
NAIST-IS-DD1561004

Doctoral Dissertation

A Study on

Syntactic and Semantic Dependency Parsing

Hiroki Ouchi

February 1, 2018

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Hiroki Ouchi

Thesis Committee:

Professor Yuji Matsumoto (Supervisor)

Professor Satoshi Nakamura (Co-supervisor)

Associate Professor Masashi Shimbo (Co-supervisor)

Assistant Professor Hiroyuki Shindo (Co-supervisor)

Assistant Professor Hiroshi Noji (Co-supervisor)

A Study on

Syntactic and Semantic Dependency Parsing∗

Hiroki Ouchi

Abstract

Syntactic and semantic dependency parsing are a fundamental problem in nat-

ural language processing (NLP). A variety of techniques have been proposed for

improving syntactic and semantic dependency parsers. However, there still re-

mains some room for further improvement. This thesis describes several methods

for improving syntactic and semantic dependency parsing.

To improve syntactic dependency parsing, we design and use supertags. Su-

pertags, which are lexical templates extracted from dependency structure anno-

tated corpus, encode linguistically rich information that imposes complex con-

straints in a local context. We present a supertag design framework that allows

us to design various granularity-level supertag sets. To investigate the appropri-

ate granularity or design of supertags needed to improve parsing performance, we

build various supertag sets based on the framework. Then, using the supertag

sets as features, we perform experiments on multilingual syntactic dependency

parsing. The experimental results show that appropriately designed supertags

are effective for syntactic dependency parsing.

To improve semantic dependency parsing, we capture and exploitmulti-predicate

interactions. This approach is based on the linguistic intuition that the predicates

in a sentence are semantically related to each other, and capturing this relation

can be useful for semantic dependency parsing. To capture this information, we

propose two distinct methods using (i) bipartite graphs and (ii) grid-type recur-

rent neural networks. Performing experiments on Japanese predicate argument

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD1561004, February 1,
2018.

i

structure analysis, we demonstrate that our proposed methods yield considerable

improvements.

Keywords:

Syntactic Dependency Parsing, Semantic Dependency Parsing, Predicate Argu-

ment Structure Analysis, Supertags, Bipartite Graphs, Recurrent Neural Net-

works

ii

iii

Acknowledgments

主指導教員の松本裕治教授には，この研究室に私を受け入れていただきました．
いつ頃からか，ゼミ室で行われる勉強会や研究会のとき，私は松本先生の隣の席
に座るようになりました．間近で先生のお話を聞かせていただいたり，他愛もな
い雑談をさせていただき，いつも心地よさを感じています．5年の間に，松本研
OBの方や松本先生と関わりのあるたくさんの方と繋がり，楽しい時間を過ごし
ました．卒業が近づき，奈良で過ごしたひとかたまりの時間が無数の断片のよう
なものになりつつあります．これから先，ふとした時に，一つ一つの断片を手に
とって，確かな重みを感じながら振り返ることを楽しみにしています．

中村哲教授には，お忙しい中，副指導教員を引き受けていただきました．中村
先生の助言により，論文の完成度が増したと思います．私が中村先生に最も接近
したのは，2015年にACLが北京で開催されたときです．その日のお昼ご飯にご
一緒させていただいたことを記憶しております．これからの研究の話や中村先生
のスマートな立ち振る舞いに感銘を受けました．

新保仁准教授からはユーモアのセンスを学びました．授業や研究発表の冒頭，
新保先生が何気なく添える話を，私はすごく面白いと思っていました．たまに私
も研究発表の冒頭にアイスブレイクの話を入れますが，その構成や雰囲気は新保
先生に大きく影響を受けています．新保先生との直接的な関わりは，DMLAが主
だったと思います．矢のようなご指摘は，私の研究の曖昧な点を正確に射抜きま
した．また，私に対してのみならず他の学生にも，各人の内面的適正を考慮しな
がらご指導されていた姿が強く印象に残っています．研究者としてだけでなく指
導者としての新保先生にも大きな尊敬の念を抱いております．

進藤裕之助教には研究を行う活力をいただきました．深夜，助教室から灯りが
漏れてきて，それに群がる蛾のように，私はミーティングをさせていただくため
にドアを叩きます．ときにその灯りは陽光のようでもあり，私にエネルギーを与
え，もう一度机に向かわせます．数多くの助言もさることながら，無心に研究を

する進藤先生の姿に，私は不思議な安心感を抱いていました．今後も，進藤先生
のスタイルを一つの見本として邁進して行きたいと思います．

能地宏助教には，2014年の言語処理学会年次大会で初めてお会いしました．そ
のときに，「Supertagの論文，よかったよ。」と話しかけていただいたことを覚え
ております．自分が書いた論文が誰かに読まれていることを初めて実感した瞬間
でした．嬉しさと微妙な照れくささが混ざり合ったような心境でした．お酒をご
一緒させていただく機会では，構文解析に関する幅広いご意見を聞かせていただ
きました．時折，明日の予定を顧みずにお酒を飲み進める能地さんの姿に勇気づ
けられることもありました．これからもよろしくお願いします．

Johns Hopkins UniversityのKevin Duh先生には，私が右も左もわからない状
態のときに，研究のいろはを教えていただきました．私がM1のときに初めて国
際会議に論文を投稿した際も，Kevin先生の助けがなければ，論文を書き上げら
れなかったと思います．アメリカの大学に移られてからも，国際会議でお会いす
るたびに気にかけていただき，心強く感じます．会議中に各国の研究者と楽しそ
うに議論をされているKevin先生の姿に，世界を舞台にして研究を行う醍醐味を
感じました．

北川祐子秘書には事務手続きでお世話になりました．提出期限を過ぎた書類に
もおおらかに対応するその寛容さは，提出が遅れてもなんとかなるんだと，私に
勇気を与えました．また，他愛もない世間話から人生に関わる壮大な雑談まで，
多様な話題を共有し，いくつもの助言をいただきました．北川さんに研究室の環
境を整えていただき，楽しく研究活動が行えた 5年間でした．

Preferred Networksの坪井祐太さんには，2015年の夏から共同研究をさせてい
ただきました．2015年春，当時坪井さんが在籍されて居た IBM東京基礎研究所
のインターンシップに応募したことは，私が博士課程において行った最高の選択
のひとつです．夏のインターンシップでメンターを引き受けていただき，毎日の
ように研究の相談をさせていただきました．研究を進めていく過程自体に大きな
楽しみがあり，良い研究を進めていく上で必要な定石のようなものを学ばせてい
ただいたと思います．

知能コミュニケーション研究室の吉野幸一郎助教には，研究に関する数多くの
助言をいただきました．特に，私がD3になってからは共同研究をさせていただ

iv

き，定期的にミーティングをさせていただきました．研究に関する話だけでなく，
日本の自然言語処理の現状や野球の話など，様々な話題を共有していただき，と
ても和みました．

情報通信研究機構の藤田篤主任研究員と飯田龍主任研究員には，研究内容だけ
でなく，社会に出てからの研究との向き合い方など，多岐にわたる助言をいただ
きました．これからの自分の研究生活を考えるきっかけになりました．

東京Dの会のメンバーには多くの刺激をいただきました．異なる研究室の同じ
博士課程の学生として共有している部分も多く，大きな励みになりました．

松本研のメンバーにはとてもお世話になりました．私は自分の母親に会うとき，
よく松本研のメンバーの話をします．

登場回数第一位は澤井裕一郎くんです．「北京空港着いたら澤井くんがタクシー
運転手に中国語で話しかけて…」「なんか澤井くんが角田市のこと知ってたよ。」
いろんなエピソードを話しました．澤井くんが自分語りをすることはほとんどな
いけれど，掘れば掘るほど何かが湧き出てくる，豊かな水脈を持っているんだな
あと私は思っています．機会があったら，私の母親に一度会ってあげてください．

先輩の濱口拓男さんには萌芽的な研究の話をたくさん聞かせていただきました．
ニューラルネットを全身に纏った濱口さんの壮大な理論は，ときに困惑を，とき
に感動を私に与えました．一方，今忙しくないですか，今聞く気分じゃないです
か，といったことを必ず確認してくれるところに，細かな気遣いも感じました．
大胆さと繊細さを兼ね備えた濱口さんの今後の研究が楽しみです．

OBの重藤優太郎さんと椿真史さんにもたくさんのご指導を受けました．特に，
お二人のDMLAでのご活躍が強く印象に残っております．お二人が卒業する際，
来年はどうなるのだろうと一抹の不安を覚えるくらい，私にとって大きな存在で
した．

v

他のOBの先輩にもお世話になりました．特に，5階に住んでいた先輩方には
感銘を受けました．本当にこのような人物が実在するのかと目を疑いました．そ
こにはアニメの世界がオーバーレイしたような空間が形成され，部屋の向こう側
とこちら側では空間の解像度が違って見えました．

卒業した後輩の皆さまにも多くの刺激を受けました．特に，三田雅人くんと駒
井雅之くんにはたびたび居酒屋に付き合ってもらいました．日を追うごとに成長
していくお二人を頼もしく思いました．二人が松本研で研究している姿をもう少
し長く見ていたかったです．あっという間に二年は過ぎ去りました．他にも，少
し変わった後輩が毎年のように入学してきて，松本研を彩っていきました．

同期入学のみなさまとは，NAIST入学以来，多くの時間を共有しました．緩や
かな関係性の中でのコミュニケーションに自然と肩の力が抜けました．特に，毎
週金曜に催される飲み会は，深い安らぎをもたらしました．卒業してからも，時
たま開かれる飲み会を楽しみにしています．

宮城にいる父，母，弟へ．奈良に流れ着き，早 5年が経ちました．次はどこに
流れていくかわかりませんが，これからも私を見守っていてください．

vi

vii

Contents

Acknowledgments iii

1 Introduction 1

1.1 Dependency Representations and Parsing 1

1.2 Motivations and Problematic Issues 6

1.3 Solutions . 7

1.4 Contributions . 8

1.5 Thesis Outline . 9

2 Preliminaries 11

2.1 Syntactic Dependency Parsing . 11

2.1.1 Task Definition . 11

2.1.2 Evaluation Metrics . 13

2.1.3 Transition-Based Methods 13

2.2 Semantic Dependency Parsing . 15

2.2.1 Task Definition . 15

2.2.2 Evaluation Metrics . 17

2.2.3 Related Methods . 17

3 Syntactic Dependency Parsing: Supertag Design Framework 23

3.1 Introduction . 23

3.2 Supertag Design Framework . 25

3.2.1 Supertag Design Framework 25

3.2.2 Supertag Instantiation . 26

3.2.3 Supertag Notation . 27

3.3 Dependency Parsers Exploiting Supertags 29

3.3.1 Automatic Supertag Assignment 29

3.3.2 Supertag Features for Dependency Parsing 30

3.4 Experiment . 31

3.4.1 Datasets . 31

3.4.2 Setup of Supertagging Experiments 32

3.4.3 Setup of Parsing Experiments 32

3.4.4 Results for Suppertagging 34

3.4.5 Results for Dependency Parsing with Supertags 36

3.4.6 Comparison with Existing Parsers 41

3.5 Related Work . 43

3.6 Summary . 44

4 Semantic Dependency Parsing: Multi-Predicate Modeling 47

4.1 Introduction . 47

4.1.1 Background . 47

4.1.2 Problematic Issue: Argument Omission 48

4.1.3 Key Insight: Multi-Predicate Interaction 49

4.1.4 Solution . 50

4.1.5 Contributions . 51

4.2 Predicate Argument Structure Analysis 51

4.2.1 Task Setting . 51

4.2.2 Target Case Roles and Argument Types 52

4.3 Bipartite Graph Models . 54

4.3.1 A Predicate-Argument Graph 54

4.3.2 Per-Case Joint Model . 56

4.3.3 All-Cases Joint Model . 57

4.3.4 Features . 58

4.3.5 Inference and Training . 60

4.4 Grid RNN Models . 63

4.4.1 Single-Sequence Model . 63

4.4.2 Multi-Sequence Model . 67

4.4.3 Training . 70

4.5 Experiment . 70

4.5.1 Experimental Settings . 70

4.5.2 Results . 72

4.6 Related Work . 76

4.6.1 Japanese PAS Analysis Approaches 76

4.6.2 Modeling of Multi-Predicate Interactions 77

viii

4.6.3 Neural Approaches . 77

4.7 Summary . 78

5 Conclusion 81

5.1 Summary . 81

5.2 Future Directions . 82

A First Appendix 83

A.1 Feature Templates for Supertagging 83

A.2 Feature Templates for Dependency Parsers 83

B Second Appendix 87

B.1 Feature Templates for Bipartite Graph Models 87

B.2 Hyper-Parameters for Neural Models 87

Bibliography 89

List of Publications 97

ix

xi

List of Figures

1.1 Example of syntactic and semantic dependencies, i.e., syntactic

dependencies in the above part and semantic dependencies in the

below part. 2

1.2 Example of two sentences that have the same predicate argument

structure. Although the predicate argument structures (shown in

the below part) are identical, the surface and syntactic realizations

(shown in the above part) are different between the two sentences. 5

2.1 Example of a syntactic dependency graph. 12

2.2 Example of a parsing process with the arc-standard model. 14

2.3 Example of semantic dependencies. 16

3.1 Illustrative example of supertags for the dependency structure. Su-

pertags encode syntactic information, e.g., the head direction and

dependency label. 24

4.1 Example of two sentences that have the same predicate argument

structure. Although the predicate argument structures (shown in

the below part) are identical, the surface and syntactic realizations

(shown in the above part) are different between the two sentences. 48

4.2 Example of Japanese predicate argument structures. The upper

edges denote dependency relations, and the lower edges denote case

arguments. “NOM” and “ACC” denote the nominative and accusative

arguments, respectively. “ϕi” is a zero pronoun, referring to the

antecedent “男 i (mani)”. 49

4.3 Intuitive image of a predicate-argument graph. This graph is factor-

ized into the local and global features. The different line color/style

indicate different cases. 54

4.4 Randomized hill-climbing for per-case joint model. 61

4.5 Randomized hill-climbing for all-cases joint model. 62

4.6 Overview of neural models: (i) single-sequence and (ii)multi-sequence

models. 63

4.7 Overall architecture of the single-sequence model. This model con-

sists of three components: (i) Input Layer, (ii) RNN Layer and (iii)

Output Layer. 64

4.8 Example of feature extraction. The underlined word is the tar-

get predicate. From the sentence “彼女はパンを食べた。(She ate

bread.)”, three types of features are extracted for the target pred-

icate “食べた (ate)”. 65

4.9 Example of the process of creating a feature vector. The extracted

features are mapped to each vector, and all the vectors are con-

catenated into one feature vector. 66

4.10 Overall architecture of the multi-sequence model: an example of

three sequences. 68

xii

xiii

List of Tables

3.1 Various granularity supertag sets. The mark ✓ indicates the su-

pertag set is defined using the function, and the mark × indicates

not. 27

3.2 Examples of supertags for the sentence “She kept a cat .”. 28

3.3 Supertag statistics on Penn Treebank. “PTB-YM” is the Yamada

& Matsumoto dependency scheme [59], and “PTB-SD” is the Stan-

ford dependency scheme [12]. 33

3.4 Supertag statistics on Universal Dependencies [41]. 33

3.5 Supertagging results on the English Penn Treebank. Each number

indicates accuracy. 34

3.6 Supertagging results on the Universal Dependencies . Each num-

ber indicates accuracy. “UD-Avg.” indicates the macro average

accuracy for each supertag set over all the languages. 35

3.7 English dependency parsing results with gold supertags. Each

number indicates UAS/LAS, in which “UAS” is the unlabeled at-

tachment score and “LAS” is the labeled attachment score. 36

3.8 Multilingual dependency parsing results with gold supertags. Each

number indicates UAS/LAS. 37

3.9 English dependency parsing results with predicted supertags. Each

number indicates UAS/LAS. 38

3.10 Multilingual dependency parsing results with predicted supertags.

Each number indicates UAS/LAS. 39

3.11 F1 scores according to the dependency distances. Each number

is “Baseline-F1/Stag-F1,” “root” indicates the root identification,

and “1/2/3-6/7-” indicates the distance (the number of words)

between a target word and its head. 41

3.12 F1 scores according to the dependency distances. Each number

is “Baseline-F1/Stag-F1,” “root” indicates the root identification,

and “1/2/3-6/7-” indicates the distance (the number of words)

between a target word and its head. 42

3.13 UAS/LAS of dependency parsers in previous work. 43

4.1 Examples of each argument type. ϕi and wordi denote the zero

pronoun and its antecedent, respectively. 53

4.2 Test F1 scores on the NAIST Text Corpus 1.5. Baseline is

the reimplemented model of [32], PCJoint is the Per-Case Joint

Model in Section 4.3.2, ACJoint is the ALL-Cases Joint Model in

Section 4.3.2, SingleSeq is the single-sequence model in Section

4.4.1, and MultiSeq is the multi-sequence model in Section 4.4.2. 72

4.3 Global vs local features on the development set in F1 score. PCJoint

and ACJoint denotes the Per-Case and All-Cases Joint Model,

respectively. 73

4.4 Performance comparison for different numbers of layers on the de-

velopment set in F1 score. L is the number of the RNN or Grid

layers. +res. or −res. indicates whether the model has residual

connections (+) or not (−). 74

4.5 Performance comparison for different case roles on the test set in

F1 score. NOM, ACC or DAT is the nominal, accusative or dative

case, respectively. The asterisk (*) indicates that the model uses

external resources. 75

A.1 Feature templates for the supertagging models. The notations used

in this table are as follows: feature conjunction= ◦; xi is the i-th

word in the sentence; w=word form; t=POS tag; stag=supertag. . 84

A.2 Feature templates for the arc-standard model. The notations used

in this table are as follows: feature conjunction= ◦; si=i-th word

on the top of the stack; bi=i-th word in the buffer; lc=left-most

dependent; rc=right-most dependent; w=word form; t=POS tag;

stag=supertag; dist(p, q)=word distance between p and q; nd=1 if

the word has no dependent, otherwise 0. 85

xiv

B.1 Global feature templates. pi, pj is a predicate, ai is the argument

connected with pi, and aj is the argument connected with pj. Fea-

ture conjunction is indicated by ◦; ax=auxiliary, rp=relative posi-

tion, vo=voice, rf=regular form, dep=dependency. All the features

are conjoined with the relative position and the case role labels of

the two predicates. 88

B.2 Hyper-parameters used in the experiments. 88

xv

1

Chapter 1

Introduction

Syntactic and semantic analysis are a fundamental problem in natural language

processing (NLP). Dependency-based methods for the analysis have attracted

considerable attention. The popularity stems from their easily interpretable en-

coding of syntactic and semantic structures.

1.1 Dependency Representations and Parsing

Syntactic Dependencies

Syntactic Dependency Representations

A dependency representation consists of words (or lexical elements) linked by bi-

nary asymmetric relations called dependencies [44]. Especially, in this thesis, de-

pendencies which represent syntactic structure are called syntactic dependencies.

A syntactic dependency holds between two words: one is called the dependent

and another is called the head.

