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Hierarchical Model Predictive Control for
Real-time Whole-body Control of a Humanoid

Robot∗

Koji Ishihara

Abstract

Humanoid robots have been promoted for working in such real environments as
extremely hazardous situations instead of humans. However, their agility remains
problematic because it is so inferior to that of human beings. Even though robotic
capabilities are rapidly advancing, the robot operation is dozens of times slower
than a human demonstration.

The low speed of task execution can be partially attributed to two factors: a
control strategy with multiple high-level controllers and the lack of a strong actua-
tor. Therefore we aim to develop an ideal framework, where a unified whole-body
controller plans motion trajectories under the full-body dynamics of a humanoid
robot and the desired whole-body motions are executed with a strong actuation
system composed of different types of actuators. In this thesis that anticipates the
development of such a framework, we address two problems related to a unified
controller and an actuation system. Moreover, we develop an estimation frame-
work of task goals from human demonstrations because designing appropriate
control objectives is a crucial but labor-intensive issue to generate robot motions
with a unified controller.

As a unified whole-body controller, we adopt a real-time optimal control ap-
proach known as Model Predictive Control (MPC), which is useful for effectively
deriving optimal policies to achieve many task goals. However, a real-time MPC
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for a humanoid robot is deemed impractical since MPC is computationally in-
tensive. To cope with this problem, we propose a MPC method that has a
hierarchical optimization procedure based on a singularly perturbed system of a
humanoid robot to ease MPC’s computation burden. We evaluate our proposed
MPC in a simple toy problem and a simulated humanoid robot and show that
it successfully reduces the computation time without significantly degrading the
control performance. We evaluate our approach in a real humanoid robot.

The development of a single light, compliant, yet strong actuator remains chal-
lenging due to the limitations of current actuation technology. Thus, a hybrid
actuation system is a good alternative for such a light and strong actuator. If the
distribution of the desired torque to each actuator is properly determined, the
hybrid actuator system will provide high actuation performance from the comple-
mentary behavior of each actuator. To achieve this, we derive a two-stage control
scheme for a pneumatic-electric hybrid actuator system based on its singularly
perturbed system to decide the optimal torque distribution in real-time. We
achieve our proposed control scheme with a hierarchical MPC. We evaluate our
two-stage MPC on a forearm robot in tracking control problems and demonstrate
that our approach successfully finds a torque distribution strategy in real-time.

Although it is important to specify informative control objectives that are suffi-
cient to generate human-like fast behaviors with our hierarchical MPC, they must
be designed through a time-consuming trial-and-error parameter tuning process.
Although using captured human movements might be a useful approach to esti-
mate a robot’s control objectives, we cannot directly do so since the dynamics
of humans and humanoid robots are not identical. To address this problem,
we propose an estimation framework of control objectives from human demon-
strations. In our proposed approach, after converting the human demonstrations
into feasible motions for the robot, we extract human movement skills as objective
functions with Inverse Optimal Control (IOC) and show that control objectives
for jumping and squatting can be learned from captured human movements.

Keywords:

whole-body motion generation, optimal control, inverse optimal control, humanoid
robot, hybrid actuator system
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1 Introduction

1.1 Background
Generating multiple whole-body motions of a humanoid robot is one of the most
challenging control problems in robotics. Future humanoid robots are expected
to work in dangerous environments instead of humans. However, it remains dif-
ficult to generate human-like behaviors, especially in terms of speed [1]. This
problem has been demonstrated in a series of competitions called the DARPA
Robotics Challenge (DRC) [2], whose primary goal is to encourage the develop-
ment of versatile robots that can assist humans for disaster-response operations.
In DRC, robots are required to execute such complex tasks as opening a door
or an industrial gate valve, and walking on uneven terrain. The winning team’s
task execution, however, was about 20 times slower than a human demonstrator
[1]. We can partially attribute their lack of agility to two factors.

The first factor is the current control strategy in which several restricted sub-
motions are successively executed to achieve a complex task. Many teams that
participated in DRC adopted the following approach. A designer specified sev-
eral high-level controllers that determined behaviors under kinematic models or
low-dimensional dynamics [3, 4, 5, 6], and the robot accomplished tasks by sequen-
tially changing the designed high-level controllers. From the perspective of the
task execution’s speed, a robot must generate motions while planning whole-body
states to efficiently achieve complex tasks. However, generating such whole-body
motions is generally hard since both the kinematic and low-dimensional dynami-
cal models significantly restrict generable movements. Instead, several restricted
sub-motions are planned with the models, and the robot accomplishes complex
tasks by successively performing them.

