapter

3 and representation learning in Chapters 4 and 5. For each cross-modal repre-

sentations, we develop applications and evaluate the effects of our cross-modal

representations.

In Chapter 3, we develop object-focused representations for videos and text.

This representation is designed to capture the high-level semantics of events by

summarizing objects in video clips and text. We define semantic similarity be-

tween video and text based on this representation. Using this representation,

we develop a video summarization method, which generates video summaries ac-

cording to user text. Video summarization is done by selecting a subset of videos

which maximizes the semantic similarity to user text.

The hand-crafted representation in Chapter 3 is limited to a fixed list of object

categories, and do not consider other concepts including actions, or attributes.

In Chapter 4, we address representation learning for videos and sentences that

can handle larger vocabulary. To handle various concepts, we employed deep

models that map videos and sentences to a common space. This approach does

not require explicit concept recognition. Our approach in Chapter 4 is close to

the work by Xu et al. [108]. They represent a sentence by a subject, verb, and

object (SVO) triplet, and embed sentences as well as videos to a common embed-
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ding space using deep neural networks. The main difference between ours and

the work [108] is the use of an RNN to encode a sentence. The use of an RNN

enables our model to encode all words in a sentence and capture details, such

as an object’s attributes and scenes. We demonstrate that this representation

may improve unsupervised video summarization. We also show that deep rep-

resentations sometimes fail to capture the semantics of sentences. This failure

comes from the ambiguity of words and limited capability of sentence encoding

to model long dependency. We propose to help sentence encoding by using web

images relevant to a sentence. We evaluate the effect of web images on the task of

content-based video retrieval. We also demonstrate that our training scheme us-

ing web images benefits video encoding model. We train video captioning model

that uses our representations and show that our cross-modal representation can

efficiently encode semantics of videos.

We expand the representation learning method to produce sequential repre-

sentations for videos in Chapter 5. This sequential output is useful to capture how

semantic changes within a video. We thus develop a fine-grained video retrieval

method that finds parts of a video relevant to a query sentence. This study

in Chapter 5 is closely related to the works by Tapaswi et al. [87] and Zhu et

al. [117], which aim to align book text and movie scenes, as well as query-focused

video summarization by Sharghi et al. [78]. Both methods search for a part of a

long video using a natural language query. The main difference between ours and

these works is that ours have fewer assumptions about target videos and queries.

To align book chapters or sentences to movie scenes, these previous approaches

[87, 117] assume that the movie comes with closed captions and that the book

text and the movie follow a similar timeline. Sharghi et al.’s approach [78] only

uses a limited set of nouns as queries and does not accept more generic queries,

i.e.natural language queries. Our task has neither rich metadata of videos nor

rough temporal locations.

The contributions of this dissertation are summarized as follows:

• We propose several cross-modal representations for videos and sentences.

Two different approaches to cross-modal representations are explored in

this work. Specifically, we introduce hand-crafted representations based on

the occurrence of objects in videos and text. We also propose representation
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learning method for videos and sentences. The proposed models are capable

of encoding various concepts including objects, actions, and scenes.

• The cross-modal representations are applied to practical applications. First,

we develop video summarization using user text, which creates a video sum-

mary according to the content of user text. Our object-focused represen-

tations are used to compute semantic similarity between videos and text.

We also demonstrate that our deep representations are helpful in the task

of content-based video retrieval.
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Chapter 3

Object-based Representations for

Summarizing Personal Videos

Using Blog Text

1. Overview

This chapter proposes object-based representations to capture the semantics of

videos and text. We assume that objects in a video clip provide rich cues to

understand events in a video, and nouns in text also tell key concepts of text’s

content as well. Based on this assumption, we construct an object-based repre-

sentation that encodes objects in videos and nouns extracted from text. We also

define a similarity metric with this object-based representation, which enables us

to compute the semantic similarity between a video and text.

As an application of our object-based representation, we develop a video sum-

marization method for personal videos. Video summarization extracts a subset

of video clips from a long video to produce a shorter video. To select video clips

for a video summary, most existing methods rely on predefined criteria, such as

small-redundancy [115] or attractiveness of visual content [54, 12]. Therefore,

each of them offers the same summary, provided that the same video clips are

given as the input.

However, users often have some ideas about storylines that they want to

express in their videos. For example, video blogs, which consist of user-generated
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videos and supporting text, are edited to express author’s ideas, experiences,

etc. Hereafter, we refer to these ideas as the author’s “intentions.” Different

blog authors need different video summaries, even when they have the same set

of original video clips. Most existing video summarization methods do not take

such intentions into account. Some methods can modify a video summary to each

user based on user preferences [4] or observations about users (e.g., brain waves)

[2]. Nevertheless, these methods do not offer explicit authorial control over the

content of a video summary.

One approach to enable users to control output video summary is text-based

video summarization [78, 67]. Given textual cues, such as keywords or descrip-

tions, text-based video summarization collects video clips relevant to the textual

cues. In this work, as an application of our object-based representations, we de-

velop a video summarization method that edits a long video according to scripts

written by a user. Specifically, our video summarization system takes a text

written for a video blog post and unedited videos as input and produces a video

summary that has semantically relevant content to the blog post. During video

clip selection, we optimize the content similarity between a video summary and

the blog post, which can be computed with our object-based representation.

The main contributions of this chapter are summarized as follows:

1. We develop an object-based representation for video clips and text. We de-

fine a similarity metric with our cross-modal representation. This similarity

metric can be used for evaluating the content similarity between videos and

text.

2. We present a video summarization method for video blogs. The proposed

method produces video summaries according to textual input. This method

is based on the assumption that good video summaries for video blogs reflect

the author’s intentions, which most previous works have not taken into

account.

3. Most previous work uses low-level visual features for clip selection, whereas

our method uses high-level cross-model representation: objects in video

clips and words in an input text. By maximizing the content similarity
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Figure 3.1. Overview of the proposed text-based video summarization method.

Given text written by a user, our method selects video clips based on the content

of the text, such that the video summary reflects the user’s intentions.

based on our cross-modal representation, the proposed video summarization

method can retrieve video clips that show events described in the text.

4. We conducted user studies to evaluate our video summarization method.

Participants compose their video blog post and answer a questionnaire re-

garding the composition process. The results have shown that participants

preferred our video summarization method for video blog authoring.

5. We also compared our video summarization method with several baseline

methods regarding the content coverage and relevance to the input text.

Experimental results suggest important properties of video summaries for

video blog applications.

2. Text-based Video Summarization

Our video summarization method takes videos with timestamps and the text

written by the blog author as input and generates a video summary. The problem
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of video summarization can be cast as a problem of selecting the optimal subset

of video clips. In this study, we design an objective function based on the content

similarity between a subset of clips and the input text. By selecting clips that have

high content similarity to the input text, our method generates a video summary

reflecting the blog author’s intentions. Figure 3.1 illustrates an overview of our

method. Our method first extracts nouns from the input text. The videos are

then segmented and clustered into groups, each of which corresponds to an event.

Based on these clusters, we compute the priority of clips; highly prioritized clips

are more likely to be included in the video summary. After computing the priority,

a video summary is produced by selecting the optimal subset of clips.

2.1 Object-based Representations for Videos and Text

Encoding Text Since objects in videos are often described with nouns, we

extract nouns from the input text. The input text is represented by an N -

dimensional vector y, where N is a vocabulary size, and assume that noun n

corresponds to object n. We set yn = 1 if noun n is included in the input text

and 0 otherwise. For noun extraction, we apply parts-of-speech tagging to the

input text [92]. Furthermore, we remove predefined stop words because common

words are hardly informative.

Encoding video clips We first perform video segmentation on lengthy input

videos. Because our method selects clips based on their objects, we set clip

boundaries where objects appear or disappear. To find these clip boundaries, we

employ the method by Huang et al.[30]. Their method tracks the number of key-

point matches and identifies local minima. These local minima often correspond

to frames around which objects appear or disappear. Thus, we divide the video

at such frames.

Each video clip after video segmentation is represented by object labels and

their importance. Object-detection methods, such as [18], can automatically

find objects in the clips; however, to focus on our clip selection performance

without focusing on the performance of the object-detection method, we manually

annotate object labels in this study, rather than detecting them automatically.

To do so, we extracted the middle frame of each clip as a keyframe and annotated
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Figure 3.2. Maps of location-based object importance (a) and saliency-based

object importance (b).

the object labels.

In this thesis, we test two types of object importance: location-based object

importance, and saliency-based object importance. Location-based object impor-

tance is simply based on the location and the size of the bounding box of each

object. The computation of location-based importance relies on some heuristics:

viz., (i) an important object is more likely to be located near the center of the

frame, and (ii) it occupies a large area. Based on these heuristics, the importance

xm,n of object n in a clip m is defined as

xm,n =

∫
ω∈Ωn

N (ω|μ,Σ)dω, (3.1)

where Ωn is object n’s bounding box, and N is the normal distribution whose

mean μ is the frame’s center position and whose variance Σ is a predefined pa-

rameter.

The other type of object importance incorporates saliency maps. Because

salient objects are likely to be visually important, we employ the average of

saliency values over a bounding box as the saliency-based object importance. In

this thesis, we use saliency maps based on Yan et al.’s method [109]. Saliency

maps are computed based on local contrast values and center bias, i.e., areas near

the center of an image are more likely to be important. To get stable results,

their method generates multiple image layers, which are coarse representations

at different levels, and compute a saliency map for each layer. Saliency maps

in different scales are fused to produce a final output. Note that the proposed

method can use any other method to obtain saliency maps, such as [3, 66, 62],

without significant modification. Figure 3.2 shows the maps of location-based
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object importance and saliency-based object importance, where brighter areas

are regarded as more important.

After computing the importance, the input videos are represented by a set of

clips X = {xm ∈ RN | m = 1, . . . ,M}, where xm is a vector representation of the

clip m. N is the number of object categories, and each element xm,n denotes the

importance of object n in that clip.

2.2 Text-based Clip Selection

Let ψ(S) be a function that gives an N -dimensional vector representation of a

subset of clips S ⊆ X, given by

ψ(S) =
∑
xm∈S

pm(y)xm, (3.2)

where pm(y) and xm denote a priority value of the clip m conditioned on the

input text and an N -dimensional vector representation for clip m, respectively.

The priority value represents how relevant the clip is to the input text, which is

computed with cluster-based content similarity.

With the video summary representation, we formulate the problem of selecting

a subset of clips S∗ ⊆ X as:

S∗ = argmax
S⊆X

O(ψ(X),y), (3.3)

s.t.
∑
xm∈S

lm ≤ L. (3.4)

Here, L is the length of the resulting summary, which is given by the user, and

lm is the length of clip m. The objective function to be maximized in video

summarization is a linear combination of two terms as follows:

O(ψ(S),y) = osim(ψ(S),y) + αocov(ψ(S)), (3.5)

where osim is the content similarity between S and the input text y, and ocov

is the content coverage. Moreover, α is a parameter that balances these two

terms. Selecting a subset with high content similarity reflects the blog author’s

intentions in the resulting summary, and the content-coverage term encourages
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the summary to include various content, provided that it is relevant to the input

text.

The following sections detail the clip priority, the content-similarity term, and

the content-coverage term.

Clip Priority

Our method uses content similarity based on the objects in each video clip and the

nouns in the input text. However, this can be unreliable, because the clip usually

contains a subset of objects that appear in the event. For example, suppose the

input text pertains to a certain event in which a certain object is involved. If this

object is not very specific to the event, even though it appears throughout the

input video, content similarity based solely on objects and nouns can pick out all

clips that come with the object.

To find clips that are more relevant to the input text, we introduce clustering-

based clip priority. First, we assume that an event is temporally concentrated,

i.e., clips capturing the same event have similar timestamps. Under this assump-

tion, we can cluster clips based on their timestamps and the objects in them. For

clustering, we use affinity propagation [15]. The similarity between two clips xi

and xj is defined as

A(xi,xj) = exp

[
−λmin(|τi − τj|, θ)

M

]
+ γJ(xi,xj), (3.6)

where τi is the temporal frame index of the middle frame in clip i, and M denotes

the total number of frames in the input videos. Here, J(·, ·) gives the weighted

Jaccard similarity, defined as

J(xi,xj) =

∑
n min(xi,n, xj,n)∑
n max(xi,n, xj,n)

. (3.7)

In Eq. (3.6), λ controls the reduction in temporal similarity, and θ is a threshold

for the temporal distance |τi− τj|. We suppose that clips extracted from different

videos are temporally distinct. Thus, the temporal distance |τi − τj| of such clips

is set to a threshold θ. Moreover, γ is a parameter to balance the temporal sim-

ilarity with the object based similarity. The number of clusters is automatically
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determined from data and self-similarity A(xi,xj). Low self-similarity values re-

sult in a small number of clusters. We set the self-similarity values to the median

of the pair-wise similarities as suggested in [15].

