NAIST-IS-DD1561004

Doctoral Dissertation

A Study on

Syntactic and Semantic Dependency Parsing

Hiroki Ouchi

February 1, 2018

Department of Information Processing
Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Hiroki Ouchi

Thesis Committee:
Professor Yuji Matsumoto
Professor Satoshi Nakamura
Associate Professor Masashi Shimbo
Assistant Professor Hiroyuki Shindo
Assistant Professor Hiroshi Noji

Supervisor)
Co-supervisor

(
(
(Co-supervisor
(Co-supervisor
(

)
)
)
)

Co-supervisor

A Study on

Syntactic and Semantic Dependency Parsing*

Hiroki Ouchi

Abstract

Syntactic and semantic dependency parsing are a fundamental problem in nat-
ural language processing (NLP). A variety of techniques have been proposed for
improving syntactic and semantic dependency parsers. However, there still re-
mains some room for further improvement. This thesis describes several methods
for improving syntactic and semantic dependency parsing.

To improve syntactic dependency parsing, we design and use supertags. Su-
pertags, which are lexical templates extracted from dependency structure anno-
tated corpus, encode linguistically rich information that imposes complex con-
straints in a local context. We present a supertag design framework that allows
us to design various granularity-level supertag sets. To investigate the appropri-
ate granularity or design of supertags needed to improve parsing performance, we
build various supertag sets based on the framework. Then, using the supertag
sets as features, we perform experiments on multilingual syntactic dependency
parsing. The experimental results show that appropriately designed supertags
are effective for syntactic dependency parsing.

To improve semantic dependency parsing, we capture and exploit multi-predicate
interactions. This approach is based on the linguistic intuition that the predicates
in a sentence are semantically related to each other, and capturing this relation
can be useful for semantic dependency parsing. To capture this information, we
propose two distinct methods using (i) bipartite graphs and (ii) grid-type recur-
rent neural networks. Performing experiments on Japanese predicate argument

*Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD1561004, February 1,
2018.

structure analysis, we demonstrate that our proposed methods yield considerable

improvements.

Keywords:

Syntactic Dependency Parsing, Semantic Dependency Parsing, Predicate Argu-
ment Structure Analysis, Supertags, Bipartite Graphs, Recurrent Neural Net-
works

i

111

Acknowledgments

FEHRELH B OMARIEERIZIE, ZOMBEBICAZZIFANTWZZEE L.
WOEMN LD, EIBTTONIMBRPMERD L &, FIIRARLLEDBEDFE
WZEED X D120 EF L. BIETRAEDBFEZBMPETWEEZWED, a4
WHER Z X TWAEE, WObLMMIEZIZEUTWET. 5EDMIZ, AW
OB D/ PMALE LD DH B TADFLEND, ELUWKHZEIL
FU7 REPEDE, RETHEIUZ0EN2F 0 ORRPEBOMAF D XS
MEDIZHRDDOHDET. INholk, S&EUERIIZ, —D—D2DWA%ZFIC
EoT, WIPREAZBEURPOIRDIRSLZ L ZHBUAIZLTWET.

RNEHERZICIE, BICLWH, BIfREHEZF EZIITWZE £ L.
HEDBEIZLD, MXDEEENE L2 BWE T, AL HFREE RS BT
L72DlE, 2015 FI2 ACL bR TSNz ETYd. TOHOBBIHIZT
—HEIETWZFEWEZ e E2EELTEDY 9. 205 OO ER R4
DAY — MR BIRD VIR 22T £ L7z,

FRCHBEE D S 2—FE T D Vv A2 F 0 E L, REDPMEREDTHE,
FREEMIRRLKEBA 5%, MFTI<HAVWER>TWE L. X2/
LEMBERKROEHEIZT A AT VA 7Dk ANE T D, ZORERCCEFHSIZHR
HECKRESHELZZITTVET. FifRkAE L OEENZLED DX, DMLA 23%
FolzbBWEd., RO XS RITIERMZ, LOWEDERZ R %Z EMIZEHKE X
U7z, 72, R L TCOARRSTMOZEEIZE, S ADONHEKEIEZ ™LA
No ZHREINTWZEDPECHRIZESTWET. MiEHE e LTI TR
EEE U TOFREEICD RERBERDOZEZHNTED £7.

R Z B IIA TR Z AT OIIEN 2 W& E U2, 3K, BIEBENSITO N
RNTET, TP DD L 51T, FAEI—T 4 V72 HTWEEL LD
ICRTZMEET. LSOO REHRDOLITHHY, FZxLF—% 5
Z, B —EHIZHE»DEXT. BELDOYSELI DI Lans, MR

I AL EDRIZ, FIARAEERLZONERZNTWE L., 5%, HERELE
DARZRANE —DDORARE UTEEL TfrE0WEEWET.

REMUZBIBUC I, 2014 SE O SR A RER KRR TUO TERWLE L. £
DL ZIZ, [Supertag DFX, &Do7zk.] LFEEULNITTWEEZWEZIEEZREA
TEDXT. AHOVPFE WX HENTHENT VWS Z & 2D TERU 72 BHH
TUL7Z. BLI LB RBENS I INERTDE oﬁ&?ﬂb%fhf Btz
—H I TV EATIE, MU BT 2RIAWZCERZE»E T W72
EE L. K, HHOFPEZBEATIZ b(@%ﬁk&@@%ﬁﬁﬁéh@ IZBERD
FonsZedbhbvELEZ 0o IALKBHWVWLET.

Johns Hopkins University @ Kevin Duh 64121, ARG LEE LD S Wk
BOL EIZ, IROVAIFEHATVEZEEE L. ﬂﬁMi@t%mm@fE
BREFRICE 2 R U2 S, Kevin GO BRI N, faxxzES LTS
N ozBWET. 7AVIORFIIBEONTLLD, EERESXETE2VT
5t@’%ﬁ##fhtﬁ g, DERCEUET. RETICEEOMIEE L Z

iR & TN T WD Kevin SBAEDZIT, AR Z I U TS ETT S Bk %
@bibt.

N FEFIIHEFRE TEMEEICR 0 £ U7z, RIIRZ 8 E - E5I
EBEEONIIRIET 2 ZDEARIINE, REVENTERALPRDEAIZE, R
%%%5iibt.it,mﬁ%@wﬁ%ﬁWEAinﬁbéﬁﬁﬁ%%if
IR EEEEZ AL, WS DEDHE2WZEE U7, LT AIZHIEED

BRAEBZTWZE, U SWREEEINIT A 725 FRIT L.

Preferred Networks DFEFHAG A X AIZIE, 2015 FEDE & HEIFEZ X ET W
7272 & F U7z, 2015 &, MBS AMERE S N TE - IBM B2 i
DAVR—=2y TG U2 &k, ADPELIRRICZE W TIT o 72 5m DR
@U&OT? HDAVR=V Yy TTAVR—=%2F|EZITTCWEEE, BHD

IO Z S TWEEE U, 2D TW GEFEERICKE 2
xb&#%b,Ebﬁn%%®TV<LT%EEiE®$5E%®%?ﬁﬁTV
VAR AR YAl s A AT

Mt I a=r—v a VIFREOE TS —BBBUC I, MIEICET 282 <0
BExWEREEE LA B, 2D TH S IFELAMEE ST\~

v

I

&, WIS —F 1 VIR SETWAREE Ui, MRS 25213 TR<,
FHA®D EAS FIO SRR ROFER ¥, Bx mimle ELT0RRE, &
THAAE L.

IH BT IR DB E A B & N EE BRI 82X, RN AZT
THL, RITHTHILDWSEEDHEEVWLR Y, 22852\ 27
XFEUL. INDLSOHDTOMELEIEEZEZ D >MIFTIZHRD F L.

HEDDEDA VY N=|Z3% L DRI E W77 &EF U2, BGLAMEZEDE U
HEHRREOZEL UL THELTWAESE L, KERMMAIZRD F LT

MATFD X VX — 1213 THE BRI E L. RIZEDOREIZES & &,
S LKMARIFD AV N—DEEZ2 U £ 7.

BB — AR HB - ATY. R EEE W 5B AR 7 ¥ —
HEILFIZHEZETCEH LT Tl TRADPEHRCADPHAETOZ E M- Tk, |
WAARTIEY —FaahiLE L. BHSAPEREV 232028 RIELAER
Wirng, NS IFEMPFEESHTL S, ERKIRER > TWD AR
HEFMIEoTVET. B2V Do725, FRORBIZ—ER2oTHIFTIEI N,

SREDBEIHE X AT R DOFE 2 - S AEDPECWEEE £ L.
Za—I) %Y b EERFIIHES BN S AOHKRGHGRIE, LEIIH&RE, L&
KB R FMZ G2 F Uz, — 1, SIELLBVnTTh, SECADU»HRNWTT
M, EWVoZ BN THELTINEEZAIZ, MirREKEBEVEREU X L.
KIS L X %2 i 2 7B S ADSHBOWFENIEL AT,

OB DHEEERBIALBELRIAICEZLLIAOITRER2ZITE L. KB,
B ADDMLA TO ZIEHENHRLIRIZFESTED 9. BTANEET I,
KEIZE D RBDIEAD & —HKDOARLZEHEZ A6V, AL >TREREHLET
L7z,

> OB DEZEIZE BHEEIZZ2 0 £ UK. BRHZ, 5EICHEATWEZETELIZIX
B2 TE U7z, REZZDEIBANYPEET LN HEZRWELZ. £
IR T ZADMADRA —N—L A UTz & SRR I N, HEDA I S
& ZHHMTIFEROMERENE> TRAE L.

REUBREOEI ZIZE LS DRI EZZITE Uz, Kz, —HBEASALE
HHMZ S A0 EHRIAEEG-oTHEoVWELRZ. HEES ZEITKE
LTWSBZAZEHE USBEWELZ., ZADPMRAHTHELTVWELZREE 54
LEKRTWEDR-72TY. HoWHMICZEXEEELED F LA, fuzy, &
LED S TZREPBEDIDOIZAFELTET, RAMZE>TWEE L.

FEHIAFZ DAL I £ 1%, NAIST AZDK, £ ORfZILELE L. &P
PRBEREOFTOII a2z —a VICHREEBEDO BRI E L. iz, &
HEEBIESNEMARL, BWLHE2E-60F L. BELTHLD,
T-EHPNEMARERLUAIZLTWET.

HBIZWAR, B, B RREICHENWES, BEFEVPRL XUk, RIFEZI
MNTWLDDLPRD EFEAD, TS5 ERERFoTNTLZI .

vi

Contents

Acknowledgments

1

Introduction

1.1 Dependency Representations and Parsing
1.2 Motivations and Problematic Issues
1.3 Solutions
1.4 Contributions
1.5 Thesis Outline

Preliminaries

2.1 Syntactic Dependency Parsing
2.1.1 Task Definition
2.1.2 Evaluation Metrics L.
2.1.3 Transition-Based Methods

2.2 Semantic Dependency Parsing
2.2.1 Task Definition
2.2.2 Evaluation Metrics L.
2.2.3 Related Methods

Syntactic Dependency Parsing: Supertag Design Framework
3.1 Imtroduction
3.2 Supertag Design Framework
3.2.1 Supertag Design Framework
3.2.2 Supertag Instantiationo
3.2.3 Supertag Notation
3.3 Dependency Parsers Exploiting Supertags
3.3.1 Automatic Supertag Assignment
3.3.2 Supertag Features for Dependency Parsing

vil

iii

© o N o = -

11
11
11
13
13
15
15
17
17

3.4 Experiment 31

3.4.1 Datasets 31
3.4.2 Setup of Supertagging Experiments 32
3.4.3 Setup of Parsing Experiments 32
3.4.4 Results for Suppertagging 34
3.4.5 Results for Dependency Parsing with Supertags 36
3.4.6 Comparison with Existing Parsers 41
3.5 Related Work 43
3.6 Summary 44
Semantic Dependency Parsing: Multi-Predicate Modeling 47
4.1 Introductiono 47
4.1.1 Background oL 47
4.1.2 Problematic Issue: Argument Omission 48
4.1.3 Key Insight: Multi-Predicate Interaction 49
414 Solution 20
4.1.5 Contributionso 51
4.2 Predicate Argument Structure Analysis 51
4.2.1 Task Setting 51
4.2.2 Target Case Roles and Argument Types 52
4.3 Bipartite Graph Modelso 54
4.3.1 A Predicate-Argument Graph 54
4.3.2 Per-Case Joint Model 56
4.3.3 All-Cases Joint Model 57
4.3.4 Features 58
4.3.5 Inference and Training 60
4.4 Grid RNN Models. 63
4.4.1 Single-Sequence Model 63
4.4.2 Multi-Sequence Modelo 67
4.4.3 Trainingo 70
4.5 Experiment 70
4.5.1 Experimental Settings 70
452 Results. 72
4.6 Related Worko oo 76
4.6.1 Japanese PAS Analysis Approaches 76
4.6.2 Modeling of Multi-Predicate Interactions 7

viil

4.6.3 Neural Approaches

A7 SUMMAry e

5 Conclusion

5.1 Summary
5.2 Future Directions

A First Appendix

A.1 Feature Templates for Supertagging
A.2 Feature Templates for Dependency Parsers

B Second Appendix

B.1 Feature Templates for Bipartite Graph Models
B.2 Hyper-Parameters for Neural Models

Bibliography

List of Publications

1X

81
81
82

83
83
83

87
87
87

89

97

List of Figures

1.1

1.2

2.1
2.2
2.3

3.1

4.1

4.2

4.3

4.4

Example of syntactic and semantic dependencies, i.e., syntactic
dependencies in the above part and semantic dependencies in the
below part.o
Example of two sentences that have the same predicate argument
structure. Although the predicate argument structures (shown in

the below part) are identical, the surface and syntactic realizations

(shown in the above part) are different between the two sentences.

Example of a syntactic dependency graph.
Example of a parsing process with the arc-standard model.
Example of semantic dependencies.

[ustrative example of supertags for the dependency structure. Su-
pertags encode syntactic information, e.g., the head direction and
dependency label. 000

Example of two sentences that have the same predicate argument
structure. Although the predicate argument structures (shown in
the below part) are identical, the surface and syntactic realizations

(shown in the above part) are different between the two sentences.

Example of Japanese predicate argument structures. The upper
edges denote dependency relations, and the lower edges denote case
arguments. “NOM” and “ACC” denote the nominative and accusative
arguments, respectively. “¢;” is a zero pronoun, referring to the
antecedent “%; (man;)”.
Intuitive image of a predicate-argument graph. This graph is factor-
ized into the local and global features. The different line color/style
indicate different cases.
Randomized hill-climbing for per-case joint model.

x1

12
14
16

24

48

4.5
4.6

4.7

4.8

4.9

4.10

Randomized hill-climbing for all-cases joint model. 62
Overview of neural models: (i) single-sequence and (ii) multi-sequence
models.o 63
Overall architecture of the single-sequence model. This model con-

sists of three components: (i) Input Layer, (ii) RNN Layer and (iii)
Output Layer. 64
Example of feature extraction. The underlined word is the tar-

get predicate. From the sentence “f%213/¥ > & &7z, (She ate
bread.)”, three types of features are extracted for the target pred-

icate “BENTz (ate)”. 65
Example of the process of creating a feature vector. The extracted
features are mapped to each vector, and all the vectors are con-
catenated into one feature vector. 66
Overall architecture of the multi-sequence model: an example of
three sequences. 68

xii

List of Tables

3.1

3.2
3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

Various granularity supertag sets. The mark v indicates the su-
pertag set is defined using the function, and the mark x indicates
NOt. . . .
Examples of supertags for the sentence “She kept a cat .”. .
Supertag statistics on Penn Treebank. “PTB-YM” is the Yamada
& Matsumoto dependency scheme [59], and “PTB-SD” is the Stan-
ford dependency scheme [12].
Supertag statistics on Universal Dependencies [41].
Supertagging results on the English Penn Treebank. Each number
indicates accuracy.
Supertagging results on the Universal Dependencies . Each num-
ber indicates accuracy. “UD-Avg.” indicates the macro average
accuracy for each supertag set over all the languages.
English dependency parsing results with gold supertags. Each
number indicates UAS/LAS, in which “UAS” is the unlabeled at-
tachment score and “LAS” is the labeled attachment score.
Multilingual dependency parsing results with gold supertags. Each
number indicates UAS/LAS. 0oL
English dependency parsing results with predicted supertags. Each
number indicates UAS/LAS. oL
Multilingual dependency parsing results with predicted supertags.
Each number indicates UAS/LAS.
F1 scores according to the dependency distances. Each number
is “Baseline-F1/Stag-F1,” “root” indicates the root identification,
and “1/2/3-6/7-" indicates the distance (the number of words)
between a target word and its head.

xiil

3.12

3.13

4.1

4.2

4.3

4.4

4.5

Al

A2

F1 scores according to the dependency distances. Each number
is “Baseline-F1/Stag-F1,” “root” indicates the root identification,
and “1/2/3-6/7-" indicates the distance (the number of words)
between a target word and its head. 42
UAS/LAS of dependency parsers in previous work. 43

Examples of each argument type. ¢; and word; denote the zero
pronoun and its antecedent, respectively. 53
Test F1 scores on the NAIST Text Corpus 1.5. BASELINE is

the reimplemented model of [32], PCJOINT is the Per-Case Joint
Model in Section 4.3.2, ACJOINT is the ALL-Cases Joint Model in
Section 4.3.2, SINGLESEQ is the single-sequence model in Section
4.4.1, and MULTISEQ is the multi-sequence model in Section 4.4.2. 72
Global vs local features on the development set in F'1 score. PCJOINT
and ACJOINT denotes the Per-Case and All-Cases Joint Model,
respectively. Lo 73
Performance comparison for different numbers of layers on the de-
velopment set in F1 score. L is the number of the RNN or Grid
layers. +res. or —res. indicates whether the model has residual
connections (4) ornot (—). 74
Performance comparison for different case roles on the test set in

F1 score. NOM, ACC or DAT is the nominal, accusative or dative

case, respectively. The asterisk (*) indicates that the model uses
external resources. 75

Feature templates for the supertagging models. The notations used
in this table are as follows: feature conjunction= o; x; is the i-th
word in the sentence; w=word form; t=POS tag; stag=supertag. . 84
Feature templates for the arc-standard model. The notations used
in this table are as follows: feature conjunction= o; s;=i-th word
on the top of the stack; b;=i-th word in the buffer; [c=left-most
dependent; rc=right-most dependent; w=word form; t=POS tag;
stag=supertag; dist(p, g)=word distance between p and ¢; nd=1 if
the word has no dependent, otherwise 0. 85

Xiv

B.1 Global feature templates. p;, p; is a predicate, a; is the argument
connected with p;, and a; is the argument connected with p;. Fea-
ture conjunction is indicated by o; ax=auxiliary, rp=relative posi-
tion, vo=voice, rf=regular form, dep=dependency. All the features
are conjoined with the relative position and the case role labels of
the two predicates.