• Dependent: a syntactically subordinate word

• Head: the word on which a subordinate word depends

Consider the example sentence of Figure 1.1: “She makes and repairs comput-

ers.” Each arc (drawn in green) above the sentence denotes a syntactic depen-

dency. For example, the arc from “makes” to “She” with subj represents that a

Root She makes and repairs computers

root

subj cc

conj

obj

agent

theme

agent

theme

Figure 1.1: Example of syntactic and semantic dependencies, i.e., syntactic de-

pendencies in the above part and semantic dependencies in the below part.

syntactically subordinate word “She” depends on another word “makes” with the

dependency (grammatical) type “subject” (subj). All the syntactic dependencies

are listed as follows:

⟨makes, subj, She⟩, ⟨Root, root,makes⟩, ⟨makes, cc, and⟩,
⟨makes, conj, repairs⟩, ⟨makes, obj, computers⟩

where each triple consists of ⟨head, dependency type, dependent⟩. Note that

the head word Root of the word “makes” is a special word, and each word has a

single head word. Such bilexical relations have been used to improve performance

of NLP applications such as machine translation and information extraction.

Syntactic Dependency Parsing

A task of recovering the syntactic structure of a sentence is called syntactic de-

pendency parsing. Most of recent methods for the task use machine learning

techniques. In particular, supervised methods have attracted the most attention.

They presuppose that there is a training set:

Dtrain = {(xi,yi)}N
train

i=1

2

where xi is an input sentence and y is its syntactic dependency structure an-

notation. Supervised syntactic dependency parsing involves the following two

problems:

• Learning:

Given a training set Dtrain, learn parameters θ of a model fθ that can be

used to parse new sentences.

• Decoding:

Given the learned model fθ and a sentence x, derive a syntactic dependency

tree y for x according to the model fθ.

For these problems, the following two major methods have been studied:

• Transition-based methods:

Use a transition system for mapping a sentence to its dependency tree.

– Learning: Learn a model for assigning a higher score to the oracle

next transition at each time step than non-oracle ones.

– Decoding: Find the highest scoring transition sequence for the input

sentence.

• Graph-based methods:

Assign scores to substructures of a dependency tree.

– Learning: Learn a model for assigning higher scores to substructures

in a correct dependency tree than incorrect ones.

– Decoding: Find the highest scoring dependency tree for the input

sentence.

Typically, transition-based methods are more computationally efficient than graph-

based methods. By contrast, parsing accuracy of transition-based methods is

lower than accuracy of graph-based methods. To bridge the performance gap,

this thesis tackles to improve transition-based methods.

3

Semantic Dependencies

Semantic Dependency Representations

Semantic structures are represented in various ways. One major representation is

predicate argument structure. Predicate argument structure encodes the semantic

arguments associated with a predicate. The structure is concerned with events :

Event: who did what to whom, where, when, and how

A predicate is typically a verb and represents what took place. Its semantic

arguments represent the participants in the event, such as who and whom, as well

as further event properties, such as where, when and how.

Consider the example sentence of Figure 1.1: “She makes and repairs com-

puters.” Each of the blue arcs below the sentence is a semantic dependency. A

semantic dependency holds between a predicate and its argument with a seman-

tic role. In this example, there are two predicates: “makes” and “repairs.” The

predicate “makes” has two semantic arguments:

⟨makes, agent, She⟩, ⟨makes, theme, computers⟩

where “She” is the “maker” (agent) and “computers” is the “entity made”

(theme). Similarly, the predicate “repairs” also has two semantic arguments:

⟨repairs, agent, She⟩, ⟨repairs, theme, computers⟩

where “She” is the “repairer” and “computers” is the “entity repaired.”

The semantic dependency representation has an important property: general-

ization of surface differences. Figure 1.2 shows two example sentences annotated

with syntactic and semantic dependencies. The two sentences have the same

predicate argument structure: the word “John” plays a role of “agent” and

the word “window” plays a role of “theme.” However, the surface and syntactic

realizations of the predicate argument structure are different between the two

sentences. Thus, predicate argument structures can be regarded as a representa-

tion generalized over surface representations. This property is useful for finding

semantically-equivalent sentences with different surface realizetions.

4

John broke the window

subj

root

det

obj

agent

theme

The window was broken by John

det

subj

aux

root

case

nmod

agenttheme

Figure 1.2: Example of two sentences that have the same predicate argument

structure. Although the predicate argument structures (shown in the below part)

are identical, the surface and syntactic realizations (shown in the above part) are

different between the two sentences.

Semantic Dependency Parsing

A task of recovering the semantic dependencies is called semantic dependency

parsing or semantic role labeling (SRL).1 Basically, this task involves the following

four steps:

• Predicate Identification:

Identify predicates in a sentence.

• Predicate Disambiguation:

Select a predicate sense from a set of possible senses.

• Argument Identification:

Identify arguments of a sentence.

• Argument Classification:

Assign a semantic role label to each argument.

Consider the example sentence in Figure 1.1. The first step would be to iden-

tify two predicates “makes” and “repairs.” In the second step, for the predi-

cate “make,” the PropBank [50] defines 20 senses, {make.01, · · · ,make.20}, from

1In this thesis, the terms semantic dependency parsing, semantic role labeling and predicate
argument structure analysis are used interchangeably.

5

which the sense used in the sentence is selected. The third step would be to

identify “She” and “computers” as semantic arguments. In the fourth step, for

the predicate “makes,” the label “agent” is assigned to an argument “She” and

“theme” to the other argument “computers.”

To predict these elements, most of recent methods use supervised learning tech-

niques. Like supervised methods for syntactic dependency parsing, supervised

semantic dependency parsing methods also use a training set to learn model pa-

rameters. A basic approach learns a model for each of the four steps and uses the

learned models to predict each element. Another approach combines argument

identification and classification as one step and jointly predicts arguments and

their labels by using a single model.

This thesis focuses on improving the one-step approach for argument identifi-

cation and classification. Thus, following previous researches [39, 32], predicate

identification and disambiguation is not the part of the task addressed in this

thesis. In other words, given a sentence and target predicates, we predict argu-

ments and labels.

1.2 Motivations and Problematic Issues

To identify syntactic and semantic dependencies, a variety of techniques have

been proposed. However, there still remains some room for further improvement.

Feature Granularity for Syntactic Dependency Parsing

In syntactic dependency parsing, feature representations, such as surface word

form and part-of-speech (POS) information, play a crucial role when predicting

ambiguous dependency relationships. As features to resolve dependency ambigu-

ities, the surface information of words is sparse while POS information is coarse.

Thus, it is worthwhile to investigate intermediate representations that exist at

a coarser level than the words, yet capture the information necessary to resolve

dependency ambiguities.

6

Argument Omission in Semantic Dependency Parsing

In semantic dependency parsing, syntactic dependencies between arguments

and predicates are a strong clue for identifying predicate argument structures.

However, some arguments have no direct dependency relation with the predi-

cates, which means that syntactic dependency features are not so effective for

identifying such arguments. A representative example of such arguments is the

ones omitted in the surface form. In particular, in pro-drop languages such as

Japanese, Chinese and Italian, arguments are often omitted in text. Such argu-

ment omission is regarded as one of the most problematic issues facing semantic

dependency parsing [29, 53, 20]. In order to overcome this problem, it is necessary

to explore other types of effective features.

1.3 Solutions

Supertagging for Syntactic Dependency Parsing

To remedy the feature-granularity problem in syntactic dependency parsing,

we design supertags based on dependency structures. Supertags, which are lex-

ical templates extracted from dependency structure annotated corpus, encode

linguistically rich information that imposes complex constraints in a local con-

text [2]. While supertags have often been used in parsing frameworks based

on lexicalized grammars, such as Lexicalized Tree-Adjoining Grammar (LTAG),

Head-driven Phrase Structure Grammar (HPSG) and Combinatory Categorial

Grammar (CCG), they have scarcely been utilized for dependency parsing so far.

This thesis presents a framework of designing supertags specialized for depen-

dency parsing.

Multi-Predicate Modeling for Semantic Dependency
Parsing

To remedy the argument omission problem in semantic dependency parsing,

we capture and exploit multi-predicate interactions, the relations between mul-

7

tiple predicates and arguments in a sentence. These relations have often been

overlooked because most of existing methods attempted to solve this problem

by identifying arguments per predicate without considering interactions between

multiple predicates and arguments [57, 32]. However, the predicates in a sentence

are semantically related to each other. Thus, exploiting this information could

help to identify predicate-argument structures. In order to capture such multi-

predicate interactions, this thesis presents two approaches, one using bipartite

graphs and the other using grid-type recurrent neural networks.

1.4 Contributions

In summary, we make the following contributions:

• We propose a supertag design framework and develop dependency parsers

exploiting various supertag sets.

• Performing experiments on Penn Treebank [40] and the Universal Depen-

dencies [41], we demonstrate the utility of our supertags for multilingual

syntactic dependency parsing.

• We propose (i) bipartite graph models which jointly identify arguments

of all predicates in a sentence and (ii) grid-type recurrent neural models

which automatically induce features sensitive to multi-predicate interactions

exclusively from the word sequence information.

• Performing experiments on the NAIST Text Corpus [28], we demonstrate

the utility of our modeling of the multi-predicate interactions for semantic

dependency parsing.

8

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2: Basics We provide the background knowledge to promote under-

standing of syntactic and semantic dependency parsing. Specifically, we describe

the task settings of syntactic and semantic dependency parsing, evaluation met-

rics, and some methods related to our proposed methods.

Chapter 3: Syntactic Dependency Parsing We propose a framework of

designing supertags. Firstly, we provide the background of supertags and for-

malize our framework. Then, we describe automatic assignment methods of our

proposed supertags. Finally, we show experimental results of parsers exploiting

supetags.

Chapter 4: Semantic Dependency Parsing We propose (i) bipartite graph

models and (ii) grid-type recurrent neural models. Firstly, we provide the back-

ground of Japanese predicate argument structure analysis. Then, we describe our

proposed models. Finally, we show experimental results of our models.

Chapter 5: Conclusion We summarize this thesis and discuss the future

direction of the work.

9

11

Chapter 2

Preliminaries

This chapter provides the background knowledge to understand syntactic and

semantic dependency parsing. Section 2.1 describes a task setting of syntactic

dependency parsing, evaluation metrics and transition-based methods used in

Chapter 3. Section 2.2 describes two major task settings of semantic dependency

parsing, evaluation metrics and some methods related to our proposed methods

in Chapter 4.

2.1 Syntactic Dependency Parsing

2.1.1 Task Definition

Given a sentence S = w0, w1, · · · , wT , a system predicts a syntactic dependency

graph GS = (VS, AS):

• Given: a sentence S = w0, w1, · · · , wT

• Predict: a syntactic dependency graph GS = (VS, AS)

A sentence is a sequence of tokens1. This means that syntactic dependency

parsing assumes that the tokenization of a sentence has already done. The first

1In this thesis, the terms token and word are used interchangebly.

Root She kept a cat .

root

subj

obj

det

punct

Figure 2.1: Example of a syntactic dependency graph.

token in the sentence w0 is a special root token Root. A syntactic dependency

graph GS and a set of labeled arcs AS are defined as follows:

VS = {w0, w1, · · · , wT}
AS ⊆ VS ×R× VS, R = {ri}Mi=1

where R = {ri}M1 is a set of syntactic dependency labels. AS is a set of triples

⟨wi, r, wj⟩, where wi is a head word, wj is a dependent word and r is a label. A

syntactic dependency graph is a directed rooted tree: the root node w0 has no

incoming arc (root property), each node has a single incoming arc (single-head

property), and there are no cycles (acyclicity property) [36].

Figure 2.1 shows an example syntactic dependency graph. This graph can be

denoted as follows:

V = {Root, She, kept, a, cat, .}
A = {⟨Root, root, kept⟩, ⟨kept, subj, She⟩,

⟨kept, obj, cat⟩, ⟨kept, punct, .⟩, ⟨cat, det, a⟩}

Note that, following previous work [46, 36], we assume that every word of

a sentence has a position index, which makes a sentence a sequence of unique

tokens/words. Consider the sentence:

Root0 She1 likes2 cats3 and4 he5 likes6 docs7 .8

This sentence contains two instances of the word “likes” and we think each to be

distinct from the other because their position indices are different. In this thesis,

even though we explicitly denote the position indices, we assume they exist.

12

2.1.2 Evaluation Metrics

To evaluate syntactic dependency parsers, we follow previous researches and

use the standard metrics, attachment scores:

• Unlabeled Attachment Score: The percentage of words that have the

correct head.

• Labeled Attachment Score: The percentage of words that have the

correct dependency label as well as the correct head.

Unlabeled Attachment Score (UAS) gives an evaluation of how many head words

were predicted correctly. Consider the correct dependency triple ⟨kept, obj, cat⟩
and predicted triple ⟨kept, vmod, cat⟩. Because the head “kept” for the word

“cat” is identical, this triple is regarded as correct although the label is wrong.

In addition to head words, Labeled Attachment Score (LAS) evaluates labels as

well. Thus, the predicted triple is not regarded as correct because the label is

wrong.

2.1.3 Transition-Based Methods

This section describes transition-based methods for syntactic dependency pars-

ing. Transition-based methods are a class of data-driven dependency parsing

methods exploiting machine learning techniques. In particular, this thesis fo-

cuses on supervised methods, which utilize sentences with correct dependency

structure annotation as the input for machine learning.

In this framework, transition-based systems derive dependency trees based on

a parsing model parameterized over a transition sequence from an initial to some

terminal configuration. Given a training set (sentences with dependency structure

annotation), a parsing model is to be induced for parsing a new sentence. Based

on the induced model, a transition system, which is an abstract machine consist-

ing of a set of configurations and transitions between configurations, derives the

optimal dependency tree [36].

This approach was pioneered by Kudo and Matsumoto [37], Yamada and Mat-

sumoto [59], and Nivre [47] for unlabeled dependency parsing. Nivre et al. [48]

and Nivre and Scholz [49] extended the approach to labeled dependency parsing.

13

Root She kept a cat .

root

subj

obj

det

punct

Step Transition Stack Buffer A

1 SHIFT [Root] [She kept a cat .] ∅
2 SHIFT [Root She] [kept a cat .]

3 SHIFT [Root She kept] [a cat .]

4 LEFT-ARC(subj) [Root kept] [a cat .] A ∪ (kept, She)

5 SHIFT [Root kept a] [cat .]

6 SHIFT [Root kept a cat] [.]

7 LEFT-ARC(det) [Root kept cat] [.] A ∪ (cat, a)

8 RIGHT-ARC(obj) [Root kept] [.] A ∪ (kept, cat)

9 SHIFT [Root kept .] []

10 LEFT-ARC(punct) [Root kept] [] A ∪ (kept, .)

11 LEFT-ARC(root) [Root] [] A ∪ (Root, kept)

Figure 2.2: Example of a parsing process with the arc-standard model.

Instead of the greedy search used in the previous systems, beam search was ap-

plied to dependency parsing by Zhang and Clark [63, 64]. Of the variations of

transition-based systems, arc-standard and arc-eager are representative systems,

and the implementation MaltParser has been widely used so far [46]. In this

thesis, we employ the arc-standard model [45].

In the arc-standard model, the configuration c = (s, b, A) consists of a stack

s, buffer b, and set of dependency arcs A. The initial configuration for an input

sentence S = w0, w1, · · · , wT is s = [ROOT], b = [w1, · · · , wT], and A = ∅. A

configuration c is terminal if the buffer is empty and the stack contains the single

node Root, and the parse tree is given by Ac. Denoting si (i = 1, 2, · · ·) as the
ith word on the top of the stack, and bj (j = 1, 2, · · ·) as the jth element on the

buffer, the arc-standard system defines the following three types of transitions:

14

• LEFT-ARC: adds an arc s1 → s2 and removes s2 from the stack under the

precondition | s |≥ 2.

• RIGHT-ARC: adds an arc s2 → s1 and removes s1 from the stack under the

precondition | s |≥ 2.

• SHIFT: moves b1 from the buffer to the stack under the precondition | b |≥ 1.

Consider the sentence “She kept a cat .” in Figure 2.2. At step 6, LEFT-ARC

is chosen as the next transition, so that the second top word on the stack “a”

(s2) depends on the top word “cat” (s1) and is removed from the stack. At step

7, RIGHT-ARC is chosen as the next transition; hence, the top word on the stack

“cat” (s1) depends on the second top word “kept” (s2) and is removed from the

stack. At step 8, SHIFT is chosen as the next transition, and the first word in the

buffer “.” (b1) is removed from the buffer and moved to the stack.

As a result of such transitions, the goal of a transition-based system is to

predict a correct transition sequence based on each configuration. Specifically,

the system chooses the most probable next transition at each configuration based

on scores. The scores are computed as the dot product of the weight vector and

feature vector. The feature vector is made by predefined features. The features

are represented using some lexical information based on the current configuration,

such as the word forms and POS tags of some words on the stack/buffer.

2.2 Semantic Dependency Parsing

2.2.1 Task Definition

A task of recovering the predicate argument structure of a sentence is called

semantic dependency parsing or semantic role labeling (SRL). There are two ma-

jor task settings tackled by many researchers: one is adopted in the CoNLL-2008

shared task [56] and the other is in the CoNLL-2009 shared task [19]. This section

describes the two task settings, in particular, identification of predicate argument

relations.2

2Predicate sense disambiguation is out of scope of this thesis because we focus on identifi-
cation of predicate argument structures.

15

She makes and repairs computers .

agent

theme

agent

theme

Figure 2.3: Example of semantic dependencies.

The CoNLL-2008 Shared Task

Given a sentence S = w1, · · · , wT , a system identifies predicate argument relations

Y = {⟨p, r, a⟩i}N1 .

• Given: a sentence S = w1, · · · , wT

• Predict: a set of predicate argument relations Y = {⟨p, r, a⟩i}Ni=1

where each triple consists of a predicate p ∈ V prd
S , its argument a ∈ V arg

S and a

label r ∈ R:

V prd
S = {p1, · · · , pM} ⊆ S

V arg
S = {a1, · · · , aN} ⊆ S

R = {ri}Ki=1

Thus, a predicate argument triple is defined in the following space:

⟨p, r, a⟩ ∈ V prd
S ×R× V arg

S

Figure 2.3 illustrates an example. There are two predicates: “makes” and

“repairs.” The predicate “makes” has two arguments: one is “She” with the

agentive role and the other is “computers” with the thematic role. The other

predicate “repairs” also has the same arguments. To sum up, a system is expected

to return the following triples for this sentence:

{ ⟨makes, agent, She⟩, ⟨makes, theme, computers⟩,
⟨repairs, agent, She⟩, ⟨repairs, theme, computers⟩ }

16

The CoNLL-2009 Shared Task

The main difference between the CoNLL-2008 and CoNLL-2009 shared tasks is

whether or not to provide target predicates. Specifically, in the CoNLL-2009

shared tasks, given a sentence S = w1, · · · , wT and the target predicates V prd
S =

{p1, · · · , pM}, a system identifies arguments a with their labels r for each predicate

p. In other words, predicates do not have to be identified. This setting is also

adopted in Japanese predicate argument structure analysis. Thus, the task setting

in Chapter 4 assumes that target predicates are given and predicate identification

is not the part of the task.