The ideal solution is to include the full-body dynamics of a humanoid robot in
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high-level controllers. Since such whole-body controllers share identical dynam-
ics and whole-body state space, a controller can determine future plans while
taking into account the influences of the other high-level controllers. As a result,
they can be switched or combined to generate whole-body motions that efficiently
accomplish the complex task. However, this approach has another problem: de-
signing whole-body controllers that execute motor commands for a large number
of degrees of freedom (DOF) is generally labor-intensive. Thus, we believe a uni-
fied optimization-based controller, which derives optimal control inputs under the
constraints of its own whole-body dynamics, is the best alternative for motion
generation in a diverse set of tasks. Since various motions can be automatically
derived by specifying simple high-level task goals, the framework of full-body op-
timal control is a powerful approach. For many-DOF robot control, the full-body
optimal control approach has been scrutinized [7, 8, 9]. An online optimal control
approach known as Model Predictive Control (MPC) is especially suitable for our
purpose. Since a finite optimal control problem is solved at each time-step, MPC
can derive control policies under a situation in which robots must adaptively gen-
erate their motions by changing control objectives [10, 11, 12]. The robot can
generate a smooth transient trajectory from one motion to another motion online
to complete a task.

The second factor is actuation. In DRC, after falling, almost no robots were
able to get back up without human intervention [1]. Since the development of a
strong actuator with a high power-to-weight ratio is quite challenging due to its
technical difficulties, robots are still too heavy to recover from falls using their
arms [13]. The robots were controlled to remain statically stable but they just
engaged in slow motions to prevent disastrous falls. Robots obviously lack a light
actuator that can generate large torque.

To address the limitations of current actuation technology, hybrid actuated
robots have been developed. By selecting each size or type of actuator to drive
each joint based on the required torques, the total weight can be reduced [14].
Otherwise, by combining several actuators to drive one DOF joint, a hybrid
actuation design can have a high power-to-weight ratio since different types of
actuators have various dynamic properties [15, 16, 17]. For example, a pneumatic
artificial muscle (PAM) can generate large torque, but it cannot generate high
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frequency torques due to the nature of the slow time constant of electric air
valves. A small electric motor can compensate the slow PAM behaviors so that
the hybrid actuator system can achieve higher control frequency bandwidth.

1.2 Research Motivation and Objective
To avoid the low agility problem attributed to control strategy and actuation, we
develop a whole-body control framework where a unified MPC controller plans
whole-body motion trajectories based on the full-body dynamics of a humanoid
robot, and then the planning trajectories are executed with hybrid actuation
systems.

However, MPC is a computationally intensive method since a large optimiza-
tion problem must be solved at each time-step when the full-body dynamics of
a humanoid robot are used as constraints. Since an MPC approach has been
deemed unsuitable for real-time control of a high-dimensional system, a task-
specific, low-dimensional approximated model such as an inverted pendulum
model has been used in MPC frameworks for generating balanced and biped
controllers [18, 19, 20]. However, it is difficult and time-consuming to construct a
simple model for every task, and significantly reduced models restrict generable
movements [21]. The inverted pendulum model has difficulty generating motions
in which both feet of the robot leave the ground, such as jumping and flipping.
Therefore, we must develop a MPC method that can be utilized in a more general
context of motion generation as well as motions that are generated in real-time.

We thus propose a hierarchical MPC approach that aims for real-time hu-
manoid robot control. By transforming humanoid robot dynamics into a singu-
larly perturbed system that contains slow and fast sub-dynamics, control policies
are derived through optimizations that are solved hierarchically. Specifically, in
an upper layer, a coarse whole-body trajectory is decided under original full-body
dynamics through an optimization with large time-steps. In a lower layer, the
coarse trajectory is modified through an optimization with a fine-time resolution
under low-dimensional dynamics. We extract the fast sub-dynamics as the low-
dimensional dynamics from the singularly perturbed system. A humanoid robot’s
singularly perturbed system is newly derived to realize our proposed hierarchical