B.2 Hyper-parameters used in the experiments.

XV

Chapter 1

Introduction

Syntactic and semantic analysis are a fundamental problem in natural language
processing (NLP). Dependency-based methods for the analysis have attracted
considerable attention. The popularity stems from their easily interpretable en-
coding of syntactic and semantic structures.

1.1 Dependency Representations and Parsing

Syntactic Dependencies

Syntactic Dependency Representations

A dependency representation consists of words (or lexical elements) linked by bi-
nary asymmetric relations called dependencies [44]. Especially, in this thesis, de-
pendencies which represent syntactic structure are called syntactic dependencies.
A syntactic dependency holds between two words: one is called the dependent
and another is called the head.

e Dependent: a syntactically subordinate word

e Head: the word on which a subordinate word depends

Consider the example sentence of Figure 1.1: “She makes and repairs comput-
ers.” Each arc (drawn in green) above the sentence denotes a syntactic depen-
dency. For example, the arc from “makes” to “She” with subj represents that a

root

EE

RooT She makes and repairs computers

i agent j theme
agent

theme

jﬁ

Figure 1.1: Example of syntactic and semantic dependencies, i.e., syntactic de-
pendencies in the above part and semantic dependencies in the below part.

syntactically subordinate word “She” depends on another word “makes” with the
dependency (grammatical) type “subject” (subj). All the syntactic dependencies
are listed as follows:

(makes, subj, She), (ROOT, root, makes), (makes, cc, and),

(makes, conj, repairs), (makes, obj, computers)

where each triple consists of (head, dependency type, dependent). Note that
the head word ROOT of the word “makes” is a special word, and each word has a
single head word. Such bilexical relations have been used to improve performance
of NLP applications such as machine translation and information extraction.

Syntactic Dependency Parsing

A task of recovering the syntactic structure of a sentence is called syntactic de-
pendency parsing. Most of recent methods for the task use machine learning
techniques. In particular, supervised methods have attracted the most attention.
They presuppose that there is a training set:

Ntrazn

Dtrmn - {(wlﬂ yz>}1

where @x; is an input sentence and y is its syntactic dependency structure an-
notation. Supervised syntactic dependency parsing involves the following two

problems:

e LEARNING:
Given a training set D" learn parameters 6 of a model f, that can be
used to parse new sentences.

e DECODING:
Given the learned model fy and a sentence @, derive a syntactic dependency
tree y for @ according to the model fj.

For these problems, the following two major methods have been studied:

e Transition-based methods:
Use a transition system for mapping a sentence to its dependency tree.

— LEARNING: Learn a model for assigning a higher score to the oracle
next transition at each time step than non-oracle ones.

— DecoDpING: Find the highest scoring transition sequence for the input

sentence.

e Graph-based methods:
Assign scores to substructures of a dependency tree.

— LEARNING: Learn a model for assigning higher scores to substructures
in a correct dependency tree than incorrect ones.

— DecobpING: Find the highest scoring dependency tree for the input

sentence.

Typically, transition-based methods are more computationally efficient than graph-
based methods. By contrast, parsing accuracy of transition-based methods is

lower than accuracy of graph-based methods. To bridge the performance gap,

this thesis tackles to improve transition-based methods.

Semantic Dependencies

Semantic Dependency Representations

Semantic structures are represented in various ways. One major representation is
predicate argument structure. Predicate argument structure encodes the semantic
arguments associated with a predicate. The structure is concerned with events:

Event: who did what to whom, where, when, and how

A predicate is typically a verb and represents what took place. Its semantic
arguments represent the participants in the event, such as who and whom, as well
as further event properties, such as where, when and how.

Consider the example sentence of Figure 1.1: “She makes and repairs com-
puters.” Each of the blue arcs below the sentence is a semantic dependency. A
semantic dependency holds between a predicate and its argument with a seman-
tic role. In this example, there are two predicates: “makes” and “repairs.” The
predicate “makes” has two semantic arguments:

(makes, agent, She), (makes, theme, computers)

where “She” is the “maker” (agent) and “computers” is the “entity made”
(theme). Similarly, the predicate “repairs” also has two semantic arguments:

(repairs, agent, She), (repairs, theme, computers)

where “She” is the “repairer” and “computers” is the “entity repaired.”

The semantic dependency representation has an important property: general-
ization of surface differences. Figure 1.2 shows two example sentences annotated
with syntactic and semantic dependencies. The two sentences have the same
predicate argument structure: the word “John” plays a role of “agent” and
the word “window” plays a role of “theme.” However, the surface and syntactic
realizations of the predicate argument structure are different between the two
sentences. Thus, predicate argument structures can be regarded as a representa-
tion generalized over surface representations. This property is useful for finding
semantically-equivalent sentences with different surface realizetions.

To0t root

obj subj nmod

ANC A s el e

John broke the window The window was broken by John

et L _JLJ

theme theme agent

Figure 1.2: Example of two sentences that have the same predicate argument
structure. Although the predicate argument structures (shown in the below part)
are identical, the surface and syntactic realizations (shown in the above part) are
different between the two sentences.

Semantic Dependency Parsing

A task of recovering the semantic dependencies is called semantic dependency
parsing or semantic role labeling (SRL).! Basically, this task involves the following
four steps:

e Predicate Identification:
Identify predicates in a sentence.

e Predicate Disambiguation:
Select a predicate sense from a set of possible senses.

e Argument Identification:
Identify arguments of a sentence.

e Argument Classification:
Assign a semantic role label to each argument.

Consider the example sentence in Figure 1.1. The first step would be to iden-
tify two predicates “makes” and “repairs.” In the second step, for the predi-
cate “make,” the PropBank [50] defines 20 senses, {make.01, - - - , make.20}, from

'In this thesis, the terms semantic dependency parsing, semantic role labeling and predicate
argument structure analysis are used interchangeably.

which the sense used in the sentence is selected. The third step would be to
identify “She” and “computers” as semantic arguments. In the fourth step, for
the predicate “makes,” the label “agent” is assigned to an argument “She” and
“theme” to the other argument “computers.”

To predict these elements, most of recent methods use supervised learning tech-
niques. Like supervised methods for syntactic dependency parsing, supervised
semantic dependency parsing methods also use a training set to learn model pa-
rameters. A basic approach learns a model for each of the four steps and uses the
learned models to predict each element. Another approach combines argument
identification and classification as one step and jointly predicts arguments and
their labels by using a single model.

This thesis focuses on improving the one-step approach for argument identifi-
cation and classification. Thus, following previous researches [39, 32|, predicate
identification and disambiguation is not the part of the task addressed in this
thesis. In other words, given a sentence and target predicates, we predict argu-
ments and labels.

1.2 Motivations and Problematic Issues

To identify syntactic and semantic dependencies, a variety of techniques have
been proposed. However, there still remains some room for further improvement.

Feature Granularity for Syntactic Dependency Parsing

In syntactic dependency parsing, feature representations, such as surface word
form and part-of-speech (POS) information, play a crucial role when predicting
ambiguous dependency relationships. As features to resolve dependency ambigu-
ities, the surface information of words is sparse while POS information is coarse.
Thus, it is worthwhile to investigate intermediate representations that exist at
a coarser level than the words, yet capture the information necessary to resolve
dependency ambiguities.

Argument Omission in Semantic Dependency Parsing

In semantic dependency parsing, syntactic dependencies between arguments
and predicates are a strong clue for identifying predicate argument structures.
However, some arguments have no direct dependency relation with the predi-
cates, which means that syntactic dependency features are not so effective for
identifying such arguments. A representative example of such arguments is the
ones omitted in the surface form. In particular, in pro-drop languages such as
Japanese, Chinese and Italian, arguments are often omitted in text. Such argu-
ment omission is regarded as one of the most problematic issues facing semantic
dependency parsing [29, 53, 20]. In order to overcome this problem, it is necessary
to explore other types of effective features.

1.3 Solutions

Supertagging for Syntactic Dependency Parsing

To remedy the feature-granularity problem in syntactic dependency parsing,
we design supertags based on dependency structures. Supertags, which are lex-
ical templates extracted from dependency structure annotated corpus, encode
linguistically rich information that imposes complex constraints in a local con-
text [2]. While supertags have often been used in parsing frameworks based
on lexicalized grammars, such as Lexicalized Tree-Adjoining Grammar (LTAG),
Head-driven Phrase Structure Grammar (HPSG) and Combinatory Categorial
Grammar (CCG), they have scarcely been utilized for dependency parsing so far.
This thesis presents a framework of designing supertags specialized for depen-
dency parsing.

Multi-Predicate Modeling for Semantic Dependency
Parsing

To remedy the argument omission problem in semantic dependency parsing,
we capture and exploit multi-predicate interactions, the relations between mul-

tiple predicates and arguments in a sentence. These relations have often been

overlooked because most of existing methods attempted to solve this problem

by identifying arguments per predicate without considering interactions between

multiple predicates and arguments [57, 32]. However, the predicates in a sentence

are semantically related to each other. Thus, exploiting this information could

help to identify predicate-argument structures. In order to capture such multi-

predicate interactions, this thesis presents two approaches, one using bipartite

graphs and the other using grid-type recurrent neural networks.

1.4 Contributions

In summary, we make the following contributions:

We propose a supertag design framework and develop dependency parsers
exploiting various supertag sets.

Performing experiments on Penn Treebank [40] and the Universal Depen-
dencies [41], we demonstrate the utility of our supertags for multilingual
syntactic dependency parsing.

We propose (i) bipartite graph models which jointly identify arguments
of all predicates in a sentence and (ii) grid-type recurrent neural models
which automatically induce features sensitive to multi-predicate interactions
exclusively from the word sequence information.

Performing experiments on the NAIST Text Corpus [28], we demonstrate
the utility of our modeling of the multi-predicate interactions for semantic
dependency parsing.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2: Basics We provide the background knowledge to promote under-
standing of syntactic and semantic dependency parsing. Specifically, we describe
the task settings of syntactic and semantic dependency parsing, evaluation met-
rics, and some methods related to our proposed methods.

Chapter 3: Syntactic Dependency Parsing We propose a framework of
designing supertags. Firstly, we provide the background of supertags and for-
malize our framework. Then, we describe automatic assignment methods of our
proposed supertags. Finally, we show experimental results of parsers exploiting
supetags.

Chapter 4: Semantic Dependency Parsing We propose (i) bipartite graph
models and (ii) grid-type recurrent neural models. Firstly, we provide the back-
ground of Japanese predicate argument structure analysis. Then, we describe our
proposed models. Finally, we show experimental results of our models.

Chapter 5: Conclusion We summarize this thesis and discuss the future
direction of the work.

11

Chapter 2

Preliminaries

This chapter provides the background knowledge to understand syntactic and
semantic dependency parsing. Section 2.1 describes a task setting of syntactic
dependency parsing, evaluation metrics and transition-based methods used in
Chapter 3. Section 2.2 describes two major task settings of semantic dependency
parsing, evaluation metrics and some methods related to our proposed methods
in Chapter 4.

2.1 Syntactic Dependency Parsing

2.1.1 Task Definition

Given a sentence S = wg, wy, - - - , wr, a system predicts a syntactic dependency
graph Gg = (Vs, As):

e GIVEN: a sentence S = wg, Wy, ,Wr
e PREDICT: a syntactic dependency graph Gg = (Vs, Ag)

A sentence is a sequence of tokens'. This means that syntactic dependency
parsing assumes that the tokenization of a sentence has already done. The first

'In this thesis, the terms token and word are used interchangebly.

punct

root obj

Al A

RooT She kept a cat

Figure 2.1: Example of a syntactic dependency graph.

token in the sentence wy is a special root token ROOT. A syntactic dependency
graph Gg and a set of labeled arcs Ag are defined as follows:

VS: {w07w17”' 7wT}
As C Vg x Rx Vg, R={r;}M,

where R = {r;}}1 is a set of syntactic dependency labels. Ag is a set of triples
(w;, r,wj), where w; is a head word, w; is a dependent word and r is a label. A
syntactic dependency graph is a directed rooted tree: the root node wy has no
incoming arc (root property), each node has a single incoming arc (single-head
property), and there are no cycles (acyclicity property) [36].

Figure 2.1 shows an example syntactic dependency graph. This graph can be

denoted as follows:
V = {Roor, She, kept, a, cat, .}
A = {{RooT, root, kept), (kept, subj, She),
(kept, obj, cat), (kept, punct, .), (cat,det, a) }
Note that, following previous work [46, 36|, we assume that every word of

a sentence has a position index, which makes a sentence a sequence of unique
tokens/words. Consider the sentence:

RootTy She; likesy catss andy hes likesg docsy g

This sentence contains two instances of the word “likes” and we think each to be
distinct from the other because their position indices are different. In this thesis,
even though we explicitly denote the position indices, we assume they exist.

12

2.1.2 Evaluation Metrics

To evaluate syntactic dependency parsers, we follow previous researches and
use the standard metrics, attachment scores:

e Unlabeled Attachment Score: The percentage of words that have the
correct head.

e Labeled Attachment Score: The percentage of words that have the
correct dependency label as well as the correct head.

Unlabeled Attachment Score (UAS) gives an evaluation of how many head words
were predicted correctly. Consider the correct dependency triple (kept, obj, cat)
and predicted triple (kept,vmod,cat). Because the head “kept” for the word
“cat” is identical, this triple is regarded as correct although the label is wrong.
In addition to head words, Labeled Attachment Score (LAS) evaluates labels as
well. Thus, the predicted triple is not regarded as correct because the label is

wrong.

2.1.3 Transition-Based Methods

This section describes transition-based methods for syntactic dependency pars-
ing. Transition-based methods are a class of data-driven dependency parsing
methods exploiting machine learning techniques. In particular, this thesis fo-
cuses on supervised methods, which utilize sentences with correct dependency
structure annotation as the input for machine learning.

In this framework, transition-based systems derive dependency trees based on
a parsing model parameterized over a transition sequence from an initial to some
terminal configuration. Given a training set (sentences with dependency structure
annotation), a parsing model is to be induced for parsing a new sentence. Based
on the induced model, a transition system, which is an abstract machine consist-
ing of a set of configurations and transitions between configurations, derives the
optimal dependency tree [36].

This approach was pioneered by Kudo and Matsumoto [37], Yamada and Mat-
sumoto [59], and Nivre [47] for unlabeled dependency parsing. Nivre et al. [4§]
and Nivre and Scholz [49] extended the approach to labeled dependency parsing.

13

punct
root
subj J det

ROOT She kept a cat

Step | Transition Stack | Buffer A

1 SHIFT [RooT] | [She kept a cat .] | 0

2 SHIFT [RooT She] | [kept a cat .|

3 SHIFT [ROOT She kept] | [a cat .]

4 LEFT-ARC(subj) [ROOT kept] | [a cat .] A U (kept, She)
5 SHIFT [ROOT kept a] | [cat .|

6 SHIFT [ROOT kept a cat] | [/]

7 LEFT-ARC(det) [ROOT kept cat] | [] A U (cat, a)

8 RIGHT-ARC(obj) [RoOOT kept] | [] A U (kept, cat)
9 SHIFT [ROOT kept .| | []

10 | LEFT-ARC(punct) [RooT kept] | [] A U (kept, .)
11 LEFT-ARC(root) [RooT] | |] A U (Roor, kept)

Figure 2.2: Example of a parsing process with the arc-standard model.

Instead of the greedy search used in the previous systems, beam search was ap-
plied to dependency parsing by Zhang and Clark [63, 64]. Of the variations of
transition-based systems, arc-standard and arc-eager are representative systems,
and the implementation MALTPARSER has been widely used so far [46]. In this
thesis, we employ the arc-standard model [45].

In the arc-standard model, the configuration ¢ = (s,b, A) consists of a stack
s, buffer b, and set of dependency arcs A. The initial configuration for an input
sentence S = wg,wy,- - ,wr is s = [ROOT|, b = [wy,--- ,wy|, and A = 0. A
configuration c is terminal if the buffer is empty and the stack contains the single
node ROOT, and the parse tree is given by A.. Denoting s; (i = 1,2,---) as the
itp, word on the top of the stack, and b; (j = 1,2,---) as the j;, element on the
buffer, the arc-standard system defines the following three types of transitions:

14

e LEFT-ARC: adds an arc s; — sy and removes s, from the stack under the
precondition | s |> 2.

e RIGHT-ARC: adds an arc sy — s; and removes s; from the stack under the

precondition | s |> 2.

e SHIFT: moves by from the buffer to the stack under the precondition | b [> 1.

Consider the sentence “She kept a cat .” in Figure 2.2. At step 6, LEFT-ARC
is chosen as the next transition, so that the second top word on the stack “a”
(s2) depends on the top word “cat” (s;) and is removed from the stack. At step
7, RIGHT-ARC is chosen as the next transition; hence, the top word on the stack
“cat” (s1) depends on the second top word “kept” (s;) and is removed from the
stack. At step 8, SHIFT is chosen as the next transition, and the first word in the
buffer “.” (by) is removed from the buffer and moved to the stack.

As a result of such transitions, the goal of a transition-based system is to
predict a correct transition sequence based on each configuration. Specifically,
the system chooses the most probable next transition at each configuration based
on scores. The scores are computed as the dot product of the weight vector and
feature vector. The feature vector is made by predefined features. The features
are represented using some lexical information based on the current configuration,

such as the word forms and POS tags of some words on the stack/buffer.

2.2 Semantic Dependency Parsing

2.2.1 Task Definition

A task of recovering the predicate argument structure of a sentence is called
semantic dependency parsing or semantic role labeling (SRL). There are two ma-
jor task settings tackled by many researchers: one is adopted in the CoNLL-2008
shared task [56] and the other is in the CoNLL-2009 shared task [19]. This section
describes the two task settings, in particular, identification of predicate argument

relations.?

2Predicate sense disambiguation is out of scope of this thesis because we focus on identifi-
cation of predicate argument structures.

15

She makes and repairs computers

i agent \ j theme

kagent

theme

Figure 2.3: Example of semantic dependencies.

The CoNLL-2008 Shared Task

Given a sentence S = wy, - - - , wy, a system identifies predicate argument relations
_ N

Y - {<p7 r, a>i}1 .
e GIVEN: a sentence S = wq, -+ , Wy

e PREDICT: a set of predicate argument relations Y = {(p,r, a); }}¥,

where each triple consists of a predicate p € V&, its argument a € V™ and a
label r € R:

ngrd = {ph”' 7pM} g S

V;rg:{al,... ’aN}gS
R={r iiil

Thus, a predicate argument triple is defined in the following space:
(p,r,a) € Vgrd X R x Vg

Figure 2.3 illustrates an example. There are two predicates: “makes” and
“repairs.” The predicate “makes” has two arguments: one is “She” with the
agentive role and the other is “computers” with the thematic role. The other
predicate “repairs” also has the same arguments. To sum up, a system is expected
to return the following triples for this sentence:

{ (makes, agent, She), (makes, theme, computers),

(repairs, agent, She), (repairs, theme, computers) }

16

The CoNLL-2009 Shared Task

The main difference between the CoNLL-2008 and CoNLL-2009 shared tasks is
whether or not to provide target predicates. Specifically, in the CoNLL-2009
shared tasks, given a sentence S = wy,--- ,wr and the target predicates Vé”d =
{p1, - ,pm}, asystem identifies arguments a with their labels r for each predicate
p. In other words, predicates do not have to be identified. This setting is also
adopted in Japanese predicate argument structure analysis. Thus, the task setting
in Chapter 4 assumes that target predicates are given and predicate identification
is not the part of the task.