2.2.2 Evaluation Metrics

To evaluate semantic dependency parsers, the most widely used metric is the

F1 score, which is the harmonic mean of precision and recall:

• Precision: The percentage of triples ⟨wp, r, wa⟩ in the system output that

were correct.

• Recall: The percentage of triples ⟨wp, r, wa⟩ annotated in a dataset that

were correctly identified.

• F1 score:
2× Precision× Recall

Precision + Recall

For example, a system predicted 5 triples for a sentence and a target predicate,

and if 3 out of the 5 triples were correct, precision is 3/5 = 0.60. Similarly, if 3

out of 4 triples annotated in a dataset were correctly identified by the system,

recall is 3/4 = 0.75. Thus, F1 score is calculated as 2×0.60×0.75
0.60+0.75

= 0.67.

2.2.3 Related Methods

To promote understanding of our proposed methods in Chapter 4, this section

describes some related methods.

17

A Basic Pipeline Proceudure

Identification of predicate argument relations involves the following tree steps:

1. Predicate Identification:

Identify predicates in a sentence.

2. Argument Identification:

Identify the arguments of a predicate.

3. Argument Classification:

Assign a semantic role label to each argument of a predicate.

The first step is to identify predicates in a sentence S = w1, · · · , wT :

V prd
S = fpi(S)

where a predicate identification model fpi returns a set of predicates in a sen-

tence V prd
S . For example, the sentence in Figure 2.3 contains the following two

predicates: “makes” and “repairs.” Thus, the model fpi is expected to return the

following set:

V prd
S = {makes, repairs}

Then, the second step is to identify semantic arguments of each predicate p ∈
V prd:

V arg
p = fai(p, S)

For example, for the predicate “makes” in Figure 2.3, the model fai is expected

to return the following set:

V arg
makes = {She, computers}

Finally, the third step is to assign a semantic role label to each pair of a predicate

p ∈ V prd
S and its argument a ∈ V arg

p :

r = fac(p, a, S)

For example, for the predicate “makes” and its argument “She” in Figure 2.3,

the model fac is expected to return the following label:

r = agent

18

Now we can construct a predicate argument triple:

⟨p, r, a⟩ = ⟨makes, agent, She⟩

Other predicate argument triples are predicted in the same manner.

The Top English System in the CoNLL-2009 Shared Task

A variety of methods for semantic dependency parsing have been proposed.

Among them, we describe methods used for the top system [4] that achieved

the best result for English in the CoNLL-2009 shared task3 [19]. In this task,

given a sentence and the target predicates, systems predict predicate argument

triples {⟨p, r, a⟩k}N1 . The top system adopts a pipeline procedure, which firstly

identifies arguments (Argument Identification) and then assigns a semantic role

label for each argument (Argument Classification).

For argument identification, they use a binary classifier to calculate the prob-

ability that a word in the sentence is an argument. Given a sentence S =

w1, · · · , wT and the target predicates V prd
S = {pi}N1 , the classifier fai calculate

the probability:

P(wt = arg|S, V prd
S) = fai(wt, S, V

prd
S) = sigmoid(w · ϕai(wt, S, V

prd
S))

where w is a weight vector and ϕ(wt, S) is a feature vector. If the probability is

greater than 0.5, the system determines that the word is an argument.

For argument classification, they use a multiclass classifier. Each class r cor-

responds to a certain label. Given a sentence S = w1, · · · , wT , a predicate p and

an argument a, the classifier fac calculate the probability:

P(r|S, p, a) = fac(r, S, p, a) =
exp(w · ϕac(r, S, p, a))∑

r′∈R exp(w · ϕac(r′, S, p, a))

The class with the highest probability r̂ is selected as the resulting label:

r̂ = argmax
r∈R

P(r|S, p, a)

3Closed Challenge, SRL-only Task, Semantic Labeled F1.

19

By predicting a label r̂ for each pair of a predicate p ∈ V prd
S and its argument

a ∈ V arg
S , we can obtain a semantic dependency triple ⟨p, r, a⟩.

A Basic Method for Japanese PAS Analysis

One of the methods employed for Japanese predicate argument structure analysis

is a pointwise method [32], which is used as a baseline in Chapter 4. This method

selects the most probable argument a for a predicate p and label r:

⟨p, r, â⟩ = argmax
a∈V arg

S

P(a|S, r, p)

where the argument with the highest probability â is selected from a set of candi-

date arguments V arg
S = S ∪{None}. The special argument None is expected to

be selected when the predicate p has no argument with a label r. The probability

P(a|S, r, p) is defined as follows:

P(a|S, r, p) = exp(w · ϕ(a, r, S, p))∑
a′∈V arg

S
exp(w · ϕ(a′, r, S, p))

This simple method can achieve high-performance depending on feature engineer-

ing. In particular, syntactic features, related to syntactic dependency relations

and POS tags, are a key to high-performance. Recent methods, however, yield

good results without such features by using neural networks.

A State-of-the-Art Method Using RNNs

Zhou et al. [67] achieved the state-of-the-art result without syntactic information

in the English SRL task. Our proposed method in Section 4.4 has been inspired

by their method.

Their method uses stacked bidirectional RNNs (Bi-RNN) [54, 16, 17]. The

overall architecture consists of the following three components:

• Input Layer: Map each word to a feature vector representation.

• RNN Layer: Produce high-level feature vectors using Bi-RNNs.

• Output Layer: Compute the probability of each label for each word using

the softmax function.

20

Given an input sentence S = w1, · · · , wT and a target predicate p, the input layer

maps each word wt to a dx-dimensional vector xt ∈ Rdx . This vector representa-

tion is constructed by concatenating the following four types of vectors:

xt = xarg
t ⊕ xpred

t ⊕ xctx
t ⊕ xmark

t (2.1)

Each of the three vectors is based on the following atomic features:

ARG: Word index of each word.

PRED: Word index of the target predicate.

CTX: Word index of the target predicate and the C words around the predicate.

MARK: Binary index that represents whether or not the word is included in CTX-P.

For the ARG feature, a word index xword for each word w is extracted from a set

of word indices V . Similarly, for the PRED feature, we extract word index xword

for the predicate p. The CTX feature consists of each word index for the C words

taking the target predicate at the center, where C denotes the window size. The

MARK feature is a binary value {0, 1} that represents whether or not the word is

included in the C context words.

Then, using these feature indices, each feature vector is looked up from each

embedding matrix. Each embedding matrix stores column vectors, each of which

corresponds to each feature index. For example, an argument feature vector xarg

is looked up from a word embedding matrix Earg ∈ Rdarg×|V|. The resulting

vectors are concatenated as a feature vector xt (Eq. 2.1).

Each feature vector xt is multiplied with a parameter matrix Wx:

h
(0)
t = Wxxt

The vector h
(0)
t is given to the first RNN layer as input.

In the RNN layers, feature vectors are updated recurrently using Bi-RNNs.

Bi-RNNs process an input sequence in a left-to-right manner for odd-numbered

layers and in a right-to-left manner for even-numbered layers. By stacking these

layers, we can construct the deeper network structures.

Stacked Bi-RNNs consist of L layers, and the hidden state in the layer ℓ ∈
(1, · · · , L) is calculated as follows:

h
(ℓ)
t =

{
g(ℓ)(h

(ℓ−1)
t , h

(ℓ)
t−1) (ℓ= odd)

g(ℓ)(h
(ℓ−1)
t , h

(ℓ)
t+1) (ℓ= even)

21

Both of the odd- and even-numbered layers receive h
(ℓ−1)
t , the t-th hidden state

of the ℓ − 1 layer, as the first input of the function g(ℓ), which is an arbitrary

function. For the second input of g(ℓ), odd-numbered layers receive h
(ℓ)
t−1, whereas

even-numbered layers receive h
(ℓ)
t+1. By calculating the hidden states until the

L-th layer, we obtain a hidden state sequence h
(L)
1:T = (h

(L)
1 , · · · ,h(L)

T). Using each

vector h
(L)
t , we calculate the probability of labels for each word in the output

layer.

In the output layer, a label sequence probability y1:T is calculated using condi-

tional random fields (CRF) [38]:

P(y1:T |h(L)
1:T) = CRF(h

(L)
1:T , y1:T)

where h
(L)
1:T is a sequence of vector representations propagated from the last RNN

layer. Each element yt of y1:T is a label for a word wt. The label sequence with

the maximum probability is output as a result.

A variant of this method has been proposed by He et al. [23]. They use the

same architecture as the one mentioned above but simplify the features. By

using sophisticated learning methods (e.g. the RNN dropout and orthogonal

initialization), their method achieves the state-of-the-art results.

22

23

Chapter 3

Syntactic Dependency Parsing:

Supertag Design Framework

3.1 Introduction

Data-driven dependency parsing approaches, which make use of machine learn-

ing, have achieved great success in the automatic syntactic analysis of natural

language [36]. In data-driven approaches, transition-based dependency parsing,

which utilizes a deterministic shift-reduce process for structural prediction, has re-

ceived considerable attention because of its low time complexity and the freedom

to design features based on a rich context [66]. In particular, the feature definition

is the key to the high performance of transition-based dependency parsers.

As feature representations, lexical information, including surface word form

and part-of-speech (POS) information, plays a crucial role when predicting am-

biguous dependency relationships. However, as features to resolve dependency

ambiguities, the surface information of words is sparse while POS information

is coarse. Therefore, it is worthwhile to investigate intermediate representations

that exist at a coarser level than the words, yet capture the information necessary

to resolve dependency ambiguities [35].

To improve syntactic dependency parsing, we focus on defining supertags. Su-

pertags are tags extended from the notion of POS tags and represent rich syntactic

information [43], such as the head direction and dependency label. Figure 3.1 il-

lustrates an example of our dependency-based supertags. In this example, each

supertag encodes the head direction with the dependency label and dependent

direction.

WORD Root She kept a cat .
POS - PRON VERB DET NOUN PUNCT
STAG - subj/R root+L R det/R obj/L+L punct/L

subj

root obj

det

punct

Figure 3.1: Illustrative example of supertags for the dependency structure. Su-

pertags encode syntactic information, e.g., the head direction and dependency

label.

While supertags can arbitrarily be designed, it is important to keep the ad-

equate balance between the supertag granularity and predictability to improve

parsing performance. Increasing the granularity of supertags to capture more

fine-grained syntactic information results in large tag sets, which tend to be more

difficult to predict automatically. To improve dependency parsing performance

by utilizing supertags, it is necessary to design supertags that have the following

two properties: (i) easy to be automatically assigned to the sentence and (ii)

expressive enough to resolve dependency ambiguities.

In this chapter, we present a supertag design framework that allows us to de-

sign supertag sets at various granularity levels. First, we formalize the supertag

design framework and instantiate various granularity-level supertag sets. To in-

vestigate the appropriate granularity or design of supertags needed to improve

parsing performance, we build various granularity-level supertag sets based on the

framework. Then, using the supertag sets as features, we perform experiments on

multilingual dependency parsing. For English dependency parsing with the su-

pertags, we perform experiments on the Penn Treebank data set. In addition, the

utility of the supertags for multilingual dependency parsing is an open question,

so we also perform experiments on Universal Dependencies data set (UD; release

1.3).1 The experimental results show that appropriately designed supertags are

effective for dependency parsing.

In summary, the main contributions of this chapter are as follows.

1http://universaldependencies.org/

24

1. We present a supertag design framework.

2. We develop transition-based dependency parsers exploiting various supertag

sets.

3. We demonstrate the utility of our supertags for multilingual dependency

parsing and suggest which syntactic clues should be incorporated into su-

pertags.

3.2 Supertag Design Framework

The main challenge when designing supertags is to find the right balance be-

tween granularity and predictability. Ideally, we would like to increase the gran-

ularity of the supertags to capture finer-grained syntactic information, but large

tag sets tend to be more difficult to predict automatically. This section provides

a supertag design framework.

3.2.1 Supertag Design Framework

Figure 3.1 shows an example sentence and its supertags. Supertags are based

on head and dependent information to capture local syntactic context. Thus,

we assume that there is a set of labeled directed arcs AS for a sentence S =

w0, w1, · · · , wT . The labeled directed arcs of the example sentence is denoted as

follows:

A = {⟨Root, root, kept⟩, ⟨kept, subj, She⟩,
⟨kept, obj, cat⟩, ⟨kept, punct, .⟩, ⟨cat, det, a⟩}

where a triple ⟨wi, r, wj⟩ represents a dependency relation from head wi to de-

pendent wj labeled with relation type r. Using such syntactic information, we

design supertag sets at various granularity levels.

Specifically, a supertag of a word w.stag is defined as follows:

w.stag = Stag(w) (3.1)

25

where the function Stag(w) can arbitrarily be defined and returns a supertag.

In this thesis, we define the function based on the syntactic information of the

head and dependents:

Stag(w) = ⟨Head(yw),Dep(Dw)⟩ (3.2)

where the argument yw of the function Head(·) is a dependency triple:

yw = ⟨h, r, w⟩ ∈ A

Based on the triple, the function Head(·) returns the head-related information.

Also, the argument Dw of the function Dep(·) in Equation 3.2 is a set of depen-

dency triples that have w as a head:

Dw = {⟨h, r, d⟩ ∈ A|h = w}

Based on this set, the function Dep(·) returns the dependent-related information.

The variability of syntactic granularity can be represented by the definitions of

Head(yw) and Dep(Dw).

3.2.2 Supertag Instantiation

Using the above-mentioned generic supertag design framework, we instantiate

a variety of supertag sets. As a basic instantiation, we define the functions

in Equation 3.2 using the information of dependency labels and head directions

between a word and its head/dependents.

As the head information, we define the function Head(yw) as follows:

Head(yw) = ⟨HeadLabel(yw),HeadDir(yw)⟩ (3.3)

where HeadLabel(yw) returns the dependency label r from the triple yw =

⟨h, r, w⟩. HeadDir(yw) returns the direction of the head word h relative to the

target word w. That is, this function returns either of the three values: left (L),

right (R) or Null. If a word w has “Root” as its head, we consider it as having

no direction, so Null is returned.

In addition to the head information, we add dependent information by defining

the function Dep(Dw) as follows:

Dep(Dw) = ⟨hasDep(Dw, L),DepLabel(Dw, L),

hasDep(Dw, R),DepLabel(Dw, R)⟩ (3.4)

26

HeadLabel HeadDir hasDep DepLabel

Stag-A ✓ ✓ ✓ ✓
Stag-B ✓ ✓ ✓ ×
Stag-C ✓ ✓ × ✓
Stag-D ✓ × × ✓
Stag-E ✓ ✓ × ×
Stag-F × ✓ ✓ ×
Stag-G ✓ × × ×

Table 3.1: Various granularity supertag sets. The mark ✓ indicates the supertag

set is defined using the function, and the mark × indicates not.

where hasDep(Dw, L/R) returns TrueL/R if a word has any left (L) or right (R)

dependents; otherwise, it returns False. DepLabel(Dw, L/R) returns a set of

the dependency labels of obligatory left/right dependents. In this thesis, we define

obligatory dependents as the ones that have one of the following dependency

relation labels: “SUB,” “OBJ,” “PRD,” or “VC” in the Penn Treebank [40], and

“nsubj,” “nsubjpass,” “dobj,” “iobj,” “csubj,” “csubjpass,” or “ccomp” in

Universal Dependencies [41].

In previous work on supertag design, Foth et al. [14] defined Dep(·) as the

function that encodes the order of dependents as well as the dependent labels.

However, we do not consider the order to avoid increasing the number of tags.

Based on Equations 3.3 and 3.4, we define various granularity-level supertag

sets by ablating each function. Table 3.1 shows our seven supertag sets. Stag-

A is the most basic instantiation using all the functions. Ablating the function

DepLabel from Stag-A, we can instantiate Stag-B, which encodes no de-

pendency labels for obligatory dependents. Similarly, other supertag sets are

instantiated by ablating other functions.

3.2.3 Supertag Notation

Supertag notations for each supertag set can be defined arbitrarily. As an

example, we introduce our notations for each supertag set, shown in Table 3.2.

27

She kept a cat .

Stag-A subj/R root+subj/L obj/R det/R obj/L+L punct/L

Stag-B subj/R root+L R det/R obj/L+L punct/L

Stag-C subj/R root+subj obj det/R obj/L punct/L

Stag-D subj root+subj obj det obj punct

Stag-E subj/R root det/R obj/L punct/L

Stag-F R L R R L L

Stag-G subj root det obj punct

Table 3.2: Examples of supertags for the sentence “She kept a cat .”.

Consider the word “kept” in the example sentence in Figure 2.2. In the supertag

set Stag-A, the word “kept” is assigned the following supertag:

kept.stag = root+subj/L obj/R

where the part before “+” specifies the head information (“root”) and the part

afterwards specifies the dependent information (“subj/L obj/R”).

To create this tag, we first encode the head information of “kept” using the

functions in Equation 3.3:

HeadLabel(ykept = ⟨Root, root, kept⟩) = root

HeadDir(ykept = ⟨Root, root, kept⟩) = Null

where the function HeadLabel(·) returns the dependency label “root” and the

function HeadDir(·) returns the head direction “Null.” As a result, we obtain

the following head information:

Head(ykept = ⟨Root, root, kept⟩) = ⟨root,Null⟩

where the head information ⟨root,Null⟩ is converted into the supertag notation

as “root,” in which “Null” is not literally specified. Note that if the direction

is “L” (or “R”), we convert it as “root/L” (or “root/R”).

We then encode dependent information using the function Dep(Dw) in Equa-

tion 3.4. The argument of the function for the word “kept” is as follows:

Dkept = {⟨kept, subj, She⟩, ⟨kept, obj, cat⟩, ⟨kept, punct, .⟩}

28

where Dkept is a set of triples that consists of the head “kept” and its dependents

with labels. Based on this set, the following dependent information is calculated:

hasDep(Dkept, L) = TrueL

hasDep(Dkept, R) = TrueR

DepLabel(Dkept, L) = {subj}
DepLabel(Dkept, R) = {obj}

where hasDep(·) returns a boolean variable, i.e., TrueL/R or FalseL/R. Also,

DepLabel(·) returns a set of labels of all the left/right dependents.2 As a result,

we obtain the following dependent information:

Dep(Dkept) = ⟨TrueL, {subj},TrueR, {obj}⟩

We convert this information into the supertag notation as “subj/L obj/R.”

Finally, concatenating the obtained head and dependent information, we obtain

the following supertag:

root+subj/L obj/R

where “+” indicates the boundary of the head and dependent information. De-

pending on each supertag set, different syntactic information is ablated from

Stag-A and encoded for each supertag, as shown in Table 3.2.

3.3 Dependency Parsers Exploiting Supertags

To exploit supertags in transition-based dependency parsing systems, we need

to automatically assign them to each word. We conduct the automatic assign-

ment of our designed supertags by adopting the same approach used in sequence

labeling tasks such as POS tagging.