We assume that a cluster is relevant to the input text when the nouns corre-

sponding to the objects in the cluster are included in the input text. Thus, we

again use the weighted Jaccard similarity between a cluster and the input text

to determine the priority of all clips in the cluster. Let ci be a representation

of the cluster that includes clip i, each element of which represents whether the

corresponding object appears in the cluster. More specifically, we set ci,n = 1

if any clip in the cluster has xm,n > 0, and ci,n = 0 otherwise. Using this, the

priority value of clip i is computed as

pi(y) = J(ci,y). (3.8)

Content-similarity Term

We quantify the content similarity between the set S of clips and the input text y

using the weighted Jaccard similarity in Eq. (3.7). This computes the similarity

between object labels in selected videos and nouns in the input text as follows:

osim(x,y) = J(ψ(S),y). (3.9)

This similarity indirectly relies on priority through ψ(S). The value increases

when S includes clips with high priority that have objects in common with the

input text.

Content-coverage Term

If content coverage is not considered, some relevant clips can be rejected when

their objects do not appear explicitly in the input text. This can result in a

summary that is entirely composed of clips with similar content. To avoid this,

our method encourages the inclusion of relevant clips that cover diverse content.

Coverage of the original content is a criterion that is widely used in summariza-

tion tasks [89, 95, 86]. Figure 3.3 illustrates the idea of content-coverage in this

study. Insofar as our goal is to generate a summary that reflects the blog au-
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Figure 3.3. Illustration of content restriction for the content-coverage term.

thor’s intentions, we list objects annotated to highly prioritized video clips. The

coverage of the set of objects is rewarded during clip selection.

Let Γ = (γ1, . . . , γN) represent a set of objects in highly prioritized clips,

where γn = 1 if clip xi ∈ X whose pi > ρ has xi,n > 0 and γn = 0 otherwise. We

define the coverage ocov(ψ(S)) using the weighted Jaccard similarity in Eq. (3.7)

to compute similarity between sets of objects in selected clips and prioritized ones

as follows:

ocov(ψ(S)) = J(ψ(S),Γ). (3.10)

This term represents how well S covers the content of highly prioritized clips.

2.3 Clip Selection

The proposed clip selection algorithm obtains a suboptimal subset of clips S∗

in the manner of dynamic programming inspired by [57]. During subset selection,

we iteratively update a video summary by adding a clip with the constraint of the

summary length (Algorithm 1). Let S∗
m,l be a subset of clips, which are selected

such that their total length is limited to l. To obtain S∗
m,l, we evaluate the

objective function in Eq. (3.5) with xm ∪Sm−1,l−lm , where lm is the length of clip

xm. We then update S∗
m,l = xm∪Sm−1,l−lm if the value increases; otherwise S∗

m,l =

Sm−1,l−lm . We store each intermediate result and its corresponding value. To

obtain a video summary, we select the best of the stored subsets and concatenate

its clips in the order of their timestamps.
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Algorithm 1 Clip selection

Require: video clips X = {x1, . . . ,xM}, text y, summary length L

Ensure: S ⊆ X

Si,0 = ∅ ∀i = 1, . . . ,M

for m = 1 to M do

for l = 1 to L do

S ′ = Sm−1,l

S ′′ = Sm−1,l−lm ∪ xm

if O(ψ(S ′), y) > O(ψ(S ′′),y) then

Sm,l = S ′

else

Si,l = S ′′

end if

end for

end for

S∗ = argmaxSm,l
O(ψ(Sm,l),y)

3. Evaluation and Discussion

Assessing the quality of video summaries is a challenging problem itself. Most

previous methods are evaluated based on user studies [37, 53] or by comparing the

resulting summaries with manually created reference summaries [68, 24, 50]. Since

our task (i.e., video summarization for video blogs) is a novel video summarization

task, there is no established way to evaluate the performance of our method.

Therefore, we opt to conduct a user study.

The present user study consists of two parts. First, a participant is asked to

score multiple video summaries for a given blog post regarding their suitability

to the blog post. To investigate our video summaries in detail, we administer

an additional questionnaire regarding other properties, including redundancy,

content coverage, and the relevance of the summary to the input text. Thus,

we evaluate the video summaries from the perspective of the video blog viewers.

The second part of the user study involves collecting blocks of text written by the

participants and generating video summaries using the text. The participants are

22



T1

On a warm day in March, we went to Nara Park. Before getting to Nara Park,

we went to Saho river. There were cherry trees along the river. The river is well

known for cherry blossom, and many people visit during the season of blossom.

I took many videos of other students. One of the students, Nakashima used a

special camera for his study. He took some videos, carrying the camera along

the river. It was a beautiful place and I want to visit there next spring again.

T2

We went to Nara Park. A lot of deer were around the Nandaimon. There were

also a few cracker shops, and many tourists enjoyed feeding deer. I bought

some crackers and deer immediately gathered around me.

T3
Nandaimon is a famous gate in the Nara Park. I saw a statue of Nandaimon.

There were many people.

Figure 3.4. Original texts used in the experiment.

Table 3.1. Input and methods evaluated.

Input Method

(a) Videos Uniform sampling

(b) Videos Cluster-based

(c) Videos and text Proposed method

(d) Videos and text Description-based w/o content coverage

(e) Videos and text Description-based w/o content coverage and preference

asked to score the video summaries based on their text. Consequently, this part

evaluates the video summaries from the perspective of the blog authors.

3.1 Evaluation from the Viewers’ Perspective

Because this is the first attempt to use video summarization for video blogs, we

investigated whether blog viewers believed that the video summaries generated

by our method were suitable for a given blog post. We also evaluated video sum-

maries in terms of several properties, such as redundancy and content coverage,

which are widely used criteria in the domain of video summarization.

To compile a dataset, we recorded multiple videos of a short trip, totaling 80

min. As input text, we used the three blocks of text shown in Figure 3.4, each of

which describes different scenes from the input videos. We compared our method
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Figure 3.5. Keyframes of our video summaries for each input text.

to multiple baseline methods (see Table 3.1). Methods (a) and (b) generate video

summaries without text. Uniform sampling (a) is a simple yet effective way to

produce video summaries, and this method is widely employed as a baseline. We

sampled 2-sec. clips with uniform intervals. The clustering-based method (b)

utilizes the clustering results described in Section 2.2. With this method, clips

are selected from cluster representatives, such that they include as many objects

as possible. We also compared some variants of our method. Method (c) is

our full method. Method (d) is basically our text-based method, but with the

content coverage term ocov excluded (i.e., α = 0). In addition to the exclusion

of the coverage term ocov, method (e) also excludes clip priority by setting the

priority values of all clips to 1. All of these variants used location-based object

importance.

For location-based object importance, the parameters were set to Σ = diag(8w, 8h),

where w and h are the width and the height of the frame, respectively. Other

parameters were heuristically determined as follows: α = 0.25, λ = 5, θ = 3600,

γ = 0.25, ρ = 0.1, and L = 20. Here, θ corresponds to 60 sec., because our input

videos were 60 fps. We generated video summaries using methods (c)–(e) for each

input text. In total, we generated 11 videos. Keyframes of the clips selected with

our full method are shown in Figure 3.5. These resulting summaries show that

our method selects clips from different scenes based on the content of the input
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BLOG

2014/04/02

On a warm day in March, we went to Nara Park.  Before 

getting to Nara Park, we went to Saho river.  There were 

cherry trees along the river.  The river is well known for 

cherry blossom, and many people visit during the season 

of blossom.  I took many videos of other students.  One of 

the students, Nakashima used a special camera for his 

study.  He took some videos, carrying the camera along 

the river.  It was a beautiful place and I want to visit there 

next spring again.

Figure 3.6. An example of a video blog post shown to participants in the user

study.

texts.

We recruited 20 participants from both genders; all participants were in their

20s or 30s. They reviewed a video blog post (see Figure 3.6) and were asked to

score each video in terms of how well the video suited the blog post. The scores

ranged from 1 to 5, where 1 means that the video definitely does not suit the blog

post, and 5 means that it suits the post very well. The participants were divided

into three groups. Group 1 (G1), Group 2 (G2), and Group 3 (G3) had eight,

six, and six people, respectively. The blog post T1 was displayed for subjects in

G1, blog post T2 for G2, and blog post T3 for G3. After reviewing a blog post,

subjects rated baseline video summaries and description-based video summaries.

Subjects also scored video summaries generated using blog posts for other groups.

Table 3.2 shows the scores for each group. For all groups, our full method (c)

was scored as either the first or second best. Variant (d) was also rated highly.

Interestingly, the participants in G1 chose clustering-based video summary (b)

as most suitable for text T1. In fact, the clustering-based method (b) only acci-

dentally included many clips relevant to T1, which contributed to the high score.

Furthermore, we found that only the summary generated by the clustering-based

method (b) included scenes just before the events described in T1. Although the

inclusion of such clips was not part of the design of the clustering-based method,

such clips can lead to a better comprehension of the events by providing context.
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Table 3.2. Average scores regarding suitability to a video blog post. Bold values

indicate the highest scores for each group.

method Input text
Group

G1 G2 G3

(a) Uniform sampling None 3.38 1.67 2.67

(b) Cluster-based None 4.38 1.83 2.00

(c) Proposed method

T1 3.38 1.00 1.83

T2 2.25 4.33 2.67

T3 1.38 1.67 3.67

(d) Description-based
w/o content coverage

T1 3.25 1.00 1.83

T2 2.13 4.17 2.67

T3 1.13 2.17 4.00

(e) Description-based
w/o content coverage and preference

T1 2.25 3.00 2.50

T2 2.00 3.17 3.00

T3 2.13 2.67 3.17

The effect of such connecting video clips on video summaries is discussed in [53].

The results from comparing the scores among variants of our methods (c)–(e)

imply that the content coverage term ocov did not significantly affect the score.

On the other hand, the use of clip priority resulted in a significant improvement

in the suitability for the video blog. From these results, we conclude that the

participants generally preferred our method over other methods. These results

also suggest that the inclusion of clips that introduce scenes of interest can further

improve the suitability for a blog post. The participants were also asked to score

videos in terms of the following three aspects, to investigate the perception of our

video summary compared to that of the baselines.

Q1 How well the video matches the input text (relevance to the input text).

Q2 How redundant the video is.

Q3 How well the summarized video covers the content of the entire video.

The scores ranged from 1 to 5. For Q1, a score of 1 means that the video does not

represent the text at all, whereas 5 means that it represents the text very well. For
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Table 3.3. Average scores of similarity to the input text (Q1). Bold values are

the highest scores for each input text.

Baselines Our method

(a) (b) (c) (d) (e)

Text None T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 3.45 3.65 3.90 1.60 1.30 3.8 1.65 1.15 2.75 1.55 1.65

T2 1.70 1.85 1.10 4.50 1.75 1.20 4.45 1.70 2.35 3.70 3.40

T3 1.35 1.20 1.10 1.65 4.70 1.10 1.30 4.75 1.55 2.80 3.10

Figure 3.7. Averages and standard deviations of the scores for Q2.

Q2, scores 1 and 5 mean “significantly redundant” and “hardly redundant,” re-

spectively. For Q3, score 1 means significant content is missing, whereas 5 means

that most content is covered. The relevance to the input text is an important

property for video summarization designed for video blogs. Because redundancy

and content coverage is widely used in evaluations of video summaries, we also

investigated these properties.

Table 3.3, Figure 3.7, and Figure 3.8 show the results for Q1, Q2, and Q3,

respectively. Regarding Q1 (Table 3.3), our summaries received the highest scores

in terms of their relevance to the input text.

This means that our method was able to select clips appropriate to the input

text. On the other hand, in terms of redundancy (Q2) and content coverage (Q3),

our method received lower scores than uniform sampling (a) and the clustering-

based method (b). Because our video summaries have multiple clips relevant to
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Figure 3.8. Averages and standard deviations of the scores for Q3.

the input texts, the clips can have similar content. This resulted in lower scores

for Q2. The score for Q3 was also expected because our method restricts those

clips that are included in the summary based on the input text. Although our

method was not rated highly for Q2 (redundancy) and Q3 (content coverage), the

participants preferred our video summaries for the video blog posts, according to

Table 3.2. This indicates that, for blog viewers, the relevance to the input text

is more important for video blogs than redundancy or content coverage.