2.2.2 Evaluation Metrics

To evaluate semantic dependency parsers, the most widely used metric is the

F1 score, which is the harmonic mean of precision and recall:

e Precision: The percentage of triples (w,,r,w,) in the system output that
were correct.

e Recall: The percentage of triples (w,,r, w,) annotated in a dataset that
were correctly identified.

2 x Precision x Recall
e F1 score:

Precision + Recall

For example, a system predicted 5 triples for a sentence and a target predicate,
and if 3 out of the 5 triples were correct, precision is 3/5 = 0.60. Similarly, if 3
out of 4 triples annotated in a dataset were correctly identified by the system,

. - : 2x0.60x0.75 _
recall is 3/4 = 0.75. Thus, F1 score is calculated as =552 = 0.67.

2.2.3 Related Methods

To promote understanding of our proposed methods in Chapter 4, this section
describes some related methods.

17

A Basic Pipeline Proceudure
Identification of predicate argument relations involves the following tree steps:

1. Predicate Identification:

Identify predicates in a sentence.

2. Argument Identification:
Identify the arguments of a predicate.

3. Argument Classification:
Assign a semantic role label to each argument of a predicate.

The first step is to identify predicates in a sentence S = wy, - -+ , wr:
V= fr(s)

where a predicate identification model fP* returns a set of predicates in a sen-
tence Vé?rd. For example, the sentence in Figure 2.3 contains the following two
predicates: “makes” and “repairs.” Thus, the model fP! is expected to return the
following set:

VI = {makes, repairs}

Then, the second step is to identify semantic arguments of each predicate p €
yrrd.
Vs = foi(p, 5)

For example, for the predicate “makes” in Figure 2.3, the model f* is expected
to return the following set:

vy = {She, computers}

makes

Finally, the third step is to assign a semantic role label to each pair of a predicate
p € VI and its argument a € V.

T:fac(p’G/’S)

For example, for the predicate “makes” and its argument “She” in Figure 2.3,
the model f% is expected to return the following label:

r = agent

18

Now we can construct a predicate argument triple:
(p,r,a) = (makes, agent, She)

Other predicate argument triples are predicted in the same manner.

The Top English System in the CoNLL-2009 Shared Task

A variety of methods for semantic dependency parsing have been proposed.
Among them, we describe methods used for the top system [4] that achieved
the best result for English in the CoNLL-2009 shared task® [19]. In this task,
given a sentence and the target predicates, systems predict predicate argument
triples {(p,7,a)r}Y. The top system adopts a pipeline procedure, which firstly
identifies arguments (Argument Identification) and then assigns a semantic role
label for each argument (Argument Classification).

For argument identification, they use a binary classifier to calculate the prob-
ability that a word in the sentence is an argument. Given a sentence S =
wy, -+ ,wr and the target predicates vgfrd = {p:}¥, the classifier f% calculate
the probability:

P(w; = arglS, Vgrd) = f"(wy, S, Vgrd) — sigmoid(w - ¢“ (wy, S, Véﬂd))

where w is a weight vector and ¢(wy, S) is a feature vector. If the probability is
greater than 0.5, the system determines that the word is an argument.

For argument classification, they use a multiclass classifier. Fach class r cor-
responds to a certain label. Given a sentence S = wy, -+ ,wr, a predicate p and
an argument a, the classifier f%¢ calculate the probability:

exp(w - ¢“(r, 5, p, a))
> wer eXp(W - @*(r', 5, p,a))

P<T|S7p7 a) = fac(r7 S7p7 a) =

The class with the highest probability 7 is selected as the resulting label:

7 = argmax P(r|S, p, a)
reR

3Closed Challenge, SRL-only Task, Semantic Labeled F1.

19

By predicting a label 7 for each pair of a predicate p € Vgrd and its argument
a € V§", we can obtain a semantic dependency triple (p,r, a).

A Basic Method for Japanese PAS Analysis

One of the methods employed for Japanese predicate argument structure analysis
is a pointwise method [32], which is used as a baseline in Chapter 4. This method
selects the most probable argument a for a predicate p and label r:

(p,r,a) = argmax P(a|S,r, p)

arg
a€Vy

where the argument with the highest probability a is selected from a set of candi-
date arguments V§"? = SU{NONE}. The special argument NONE is expected to
be selected when the predicate p has no argument with a label . The probability

P(al|S,r,p) is defined as follows:

exp(w - ¢(a,r, S,p))
Za’GV;W eXp<W : ¢(a/7 T, Sa p))

P(a|S,r,p) =

This simple method can achieve high-performance depending on feature engineer-
ing. In particular, syntactic features, related to syntactic dependency relations
and POS tags, are a key to high-performance. Recent methods, however, yield
good results without such features by using neural networks.

A State-of-the-Art Method Using RNNs
Zhou et al. [67] achieved the state-of-the-art result without syntactic information
in the English SRL task. Our proposed method in Section 4.4 has been inspired
by their method.

Their method uses stacked bidirectional RNNs (Bi-RNN) [54, 16, 17]. The
overall architecture consists of the following three components:

e Input Layer: Map each word to a feature vector representation.
e RNN Layer: Produce high-level feature vectors using Bi-RNNs.

e Output Layer: Compute the probability of each label for each word using
the softmax function.

20

Given an input sentence S = wy, - - - ,wr and a target predicate p, the input layer
maps each word w, to a d,-dimensional vector x, € R%. This vector representa-

tion is constructed by concatenating the following four types of vectors:
x; = X" @ x" @ xS g x|k (2.1)
Each of the three vectors is based on the following atomic features:

ARG: Word index of each word.
PRED: Word index of the target predicate.
CTX: Word index of the target predicate and the C' words around the predicate.

MARK: Binary index that represents whether or not the word is included in CTX-P.

For the ARG feature, a word index z*?"¢ for each word w is extracted from a set
of word indices V. Similarly, for the PRED feature, we extract word index o
for the predicate p. The CTX feature consists of each word index for the C' words
taking the target predicate at the center, where C' denotes the window size. The
MARK feature is a binary value {0, 1} that represents whether or not the word is
included in the C' context words.

Then, using these feature indices, each feature vector is looked up from each
embedding matrix. Each embedding matrix stores column vectors, each of which
corresponds to each feature index. For example, an argument feature vector x*™9
is looked up from a word embedding matrix E9 € R¥"“*M The resulting
vectors are concatenated as a feature vector x; (Eq. 2.1).

Each feature vector x; is multiplied with a parameter matrix W,:

hgo) = szt

The vector h§°) is given to the first RNN layer as input.

In the RNN layers, feature vectors are updated recurrently using Bi-RNNs.
Bi-RNNs process an input sequence in a left-to-right manner for odd-numbered
layers and in a right-to-left manner for even-numbered layers. By stacking these
layers, we can construct the deeper network structures.

Stacked Bi-RNNs consist of L layers, and the hidden state in the layer ¢ €
(1,---, L) is calculated as follows:

0— Y4
o [99mY n?) (¢=o0dd)
ht - (£) (1, (£—1) @)
g (ht 7ht+1> (5=eVen)

21

Both of the odd- and even-numbered layers receive hg_l), the ¢t-th hidden state
of the ¢ — 1 layer, as the first input of the function ¢, which is an arbitrary
function. For the second input of ¢\©, odd-numbered layers receive hﬁ)l, whereas

even-numbered layers receive hgi)l. By calculating the hidden states until the

L-th layer, we obtain a hidden state sequence thT) = m",.. h{*)). Using each
vector h,EL), we calculate the probability of labels for each word in the output
layer.

In the output layer, a label sequence probability y,.7 is calculated using condi-

tional random fields (CRF) [38]:

P(y1.r|h{%) = CRF(h{, yi.r)

where thT) is a sequence of vector representations propagated from the last RNN

layer. Each element y; of yi.7 is a label for a word w,. The label sequence with
the maximum probability is output as a result.

A variant of this method has been proposed by He et al. [23]. They use the
same architecture as the one mentioned above but simplify the features. By
using sophisticated learning methods (e.g. the RNN dropout and orthogonal
initialization), their method achieves the state-of-the-art results.

22

23

Chapter 3

Syntactic Dependency Parsing:
Supertag Design Framework

3.1 Introduction

Data-driven dependency parsing approaches, which make use of machine learn-
ing, have achieved great success in the automatic syntactic analysis of natural
language [36]. In data-driven approaches, transition-based dependency parsing,
which utilizes a deterministic shift-reduce process for structural prediction, has re-
ceived considerable attention because of its low time complexity and the freedom
to design features based on a rich context [66]. In particular, the feature definition
is the key to the high performance of transition-based dependency parsers.

As feature representations, lexical information, including surface word form
and part-of-speech (POS) information, plays a crucial role when predicting am-
biguous dependency relationships. However, as features to resolve dependency
ambiguities, the surface information of words is sparse while POS information
is coarse. Therefore, it is worthwhile to investigate intermediate representations
that exist at a coarser level than the words, yet capture the information necessary
to resolve dependency ambiguities [35].

To improve syntactic dependency parsing, we focus on defining supertags. Su-
pertags are tags extended from the notion of POS tags and represent rich syntactic
information [43], such as the head direction and dependency label. Figure 3.1 il-
lustrates an example of our dependency-based supertags. In this example, each
supertag encodes the head direction with the dependency label and dependent

direction.

punct

root
[subJ \
WORD RooT She kept cat
POS - PRON VERB DET NOUN PUNCT
STAG - subj/R root+L.R det/R obj/L+L punct/L

Figure 3.1: Illustrative example of supertags for the dependency structure. Su-
pertags encode syntactic information, e.g., the head direction and dependency
label.

While supertags can arbitrarily be designed, it is important to keep the ad-
equate balance between the supertag granularity and predictability to improve
parsing performance. Increasing the granularity of supertags to capture more
fine-grained syntactic information results in large tag sets, which tend to be more
difficult to predict automatically. To improve dependency parsing performance
by utilizing supertags, it is necessary to design supertags that have the following
two properties: (i) easy to be automatically assigned to the sentence and (ii)
expressive enough to resolve dependency ambiguities.

In this chapter, we present a supertag design framework that allows us to de-
sign supertag sets at various granularity levels. First, we formalize the supertag
design framework and instantiate various granularity-level supertag sets. To in-
vestigate the appropriate granularity or design of supertags needed to improve
parsing performance, we build various granularity-level supertag sets based on the
framework. Then, using the supertag sets as features, we perform experiments on
multilingual dependency parsing. For English dependency parsing with the su-
pertags, we perform experiments on the Penn Treebank data set. In addition, the
utility of the supertags for multilingual dependency parsing is an open question,
so we also perform experiments on Universal Dependencies data set (UD; release
1.3).} The experimental results show that appropriately designed supertags are
effective for dependency parsing.

In summary, the main contributions of this chapter are as follows.

Thttp://universaldependencies.org/

24

1. We present a supertag design framework.

2. We develop transition-based dependency parsers exploiting various supertag
sets.

3. We demonstrate the utility of our supertags for multilingual dependency
parsing and suggest which syntactic clues should be incorporated into su-
pertags.

3.2 Supertag Design Framework

The main challenge when designing supertags is to find the right balance be-
tween granularity and predictability. Ideally, we would like to increase the gran-
ularity of the supertags to capture finer-grained syntactic information, but large
tag sets tend to be more difficult to predict automatically. This section provides
a supertag design framework.

3.2.1 Swupertag Design Framework

Figure 3.1 shows an example sentence and its supertags. Supertags are based
on head and dependent information to capture local syntactic context. Thus,
we assume that there is a set of labeled directed arcs Ag for a sentence S =
wo, Wy, - - ,wp. The labeled directed arcs of the example sentence is denoted as

follows:

A = {{RoOT, root, kept), (kept, subj, She),
(kept, obj, cat), (kept, punct, .), (cat,det, a) }

where a triple (w;,r, w;) represents a dependency relation from head w; to de-
pendent w; labeled with relation type r. Using such syntactic information, we
design supertag sets at various granularity levels.

Specifically, a supertag of a word w.stag is defined as follows:

w.stag = STAG(w) (3.1)

25

where the function STAG(w) can arbitrarily be defined and returns a supertag.
In this thesis, we define the function based on the syntactic information of the
head and dependents:

STAG(w) = (HEAD(y,,), DEP(D,,)) (3.2)
where the argument y,, of the function HEAD(+) is a dependency triple:
Y = (h,r,w) € A

Based on the triple, the function HEAD(-) returns the head-related information.
Also, the argument D,, of the function DEP(+) in Equation 3.2 is a set of depen-
dency triples that have w as a head:

D, = {(h,r,d) € Alh = w}

Based on this set, the function DEP(-) returns the dependent-related information.
The variability of syntactic granularity can be represented by the definitions of
HEAD(y,,) and DEP(D,,).

3.2.2 Supertag Instantiation

Using the above-mentioned generic supertag design framework, we instantiate
a variety of supertag sets. As a basic instantiation, we define the functions
in Equation 3.2 using the information of dependency labels and head directions
between a word and its head/dependents.

As the head information, we define the function HEAD(y,,) as follows:

HEAD(y,,) = (HEADLABEL(y,,), HEADDIR(y,,)) (3.3)

where HEADLABEL(y,,) returns the dependency label r from the triple y, =
(h,r,w). HEADDIR(y,,) returns the direction of the head word h relative to the
target word w. That is, this function returns either of the three values: left (L),
right (R) or NULL. If a word w has “ROOT” as its head, we consider it as having
no direction, so NULL is returned.

In addition to the head information, we add dependent information by defining
the function DEP(D,,) as follows:

Dep(D,,) = (HASDEP(D,,, L), DEPLABEL(D,,, L),
HASDEP(D,,, R), DEPLABEL(D,,, R)) (3.4)

26

HEADLABEL HEADDIR HASDEP DEPLABEL
v

STAG-A
STAG-B
STAG-C
STAG-D
STAG-E
STAG-F
STAG-G

SN NN RN
SN RN NEN
X N X X X NN

X X X NN X

Table 3.1: Various granularity supertag sets. The mark v" indicates the supertag
set is defined using the function, and the mark x indicates not.

where HASDEP(D,,, L/ R) returns TRUEp if a word has any left (L) or right (R)
dependents; otherwise, it returns FALSE. DEPLABEL(D,,, L/R) returns a set of
the dependency labels of obligatory left /right dependents. In this thesis, we define
obligatory dependents as the ones that have one of the following dependency
relation labels: “SUB,” “OBJ,” “PRD,” or “VC” in the Penn Treebank [40], and

FRANAA MW 7w

“nsubj,” “nsubjpass,” “dobj,” “iobj,” “csubj,” “csubjpass,” or “ccomp” in
Universal Dependencies [41].

In previous work on supertag design, Foth et al. [14] defined DEP(:) as the
function that encodes the order of dependents as well as the dependent labels.
However, we do not consider the order to avoid increasing the number of tags.

Based on Equations 3.3 and 3.4, we define various granularity-level supertag
sets by ablating each function. Table 3.1 shows our seven supertag sets. STAG-
A is the most basic instantiation using all the functions. Ablating the function
DEPLABEL from STAG-A, we can instantiate STAG-B, which encodes no de-
pendency labels for obligatory dependents. Similarly, other supertag sets are

instantiated by ablating other functions.

3.2.3 Supertag Notation

Supertag notations for each supertag set can be defined arbitrarily. As an

example, we introduce our notations for each supertag set, shown in Table 3.2.

27

She kept a cat .
STAG-A subj/R root+subj/L_obj/R det/R obj/L+L punct/L

STAG-B subj/R root+L_R det/R obj/L+L punct/L
StAaG-C subj/R root+subj_obj det/R obj/L punct/L
STAG-D subj root+subj_obj det obj punct
STAG-E subj/R root det/R obj/L punct/L
STAG-F R LR R L L
STAG-G subj root det obj punct

Table 3.2: Examples of supertags for the sentence “She kept a cat .”.

Consider the word “kept” in the example sentence in Figure 2.2. In the supertag
set STAG-A, the word “kept” is assigned the following supertag:

kept.stag = root+subj/L_obj/R

where the part before “+” specifies the head information (“root”) and the part
afterwards specifies the dependent information (“subj/L_obj/R”).

To create this tag, we first encode the head information of “kept” using the
functions in Equation 3.3:

HEADLABEL (Ykept = (ROOT, root, kept)) = root
HEADDIR (Ykept = (ROOT, root, kept)) = NULL
where the function HEADLABEL(-) returns the dependency label “root” and the

function HEADDIR(+) returns the head direction “NULL.” As a result, we obtain

the following head information:
HEAD(ykept = (ROOT, root, kept)) = (root, NULL)

where the head information (root, NULL) is converted into the supertag notation
as “root,” in which “NULL” is not literally specified. Note that if the direction
is “L” (or “R”), we convert it as “root/L” (or “root/R”).

We then encode dependent information using the function DEP(D,,) in Equa-
tion 3.4. The argument of the function for the word “kept” is as follows:

Dyept = {(kept, subj, She), (kept, obj, cat), (kept, punct, .)}

28

where Dy, is a set of triples that consists of the head “kept” and its dependents
with labels. Based on this set, the following dependent information is calculated:
HASDEP(Dyept, L) = TRUEL
HASDEP(Dyept, R) = TRUER
DEPLABEL(Djept, L) = {subj}
DEPLABEL(Dyept, R) = {obj}
where HASDEP(-) returns a boolean variable, i.e., TRUEL p or FALSE./r. Also,

DEPLABEL(+) returns a set of labels of all the left /right dependents.? As a result,
we obtain the following dependent information:

DEP(Dyept) = (TRUEL, {subj}, TRUER, {obj})

We convert this information into the supertag notation as “subj/L_obj/R.”
Finally, concatenating the obtained head and dependent information, we obtain
the following supertag:
root+subj/L_obj/R

where “+” indicates the boundary of the head and dependent information. De-
pending on each supertag set, different syntactic information is ablated from
STAG-A and encoded for each supertag, as shown in Table 3.2.

3.3 Dependency Parsers Exploiting Supertags

To exploit supertags in transition-based dependency parsing systems, we need
to automatically assign them to each word. We conduct the automatic assign-
ment of our designed supertags by adopting the same approach used in sequence
labeling tasks such as POS tagging.

3.3.1 Automatic Supertag Assignment

We build a supertagger to assign a supertag u € U to the word w; in a sentence

S =wy, -+ ,wr in a left-to-right manner, based on the following equation:
4 = argmax w - ¢(w;,u,S) (3.5)
uelU

2For example, if the target word has two left dependents with the labels “dobj” and “iobj,”
DEPLABEL(-) returns {dobj, iobj}.