3.3.1 Automatic Supertag Assignment

We build a supertagger to assign a supertag u ∈ U to the word wt in a sentence

S = w1, · · · , wT in a left-to-right manner, based on the following equation:

û = argmax
u∈U

w · ϕ(wi, u, S) (3.5)

2For example, if the target word has two left dependents with the labels “dobj” and “iobj,”
DepLabel(·) returns {dobj, iobj}.

29

where the score of supertag u is computed by the dot-product of the weight vector

w and feature vector ϕ. The highest scoring supertag û is picked for the target

word wi. The weight vector w is trained on a training set. The feature vector ϕ

is defined by using feature templates. We extract features from a 7-word window

(the feature window) surrounding the target word wi using the feature templates

shown in Table A.1.

We define Unigram, Bigram, and History feature templates. As the Uni-

gram feature templates, we use the surface word form and POS tag of each word

in the feature window. As theBigram feature templates, we define conjunctive

features by concatenating the surface word form and POS tag information of

some specific pairs of the words in the feature window. In addition to these fea-

ture templates, we dynamically utilize the supertags, which have already been

predicted during the tagging process, as features. When assigning a supertag to

the target word wi in the feature window, the previous words, such as wi−1 and

wi−2, have already been assigned a supertag, which is expected to be helpful for

predicting the supertag of the target word. Hence, we define the History feature

templates by combining those supertags assigned to wi−1 and wi−2 with the POS

tags or surface word forms.

A supertagging model instantiates the features from those feature templates.

Using the supertags automatically predicted by the supertagging model, we con-

duct dependency parsing.

3.3.2 Supertag Features for Dependency Parsing

We employ the arc-standard model as a transition-based dependency parsing

system. Specifically, the system chooses the highest scoring next transition t̂ at

each configuration c based on the following equation:

t̂ = argmax
t∈T

w · ϕ(t, c) (3.6)

where the score of transition t is computed by the dot-product of the weight

vector w and feature vector ϕ. The highest scoring transition t̂ of the possible

transition set T is picked up as the next transition. The weight vector is trained

on a training set. The feature vector is defined with the feature templates shown

in Table A.2. Each feature template is defined with information drawn from the

30

feature window, which consists of the top three words (or partial structures) on

the stack and the first three words on the buffer.

Unigram, Bigram, and Structural features are based on the features used

in [15] and [26] with some modifications, which we call base features. By contrast,

UniStag and BiStag are new feature templates related to supertags, which we

call supertag features.

For the UniStag features (⟨p.stag⟩), we use the supertag of each word p within

the feature window. To consider a broader context, we define the BiStag fea-

tures. For some specific pairs (p, q) of the words within the feature window,

we set the conjunctive features as BiStag, such as conjunction of the two su-

pertags (⟨p.stag ◦ q.stag⟩). To investigate the utility of these supertag features,

we perform experiments.

3.4 Experiment

This section presents experiments and results for supertagging and transition-

based dependency parsing exploiting supertags.

3.4.1 Datasets

We performed experiments on English dependency parsing and multilingual

dependency parsing.

English Dependency Parsing

For English dependency parsing, we performed experiments on the Wall Street

Journal part of the Penn Treebank (PTB) dataset [40]. We converted the con-

stituent trees into two types of dependency format:

• Yamada and Matsumoto head rules (PTB-YM) [59] using Penn2Malt3

• Stanford dependencies (PTB-SD) [12] using the converter4

We adopted the standard splits, using sections 2-21 for training, section 22 for

development, and section 23 for testing. We assigned POS tags to the training

3http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.jar
4http://nlp.stanford.edu/software/stanford-dependencies.shtml

31

data by ten-fold jackknifing, following [26]. The development and test sets were

automatically tagged by the POS-tagger trained on the training set.

Multilingual Dependency Parsing

For multilingual dependency parsing, we used the Universal Dependencies (UD;

release 1.3) data set [41]. This data set has cross-linguistically consistent treebank

annotation for many languages. The annotation scheme is an extension of the

Stanford dependencies [12, 13, 11], Google universal part-of-speech tags [52], and

the Interset interlingua for morphosyntactic tagsets [62].

For the target languages, we chose six languages from different language branches:

• Arabic (AR) from the Semitic languages

• German (DE) from the Germanic Languages

• Spanish (ES) from the Italic languages

• Indonesian (ID) from the Malayo-Polynesian languages

• Russian (RU) from the Slavic languages

• Chinese (ZH) from the Sinitic languages

In some language data sets, there are no fine-grained POS tags. In that case, we

used the coarse-grained ones.

3.4.2 Setup of Supertagging Experiments

To train supertagging models, we used the averaged perceptron [9] with max

violation updates [25]. The number of iterations was to 10. For decoding, we

exploited beam search with a beam width of 8. Tables 3.3 and 3.4 show the

size of each supertag set in the Penn Treebank and Universal Dependencies,

respectively.

3.4.3 Setup of Parsing Experiments

To train parsing models, we used the averaged perceptron with max violation

updates in the same manner as the supertagging experiments. The number of

32

PTB-YM PTB-SD

Stag-A 321 896

Stag-B 79 231

Stag-C 165 528

Stag-D 127 412

Stag-E 21 85

Stag-F 12 12

Stag-G 12 49

Table 3.3: Supertag statistics on Penn Treebank. “PTB-YM” is the Yamada &

Matsumoto dependency scheme [59], and “PTB-SD” is the Stanford dependency

scheme [12].

UD-AR UD-DE UD-ES UD-ID UD-RU UD-ZH UD-Avg.

Stag-A 998 916 1209 680 655 630 847.50

Stag-B 183 227 216 186 233 175 203.33

Stag-C 522 431 558 370 306 360 424.50

Stag-D 442 321 445 305 237 300 341.67

Stag-E 57 64 61 55 74 64 62.50

Stag-F 12 11 11 11 11 11 11.17

Stag-G 31 33 32 30 39 38 33.83

Table 3.4: Supertag statistics on Universal Dependencies [41].

iterations is set to 20. For decoding, we exploited beam search with a beam

width of 16. To evaluate the utility of the supertags for arc-standard dependency

parsers, we used the parsers without supertags as the baseline and compared them

with the parsers with supertags. The supertags used for the parsers were auto-

matically predicted. Following the same procedure as automatic POS tagging,

we assigned the proposed supertags to the training data by ten-fold jackknifing.

For the development and test set, we automatically assigned the supertags using

a supertagger trained on the whole training set.

33

PTB-YM PTB-SD

Stag-A 88.05 87.75

Stag-B 88.94 88.92

Stag-C 89.71 89.67

Stag-D 90.77 90.84

Stag-E 90.56 90.71

Stag-F 91.61 91.81

Stag-G 91.60 91.86

Table 3.5: Supertagging results on the English Penn Treebank. Each number

indicates accuracy.

3.4.4 Results for Suppertagging

Tables 3.5 and 3.6 show the accuracies of automatic supertagging in English and

other languages, respectively. These results suggest that what kind of syntactic

information is easy or difficult to predict as sequential labeling.

In English, the results of Stag-F or Stag-G have the highest accuracy. This is

consistent with the results in other languages in UD. As Table 3.1 shows, Stag-F

encodes the head directionality and left/right dependent possession information,

and Stag-G encodes the dependency label on the edge between the target word

and its head. Generally, because smaller tag sets tend to be easier to predict

than larger ones, the accuracies of the two supertag sets are higher than others.

However, in the six languages of UD, although Stag-F is smaller than Stag-

G, the average Stag-G accuracy (88.44% on average for the six UD languages)

is higher than the average Stag-F accuracy (87.35%). This suggests that it

is not always difficult to predict larger tag sets and, furthermore, the prediction

complexity changes according to what information the target tag set encodes. The

results for Stag-F suggest that the syntactic information encoded by Stag-F

is more difficult to predict as sequential labeling task than the head dependency

labels encoded by Stag-G in the majority of languages.

Similarly, regardless of the tag set size, the prediction accuracy of Stag-

B (82.45/88.94/88.92% for UD-Avg./PTB-YM/PTB-SD) is lower than Stag-

34

UD-AR UD-DE UD-ES UD-ID UD-RU UD-ZH UD-Avg.

Stag-A 79.58 76.17 83.13 80.51 78.74 82.03 80.03

Stag-B 82.98 78.47 85.43 82.94 81.10 83.80 82.45

Stag-C 83.60 79.78 86.14 84.18 83.22 83.60 83.42

Stag-D 85.04 84.89 88.00 86.48 86.20 84.27 85.81

Stag-E 87.18 82.25 88.32 87.16 85.73 85.60 86.04

Stag-F 89.20 83.76 89.32 87.99 85.99 87.85 87.35

Stag-G 88.77 87.45 90.31 89.24 88.60 86.25 88.44

Table 3.6: Supertagging results on the Universal Dependencies . Each number

indicates accuracy. “UD-Avg.” indicates the macro average accuracy for each

supertag set over all the languages.

C accuracy (83.42/89.71/89.67% for UD-Avg./PTB-YM/PTB-SD). These two

tag sets differ with respect to the encoded syntactic information for dependents.

Stag-B encodes the left/right dependent possession information for each target

word regardless of whether the dependents are adjunct or core arguments. In

contrast, Stag-C encodes the dependency labels only if the dependents are core

arguments. This suggests that whether the syntactic information relevant to ad-

junct arguments is encoded or not cause performance variation. Because Stag-A

encodes both the dependent possession and core argument labels as well as the

head information, it is more difficult to predict than Stag-B and Stag-C.

Stag-D is built by ablating the head directionality information from Stag-C,

so that Stag-D is smaller than Stag-C, which leads to a performance boost

relative to Stag-C. Similarly, Stag-E is built by ablating the dependency labels

for core arguments from Stag-C and hence encodes only syntactic information

relevant to heads. The performance boost relative to Stag-C is also observed.

Comparing Stag-D with Stag-E, a noticeable difference in average accuracy is

not observed, but the results within each language differ. For instance, in German

(UD-DE), the accuracy for Stag-D is higher by over 2.5 points than Stag-E. On

the contrary, in Arabic (UD-AR) and Chinese (UD-ZH), the accuracy for Stag-E

is higher by around 1-2 points than that for Stag-D. A detailed investigation of

this difference is a line of interesting future work.

35

PTB-YM PTB-SD

Baseline 92.60/91.31 92.00/89.33

Stag-A 99.06/99.01 98.47/98.27

Stag-B 99.10/99.08 98.65/98.55

Stag-C 97.77/97.77 96.88/96.78

Stag-D 98.44/98.44 96.10/96.00

Stag-E 98.45/98.43 96.88/96.76

Stag-F 98.77/97.10 98.65/95.23

Stag-G 97.65/97.65 96.17/96.15

Table 3.7: English dependency parsing results with gold supertags. Each num-

ber indicates UAS/LAS, in which “UAS” is the unlabeled attachment score and

“LAS” is the labeled attachment score.

3.4.5 Results for Dependency Parsing with Supertags

To investigate the utility of the supertag features in transition-based depen-

dency parsing systems, we report parsing results in various experimental settings

and discuss them in detail.

Accuracy of Dependency Parsing with Gold Supertags

The utility of supertag features for dependency parsing changes according to each

supertag set and supertagging accuracy. In order to check whether the proposed

supertag sets and supertag feature templates capture syntactic information that

is helpful for dependency parsing, we performed a parsing simulation experiment

in which the condition where an arc-standard parser knows the correct (gold)

supertags. In this simulated experiment, the arc-standard model receives the

correct supertags and utilizes them as features. Tables 3.7 and 3.8 show the

unlabeled attachment scores (UAS) and labeled attachment scores (LAS) of the

baseline parsers and the supertag-integrated parsers.

In English dependency parsing (PTB-MT for Yamada and Matsumoto head

rules and PTB-SD for Stanford dependencies), the unlabeled attachment scores

of Stag-A/B/F reached around 99%, which indicates that the derived depen-

36

UD-AR UD-DE UD-ES UD-ID

Baseline 80.51/74.89 84.53/77.97 86.43/81.62 84.01/78.08

Stag-A 90.50/89.62 95.03/94.22 95.27/94.87 93.40/92.37

Stag-B 90.95/90.50 95.71/95.05 95.86/95.65 94.17/93.63

Stag-C 87.13/86.71 90.52/90.12 93.06/92.93 89.66/89.16

Stag-D 88.41/88.31 93.62/93.39 94.23/94.23 91.17/91.09

Stag-E 88.54/88.15 93.36/92.95 94.00/93.86 90.85/90.46

Stag-F 90.67/83.41 96.78/88.00 95.52/89.83 94.44/87.20

Stag-G 86.70/86.63 90.61/90.39 92.88/92.86 89.74/89.61

UD-RU UD-ZH UD-Avg.

83.37/77.32 83.35/79.48 83.70/78.23

92.69/91.61 96.20/95.42 93.85/93.02

93.74/93.03 96.76/96.27 94.53/94.02

89.38/88.99 95.37/94.97 90.85/90.48

91.02/90.75 95.64/95.47 92.35/92.21

90.85/90.31 95.36/94.88 92.16/91.77

94.59/86.64 95.98/91.20 94.66/87.71

89.57/89.32 95.41/95.41 90.82/90.70

Table 3.8: Multilingual dependency parsing results with gold supertags. Each

number indicates UAS/LAS.

dency trees were almost perfect. This implies that information provided by the

supertags is considerably helpful for the transition-based system to determine the

times at which reduce transitions should be conducted. Consider the RIGHT-ARC

transition, which adds an arc from the second to the top word on the stack and

removes the top word from the stack. If there are any words in the buffer that

depend on the word on the top of the stack, RIGHT-ARC should not be executed.

The supertag sets Stag-A/B/F encode the head directionality and dependent

possession information, which can implicitly tell the parser in which direction

the second-top word in the stack has its head and whether the top word has

any dependents in the buffer or not. Because this clue could supplement word

37

PTB-YM PTB-SD

Baseline 92.60/91.31 92.00/89.33

Stag-A 92.80/91.61 92.38/89.89

Stag-B 92.94/91.67 92.44/89.90

Stag-C 92.59/91.37 92.23/89.85

Stag-D 92.65/91.47 92.33/89.85

Stag-E 92.72/91.55 92.24/89.83

Stag-F 92.48/91.25 92.19/89.50

Stag-G 92.51/91.33 92.19/89.72

Table 3.9: English dependency parsing results with predicted supertags. Each

number indicates UAS/LAS.

form and POS information, a parser was able to select and accumulate the cor-

rect local transition under each configuration. In fact, this result suggests that if

transition-based systems knew the correct supertags that encode the head direc-

tionality and dependent possession information and could use them as features,

the dependency parsing problem would be solved almost completely.

In multilingual dependency parsing, although the unlabeled attachment scores

were not as high as the ones for English dependency parsing, Stag-A/B/F

consistently occupied the top-3 highest UAS rankings over the six languages.

The score difference between PTB and UD is likely to be caused by the data

size difference, i.e., the data size of PTB is much larger than that of UD, so an

investigation of the effect of increasing data size is our interesting future work.

In the labeled attachment scores, Stag-F is inferior to Stag-A/B, which is

consistent with English dependency parsing. This could be caused by the fact

that Stag-F does not encode the head dependency label.

Accuracy of Dependency Parsing with Predicted Supertags

To investigate the utility of our supertag sets in dependency parsing in realistic

situations, we performed experiments in which transition-based systems exploited

automatically predicted supertags as features. Tables 3.9 and 3.9 show the un-

labeled attachment scores (UAS) and labeled attachment scores (LAS) of the

38

UD-AR UD-DE UD-ES UD-ID

Baseline 80.51/74.89 84.53/77.97 86.43/81.62 84.01/78.08

Stag-A 81.26/76.18 85.05/79.09 87.65/83.55 85.26/79.55

Stag-B 81.50/76.33 85.01/78.96 87.72/83.48 85.43/79.86

Stag-C 81.17/76.22 85.09/79.31 87.86/83.69 84.96/79.26

Stag-D 81.13/75.94 84.86/79.09 87.65/83.48 85.13/79.57

Stag-E 81.00/76.05 85.00/79.34 87.50/83.43 85.55/79.79

Stag-F 81.05/75.51 84.76/78.03 87.00/82.19 84.80/78.93

Stag-G 81.15/76.30 85.04/79.07 87.86/83.57 85.09/79.47

UD-RU UD-ZH UD-Avg.

83.37/77.32 83.35/79.48 83.70/78.23

83.17/77.57 83.77/79.71 84.36/79.28

83.82/78.15 84.33/80.40 84.64/79.53

83.63/77.98 84.19/80.35 84.48/79.47

83.42/77.76 84.00/80.24 84.37/79.35

83.42/77.75 83.63/79.89 84.35/79.38

83.78/77.73 83.25/79.10 84.11/78.58

83.66/77.92 83.72/80.04 84.42/79.40

Table 3.10: Multilingual dependency parsing results with predicted supertags.

Each number indicates UAS/LAS.

baseline parsers and the parsers with the supertag features.

Overall, the parsers with supertag features outperform the baseline. In par-

ticular, across the six languages of UD, a performance boost of the parsers with

Stag-B is observed, yielding increases of around 1.0 point in UAS and 1.3 points

in LAS. In Spanish (UD-ES) and Indonesian (UD-ID), the biggest improvements

were achieved (+1.5 points in UAS and +2.0 points in LAS). In English depen-

dency parsing (PTB-MT, PTB-SD), although the improvements of UAS/LAS

were smaller than for the six languages of UD, the supertag features worked

effectively. The biggest improvement (+0.34/+0.36 points in UAS/LAS of PTB-

MT and +0.44/+57 points in UAS/LAS of PTB-SD) was achieved with Stag-B,

39

which is the same tendency as in the languages of UD.

Comparing the results with the gold and predicted supertags, the predicted

supertags of Stag-F were not as effective, although the gold ones were useful

for parsing. In English parsing, Stag-F was not effective for improving UAS

and LAS. In the six languages of UD, although Stag-F was a little bit effective

on average (+0.41 points in UAS and +35 points in LAS), the improvement

was the worst of the seven supertags. In contrast, while the gold supertags of

Stag-C/D/E/G did not have much predictability compared with Stag-A/F,

the predicted supertags of Stag-C/D/E/G achieved almost the same UAS and

LAS as Stag-A and were better than Stag-F on average. In particular, for

LAS, the other supertag sets outperformed Stag-F (around +0.8 points), which

suggests that it is better to encode the dependency label on the edge between the

target word and its head for dependency parsing.

In addition to such head information, we wished to know which syntactic in-

formation of dependents could contribute to the improvements of UAS and LAS.

To investigate this question, we compare the results of Stag-B/C/E, in which

Stag-B encodesHLabel/Dir/hasDep, Stag-C encodesHLable/Dir/DLabel,

and Stag-E encodes HLabel/Dir. Comparing Stag-C with Stag-E, they ob-

tain much the same in UAS and LAS for both English and multilingual parsing

settings. Comparing Stag-B with Stag-C, Stag-B outperformed Stag-C in

both settings. These results suggest that the dependency labels of core argu-

ments (DLabel) are not always effective and the dependent possession informa-

tion (hasDep) contributes to the improvements of UAS and LAS.