3.2 Evaluation from the Blog Author’s Perspective

We also collected texts written by 12 participants, all male and all in their 20s.

We asked them to score the video summaries that were generated based on their

texts. The participants reviewed all unedited videos in our dataset and wrote a

short description of what interested them. By comparing participants’responses,

we investigated how their intention was reflected in the video summaries.

The video dataset was the same as that of the previous section. In this evalua-

tion, we compared four methods. Two were the same as the baselines (a) and (b)

in the previous section. The other two methods were our proposed method, with

location-based object importance and saliency-based object importance. The

parameter ρ was set to the minimum of the priority for the top-90% of the clips.

For the first question, participants were asked to rate whether they would

want to use the video summary generated by each method for their video blog

post (Q4). Scores 1 and 5 indicate “strongly disagree” and “strongly agree,”
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Table 3.4. Averages and standard deviations of scores for Q4.

Our Methods Baseline Methods

Location-based (c) Saliency-based Uniform (a) Clustering-based (b)

Avg. 2.92 3.50 3.50 3.33

Std. 1.31 0.80 1.31 1.44

Clustering-based

Neither agree nor disagreeAgree

Strongly disagreeDisagree

Strongly agree

UniformSaliency-basedLocation-based

Figure 3.9. Answers for Q4.

respectively. Table 3.4 shows the average and the standard deviation of the

scores. Whereas our method with saliency-based object importance and uniform

sampling received the same average score, the standard deviation of our method

was smaller. Figure 3.9 shows details of the results. This reveals that uniform

sampling received both positive and negative responses, whereas only a few par-

ticipants negatively rated our method with saliency-based object importance.

To identify the factors that affect these scores, we asked the participants to

answer an additional questionnaire regarding their assessment of the following

properties of video summaries:

• Relevance to the text in the blog post

• Inclusion of more scenes than the text

• Aesthetic quality (composition, camera motion, etc.).

The participants were asked whether these respective properties were important.
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Relevance to the text Inclusion of more scenes Being aesthetically good

Neither important nor unimportantVery important

Not at all importantVery unimportant

Extremely important

Figure 3.10. Answers regarding the importance of video-summary properties.

Figure 3.10 shows the results. The results show that many participants thought

that the relevance to the blog post and the aesthetic quality were important for

video summaries. We believe that this is the main reason why the participants

preferred saliency-based object importance to location-based object importance.

3.3 Limitation

We proposed an object-based representation to connect paragraph and a set of

videos. Since this approach represents videos and sentences by a pre-defined

set of objects, our representation fail to capture unseen concepts. Therefore,

our video summarization method may be not able to retrieve videos with rare

concepts. It should be noted that our method is designed for personal videos

that include several scenes or events. Thus this method may not be very effective

for some videos, such as sports videos, whose object-based representation hardly

change within videos. For example, a video capturing boxing match will show

two people and a boxing ring throughout videos, and object-based representation

will be hardly distinctive.
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4. Summary

We proposed object-based cross-modal representations for videos and text and

introduced the semantic similarity using the representations. We demonstrated a

text-based video summarization method for video blog authoring as an applica-

tion of our representation. The proposed video summarization method segments

input videos and clusters clips, such that each cluster corresponds to an event.

We further proposed clustering-based priority to indicate how relevant the clip

is to the input text. We observed that this text-focused priority improves the

suitability of video summaries to the input texts. The proposed method selects

clips by maximizing the content similarity between the input text and a resulting

video summary. The experimental results demonstrate the effectiveness of our

method. Moreover, we examined the preferred properties of video summaries for

video blogs, and the results show that the relevance to a blog post is considered

paramount. The results also suggest that considering the aesthetic quality in

addition to relevance to a blog post can further improve video summaries.

Although our method currently utilizes manually annotated object labels,

various object-labeling methods have been proposed recently [80, 85, 26]. These

methods can be adopted by our object-based representation. Also, our video

summarization method can be extended by including clips that introduce and

provide context for the scene of interest, and it can be improved by considering

the aesthetic quality of the summary.
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Chapter 4

Learning Semantic

Representations by Linking

Videos and Sentences

1. Overview

This chapter describes a representation learning method to associate videos and

sentences. Different from the object-based representations described in Chapter

3, we address to incorporate various concepts including actions, scenes and at-

tributes to compute cross-modal representations. Specifically, we construct deep

models that convert a video clip and a sentence to vector representations in a com-

mon embedding space, where their semantic similarity correlates to their negative

distance.

Our method is inspired by previous works by Xu et al. [108] and Kiros et

al. [39]. Xu et al. propose a deep model that embeds video clips and a sentence

into a common embedding space. While their work picks out the only subject,

object, and verb words to represent the semantics of a sentence, we consider

all words in a sentence to compute sentence embeddings. Kiros et al. demon-

strate content-based image and sentence retrieval by mapping them to a common

embedding space. We follow their training scheme to train video and sentence

embedding models jointly.

Our cross-modal representations are validated on the task of video summariza-
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tion and content-based video retrieval. In the first experiment, we investigate how

our representations, which are trained to capture sentence-level semantics, affect

the performance of video summarization. We develop a clustering-based video

summarization method, which is a basic unsupervised approach for video sum-

marization, and compare its performance with different video representations.

Secondly, we demonstrate content-based video and sentence retrieval between

video clips and sentences using our cross-modal representations. Our embedding

models are further extended with web image search to disambiguate the semantics

of sentences, which can be helpful for content-based video and sentence retrieval

applications.

2. Cross-modal Representation Learning for Videos

and Sentences

We propose a neural network-based embedding model to extract cross-modal rep-

resentations for videos and sentences. Our embedding model consists of two sub-

networks, each of which encodes videos and sentences, respectively (Figure 4.1).

Moreover, we also propose to enhance sentence embedding by exploiting web

images.

2.1 Video Embedding

We extract frames from a video at 1 fps as in [108] and feed them to a CNN-based

video embedding model. Many recent works on modeling video frames employ

different frame rate. For example, Yu et al.’s work sample one per ten frames

(2.4 fps) to encode movie videos [113], and Na et al. employ 6 fps for a video

question answering model [61]. We believe the effects of different frame rate is

not significant since the details of motions are seldom important for capturing

sentence-level semantics.

In our approach, we employ two CNN architectures: 19-layer VGG [80] and

GoogLeNet [85], both of which are pre-trained on ImageNet [75]. We replace

the classifier layer in each model with two fully-connected layers. Specifically, we

compute activations of the VGG’s fc7 layer or the GoogLeNet’s inception 5b
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Contrastive loss

RNN

‘singing’ ‘is’‘girl’‘A’

Fully-connect

Nonlinearity

Fully-connect

Nonlinearity

Video sub-network

CNN

Mean pooling

Fully-connect

Nonlinearity

Fully-connect

Nonlinearity

Sentence sub-network

Figure 4.1. The network architecture. Video clips and sentences are encoded into

vectors in the same size. Both sub-networks for videos and sentences are trained

jointly by minimizing the contrastive loss.

layer and feed them to additional fully-connected layers.

Let V = {v1, . . . vN} be a set of frames vi, where vn ∈ Rdv is a visual feature

extracted from n-th frame (dv=4,096 for VGG, and dv=1,024 for GoogLeNet).

The video embedding x ∈ Rde is computed by:

x = mean
v∈V

[tanh(Wv2 tanh(Wv1v + bv1) + bv2)]. (4.1)

Here, Wv1 ∈ Rdh×dv , bv1 ∈ Rdh , Wv2 ∈ Rde×dh , and bv2 ∈ Rde are the learnable
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parameters of the fully-connected layers. mean[·] denotes a mean pooling, which

take the average of input vectors.

2.2 Sentence Embedding

For the sentence sub-network, we use skip-thought vector model by Kiros et

al. [39], which encodes a sentence into 4800-dimensional vectors with an RNN.

Similarly to the video sub-network, we introduce two fully-connected layers with

hyperbolic tangent nonlinearity (but without a mean pooling layer) as in Fig-

ure 4.1 to calculate a sentence representation. We encode sentences into vector

representations using skip-thought that is an RNN pre-trained with a large-scale

book corpus [39]. Let T = {w1 . . . wM} be the input sentence, where wt ∈ Rdw is

a word vector of the t-th word in the sentence. Skip-thought takes a sequence of

word vectors as in [39] and produces hidden state ht ∈ Rds at each time step t as:

jt = σ(Wrwt + Urwt−1), (4.2)

it = σ(Wiwt + Uiht−1), (4.3)

at = tanh(Wawt + Ua(jt 	 ht−1)), (4.4)

ht = (1 − it) 	 ht−1 + it 	 at, (4.5)

where σ is the sigmoid activation function, and 	 is the component-wise product.

The parameters Wr,Wi,Wa, Ur, Ui, and Ua are ds × dw matrices. Sentence Y is

encoded into the hidden state after processing the last word. We use combine-

skip in [39], which is a concatenation of outputs from two separate RNNs trained

with different datasets. We denote the output of combine-skip from sentence T

by tcs ∈ Rdc , where dc=4,800.

We then transform the skip-thought vectors sY into a sentence embedding y

with two fully-connected layers as:

y = tanh(Ws2 tanh(Ws1tcs + bs1) + bs2), (4.6)

where Ws1 ∈ Rdh×dc , bs1 ∈ Rdh , Ws2 ∈ Rde×dh , and bs2 ∈ Rde are the learnable

parameters of sentence embedding.
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Web images

Video
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Pooling}

Sentence

Fully-connected LayersCNN for Videos

CNN for Web Images

RNN for Sentences

RNN RNN RNN RNN RNN RNN

Figure 4.2. Illustration of our video and sentence embedding with web images.

The orange component is the sentence embedding model that takes a sentence

and corresponding web images as input. Video embedding model is denoted by

the blue component.

2.3 Sentence Embedding with Web Images

In addition to the sentence embedding model, we propose to extend the sentence

embedding with web images. To enhance the sentence embedding, we retrieve

relevant web images that are expected to disambiguate semantics of the sentence.

For example, the word “keyboard” can be interpreted as a musical instrument or

an input device for computers. If the word comes with “play,” the meaning of

“keyboard” narrows down to a musical instrument. This means that a specific

combination of words can reduce the possible visual concepts relevant to the

sentence, which may not be fully encoded even with the state-of-the-art RNN-

based approach like [39].

We propose to take this into account by using web image search results. Since

most image search engines use surrounding text to retrieve images, we can expect

that they are responsive to such word combinations. Consequently, we retrieve

web images using the input sentence as a query and download the results. The

web images are fused with the input sentence by applying a two-branch neural

network as shown in Figure 4.2.
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This sentence embedding model consists of two branches that merge the out-

puts of a CNN-based network for web images and an RNN-based network for a

sentence described in Section 2.2. Before computing the sentence embedding, we

download top-K results of web image search with the input sentence as a query.

Let Z = {z1 . . . zK} be a set of web images. We utilize the same architecture as

the video embedding and compute an intermediate representation ez ∈ Rde that

integrates the web images as:

ez = mean
z∈Z

[tanh(Wz2 tanh(Wz1z + bz1) + bz2)], (4.7)

where Wz1 ∈ Rdh×dv , bz1 ∈ Rdh , Wz2 ∈ Rde×dh , and bz2 ∈ Rde are the leanable

parameters of the two fully-connected layers.

Once the outputs ez are computed, the sentence embedding using web images

yz is computed as:

yz =
1

2
(y + ez). (4.8)

By this simple mixture of y and ez, the sentence and web images directly influence

the sentence embedding.

2.4 Joint Learning of Embedding Models

We jointly train both embedding models for videos and sentences using pairs of

videos and associated sentences in a training set by minimizing the contrastive

loss [7]. In our approach, the contrastive loss decreases when embeddings of videos

and sentences with similar semantics get closer to each other in the embedding

space, and those with dissimilar semantics get farther apart.