29

where the score of supertag u is computed by the dot-product of the weight vector
w and feature vector ¢. The highest scoring supertag u is picked for the target
word w;. The weight vector w is trained on a training set. The feature vector ¢
is defined by using feature templates. We extract features from a 7-word window
(the feature window) surrounding the target word w; using the feature templates
shown in Table A.1.

We define UNIGRAM, BIGRAM, and HISTORY feature templates. As the UNI-
GRAM feature templates, we use the surface word form and POS tag of each word
in the feature window. As theBIiGRAM feature templates, we define conjunctive
features by concatenating the surface word form and POS tag information of
some specific pairs of the words in the feature window. In addition to these fea-
ture templates, we dynamically utilize the supertags, which have already been
predicted during the tagging process, as features. When assigning a supertag to
the target word w; in the feature window, the previous words, such as w;_; and
w;_o, have already been assigned a supertag, which is expected to be helpful for
predicting the supertag of the target word. Hence, we define the HISTORY feature
templates by combining those supertags assigned to w;_; and w;_o with the POS
tags or surface word forms.

A supertagging model instantiates the features from those feature templates.
Using the supertags automatically predicted by the supertagging model, we con-
duct dependency parsing.

3.3.2 Supertag Features for Dependency Parsing

We employ the arc-standard model as a transition-based dependency parsing
system. Specifically, the system chooses the highest scoring next transition ¢ at
each configuration ¢ based on the following equation:

t = argmax w - ¢(t,c) (3.6)
teT

where the score of transition ¢ is computed by the dot-product of the weight
vector w and feature vector ¢. The highest scoring transition ¢ of the possible
transition set T is picked up as the next transition. The weight vector is trained
on a training set. The feature vector is defined with the feature templates shown
in Table A.2. Each feature template is defined with information drawn from the

30

feature window, which consists of the top three words (or partial structures) on
the stack and the first three words on the buffer.

UNIGRAM, BIGRAM, and STRUCTURAL features are based on the features used
in [15] and [26] with some modifications, which we call base features. By contrast,
UNISTAG and BISTAG are new feature templates related to supertags, which we
call supertag features.

For the UNISTAG features ((p.stag)), we use the supertag of each word p within
the feature window. To consider a broader context, we define the BISTAG fea-
tures. For some specific pairs (p,q) of the words within the feature window,
we set the conjunctive features as BISTAG, such as conjunction of the two su-
pertags ((p.stag o q.stag)). To investigate the utility of these supertag features,
we perform experiments.

3.4 Experiment

This section presents experiments and results for supertagging and transition-
based dependency parsing exploiting supertags.

3.4.1 Datasets

We performed experiments on English dependency parsing and multilingual
dependency parsing.

English Dependency Parsing

For English dependency parsing, we performed experiments on the Wall Street
Journal part of the Penn Treebank (PTB) dataset [40]. We converted the con-
stituent trees into two types of dependency format:

e Yamada and Matsumoto head rules (PTB-YM) [59] using Penn2Malt?
e Stanford dependencies (PTB-SD) [12] using the converter?

We adopted the standard splits, using sections 2-21 for training, section 22 for
development, and section 23 for testing. We assigned POS tags to the training

3http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.jar
4http:/ /nlp.stanford.edu/software/stanford-dependencies.shtml

31

data by ten-fold jackknifing, following [26]. The development and test sets were
automatically tagged by the POS-tagger trained on the training set.

Multilingual Dependency Parsing
For multilingual dependency parsing, we used the Universal Dependencies (UD;
release 1.3) data set [41]. This data set has cross-linguistically consistent treebank
annotation for many languages. The annotation scheme is an extension of the
Stanford dependencies [12, 13, 11], Google universal part-of-speech tags [52], and
the Interset interlingua for morphosyntactic tagsets [62].

For the target languages, we chose six languages from different language branches:

e Arabic (AR) from the Semitic languages

e German (DE) from the Germanic Languages

Spanish (ES) from the Italic languages

Indonesian (ID) from the Malayo-Polynesian languages

Russian (RU) from the Slavic languages
e Chinese (ZH) from the Sinitic languages

In some language data sets, there are no fine-grained POS tags. In that case, we
used the coarse-grained ones.

3.4.2 Setup of Supertagging Experiments

To train supertagging models, we used the averaged perceptron [9] with max
violation updates [25]. The number of iterations was to 10. For decoding, we
exploited beam search with a beam width of 8 Tables 3.3 and 3.4 show the
size of each supertag set in the Penn Treebank and Universal Dependencies,
respectively.

3.4.3 Setup of Parsing Experiments

To train parsing models, we used the averaged perceptron with max violation
updates in the same manner as the supertagging experiments. The number of

32

PTB-YM PTB-SD

STAG-A 321 896
STAG-B 79 231
STAG-C 165 528
STAG-D 127 412
STAG-E 21 85
StAG-F 12 12
STAG-G 12 49

Table 3.3: Supertag statistics on Penn Treebank. “PTB-YM” is the Yamada &
Matsumoto dependency scheme [59], and “PTB-SD” is the Stanford dependency
scheme [12].

UD-AR UD-DE UD-ES UD-ID UD-RU UD-ZH UD-Avg.
STAG-A 998 916 1209 680 655 630 847.50

STAG-B 183 227 216 186 233 175 203.33
STAG-C 022 431 5958 370 306 360 424.50
STAG-D 442 321 445 305 237 300 341.67
STAG-E 57 64 61 95 74 64 62.50
STAG-F 12 11 11 11 11 11 11.17
STAG-G 31 33 32 30 39 38 33.83

Table 3.4: Supertag statistics on Universal Dependencies [41].

iterations is set to 20. For decoding, we exploited beam search with a beam
width of 16. To evaluate the utility of the supertags for arc-standard dependency
parsers, we used the parsers without supertags as the baseline and compared them
with the parsers with supertags. The supertags used for the parsers were auto-
matically predicted. Following the same procedure as automatic POS tagging,
we assigned the proposed supertags to the training data by ten-fold jackknifing.
For the development and test set, we automatically assigned the supertags using
a supertagger trained on the whole training set.

33

PTB-YM PTB-SD
STAG-A 88.05 87.75
STAG-B 88.94 88.92
STAG-C 89.71 89.67
STAG-D 90.77 90.84
STAG-E 90.56 90.71
STAG-F 91.61 91.81
STAG-G 91.60 91.86

Table 3.5: Supertagging results on the English Penn Treebank. Each number

indicates accuracy.

3.4.4 Results for Suppertagging

Tables 3.5 and 3.6 show the accuracies of automatic supertagging in English and
other languages, respectively. These results suggest that what kind of syntactic
information is easy or difficult to predict as sequential labeling.

In English, the results of STAG-F or STAG-G have the highest accuracy. This is
consistent with the results in other languages in UD. As Table 3.1 shows, STAG-F
encodes the head directionality and left /right dependent possession information,
and STAG-G encodes the dependency label on the edge between the target word
and its head. Generally, because smaller tag sets tend to be easier to predict
than larger ones, the accuracies of the two supertag sets are higher than others.
However, in the six languages of UD, although STAG-F is smaller than STAG-
G, the average STAG-G accuracy (88.44% on average for the six UD languages)
is higher than the average STAG-F accuracy (87.35%). This suggests that it
is not always difficult to predict larger tag sets and, furthermore, the prediction
complexity changes according to what information the target tag set encodes. The
results for STAG-F suggest that the syntactic information encoded by STAG-F
is more difficult to predict as sequential labeling task than the head dependency
labels encoded by STAG-G in the majority of languages.

Similarly, regardless of the tag set size, the prediction accuracy of STAG-
B (82.45/88.94/88.92% for UD-Avg./PTB-YM/PTB-SD) is lower than STAG-

34

UD-AR UD-DE UD-ES UD-ID UD-RU UD-ZH UD-Avg.
STAG-A 79.58 76.17 83.13 80.51 78.74 82.03 80.03
STAG-B 82.98 78.47 85.43 82.94 81.10 83.80 82.45
STAG-C 83.60 79.78 86.14 84.18 83.22 83.60 83.42
Stag-D 85.04 84.89 88.00 86.48 86.20 84.27 85.81
STAG-E 87.18 82.25 88.32 87.16 85.73 85.60 86.04
Stag-F 89.20 83.76 89.32 87.99 85.99 87.85 87.35
STAG-G 88.77 87.45 90.31 89.24 88.60 86.25 88.44

Table 3.6: Supertagging results on the Universal Dependencies . Each number
indicates accuracy. “UD-Avg.” indicates the macro average accuracy for each

supertag set over all the languages.

C accuracy (83.42/89.71/89.67% for UD-Avg./PTB-YM/PTB-SD). These two
tag sets differ with respect to the encoded syntactic information for dependents.
STAG-B encodes the left /right dependent possession information for each target
word regardless of whether the dependents are adjunct or core arguments. In
contrast, STAG-C encodes the dependency labels only if the dependents are core
arguments. This suggests that whether the syntactic information relevant to ad-
junct arguments is encoded or not cause performance variation. Because STAG-A
encodes both the dependent possession and core argument labels as well as the
head information, it is more difficult to predict than STAG-B and STAG-C.

STAG-D is built by ablating the head directionality information from STAG-C,
so that STAG-D is smaller than STAG-C, which leads to a performance boost
relative to STAG-C. Similarly, STAG-E is built by ablating the dependency labels
for core arguments from STAG-C and hence encodes only syntactic information
relevant to heads. The performance boost relative to STAG-C is also observed.
Comparing STAG-D with STAG-E, a noticeable difference in average accuracy is
not observed, but the results within each language differ. For instance, in German
(UD-DE), the accuracy for STAG-D is higher by over 2.5 points than STAG-E. On
the contrary, in Arabic (UD-AR) and Chinese (UD-ZH), the accuracy for STAG-E
is higher by around 1-2 points than that for STAG-D. A detailed investigation of
this difference is a line of interesting future work.

35

PTB-YM PTB-SD
BASELINE 92.60/91.31 92.00/89.33
STAG-A 99.06/99.01 98.47/98.27
STAG-B 99.10/99.08 98.65/98.55
STAG-C 97.77/97.77 96.88/96.78
StAc-D 98.44/98.44 96.10/96.00
STAG-E 98.45/98.43 96.88/96.76
Stac-F 98.77/97.10 98.65/95.23
STAG-G 97.65/97.65 96.17/96.15

Table 3.7: English dependency parsing results with gold supertags. Each num-
ber indicates UAS/LAS, in which “UAS” is the unlabeled attachment score and

“LAS” is the labeled attachment score.

3.4.5 Results for Dependency Parsing with Supertags

To investigate the utility of the supertag features in transition-based depen-
dency parsing systems, we report parsing results in various experimental settings
and discuss them in detail.

Accuracy of Dependency Parsing with Gold Supertags
The utility of supertag features for dependency parsing changes according to each
supertag set and supertagging accuracy. In order to check whether the proposed
supertag sets and supertag feature templates capture syntactic information that
is helpful for dependency parsing, we performed a parsing simulation experiment
in which the condition where an arc-standard parser knows the correct (gold)
supertags. In this simulated experiment, the arc-standard model receives the
correct supertags and utilizes them as features. Tables 3.7 and 3.8 show the
unlabeled attachment scores (UAS) and labeled attachment scores (LAS) of the
baseline parsers and the supertag-integrated parsers.

In English dependency parsing (PTB-MT for Yamada and Matsumoto head
rules and PTB-SD for Stanford dependencies), the unlabeled attachment scores
of STAG-A/B/F reached around 99%, which indicates that the derived depen-

36

UD-AR UD-DE UD-ES UD-ID
BASELINE 80.51/74.80 84.53/77.97 86.43/81.62 84.01/78.08
STAG-A 90.50/89.62 95.03/94.22 95.27/94.87 93.40/92.37
STAG-B 90.95/90.50 95.71/95.05 95.86/95.65 94.17/93.63
STAG-C 87.13/86.71 90.52/90.12 93.06/92.93 89.66/89.16
STaGc-D 88.41/88.31 93.62/93.39 94.23/94.23 91.17/91.09
STAG-E 88.54/88.15 93.36/92.95 94.00/93.86 90.85/90.46
STAac-F 90.67/83.41 96.78/83.00 95.52/89.83 94.44/87.20
STAG-G 86.70/86.63 90.61/90.39 92.88/92.86 89.74/89.61

UD-RU UD-ZH UD-Aveg.

83.37/77.32 83.35/79.48 83.70/78.23

92.69/91.61 96.20/95.42 93.85/93.02

93.74/93.03 96.76/96.27 94.53/94.02

89.38/88.99 95.37/94.97 90.85/90.48

91.02/90.75 95.64/95.47 92.35/92.21

90.85/90.31 95.36/94.88 92.16/91.77

94.59/86.64 95.98/91.20 94.66/87.71

89.57/89.32 95.41/95.41 90.82/90.70

Table 3.8: Multilingual dependency parsing results with gold supertags. Each
number indicates UAS/LAS.

dency trees were almost perfect. This implies that information provided by the
supertags is considerably helpful for the transition-based system to determine the
times at which reduce transitions should be conducted. Consider the RIGHT-ARC
transition, which adds an arc from the second to the top word on the stack and
removes the top word from the stack. If there are any words in the buffer that
depend on the word on the top of the stack, RIGHT-ARC should not be executed.
The supertag sets STAG-A /B/F encode the head directionality and dependent
possession information, which can implicitly tell the parser in which direction
the second-top word in the stack has its head and whether the top word has
any dependents in the buffer or not. Because this clue could supplement word

37

PTB-YM PTB-SD
BASELINE 92.60/91.31 92.00/89.33
STAG-A 92.80/91.61 92.38/89.89
STAG-B 92.94/91.67 92.44/89.90
STAG-C 92.59/91.37 92.23/89.85
STAG-D 92.65/91.47 92.33/89.85
STAG-E 92.72/91.55 92.24/89.83
Stac-F 92.48/91.25 92.19/89.50
STAG-G 92.51/91.33 92.19/89.72

Table 3.9: English dependency parsing results with predicted supertags. Fach
number indicates UAS/LAS.

form and POS information, a parser was able to select and accumulate the cor-
rect local transition under each configuration. In fact, this result suggests that if
transition-based systems knew the correct supertags that encode the head direc-
tionality and dependent possession information and could use them as features,
the dependency parsing problem would be solved almost completely.

In multilingual dependency parsing, although the unlabeled attachment scores
were not as high as the ones for English dependency parsing, STAG-A/B/F
consistently occupied the top-3 highest UAS rankings over the six languages.
The score difference between PTB and UD is likely to be caused by the data
size difference, i.e., the data size of PTB is much larger than that of UD, so an
investigation of the effect of increasing data size is our interesting future work.
In the labeled attachment scores, STAG-F is inferior to STAG-A /B, which is
consistent with English dependency parsing. This could be caused by the fact
that STAG-F does not encode the head dependency label.

Accuracy of Dependency Parsing with Predicted Supertags

To investigate the utility of our supertag sets in dependency parsing in realistic
situations, we performed experiments in which transition-based systems exploited
automatically predicted supertags as features. Tables 3.9 and 3.9 show the un-
labeled attachment scores (UAS) and labeled attachment scores (LAS) of the

38

UD-AR UD-DE UD-ES UD-ID
BASELINE 80.51/74.89 84.53/77.97 86.43/81.62 84.01/78.08
STAG-A 81.26/76.18 85.05/79.09 87.65/83.55 85.26/79.55
Stac-B 81.50/76.33 85.01/78.96 87.72/83.48 85.43/79.86
STAG-C 81.17/76.22 85.09/79.31 87.86/83.69 84.96/79.26
Stac-D 81.13/75.94 84.86/79.09 87.65/83.48 85.13/79.57
STAG-E 81.00/76.05 85.00/79.34 87.50/83.43 85.55/79.79
STAG-F 81.05/75.51 84.76/78.03 87.00/82.19 84.80/78.93
StaG-G 81.15/76.30 85.04/79.07 87.86/83.57 85.09/79.47
UD-RU UD-ZH UD-Avg.
83.37/77.32 83.35/79.48 83.70/78.23
83.17/77.57 83.77/79.71 84.36/79.28
83.82/78.15 84.33/80.40 84.64/79.53
83.63/77.98 84.19/80.35 84.48/79.47
83.42/77.76 84.00/80.24 84.37/79.35
83.42/77.75 83.63/79.89 84.35/79.38
83.78/77.73 83.25/79.10 84.11/78.58
83.66/77.92 83.72/80.04 84.42/79.40

Table 3.10: Multilingual dependency parsing results with predicted supertags.

Each number indicates UAS/LAS.

baseline parsers and the parsers with the supertag features.

Overall, the parsers with supertag features outperform the baseline. In par-
ticular, across the six languages of UD, a performance boost of the parsers with
STAG-B is observed, yielding increases of around 1.0 point in UAS and 1.3 points
in LAS. In Spanish (UD-ES) and Indonesian (UD-ID), the biggest improvements
were achieved (+1.5 points in UAS and +2.0 points in LAS). In English depen-
dency parsing (PTB-MT, PTB-SD), although the improvements of UAS/LAS
were smaller than for the six languages of UD, the supertag features worked
effectively. The biggest improvement (+0.34/40.36 points in UAS/LAS of PTB-
MT and +0.44/+57 points in UAS/LAS of PTB-SD) was achieved with STAG-B,

39

which is the same tendency as in the languages of UD.

Comparing the results with the gold and predicted supertags, the predicted
supertags of STAG-F were not as effective, although the gold ones were useful
for parsing. In English parsing, STAG-F was not effective for improving UAS
and LAS. In the six languages of UD, although STAG-F was a little bit effective
on average (+0.41 points in UAS and +35 points in LAS), the improvement
was the worst of the seven supertags. In contrast, while the gold supertags of
STAG-C/D/E/G did not have much predictability compared with STAG-A /F|
the predicted supertags of STAG-C/D/E/G achieved almost the same UAS and
LAS as STAG-A and were better than STAG-F on average. In particular, for
LAS, the other supertag sets outperformed STAG-F (around +0.8 points), which
suggests that it is better to encode the dependency label on the edge between the
target word and its head for dependency parsing.

In addition to such head information, we wished to know which syntactic in-
formation of dependents could contribute to the improvements of UAS and LAS.
To investigate this question, we compare the results of STAG-B/C/E, in which
STAG-B encodes HLABEL/DIrR/HASDEP, STAG-C encodes HLABLE/DIR/DLABEL,
and STAG-E encodes HLABEL/Dir. Comparing STAG-C with STAG-E, they ob-
tain much the same in UAS and LAS for both English and multilingual parsing
settings. Comparing STAG-B with STAG-C, STAG-B outperformed STAG-C in
both settings. These results suggest that the dependency labels of core argu-
ments (DLABEL) are not always effective and the dependent possession informa-
tion (HASDEP) contributes to the improvements of UAS and LAS.