Effects of Distance

To more deeply understand the characteristics of the parsers with supertags, we

describe the parsing performance (F1 score) according to the dependency distance,

which represents the distance between a target word and its head word. Tables

3.11 and 3.12 show the F1 scores of the baseline parser and parser with Stag-B

(the supertag set that achieved the highest UAS/LAS on average) for each binned

dependency distance.

Overall, the supertags helped improve the identification of the longer distance

dependencies. For distances over seven words (7-), a performance boost is ob-

served, yielding an increase of around 2.0 points on average over the six languages

of UD. Similarly, English dependency parsing is improved by around 1.0 point.

40

PTB-YM PTB-SD

root 95.15/96.10 93.60/94.52

1 96.72/96.87 96.34/96.53

2 94.14/94.42 93.86/94.08

3-6 90.92/91.39 90.57/91.27

7- 86.28/87.15 85.08/85.90

Table 3.11: F1 scores according to the dependency distances. Each number is

“Baseline-F1/Stag-F1,” “root” indicates the root identification, and “1/2/3-6/7-

” indicates the distance (the number of words) between a target word and its

head.

The F1 scores of the root identification (root) are improved on average as well.

However, there is a performance gap between the languages. While the scores

of English, German, Spanish, and Indonesian are drastically improved by the

supertags, the scores of Arabic, Russian, and Chinese slightly decrease. A more

detailed investigation of this is an interesting direction for future work.

3.4.6 Comparison with Existing Parsers

We compared our English parser with representative transition-based depen-

dency parsing systems that use the Penn Treebank of Yamada & Matsumoto head

rules (PTB-YM), i.e., the transition-based parser with a support vector machine

of [59], pure transition-based parser of [63], dynamic-programming arc-standard

parser of [26], arc-eager parser with rich non-local features of [66], transition-

based joint POS tagging and parsing system of [5], and transition-based parser

using neural networks of [7].

Table 3.13 shows the UAS and LAS on the test set. For our parser, we selected

the highest scoring parser with Stag-B, and this parser is comparable to the

previous systems. However, the transition-based systems of [5] are slightly better

than our parser. One of the possible explanations is that their system is a joint

model for POS tagging and dependency parsing, and hence employs higher-order

features, such as third-order features, which are not utilized in our system. They

41

UD-AR UD-DE UD-ES UD-ID

root 93.32/93.18 86.28/87.51 85.04/89.05 87.61/89.05

1 94.27/94.59 92.44/92.84 95.85/96.09 95.09/95.45

2 80.04/81.54 87.27/88.42 91.99/93.53 84.50/85.93

3-6 74.71/76.71 84.80/85.19 85.03/85.76 79.80/82.21

7- 69.23/71.20 82.55/83.41 72.37/76.01 73.45/74.23

UD-RU UD-ZH UD-Avg.

90.58/90.18 79.40/79.20 87.04/88.03

93.87/94.16 94.71/94.66 94.37/94.63

87.20/87.93 86.64/87.46 86.27/87.47

80.01/79.81 83.69/84.24 81.34/82.32

67.01/67.53 75.68/77.33 72.81/74.70

Table 3.12: F1 scores according to the dependency distances. Each number is

“Baseline-F1/Stag-F1,” “root” indicates the root identification, and “1/2/3-6/7-

” indicates the distance (the number of words) between a target word and its

head.

use such features by dynamically extracting them from the partial tree structures

built during the parsing process (what we call dynamic features). Although such

dynamic higher-order features are available after partial tree structures are con-

structed, they capture a wider context, which could lead to the high performance.

On the contrary, supertags capture second-order information because they consist

of head and dependent information, and supertag features are always available

regardless of such partial tree structures, which help improve the parsing perfor-

mance. As an interesting issue, it remains for us to determine how these different

types of features interact with or complement each other when both features are

leveraged in a transition-based system.

42

UAS LAS

Yamada & Matsumoto 2003 [59] 90.3 -

Zhang & Clark 2008 [63] 91.4 -

Huang & Sagae 2010 [26] 92.1 -

Zhang & Nivre 2011 [66] 92.9 91.8

Bohnet & Nivre 2012 [5] 93.38 92.44

Chen & Manning 2014 [7] 91.8 89.6

this work 92.94 91.67

Table 3.13: UAS/LAS of dependency parsers in previous work.

3.5 Related Work

Supertags, which are lexical templates, encode linguistically rich information

that imposes complex constraints in a local context [2]. While supertags have

been used in frameworks based on lexicalized grammars, e.g., Lexicalized Tree-

Adjoining Grammar (LTAG), Head-driven Phrase Structure Grammar (HPSG),

and Combinatory Categorial Grammar (CCG), they have scarcely been utilized

for dependency parsing so far. As exceptions, Foth et al. [14] and Ambati et al.

[1] have used supertags for dependency parsing.

Foth et al. [14] designed supertags based on dependency structure information

such as dependency labels and dependents with different levels of granularity.

They automatically assigned a single supertag to each word, and the accuracy

of automatically assigning their designed supertag set is 67%-84% accurate: the

coarsest supertag set (35 tags) is 84.1% and the finest one (12,947 tags) is 67.6%.

They then utilized the predicted supertags for dependency parsing and demon-

strated that supertags improve German dependency parsing under a Weighted

Constraint Dependency Grammar (WCDG), which is not data-driven parsing. In

particular, the finest supertag set achieved the biggest improvement in parsing

performance (+2.1 points). While they design supertags for WCDG parsing, we

explore effective supertag design for data-driven and transition-based dependency

parsers.

Ambati et al. [1] utilized supertags of the Combinatory Categorial Grammar

43

(CCG) as features for Hindi and English dependency parsers. They reported an

improvement of around 0.4 points in UAS using supetag features, and argued that

CCG supertags can especially improve long distance dependencies, e.g., coordi-

nation and relative clause dependencies. In contrast to their work, we develop a

supertag set based on dependency structures because we believe that a supertag

design based on dependency structures is more suitable for dependency parsing,

rather than one based on another lexicalized grammar formalism.

3.6 Summary

In this work, we presented a supertag design framework that is flexible so that

various supertag sets may be designed. Based on the framework, we instanti-

ated various granularity supertag sets that encode rich syntactic information.

In previous work, syntactic information, such as the head and dependents of a

word, cannot be used as features before partial tree structures are constructed

[66]. However, by exploiting the supertags as features, we can utilize fine-grained

syntactic information without waiting for partial trees to be built.

To investigate the utility of these supertag features, we have performed the

experiments in multilingual dependency parsing as well as English parsing. The

experimental results suggest the following:

• Overall, our proposed supertag sets are effective for English and multilingual

dependency parsing.

• In particular, the supertag set that encodes the head directionality/head

labels/dependent possession achieves the highest UAS and LAS.

• Supertags contribute to the resolution of long distance dependencies.

Based on our proposed supertag design framework, we instantiated the seven

supertag sets and used them as features for dependency parsers. For six languages

that belong to different language branches as well as English, the supertag sets

contributed to the improvements of UAS and LAS.

Comparing the results of the supertag sets, we found that in order to improve

dependency parsing, it is critical to encode the head directionality, head label,

and dependent possession information as supertags. In particular, the head label

44

information is crucial for improving LAS. In contrast, the obligatory dependent

labels do not improve the results.

Analyzing the results from the aspect of dependency distances, supertags espe-

cially contributed to the improvements in long distance dependency prediction.

Long distance dependencies have been regarded as a troublesome problems in

dependency parsing. Our experimental results suggest that supertags could be a

solution to this problem.

As our future research, we would like to investigate the interaction of supertag

features with higher-order features and explore linguistic entities that capture

structurally richer information, such as subtree structures.

45

47

Chapter 4

Semantic Dependency Parsing:

Multi-Predicate Modeling

4.1 Introduction

Semantic dependency parsing, semantic role labeling (SRL), and predicate ar-

gument structure (PAS) analysis are a semantic analysis problem of recovering

the predicate argument structure of a sentence, such as who did what to whom.1

4.1.1 Background

Figure 4.1 shows English and Japanese sentences annotated with syntactic and

semantic dependencies. The two sentences have the different surface forms and

syntactic dependencies. Despite the difference, they have the same predicate-

argument structure: the word “John” (“ジョン”) plays a role of agent, and the

word “window” (“窓”) plays a role of theme. This is an interesting property of

predicate-argument structure.

Recently, PAS analysis in multilingual settings have attracted a considerable

attention [19]. However, it is difficult to develop one unified method for multi-

lingual PAS analysis because each language has its own unique characteristics.

In fact, many of the top systems in the CoNLL-2009 shared task [19] took such

1These three terms “semantic dependency parsing”, “semantic role labeling” and “predicate
argument structure analysis” are used to indicate a similar semantic analysis task. In this
thesis, since we tackle the task in Japanese, we follow the previous researches and use the term
“predicate argument structure (PAS) analysis.”

John broke the window

subj

root

det

obj

agent

theme

ジョン は 窓 を 割った

subj

case

obj

case

root

agent

theme

Figure 4.1: Example of two sentences that have the same predicate argument

structure. Although the predicate argument structures (shown in the below part)

are identical, the surface and syntactic realizations (shown in the above part) are

different between the two sentences.

characteristics into account and adopted several different techniques for each lan-

guage. Thus, this thesis also aims to improve PAS analysis methods for certain

languages by focusing on some language phenomenon.

4.1.2 Problematic Issue: Argument Omission

In pro-drop languages such as Japanese, Chinese and Italian, arguments are

often omitted in text. Such argument omission is regarded as one of the most

problematic issues facing predicate argument structure (PAS) analysis [29, 53, 20].

Figure 4.2 illustrates an example of PAS with the argument omission problem.

The omitted argument ϕi, called zero pronoun, refers to the antecedent “男 i

(mani).” In PAS analysis, computational systems aim to identify such antecedent

as an argument for the target predicate. Hence, in the above-mentioned example,

as the nominative argument for the predicate “逃走した (escaped)”, the systems

have to identify “男 i (mani).”

What makes it difficult to identify such omitted arguments? Before the omitted

argument identification, consider a case of general argument identification. For

the predicate “逮捕した (arrested)”, the word “警察 (police)” is the nominative

argument and “男 i (mani)” is the accusative argument. It is easy to identify these

arguments, since a syntactic dependency between an argument and its predicate

48

Figure 4.2: Example of Japanese predicate argument structures. The upper edges

denote dependency relations, and the lower edges denote case arguments. “NOM”

and “ACC” denote the nominative and accusative arguments, respectively. “ϕi”

is a zero pronoun, referring to the antecedent “男 i (mani)”.

is a strong clue. By contrast, when identifying omitted arguments, such syntactic

clues do not work well. For instance, when identifying the nominative argument

“男 i (mani)” for the predicate “逃走した (escaped)”, there is no syntactic depen-

dency between them, so that the dependency clue cannot be used as a feature.

Such lack of a syntactic dependency between an argument and a predicate could

be a cause of the difficulty.

4.1.3 Key Insight: Multi-Predicate Interaction

To address this issue, we aim to capture the relations between multiple predi-

cates, called multi-predicate interactions. This approach is based on the linguistic

intuition: the predicates in a sentence are semantically related to each other and

capturing these interactions is expected to be helpful for PAS analysis.

In the example sentence in Figure 4.2, the word “男 i (mani)” is the accusative

argument of the predicate “逮捕した (arrested)” and is shared by the other predi-

cate “逃走した (escaped)” as its nominative argument. Considering the semantic

relation between “逮捕した (arrested)” and “逃走した (escaped)”, we intuitively

49

know that “男 i (mani)” , the person arrested by someone, is likely to be the es-

caper. By contrast, “警察 (police)”, the person who arrested someone, is unlikely

to be the escaper. That is, information about one predicate-argument relation

could help to identify another predicate-argument relation.

4.1.4 Solution

To model these multi-predicate interactions, we propose the two types of PAS

analysis models:

• Bipartite graph models

• Grid-type recurrent neural network models

In the following, we describe the overview of these two models.

Bipartite Graph Models

The bipartite graph models represent the multiple predicate-argument relations as

a bipartite graph that covers all predicates and argument candidates in a sentence,

and factorize the whole relation into the second-order relations. This interaction

modeling results in a hard combinatorial problem because it is required to select

the optimal PAS combination from all possible PAS combinations in a sentence.

To solve this problem, we extend the randomized hill-climbing algorithm [65]

to search all possible PAS in the space of bipartite graphs. To investigate the

performance we performing experiments on the NAIST Text Corpus [28]. The

experimental results show that, compared with a baseline that do not consider the

multi-predicate interactions, our models achieve an improvement of 1.0-1.2 points

in F1 score. Especially, they improve performance for the omitted argument

identification by 2.0-2.5 points.

Grid-RNN Models

The grid-type recurrent neural network models take as input all predicates and

argument candidates in a sentence, and automatically induce features sensitive to

multi-predicate interactions. This modeling requires no complex manual feature

engineering. Instead, by exploiting the feature-inducing capability of grid-type

50

recurrent neural networks (Grid-RNNs), the models learn effective feature rep-

resentations exclusively from the word sequence information of a sentence. Ex-

perimental results on the NAIST Text Corpus demonstrate that, even without

syntactic information, these models improve the baseline by 3.0-3.3 points in F1

score. Also, they outperform the bipartite graph models by about 2.0 points in

F1 score. These results suggest that the proposed grid-type neural architecture

effectively captures multi-predicate interactions and contributes to performance

improvements.

4.1.5 Contributions

To sum up, in this chapter we make the following contributions:

• We propose (i) bipartite graph models and (ii) Grid-RNN models capturing

multi-predicate interactions.

• Performing experiments on the NAIST Text Corpus [28], we demonstrate

the utility of our modeling of the multi-predicate interactions for Japanese

predicate argument structure analysis.

4.2 Predicate Argument Structure Analysis

4.2.1 Task Setting

Formally, given a sentencew = (w1, · · ·wT) and target predicates p = {p1, · · · pM},
a system predicts ⟨argument, case role, predicate⟩ tuples {⟨a, c, p⟩i}Ii=1. Here, w

is a word ID of the vocabulary V , i.e. w ∈ V , and p is a position index within

a sentence, i.e. p ∈ [1, T]. Also, a is a position index within a sentence, i.e.

a ∈ [1, T], and c is a case role ID, i.e. c ∈ C.
In the training phase, given training data Dtrain = {(xi,yi)}N

train

i=1 , the target

function f : X → Y is to be learned, where x = ⟨w,p⟩, and y = {⟨a, c, p⟩i}Ii=1. In

the evaluation phase, given evaluation data Deval = {xj}N
eval

j=1 , a learned function

f is used to predict the tuples ŷ.

51

4.2.2 Target Case Roles and Argument Types

In Japanese PAS analysis, systems aim to identify arguments with a case role

for the target predicate.

Target Case Roles

The case roles to be identified are as follows:

• Nominative case, denoted as (NOM)

• Accusative case, denoted as (ACC)

• Dative case, denoted as (DAT)

Note that predicates do not always have these three case arguments. If the target

predicate have no argument with a certain case role, systems output a special

token NULL.

Target Argument Types

Arguments can be divided into the following three types according to the positions

relative to their predicates [21]:

• Dep: Arguments that have direct syntactic dependency on the predicate.

• Zero: Arguments referred to by zero pronouns within the same sentence

that have no direct syntactic dependency on the predicate.

• InterZero: Arguments referred to by zero pronouns outside of the same

sentence.

Table 4.1 shows examples of each argument type. The first example describes a

direct-dependency argument (Dep). The nominative argument “私 (I)” for the

predicate “ひく (catch)” is regarded as a Dep argument, because the argument

has a direct syntactic dependency on the predicate. The second example describes

a zero argument (Zero). The nominative argument “男 i (mani)” for the predi-

cate “逃走する (escape)” is regarded as a Zero argument, because the argument

is the antecedent of the zero pronoun and has no direct syntactic dependency

on the predicate. The third example describes a inter-sentential zero argument

(InterZero). The nominative argument “彼女 i (Shei)” for the predicate “飲

52

Dep

ja 私は風邪をひいた。
en I caught a cold.

Prd ひく (catch)

Arg NOM:私 (I), ACC:風邪 (cold), DAT:NULL

Zero

ja
警察は男 iを逮捕したが、
(ϕi-NOM) 数日後に逃走した。

en
The police arrested the mani,

but ϕi escaped a few days later.

prd 逃走する (escape)

arg NOM:男 i(mani), ACC:NULL, DAT:NULL

InterZero

ja
彼女 iはパンを食べた。
(ϕi-NOM) 牛乳も飲んだ。

en
Shei ate bread.

And (ϕi) also drank milk.

prd 飲む (drink)

arg NOM=彼女 i(Shei), ACC=牛乳 (milk), DAT=NULL

Table 4.1: Examples of each argument type. ϕi and wordi denote the zero pronoun

and its antecedent, respectively.

む (drink)” is regarded as a InterZero argument, because the antecedent, the

nominative argument, appears outside the sentence the zero pronoun appears in.

Among these argument types, we aim to identify the Dep and Zero argu-

ments. In order to identify inter-sentential arguments (InterZero), a much

broader space must be searched (e.g., the whole document), resulting in a much

more complicated analysis than intra-sentential arguments.2 Owing to this com-

plication, this thesis focuses exclusively on intra-sentential argument analysis, i.e.

Dep and Zero.

2The F1 score of inter-sentential argument analysis remains 10-20% [57, 32, 53].

53

a1 p1

a4

a2
a3

p2

NOM
ACC

DAT a1 p1

a2
a2

p1

p2a4
p3

p1

p2

Diff-Arg Co-Arg

Global

Local

Figure 4.3: Intuitive image of a predicate-argument graph. This graph is factorized

into the local and global features. The different line color/style indicate different

cases.

4.3 Bipartite Graph Models

4.3.1 A Predicate-Argument Graph

We define predicate argument relations by exploiting a bipartite graph. Figure

4.3 illustrates an example of the graph, called predicate-argument graph

(PA graph). The nodes of the graph consist of two disjoint sets: the left one is a

set of argument candidates and the right one is a set of predicates. Each predicate

node has three distinct edges corresponding to nominative (NOM), accusative

(ACC), and dative (DAT) cases. Each edge with a case role label joins a argument

candidate node with a predicate node, which represents a case argument of a

predicate. For instance, in Figure 4.3 a1 is the nominative argument of the

predicate p1, and a3 is the accusative argument of the predicate p2.

Formally, a PA graph consists of three elements: the node set consisting of

54

argument candidates A, the node set consisting of predicates P , and the set of

edges E:

PA graph: ⟨A,P,E⟩

Each element is defined as follows:

A = {a1, · · · , an, an+1 = NULL}
P = {p1, · · · , pm}
E = {⟨a, p, c⟩ | deg(p, c) = 1,

∀a ∈ A, ∀p ∈ P, ∀c ∈ C }

In the graph, the left nodes correspond to A and the right ones correspond to

P . A consists of n argument candidates, {a1, · · · , an}, and a dummy node an+1.