The training process requires a set of positive and negative video-sentence

pairs. A positive pair contains a video and a sentence that are semantically

relevant, and a negative pair contains irrelevant ones. During training, we get

a positive pair by sampling a video and its description. Let {(xn, yn) | n =

1, . . . , N} be the set of positive pairs. Given a positive pair (xn, yn), we sample

irrelevant sentences and compute their embeddings Y ′ = {y′1 . . . y′Nc
}, as well as,

videos X ′ = {x′
1 . . . x

′
Nc
} from the training set, which are used to build two sets of

negative pairs {(xn, y
′) | y′ ∈ Y ′} and {(x′, yn) | x′ ∈ X ′}. Our embedding models

for sentences and videos are jointly optimized by minimizing the contrastive loss
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Figure 4.3. Histograms of pairwise distances before training (left) and after train-

ing (right). Top row: Histograms of the training set. Bottom row: Histograms

of the test set. Red represents positive pairs and green does negative pairs.

defined as:

Loss(xn, xn) =
1

1 + 2Nc

{
d(xn, yn)

+
∑
y′∈Y ′

max(0, α− d(xn, y
′)) +

∑
x′∈X ′

max(0, α− d(x′, yn))

}
, (4.9)

where d(·, ·) denotes euclidean distance between embeddings. The hyperparam-

eter α is a margin. Negative pairs with smaller distances than α are penalized.

Margin α is set to the largest distance of positive pairs before training so that

most negative pairs influence the model parameters at the beginning of training.

Figure 4.3 shows the histograms of distances of positive and negative pairs be-

fore and after training. The initial distance distributions of positive and negative

pairs overlap. After training, the distributions are pulled apart. This indicates

that the training process encourages videos and sentences in positive pairs to be

mapped to closer points and those in negative ones to farther points.

Figure 4.4 shows a 2D plot of learned deep representations, in which the

dimensionality of the semantic space is reduced using t-SNE [98] and a keyframe

of each video clip is placed at the corresponding position, visualizing learned

representations of video clips. This plot demonstrates that our embedding model

for videos successfully locates semantically relevant videos at closer points. For
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Figure 4.4. Two-dimensional deep representation embedding with keyframes of

corresponding videos, where the representation dimensionality is reduced with

t-SNE. The videos located on each colored ellipsis show similar content, e.g., cars

and driving people (blue), sports (green), talking people (orange), and cooking

(pink).

example, the group of videos around the upper left area (pink) contains cooking

videos, and another group on the lower left (green) shows various sports videos.

We also show the examples of positive and negative pairs with corresponding

distances in Figure 4.5. Note that these distances are computed with the model

that involves web images for sentence embedding. The positive pairs (a) and (b)

are easy cases, in which sentences explicitly describe the video contents. The pair

(c) is an example of hard cases. The sentence includes “a man” and “phone”,

but the video shows two men, and a phone is occluded by a hand.

The pairs (d) and (e) are hard negative cases. The pair (d) shows partial

matches of contents, such as the action “mixing” and the object “yolk.” Another

negative pair (e) has a video and a sentence about cooking, although there is

disagreement about details. As shown in these examples, the closer a video and
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(d) A woman is mixing a yolk 
into a dough mixture. 

(e) A person puts some 
ground beef in a pan. 

(f) A woman is slicing a carrot. 

(c) A man is talking on a phone. (b) A man is playing guitar. (a) A hamster is eating seeds. 

(4.52)
(7.26)

(12.78)

(15.69)(8.50)
(6.54)

Figure 4.5. Examples of positive (a)–(c) and negative (d)–(f) pairs in the test set

with corresponding distances. The values (·) are distances of the pairs. The plot

shows the histograms of distances of positive (red) and negative (green) pairs.

a sentence are located in the embedding space, the more relevant they are.

3. Experiments

In the following experiments, we evaluate our cross-domain representations on

several tasks: video summarization, content-based video retrieval, and video cap-

tioning.

3.1 Video Summarization

In this experiment, we investigate how well our cross-modal representations per-

form on the task of video summarization. Summarizing real-world videos re-

quires encoding various visual concepts. There are several deep representations
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 Semantic Features Summary

Feature extractionInput Clip extraction

Video Clips CNN for Video Clips

Figure 4.6. Video summarization using deep semantic representations. We ex-

tract uniform length video clips from an input video. The clips are fed to a CNN

for visual feature extraction and then mapped to points in a semantic space.

We finally generate a video summary by sampling video clips that correspond to

cluster centers in the semantic space.

using convolutional neural networks (CNNs) [111, 10], which are employed in

many recognition tasks including object recognition [10], and video summariza-

tion [25]. These deep representations are trained for specific classification tasks,

which predict class labels of a particular domain, such as objects and actions.

Being different from these deep representations, our cross-modal representations

are trained to encode combinations of diverse visual concepts to handle a wide

range of video contents. We expect our cross-modal representation well captures

sentence-level semantics. In this experiment, we perform video summarization

that tries to extract semantically representative video clips using our cross-modal

representation.

We evaluated and compared video summaries generated using our cross-modal

representations with some baselines. We used the SumMe dataset [24] consisting

of 25 videos for evaluation. As the videos in this dataset are either unedited or

slightly edited, unimportant or redundant parts are left in the videos. The dataset

includes videos with various contents. It also provides manually created video

summaries for each video, with which we compare our summaries. We compute

the pairwise f-measure that evaluates agreement to reference video summaries
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Figure 4.7. A two-dimensional plot of our deep representations calculated from

a video, where we reduce the deep representations’ dimensionality with t-SNE

[98]. Some deep representations are represented by the corresponding video clips’

keyframes, and the edges connecting deep representations represent temporal

adjacency of video clips. The colors of deep representations indicate clusters

obtained by k-means algorithm, i.e., points with the same color belong to the

same cluster.

using the code provided in [24]. The pairwise f-measure is defined by:

F1 = 2
PRE ∗REC

PRE + REC
, (4.10)

where PRE and REC are precision and recall of selected frames to human selec-

tion. In this experiment, we do not use any metadata such as textual scripts as

in Chapter 3. Therefore, we use only video representations that are learned from

video-sentence pairs.

Figure 4.6 shows an overview of video summarization using learned represen-

tations. We first extract uniform length video clips from the input video in a

temporal sliding window manner and compute their cross-modal representations

with our video embedding model. Inspired by [9], we represent the input video

as a set of representations, each of which corresponds to a video clip, as shown in

Figure 4.7. This representation can capture the semantic distribution of the input
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video. In Figure 4.7, some clusters can be observed, each of which is expected to

contain semantically similar video clips. Based on this assumption, our approach

picks out a subset of video clips which correspond to cluster centers.

Generating Video Summary

In this experiment, we generate a video summary given an input video by solving

the k-medoids problem [25]. In the k-medoids problem, we find a subset K video

clips, which are cluster centers that minimize the sum of the Euclidean distance

of all video clips to their nearest cluster centers and K is a given parameter to

determine the length of the video summary. Letting X = {x1, . . . , xL} be a set

of cross-modal representations extracted from all video clips in the input video,

k-medoids finds a subset S ⊂ X, that minimizes the objective function defined

as:

F (S) =
∑
x∈X

min
s∈S

‖x− s‖22. (4.11)

The optimal subset

S∗ = argmin
S

F (S) (4.12)

includes the most representative clips in clusters. As shown in Figure 4.4, our

video sub-network maps clips with similar semantics to closer points in the se-

mantic space; therefore we can expect that the clips in a cluster have semantically

similar content and subset S∗ consequently includes most representative and di-

verse video clips. The clips in S∗ are concatenated in the temporal order to

generate a video summary.

Implementation Detail

Deep representation computation. We uniformly extract 5-second video

clips in a temporal sliding window manner, where the window is shifted by 1

second. Each video clip is re-sampled at 1 frame per second. In this experiment,

we use VGG fc7 layer to extract visual features from frames. We set the unit size

of the two fully connected layers to dv = 1000 and de = 300, respectively. This

means that our cross-modal representation is a 300-dimensional vector. For the

sentence embedding model, the fully-connected layers on the top of the RNN have
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the same sizes as the video sub-networks. During the training, we fix the network

parameters of VGG and skip-thought, but those of the top two fully-connected

layers for both video and sentence embedding models are updated. We set Nc

to 20 during training. Our DNN was trained over the MSR-VTT dataset [106],

which consists of 1M video clips annotated with 20 descriptions for each. We

used Adam [38] to optimize the network parameters with the learning rate of 2−4

and trained for 4 epochs. We implemented our model using Chainer [90].

Video summarization generation. Given an input video, we sampled 5-

second video clips in the same way as the training of our DNN and extracted a

deep representation from each clip. We then minimize the objective function in

Eq. (4.11) with cost-effective lazy forward selection [24, 48]. We set the summary

length to be roughly 15% of the input video’s length following [24].

Baselines

We compared our video summaries with the following several baselines as well as

recent video summarization approaches:

1. Manually-created video summaries are a powerful baseline that may be

viewed as the upper bound for automatic approaches. The SumMe dataset

provides at least 15 manually-created video summaries whose length is 15%

of the original video. We computed the average f-measure of each manually-

created video summary with letting each of the rest manually-created video

summaries as ground truth (i.e., if there are 20 manually-created video sum-

maries, we compute 19 f-measures for each summary in a pairwise manner

and calculate their average). We denote the summary with the highest f-

measure among all manually-created video summaries by the best-human

video summary.

2. Uniform sampling (Uni.) is widely used as a baseline for video summa-

rization evaluation. We segment an input video into 5-second video clips

and sample them with a uniform interval so that the durations of sampled

video clips total 15% of the original length.
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3. VGG-based video summary. We also compare to video summaries gener-

ated in the same approach as ours except that VGG’s fc7 activations were

used instead of our deep representations.

4. Attention-based video summary (Attn.) is a recently proposed video

summarization approach using visual attention [11].

5. Interestingness-based video summary (Intr.) refers to a supervised ap-

proach [24], where the weights of multiple objectives are optimized using

the SumMe dataset.

Results

Several examples of video summaries generated with our approach are shown

in Figure 4.8, along with the ratio of annotators who agreed to include each

video clip in their manually-created video summary. The peaks of the blue lines

indicate that the corresponding video clips were frequently selected to create

a video summary. These blue lines demonstrate that human annotators were

consistent to some extent. Also, we observe that the video clips selected by our

approach (green areas) are correlated to the blue lines. This suggests that our

approach is consistent with the selection of human annotators.

The results of the quantitative evaluation are summarized in Table 4.1. In

this table, we report the minimum, average, and maximum f-measure scores of

manually-created video summaries. Compared with VGG-based summaries, ours

significantly improved the scores. Our video summaries achieved 58.8% of the

average score of manually-created video summaries, while VGG-based got 40.8%.

This result demonstrates the advantage of our deep representations for creating

video summaries.

One of the recent video summarization approaches, i.e., interestingness-based

one [24], got the highest score in this experiment. Note that the interestingness-

based approach [24] uses a supervised technique, in which the mixture weights of

various criteria in their objective function are optimized over the SumMe dataset.

Our video summaries were generated using a relatively simple algorithm to extract

a subset of clips; nevertheless, ours outperformed the interestingness-based for

some videos and even got a better mean f-measure score than attention-based.
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Car Railcrossing

Paluma Jump

Valparaiso Downhill

Figure 4.8. Clips selected by our approach. Keyframes of selected clips are

displayed. The green areas in the graphs indicate selected clips. The blue lines

represents the ratio of annotators who selected the clip for their manually-created

summary.

Our approach got low scores, especially for short videos, such as “Jumps” and

“Fire Domino.” Since we extract uniform length clips (5 seconds), in the case of

short videos, our approach only extracts a few clips. This may result in a lower

f-measure score. This limitation can be solved by extracting shorter video clips

or using more sophisticated video segmentation like [76, 24].

We also observed that our approach got lower scores than others on the “St

Maarten Landing” and “Notre Dame,” which are challenging because of long

unimportant parts and diversity of content, respectively. For “St Maarten Land-
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Table 4.1. F-measures of manually-created video summaries and computational

approaches (our approach and baselines, higher is better). Since there are multi-

ple manually-created video summaries for each original video and thus multiple

f-measures, we show their minimum, mean, and maximum. The best score among

the computational approaches are highlighted.