Effects of Distance

To more deeply understand the characteristics of the parsers with supertags, we
describe the parsing performance (F} score) according to the dependency distance,
which represents the distance between a target word and its head word. Tables
3.11 and 3.12 show the F1 scores of the baseline parser and parser with STAG-B
(the supertag set that achieved the highest UAS/LAS on average) for each binned
dependency distance.

Overall, the supertags helped improve the identification of the longer distance
dependencies. For distances over seven words (7-), a performance boost is ob-
served, yielding an increase of around 2.0 points on average over the six languages
of UD. Similarly, English dependency parsing is improved by around 1.0 point.

40

PTB-YM PTB-SD
root 95.15/96.10 93.60/94.52
1 96.72/96.87 96.34/96.53
2 94.14/94.42 93.86/94.08
3-6 90.92/91.39 90.57/91.27
7- 86.28/87.15 85.08/85.90

Table 3.11: F1 scores according to the dependency distances. Each number is
“Baseline-F1/Stag-F1,” “root” indicates the root identification, and “1/2/3-6/7-

2

indicates the distance (the number of words) between a target word and its
head.

The F1 scores of the root identification (root) are improved on average as well.
However, there is a performance gap between the languages. While the scores
of English, German, Spanish, and Indonesian are drastically improved by the
supertags, the scores of Arabic, Russian, and Chinese slightly decrease. A more
detailed investigation of this is an interesting direction for future work.

3.4.6 Comparison with Existing Parsers

We compared our English parser with representative transition-based depen-
dency parsing systems that use the Penn Treebank of Yamada & Matsumoto head
rules (PTB-YM), i.e., the transition-based parser with a support vector machine
of [59], pure transition-based parser of [63], dynamic-programming arc-standard
parser of [26], arc-eager parser with rich non-local features of [66], transition-
based joint POS tagging and parsing system of [5], and transition-based parser
using neural networks of [7].

Table 3.13 shows the UAS and LAS on the test set. For our parser, we selected
the highest scoring parser with STAG-B, and this parser is comparable to the
previous systems. However, the transition-based systems of [5] are slightly better
than our parser. One of the possible explanations is that their system is a joint
model for POS tagging and dependency parsing, and hence employs higher-order

features, such as third-order features, which are not utilized in our system. They

41

UD-AR UD-DE UD-ES UD-ID
root 93.32/93.18 86.28/87.51 85.04/89.05 87.61/89.05
1 94.27/94.59 92.44/92.84 95.85/96.09 95.09/95.45
2 80.04/81.54 87.27/88.42 91.99/93.53 84.50/85.93
3.6 TAT1/76.71 84.80/85.19 85.03/85.76 79.80/82.21
7o 69.23/71.20 82.55/83.41 72.37/76.01 73.45/74.23

UD-RU UD-ZH UD-Avg.

00.58/90.18 79.40/79.20 87.04/88.03

03.87/94.16 94.71/94.66 94.37/94.63

87.20/87.93 86.64/87.46 86.27/87.47

80.01/79.81 83.60/84.24 81.34/82.32

67.01/67.53 75.68/77.33 72.81/74.70

Table 3.12: F1 scores according to the dependency distances. Each number is
“Baseline-F1/Stag-F1,” “root” indicates the root identification, and “1/2/3-6/7-

indicates the distance (the number of words) between a target word and its
head.

use such features by dynamically extracting them from the partial tree structures
built during the parsing process (what we call dynamic features). Although such
dynamic higher-order features are available after partial tree structures are con-
structed, they capture a wider context, which could lead to the high performance.
On the contrary, supertags capture second-order information because they consist
of head and dependent information, and supertag features are always available
regardless of such partial tree structures, which help improve the parsing perfor-
mance. As an interesting issue, it remains for us to determine how these different
types of features interact with or complement each other when both features are
leveraged in a transition-based system.

42

UAS LAS
Yamada & Matsumoto 2003 [59] 90.3 -

Zhang & Clark 2008 [63] 91.4 -
Huang & Sagae 2010 [26] 92.1 -
Zhang & Nivre 2011 [66] 929 918
Bohnet & Nivre 2012 [5] 93.38 92.44
Chen & Manning 2014 [7] 91.8 89.6
this work 92.94 91.67

Table 3.13: UAS/LAS of dependency parsers in previous work.

3.5 Related Work

Supertags, which are lexical templates, encode linguistically rich information
that imposes complex constraints in a local context [2]. While supertags have
been used in frameworks based on lexicalized grammars, e.g., Lexicalized Tree-
Adjoining Grammar (LTAG), Head-driven Phrase Structure Grammar (HPSG),
and Combinatory Categorial Grammar (CCG), they have scarcely been utilized
for dependency parsing so far. As exceptions, Foth et al. [14] and Ambati et al.
[1] have used supertags for dependency parsing.

Foth et al. [14] designed supertags based on dependency structure information
such as dependency labels and dependents with different levels of granularity.
They automatically assigned a single supertag to each word, and the accuracy
of automatically assigning their designed supertag set is 67%-84% accurate: the
coarsest supertag set (35 tags) is 84.1% and the finest one (12,947 tags) is 67.6%.
They then utilized the predicted supertags for dependency parsing and demon-
strated that supertags improve German dependency parsing under a Weighted
Constraint Dependency Grammar (WCDG), which is not data-driven parsing. In
particular, the finest supertag set achieved the biggest improvement in parsing
performance (+2.1 points). While they design supertags for WCDG parsing, we
explore effective supertag design for data-driven and transition-based dependency
parsers.

Ambati et al. [1] utilized supertags of the Combinatory Categorial Grammar

43

(CCQG) as features for Hindi and English dependency parsers. They reported an
improvement of around 0.4 points in UAS using supetag features, and argued that
CCG supertags can especially improve long distance dependencies, e.g., coordi-
nation and relative clause dependencies. In contrast to their work, we develop a
supertag set based on dependency structures because we believe that a supertag
design based on dependency structures is more suitable for dependency parsing,

rather than one based on another lexicalized grammar formalism.

3.6 Summary

In this work, we presented a supertag design framework that is flexible so that
various supertag sets may be designed. Based on the framework, we instanti-
ated various granularity supertag sets that encode rich syntactic information.
In previous work, syntactic information, such as the head and dependents of a
word, cannot be used as features before partial tree structures are constructed
[66]. However, by exploiting the supertags as features, we can utilize fine-grained
syntactic information without waiting for partial trees to be built.

To investigate the utility of these supertag features, we have performed the
experiments in multilingual dependency parsing as well as English parsing. The
experimental results suggest the following:

e Overall, our proposed supertag sets are effective for English and multilingual
dependency parsing.

e In particular, the supertag set that encodes the head directionality/head
labels/ dependent possession achieves the highest UAS and LAS.

e Supertags contribute to the resolution of long distance dependencies.

Based on our proposed supertag design framework, we instantiated the seven
supertag sets and used them as features for dependency parsers. For six languages
that belong to different language branches as well as English, the supertag sets
contributed to the improvements of UAS and LAS.

Comparing the results of the supertag sets, we found that in order to improve
dependency parsing, it is critical to encode the head directionality, head label,
and dependent possession information as supertags. In particular, the head label

44

information is crucial for improving LAS. In contrast, the obligatory dependent
labels do not improve the results.

Analyzing the results from the aspect of dependency distances, supertags espe-
cially contributed to the improvements in long distance dependency prediction.
Long distance dependencies have been regarded as a troublesome problems in
dependency parsing. Our experimental results suggest that supertags could be a
solution to this problem.

As our future research, we would like to investigate the interaction of supertag
features with higher-order features and explore linguistic entities that capture
structurally richer information, such as subtree structures.

45

47

Chapter 4

Semantic Dependency Parsing:
Multi-Predicate Modeling

4.1 Introduction

Semantic dependency parsing, semantic role labeling (SRL), and predicate ar-
gument structure (PAS) analysis are a semantic analysis problem of recovering
the predicate argument structure of a sentence, such as who did what to whom.

4.1.1 Background

Figure 4.1 shows English and Japanese sentences annotated with syntactic and
semantic dependencies. The two sentences have the different surface forms and
syntactic dependencies. Despite the difference, they have the same predicate-
argument structure: the word “John” (“¥ =2 »”) plays a role of agent, and the
word “window” (“&”) plays a role of theme. This is an interesting property of
predicate-argument structure.

Recently, PAS analysis in multilingual settings have attracted a considerable
attention [19]. However, it is difficult to develop one unified method for multi-
lingual PAS analysis because each language has its own unique characteristics.

In fact, many of the top systems in the CoNLL-2009 shared task [19] took such

!These three terms “semantic dependency parsing”, “semantic role labeling” and “predicate

argument structure analysis” are used to indicate a similar semantic analysis task. In this
thesis, since we tackle the task in Japanese, we follow the previous researches and use the term
“predicate argument structure (PAS) analysis.”

root subj root

obj obj
subj det case case
A \X MO\)

John broke the window vay i B % #Ho7z

agent t theme ’

theme agent

Figure 4.1: Example of two sentences that have the same predicate argument
structure. Although the predicate argument structures (shown in the below part)
are identical, the surface and syntactic realizations (shown in the above part) are
different between the two sentences.

characteristics into account and adopted several different techniques for each lan-
guage. Thus, this thesis also aims to improve PAS analysis methods for certain
languages by focusing on some language phenomenon.

4.1.2 Problematic Issue: Argument Omission

In pro-drop languages such as Japanese, Chinese and Italian, arguments are
often omitted in text. Such argument omission is regarded as one of the most
problematic issues facing predicate argument structure (PAS) analysis [29, 53, 20].
Figure 4.2 illustrates an example of PAS with the argument omission problem.
The omitted argument ¢;, called zero pronoun, refers to the antecedent “5 ;
(man;).” In PAS analysis, computational systems aim to identify such antecedent
as an argument for the target predicate. Hence, in the above-mentioned example,
as the nominative argument for the predicate “¥iE U7z (escaped)”, the systems
have to identify “% ; (man;).”

What makes it difficult to identify such omitted arguments? Before the omitted
argument identification, consider a case of general argument identification. For
the predicate “3@4#fi L 7= (arrested)”, the word “#%¢ (police)” is the nominative
argument and “5 ; (man;)” is the accusative argument. It is easy to identify these
arguments, since a syntactic dependency between an argument and its predicate

48

refer to

BRI 5% BELEA. givon AR HELE,

police-ToP, man, -Acc Ml but qb@--NDM a few days later escaped

K™ . = - zZero pronoun K4
\. LTice P .-
\~ .‘-"_-/'-. .--‘.—.
e o s =T e s — s = =t -
NOM NOM

(The police arrested the man, but ¢ escaped a few days later)

Figure 4.2: Example of Japanese predicate argument structures. The upper edges
denote dependency relations, and the lower edges denote case arguments. “NOM”
and “ACC” denote the nominative and accusative arguments, respectively. “¢;”

is a zero pronoun, referring to the antecedent “% ; (man;)”.

is a strong clue. By contrast, when identifying omitted arguments, such syntactic
clues do not work well. For instance, when identifying the nominative argument
“85 ; (man;)” for the predicate “¥k&E U7z (escaped)”, there is no syntactic depen-
dency between them, so that the dependency clue cannot be used as a feature.
Such lack of a syntactic dependency between an argument and a predicate could
be a cause of the difficulty.

4.1.3 Key Insight: Multi-Predicate Interaction

To address this issue, we aim to capture the relations between multiple predi-
cates, called multi-predicate interactions. This approach is based on the linguistic
intuition: the predicates in a sentence are semantically related to each other and
capturing these interactions is expected to be helpful for PAS analysis.

7

In the example sentence in Figure 4.2, the word “% ; (man;)” is the accusative
argument of the predicate “3#fifi L 7z (arrested)” and is shared by the other predi-
cate “WE U7z (escaped)” as its nominative argument. Considering the semantic

relation between “3##i L 7z (arrested)” and “@¥kiE U7z (escaped)”, we intuitively

49

know that “%5 ; (man;)” , the person arrested by someone, is likely to be the es-
caper. By contrast, “&%¢ (police)”, the person who arrested someone, is unlikely
to be the escaper. That is, information about one predicate-argument relation
could help to identify another predicate-argument relation.

4.1.4 Solution

To model these multi-predicate interactions, we propose the two types of PAS
analysis models:

e Bipartite graph models
e Grid-type recurrent neural network models

In the following, we describe the overview of these two models.

Bipartite Graph Models

The bipartite graph models represent the multiple predicate-argument relations as
a bipartite graph that covers all predicates and argument candidates in a sentence,
and factorize the whole relation into the second-order relations. This interaction
modeling results in a hard combinatorial problem because it is required to select
the optimal PAS combination from all possible PAS combinations in a sentence.
To solve this problem, we extend the randomized hill-climbing algorithm [65]
to search all possible PAS in the space of bipartite graphs. To investigate the
performance we performing experiments on the NAIST Text Corpus [28]. The
experimental results show that, compared with a baseline that do not consider the
multi-predicate interactions, our models achieve an improvement of 1.0-1.2 points
in F1 score. Especially, they improve performance for the omitted argument
identification by 2.0-2.5 points.

Grid-RNN Models

The grid-type recurrent neural network models take as input all predicates and
argument candidates in a sentence, and automatically induce features sensitive to
multi-predicate interactions. This modeling requires no complex manual feature
engineering. Instead, by exploiting the feature-inducing capability of grid-type

50

recurrent neural networks (Grid-RNNs), the models learn effective feature rep-
resentations exclusively from the word sequence information of a sentence. FEx-
perimental results on the NAIST Text Corpus demonstrate that, even without
syntactic information, these models improve the baseline by 3.0-3.3 points in F1
score. Also, they outperform the bipartite graph models by about 2.0 points in
F1 score. These results suggest that the proposed grid-type neural architecture
effectively captures multi-predicate interactions and contributes to performance
improvements.

4.1.5 Contributions
To sum up, in this chapter we make the following contributions:

e We propose (i) bipartite graph models and (ii) Grid-RNN models capturing
multi-predicate interactions.

e Performing experiments on the NAIST Text Corpus [28], we demonstrate
the utility of our modeling of the multi-predicate interactions for Japanese
predicate argument structure analysis.

4.2 Predicate Argument Structure Analysis

4.2.1 Task Setting

Formally, given a sentence w = (wy, - - - wr) and target predicates p = {p1, - - pam},
a system predicts (argument, case role, predicate) tuples {(a, c,p);}._,. Here, w
is a word ID of the vocabulary V, i.e. w € V, and p is a position index within
a sentence, i.e. p € [1,T]. Also, a is a position index within a sentence, i.e.
a € [1,T], and ¢ is a case role ID, i.e. ¢ € C.
In the training phase, given training data D" = {(a;, y,)}N7"", the target

function f : X — Y is to be learned, where = (w, p), and y = {{a, ¢, p); }/_,. In

Neval

the evaluation phase, given evaluation data D = {z;}]|", a learned function

f is used to predict the tuples y.

51

4.2.2 Target Case Roles and Argument Types

In Japanese PAS analysis, systems aim to identify arguments with a case role
for the target predicate.

Target Case Roles
The case roles to be identified are as follows:

e Nominative case, denoted as (NOM)
e Accusative case, denoted as (ACC)
e Dative case, denoted as (DAT)

Note that predicates do not always have these three case arguments. If the target
predicate have no argument with a certain case role, systems output a special
token NULL.

Target Argument Types
Arguments can be divided into the following three types according to the positions
relative to their predicates [21]:

e DEP: Arguments that have direct syntactic dependency on the predicate.

e ZERO: Arguments referred to by zero pronouns within the same sentence

that have no direct syntactic dependency on the predicate.

e INTERZERO: Arguments referred to by zero pronouns outside of the same

sentence.

Table 4.1 shows examples of each argument type. The first example describes a
direct-dependency argument (DEP). The nominative argument “Fi (I)” for the
predicate “O < (catch)” is regarded as a DEP argument, because the argument
has a direct syntactic dependency on the predicate. The second example describes
a zero argument (ZERO). The nominative argument “% ; (man;)” for the predi-
cate “RET B (escape)” is regarded as a ZERO argument, because the argument
is the antecedent of the zero pronoun and has no direct syntactic dependency
on the predicate. The third example describes a inter-sentential zero argument
(INTERZERO). The nominative argument “i%; (She;)” for the predicate “fR

52

ja FAXEARZ O W7z,
en I caught a cold.
brep Prd U< (catch)
Arg NOM:FA (I), ACC: VAR (cold), DAT:NULL
) BT U 7208,
T (g nom) BRI L7,
The police arrested the man;,
ZERO en
but ¢; escaped a few days later.
prd EET D (escape)
arg NOM:%5 ;(man;), ACC:NULL, DAT:NULL
ia WL TN BNz,

INTERZERO en

prd
arg

(¢i-NOM) A-FLH KA 72,

She; ate bread.

And (¢;) also drank milk.

KL (drink)

NOM=1H 2 ;(She;), ACC=4-%L (milk), DAT=NULL

Table 4.1: Examples of each argument type. ¢; and word; denote the zero pronoun

and its antecedent, respectively.

£ (drink)” is regarded as a INTERZERO argument, because the antecedent, the
nominative argument, appears outside the sentence the zero pronoun appears in.

Among these argument types, we aim to identify the DEP and ZERO argu-

ments. In order to identify inter-sentential arguments (INTERZERO), a much

broader space must be searched (e.g., the whole document), resulting in a much

more complicated analysis than intra-sentential arguments.? Owing to this com-

plication, this thesis focuses exclusively on intra-sentential argument analysis, i.e.

DEP and ZERO.

2The F1 score of inter-sentential argument analysis remains 10-20% [57, 32, 53].

93

Global
Diff-Arg Co-Arg
ol @) —)
az \
dy " @

Figure 4.3: Intuitive image of a predicate-argument graph. This graph is factorized
into the local and global features. The different line color /style indicate different

cases.

4.3 Bipartite Graph Models

4.3.1 A Predicate-Argument Graph

We define predicate argument relations by exploiting a bipartite graph. Figure
4.3 illustrates an example of the graph, called PREDICATE-ARGUMENT GRAPH
(PA graph). The nodes of the graph consist of two disjoint sets: the left one is a
set of argument candidates and the right one is a set of predicates. Each predicate
node has three distinct edges corresponding to nominative (NOM), accusative
(ACC), and dative (DAT) cases. Each edge with a case role label joins a argument
candidate node with a predicate node, which represents a case argument of a
predicate. For instance, in Figure 4.3 a; is the nominative argument of the
predicate p;, and as is the accusative argument of the predicate p,.