3



MPC.
A crucial issue of a hybrid actuator system is the torque distribution problem,

where a controller is necessary to decide the amount of torque required for each
actuator to produce a given desired torque. To solve this problem, a Macro-
Mini control scheme [22, 23] and an optimal control approach [24] have been
developed. In the Macro-Mini control scheme, the output torque of the slow
actuator (PAM) is decided first and then the output of the fast actuator (electric
motor) is decided based on the torque tracking error between the desired torque
and the torque generated by the PAM. The sum of the PAM and electric motor
outputs are applied to the robot as a current control input. On the other hand,
the optimal control approach can automatically derive a series of optimal torque
distributions to accomplish the entire task in accordance with such optimization
criteria as a minimum energy criterion. However, the computational cost of the
optimization is too high to derive torque distributions within the short control
period of an actuator system.

We propose a control scheme that determines the optimal torque distributions
for a hybrid actuator system in real-time based on the hierarchical MPC approach.
In our proposed approach, similar to the Macro-Mini control scheme, a two-stage
control scheme is adopted where the PAM torques are computed in the first stage,
and then the electric motor’s outputs are derived in the second stage to achieve the
control objectives. We consider the hybrid actuator system a singularly perturbed
system and extract fast sub-dynamics for a two-stage control scheme. The output
torques are optimized using the original and fast dynamics by the hierarchical
MPC.

The control framework’s schematic is depicted in Fig. 1.1. If suitable con-
trol objectives are specified, the unified controller of the hierarchical MPC plans
whole-body motion trajectories and decides the torque distributions so that the
target trajectories are executed with the hybrid actuation system. However, de-
signing control objectives through which the robot can plan human-like behaviors
in real-time is time-consuming. Therefore they must be specified by trial and er-
ror since the cost (or reward) functions are not always obvious that connect the
complex behaviors of a humanoid robot and the task goals. We develop an es-
timation framework in which the control objectives of the hierarchical MPC are
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jumping

Figure 1.1: Overview of our ideal control framework for improving agility: As a
unified controller, MPC plans whole-body motion trajectories using
a humanoid robot’s full-body dynamics. Planning trajectories are
executed with strong actuators (hybrid actuation systems). For the
framework’s development, we address three problems related to the
unified controller, hybrid actuation systems, and control objectives by
proposing hierarchical MPC and an estimation framework of control
objectives.
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learned for real-time motion generation. For human-like behaviors, an approach
that uses captured human movements to design a humanoid robot’s control objec-
tives might be fruitful because humans and humanoid robots share similar body
structure.

However, since the dynamics of humans and robot models are not exactly
identical, we cannot directly copy human joint angle trajectories to construct
the control objectives. One possible approach is using specially designed move-
ment features to convert human movements into robot behaviors [25]. In such
a framework, however, these movement features need to be carefully hand-tuned
for each specific movement task. Since this approach is unsuitable for generating
a wide variety of robot movements, we focus on the time axis as common features
among all the movements. To convert different types of infeasible motion data
for a humanoid robot into feasible ones, we adopt a time warping technique, in
which the time lines of human movements are modified to speed up or slow down
the movements [26].

The cost functions representing the control objectives (objective functions) are
estimated from the modified human movements using an Inverse Optimal Con-
trol (IOC) method [27], [28], [29]. Although the standard IOC’s effectiveness is
restricted in low-dimensional systems because many standard IOC methods are
required to repeatedly solve a forward optimal control problem in the learning pro-
cess, a local IOC method was recently developed to handle high-dimensionality in
which a locally approximated likelihood is maximized to match human demon-
strations [30]. For an offline optimal control approach, this method actually
learned an objective function of biped locomotion from human demonstrations
[31]. We explore the use of this local IOC method to estimate the control objec-
tives for an online optimal control approach: the hierarchical MPC.

1.3 Dissertation Overview
The rest of this thesis is organized as follows.

Chapter 2 introduces our proposed hierarchical MPC: Coarse-Fast MPC. We
evaluate it in a simulated 3D humanoid model and show that it can reduce
the computational time without significantly degrading the control perfor-
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mances. As a result, we successfully generated in real-time eight humanoid
robot motions including such complex behaviors as jumping and flipping.
We also compared our approach with a conventional whole-body controller
in terms of the required time to achieve a whole-body reaching task to show
that motion planning with full-body dynamics results in fast motion exe-
cution. In addition, we evaluated our approach on a real robot experiment
and show that very simple motions (standing and slow squatting) can be
generated with the Coarse-Fast MPC.