Manually

created
Computational approaches

Video Min. Avg. Max. Uni. VGG Attn. Intr. Ours

Air Force One 0.185 0.332 0.457 0.060 0.239 0.215 0.318 0.316

Base Jumping 0.113 0.257 0.396 0.247 0.062 0.194 0.121 0.077

Bearpark Climbing 0.129 0.208 0.267 0.225 0.134 0.227 0.118 0.178

Bike Polo 0.190 0.322 0.436 0.190 0.069 0.076 0.356 0.235

Bus in Rock Tunnel 0.126 0.198 0.270 0.114 0.120 0.112 0.135 0.151

Car Railcrossing 0.245 0.357 0.454 0.185 0.139 0.064 0.362 0.328

Cockpit Landing 0.110 0.279 0.366 0.103 0.190 0.116 0.172 0.165

Cooking 0.273 0.379 0.496 0.076 0.285 0.118 0.321 0.329

Eiffel Tower 0.233 0.312 0.426 0.142 0.008 0.136 0.295 0.174

Excavators River Crossing 0.108 0.303 0.397 0.107 0.030 0.041 0.189 0.134

Fire Domino 0.170 0.394 0.517 0.103 0.124 0.252 0.130 0.022

Jumps 0.214 0.483 0.569 0.054 0.000 0.243 0.427 0.015

Kids Playing in Leaves 0.141 0.289 0.416 0.051 0.243 0.084 0.089 0.278

Notre Dame 0.179 0.231 0.287 0.156 0.136 0.138 0.235 0.093

Paintball 0.145 0.399 0.503 0.071 0.270 0.281 0.320 0.274

Playing on Water Slide 0.139 0.195 0.284 0.075 0.092 0.124 0.200 0.183

Saving Dolphines 0.095 0.188 0.242 0.146 0.103 0.154 0.145 0.121

Scuba 0.109 0.217 0.302 0.070 0.160 0.200 0.184 0.154

St Maarten Landing 0.365 0.496 0.606 0.152 0.153 0.419 0.313 0.015

Statue of Liberty 0.096 0.184 0.280 0.184 0.098 0.083 0.192 0.143

Uncut Evening Flight 0.206 0.350 0.421 0.074 0.168 0.299 0.271 0.168

Valparaiso Downhill 0.148 0.272 0.400 0.083 0.110 0.231 0.242 0.258

Car over Camera 0.214 0.346 0.418 0.245 0.048 0.201 0.372 0.132

Paluma Jump 0.346 0.509 0.642 0.058 0.056 0.028 0.181 0.428

playing ball 0.190 0.271 0.364 0.123 0.127 0.140 0.174 0.194

Mean f-measure 0.179 0.311 0.409 0.124 0.127 0.167 0.234 0.183

Relative to human avg. 0.576 1.000 1.315 0.398 0.408 0.537 0.752 0.588

Relative to human max. 0.438 0.760 1.000 0.303 0.310 0.408 0.572 0.447

ing,” as our approach is unsupervised, it failed to exclude unimportant clips. For

“Notre Dame,” generating a summary is difficult because there are too many pos-
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Figure 4.9. Uniformly sampled frames of summaries by different approaches.

“Human” means the best-human video summary.

sible clips to be included in a summary. While our summary shares small parts

with manually created summaries, it is a challenging example even for human an-

notators, which is shown in the low scores of manually-created video summaries.
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Figure 4.9 shows examples of video summaries created with our approach and

baselines. The video “Cooking” shows a person cooking some vegetables while

doing a performance. Ours and the best-human video summary include the same

scene of the performance with fire, while others do not. On the other hand, ours

extracts unimportant clips from the video “Car over Camera.” The original video

is highly redundant with static scenes just showing the ground or the sky, and such

scenes make up large clusters in the semantic space even if they are unimportant.

As our approach extracts representatives from each cluster, a video with lengthy

unimportant parts results in a poor video summary. We believe that this problem

can be avoided by using visual cues such as interestingness [23] and objectiveness

[3].

3.2 Content-based Video and Sentence Retrieval

Implementation Detail

With 19-layer VGG, the hidden layer size dh of embedding models was set to 1,000

and the dimension of the embedding space de was set to 300. We set Nc = 50 in

this experiment. For model using GoogLeNet, we used dh = 600 and de = 300.

We implemented our model using Chainer [90]. We used Adam [38] for op-

timization with a learning rate of 10−4. The parameters of the CNNs and skip-

thought were fixed. We applied dropout with a ratio of 0.5 to the top two layers

of video and sentence embedding models. Our models were trained for 15 epochs,

and their parameters were saved at every 100 updates. We took the model pa-

rameters whose performance was the best on the validation set.

Experimental Setup

Dataset: We used the YouTube dataset [5] consisting of 80K English descrip-

tions for 1,970 videos. We first divided the dataset into 1,200, 100, and 670 videos

for training, validation, and test, respectively, as in [111, 108, 22]. Then, we ex-

tracted five-second clips from each original video in a sliding-window manner. As

a result, we obtained 8,001, 628, and 4,499 clips for the training, validation, and

test sets, respectively. For each clip, we picked five ground truth descriptions out

of those associated with its original video.
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We collected top-5 image search results for each sentence using the Bing image

search engine. We used a sentence modified by lowercasing and punctuation

removal as a query. In order to eliminate cartoons and clip art, the image type

was limited to photos using Bing API.

Video Retrieval: Given a video and a query sentence, we extracted five-second

video clips from the video and computed Euclidean distances from the query to

the clips. We used their median as the distance of the original video and the query.

We ranked the videos based on the distance to each query and recorded the rank

of the ground truth video. Since the test set has 670 videos, the probability of

bringing the ground truth video at top-1 by random ranking is about 0.15%.

Sentence Retrieval: For the sentence retrieval task, we ranked sentences for

each query video. We computed the distances between a sentence and a query

video in the same way as the video retrieval task. Note that each video has five

ground truth sentences; thus, we recorded the highest rank among them. The

test set has 3,500 sentences.

Evaluation Metrics: We report recall rates at top-1, -5, and -10, the average

and median rank, which are standard metrics employed in the retrieval evaluation.

We found that some videos in the dataset had sentences whose semantics were

almost the same (e.g., “A group of women is dancing” and “Women are dancing”).

For the video that is annotated with one of such sentences, the other sentence

is treated as incorrect with the recall rates, which does not agree with human

judges. Therefore, we employed additional evaluation metrics widely used in the

description generation task, i.e., CIDEr, BLUE@4, and METEOR [6]. They

compute agreement scores in different ways using a retrieved sentence and a set

of ground truth ones associated with a query video. Thus, these metrics give

high scores for semantically relevant sentences even if they are not annotated to

a query video. We computed the scores of the top-ranked sentence for each video

using the evaluation script provided in the Microsoft COCO Evaluation Server

[6]. In our experiments, all ground truth descriptions for each original video are

used to compute these scores.
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Table 4.2. Video and sentence retrieval results. R@K is recall at top K results

(higher values are better). aR and mR are the average and median of rank (lower

values are better). Bold values denote best scores of each metric.
Video retrieval Sentence retrieval

Models R@1 R@5 R@10 aR mR R@1 R@5 R@10 aR mR

Random Ranking 0.15 0.79 1.48 335.92 333 0.22 0.69 1.32 561.32 439

VGG+VS 6.12 21.88 33.22 58.98 24 7.01 18.66 27.16 131.33 35

VGG+VI 4.03 13.70 21.40 94.62 48 5.67 17.91 28.21 116.86 38

VGG+ALL1 6.48 20.15 30.51 59.53 26 10.60 25.22 36.42 85.90 21

VGG+ALL2 5.97 21.31 32.54 56.01 24 8.66 22.84 33.13 100.14 29

GoogLeNet+VS 7.49 22.84 33.10 54.14 22 8.51 21.34 30.45 114.66 33

GoogLeNet+VI 4.24 16.42 24.96 84.48 41 6.87 17.31 30.00 96.78 30

GoogLeNet+ALL1 5.52 18.93 28.90 60.38 28 9.85 27.01 38.36 75.23 19

GoogLeNet+ALL2 7.67 23.40 34.99 49.08 21 9.85 24.18 33.73 85.16 22

ST [39] 2.63 11.55 19.34 106.00 51 2.99 10.90 17.46 241.00 77

DVCT [108] - - - 224.10 - - - - 236.27 -

Table 4.3. Evaluated scores of retrieved sentences. All values are reported in

percentage (%). Higher scores are better.

Models CIDEr BLEU METEOR

VGG+VS 30.44 27.16 25.74

VGG+VI 29.00 22.42 22.99

VGG+ALL1 42.52 30.81 27.77

VGG+ALL2 32.56 27.39 26.58

GoogLeNet+VS 33.82 26.97 25.99

GoogLeNet+VI 35.08 24.56 24.16

GoogLeNet+ALL1 43.52 29.99 27.48

GoogLeNet+ALL2 38.08 29.28 26.50

Effects of Each Component of Our Approach

In order to investigate the influence of each component of our approach, we tested

some variations of our full model. The scores of the models on the video and

sentence retrieval tasks are shown in Table 4.2. Our full model that computes

sentence embedding using web images is denoted by ALL2. ALL1 is a variation

of ALL2 that computes embeddings with one fully-connected layer with the unit

size of de. Comparison between ALL1 and ALL2 indicates that the number of
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fully-connected layers in embedding is not essential.

Our model which does not use web images to compute sentence embeddings

is denoted by VS. The comparison between our full model ALL and VS reveals

the contributions of web images. VGG+ALL2 had better average rank (aR)

than VGG+VS on both video and sentence retrieval, and comparison between

GoogLeNet+ALL2 and GoogLeNet+VS also shows a clear advantage of incorpo-

rating web images.

We also tested a model without sentences, which is denoted by VI. In VI, the

sentence embeddings are computed only from web images, i.e., ez. We investi-

gated the effect of using both sentences and web images by comparing VI to our

full model ALL2. The results show that sentences are necessary. The compari-

son between VI and VS also indicates that sentences provide main cues for the

retrieval task.

The scores of retrieved sentences computed by CIDEr, BLEU@4, and ME-

TEOR are shown in Table 4.3. In all metrics, our full model using both sentences

and web images (ALL1 and ALL2) outperformed to other models (VS and VI). In

summary, contributions by sentences and web images were non-trivial, and the

best performance was achieved by using both of them.

Some examples of retrieved videos by GoogLeNet+VS, GoogLeNet+VI, and

GoogLeNet+ALL2 are shown in Figure 4.10. These results suggest that web im-

ages reduced the ambiguity of queries’ semantics by providing hints on their visual

concepts. For example, with the sentence (1) “A man is playing a keyboard,”

retrieval results of GoogleNet+VS includes two videos of a keyboard on a laptop

as well as one on a musical instrument. On the other hand, all top-3 results by

GoogleNet+ALL2 are about musical instruments. We observed that web images

retrieved by the query (1) included several images of musical instruments, which

looked to be helpful to clarify the semantics of the query. We see web images

often affected the retrieval results positively as in the example (3). The model

without web images got videos about cooking, but there is disagreement in the

details of the query and video content. With web images, our model obtained

more relevant videos, which show a person cutting a large piece of meat. How-

ever, irrelevant image search results can harm the video retrieval performance.

For a query“A monkey is fighting with a man”’ in (4) resulted in irrelevant web
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Query GoogLeNet+VS GoogLeNet+ALL2

(1) A man is playing a keyboard.

(2) Kids are playing in a pool.

(3) A man is trimming fat from a roast.

(4) A monkey is fighting with a man.

Query GoogLeNet+VI GoogLeNet+ALL2

(5) A boy is singing into a microphone.

(6) A man shoots a shotgun.

(7) A cat is pawing in a water bowl.

Figure 4.10. Examples of video retrieval results. Left: Query sentences and web

images. Center: Top-3 retrieved videos by GoogLeNet+VS and VI. Right: Top-3

retrieved videos by GoogLeNet+ALL2.

images, and our full model failed to get correct videos.

Compared to GoogLeNet+VI, our full model obtained more videos with rele-

vant content for other queries. These results suggest that both sentence and web

images are important for the performance of content-based video retrieval. The

example in (7) also got irrelevant images as in (4), but this result indicates that
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Query Video GoogLeNet+VSGoogLeNet+All2

1. A woman is singing.
2. A woman is singing.
3. A woman wearing a headset is singing 

into a large microphone.

1. A woman is talking while applying 
eyeshadow.

2. A woman applies Joker makeup to a 
man's face.

3. A woman is applying cosmetics to a man.

1. Leopards are congregating.
2. A group of deers are crossing road.
3. A pair of zebras is nuzzling.

1. A pair of zebras are playing with each 
other.

2. The zebras are playing.
3. A pair of zebras is nuzzling.

1. A man is playing keyboards.
2. A boy is playing a grand piano.
3. A boy is playing guitar.

1. A little boy is playing piano.
2. A little boy is playing a grand piano.
3. A boy is playing a piano.

1. Someone is cutting the carrot into small 
pieces.

2. A person cuts a sock with scissors.
3. An oriental lady is cutting a carrot into 

thin pieces.