Formally, a PA graph consists of three elements: the node set consisting of

o4

argument candidates A, the node set consisting of predicates P, and the set of
edges E:

PA graph: (A, P, E)

Each element is defined as follows:

A=A{a, - ,an,a,+1 = NULL}
P = {pb'" 7pm}
E = {{a,p,c) | deg(p,c) =1,
Vae€ A, Vpe P, Vee C'}

In the graph, the left nodes correspond to A and the right ones correspond to
P. A consists of n argument candidates, {ay,--- ,a,}, and a dummy node a,.
This dummy node a,; is defined for the cases where the predicate requires no
case argument or the required case argument does not appear in the sentence. P
consists of m predicates, {p1, - ,pm}. E is the set of edges connected between
A and P. An edge e € E is represented by a tuple (a,p, ¢}, indicating the edge
with a case role ¢ joining a argument candidate node a and a predicate node p.
An admissible PA graph satisfies the constraint deg(p,c) = 1, representing that
each predicate node p has only one edge with a case role c.

To identify the whole predicate argument structures (PAS) for a sentence z,
we predict the PA graph with an edge set corresponding to the correct PAS from
the admissible PA graph set G(z) based on a score associated with a PA graph
y as follows:

g = argmax Score(x,y)
y€G ()

A scoring function Score(z,y) receives a sentence z and a candidate graph y as
its input, and returns a scalar value.
In this thesis, we propose the two scoring functions as analysis models based

on different assumptions:

e Per-case joint model: Assumes the interaction between multiple predicates
(predicate interaction) and the independence between case roles.

55

o All-cases joint model: Assumes the interaction between case roles (case
interaction) as well as the predicate interaction.

In the following subsections, we describe each of these models in more detail.

4.3.2 Per-Case Joint Model

The per-case joint model assumes that different case roles are independent from
each other. However, for each case, the interactions between multiple predicates
are considered jointly.

We define the score of a PA graph y to be the sum of the scores for each case

role ¢ of the set of the case roles C':

Scoreper(x,y) = Z Score.(z,y) (4.1)
ceC

Scores for each case role are defined as the dot products between a weight vector
0. and a feature vector ¢.(z, E(y,c)):

Score.(x,y) = 0. - de(z, E(y,c)) (4.2)

where E(y, c) is the edge set associated with a case role ¢ in the candidate graph
y, and the feature vector is defined on the edge set.

The edge set E(y,c) in Equation 4.2 is utilized for the two types of features:
local features and global features. These features are inspired by [24] and
defined as follows:

Oc'd)c(x’E(yvc)) - Z 06-¢g<$,6)+ ec'd)g(x?E(ya C)) (43)

e€E(y,c)

where ¢y (z, e) denotes a local feature vector, and ¢g4(x, E(y, c)) a global feature
vector.

The local feature vector ¢g(z,) is defined on each edge e in the edge set E(y, ¢)
and a sentence x, which captures a predicate-argument pair. Consider the case
where the per-case model estimates the nominative arguments in Figure 4.3. To
compute the score of the edge set with the nominative case ¢ = NOM, the model
uses the following edges:

{ ea1p17 €a1p27 e(l2p3 }

o6

Each of these edges is taken as input by ¢¢(z, €) in Equation 4.3, and the resulting
feature vector is multiplied with the weight vector 6.—ygu.

The global feature vector ¢g(z, E(y,c)) is defined on the edge set E(y,c),
and enables the model to utilize linguistically richer information over multiple
predicate-argument pairs. In this thesis, we exploit second-order relations, similar
to the second-order edge factorization of dependency trees [42]. We make a set of
edge pairs E,,;, by combining two edges e;, e; in the edge set E(y, c), as follows:

Epuir = {{ei,ej} | Vei,e; € E(y,c), e; #¢; }

For instance, in the PA graph in Figure 4.3, to compute the score of the nomina-
tive arguments ¢ = NOM, we make three edge pairs:

Epair = { {€arp1» Carps}s1€arprs Canps }> {Carpar Canpsf }

This set of the edge pairs is taken as input by ¢4(x, Epeir) in Equation 4.3, and
the resulting feature vector is multiplied with the weight vector @.—ygy. In the
same way, for the accusative and dative cases, their scores are computed. Then,
we obtain the resulting score of the PA graph by summing up the scores of the
local and global features. If we do not consider the global features, the model
reduces to a per-case local model similar to the pointwise model [32].

4.3.3 All-Cases Joint Model

While per-case joint model assumes the predicate interaction with the inde-
pendence between case roles, all-cases joint model assumes the case interaction
together with the predicate interaction. Our graph-based formulation is very
flexible and easily enables the extension of per-case joint model to all-cases joint
model. Therefore, we extend per-case joint model to all-cases joint model to
capture the interactions between predicates and all case arguments in a sentence.

We define the score of a PA graph y based on the local and global features as
follows:

Scoreq(x,y) = Z 0 - do(x,e)+ 0-dg(x, E(y)) (4.4)

e€E(y)

o7

where F(y) is the edge set associated with all the case roles on the candidate
graph y, ¢e(z, e) is the local feature vector defined on each edge e in the edge set
E(y), and ¢4(z, E(y)) is the global feature vector defined on the edge set E(y).

Consider the PA graph in Figure 4.3. The local features are extracted from
each of the following edges:

NOM : {emmv €a1p2s eang}
ACC : {ea2p1 Y €a3p27 eU«SPS}

DAT : {easpu €aspas €a4p3}

For the global features, we make a set of edge pairs E,q;, by combining two edges
(€i,€;) in the edge set E(y), like per-case joint model. However, in the all-cases
joint model, the global features may involve different cases, i.e., mixing edges
with different case roles. For instance, for the PA graph in Figure 4.3, we make
the edge pairs {€u,p15 Casps }> {Casprs Carps}s {Caspss Casps), and so on. From these
edge pairs, we extract information as global features to compute a graph score.

4.3.4 Features

Features are extracted based on feature templates, which are functions that
draw information from the given entity. Look at the following feature template

example:

$100 = @.ax o P.VO

This template returns a conjunction of two atomic features a.ax and p.vo, where
a.ax is an auxiliary word attached to a argument candidate and p.vo is the voice
of a predicate. Using such templates, we draw feature information from the given
entity.

To characterize a PA graph, we draw some linguistic information associated
with the edge by using feature templates. In this thesis, to draw the global
features, we design global feature templates based on the following substructures:

o8

e Diff-Arg: Two predicate and argument nodes.
e Co-Arg: Two predicate nodes and one common argument node.

These substructures are depicted in the right part of Figure 4.3. The Diff-Arg
represents that the two predicates have different argument candidates. The Co-
Arg represents that the two predicates share the same argument candidate. In

the following, we describe the features based on each substructure in more detail.

Diff-Arg Features
The feature templates based on the Diff-Arg structure are three types: PAIR
(a pair of predicate-argument relation), TRIANGLE (a predicate and its two

arguments relation), and QUAD (two predicate-argument relations).

e PATIR These feature templates denote where the target argument is lo-
cated relative to another argument and the two predicates in the Diff-Arg
structure. We combine the relative position information with the auxiliary

words and the voice of the two predicates.

e TRIANGLE These feature templates capture the interactions between
three elements: two arguments and a predicate. Like the PAIR feature
templates, we encode the relative position information of two arguments

and a predicate with the auxiliary words and voice.

¢ QUAD When we judge if a candidate argument takes part in a case
role of a predicate, it would be beneficial to grasp information of another
predicate-argument pair. The QUAD feature templates capture the mutual
relation between four elements: two arguments and predicates. We encode
the relative position information, the auxiliary words, and the voice.

Co-Arg Features
To identify predicates that take ZERO arguments, we set two feature types, BI-
PREDS and DEP-REL, based on the Co-Arg structure.

e BI-PREDS For identifying an implicit argument of a predicate, infor-
mation of another semantically-related predicate in the sentence could be
effective. We utilize bi-grams of the regular forms of the two predicates in

99

the Co-Arg structure to capture the predicates that are likely to share the
same argument in the sentence.

e DEP-REL We set five distinct feature templates to capture dependency
relations between the shared argument and the two predicates. If two ele-
ments have a direct dependency relation, we encode its dependency relation
with the auxiliary words and the voice.

Formally, all these global feature templates are defined in Table B.1. The
proposed models utilize these global features as well as the local features?.

4.3.5 Inference and Training

Inference

Global features make the inference of finding the maximum scoring PA graph
more difficult. For searching the graph with the highest score, we propose two
greedy search algorithms by extending the randomized hill-climbing algorithm
proposed in [65], which has been shown to achieve the state-of-the-art perfor-
mance in dependency parsing.

Figure 4.4 describes the pseudo code of our proposed algorithm for per-case
joint model. Firstly, we set an initial PA graph y(® sampled uniformly from the
set of admissible PA graphs G(z) (line 1 in Figure 4.4). Then, the union Y, is
constructed from the set of neighboring graphs with a case NeighborG(y'?,c),
which is a set of admissible graphs obtained by changing one edge with the case
cin y®, and the current graph 3® (line 5). The current graph y® is updated to
a higher scoring graph y**! selected from the union Y, (line 6). The algorithm
continues until no more score improvement is possible by changing an edge with
the case ¢ in y® (line 8). This repetition is executed for other case roles in the
same manner. As a result, we can get a locally optimal graph 7.

Figure 4.5 describes the pseudo code of the algorithm for all-cases joint model.
The large part of the algorithm is the same as that for per-case joint model.
The difference is that the union Y consists of the current graph y® and the

3As the local features, we use the ones used in a model of the previous work [21]

60

Input: the set of cases to be analyzed C,
parameter 6,
sentence x

Output: a locally optimal PA graph y

1: Sample a PA graph y© from G(x)

2: t+0

3: for each case c € C' do

4: repeat

5: Y, + NeighborG(y®, c) Uy®

6: YUY« argmax @, - ¢z, E(y,c))
r odett1

8 until y® = yt+D

9: end for

10: return § < y®

Figure 4.4: Randomized hill-climbing for per-case joint model.

neighboring graph set obtained by changing one edge in y® regardless of case
roles (line 4 in Figure 4.5), and that the iteration process for each case role (line
3 in Figure 4.4) is removed. The algorithm also continues until no more score
improvement is possible by changing an edge in y®, resulting in a locally optimal
graph .

Following Zhang et al. (2014), for a given sentence x, we repeatedly run these
algorithms with K consecutive restarts. Each run starts with initial graphs ran-
domly sampled from the set of admissible PA graphs G(z), so that we obtain K
local optimal graphs by K restarts. Then the highest scoring one of K graphs is
selected for the sentence x as the result. Each run of the algorithms is indepen-
dent from each other, so that multiple runs are easily executable in parallel.

Training
Given a training data set D = {(&;,9;)}~,, the weight vectors 8 (0.) in the

scoring functions of the joint models are estimated by using machine learning

61

Input: the set of cases to be analyzed C,
parameter 6,
sentence x

Output: a locally optimal PA graph g

Sample a PA graph y© from G/(z)
t<0
repeat

Y + NeighborG(y®) U y®

yt) « argmax 0 - o(z, E(y))
yey
t+—t+1

. until y® = y(

t+1)

N

8: return ¢ « y®

Figure 4.5: Randomized hill-climbing for all-cases joint model.

techniques. We adopt averaged perceptron [9] with a max-margin technique:

Vie{l,...,N}, y € G(x;),
Score(;, ;) > Score(is,y) + || — ylli — &

where & > 0 is the slack variable and ||g; — y/||; is the Hamming distance between
the gold PA graph g; and a candidate PA graph y of the admissible PA graphs
G(z;). Following Zhang et al. (2014), we select the highest scoring graph ¢ as
follows:

TRAIN : ¢ = argmax {Score(Z;,y) + ||9; — yl|1}
yeG(;)
TEST : § = argmax {Score(x,y)}
yeG(2)
Using the weight vector tuned by the training, we perform analysis on a sentence

z 1n the test set.

62

s> wmE & > o' BX L W o' EE . RN @0k .
she -TOP- bread -ACC- ate . teeth -ACC- brushed . school to went

(i) Single-Seq Model (i) Multi-Seq Model

<EN> She ate bread, brushed her teeth, and went to school.

Argument Candidates for Each Predicate ¥

B T2 [a]s [e[7][8] o Ju] uJn[
[we e o] 72 [an]. (& % [BEs [[¥][~ [@ror
L #x e)] = [Bx] (& & [B= [[%8 |~ [Ador]
Gllex e o] = [~ (& = B [[¥8 |~ [Eook

Feature Sequences ‘
Xl i |x1,1 Hxl,z ” X1,3 HXLA ” X1,5 X1.6Hx1,7 ” xl.SH xl,‘)”XL]O”XI.UHXIJZHxl,lﬁ”m‘ E

L i

'

Xz i |x2,1 sz,z ” X233 sz,a ” X2,5 X2,6HX2,7 ” Xz,s” X2,9”iju”"z,unlezHX2,13”X2.14| E'- E

L ! i
X3 E |X3A1 Hxa,z ” X3,3 HX3,4 ” X3,5HX3,6HX3,7 ” XS,BH x3,9”Xa,m”Xx,u”XS.lzHX3,13”X3.14| :* ---------- E

Figure 4.6: Overview of neural models: (i) single-sequence and (ii) multi-sequence
models.

4.4 Grid RNN Models

We propose two neural models: (i) single-sequence and (ii) multi-sequence mod-
els, which automatically induce features sensitive to multi-predicate interactions
exclusively from the word sequence information of a sentence. Figure 4.6 illus-
trates the overview of these models. The single-sequence model takes as input
a sequence of features for one predicate, and captures the interactions between
argument candidates and the predicate using recurrent neural networks (RNNs).
By contrast, the multi-sequence model takes as input all sequences of features for
all the predicates in a sentence at a time, and captures the interactions between
argument candidates and the predicates using grid-type recurrent neural networks

(Grid-RNNs). In the following subsections, we describe these two models in more
detail.

4.4.1 Single-Sequence Model

The single-sequence model exploits stacked bidirectional RNNs (Bi-RNN) [54,
16, 17, 67]. Figure 4.7 shows the overall architecture, which consists of the fol-
lowing three components:

63

Output
Layer)}1 Ce yTt Ce yIT
Layer L
(S T N N N B
t ¢t t t t t t
RNN] |t |t |t]]
Layer 2
t t+ t t 1 t 1
Layer 1
v t t t
npu X1 . .. X e XT
Layer

Figure 4.7: Overall architecture of the single-sequence model. This model consists
of three components: (i) Input Layer, (ii) RNN Layer and (iii) Output Layer.

e Input Layer: Map each word to a feature vector representation.
e RNN Layer: Produce high-level feature vectors using Bi-RNNs.

e Output Layer: Compute the probability of each case label for each word
using the softmax function.

In the following, we describe each of these three components in detail.

Input Layer

Given an input sentence wy.r = (wy, -+ ,wr) and a predicate p, each word wy is
mapped to a feature representation x;, which is the concatenation (@) of three

64

<JAs> T (E A x= BN,
she -TOP- bread -ACC- ate

<EN> She ate bread.
4
Features
ARG PRED MARK

1 kg = BRI . 0
2 (& = BN . 0
3 N> = BRI . 0
4 = = BN . 0
5 BNz = BN . 1
6 o = BAIZ . 0

Figure 4.8: Example of feature extraction. The underlined word is the target
predicate. From the sentence “¥Z1%/ N> % &7z, (She ate bread.)”, three
types of features are extracted for the target predicate “fX7z (ate)”.

types of vectors:

d
x; = X" @ xP @ xnerk (4.5)

where each vector is based on the following atomic features inspired by [67]:

ARG: Word index of each word.
PRED: Word index of the target predicate and the words around the predicate.
MARK: Binary index that represents whether or not the word is the predicate.

Figure 4.8 presents an example of the atomic features. For the ARG feature, we
extract a word index z“°"® € V for each word. Similarly, for the PRED feature, we
extract each word index %" for the C' words taking the target predicate at the
center, where C' denotes the window size. The MARK feature ™% € {0,1} is a
binary value that represents whether or not the word is the predicate.

Then, using feature indices, we extract feature vector representations from

each embedding matrix. Figure 4.9 shows the process of creating the feature

65

ARG PRED MARK -
1 B = BRIE . 0]
b 7 ' 4 4 —

Eword Emark

7
- | concat :
B _E — —

arg pred mark
>SRN - S 57 X1 = X1

Figure 4.9: Example of the process of creating a feature vector. The extracted
features are mapped to each vector, and all the vectors are concatenated into one
feature vector.

vector x; for the word w; “f%2L (she)”. We set two embedding matrices: (i) a
word embedding matrix E*r¢ € Réwera*Vl and (ii) a mark embedding matrix
Emak ¢ RImert*2 - From each embedding matrix, we extract the corresponding
column vectors and concatenate them as a feature vector x; based on Eq. 4.5.

Each feature vector x; is multiplied with a parameter matrix W,:
h” = W, x, (4.6)

The vector h§0) is given to the first RNN layer as input.

RNN Layer

In the RNN layers, feature vectors are updated recurrently using Bi-RNNs. Bi-
RNNSs process an input sequence in a left-to-right manner for odd-numbered layers
and in a right-to-left manner for even-numbered layers. By stacking these layers,

we can construct the deeper network structures.

66

Stacked Bi-RNNs consist of L layers, and the hidden state in the layer ¢ €
(1,---, L) is calculated as follows:

OmY n) (¢=odd
hgz):{g ("™, b)) (£=odd) wn

g OV, b)) (¢ = even)

Both of the odd- and even-numbered layers receive hﬁ“), the ¢-th hidden state
of the ¢ — 1 layer, as the first input of the function ¢, which is an arbitrary
function 4. For the second input of ¢, odd-numbered layers receive h@l, whereas
even-numbered layers receive hﬁ)l. By calculating the hidden states until the L-
th layer, we obtain a hidden state sequence thT) =@, ... ,h(TL)). Using each
vector th), we calculate the probability of case labels for each word in the output

layer.

Output Layer

For the output layer, multi-class classification is performed using the softmax
function:
y: = softmax(W, hEL))

where hﬁL) denotes a vector representation propagated from the last RNN layer
(Fig 4.7). Each element of y; is a probability value corresponding to each label.
The label with the maximum probability among them is output as a result. In
this work, we set five labels: NOM, ACC, DAT, PRED, null. PRED is the label for the
predicate, and null denotes a word that does not fulfill any case role.

4.4.2 Multi-Sequence Model

Whereas the single-sequence model assumes independence between predicates,
the multi-sequence model assumes multi-predicate interactions. To capture such
interactions between all predicates in a sentence, we extend the single-sequence
model to the multi-sequence model using Grid-RNNs [18, 33]. Figure 4.10 presents
the overall architecture for the multi-sequence model, which consists of three com-
ponents:

4In this work, we used the Gated Recurrent Unit (GRU) [8] as the function g(*).

67

Output
Layer

Grid-RNNs

Grid
Layer 2

Grid
Layer 1

£ 4
e hi,;_l,t : hi?%t_n (¢ = odd)
1
m,t) D hsn)+1,t ’ hin),t+1) (€ = even)

A hidden state of
a neighboring sequence

Input
Layer

Figure 4.10: Overall architecture of the multi-sequence model: an example of
three sequences.

e Input Layer: Map input words to M sequences of feature vectors for M
predicates.

e Grid Layer: Update the hidden states over different sequences using Grid-
RNNS.

e Output Layer: Compute the probability of each case label for each word
using the softmax function.