This dummy node an+1 is defined for the cases where the predicate requires no

case argument or the required case argument does not appear in the sentence. P

consists of m predicates, {p1, · · · , pm}. E is the set of edges connected between

A and P . An edge e ∈ E is represented by a tuple ⟨a, p, c⟩, indicating the edge

with a case role c joining a argument candidate node a and a predicate node p.

An admissible PA graph satisfies the constraint deg(p, c) = 1, representing that

each predicate node p has only one edge with a case role c.

To identify the whole predicate argument structures (PAS) for a sentence x,

we predict the PA graph with an edge set corresponding to the correct PAS from

the admissible PA graph set G(x) based on a score associated with a PA graph

y as follows:

ỹ = argmax
y∈G(x)

Score(x, y)

A scoring function Score(x, y) receives a sentence x and a candidate graph y as

its input, and returns a scalar value.

In this thesis, we propose the two scoring functions as analysis models based

on different assumptions:

• Per-case joint model : Assumes the interaction between multiple predicates

(predicate interaction) and the independence between case roles.

55

• All-cases joint model : Assumes the interaction between case roles (case

interaction) as well as the predicate interaction.

In the following subsections, we describe each of these models in more detail.

4.3.2 Per-Case Joint Model

The per-case joint model assumes that different case roles are independent from

each other. However, for each case, the interactions between multiple predicates

are considered jointly.

We define the score of a PA graph y to be the sum of the scores for each case

role c of the set of the case roles C:

Scoreper(x, y) =
∑
c∈C

Scorec(x, y) (4.1)

Scores for each case role are defined as the dot products between a weight vector

θc and a feature vector ϕc(x,E(y, c)):

Scorec(x, y) = θc · ϕc(x,E(y, c)) (4.2)

where E(y, c) is the edge set associated with a case role c in the candidate graph

y, and the feature vector is defined on the edge set.

The edge set E(y, c) in Equation 4.2 is utilized for the two types of features:

local features and global features. These features are inspired by [24] and

defined as follows:

θc · ϕc(x,E(y, c)) =
∑

e∈E(y,c)

θc · ϕℓ(x, e) + θc · ϕg(x,E(y, c)) (4.3)

where ϕℓ(x, e) denotes a local feature vector, and ϕg(x,E(y, c)) a global feature

vector.

The local feature vector ϕℓ(x, e) is defined on each edge e in the edge set E(y, c)

and a sentence x, which captures a predicate-argument pair. Consider the case

where the per-case model estimates the nominative arguments in Figure 4.3. To

compute the score of the edge set with the nominative case c = NOM, the model

uses the following edges:

{ ea1p1 , ea1p2 , ea2p3 }

56

Each of these edges is taken as input by ϕℓ(x, e) in Equation 4.3, and the resulting

feature vector is multiplied with the weight vector θc=NOM.

The global feature vector ϕg(x,E(y, c)) is defined on the edge set E(y, c),

and enables the model to utilize linguistically richer information over multiple

predicate-argument pairs. In this thesis, we exploit second-order relations, similar

to the second-order edge factorization of dependency trees [42]. We make a set of

edge pairs Epair by combining two edges ei, ej in the edge set E(y, c), as follows:

Epair = { {ei, ej} | ∀ei, ej ∈ E(y, c), ei ̸= ej }

For instance, in the PA graph in Figure 4.3, to compute the score of the nomina-

tive arguments c = NOM, we make three edge pairs:

Epair = { {ea1p1 , ea1p2}, {ea1p1 , ea2p3}, {ea1p2 , ea2p3} }

This set of the edge pairs is taken as input by ϕg(x,Epair) in Equation 4.3, and

the resulting feature vector is multiplied with the weight vector θc=NOM. In the

same way, for the accusative and dative cases, their scores are computed. Then,

we obtain the resulting score of the PA graph by summing up the scores of the

local and global features. If we do not consider the global features, the model

reduces to a per-case local model similar to the pointwise model [32].

4.3.3 All-Cases Joint Model

While per-case joint model assumes the predicate interaction with the inde-

pendence between case roles, all-cases joint model assumes the case interaction

together with the predicate interaction. Our graph-based formulation is very

flexible and easily enables the extension of per-case joint model to all-cases joint

model. Therefore, we extend per-case joint model to all-cases joint model to

capture the interactions between predicates and all case arguments in a sentence.

We define the score of a PA graph y based on the local and global features as

follows:

Scoreall(x, y) =
∑

e∈E(y)

θ · ϕℓ(x, e) + θ · ϕg(x,E(y)) (4.4)

57

where E(y) is the edge set associated with all the case roles on the candidate

graph y, ϕℓ(x, e) is the local feature vector defined on each edge e in the edge set

E(y), and ϕg(x,E(y)) is the global feature vector defined on the edge set E(y).

Consider the PA graph in Figure 4.3. The local features are extracted from

each of the following edges:

NOM : {ea1p1 , ea1p2 , ea2p3}

ACC : {ea2p1 , ea3p2 , ea3p3}

DAT : {ea3p1 , ea4p2 , ea4p3}

For the global features, we make a set of edge pairs Epair by combining two edges

(ei, ej) in the edge set E(y), like per-case joint model. However, in the all-cases

joint model, the global features may involve different cases, i.e., mixing edges

with different case roles. For instance, for the PA graph in Figure 4.3, we make

the edge pairs {ea1p1 , ea2p1}, {ea3p1 , ea1p2}, {ea3p2 , ea4p3}, and so on. From these

edge pairs, we extract information as global features to compute a graph score.

4.3.4 Features

Features are extracted based on feature templates, which are functions that

draw information from the given entity. Look at the following feature template

example:

ϕ100 = a.ax ◦ p.vo

This template returns a conjunction of two atomic features a.ax and p.vo, where

a.ax is an auxiliary word attached to a argument candidate and p.vo is the voice

of a predicate. Using such templates, we draw feature information from the given

entity.

To characterize a PA graph, we draw some linguistic information associated

with the edge by using feature templates. In this thesis, to draw the global

features, we design global feature templates based on the following substructures:

58

• Diff-Arg: Two predicate and argument nodes.

• Co-Arg: Two predicate nodes and one common argument node.

These substructures are depicted in the right part of Figure 4.3. The Diff-Arg

represents that the two predicates have different argument candidates. The Co-

Arg represents that the two predicates share the same argument candidate. In

the following, we describe the features based on each substructure in more detail.

Diff-Arg Features

The feature templates based on the Diff-Arg structure are three types: PAIR

(a pair of predicate-argument relation), TRIANGLE (a predicate and its two

arguments relation), and QUAD (two predicate-argument relations).

• PAIR These feature templates denote where the target argument is lo-

cated relative to another argument and the two predicates in the Diff-Arg

structure. We combine the relative position information with the auxiliary

words and the voice of the two predicates.

• TRIANGLE These feature templates capture the interactions between

three elements: two arguments and a predicate. Like the PAIR feature

templates, we encode the relative position information of two arguments

and a predicate with the auxiliary words and voice.

• QUAD When we judge if a candidate argument takes part in a case

role of a predicate, it would be beneficial to grasp information of another

predicate-argument pair. The QUAD feature templates capture the mutual

relation between four elements: two arguments and predicates. We encode

the relative position information, the auxiliary words, and the voice.

Co-Arg Features

To identify predicates that take Zero arguments, we set two feature types, BI-

PREDS and DEP-REL, based on the Co-Arg structure.

• BI-PREDS For identifying an implicit argument of a predicate, infor-

mation of another semantically-related predicate in the sentence could be

effective. We utilize bi-grams of the regular forms of the two predicates in

59

the Co-Arg structure to capture the predicates that are likely to share the

same argument in the sentence.

• DEP-REL We set five distinct feature templates to capture dependency

relations between the shared argument and the two predicates. If two ele-

ments have a direct dependency relation, we encode its dependency relation

with the auxiliary words and the voice.

Formally, all these global feature templates are defined in Table B.1. The

proposed models utilize these global features as well as the local features3.

4.3.5 Inference and Training

Inference

Global features make the inference of finding the maximum scoring PA graph

more difficult. For searching the graph with the highest score, we propose two

greedy search algorithms by extending the randomized hill-climbing algorithm

proposed in [65], which has been shown to achieve the state-of-the-art perfor-

mance in dependency parsing.

Figure 4.4 describes the pseudo code of our proposed algorithm for per-case

joint model. Firstly, we set an initial PA graph y(0) sampled uniformly from the

set of admissible PA graphs G(x) (line 1 in Figure 4.4). Then, the union Yc is

constructed from the set of neighboring graphs with a case NeighborG(y(t), c),

which is a set of admissible graphs obtained by changing one edge with the case

c in y(t), and the current graph y(t) (line 5). The current graph y(t) is updated to

a higher scoring graph y(t+1) selected from the union Yc (line 6). The algorithm

continues until no more score improvement is possible by changing an edge with

the case c in y(t) (line 8). This repetition is executed for other case roles in the

same manner. As a result, we can get a locally optimal graph ỹ.

Figure 4.5 describes the pseudo code of the algorithm for all-cases joint model.

The large part of the algorithm is the same as that for per-case joint model.

The difference is that the union Y consists of the current graph y(t) and the

3As the local features, we use the ones used in a model of the previous work [21]

60

Input: the set of cases to be analyzed C,

parameter θc,

sentence x

Output: a locally optimal PA graph ỹ

1: Sample a PA graph y(0) from G(x)

2: t← 0

3: for each case c ∈ C do

4: repeat

5: Yc ← NeighborG(y(t), c) ∪ y(t)

6: y(t+1) ← argmax
y∈Yc

θc · ϕc(x,E(y, c))

7: t← t+ 1

8: until y(t) = y(t+1)

9: end for

10: return ỹ ← y(t)

Figure 4.4: Randomized hill-climbing for per-case joint model.

neighboring graph set obtained by changing one edge in y(t) regardless of case

roles (line 4 in Figure 4.5), and that the iteration process for each case role (line

3 in Figure 4.4) is removed. The algorithm also continues until no more score

improvement is possible by changing an edge in y(t), resulting in a locally optimal

graph ỹ.

Following Zhang et al. (2014), for a given sentence x, we repeatedly run these

algorithms with K consecutive restarts. Each run starts with initial graphs ran-

domly sampled from the set of admissible PA graphs G(x), so that we obtain K

local optimal graphs by K restarts. Then the highest scoring one of K graphs is

selected for the sentence x as the result. Each run of the algorithms is indepen-

dent from each other, so that multiple runs are easily executable in parallel.

Training

Given a training data set D = {(x̂i, ŷi)}Ni=1, the weight vectors θ (θc) in the

scoring functions of the joint models are estimated by using machine learning

61

Input: the set of cases to be analyzed C,

parameter θ,

sentence x

Output: a locally optimal PA graph ỹ

1: Sample a PA graph y(0) from G(x)

2: t← 0

3: repeat

4: Y ← NeighborG(y(t)) ∪ y(t)

5: y(t+1) ← argmax
y∈Y

θ · ϕ(x,E(y))

6: t← t+ 1

7: until y(t) = y(t+1)

8: return ỹ ← y(t)

Figure 4.5: Randomized hill-climbing for all-cases joint model.

techniques. We adopt averaged perceptron [9] with a max-margin technique:

∀i ∈ {1, ..., N}, y ∈ G(xi),

Score(x̂i, ŷi) ≥ Score(x̂i, y) + ∥ŷi − y∥1 − ξi

where ξi ≥ 0 is the slack variable and ∥ŷi− y∥1 is the Hamming distance between

the gold PA graph ŷi and a candidate PA graph y of the admissible PA graphs

G(xi). Following Zhang et al. (2014), we select the highest scoring graph ỹ as

follows:

TRAIN : ỹ = argmax
y∈G(x̂i)

{Score(x̂i, y) + ∥ŷi − y∥1}

TEST : ỹ = argmax
y∈G(x)

{Score(x, y)}

Using the weight vector tuned by the training, we perform analysis on a sentence

x in the test set.

62

Figure 4.6: Overview of neural models: (i) single-sequence and (ii) multi-sequence

models.

4.4 Grid RNN Models

We propose two neural models: (i) single-sequence and (ii) multi-sequence mod-

els, which automatically induce features sensitive to multi-predicate interactions

exclusively from the word sequence information of a sentence. Figure 4.6 illus-

trates the overview of these models. The single-sequence model takes as input

a sequence of features for one predicate, and captures the interactions between

argument candidates and the predicate using recurrent neural networks (RNNs).

By contrast, the multi-sequence model takes as input all sequences of features for

all the predicates in a sentence at a time, and captures the interactions between

argument candidates and the predicates using grid-type recurrent neural networks

(Grid-RNNs). In the following subsections, we describe these two models in more

detail.

4.4.1 Single-Sequence Model

The single-sequence model exploits stacked bidirectional RNNs (Bi-RNN) [54,

16, 17, 67]. Figure 4.7 shows the overall architecture, which consists of the fol-

lowing three components:

63

Figure 4.7: Overall architecture of the single-sequence model. This model consists

of three components: (i) Input Layer, (ii) RNN Layer and (iii) Output Layer.

• Input Layer: Map each word to a feature vector representation.

• RNN Layer: Produce high-level feature vectors using Bi-RNNs.

• Output Layer: Compute the probability of each case label for each word

using the softmax function.

In the following, we describe each of these three components in detail.

Input Layer

Given an input sentence w1:T = (w1, · · · , wT) and a predicate p, each word wt is

mapped to a feature representation xt, which is the concatenation (⊕) of three

64

Figure 4.8: Example of feature extraction. The underlined word is the target

predicate. From the sentence “彼女はパンを食べた。(She ate bread.)”, three

types of features are extracted for the target predicate “食べた (ate)”.

types of vectors:

xt = xarg
t ⊕ xpred

t ⊕ xmark
t (4.5)

where each vector is based on the following atomic features inspired by [67]:

ARG: Word index of each word.

PRED: Word index of the target predicate and the words around the predicate.

MARK: Binary index that represents whether or not the word is the predicate.

Figure 4.8 presents an example of the atomic features. For the ARG feature, we

extract a word index xword ∈ V for each word. Similarly, for the PRED feature, we

extract each word index xword for the C words taking the target predicate at the

center, where C denotes the window size. The MARK feature xmark ∈ {0, 1} is a

binary value that represents whether or not the word is the predicate.

Then, using feature indices, we extract feature vector representations from

each embedding matrix. Figure 4.9 shows the process of creating the feature

65

Figure 4.9: Example of the process of creating a feature vector. The extracted

features are mapped to each vector, and all the vectors are concatenated into one

feature vector.

vector x1 for the word w1 “彼女 (she)”. We set two embedding matrices: (i) a

word embedding matrix Eword ∈ Rdword×|V|, and (ii) a mark embedding matrix

Emark ∈ Rdmark×2. From each embedding matrix, we extract the corresponding

column vectors and concatenate them as a feature vector xt based on Eq. 4.5.

Each feature vector xt is multiplied with a parameter matrix Wx:

h
(0)
t = Wx xt (4.6)

The vector h
(0)
t is given to the first RNN layer as input.

RNN Layer

In the RNN layers, feature vectors are updated recurrently using Bi-RNNs. Bi-

RNNs process an input sequence in a left-to-right manner for odd-numbered layers

and in a right-to-left manner for even-numbered layers. By stacking these layers,

we can construct the deeper network structures.

66

Stacked Bi-RNNs consist of L layers, and the hidden state in the layer ℓ ∈
(1, · · · , L) is calculated as follows:

h
(ℓ)
t =

{
g(ℓ)(h

(ℓ−1)
t , h

(ℓ)
t−1) (ℓ= odd)

g(ℓ)(h
(ℓ−1)
t , h

(ℓ)
t+1) (ℓ= even)

(4.7)

Both of the odd- and even-numbered layers receive h
(ℓ−1)
t , the t-th hidden state

of the ℓ − 1 layer, as the first input of the function g(ℓ), which is an arbitrary

function 4. For the second input of g(ℓ), odd-numbered layers receive h
(ℓ)
t−1, whereas

even-numbered layers receive h
(ℓ)
t+1. By calculating the hidden states until the L-

th layer, we obtain a hidden state sequence h
(L)
1:T = (h

(L)
1 , · · · ,h(L)

T). Using each

vector h
(L)
t , we calculate the probability of case labels for each word in the output

layer.

Output Layer

For the output layer, multi-class classification is performed using the softmax

function:

yt = softmax(Wy h
(L)
t)

where h
(L)
t denotes a vector representation propagated from the last RNN layer

(Fig 4.7). Each element of yt is a probability value corresponding to each label.

The label with the maximum probability among them is output as a result. In

this work, we set five labels: NOM, ACC, DAT, PRED, null. PRED is the label for the

predicate, and null denotes a word that does not fulfill any case role.

4.4.2 Multi-Sequence Model

Whereas the single-sequence model assumes independence between predicates,

the multi-sequence model assumes multi-predicate interactions. To capture such

interactions between all predicates in a sentence, we extend the single-sequence

model to the multi-sequence model using Grid-RNNs [18, 33]. Figure 4.10 presents

the overall architecture for the multi-sequence model, which consists of three com-

ponents:

4In this work, we used the Gated Recurrent Unit (GRU) [8] as the function g(ℓ).

67

Figure 4.10: Overall architecture of the multi-sequence model: an example of

three sequences.

• Input Layer: Map input words to M sequences of feature vectors for M

predicates.

• Grid Layer: Update the hidden states over different sequences using Grid-

RNNs.

• Output Layer: Compute the probability of each case label for each word

using the softmax function.

In the following, we describe these three components in detail.

Input Layer

The multi-sequence model takes as input a sentence w1:T = (w1, · · · , wT) and all

predicates {pm}M1 in the sentence. For each predicate pm, the input layer creates

a sequence of feature vectors Xm = (xm,1, · · · ,xm,T) by mapping each input

word wt to a feature vector xm,t based on Eq 4.5. That is, for M predicates, M

sequences of feature vectors {Xm}M1 are created.

68

Then, using Eq. 4.6, each feature vector xm,t is mapped to h
(0)
m,t, and a feature

sequence is created for a predicate pm, i.e., H
(0)
m = (h

(0)
m,1, · · · ,h

(0)
m,T). Conse-

quently, for M predicates, we obtain M feature sequences {H(0)
m }M1 .

Grid Layer

(a) Inter-Sequence Connections

For the grid layers, we use Grid-RNNs to propagate the feature information over

the different sequences (inter-sequence connections). The figure on the right in

Figure 4.10 shows the first grid layer. The hidden state is recurrently calculated

from the upper-left (m = 1, t = 1) to the lower-right (m = M, t = T).

Formally, in the ℓ-th layer, the hidden state h
(ℓ)
m,t is calculated as follows:

h
(ℓ)
m,t =

{
g(ℓ)(h

(ℓ−1)
m,t ⊕ h

(ℓ)
m−1,t,h

(ℓ)
m,t−1) (ℓ= odd)

g(ℓ)(h
(ℓ−1)
m,t ⊕ h

(ℓ)
m+1,t,h

(ℓ)
m,t+1) (ℓ= even)

This equation is similar to Eq. 4.7. The main difference is that the hidden state of

a neighboring sequence, h
(ℓ)
m−1,t (or h

(ℓ)
m+1,t), is concatenated (⊕) with the hidden

state of the previous (ℓ − 1) layer, h
(ℓ−1)
m,t , and is taken as input of the function

g(ℓ).