1. A man is cutting a paper.
2. A man is cutting a paper by hands.
3. Someone is cutting the carrot into small 

pieces.

Figure 4.11. Examples of top-3 retrieved sentences. Left: Query videos. Cen-

ter: Top-3 retrieved sentences by GoogLeNet+ALL2. Right: Top-3 retrieved

sentences by GoogLeNet+VS.

our model may recover from irrelevant image search results by combining a query

sentence.

Some examples of sentence retrieval results are shown in Figure 4.11. While

our full model may retrieve sentences that disagree with query videos in details,

most of the retrieved sentences are relevant to query videos.

Comparison to Prior Work

The approach for image and sentence retrieval by Kiros et al. [39] applies linear

transformations to CNN-based image and RNN-based sentence representations

to embed them into a common space. Note that their model was designed for

the image and sentence retrieval tasks; thus, we extracted the middle frame as a

keyframe and trained the model with pairs of a keyframe and a sentence. Xu et

al. [108] introduced neural network-based embedding models for videos and sen-
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LSTMLSTMLSTM LSTM LSTM LSTM

“<bos>”

“a” “man” “is” “running”

“a” “man” “is” “running”

“<eos>”

Figure 4.12. Illustration of the decoder model. “<bos>” is a tag denoting the

beginning of a sentence, and “<eos>” is the end of a sentence.

tences. Their approach embeds videos and SVO triplets extracted from sentences

into an embedding space. Kiros et al.’s and Xu et al.’s approaches are denoted

by ST and DVCT, respectively.

Scores in Table 4.2 indicates that our model clearly outperformed prior work

in both video and sentence retrieval tasks. There is a significant difference in

performance of DVCT and others. ST and ours encode all words in a sentence,

while DVCT only encodes its SVO triplets. This suggests that using all words in

a sentence together with an RNN is necessary to get good embeddings.

3.3 Video Description Generation

Automatic description generation for images [101, 13] and videos [74, 100, 111, 99]

is another task to associate images or videos with sentences. As an application

of our models, we performed the description generation task using our video

embeddings. To analyze the information encoded by our video embedding, we

trained a decoder that produces descriptions from our video embeddings. A basic

approach for description generation is to use long-short term memory (LSTM)

that produces a sequence of probabilities over a vocabulary conditioned on visual

representations [101, 100]. We trained an LSTM as a decoder of video embeddings

(Figure 4.12). The decoder predicts the next word based on word vector wt at
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Table 4.4. Scores of generated sentences. TVNL+Extra Data is the TVNL model

pre-trained on the Flickr30k [112] and the COCO2014 [6] datasets.

Models CIDEr BLEU METEOR

TVNL [100] - 31.19 26.87

TVNL+Extra Data - 33.29 29.07

DVETS [111] 51.67 41.92 29.60

Ours 41.62 33.69 28.47

each time step t as:

[at it ft ot]
T = Wuwt + bu + Wlht−1, (4.13)

ct = tanh(at)σ(it) + ct−1σ(ft), (4.14)

ht = tanh(ct)σ(ot), (4.15)

pt = softmax(Wpht + bp), (4.16)

where Wu,Wl ∈ R4dw×dw and bu ∈ R4dw are parameters of the LSTM, and

[at it ft ot]
T is a column vector that is a concatenation of at, it, ft, ot ∈ Rdw .

The matrix Wp and the vector bp encode the hidden state into a vector with the

vocabulary size. The output pt is the probabilities over the vocabulary. We built

a vocabulary consisting of all words in the YouTube dataset and special tags,

i.e., begin-of-sentence (“<bos >”) and end-of-sentence (“<eos >”). The genera-

tive process is terminated when “<eos >” is produced. We trained the decoder

using the YouTube dataset. We computed the video embedding φv(X) using

GoogLeNet+ALL2 as an input to the LSTM at t = 0. We trained the decoder

by minimizing the cross-entropy loss. During training, we fixed the parameters

of our embedding models.

Figure 4.13 shows generated sentences. Although video embeddings were

trained for retrieval tasks and not fine-tuned for the decoder, we observed that

most generated sentences were semantically relevant to their original videos. The

results show that our model can produce correct descriptions for videos with di-

verse content, such as animals, sports, cooking etc. These results suggest that

our model can encode various concepts into our representation. Although many

descriptions involve disagreement in details, the descriptions are relevant to video
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Correct descriptions

A herd of zebras are 
walking in a field.

A baby panda is climbing a 
step.

A man is riding a bike. A man is playing a guitar.

A woman is slicing a 
vegetable.

A man is playing with a ball. A woman is riding a horse.
A man is shooting a gun.

Relevant but incorrect descriptions

A dog is walking in a river.
A man is riding a bike. A woman is slicing a piece of 

meat.
A boy is playing a flute.

A car is driving down a road. A cat is playing with a toy. A man is holding a baby 
monkey.

A boy is playing a soccer ball.

Incorrect descriptions

A woman is cleaning a sink.
A man is dancing. A man is riding a horse. A woman is riding a 

motorcycle.

Figure 4.13. Descriptions generated from our video embeddings.
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content. The bottom row shows examples that the model generated descriptions

irrelevant to the video input.

We evaluated generated sentences with the COCO description evaluation, i.e.,

CIDEr, BLUE@4, and METEOR. While generated sentences got scores below the

state-of-the-art video captioning method DVETS [111], we found that the BLEU

and METEOR scores were comparable to other video captioning methods (Table

4.4). This indicates that our model efficiently encoded videos, maintaining their

semantics. Moreover, this result suggests that our embeddings can be applied to

other tasks that require joint representations of videos and sentences.

4. Summary

We developed neural network-based embedding models for video, sentence, and

image inputs which fuse sentence and image representations. We jointly trained

video and sentence embeddings using the YouTube dataset.

We demonstrated that our video embeddings can be used in an unsupervised

video summarization approach that selects video clips based on the representa-

tiveness in the semantic embedding space. We observed that learned represen-

tations extracted from videos with similar content make clusters in the semantic

space. In our approach, the input video is represented by deep representations

in the semantic space, and clips corresponding to cluster centers are extracted

to generate a video summary. By comparing our summaries to those created

using VGG representations, we showed that the advantage of incorporating our

cross-modal representations in video summarization. Furthermore, our results

even outperformed the worst human created summaries.

Experiments for content-based video and sentence retrieval demonstrated the

advantage of incorporating additional web images in sentence embedding and

exhibited that our approach outperforms prior work in both video and sentence

retrieval tasks. Furthermore, by decoding descriptions from video embeddings, we

demonstrated that rich semantics of videos are efficiently encoded in our video

embeddings. The future work includes the development of a video embedding

that considers temporal structures of videos. We observed that some sentences

result in irrelevant web images, and such sentences may not get advantages of
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web images. It would also be interesting to investigate which words can work as

effective queries for image search. We also expect that filtering out web images in

preprocessing of sentence embedding would improve the performance of sentence

embedding.
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Chapter 5

Representation Learning for

Fine-grained Video Retrieval by

Sentence Queries

1. Overview

In this chapter, we address to learn time-varying representations for content-based

video retrieval (CBVR). The embedding models in Chapter 4 encode a video clip

into one feature vector. However, that approach cannot capture the change of

semantics along time. In order to represent the change of content within a video,

we propose to produce a sequence of feature vectors as a video representation.

We expect that this time-varying representation is helpful to model real-world

videos such as movies or YouTube videos, which are long and consist of multiple

video clips.

As in Chapter 4, we try to map both sentences and videos into a common

embedding space, where a video is represented by a sequence of feature vectors.

One interesting application of this representation is localizing content in a multi-

clip video with a natural language query. Given a description, e.g.“She kisses

his cheek”, we would like to find corresponding short video clips from a long

video (Figure 5.1). We call this task as fine-grained video retrieval (FGVR). In

contrast to existing CBVR tasks, FGVR aims to handle more complex videos

which may have multiple clips and varying content within a video. Thus, we
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“She kisses his cheek”

Multi-clip video

Relevance estimation

Retrieved frames

Figure 5.1. Given a natural language query, fine-grained video retrieval finds

video frames which the query describes. An input video consists of multiple

video clips.

expect that FGVR techniques contribute to a wide range of applications for real-

world videos, for example, scene search from a lengthy video, and alignment of

roughly annotated metadata and videos.

In this chapter, we describe representation learning by solving the FGVR task.

We construct FGVR models that encode videos and sentences into cross-modal

representations as in Chapter 4. The models are trained to localize video content

which is semantically relevant to a sentence query. The task of FGVR works

as strong supervision that makes a model encode time-varying semantics into a

sequential representation, as well as, map videos and sentences into a cross-modal

embedding space.

Most methods that temporally associate video content with languages, such as
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action localization, use frame-level labels indicating the start and the end point

of the desired content. However, there do not exist many datasets that have

multi-clip videos and sentences with temporal annotation. Making a dataset

that is large enough to develop recent deep neural network models will require an

immense amount of human intervention, thus we facilitate representation learn-

ing by synthesizing examples using existing datasets. While we do not have

video-sentence datasets with temporal annotation, there are several large-scale

datasets that provide videos and their descriptions only [106, 5, 77, 72]. We

propose to compile a query sentence and a multi-clip video with temporal an-

notation from video-description datasets and a training scheme using the syn-

thesized video-query pairs. As our data generation scheme can be applied to

any video-description datasets, we can scale training datasets. Importantly, the

experimental results demonstrate that our training scheme enables FGVR mod-

els to localize query-relevant content in real-world videos, while the models are

trained on synthesized videos.

The contribution of this work is summarized as follows:

• We develop several neural network-based models, which produce time-varying

representation from a video. The models are trained by solving FGVR

tasks so that the model can associate video parts with natural language

queries. We evaluate learned representations on the FGVR with two differ-

ent datasets, which are built from YouTube videos and movies, respectively.

• We propose a new task of video retrieval, i.e., FGVR. This task assumes

that a video consists of multiple video clips, which may contain different

objects, actions, and scenes. This assumption is more practical because

most videos (online videos, broadcast programs, and movies) are edited

and consist of multiple video clips.

• We propose to synthesize video and query pairs from existing datasets

for video captioning. Our data generation scheme can build FGVR sam-

ples from any video captioning datasets. This enables large-scale train-

ing datasets, which are essential for developing deep neural network-based

methods.
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Video description
dataset

Description Query

Relevance label

A group of people are dancing

Shuffle
Concatenate

Multi-clip video

Figure 5.2. FGVR examples are generated from video-description datasets. A

video clip associated with a description is combined with randomly sampled

videos. This results in a multi-clip video and a sentence which describes only

a part of the video.

2. Fine-grained Video Retrieval

2.1 Problem Statement

In the FGVR task, the input is a video consisting of multiple clips and a natural

language query. The goal is to retrieve a subset of frames whose content is

semantically relevant to the query (Figure 5.1). Specifically, given a sentence and

video frames V = {v1, . . . vT}, where vt is a visual feature extracted from the t-th

frame, FGVR estimates relevance scores R = {r1, . . . , rT} at each time step to

retrieve frames. This task is similar to the video retrieval task for finding videos

in a database which are relevant to a query. However, video retrieval tasks often

implicitly assume that each video in the dataset is short and can be represented

by a single query sentence. This assumption is not valid for most videos, e.g.,

broadcast programs, movies, and even YouTube videos. A majority of these

videos are lengthy and come with multiple concepts or scenes. The FGVR task

relaxes this assumption; that is only a small part of the target video is relevant

to a sentence query.
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2.2 Data Generation

Training deep models usually requires large-scale datasets. Since there are no

existing datasets for FGVR, we compile training examples for FGVR by extending

the existing CBVR datasets. For FGVR examples, videos must 1) consist of

multiple clips, 2) have corresponding query sentence related to a part of the

video, and 3) be annotated with frame-level relevance labels. Since there is no

dataset tailored for this task, we make video and query pairs from a large-scale

video-description dataset, such as [106, 72].