In the following, we describe these three components in detail.

Input Layer

The multi-sequence model takes as input a sentence wy.p = (wy, -+ ,wr) and all
predicates {p,,}! in the sentence. For each predicate p,,, the input layer creates
a sequence of feature vectors X,, = (Xm1, - ,Xm 1) by mapping each input
word w; to a feature vector x,,, based on Eq 4.5. That is, for M predicates, M
sequences of feature vectors {X,, } are created.

68

Q?t, and a feature

- hfg?T) . Conse-

quently, for M predicates, we obtain M feature sequences {HS}L)}{V[)

Then, using Eq. 4.6, each feature vector x,,; is mapped to h

sequence is created for a predicate p,,, i.e., H$2) = (hﬁfj?l, -

Grid Layer

(a) Inter-Sequence Connections
For the grid layers, we use Grid-RNNs to propagate the feature information over
the different sequences (inter-sequence connections). The figure on the right in
Figure 4.10 shows the first grid layer. The hidden state is recurrently calculated
from the upper-left (m = 1,¢t = 1) to the lower-right (m = M,t = T).

Formally, in the ¢-th layer, the hidden state h;?t is calculated as follows:

no _

m,t T

- ¢ ¢

{ gOm en® n) (0= o0da)
— ¢ ¢

g(f) (h(1) fa) h7(n)+l,t7 h7(7’L),t+l) (€ = even)

m,t

This equation is similar to Eq. 4.7. The main difference is that the hidden state of

a neighboring sequence, hg?_u (or hg;)-i—l,t)? is concatenated (@) with the hidden
(-1

mt » and is taken as input of the function

state of the previous (¢ — 1) layer, h
g,

In the figure on the right in Figure 4.10, the blue curved lines represent the
inter-sequence connections. Taking as input the hidden states of neighboring se-
quences, the network propagates feature information over multiple sequences (i.e.,
predicates). By calculating the hidden states until the L-th layer, we obtain M
sequences of the hidden states, i.e., {Hg,f) M in which HY = (h(L) ,hfi)T).

m,1’

(b) Residual Connections

As more layers are stacked, it becomes more difficult to learn the model parame-
ters, owing to various challenges such as the vanishing gradient problem [51]. In
this work, we integrate residual connections [22, 58] with our networks to form
connections between layers. Specifically, the input vector h%;l) of the /-th layer
is added to the output vector h%?t. Residual connections can also be applied to
the single-sequence model. Thus, we can perform experiments on both models
with/without residual connections.

69

Output Layer

As with the single-sequence model, we use the softmax function to calculate the
probability of the case labels of each word w; for each predicate p,,:

Ym,t = softmax(W, h,(f;j 1)

where h,(i 1 is a hidden state vector calculated in the last grid layer.

4.4.3 Training

We train the model parameters by minimizing the cross-entropy loss function:
A
£(0) =~ "3 loa Plula) +5]10] (48)
n t

where 6 is a set of model parameters, and the hyper-parameter X is the coefficient
governing the L2 weight decay.

4.5 Experiment

4.5.1 Experimental Settings

Dataset

We evaluate our proposed models on the NAIST Text Corpus 1.5, which consists
of 40,000 sentences of Japanese newspaper text [28]. While previous work has
adopted the version 1.4 beta, we adopt the latest version. The major difference
between version 1.4 beta and 1.5 is revision of dative case (corresponding to
Japanese case particle “ni”). In 1.4 beta, most of adjunct usages of “ni” are
mixed up with the argument usages of “ni”, making the identification of dative
cases seemingly easy. Therefore, our results are not directly comparable with
previous work.

We adopt standard train/dev/test splits [57] as follows:

Train: Articles: Jan 1-11, Editorials: Jan-Aug
Dev: Articles: Jan 12-13, Editorials: Sept

70

Test: Articles: Jan 14-17, Editorials: Oct-Dec

We exclude inter-sentential arguments (INTERZERO) in our experiments. The
features used in our bipartite graph models make use of the annotated POS
tags, phrase boundaries, and dependency relations annotated in the NAIST Text
Corpus. We do not use any external resources.

Comparative Models

We investigate and compare the following models:

e BASELINE: a pointwise model proposed in [32]

PCJoINT: the Per-Case Joint Model described in Section 4.3

ACJOINT: the All-Cases Joint Model described in Section 4.3

SINGLESEQ: the single sequence model described in Section 4.4

MULTISEQ: the multiple sequence model described in Section 4.4

As the baseline, we adopt the pointwise model (using only local features) proposed
in [32]. This model estimates the likelihood that each argument candidate plays
a case role of the target predicate and independently selects the highest scoring
one per predicate.

Implementation Details

For our bipartite graph models with hill-climbing, we set the number of the

random restarts at 10, which almost reaches convergence ®. For implementa-

tions of our Grid-RNN models, we used a deep learning library, Theano [3].
The parameters were optimized using the stochastic gradient descent method
(SGD) via a mini-batch. Table B.2 lists the hyper-parameters. The initial val-

ues of all the parameters were sampled according to a uniform distribution from

[_ V6 V6
Vrow+col’ /row+col

each matrix, respectively. Also, words with a frequency of 2 or more in the train-

], where row and col are the number of rows and columns of

ing set were mapped to each word ID, and the remaining words were mapped to
the unknown word ID.

5Performance did not change when increasing the number of restarts

71

DeEp ZERO ALL
BASELINE 85.06 41.65 78.15
PCJoinT 85.79 43.60 7891
ACJoINT 86.07 44.09 79.23
SIGLESEQ 88.10 46.10 81.15
MULTISEQ 88.17 47.12 81.42

Table 4.2: Test F1 scores on the NAIST Text Corpus 1.5. BASELINE is the
reimplemented model of [32], PCJOINT is the Per-Case Joint Model in Section
4.3.2, ACJOINT is the ALL-Cases Joint Model in Section 4.3.2, SINGLESEQ is
the single-sequence model in Section 4.4.1, and MULTISEQ is the multi-sequence
model in Section 4.4.2.

4.5.2 Results

Table 4.2 presents F'1 scores on the test set. All our four models outperformed
the baseline. Our bipartite models improved overall F1 scores by around 1.0
point. In particular, the models yield a considerable improvement in F1 score
of 2.0-2.5% for zero arguments (ZERO), which have no syntactic dependency on
their predicate and are regarded as one of the problematic issues in Japanese PAS
analysis. Also, our neural models achieved a significant improvement of 3.0-3.3%
for overall arguments and 4.5-5.5% for zero arguments. These results shows that
capturing multi-predicate interactions is particularly effective for Japanese PAS
analysis.

Per-Case Joint Model vs All-Cases Joint Model

Comparing the bipartite models, All-Cases Joint Model (ACJOINT) outperformed
Per-Case Joint Model (PCJOINT) in terms of the overall F1 scores (79.23%
vs 78.91%). For each argument type (DEP and ZERO), All-Cases Joint Model
achieved better results, i.e., 86.07% vs 85.79% for direct dependency arguments
(DEP) and 44.09% vs 43.60% for zero arguments (ZERO). This suggests that
capturing case interactions improves performance of Japanese PAS analysis.

72

Feature | DEP ZERO ALL
local 84.59 42.55 77.89
+ global | 85.51 44.54 78.85
local 84.17 41.33 77.43
+ global | 85.92 44.45 79.17

PCJoIinT

ACJoINT

Table 4.3: Global vs local features on the development set in F1 score. PCJOINT
and ACJOINT denotes the Per-Case and All-Cases Joint Model, respectively.

Single-Sequence Model vs Multi-Sequence Model

Comparing the neural models, the multi-sequence model (MULTISEQ) outper-
formed the single-sequence model (SINGLESEQ) in terms of the overall F1 scores
(81.42% vs 81.15%). While for direct dependency arguments (DEP), the multi-
sequence model achieved slightly better results (88.10% vs 88.17%), for zero
arguments (ZERO), the multi-sequence model yields around 1.0% improvement
(46.10% vs 47.12%). These results demonstrate that the grid-type neural ar-
chitecture can effectively capture multi-predicate interactions by connecting the

sequences of the argument candidates for all predicates in a sentence.

Bipartite Graph Models vs Neural Models

Comparing between the bipartite graph and neural models, the neural models
outperformed the bipartite models in F1 score overall, i.e., 81.15% and 81.42%
vs 78.91% and 79.23%. In particular, for zero arguments (Zero), compared with
All-Cases Joint Model (ACJOINT), the single-sequence model achieved around
2.0% improvement (46.10% vs 44.09%), and the multi-sequence model yielded
around 3.0% (47.12% vs 44.09%) in F1 score. This confirms that modeling the
multi-predicate interactions using RNNs contributes to high-performance, even
without syntactic information, by learning contextual information effective for
PAS analysis from the word sequence of the sentence.

Effects of Global Features
Table 4.3 shows the effectiveness of the global features on the development set. We

73

Single-Seq Multi-Seq
L +res. —res. | +res. —res.
Dep | 87.34 87.10 | 87.43 87.73
2 Zero | 47.98 47.90 | 47.66 46.93
All | 80.62 80.24 | 80.71 80.68
Dep | 87.27 87.41 | 87.60 87.09
4 Zero | 50.43 50.83 | 48.10 48.58
All | 80.92 80.99 | 80.99 80.59
Dep | 87.73 87.11 | 88.04 87.39
6 Zero| 48.81 49.51 | 48.98 48.91
All | 81.05 80.63 | 81.19 80.68
Dep | 87.98 87.23 | 87.65 87.07
8 Zero| 47.40 48.38 | 49.34 48.23
All | 81.31 80.33 | 81.33 80.40

Table 4.4: Performance comparison for different numbers of layers on the devel-
opment set in F1 score. L is the number of the RNN or Grid layers. +res. or
—res. indicates whether the model has residual connections (+) or not (—).

incrementally add the global features to the both models that utilize only the local
features. The results show that the global features improved the performance
by around 1.0% in F1 score overall, i.e., 77.89% to 78.85% in PCJOINT and
77.43% t0 79.17% in ACJOINT. In particular, they are beneficial to zero argument
identification (ZERO), i.e., an improvement of 1.99% in the Per-Case Joint Model
and 3.12% in the All-Cases Joint Model).

Effects of Network Depth

Table 4.4 presents development F1 scores from the neural models with different
network depths and with/without residual connections. The performance tends
to improve as the RNN or Grid layers get deeper with residual connections. In
particular, the two models with eight layers and residual connections achieved
considerable improvements of approximately 1.0% according to the F1 scores

74

DEP ZERO
NOM ACC DAT NOM ACC DAT

NAIST Text Corpus 1.5
BASELINE 86.50 92.84 30.97 45.56 21.38 0.83
PCJoiNT 87.54 93.09 34.19 47.62 22.73 0.83
ACJoINT 88.13 92.74 38.39 48.11 24.43 4.80
SINGLESEQ 88.32 93.89 65.91 49.51 35.07 9.83
MuLTISEQ 88.75 93.68 64.38 50.65 32.35 7.52

NAIST Text Corpus 1.4
Taira+ 08* 75.53 88.20 89.51 30.15 11.41 3.66
Imamura+ 09* 87.0 939 80.8 50.0 30.8 0.0
Sasano+ 11* - - - 39.5 175 8.9

Table 4.5: Performance comparison for different case roles on the test set in F1
score. NOM, ACC or DAT is the nominal, accusative or dative case, respectively. The
asterisk (*) indicates that the model uses external resources.

compared to models without residual connections. This means that residual
connections contribute to effective parameter learning of deeper models.

Comparison per Case Role

Table 4.5 shows F1 scores for each case role on the test set. For reference, we
show the results of the previous studies using the NAIST Text Corpus 1.45 with
external resources as well.

Comparing the models using the NAIST Text Corpus 1.5, the single- and multi-
sequence models (SINGLESEQ and MULTISEQ) outperformed the other three
models (BASELINE, PCJOINT and ACJOINT) according to all metrics. In par-
ticular, for direct dependency arguments (DEP) of the dative case (DAT), the

5The major difference between the NAIST Text Corpus 1.483 and 1.5 is the revision of the
annotation criterion for the dative case (DAT) (corresponding to Japanese case marker “i27).
Argument and adjunct usages of the case marker “iZ” are not distinguished in 1.4, making
the identification of the dative case seemingly easy.

75

two neural models achieved much higher results, by approximately 30%. This
suggests that although dative arguments appear infrequently compared with the
other two case arguments, the neural models can learn them robustly. In addi-
tion, for zero arguments (ZERO) of the nominative case (NOM), the multi-sequence
model demonstrated a considerable improvement of approximately 2.5% accord-
ing to the F1 scores compared with the bipartite graph models (PCJOINT and
ACJoiNT). To achieve high accuracy for the analysis of such zero arguments,
it is necessary to capture long distance dependencies [27, 53, 30]. Therefore,
the performance improvements of zero arguments suggest that the neural models
effectively capture long distance dependencies using RNNs that can encode the
context of the entire sentence.

4.6 Related Work

4.6.1 Japanese PAS Analysis Approaches

For Japanese PAS analysis research, the NAIST Text Corpus has been used as
a standard benchmark [28]. Existing approaches to Japanese PAS analysis are
divided into two categories: (i) the pointwise approach and (ii) the joint approach.

The pointwise approach involves estimating the score of each argument can-
didate for one predicate, and then selecting the argument candidate with the
maximum score as an argument [57, 32, 21, 31]. One of the representative re-
searches is Imamura et al. (2009). They built three distinct models corresponding
to the three case roles by extracting features defined on each pair of a predicate
and a candidate argument. Using each model, they select the best candidate ar-
gument for each case per predicate. Their models are based on maximum entropy
model and can easily incorporate various features, resulting in high accuracy.

The joint approach involves scoring all the predicate-argument combinations
in one sentence, and then selecting the combination with the highest score [61,
53, 20, 55]. Sasano and Kurohashi (2011) simultaneously determines all the three
case arguments per predicate by exploiting large-scale case frames obtained from
large raw texts. They focus on identification of implicit arguments (ZERO and IN-
TERZERO), and achieves comparable results to Imamura et al. (2009). Yoshikawa
et al. (2011) determines all case arguments for all predicates in a sentence using
Markov Logic Networks. Shibata et al. (2016) also simultaneously determines

76

all predicate-argument combinations using our all-cases joint model with neural
networks. Compared with the pointwise approach, their methods based on the
joint approach achieve better results.

4.6.2 Modeling of Multi-Predicate Interactions

In semantic role labeling (SRL), Yang and Zong (2014) [60] proposed a model
based on the linguistic intuition that the predicates in a sentence are semantically
related to each other, and that the information regarding this semantic relation
can be useful for SRL. They reported that their reranking model, which captures
the multi-predicate interactions, is effective for the English constituent-based SRL
task [6]. Taking this a step further, we propose new models capturing interactions
between multiple predicates and arguments.

4.6.3 Neural Approaches

Japanese PAS
In recent years, several attempts have been made to apply neural networks to
Japanese PAS analysis [55, 31]7. In [55], a feed-forward neural network is used
for the score calculation part of our all-cases joint model. In [31], multi-column
convolutional neural networks are used for the zero anaphora resolution task.
Both models exploit syntactic and selectional preference information as the
atomic features of neural networks. Overall, the use of neural networks has re-
sulted in advantageous performance levels, mitigating the cost of manually de-
signing combination features. In this thesis, we demonstrate that even without
such syntactic information, our neural models can realize strong performance ex-

clusively using the word sequence information of a sentence.

English SRL

Some neural models have achieved high performance without syntactic informa-
tion in English SRL. [10] and [67] worked on the English constituent-based SRL
task [6] using neural networks. In [10], their model exploited a convolutional neu-
ral network and achieved a 74.15% F-measure without syntactic information. In

"These previous studies used unpublished datasets and evaluated the performance with
different experimental settings. Consequently, we cannot compare their models with ours.

77

[67], their model exploited bidirectional RNNs with linear-chain conditional ran-
dom fields (CRFs) and achieved the state-of-the-art result, an 81.07% F-measure.
Our models should be regarded as an extension of their model.

The main differences between [67] and our work are: (i) constituent-based vs
dependency-based argument identification and (ii) the multi-predicate consider-
ation. For the constituent-based SRL, [67] used CRFs to capture the IOB label
dependencies, because systems are required to identify the spans of arguments for
each predicate. By contrast, for Japanese dependency-based PAS analysis, we re-
placed the CRF's with the softmax function, because in Japanese, arguments are
rarely adjacent to each other.® Furthermore, whereas the model described in [67]
predicts arguments for each predicate independently, our multi-sequence model
jointly predicts arguments for all predicates in a sentence concurrently by con-

sidering the multi-predicate interactions.

4.7 Summary

In this thesis, we present two types of models: (i) bipartite graph models and
(i) Grid-RNN models.

The bipartite graph models capture interactions between multiple predicates
and arguments using a bipartite graph and greedily search the optimal PAS com-
bination in a sentence. Experiments on the NAIST Text Corpus demonstrate
that capturing the multi-predicate interactions is effective for Japanese PAS anal-
ysis. In particular, ZERO argument identification, one of the problematic issues
in Japanese PAS analysis, is improved by taking such interactions into account.

The Grid-RNN models automatically induce effective feature representations
from the word sequence information using grid-type recurrent neural networks.
Experimental results show that the Grid RNN models achieve high performance
without the need for syntactic information. Especially, these models improve the
performance of ZERO argument identification by considering the multi-predicate
interactions with Grid-RNNs, which is consistent with the results of our bipartite
graph models.

Since our models are applicable to SRL, applying our models for multilingual
SRL tasks is an interesting future research direction. Also, in this thesis, the

8In our preliminary experiment, we could not confirm the performance improvement by
CRFs.

78

model parameters were learned without any external resources, so that we plan
to explore effective methods for exploiting large-scale unlabeled data to learn our

models.

79

81

Chapter 5

Conclusion

5.1 Summary

This thesis aimed to improve syntactic and semantic dependency parsing.

In Chapter 3, to improve syntactic dependency parsing, we presented a supertag
design framework that is flexible so that various supertag sets may be designed.
Based on the framework, we instantiated various granularity supertag sets that
encode rich syntactic information. To investigate the utility of these supertag
features, we have performed the experiments in multilingual dependency parsing.
Experimental results show that in order to improve dependency parsing, it is
critical to encode the head directionality, head label, and dependent possession
information as supertags. In particular, the head label information is crucial for
improving LAS. By contrast, the obligatory dependent labels do not improve the
results.

In Chapter 4, to improve semantic dependency parsing, we presented two types
of approaches using (i) bipartite graphs and (ii) grid-type recurrent neural net-
works (Grid-RNNs). The first approach represents the interactions between pred-
icates and arguments using a bipartite graph and greedily searches the optimal
PAS combination in a sentence. The second approach automatically induces ef-
fective feature representations from the word sequence information of a sentence
using Grid-RNNs. Experimental results show that capturing the multi-predicate
interactions is effective for semantic dependency parsing. In particular, zero ar-
gument identification, one of the problematic issues in Japanese PAS analysis, is

improved by taking such interactions into account.