In the figure on the right in Figure 4.10, the blue curved lines represent the

inter-sequence connections. Taking as input the hidden states of neighboring se-

quences, the network propagates feature information over multiple sequences (i.e.,

predicates). By calculating the hidden states until the L-th layer, we obtain M

sequences of the hidden states, i.e., {H(L)
m }M1 , in which H

(L)
m = (h

(L)
m,1, · · · ,h

(L)
m,T).

(b) Residual Connections

As more layers are stacked, it becomes more difficult to learn the model parame-

ters, owing to various challenges such as the vanishing gradient problem [51]. In

this work, we integrate residual connections [22, 58] with our networks to form

connections between layers. Specifically, the input vector h
(ℓ−1)
m,t of the ℓ-th layer

is added to the output vector h
(ℓ)
m,t. Residual connections can also be applied to

the single-sequence model. Thus, we can perform experiments on both models

with/without residual connections.

69

Output Layer

As with the single-sequence model, we use the softmax function to calculate the

probability of the case labels of each word wt for each predicate pm:

ym,t = softmax(Wy h
(L)
m,t)

where h
(L)
m,t is a hidden state vector calculated in the last grid layer.

4.4.3 Training

We train the model parameters by minimizing the cross-entropy loss function:

L(θ) = −
∑
n

∑
t

logP (yt|xt) +
λ

2
||θ||2 (4.8)

where θ is a set of model parameters, and the hyper-parameter λ is the coefficient

governing the L2 weight decay.

4.5 Experiment

4.5.1 Experimental Settings

Dataset

We evaluate our proposed models on the NAIST Text Corpus 1.5, which consists

of 40,000 sentences of Japanese newspaper text [28]. While previous work has

adopted the version 1.4 beta, we adopt the latest version. The major difference

between version 1.4 beta and 1.5 is revision of dative case (corresponding to

Japanese case particle “ni”). In 1.4 beta, most of adjunct usages of “ni” are

mixed up with the argument usages of “ni”, making the identification of dative

cases seemingly easy. Therefore, our results are not directly comparable with

previous work.

We adopt standard train/dev/test splits [57] as follows:

Train: Articles: Jan 1-11, Editorials: Jan-Aug

Dev: Articles: Jan 12-13, Editorials: Sept

70

Test: Articles: Jan 14-17, Editorials: Oct-Dec

We exclude inter-sentential arguments (InterZero) in our experiments. The

features used in our bipartite graph models make use of the annotated POS

tags, phrase boundaries, and dependency relations annotated in the NAIST Text

Corpus. We do not use any external resources.

Comparative Models

We investigate and compare the following models:

• Baseline: a pointwise model proposed in [32]

• PCJoint: the Per-Case Joint Model described in Section 4.3

• ACJoint: the All-Cases Joint Model described in Section 4.3

• SingleSeq: the single sequence model described in Section 4.4

• MultiSeq: the multiple sequence model described in Section 4.4

As the baseline, we adopt the pointwise model (using only local features) proposed

in [32]. This model estimates the likelihood that each argument candidate plays

a case role of the target predicate and independently selects the highest scoring

one per predicate.

Implementation Details

For our bipartite graph models with hill-climbing, we set the number of the

random restarts at 10, which almost reaches convergence 5. For implementa-

tions of our Grid-RNN models, we used a deep learning library, Theano [3].

The parameters were optimized using the stochastic gradient descent method

(SGD) via a mini-batch. Table B.2 lists the hyper-parameters. The initial val-

ues of all the parameters were sampled according to a uniform distribution from

[−
√
6√

row+col
,

√
6√

row+col
], where row and col are the number of rows and columns of

each matrix, respectively. Also, words with a frequency of 2 or more in the train-

ing set were mapped to each word ID, and the remaining words were mapped to

the unknown word ID.

5Performance did not change when increasing the number of restarts

71

Dep Zero All

Baseline 85.06 41.65 78.15

PCJoint 85.79 43.60 78.91

ACJoint 86.07 44.09 79.23

SigleSeq 88.10 46.10 81.15

MultiSeq 88.17 47.12 81.42

Table 4.2: Test F1 scores on the NAIST Text Corpus 1.5. Baseline is the

reimplemented model of [32], PCJoint is the Per-Case Joint Model in Section

4.3.2, ACJoint is the ALL-Cases Joint Model in Section 4.3.2, SingleSeq is

the single-sequence model in Section 4.4.1, and MultiSeq is the multi-sequence

model in Section 4.4.2.

4.5.2 Results

Table 4.2 presents F1 scores on the test set. All our four models outperformed

the baseline. Our bipartite models improved overall F1 scores by around 1.0

point. In particular, the models yield a considerable improvement in F1 score

of 2.0-2.5% for zero arguments (Zero), which have no syntactic dependency on

their predicate and are regarded as one of the problematic issues in Japanese PAS

analysis. Also, our neural models achieved a significant improvement of 3.0-3.3%

for overall arguments and 4.5-5.5% for zero arguments. These results shows that

capturing multi-predicate interactions is particularly effective for Japanese PAS

analysis.

Per-Case Joint Model vs All-Cases Joint Model

Comparing the bipartite models, All-Cases Joint Model (ACJoint) outperformed

Per-Case Joint Model (PCJoint) in terms of the overall F1 scores (79.23%

vs 78.91%). For each argument type (Dep and Zero), All-Cases Joint Model

achieved better results, i.e., 86.07% vs 85.79% for direct dependency arguments

(Dep) and 44.09% vs 43.60% for zero arguments (Zero). This suggests that

capturing case interactions improves performance of Japanese PAS analysis.

72

Feature Dep Zero All

PCJoint
local 84.59 42.55 77.89

+ global 85.51 44.54 78.85

ACJoint
local 84.17 41.33 77.43

+ global 85.92 44.45 79.17

Table 4.3: Global vs local features on the development set in F1 score. PCJoint

and ACJoint denotes the Per-Case and All-Cases Joint Model, respectively.

Single-Sequence Model vs Multi-Sequence Model

Comparing the neural models, the multi-sequence model (MultiSeq) outper-

formed the single-sequence model (SingleSeq) in terms of the overall F1 scores

(81.42% vs 81.15%). While for direct dependency arguments (Dep), the multi-

sequence model achieved slightly better results (88.10% vs 88.17%), for zero

arguments (Zero), the multi-sequence model yields around 1.0% improvement

(46.10% vs 47.12%). These results demonstrate that the grid-type neural ar-

chitecture can effectively capture multi-predicate interactions by connecting the

sequences of the argument candidates for all predicates in a sentence.

Bipartite Graph Models vs Neural Models

Comparing between the bipartite graph and neural models, the neural models

outperformed the bipartite models in F1 score overall, i.e., 81.15% and 81.42%

vs 78.91% and 79.23%. In particular, for zero arguments (Zero), compared with

All-Cases Joint Model (ACJoint), the single-sequence model achieved around

2.0% improvement (46.10% vs 44.09%), and the multi-sequence model yielded

around 3.0% (47.12% vs 44.09%) in F1 score. This confirms that modeling the

multi-predicate interactions using RNNs contributes to high-performance, even

without syntactic information, by learning contextual information effective for

PAS analysis from the word sequence of the sentence.

Effects of Global Features

Table 4.3 shows the effectiveness of the global features on the development set. We

73

Single-Seq Multi-Seq

L +res. −res. +res. −res.

2

Dep 87.34 87.10 87.43 87.73

Zero 47.98 47.90 47.66 46.93

All 80.62 80.24 80.71 80.68

4

Dep 87.27 87.41 87.60 87.09

Zero 50.43 50.83 48.10 48.58

All 80.92 80.99 80.99 80.59

6

Dep 87.73 87.11 88.04 87.39

Zero 48.81 49.51 48.98 48.91

All 81.05 80.63 81.19 80.68

8

Dep 87.98 87.23 87.65 87.07

Zero 47.40 48.38 49.34 48.23

All 81.31 80.33 81.33 80.40

Table 4.4: Performance comparison for different numbers of layers on the devel-

opment set in F1 score. L is the number of the RNN or Grid layers. +res. or

−res. indicates whether the model has residual connections (+) or not (−).

incrementally add the global features to the both models that utilize only the local

features. The results show that the global features improved the performance

by around 1.0% in F1 score overall, i.e., 77.89% to 78.85% in PCJoint and

77.43% to 79.17% inACJoint. In particular, they are beneficial to zero argument

identification (Zero), i.e., an improvement of 1.99% in the Per-Case Joint Model

and 3.12% in the All-Cases Joint Model).

Effects of Network Depth

Table 4.4 presents development F1 scores from the neural models with different

network depths and with/without residual connections. The performance tends

to improve as the RNN or Grid layers get deeper with residual connections. In

particular, the two models with eight layers and residual connections achieved

considerable improvements of approximately 1.0% according to the F1 scores

74

Dep Zero

NOM ACC DAT NOM ACC DAT

NAIST Text Corpus 1.5

Baseline 86.50 92.84 30.97 45.56 21.38 0.83

PCJoint 87.54 93.09 34.19 47.62 22.73 0.83

ACJoint 88.13 92.74 38.39 48.11 24.43 4.80

SingleSeq 88.32 93.89 65.91 49.51 35.07 9.83

MultiSeq 88.75 93.68 64.38 50.65 32.35 7.52

NAIST Text Corpus 1.4β

Taira+ 08* 75.53 88.20 89.51 30.15 11.41 3.66

Imamura+ 09* 87.0 93.9 80.8 50.0 30.8 0.0

Sasano+ 11* - - - 39.5 17.5 8.9

Table 4.5: Performance comparison for different case roles on the test set in F1

score. NOM, ACC or DAT is the nominal, accusative or dative case, respectively. The

asterisk (*) indicates that the model uses external resources.

compared to models without residual connections. This means that residual

connections contribute to effective parameter learning of deeper models.

Comparison per Case Role

Table 4.5 shows F1 scores for each case role on the test set. For reference, we

show the results of the previous studies using the NAIST Text Corpus 1.4β with

external resources as well.6

Comparing the models using the NAIST Text Corpus 1.5, the single- and multi-

sequence models (SingleSeq and MultiSeq) outperformed the other three

models (Baseline, PCJoint and ACJoint) according to all metrics. In par-

ticular, for direct dependency arguments (Dep) of the dative case (DAT), the

6The major difference between the NAIST Text Corpus 1.4β and 1.5 is the revision of the
annotation criterion for the dative case (DAT) (corresponding to Japanese case marker “に”).
Argument and adjunct usages of the case marker “に” are not distinguished in 1.4β, making
the identification of the dative case seemingly easy.

75

two neural models achieved much higher results, by approximately 30%. This

suggests that although dative arguments appear infrequently compared with the

other two case arguments, the neural models can learn them robustly. In addi-

tion, for zero arguments (Zero) of the nominative case (NOM), the multi-sequence

model demonstrated a considerable improvement of approximately 2.5% accord-

ing to the F1 scores compared with the bipartite graph models (PCJoint and

ACJoint). To achieve high accuracy for the analysis of such zero arguments,

it is necessary to capture long distance dependencies [27, 53, 30]. Therefore,

the performance improvements of zero arguments suggest that the neural models

effectively capture long distance dependencies using RNNs that can encode the

context of the entire sentence.

4.6 Related Work

4.6.1 Japanese PAS Analysis Approaches

For Japanese PAS analysis research, the NAIST Text Corpus has been used as

a standard benchmark [28]. Existing approaches to Japanese PAS analysis are

divided into two categories: (i) the pointwise approach and (ii) the joint approach.

The pointwise approach involves estimating the score of each argument can-

didate for one predicate, and then selecting the argument candidate with the

maximum score as an argument [57, 32, 21, 31]. One of the representative re-

searches is Imamura et al. (2009). They built three distinct models corresponding

to the three case roles by extracting features defined on each pair of a predicate

and a candidate argument. Using each model, they select the best candidate ar-

gument for each case per predicate. Their models are based on maximum entropy

model and can easily incorporate various features, resulting in high accuracy.

The joint approach involves scoring all the predicate-argument combinations

in one sentence, and then selecting the combination with the highest score [61,

53, 20, 55]. Sasano and Kurohashi (2011) simultaneously determines all the three

case arguments per predicate by exploiting large-scale case frames obtained from

large raw texts. They focus on identification of implicit arguments (Zero and In-

terZero), and achieves comparable results to Imamura et al. (2009). Yoshikawa

et al. (2011) determines all case arguments for all predicates in a sentence using

Markov Logic Networks. Shibata et al. (2016) also simultaneously determines

76

all predicate-argument combinations using our all-cases joint model with neural

networks. Compared with the pointwise approach, their methods based on the

joint approach achieve better results.

4.6.2 Modeling of Multi-Predicate Interactions

In semantic role labeling (SRL), Yang and Zong (2014) [60] proposed a model

based on the linguistic intuition that the predicates in a sentence are semantically

related to each other, and that the information regarding this semantic relation

can be useful for SRL. They reported that their reranking model, which captures

the multi-predicate interactions, is effective for the English constituent-based SRL

task [6]. Taking this a step further, we propose new models capturing interactions

between multiple predicates and arguments.

4.6.3 Neural Approaches

Japanese PAS

In recent years, several attempts have been made to apply neural networks to

Japanese PAS analysis [55, 31]7. In [55], a feed-forward neural network is used

for the score calculation part of our all-cases joint model. In [31], multi-column

convolutional neural networks are used for the zero anaphora resolution task.

Both models exploit syntactic and selectional preference information as the

atomic features of neural networks. Overall, the use of neural networks has re-

sulted in advantageous performance levels, mitigating the cost of manually de-

signing combination features. In this thesis, we demonstrate that even without

such syntactic information, our neural models can realize strong performance ex-

clusively using the word sequence information of a sentence.

English SRL

Some neural models have achieved high performance without syntactic informa-

tion in English SRL. [10] and [67] worked on the English constituent-based SRL

task [6] using neural networks. In [10], their model exploited a convolutional neu-

ral network and achieved a 74.15% F-measure without syntactic information. In

7These previous studies used unpublished datasets and evaluated the performance with
different experimental settings. Consequently, we cannot compare their models with ours.

77

[67], their model exploited bidirectional RNNs with linear-chain conditional ran-

dom fields (CRFs) and achieved the state-of-the-art result, an 81.07% F-measure.

Our models should be regarded as an extension of their model.

The main differences between [67] and our work are: (i) constituent-based vs

dependency-based argument identification and (ii) the multi-predicate consider-

ation. For the constituent-based SRL, [67] used CRFs to capture the IOB label

dependencies, because systems are required to identify the spans of arguments for

each predicate. By contrast, for Japanese dependency-based PAS analysis, we re-

placed the CRFs with the softmax function, because in Japanese, arguments are

rarely adjacent to each other.8 Furthermore, whereas the model described in [67]

predicts arguments for each predicate independently, our multi-sequence model

jointly predicts arguments for all predicates in a sentence concurrently by con-

sidering the multi-predicate interactions.

4.7 Summary

In this thesis, we present two types of models: (i) bipartite graph models and

(ii) Grid-RNN models.

The bipartite graph models capture interactions between multiple predicates

and arguments using a bipartite graph and greedily search the optimal PAS com-

bination in a sentence. Experiments on the NAIST Text Corpus demonstrate

that capturing the multi-predicate interactions is effective for Japanese PAS anal-

ysis. In particular, Zero argument identification, one of the problematic issues

in Japanese PAS analysis, is improved by taking such interactions into account.

The Grid-RNN models automatically induce effective feature representations

from the word sequence information using grid-type recurrent neural networks.

Experimental results show that the Grid RNN models achieve high performance

without the need for syntactic information. Especially, these models improve the

performance of Zero argument identification by considering the multi-predicate

interactions with Grid-RNNs, which is consistent with the results of our bipartite

graph models.

Since our models are applicable to SRL, applying our models for multilingual

SRL tasks is an interesting future research direction. Also, in this thesis, the

8In our preliminary experiment, we could not confirm the performance improvement by
CRFs.

78

model parameters were learned without any external resources, so that we plan

to explore effective methods for exploiting large-scale unlabeled data to learn our

models.

79

81

Chapter 5

Conclusion

5.1 Summary

This thesis aimed to improve syntactic and semantic dependency parsing.

In Chapter 3, to improve syntactic dependency parsing, we presented a supertag

design framework that is flexible so that various supertag sets may be designed.

Based on the framework, we instantiated various granularity supertag sets that

encode rich syntactic information. To investigate the utility of these supertag

features, we have performed the experiments in multilingual dependency parsing.

Experimental results show that in order to improve dependency parsing, it is

critical to encode the head directionality, head label, and dependent possession

information as supertags. In particular, the head label information is crucial for

improving LAS. By contrast, the obligatory dependent labels do not improve the

results.

In Chapter 4, to improve semantic dependency parsing, we presented two types

of approaches using (i) bipartite graphs and (ii) grid-type recurrent neural net-

works (Grid-RNNs). The first approach represents the interactions between pred-

icates and arguments using a bipartite graph and greedily searches the optimal

PAS combination in a sentence. The second approach automatically induces ef-

fective feature representations from the word sequence information of a sentence

using Grid-RNNs. Experimental results show that capturing the multi-predicate

interactions is effective for semantic dependency parsing. In particular, zero ar-

gument identification, one of the problematic issues in Japanese PAS analysis, is

improved by taking such interactions into account.

5.2 Future Directions

For syntactic dependency parsing, we would like to investigate the interaction

of supertag features with higher-order features and explore linguistic entities that

capture structurally richer information, such as subtree structures. For semantic

dependency parsing, applying our approaches for multilingual settings presents

an interesting future research direction. Also, because in this work our models

were learned with only labeled data, we plan to explore effective methods for

exploiting large-scale unlabeled data to learn the models.

82

83

Appendix A

First Appendix

A.1 Feature Templates for Supertagging

A.2 Feature Templates for Dependency Parsers

NAME FEATURE WINDOW FEATURE TEMPLATE

Unigram
for p in xi−3, xi−2, xi−1, xi, xi+1,

xi+2, xi+3

⟨p.t⟩, ⟨p.w⟩

Bigram

for p,q in (xi,xi+1), (xi,xi+2),

(xi,xi+3), (xi−1,xi), (xi−2,xi),

(xi−3,xi), (xi+1,xi+2), (xi−2,xi−1)

⟨p.t ◦ q.t⟩, ⟨p.w ◦ q.w⟩

History

⟨xi−1.stag⟩,
⟨xi−2.stag⟩,

⟨xi−1.stag ◦ xi.t⟩,
⟨xi−2.stag ◦ xi.t⟩,

⟨xi−2.stag ◦ xi−1.stag⟩,
⟨xi−2.stag ◦ xi−1.stag ◦ xi.t⟩

Table A.1: Feature templates for the supertagging models. The notations used

in this table are as follows: feature conjunction= ◦; xi is the i-th word in the

sentence; w=word form; t=POS tag; stag=supertag.