Chapter 3 presents the proposed control scheme for a hybrid actuator system.
The two-stage control scheme with a hierarchical MPC is called a two-stage
MPC. We investigated the hybrid actuator model as a singularly perturbed
system, derived a two-stage optimization strategy, and demonstrated that
our method derives a torque distribution strategy for the hybrid actuator by
confronting the difficulty of solving the real-time optimal control problem.

Chapter 4 describes our proposed framework that estimates the control ob-
jectives for the hierarchical MPC from human movements. We evaluated
our proposed method by applying our proposed framework to a humanoid
robot model and show that two different movements (jumping and squat-
ting) can be generated with different objective functions estimated by IOC.
We demonstrate that both movements can be generated in real-time with
our hierarchical MPC approach.

Chapter 5 concludes this thesis with a discussion and outlines future expecta-
tions.
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2 Hierarchical Model Predictive
Control

2.1 Introduction
Motion generations for various tasks under the constraints of their own dynamics
and environmental conditions are required for such versatile robots as humanoid
and exoskeleton robots (e.g., in DARPA Robotics Challenge [2]). An optimization
problem to find the controller under these conditions is considered an optimal con-
trol problem. In general, optimal control problems cannot be analytically solved
for high-dimensional nonlinear systems. Moreover, in many cases, numerically
solving these problems requires a great deal of computational resources. There-
fore, trajectory-based optimal control methods, which find the optimal policy
around a trajectory and can be applicable to high-dimensional nonlinear sys-
tems, are becoming a popular approach for many-DOF robot control [7, 9, 32].
However, most trajectory-based optimal control methods use time-indexed tra-
jectory and are susceptible to external disturbances. In such a case, an online
trajectory optimization approach known as Model Predictive Control (MPC) can
be useful since it can effectively provide a feedback policy online by solving an
finite-horizon optimal control problem at each control time-step. Furthermore,
MPC can derive control policies under a situation in which agents must adaptively
generate their actions by changing objectives and environments (e.g., changing
the location of target objects, changing the behavioral intention of collaborators
or users, dealing with unexpected circumstances). MPC methods have been ap-
plied to chemical plants [33] or ship-maneuvering problems [10] whose dynamics
are sufficiently slow and smooth. Since a sufficient amount of time for calcu-
lating computationally intensive optimal control problems can be used in slowly
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responding systems, MPC is commonly used in such domains. MPC applications
to simulated robot models have been demonstrated [11].

MPC, however, is not a suitable approach for the real-time control of a high-
dimensional system that quickly changes its behavior due to its computationally
intensive method. Thus, a simple low-dimensional approximated model such as
the inverted pendulum model has been used in MPC frameworks for generating
balancing and biped controllers [18, 20]. However, it is difficult to construct a
simple model for every task, and a significantly reduced model restricts generable
movements [21]. To generate whole-body motions with such a restricted model
is generally hard, and this reduces a humanoid robot’s agility. Therefore, devel-
oping a MPC method, which can be utilized in a more general context of motion
generation, is desirable to reduce the computational time.

In this chapter, we propose a hierarchical MPC method that aims for real-time
humanoid robot control. By transforming the full-body humanoid robot dynamics
into a singularly perturbed system that contains slow and fast sub-dynamics, an
optimal control policy can be derived through the hierarchical MPC with reduced
computational time, where the behavior of slow sub-dynamics is optimized with
a large time-step for coarse optimization but with a long evaluation period, and
the behavior of fast sub-dynamics is optimized with a small time-step for fine
optimization but with a short evaluation period (Fig. 2.1). The hierarchical
MPC structure is a good alternative for easing MPC’s computational burden;
the controlled system is decomposed into subsystems with which more than one
optimization problem is solved while exchanging information among local MPCs
[34]. For a chemical process, a composite slow-fast MPC design was demonstrated
for singularly perturbed systems that can reduce the computational time [35]. A
composite slow-fast MPC approach has been applied to a simulated single link
flexible joint manipulator [36]. However, for a highly nonlinear system such as
a humanoid robot, it is generally difficult to derive an analytical solution of fast
sub-dynamics for computing slow dynamics. Thus, we cannot straightforwardly
apply the previously proposed slow-fast MPC approach. In this study, we propose
a novel approach in which both the original full dynamics and fast dynamics are
considered in hierarchical optimization.