5.2 Future Directions

For syntactic dependency parsing, we would like to investigate the interaction
of supertag features with higher-order features and explore linguistic entities that
capture structurally richer information, such as subtree structures. For semantic
dependency parsing, applying our approaches for multilingual settings presents
an interesting future research direction. Also, because in this work our models
were learned with only labeled data, we plan to explore effective methods for
exploiting large-scale unlabeled data to learn the models.

82

33

Appendix A

First Appendix

A.1 Feature Templates for Supertagging

A.2 Feature Templates for Dependency Parsers

NAME

FEATURE WINDOW

FEATURE TEMPLATE

UNIGRAM for pin x;_3, T2, xi_1, Ti, Tiy1, (p.t), (pw)
Tit2, Tit3
for p,g in (25,2:11), (2i,7i42), (p-tog.t), (pwoquw)
BIGRAM | (2;,%i43), (Ti—1,2:), (Ti—2,23),
(%‘—37%‘), ($i+17$z‘+2), (%‘—2;%‘—1)
(zi-1.stag),
(Ti-g.stag),
HISTORY (x;_y.8tag o z;.t),

(x;_9.stag o z;.t),
(r;_9.stag o x;_1.stag),
Tr;—o.5tag o r; 1.5tag o x;.
t t t

Table A.1: Feature templates for the supertagging models. The notations used
in this table are as follows: feature conjunction= o; x; is the i-th word in the
sentence; w=word form; t=POS tag; stag=supertag.

84

NAME

FEATURE WINDOW

FEATURE TEMPLATE

fOI' p m Sg, S1, S2, bOa b17 b2

(p.t), (pw), (p.top.lec.t),

UNIGRAM
(p.t op.re.t),
(p.top.letopret)
for p,g in (s2,81), (s1,%), | (pltogi), (pwogquw),
(s0,b0); (bo,b1), (b1,2) (ptoqw), (pwogq.),
BIGRAM (ptogqtop.letoq.let),
(ptogqtopretoq.let),
(p.tog.top.letoq.ret),
(ptogqtopretoqret)
for p in sg, s1, S92, bo, b1, by (dist(p,p.lc) op.t),
(dist(p,p.rc) o p.t),
STRUCTURAL (p.nd o p.t)
for p, ¢ in (s2, s1), (s1, So), (dist(p,q)),
(S0, bo), (bo, b1), (b1, b2) (dist(p,q) o p.toq.t)
UNISTAG for p in sg, s1, S92, bg, b1, by (p.stag)
for p. ¢ in (s 51). (1. 50). | (postag o q.stag).
BiSTAG (s0, bo), (bo, b1), (b1, b2) (p.stag o q.t), (p.t o q.stag),

(p.stagoq.w), (p.woq.stag)

Table A.2: Feature templates for the arc-standard model. The notations used
in this table are as follows: feature conjunction= o; s;=i-th word on the top
of the stack; b;=i-th word in the buffer; lc=left-most dependent; rc=right-most
dependent; w=word form; t=POS tag; stag=supertag; dist(p,q)=word distance

between p and ¢; nd=1 if the word has no dependent, otherwise 0.

85

87

Appendix B

Second Appendix

B.1 Feature Templates for Bipartite Graph Mod-

els

B.2 Hyper-Parameters for Neural Models

Structure | Name Description
PAIR (pirf o pj.xf o p;.vo o pj.vo),
{ a;.ax 0 a;.rp © p;.ax © P;.vo),
<ajaxoajrpop]axopjvo>
TRIANGLE | (a;.ax 0 @;.aX © @;.Ip © a;.IP © p;.aXx o P;.vo),
Diff-Arg <alaxoajaxoazrpoajrpop]axopjvo)
QUAD (@;.ax © @j.aX © @;.IP © @;.IP © P;.VO O P;.VO),
(a;.ax o @;j.ax o p;.ax o p;.ax O @;.IpP O
@;.Ip O P;.VO O P;.VO),
(a;.ax o aj.ax o p;.rf o p;rf o a;rp o a;.xp o
Pi-VO © P;.VO)
BI-PREDS | (a;.rp o p;.rf o pj.rf),
(a;.ax o a;.rp o p;.rf o pjaf)
Co-Arg DEP-REL (@;.ax o @;.rp © p;.aX O P;.aX O P;.VO O P;.VO O
(x,y).dep) if x depends on y for z,y in
(pisp;), (@ipi)s (aip;), (pisai), (pj,ai)

Table B.1: Global feature templates. p;, p; is a predicate, a; is the argument

connected with p;, and a; is the argument connected with p;. Feature conjunction

is indicated by o; ax=auxiliary, rp=relative position, vo=voice, rf=regular form,

dep=dependency. All the features are conjoined with the relative position and

the case role labels of the two predicates.

Name Value
Word Embedding Dim d.,orq 32
Mark Embedding Dim d,,,q1 32
Hidden Unit Dim dp;qgen 32
No. RNN Layers {2,4,6,8}
Mini-Batch Size {2,4,8}
Window Size C 5)
Learning Rate Adam|[34]
L2 Reg. Coefficient { 0.0001, 0.0005, 0.001 }

Table B.2: Hyper-parameters used in the experiments.

88

39

Bibliography

[1]

B. R. Ambati, T. Deoskar, and M. Steedman. Improving dependency parsers
using combinatory categorial grammar. In Proceedings of FACL, pp. 159
163, 2014.

S. Bangalore and A. K. Joshi. Supertagging: An approach to almost parsing.
Computational Linguistics, 25(2):237-265, 1999.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Berg-
eron, N. Bouchard, and Y. Bengio. Theano: new features and speed im-

provements. Deep Learning and Unsupervised Feature Learning NIPS 2012
Workshop, 2012.

A. Bjorkelund, L. Hafdell, and P. Nugues. Multilingual semantic role label-
ing. In Proceedings of CoNLL: Shared Task, pp. 43-48, 2009.

B. Bohnet and J. Nivre. A transition-based system for joint part-of-speech
tagging and labeled non-projective dependency parsing. In Proceedings of
EMNLP/COLING, pp. 1455-1465, 2012.

X. Carreras and L. Marquez. Introduction to the CoNLL-2005 shared task:
Semantic role labeling. In Proceedings of CoNLL, pp. 152—-164, 2005.

D. Chen and C. Manning. A fast and accurate dependency parser using
neural networks. In Proceedings of EMNLP, pp. 740-750, 2014.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using RNN

encoder—decoder for statistical machine translation. In Proceedings of
EMNLP, pp. 1724-1734, 2014.

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Collins. Discriminative training methods for hidden markov models: The-
ory and experiments with perceptron algorithms. In Proceedings of EMNLP,
pp- 1-8, 2002.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural language processing (almost) from scratch. Journal of
Machine Learning Research, 2011.

M.-C. de Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. Nivre,
and C. D. Manning. Universal Stanford dependencies: A cross-linguistic
typology. In Proceedings of LREC, pp. 4585-4592, 2014.

M.-C. de Marneffe, B. MacCartney, and C. D. Manning. Generating typed
dependency parses from phrase structure parses. In Proceedings of LREC,
pp. 449-454, 2006.

M.-C. de Marneffe and C. D. Manning. The Stanford typed dependencies
representation. In COLING-2008: Proceedings of the Workshop on Cross-
Framework and Cross-Domain Parser Evaluation, pp. 1-8, 2008.

K. Foth, T. By, and W. Menzel. Guiding a Constraint Dependency Parser
with Supertags. In Proceedings of COLING/ACL 2006, pp. 289-296, 2006.

Y. Goldberg and M. Elhadad. An efficient algorithm for easy-first non-
directional dependency parsing. In Proceedings of HLT/NAACL, pp. 742
750, 2010.

A. Graves, S. Fernandez, and J. Schmidhuber. Bidirectional LSTM networks
for improved phoneme classification and recognition. In Proceedings of In-
ternational Conference on Artificial Neural Networks, pp. 799-804, 2005.

A. Graves, N. Jaitly, and A.-r. Mohamed. Hybrid speech recognition with
deep bidirectional LSTM. In Proceedings of Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop, 2013.

A. Graves and J. Schmidhuber. Offline handwriting recognition with multi-
dimensional recurrent neural networks. In Proceedings of NIPS, pp. 545-552,
20009.

90

[19]

[20]

[21]

[24]

[25]

[26]

[27]

[28]

J. Haji¢c, M. Ciaramita, R. Johansson, D. Kawahara, M. A. Marti,
L. Marquez, A. Meyers, J. Nivre, S. Padé, J. Stépanek, et al. The conll-2009

shared task: Syntactic and semantic dependencies in multiple languages. In

Proceedings of CoNLL: Shared Task, pp. 1-18, 20009.

M. Hangyo, D. Kawahara, and S. Kurohashi. Japanese zero reference reso-

lution considering exophora and author/reader mentions. In Proceedings of

EMNLP, pp. 924-934, 2013.

Y. Hayashibe, M. Komachi, and Y. Matsumoto. Japanese predicate argu-
ment structure analysis exploiting argument position and type. In Proceed-
ings of IJCNLP, pp. 201-209, 2011.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. arXiv preprint arXiw:1512.03385, 2015.

L. He, K. Lee, M. Lewis, and L. Zettlemoyer. Deep semantic role labeling:
What works and what s next. In Proceedings of ACL, 55 1%, pp. 473-483,
2017.

L. Huang. Forest reranking: Discriminative parsing with non-local features.
In Proceedings of 46th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pp. 586-594, Columbus, Ohio,
June 2008. Association for Computational Linguistics.

L. Huang, S. Fayong, and Y. Guo. Structured perceptron with inexact search.
In Proceedings of NAACL/HLT, pp. 142151, 2012.

L. Huang and K. Sagae. Dynamic programming for linear-time incremental
parsing. In Proceedings of ACL, pp. 1077-1086, 2010.

R. Iida, K. Inui, and Y. Matsumoto. Anaphora resolution by antecedent
identification followed by anaphoricity determination. ACM Transactions
on Asian Language Information Processing (TALIP), 4(4):417-434, 2005.

R. lida, M. Komachi, K. Inui, and Y. Matsumoto. Annotating a Japanese
text corpus with predicate-argument and coreference relations. In Proceed-
ings of the Linguistic Annotation Workshop, pp. 132-139, 2007.

91

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

R. Tida and M. Poesio. A cross-lingual ILP solution to zero anaphora reso-
lution. In Proceedings of ACL-HLT, pp. 804-813, 2011.

R. Iida, K. Torisawa, C. Hashimoto, J.-H. Oh, and J. Kloetzer. Intra-
sentential zero anaphora resolution using subject sharing recognition. In
Proceedings of EMNLP, pp. 2179-2189, 2015.

R. Tida, K. Torisawa, J.-H. Oh, C. Kruengkrai, and J. Kloetzer. Intra-
sentential subject zero anaphora resolution using multi-column convolutional
neural network. In Proceedings of EMNLP, pp. 1244-1254, 2016.

K. Imamura, K. Saito, and T. Izumi. Discriminative approach to predicate-
argument structure analysis with zero-anaphora resolution. In Proceedings
of ACL-IJCNLP, pp. 85-88, 2009.

N. Kalchbrenner, I. Danihelka, and A. Graves. Grid long short-term memory.
In Proceedings of ICLR, 2016.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv: 1412.6980, 2014.

T. Koo, X. Carreras, and M. Collins. Simple semi-supervised dependency
parsing. In Proceedings of ACL/HLT, pp. 595-603, 2008.

S. Kiibler, R. McDonald, and J. Nivre. Dependency Parsing. Morgan and
Clapool, 2009.

T. Kudo and Y. Matsumoto. Japanese dependency analysis using cascaded
chunking. In Proceedings of CoNLL, pp. 63—69, 2003.

J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceed-
ings of ICML, 2001.

T. Lei, Y. Zhang, L. Marquez, A. Moschitti, and R. Barzilay. High-order
low-rank tensors for semantic role labeling. In Proceedings of NAACL-HLT,
pp. 1150-1160, 2015.

M. P. Marcus, B. Santorini, and M. Marcinkiewicz. Building a large an-
notated corpus of English: the Penn Treebank. Computational Linguistics,

19(2):313-330, 1993.

92

[41]

[42]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

R. McDonald, J. Nivre, Y. Quirmbach-Brundage, Y. Goldberg, D. Das,
K. Ganchev, K. Hall, S. Petrov, H. Zhang, O. Tackstrom, C. Bedini,
N. Bertomeu Castello, and J. Lee. Universal dependency annotation for
multilingual parsing. In Proceedings of ACL, pp. 92-97, 2013.

R. McDonald and F. Pereira. Online learning of approximate dependency
parsing algorithms. In Proceedings of the 11th conference on European Chap-
ter of the Association for Computational Linguistics (EACL), pp. 81-88,
Trento, Italy, April 2006. Association for Computational Linguistics.

A. Nasr and O. Rambow. Supertagging and full parsing. In Proceedings of
the International Workshop on Tree Adjoining Grammar and Related For-
malisms (TAG+ 7), pp. 5663, 2004.

J. Nivre. Dependency grammar and dependency parsing. Technical Report
MSI report 05133, Vaxjo University: School of Mathematics and Systems
Engineering, 2003.

J. Nivre. Incrementality in deterministic dependency parsing. In Proceed-
ings of the Workshop on Incremental Parsing: Bringing Engineering and
Cognition Together, pp. 50-57, 2004.

J. Nivre. Algorithms for deterministic incremental dependency parsing.
Computational Linguistics, 34:513-553, 2008.

Y. Nivre. An efficient algorithm for projective dependency parsing. In Pro-
ceedings of IWPT, pp. 149-160, 2003.

Y. Nivre, J. Hall, and J. Nilsson. Memory-based dependency parsing. In
Proceedings of CoNLL, pp. 49-56, 2004.

Y. Nivre and M. Scholz. Deterministic dependency parsing of English text.
In Proceedings of COLING, pp. 64-70, 2004.

M. Palmer, D. Gildea, and P. Kingsbury. The proposition bank: An an-
notated corpus of semantic roles. Computational linguistics, 31(1):71-106,
2005.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks. In Proceedings of ICML, 2013.

93

[52] S. Petrov, D. Das, and R. McDonald. A universal part-of-speech tagset. In
Proceedings of LREC, pp. 2089-2096, 2012.

[53] R. Sasano and S. Kurohashi. A discriminative approach to Japanese zero
anaphora resolution with large-scale lexicalized case frames. In Proceedings

of IJCNLP, pp. 758-766, 2011.

[54] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks.
IEEFE Transactions on Signal Processing, pp. 2673-2681, 1997.

[55] T. Shibata, D. Kawahara, and S. Kurohashi. Neural network-based model
for Japanese predicate argument structure analysis. In Proceedings of ACL,
pp. 1235-1244, 2016.

[56] M. Surdeanu, R. Johansson, A. Meyers, L. Marquez, and J. Nivre. The conll-
2008 shared task on joint parsing of syntactic and semantic dependencies.
In Proceedings of CoNLL: Shared Task, pp. 159-177, 2008.

[57] H. Taira, S. Fujita, and M. Nagata. A Japanese predicate argument structure
analysis using decision lists. In Proceedings of EMNLP, pp. 523-532, 2008.

[58] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al. Google’s neural machine
translation system: Bridging the gap between human and machine transla-
tion. arXw preprint arXiw:1609.08144, 2016.

[59] H. Yamada and Y. Matsumoto. Statistical dependency analysis using sup-
port vector machines. In Proceedings of IWPT, pp. 195-206, 2003.

[60] H. Yang and C. Zong. Multi-predicate semantic role labeling. In Proceedings
of EMNLP, pp. 363-373, 2014.

[61] K. Yoshikawa, M. Asahara, and Y. Matsumoto. Jointly extracting Japanese
predicate-argument relation with markov logic. In Proceedings of IJCNLP,
pp. 1125-1133, 2011.

[62] D. Zeman. A universal part-of-speech tagset. In Proceedings of LREC, pp.
213-218, 2008.

94

[63]

[64]

[65]

[66]

[67]

Y. Zhang and S. Clark. A tale of two parsers: Investigating and combining
graph-based and transition-based dependency parsing using beam-search. In
Proceedings of EMNLP, pp. 562-571, 2008.

Y. Zhang and S. Clark. Syntactic processing using the generalized perceptron
and beam search. Computational Linguistics, pp. 105-151, 2011.

Y. Zhang, T. Lei, R. Barzilay, and T. Jaakkola. Greed is good if randomized:
New inference for dependency parsing. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp.
1013-1024, Doha, Qatar, October 2014. Association for Computational Lin-
guistics.

Y. Zhang and J. Nivre. Transition-based dependency parsing with rich non-
local features. In Proceedings of ACL/HLT, pp. 188-193, 2011.

J. Zhou and W. Xu. End-to-end learning of semantic role labeling using
recurrent neural networks. In Proceedings of ACL-IJCNLP, 2015.

95

97

List of Publications

Journal Papers

1. Hiroki Ouchi, Kevin Duh, Hiroyuki Shindo, and Yuji Matsumoto. “Transition-
Based Dependency Parsing Exploiting Supertags”. IEEE Transactions on
Audio, Speech and Language Processing, Volume: 24, Issue: 11, pp. 2059
- 2068, November 2016.

Conference Papers

1. Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto. “Neural Modeling
of Multi-Predicate Interactions for Japanese Predicate Argument Structure

Analysis”. In Proceedings of the Association for Computational Linguistics
(ACL), pp. 1591 - 1600, July 2017.

2. Hiroki Ouchi, Hiroyuki Shindo, Kevin Duh, and Yuji Matsumoto. “Joint
Case Argument Identification for Japanese Predicate Argument Structure

Analysis”. In Proceedings of the Association for Computational Linguistics
(ACL), pp. 961 - 970, July 2015.

3. Hiroki Ouchi, Hiroyuki Shindo, Kevin Duh, and Yuji Matsumoto. “Improv-
ing Dependency Parsers with Supertags”. In Proceedings of the European
Chapter of the Association for Computational Linguistics (EACL), pp. 154
- 158, April 2014.

Awards

1. Outstanding Research Award, Information Processing Society of Japan
SIG-NL-233, “Neural Domain Adaptation for Unknown-Domains in Seman-
tic Role Labeling”. (in Japanese)

2. Young Researcher Award, Association for Natural Language Processing,
“Neural Inter-Sentential Zero-Anaphora Resolution”. (in Japanese)

3. Outstanding Research Award, Information Processing Society of Japan
SIG-NL-229, “Deep Recurrent Models for Japanese Predicate Argument
Structure Analysis”. (in Japanese)

Other Publication

1. Hiroki Ouchi and Yuta Tsuboi. “Addressee and Response Selection for
Multi-Party Conversation”. In Proceedings of the Empirical Methods in
Natural Language Processing (EMNLP), pp. 2133 - 2143, November 2016.

98