The data generation using a video-description dataset is illustrated in Figure

5.2. To get a video consisting of multiple clips, we sample several video clips and

their corresponding descriptions. We then choose one of the descriptions as a

query sentence and concatenate the video clips in random order. Concatenation

of multiple videos results in shot boundaries like most edited videos. The frames

in a video clip corresponding to the selected query sentence are labeled as relevant

frames, and other frames as irrelevant ones. By doing this, we can generate a

number of videos where only a small part of it is relevant to a query sentence. Our

data generation scheme can be applied to any dataset which provides videos and

descriptions. This enables us to train FGVR methods on diverse videos provided

by existing datasets.

2.3 Models for FVGR

We introduce several video embedding models that read video frames and produce

a sequence of feature vectors. In order to cover possible models to capture content

dynamics, we develop models with clip-level and frame-level video encoding. Each

video clip or frame and a query sentence are mapped to a common feature space,

and we estimate the relevance between them by computing the similarity of their

representations in the feature space. In all methods, we employ the pool5 layer

of ResNet-50 [26] to extract visual features V from video frames.

2.4 Text Embedding Models

For text encoding, we employ two models that encode a sequence of words

{w1, . . . , wN} into a vector representation t, where wn is a word embeddings.
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Video embedding

Text embedding

Relevance score

Clip

“A man is conducting
with happy excitement.”

Clip-level approach

Relevance score

Video embedding

Text embedding

“A man is conducting
with happy excitement.”

Frame-level approach

Figure 5.3. Illustration of clip-level (left) and frame-level (right) embedding mod-

els. Clip-level model summarizes frames in a clip and produces a feature vector.

On the other hand, frame-level approach outputs a feature vector for every frame.

These models are trained to localize video parts, which are semantically relevant

to a query sentence.

One is the word pooling-based model (W-Pool). Input word embeddings are

averaged to be transformed with a fully-connected layer as:

w̃ =
N∑

n=1

wn, (5.1)

y = tanh(Wwpw̃ + bwp), (5.2)

where Wwp and bwp are parameters of the fully-connected layer and y is a sentence

representation.

The other is the word LSTM model (W-LSTM) that encodes a sequence of

word embeddings with an LSTM layer, i.e.,

hn, cn = LSTM(wn, hn−1, cn−1), (5.3)

where hn and cn are a hidden state and a memory cell of the LSTM layer, respec-

tively. We employ the last hidden state hN as a representation of the sentence in

the common feature space.
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Average pooling

Hyperbolic tangent

Linear out: 256
in: 2048

Hyperbolic tangent

Linear out: 256
in: 300

Similarity function

Sequence of words

Word
vector out: 300

Average pooling

Video frames in a clip

Figure 5.4. The architecture of F-Pool model for video clips and W-Pool model

for sentences.

2.5 Dynamic Video Embedding Models

Clip-level Video Embedding

One possible approach is to divide an input video into short video clips and out-

puts a feature vector for each video clip as illustrated in Figure 5.3 (left). We

call this approach as a clip-level approach. We test two temporal video segmen-

tation for this approach: Ground truth video segmentation uses clip boundaries

in synthesized videos, and uniform segmentation divides videos with a uniform

interval. Similarly to [91], we implement two neural network models that take

a sequence of frames {vts , . . . , vte} in a video clip as input and produce a vector

representation x that summarizes the frames.

Frame pooling (F-Pool) summarizes the frames {vts , . . . , vte} in a video clip

by average pooling. The averaged feature vectors are fed to a fully-connected

layer. Therefore, the F-Pool model maps a video clip into the common feature
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Hyperbolic tangent

Linear out: 256
in: 2048

Hyperbolic tangent

Linear out: 256
in: 2304

Softmax

Linear out: 1
in: 256

Similarity function

Sequence of words

LSTM out: 256
in: 300

Word
vector out: 300

Weighted average pooling

Video frames in a clip
Concatenate

Soft-attention

Figure 5.5. The architecture of WA model for video clips and W-Pool model for

sentences.

space by

ṽ =
te∑

i=ts

vi, (5.4)

x = tanh(Wfpṽ + bfp), (5.5)

where Wfp and bfp are parameters of the fully-connected layer. Figure 5.4 illus-

trates this model. In this work, we set the unit size of the fully-connected layer

to 256.

Weighted average (WA) incorporates the soft-attention mechanism [111] in

frame pooling. The weights ai of the frame vi is computed based on the frame

feature and a query sentence by

ei = wT
a tanh(Wa[y, vi] + ba), (5.6)

ai = exp(ei)/
tn∑

j=ts

exp(ej), (5.7)

where wa, Wa, and ba are learnable parameters, and [·, ·] denotes the concatenation

of vectors. The vector y is a text embedding computed with a text encoding model
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Linear out: 256
in: 2048

Average pooling

Hyperbolic tangent

Similarity function

Video frameSequence of words

LSTM out: 256
in: 300

Word
vector out: 300

Figure 5.6. Sliding window (SW) model for video frame embedding.vt−2 and vt+2

indicate the first and the last frame in a temporal window, respectively.

described in Section 2.4. Using the weights, we obtain a weighted sum of frames

and feed it to a fully-connected layer to get a clip representation x as:

ṽwa =
te∑

i=ts

aivi, (5.8)

x = tanh(Wwaṽwa + bwa), (5.9)

where Wwa and bwa are parameters of the fully-connected layer. Figure 5.5 shows

the WA model with W-LSTM model for sentence embedding. Details including

unit sizes are shown in Figure 5.5.

Frame-level Video Encoding

In the clip-level approach, an input video needs to be segmented beforehand;

however, segment boundaries are not always available, and temporal video seg-

mentation itself is still a challenging task. Another direction for this task is to

read frames and produce a feature vector at each time step as in Figure 5.3 (right).

For this approach, we implemented three models that encodes video frames to a

sequence of vector representations {x1, . . . , xT}.
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Video frame

Linear out: 256
in: 512

Hyperbolic tangent

Similarity function

Sequence of words

LSTM out: 256
in: 300

Word
vector out: 300

LSTM

LSTM

LSTM

LSTM

bidirectional LSTM

Concatenate

LSTM out: 256
in: 2048

LSTM out: 256
in: 2048

Figure 5.7. Bidirectional-LSTM (biLSTM) model for video frame embedding.

Sliding window (SW) This model reads an input frame sequence in the sliding

window fashion. At each time step, we perform average pooling over frames within

a temporal window and feed its output to a fully-connected layer in the same way

as the F-Pool model. As shown in Figure 5.6, we set the temporal window size

to 5 and the model reads frames with a stride of 1.

Bidirectional-LSTM (biLSTM) The biLSTM model utilizes a two-layer LSTM

network that reads frames in forward and backward directions as in Figure 5.7.

This bidirectional LSTM is employed in several recent works to model video

frames [114, 28]. Hidden states at each time step are concatenated and trans-

formed with a fully-connected layer as:

xt = tanh(W [hforward
t , hbackward

t ] + b), (5.10)

where hforward
t and hbackward

t are hidden states of the forward-LSTM and the

backward-LSTM layers for the input frame vt, respectively.
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in: 256

Hyperbolic tangent

Linear out: 256
in: 2048

Similarity function

Sequence of words

LSTM out: 256
in: 300

Word
vector out: 300

Hyperbolic tangent

Video frame

Figure 5.8. Fully-connected (FC) model for video frame embedding.

Fully-connected (FC) This model is a variation of the biLSTM model. We

remove the temporal connection by replacing the bidirectional LSTM layers with a

fully-connected layer as in Figure 5.8. Therefore, the input frame vt is transformed

by

ṽt = tanh(W1vt + b1), (5.11)

xt = tanh(W2ṽt + b2), (5.12)

where W1, W2, b1, and b2 are parameters of the fully-connected layers. This model

estimates relevance scores in a frame-by-frame fashion. Therefore, this model is

equivalent to frame-level CBVR.

2.6 Similarity Metrics for Relevance Score

After a vector representations for clips or frames are obtained, relevance scores

R = {r1, . . . , rT} are computed. In this study, we test cosine similarity and partial
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order similarity [91]. With cosine similarity, relevance scores are computed as:

rt =
xt · y

‖xt‖‖y‖ . (5.13)

Partial order similarity between two vectors is computed as:

rt = −‖max(y − xt, 0)‖2, (5.14)

where u0 and u1 are non-negative vectors. Therefore, we compute the absolute

values of the outputs of models and apply L2-normalization before computing the

partial order similarity. Note that partial order similarity is not order-invariant.

2.7 Training

We train the models described in Section 2.3 using video-sentence pairs synthe-

sized as in Section 2.2. The models for videos and sentences are jointly trained so

that the query relevance scores of relevant frames are larger than those of others.

We compute an averaged score of relevant and irrelevant frames and update the

model to make the difference between the scores larger. During the training, a

model is trained by minimizing the loss computed from predicted relevance score

R = {r1, . . . , rT} and ground truth label L = {l1, . . . , lT} as:

Loss(R,L) = max(−Rpos + Rneg + μ, 0), (5.15)

Rpos =
1

Npos

T∑
t=1

ltrt, (5.16)

Rneg =
1

Nneg

T∑
t=1

(1 − lt)rt, (5.17)

where Npos and Nneg are the number of relevant and irrelevant frames in a video,

respectively. lt is a label representing the frame’s relevance/irrelevance to a query

sentence and rt is relevance score, which is computed as in Section 2.6. We set

lt = 1 if the frame is relevant, and otherwise 0. The parameter μ is a predefined

margin to penalize the smaller difference between the averaged score of relevant

and irrelevant frames than the margin. Models of the clip-level approach do not

produce frame-level scores, thus we spread a clip-level score to all frames in the

clip.
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MSR-VTT
How to take care of 
donkeys.

A man in blue is 
interviewed on his 
yellow car.

MPII-MD

He turns to see the 
weights on the ends 
of the bar, and 
someone walks up to 
him.

Someone offers her 
hands then guides 
her sister up from 
her seat.

Figure 5.9. Query sentence and video pairs, where only keyframes are displayed

for videos. The videos are composed by combining multiple video clips from

existing video-description datasets. The examples in the left are built from MSR-

VTT, and the right column from MPII-MD. The red boxes indicate the frames

corresponding to the query sentence.

3. Experiments

We evaluated learned representations on the task of FGVR. We generated FGVR

examples from two datasets, MSR Video to Text (MSR-VTT) [106] and the MPII

Movie Description dataset (MPII-MD) [73], and investigate the performance of

each model.

3.1 Implementation Detail

The model was trained in an end-to-end manner with stochastic gradient decent

with the mini-batch size of 100. We used Adam [38] for optimization with the ini-

tial learning rate 10−3 for MSR-VTT and 10−4 for MPII-MD. In all experiments,

models were trained for 15 epochs, and we employed a model at the minimum loss

on the validation split. During training, we halved the learning rate at the 10th

epoch. We adopted gradient clipping with threshold 10.0 and weight decay with

weight 0.0005 for MPII-MD. We set the parameter μ for the loss function to 1.0.

To extract video frame features, we utilized ResNet-50 pretrained on ImageNet

[26]. The word embeddings were initialized with word vectors by [58], which we

empirically found helpful for training. We set the output size of video and text

encoding models to 256. The window size of SW was 5, and input videos were

padded with zeros to keep the output length the same as the number of input

video frames. Both of the bidirectional LSTM layers in the biLSTM model have
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Table 5.1. Statistics of the original datasets

Dataset Domain # video Avr. duration # sentence

MSR-VTT open 10,000 15s 200,000

MPII-MD (LSMDC’16) movie 118,507 4s 118,507

256 units, and the output vectors were fed to the fully connected layers whose

output size was also 256.

3.2 Datasets

We tested video and sentence encoding models on the MSR-VTT and the MPII-

MD datasets. Examples of generated video and query pairs are displayed in

Figure 5.9. The MSR-VTT dataset includes 10,000 YouTube video clips, and 20

descriptions are annotated for each video clip. MPII Movie Description dataset

has 118,507 video clips from movies, and each video clip is annotated with one

description. For the MSR-VTT dataset, we used training and test splits pro-

vided by the MSR-VTT official web page. For the MPII-MD dataset, we used

splits for the LSMDC’16 movie annotation and retrieval task [91]. Word vocab-

ulary is collected from descriptions in the training split. The descriptions were

normalized by punctuation removal and lowercasing, then we compiled a vocab-

ulary dictionary by sampling words occurring more than three times in training

queries, which results in 8,935 words for the YouTube dataset and 10,066 words

for the movie dataset. The videos were down-sampled at 5 fps and rescaled to

244×244. During training, we sampled two video clips for each video-description

pair to create FGVR examples as in Figure 5.2. Since most video clips in the

datasets have similar durations, which can be a strong prior, the first and the

last few seconds of video clips are randomly trimmed so that the video clips have

20-100% of their original length. The average durations of videos compiled from

the MSR-VTT dataset is 32 seconds and those from the MPII-MD dataset is 8.6

seconds.