In our experiments, a humanoid robot tries to generate eight movements:
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Fast dynamics

Figure 2.1: Schematic diagram of proposed (Coarse-Fast) MPC method: We de-
compose original optimal control problem into two smaller problems
since it is computationally intensive to be solved in MPC framework.

standing, walking, running, sitting and on a chair, and three kinds of jump-
ing that including a half turn and flip motions. Some motions are required to
predict the long state trajectories since myopic behaviors fail to generate tar-
get movements (e.g., although the generation of walking is desired, a robot may
fall forward without its legs spread apart because of a short prediction horizon).
However, due to the high-dimensionality of humanoid robots, the hierarchical
MPC approach is inadequate to reduce the computational time when many steps
are predicted for the robots. Therefore, we combine the hierarchical MPC with a
simple warm-start technique that enables the optimizer to start the optimization
with good initial points from the beginning. We reveal that all eight motions
were successfully generated in real-time with the new hierarchical MPC approach
and compare our approach with a conventional full-body controller in terms of
the required time to generate a whole-body reaching motion. Since the hierarchi-
cal MPC can plan whole-body motions under full-body dynamics, a walking to
approach a target position and a reaching motion are simultaneously generated
and improve the execution’s speed. In addition, our approach is evaluated on a
real robot experiment. We show that very simple motions (standing and slow
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squatting) can be generated with the hierarchical MPC.
The rest of this chapter is organized as follows. Section 2.2 explains a stan-

dard MPC problem. Section 2.3 introduces our proposed methods: Coarse-Fast
MPC and Warm-Starting Coarse-Fast MPC. Section 2.4 shows how our proposed
MPCs works with a toy example. Section 2.5 presents how we apply our proposed
method to a humanoid robot model. We also discuss computational complexity
when the proposed method is applied to the humanoid robot. Section 2.6 de-
scribes the task goals and the experimental setting for simulation experiments
as well as their results. Section 2.7 explains the experimental settings for a real
robot experiment and shows its experimental result.

2.2 Model Predictive Control
In MPC at each control period, a finite-horizon optimal control problem is solved
to find an optimal control sequence that minimizes the accumulated cost over
a finite future horizon. We evaluate the objective function based on a state
trajectory and a control sequence estimated using a nonlinear system model:

xk+1 = f(xk, uk)
= xk + ∆tfd(xk, uk),

(2.1)

where x ∈ Rn and u ∈ Rm respectively denote the state vectors and the control
inputs. ∆t denotes a step size (a control period). The accumulated cost is defined:

J(xk, Uk) =
k+N−2∑

t=k

ℓ(xt, ut) + ℓT (xk+N−1), (2.2)

where Uk ≡ {uk, uk+1, . . . , uk+N−2} is the control sequence. ℓ(x, u) is the imme-
diate cost, and ℓT (x) = ℓ(x, 0) is the terminal cost.

The optimal control sequence is defined:

U⋆
k ≡ arg min

Uk

J(xk, Uk), (2.3)

where ⋆ indicates the optimized variables. The problem of minimization over an
entire control sequence can be reduced to a sequence of minimizations over a single
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control input by the Dynamic Programming Principle. Define value function V

as

Vk(xk) ≡ min
Uk

J(xk, Uk). (2.4)

The total cost can be rewritten recursively with the following value:

Vk(xk) = min
uk

[ℓ(xk, uk) + Vk+1(xk+1)]

= min
uk

Qk(xk, uk).
(2.5)

By setting Vk+N−1(xk+N−1) ≡ ℓT (xk+N−1), the optimal input at each time-step
is derived backwards in time.

Once optimal control sequence U⋆
k is derived, the first few elements (usually

only first element u⋆
k) of the optimal control sequence are applied to the robot.

Since the optimal control sequence is computed at each time-step based on the
robot’s current state and the current definition of the cost function, MPC can
cope with external disturbances and adaptively derive control policies even with
dynamically changing cost functions. After a new state is measured at subse-
quent time-step k + 1, optimal control sequence U⋆

k+1 is derived and the robot is
controlled in the same manner.