84

NAME FEATURE WINDOW FEATURE TEMPLATE

Unigram
for p in s0, s1, s2, b0, b1, b2 ⟨p.t⟩, ⟨p.w⟩, ⟨p.t ◦ p.lc.t⟩,

⟨p.t ◦ p.rc.t⟩,
⟨p.t ◦ p.lc.t ◦ p.rc.t⟩

Bigram

for p,q in (s2,s1), (s1,s0),

(s0,b0), (b0,b1), (b1,b2)

⟨p.t ◦ q.t⟩, ⟨p.w ◦ q.w⟩,
⟨p.t ◦ q.w⟩, ⟨p.w ◦ q.t⟩,
⟨p.t ◦ q.t ◦ p.lc.t ◦ q.lc.t⟩,
⟨p.t ◦ q.t ◦ p.rc.t ◦ q.lc.t⟩,
⟨p.t ◦ q.t ◦ p.lc.t ◦ q.rc.t⟩,
⟨p.t ◦ q.t ◦ p.rc.t ◦ q.rc.t⟩

Structural

for p in s0, s1, s2, b0, b1, b2 ⟨dist(p, p.lc) ◦ p.t⟩,
⟨dist(p, p.rc) ◦ p.t⟩,
⟨p.nd ◦ p.t⟩

for p, q in (s2, s1), (s1, s0),

(s0, b0), (b0, b1), (b1, b2)

⟨dist(p, q)⟩,
⟨dist(p, q) ◦ p.t ◦ q.t⟩

UniStag for p in s0, s1, s2, b0, b1, b2 ⟨p.stag⟩

BiStag

for p, q in (s2, s1), (s1, s0),

(s0, b0), (b0, b1), (b1, b2)

⟨p.stag ◦ q.stag⟩,
⟨p.stag ◦ q.t⟩, ⟨p.t ◦ q.stag⟩,
⟨p.stag ◦ q.w⟩, ⟨p.w ◦ q.stag⟩

Table A.2: Feature templates for the arc-standard model. The notations used

in this table are as follows: feature conjunction= ◦; si=i-th word on the top

of the stack; bi=i-th word in the buffer; lc=left-most dependent; rc=right-most

dependent; w=word form; t=POS tag; stag=supertag; dist(p, q)=word distance

between p and q; nd=1 if the word has no dependent, otherwise 0.

85

87

Appendix B

Second Appendix

B.1 Feature Templates for Bipartite GraphMod-

els

B.2 Hyper-Parameters for Neural Models

Structure Name Description

Diff-Arg

PAIR ⟨ pi.rf ◦ pj.rf ◦ pi.vo ◦ pj.vo ⟩,
⟨ ai.ax ◦ ai.rp ◦ pi.ax ◦ pi.vo ⟩,
⟨ aj.ax ◦ aj.rp ◦ pj.ax ◦ pj.vo ⟩

TRIANGLE ⟨ ai.ax ◦ ai.ax ◦ ai.rp ◦ aj.rp ◦ pi.ax ◦ pi.vo ⟩,
⟨ ai.ax ◦ aj.ax ◦ ai.rp ◦ aj.rp ◦ pj.ax ◦ pj.vo ⟩

QUAD ⟨ ai.ax ◦ aj.ax ◦ ai.rp ◦ aj.rp ◦ pi.vo ◦ pj.vo ⟩,
⟨ ai.ax ◦ aj.ax ◦ pi.ax ◦ pj.ax ◦ ai.rp ◦
aj.rp ◦ pi.vo ◦ pj.vo ⟩,
⟨ ai.ax ◦ aj.ax ◦ pi.rf ◦ pj.rf ◦ ai.rp ◦ ai.rp ◦
pi.vo ◦ pi.vo ⟩

Co-Arg

BI-PREDS ⟨ ai.rp ◦ pi.rf ◦ pj.rf ⟩,
⟨ ai.ax ◦ ai.rp ◦ pi.rf ◦ pj.rf ⟩

DEP-REL ⟨ ai.ax ◦ ai.rp ◦ pi.ax ◦ pj.ax ◦ pi.vo ◦ pj.vo ◦
(x, y).dep ⟩ if x depends on y for x,y in

(pi,pj), (ai,pi), (ai,pj), (pi,ai), (pj,ai)

Table B.1: Global feature templates. pi, pj is a predicate, ai is the argument

connected with pi, and aj is the argument connected with pj. Feature conjunction

is indicated by ◦; ax=auxiliary, rp=relative position, vo=voice, rf=regular form,

dep=dependency. All the features are conjoined with the relative position and

the case role labels of the two predicates.

Name Value

Word Embedding Dim dword 32

Mark Embedding Dim dmark 32

Hidden Unit Dim dhidden 32

No. RNN Layers {2, 4, 6, 8}
Mini-Batch Size { 2, 4, 8 }
Window Size C 5

Learning Rate Adam[34]

L2 Reg. Coefficient { 0.0001, 0.0005, 0.001 }

Table B.2: Hyper-parameters used in the experiments.

88

89

Bibliography

[1] B. R. Ambati, T. Deoskar, and M. Steedman. Improving dependency parsers

using combinatory categorial grammar. In Proceedings of EACL, pp. 159–

163, 2014.

[2] S. Bangalore and A. K. Joshi. Supertagging: An approach to almost parsing.

Computational Linguistics, 25(2):237–265, 1999.

[3] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Berg-

eron, N. Bouchard, and Y. Bengio. Theano: new features and speed im-

provements. Deep Learning and Unsupervised Feature Learning NIPS 2012

Workshop, 2012.

[4] A. Björkelund, L. Hafdell, and P. Nugues. Multilingual semantic role label-

ing. In Proceedings of CoNLL: Shared Task, pp. 43–48, 2009.

[5] B. Bohnet and J. Nivre. A transition-based system for joint part-of-speech

tagging and labeled non-projective dependency parsing. In Proceedings of

EMNLP/COLING, pp. 1455–1465, 2012.

[6] X. Carreras and L. Màrquez. Introduction to the CoNLL-2005 shared task:

Semantic role labeling. In Proceedings of CoNLL, pp. 152–164, 2005.

[7] D. Chen and C. Manning. A fast and accurate dependency parser using

neural networks. In Proceedings of EMNLP, pp. 740–750, 2014.

[8] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using RNN

encoder–decoder for statistical machine translation. In Proceedings of

EMNLP, pp. 1724–1734, 2014.

[9] M. Collins. Discriminative training methods for hidden markov models: The-

ory and experiments with perceptron algorithms. In Proceedings of EMNLP,

pp. 1–8, 2002.

[10] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and

P. Kuksa. Natural language processing (almost) from scratch. Journal of

Machine Learning Research, 2011.

[11] M.-C. de Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. Nivre,

and C. D. Manning. Universal Stanford dependencies: A cross-linguistic

typology. In Proceedings of LREC, pp. 4585–4592, 2014.

[12] M.-C. de Marneffe, B. MacCartney, and C. D. Manning. Generating typed

dependency parses from phrase structure parses. In Proceedings of LREC,

pp. 449–454, 2006.

[13] M.-C. de Marneffe and C. D. Manning. The Stanford typed dependencies

representation. In COLING-2008: Proceedings of the Workshop on Cross-

Framework and Cross-Domain Parser Evaluation, pp. 1–8, 2008.

[14] K. Foth, T. By, and W. Menzel. Guiding a Constraint Dependency Parser

with Supertags. In Proceedings of COLING/ACL 2006, pp. 289–296, 2006.

[15] Y. Goldberg and M. Elhadad. An efficient algorithm for easy-first non-

directional dependency parsing. In Proceedings of HLT/NAACL, pp. 742–

750, 2010.

[16] A. Graves, S. Fernández, and J. Schmidhuber. Bidirectional LSTM networks

for improved phoneme classification and recognition. In Proceedings of In-

ternational Conference on Artificial Neural Networks, pp. 799–804, 2005.

[17] A. Graves, N. Jaitly, and A.-r. Mohamed. Hybrid speech recognition with

deep bidirectional LSTM. In Proceedings of Automatic Speech Recognition

and Understanding (ASRU), 2013 IEEE Workshop, 2013.

[18] A. Graves and J. Schmidhuber. Offline handwriting recognition with multi-

dimensional recurrent neural networks. In Proceedings of NIPS, pp. 545–552,

2009.

90

[19] J. Hajič, M. Ciaramita, R. Johansson, D. Kawahara, M. A. Mart́ı,

L. Màrquez, A. Meyers, J. Nivre, S. Padó, J. Štěpánek, et al. The conll-2009

shared task: Syntactic and semantic dependencies in multiple languages. In

Proceedings of CoNLL: Shared Task, pp. 1–18, 2009.

[20] M. Hangyo, D. Kawahara, and S. Kurohashi. Japanese zero reference reso-

lution considering exophora and author/reader mentions. In Proceedings of

EMNLP, pp. 924–934, 2013.

[21] Y. Hayashibe, M. Komachi, and Y. Matsumoto. Japanese predicate argu-

ment structure analysis exploiting argument position and type. In Proceed-

ings of IJCNLP, pp. 201–209, 2011.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. arXiv preprint arXiv:1512.03385, 2015.

[23] L. He, K. Lee, M. Lewis, and L. Zettlemoyer. Deep semantic role labeling:

What works and what’s next. In Proceedings of ACL, 第 1巻, pp. 473–483,

2017.

[24] L. Huang. Forest reranking: Discriminative parsing with non-local features.

In Proceedings of 46th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, pp. 586–594, Columbus, Ohio,

June 2008. Association for Computational Linguistics.

[25] L. Huang, S. Fayong, and Y. Guo. Structured perceptron with inexact search.

In Proceedings of NAACL/HLT, pp. 142–151, 2012.

[26] L. Huang and K. Sagae. Dynamic programming for linear-time incremental

parsing. In Proceedings of ACL, pp. 1077–1086, 2010.

[27] R. Iida, K. Inui, and Y. Matsumoto. Anaphora resolution by antecedent

identification followed by anaphoricity determination. ACM Transactions

on Asian Language Information Processing (TALIP), 4(4):417–434, 2005.

[28] R. Iida, M. Komachi, K. Inui, and Y. Matsumoto. Annotating a Japanese

text corpus with predicate-argument and coreference relations. In Proceed-

ings of the Linguistic Annotation Workshop, pp. 132–139, 2007.

91

[29] R. Iida and M. Poesio. A cross-lingual ILP solution to zero anaphora reso-

lution. In Proceedings of ACL-HLT, pp. 804–813, 2011.

[30] R. Iida, K. Torisawa, C. Hashimoto, J.-H. Oh, and J. Kloetzer. Intra-

sentential zero anaphora resolution using subject sharing recognition. In

Proceedings of EMNLP, pp. 2179–2189, 2015.

[31] R. Iida, K. Torisawa, J.-H. Oh, C. Kruengkrai, and J. Kloetzer. Intra-

sentential subject zero anaphora resolution using multi-column convolutional

neural network. In Proceedings of EMNLP, pp. 1244–1254, 2016.

[32] K. Imamura, K. Saito, and T. Izumi. Discriminative approach to predicate-

argument structure analysis with zero-anaphora resolution. In Proceedings

of ACL-IJCNLP, pp. 85–88, 2009.

[33] N. Kalchbrenner, I. Danihelka, and A. Graves. Grid long short-term memory.

In Proceedings of ICLR, 2016.

[34] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv: 1412.6980, 2014.

[35] T. Koo, X. Carreras, and M. Collins. Simple semi-supervised dependency

parsing. In Proceedings of ACL/HLT, pp. 595–603, 2008.

[36] S. Kübler, R. McDonald, and J. Nivre. Dependency Parsing. Morgan and

Clapool, 2009.

[37] T. Kudo and Y. Matsumoto. Japanese dependency analysis using cascaded

chunking. In Proceedings of CoNLL, pp. 63–69, 2003.

[38] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Proceed-

ings of ICML, 2001.

[39] T. Lei, Y. Zhang, L. Màrquez, A. Moschitti, and R. Barzilay. High-order

low-rank tensors for semantic role labeling. In Proceedings of NAACL-HLT,

pp. 1150–1160, 2015.

[40] M. P. Marcus, B. Santorini, and M. Marcinkiewicz. Building a large an-

notated corpus of English: the Penn Treebank. Computational Linguistics,

19(2):313–330, 1993.

92

[41] R. McDonald, J. Nivre, Y. Quirmbach-Brundage, Y. Goldberg, D. Das,

K. Ganchev, K. Hall, S. Petrov, H. Zhang, O. Täckström, C. Bedini,

N. Bertomeu Castelló, and J. Lee. Universal dependency annotation for

multilingual parsing. In Proceedings of ACL, pp. 92–97, 2013.

[42] R. McDonald and F. Pereira. Online learning of approximate dependency

parsing algorithms. In Proceedings of the 11th conference on European Chap-

ter of the Association for Computational Linguistics (EACL), pp. 81–88,

Trento, Italy, April 2006. Association for Computational Linguistics.

[43] A. Nasr and O. Rambow. Supertagging and full parsing. In Proceedings of

the International Workshop on Tree Adjoining Grammar and Related For-

malisms (TAG+ 7), pp. 56–63, 2004.

[44] J. Nivre. Dependency grammar and dependency parsing. Technical Report

MSI report 05133, Växjö University: School of Mathematics and Systems

Engineering, 2003.

[45] J. Nivre. Incrementality in deterministic dependency parsing. In Proceed-

ings of the Workshop on Incremental Parsing: Bringing Engineering and

Cognition Together, pp. 50–57, 2004.

[46] J. Nivre. Algorithms for deterministic incremental dependency parsing.

Computational Linguistics, 34:513–553, 2008.

[47] Y. Nivre. An efficient algorithm for projective dependency parsing. In Pro-

ceedings of IWPT, pp. 149–160, 2003.

[48] Y. Nivre, J. Hall, and J. Nilsson. Memory-based dependency parsing. In

Proceedings of CoNLL, pp. 49–56, 2004.

[49] Y. Nivre and M. Scholz. Deterministic dependency parsing of English text.

In Proceedings of COLING, pp. 64–70, 2004.

[50] M. Palmer, D. Gildea, and P. Kingsbury. The proposition bank: An an-

notated corpus of semantic roles. Computational linguistics, 31(1):71–106,

2005.

[51] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent

neural networks. In Proceedings of ICML, 2013.

93

[52] S. Petrov, D. Das, and R. McDonald. A universal part-of-speech tagset. In

Proceedings of LREC, pp. 2089–2096, 2012.

[53] R. Sasano and S. Kurohashi. A discriminative approach to Japanese zero

anaphora resolution with large-scale lexicalized case frames. In Proceedings

of IJCNLP, pp. 758–766, 2011.

[54] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, pp. 2673–2681, 1997.

[55] T. Shibata, D. Kawahara, and S. Kurohashi. Neural network-based model

for Japanese predicate argument structure analysis. In Proceedings of ACL,

pp. 1235–1244, 2016.

[56] M. Surdeanu, R. Johansson, A. Meyers, L. Màrquez, and J. Nivre. The conll-

2008 shared task on joint parsing of syntactic and semantic dependencies.

In Proceedings of CoNLL: Shared Task, pp. 159–177, 2008.

[57] H. Taira, S. Fujita, and M. Nagata. A Japanese predicate argument structure

analysis using decision lists. In Proceedings of EMNLP, pp. 523–532, 2008.

[58] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,

M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al. Google’s neural machine

translation system: Bridging the gap between human and machine transla-

tion. arXiv preprint arXiv:1609.08144, 2016.

[59] H. Yamada and Y. Matsumoto. Statistical dependency analysis using sup-

port vector machines. In Proceedings of IWPT, pp. 195–206, 2003.

[60] H. Yang and C. Zong. Multi-predicate semantic role labeling. In Proceedings

of EMNLP, pp. 363–373, 2014.

[61] K. Yoshikawa, M. Asahara, and Y. Matsumoto. Jointly extracting Japanese

predicate-argument relation with markov logic. In Proceedings of IJCNLP,

pp. 1125–1133, 2011.

[62] D. Zeman. A universal part-of-speech tagset. In Proceedings of LREC, pp.

213–218, 2008.

94

[63] Y. Zhang and S. Clark. A tale of two parsers: Investigating and combining

graph-based and transition-based dependency parsing using beam-search. In

Proceedings of EMNLP, pp. 562–571, 2008.

[64] Y. Zhang and S. Clark. Syntactic processing using the generalized perceptron

and beam search. Computational Linguistics, pp. 105–151, 2011.

[65] Y. Zhang, T. Lei, R. Barzilay, and T. Jaakkola. Greed is good if randomized:

New inference for dependency parsing. In Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP), pp.

1013–1024, Doha, Qatar, October 2014. Association for Computational Lin-

guistics.

[66] Y. Zhang and J. Nivre. Transition-based dependency parsing with rich non-

local features. In Proceedings of ACL/HLT, pp. 188–193, 2011.

[67] J. Zhou and W. Xu. End-to-end learning of semantic role labeling using

recurrent neural networks. In Proceedings of ACL-IJCNLP, 2015.

95

97

List of Publications

Journal Papers

1. Hiroki Ouchi, Kevin Duh, Hiroyuki Shindo, and Yuji Matsumoto. “Transition-

Based Dependency Parsing Exploiting Supertags”. IEEE Transactions on

Audio, Speech and Language Processing, Volume: 24, Issue: 11, pp. 2059

- 2068, November 2016.

Conference Papers

1. Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto. “Neural Modeling

of Multi-Predicate Interactions for Japanese Predicate Argument Structure

Analysis”. In Proceedings of the Association for Computational Linguistics

(ACL), pp. 1591 - 1600, July 2017.

2. Hiroki Ouchi, Hiroyuki Shindo, Kevin Duh, and Yuji Matsumoto. “Joint

Case Argument Identification for Japanese Predicate Argument Structure

Analysis”. In Proceedings of the Association for Computational Linguistics

(ACL), pp. 961 - 970, July 2015.

3. Hiroki Ouchi, Hiroyuki Shindo, Kevin Duh, and Yuji Matsumoto. “Improv-

ing Dependency Parsers with Supertags”. In Proceedings of the European

Chapter of the Association for Computational Linguistics (EACL), pp. 154

- 158, April 2014.

Awards

1. Outstanding Research Award, Information Processing Society of Japan

SIG-NL-233, “Neural Domain Adaptation for Unknown-Domains in Seman-

tic Role Labeling”. (in Japanese)

2. Young Researcher Award, Association for Natural Language Processing,

“Neural Inter-Sentential Zero-Anaphora Resolution”. (in Japanese)

3. Outstanding Research Award, Information Processing Society of Japan

SIG-NL-229, “Deep Recurrent Models for Japanese Predicate Argument

Structure Analysis”. (in Japanese)

Other Publication

1. Hiroki Ouchi and Yuta Tsuboi. “Addressee and Response Selection for

Multi-Party Conversation”. In Proceedings of the Empirical Methods in

Natural Language Processing (EMNLP), pp. 2133 - 2143, November 2016.

98