We report statistics of the datasets in Table 5.1. Figure 5.10 shows that all

videos compiled from the MSR-VTT dataset are within 10-80 seconds, and the

MPII-MD dataset mainly has shorter videos, it also has quite long videos whose
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Figure 5.10. The distribution of synthesized videos’ durations. The horizontal

axis represents durations, and the vertical axis is the number of videos.

Figure 5.11. The distribution of the number of words in a sentence. The hori-

zontal axis represents the number of words, and the vertical axis is the number

of videos.

durations are more than 100 seconds. Note that our video generation incorporates

random trimming, so durations of resulting videos are not static. As can be seen

in Figure 5.11, the MPII-MD dataset includes some long sentences that have

more than 50 words. These sentences tend to describe complex scenes.

3.3 Qualitative Evaluation

We show some examples of relevance scores predicted by a model trained for the

FGVR task. Figure 5.12 shows an example of frame-level scores for different

queries by the biLSTM model. The video shown in Figure 5.12 was generated
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(1) A little girl is performing (3) A crowd is cheering(2) A woman in a red apron mixes 
ingredients in a bowl in a kitchen

(1)

(2)

(3)

Figure 5.12. Relevance scores of a multi-clipped video for different queries. The

horizontal axis represents time. From top to bottom: scores for queries (1),

(2), and (3). Blue represents relevance scores and yellow ground truth relevance

labels. Overlapping areas are thus green.

from the MSR-VTT dataset. The yellow areas indicate ground truth video clips

corresponding to the query sentence. For the query sentences (1) and (2), the

model predicted high relevance scores for corresponding frames. Interestingly, for

the query (3), frames of a girl with a microphone got high scores as well as the

ground truth frames of a crowd. This might be caused by the crowd behind the

girl. Within a video clip, we can observe that relevance scores varied according

to the content of the frame, e.g., frame without the cooking tools are less relevant

than other frames for the query (2). While the models were trained on videos

that had only one relevant part, the resulting model gave high scores for multiple

parts. This suggests that the training scheme, which uses synthesized videos,

does not constrain test videos to have the same structure as training videos, i.e.,

trained models can be reused to videos with multiple relevant parts.

Relevance scores produced by the baseline models for a video and query pair

are shown in Figure 5.13. The top row result was produced by a model with

W-Pool text encoding model and others use models with W-LSTM text encoding

models. All models in the examples use cosine similarity. For the clip-level

approaches (F-Pool and WA), we used the ground truth video clip boundaries.

The input video is a short movie excerpt from the MPII-MD dataset. While the

input video is generated in a different way from the training scheme (i.e., using

randomly sampled video clips), the models of the example still detect relevant
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The bustling crowd around someone suddenly stops and dances

Figure 5.13. Examples of relevance scores by different models. The input video

is five successive video clips from a movie in the MPII-MD dataset.

parts in a video. This suggests that the baseline models trained on the synthesized

videos can be reused for real-world videos. The three models of the clip-level

approaches, which are in the top three rows, do not show significant differences

in predicted scores. Compared to the FC model, those with temporal connection

produce smoother relevance scores, which may be preferable because relevance

scores are not likely to change frequently in most videos.

We show more examples of the biLSTM model on short movie excerpts to

demonstrate that the model can be used for real-world videos (see Figure 5.14).

The ground truth parts are indicated by yellow areas in the figure. Note that the

ground truth labels are based on where the query sentence is originally annotated

in a video captioning dataset, and other frames can also be relevant to the query.

Moreover, the start and end points of a specific event are ambiguous, especially

in movies. The examples of top two rows show that the biLSTM can roughly

localize content relevant to the queries. However, the biLSTM model failed by

giving high scores for irrelevant frames in the bottom row. The input video

of this example shows a dark scene, and the scene changes rapidly. Moreover,
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Query: He is up a tree

Query: She sits on his lap

Query: They bump a parked car

Figure 5.14. Examples of relevance score estimation by the biLSTM model on

movie videos.

the video has unusual events since it is a fantasy movie. We assume that these

characteristics of the input video made it difficult to capture the video content.

3.4 Quantitative Evaluation

We conducted a quantitative evaluation of predicting relevant frames from multi-

clipped videos on the MSR-VTT and the MPII-MD datasets. We generated test

videos in the same way as in Section 2.2 from test splits of the datasets. For

each test sample, we computed frame-level relevance scores of a video to a query

sentence, and then evaluated the performance with average precision (AP). We

report the mean and the standard deviation (the values in parenthesis) of the AP

scores over all test samples in Table 5.2. To compute AP, the clip-level scores

were transformed to frame-level scores by simply spreading the clip-level score

to all frames in the clip. The scores obtained by random score prediction are

reported in the bottom row.

Overall, cosine similarity performs better than partial order similarity in this

task. For clip-level approaches, there are no significant differences between mod-

els. Note that these scores with ground truth clip boundaries (GT) can be re-
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Table 5.2. Mean average precision (AP) scores (%) of FGVR. GT denotes ground

truth clip boundaries, and UNI denotes uniform segmentation.
video model /

sentence model

clip

boundaries

MSR-VTT MPII-MD

cosine p-order cosine p-order

F-Pool / W-Pool
GT 86.5 (27.9) 80.9 (31.5) 77.7 (33.2) 73.6 (34.8)

UNI 81.1 (22.5) 76.0 (25.2) 74.4 (26.6) 70.7 (27.4)

F-Pool / W-LSTM
GT 85.4 (28.7) 79.2 (32.3) 74.8 (34.3) 69.0 (35.8)

UNI 80.1 (23.1) 75.9 (25.3) 72.5 (27.6) 68.2 (28.4)

WA / W-LSTM
GT 86.4 (28.0) 75.9 (33.7) 75.8 (34.0) 69.0 (35.9)

UNI 79.7 (23.2) 71.0 (26.7) 72.6 (27.4) 67.4 (28.5)

FC / W-LSTM — 80.9 (23.7) 75.7 (25.2) 73.1 (27.7) 63.3 (27.6)

SW / W-LSTM — 83.3 (22.9) 76.3 (25.7) 73.5 (27.9) 69.8 (28.8)

biLSTM / W-LSTM — 83.8 (22.7) 72.5 (25.7) 76.1 (28.9) 61.7 (26.5)

by chance — 47.0 (12.2) 49.4 (17.6)

garded as a sort of upper bounds of the clip-level approaches. We also report

scores obtained by uniformly dividing an input video into three clips (UNI).

These results suggest that the performance of clip-level FGVR methods highly

relies on temporal video segmentation.

We can also observe that the frame-level approach (FC, SW, and biLSTM

models), which does not require temporal video segmentation, achieves good re-

trieval performance on the MSR-VTT dataset. This suggests that video seg-

mentation is not necessary for FGVR. From the comparison between models for

the frame-level approach, we can see that incorporating nearby frames improves

the performance. This might be because context obtained from other frames is

helpful to understand a video content.

For the MPII-MD dataset, all baselines resulted in lower scores. As videos and

sentences in the dataset are more challenging as shown in Figure 5.9. Many of

the sentences often describe complex scenes, of which LSTM may have difficulties

in encoding the semantics. Moreover, movies often have dark and low-contrast

scenes, which may cause failures in understanding the visual content.
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4. Summary

In this work, we propose to learn sequential vector representation for videos

to encode dynamics of content within a video. Our video embedding model

and sentence embedding model are jointly trained by solving the FGVR task to

localize video content according to a query sentence, which is a new video retrieval

task. This task is based on the idea that developing video retrieval methods to

handle untrimmed videos consisting of multiple clips is important for real-world

applications. For this task, we present a data generation scheme to scale training

video-query pairs. We introduce two lines of approaches, i.e., clip-level and frame-

level approaches, and implemented video and sentence embedding models for this

task.

In experiments, we present results on two evaluation datasets, which are built

from a YouTube video dataset and a movie dataset. The experimental results

suggest that the clip-level approach can be improved by leveraging sophisticated

video segmentation methods. We also observed that considering temporal context

by the sliding window fashion or temporal connections between frames helps to

encode video frames. The FGVR results on some videos from movies suggest that

our approach can retrieve video parts from real-world videos although our models

are trained on generated video-query pairs. We expect that text embedding

methods that can handle long sentences, which have complex semantics, will be

a key component for further improvement. An FGVR task on manually edited

videos, e.g., retrieving a scene from a movie, is a challenging and important topic.

We will explore FGVR on manually created videos by modifying such video and

text alignment datasets as [72, 77].
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Chapter 6

Conclusion

This dissertation has proposed several cross-modal representations for videos and

languages. Evaluating the performance of representation is unclear; thus we

investigate how our cross-modal representations work in practical tasks, such as

video summarization, video captioning, and content-based video retrieval.

We have explored two approaches for developing cross-modal representations.

One is manually designing a cross-modal representation for videos and languages,

as well as their similarity metric. The other approach is data-driven representa-

tion learning. While this approach requires large-scale training data, the approach

can automatically learn cross-model representations from data.

Chapter 3 has explored the former approach. We designed object-focused

representations for videos and text so that the representation provides a rough

idea about events presented in videos and text. We implemented a query-focused

video summarization method, which makes a video summarization according to

the content of user text. We observed that the semantic similarity metric built

upon our object-focused representation is useful for picking out video parts so

that a resulting summary has more events relevant to user text. The user study

also suggests that users prefer video summaries generated by the proposed video

summarization method that creates an output video summary based on the input

text.

Chapter 4 proposed data-driven representation learning for videos and sen-

tences. In this work, we developed deep models that map videos and sentences

into a common feature space. Moreover, we proposed to extend the sentence

80



encoding model by incorporating web images. We investigated the performance

of learned representations in video summarization and content-based video and

sentence retrieval. The experiment of unsupervised video summarization suggests

that simply replacing visual representation with our cross-modal representation

may improve the quality of video summaries. It is also observed that the use

of web images in sentence encoding helps to retrieve more relevant items in the

experiment of content-based video and sentence retrieval. This result indicates

that web images help to disambiguate the semantics of an input sentence.

Video encoding model is extended to capture dynamics within a video in

Chapter 5. This model is motivated by a new content-based video retrieval task

to find video parts relevant to a query sentence. We proposed to synthesize video-

query pairs from video captioning datasets, which can be used to train video and

sentence encoding models by solving the fine-grained video retrieval (FGVR).

The experimental results suggest that our models can localize content in real-

world videos with a natural language query although our models are trained on

synthesized examples.

To summarize, we proposed cross-modal representations for videos and natu-

ral languages. It is observed that these representations are capable of encoding

sentence-level semantics of videos, which is comprised of combinations of vari-

ous concepts including objects, actions, scenes, etc. These representations are

validated in practical applications. The experimental results demonstrated that

use of our representations can improve the performance on the task of unsu-

pervised video summarization and content-based video and sentence retrieval.

Furthermore, we proposed text-focused video summarization and FGVR, which

are novel applications using our cross-modal representation.

Cross-modal representations that associate videos and languages enable com-

puters to behave as if they understand videos. However, video and language

understanding is an extremely complex process, and only a small part of the pro-

cess is explored in the research community. Many recent works encode videos and

sentences with deep models and they seem to capture diverse concepts including

objects, actions, and attributes. However, these large and complex models also

make it difficult to know what factors of semantics are captured. One of the next

challenges lies in clarifying the limitation of current deep representations, and

81



how we can extend the capability to encode rich semantics. For example, cur-

rent techniques hardly handle long temporal relationships within a video, such as

temporal order and causality of events. The temporal relationships are important

factors to understand the complicated semantics of videos, and modeling them

must be an important future direction.

One significant criticism for recent video understanding research is that set-

tings of many video understanding tasks including content-based video retrieval

and captioning do not involve temporal reasoning. Many of these tasks can be

often solved by focusing on a single keyframe. For further improvement of cross-

modal representations, it is insightful to explore novel tasks or applications that

require temporal reasoning. There are several emerging applications, such as

video question answering [88, 32, 60], and dense video captioning [41]. Video

question answering requires to find some events in a long video and answer a

question in natural language, and dense video captioning produces several de-

scriptions aligned with parts of a long video. These are challenging tasks, and

addressing these tasks will lead to a new framework to associate videos and lan-

guages.
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