Although the optimal control sequence can be derived if the control input at
each time-step is found that minimizes function Q, it cannot be analytically
derived for nonlinear systems in general. Instead, to derive a locally optimal
controller, we use a Differential Dynamic Programming (DDP) [37] approach
called iterative Linear Quadratic Regulator (iLQR) [8]. DDP and iLQR have
been used in the MPC context [11, 38]. In iLQG, given nominal (xt, ut) at time-
step t, the Q-function is approximated with a second order Tylor expansion of Q
around (xt, ut):

Qt(xt + δxt, ut + δut) ≈ Qt(xt, ut)

+ 1
2


1

δx⊤
t

δu⊤
t


⊤ 

0 Q⊤
xt Q⊤

ut

Qxt Qxxt Qxut

Qut Quxt Quut




1
δxt

δut

 .
(2.6)

Here, (xt + δxt, ut + δxt) represents the perturbations around (xt, ut) pair. The
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Q-function derivatives are given by:

Qxt = ℓxt + f⊤
xtVxt+1 (2.7)

Qut = ℓut + f⊤
utVxt+1 (2.8)

Qxxt = ℓxxt + f⊤
xtVxxt+1fxt (2.9)

Quxt = ℓuxt + f⊤
utVxxt+1fxt (2.10)

Quut = ℓuut + f⊤
utVxxt+1fut. (2.11)

The optimal control modification that minimizes Eq. (2.6) with respect to δut

can be derived analytically:

δu⋆ = −Q−1
uut(Qut + Quxtδxt)

= kt + Ktδxt.
(2.12)

By plugging the input into Eq. (2.6), the second order local model of the value
function is given:

Vk(xt + δxt) ≈ V (xt) + ∆Vt

+ 1
2

 1
δx⊤

t

⊤  0 V ⊤
xt

Vxt Vxxt

  1
δxt

 ,
(2.13)

where ∆Vt,Vxt and Vxxt are given by

∆Vt = −1
2Q⊤

utQ
−1
uutQut (2.14)

Vxt = Qxt −Q⊤
uxtQ

−1
uutQut (2.15)

Vxxt = Qxxt −QxutQ
−1
uutQuxt. (2.16)

(2.17)

Given initial state xk and inputs Uk = Uinit, new control inputs around the
nominal trajectory (xk, Uk) can be obtained recursively backward and forward in
time from the above equations. From time-step k + N − 1, the value function is
set to Vk+N−1(xk+N−1) = ℓT (xk+N−1) or given by Eqs. (2.15) or (2.17), and the
Q-function derivatives are computed with Eqs. (2.8) and (2.11). Policy {k, K}
in the optimal control modifications is obtained by Eq. (2.12). The new control
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input at time-step t is given from t = k to k + N − 2:

x̃k = xk (2.18)
ũt = ut + kt + Kt(x̃t − xt) (2.19)

x̃t+1 = f(x̃t, ũt). (2.20)

Set the new trajectory (x̃k, Ũk) as the nominal one and repeat the above compu-
tation until it converges to the locally optimal trajectory for the original nonlinear
system. The regularization to keep Quut a positive definite matrix and the line
search procedure are improved to use iLQG in the MPC context [11]. We em-
ployed both changes to benefit from fast convergence.

At next time-step k + 1, the solver starts to compute optimal sequence U⋆
k+1

with a warm-start technique in which previous solution U⋆
k is used as a starting

point of the current optimization. The technique is often used to speed up the
optimizer [11, 39]. Suppose the previously computed trajectory is Ǔk = U⋆

k:

Ǔk ≡ {ǔk, ǔk+1, · · · , ǔk+N−2}. (2.21)

We can initialize the initial control sequence with the time-shifted trajectory of
Ǔk. In the case of shifting one time-step, the initial sequence is

Uinit
k+1 ← {ǔk+1, ǔk+2, · · · , ǔk+N−2, ǔk+N−2}. (2.22)

2.3 Proposed Method

2.3.1 Problem Decomposition

If a plant has a high-dimensional state and input variables but sometimes needs
to generate fast movements, the above finite optimal control problem of a con-
ventional MPC must be solved within a very short time period to compute a
large number of input variables. A humanoid robot corresponds to such a high-
dimensional system.

Utilizing the distributed or hierarchical MPC structures is a feasible alterna-
tive to ease MPC’s computational burden [34]. The computational time can be
reduced with these structures because the optimal control problems are formu-
lated based on the property of each subsystem and the problem size becomes
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smaller than the original one. A detailed explanation about the computational
complexity of MPC (a gradient-based optimization algorithm such as iLQR) is
described in Section 2.5.

A time-scale decomposition technique, especially a two-time-scale decomposi-
tion technique, is widely used to make subsystems [40]. We focus on a two-time-
scale decomposition for the following singularly perturbed systems:

ẏ = h(y, z, uy, uz)
εż = g(y, z, uz),

(2.23)

where y ∈ Rny , z ∈ Rnz , uy ∈ Rmy and uz ∈ Rmz respectively denote the vectors
of slow, fast state variables, and control inputs for slow and fast states. ε is a
small positive parameter.

To extract a slow subsystem, we set ε = 0 in Eq. (2.23):

ẏ = h(y, z, uy, uz) (2.24)

0 = g(y, z, uz). (2.25)

Assume that Eq. (2.25) possesses a unique root:

ẑ = ĝ(ŷ, ûz). (2.26)

Substituting Eq. (2.26) into Eq. (2.24), a slow subsystem is obtained:

˙̂y = h(ŷ, ĝ(ŷ, ûz), ûy, ûz) = ĥ(ŷ, ûy, ûz). (2.27)

We now extract the fast subsystem. We introduce the deviation of state ζ =
z− ẑ and control variables ν = uz − ûz, and the singularly perturbed system in
Eq. (2.23) is rewritten with new time-scale ετ = t. Finally, we set ε = 0 in the
resulting system and obtain:

dŷ
dτ

= 0 (2.28)

dζ

dτ
= g(ŷ, ζ + ẑ, ν + ûz) = ĝ(ζ, ν), (2.29)
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and the system of Eq. (2.29) is the fast subsystem.
In optimal control theory for singularly perturbed systems, composite optimal

control structures have been widely studied [40, 41, 42]. A similar structure is also
proposed in the MPC context where one MPC regulates the slow subsystem and
the other MPC regulates the fast subsystem in a hierarchical or distributed man-
ner [35]. The controller derived through optimizations with the two subsystems
is expected to perform as the original system’s optimal controller.

2.3.2 Hierarchical Composite Slow-Fast MPC Design

Here we introduce a hierarchical composite MPC design to ease the computational
burden. Given total cost Js, the following slow optimization problem is solved:

min
Ûy

k ,Ûz
k

Js
k(ŷk, ẑk, Û

y
k , Û

z
k) (2.30a)

s.t. ŷk+1 = ŷk + ∆tsĥ(ŷk, ûy
k , ûz

k), (2.30b)

where Û
y
k ≡ {û

y
k , ûy

k+1, · · · , ûy
k+Ns−1} and Û

z
k ≡ {û

z
k, ûz

k+1, · · · , ûz
k+Ns−1} as a

slow and fast control sequence. ∆ts is a coarse-time-step (∆ts > ∆t), and Ns is
a horizon for the first optimization (Ns∆ts = N∆t). The fast state is computed
with Eq. (2.26). The first optimization problem is smaller than the original one
in terms of the state dimension as well as the prediction horizon.

To generate a fast movement, the coarse input sequence derived in the upper-
layer optimization must be further optimized with a fine-time resolution. Then
the fine optimization’s objective is to refine the upper-layer optimization result.
In the lower-layer optimization, we use shorter time-step ∆tf rather than coarse-
time-step ∆ts. The horizon for the fine optimization is defined as Nf . The second
optimization problem is smaller than the original one in terms of the input and
state dimensions since a reduced-order subsystem only considered the constraints.

Optimal slow and fast control sequences Û
y⋆

k , Û
z⋆

k are obtained after the first
optimization. Optimal slow and fast state trajectories Ŷ

⋆
and Ẑ

⋆
are also derived.

We define the deviation of a fast state from the optimal fast state in the first
optimization as ζ = z − ẑ⋆, the control input difference as ν = uz − ûz⋆

, and
a sequence of the deviations of control inputs as Nj ≡ {νj, νj+1, . . . , νj+Nf −2},
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and formulate the fine optimization problem to modify the first optimization’s
results:

min
Nj

Jf
j (Ŷ

⋆
, Ẑ

⋆
, Û

y⋆

, ζj, Nj) (2.31a)

s.t. ζk+1 = ζk + 1
ε

∆tf ĝ(ζj, νj), (2.31b)

where

Ŷ
⋆
≡ {ŷ⋆

j , ŷ⋆
j+1, . . . , ŷ⋆

j+Nf −1}
Ẑ

⋆
≡ {ẑ⋆

j , ẑ⋆
j+1, . . . , ẑ⋆

j+Nf −1}
Û

y⋆

≡ {ûy⋆

j , ûy⋆

j+1, . . . , ûy⋆

j+Nf −2}
Û

z⋆

≡ {ûz⋆

j , ûz⋆

j+1, . . . , ûz⋆

j+Nf −2}
.

(2.32)

Horizon Nf is set to ∆tfNf < ∆tsNs in our evaluations because the controller
for the fast subsystem modifies the robot’s short-term effect.

Finally, the control input for the fast state at time j is composed of two control
variables:

u⋆
j =

 uy⋆

j

uz⋆

j

 =

 ûy⋆

j

ûz⋆

j + ν⋆
j

 . (2.33)

2.3.3 Modified Hierarchical MPC Design: Coarse-Fast
MPC

If the nonlinear algebraic equations in Eq. (2.25) can be solved, the above hier-
archical approach will significantly reduce MPC’s computational time. However,
it is often difficult to solve the equations analytically or even numerically for a
humanoid system due to high nonlinearity. As a result, the slow dynamics can’t
correctly predict the slow state. Therefore, the MPC methods fail to compute
optimal control sequences. Thus, we cannot straightforwardly apply the above
slow-fast MPC approach. Instead, in this study, we handle the first problem as a
coarse optimization given objective function J c and the original system dynamics:

min
Ũk

J c
k(x̃k, Ũk) (2.34a)
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s.t. x̃k+1 = x̃k + ∆tcfd(x̃k, ũk), (2.34b)

where x̃ and Ũk ≡ {ũk, ũk+1, . . . , ũk+N−2} denote a state and a control sequence
for the coarse optimization. ∆tc is a coarse-time-step (∆tc > ∆t). Since the
optimal controller corresponds to a result that solves the original optimal control
problem of Eq. (2.3) with coarse-time-step ∆tc and horizon Nc, in this chapter
we call an MPC with this optimal control problem a Coarse MPC and an MPC
that solves the original problem a Fine MPC.

The lower-layer optimization is the same as Eq. (2.31). For fast optimization,
we first convert the optimal state and the input trajectories derived in coarse
optimization. We transform the optimal trajectories described in the original
state and the action space into those described in slow and fast state-action
space: from the trajectories of x̃⋆ and ũ⋆ into the trajectories of ỹ⋆, z̃⋆, ũy⋆ and
ũz⋆ . Then we use a zero-order hold model to keep the optimized states and the
control inputs for M = ∆tc/∆tf time-steps to match the optimal trajectories
with the time-scale of the fast subsystem:

[ŷ⋆
j , ŷ⋆

j+1, . . . , ŷ⋆
j+M−1] ← [ỹ⋆

k, ỹ⋆
k, . . . , ỹ⋆

k]
[ẑ⋆

j , ẑ⋆
j+1, . . . , ẑ⋆

j+M−1] ← [z̃⋆
k, z̃⋆

k, . . . , z̃⋆
k]

[ûy⋆

j , ûy⋆

j+1, . . . , ûy⋆

j+M−1] ← [ũy⋆

k , ũy⋆

k , . . . , ũy⋆

k ]
[ûz⋆

j , ûz⋆

j+1, . . . , ûz⋆

j+M−1] ← [ũz⋆

k , ũz⋆

k , . . . , ũz⋆

k ],
(2.35)

where subscript j = (k − 1)M + 1 indicates the time index of the fine-time
resolution and k denotes the time index of the coarse-time resolution.

Using the optimal inputs for upper-layer problems ũy⋆ and ũz⋆ , the control
input for the fast state at time j is composed of two control variables:

u⋆
j =

 uy⋆

j

uz⋆

j

 =

 ũy⋆

j

ũz⋆

j + ν⋆
j

 . (2.36)

Figure 2.1 shows a schematic diagram of the proposed method. Since the
original optimal control problem (original problem in Fig. 2.1) is computationally
intensive to solve in MPC, we decompose it into two optimal control problems,
as shown in Eqs. (2.34) and (2.31). After solving one optimal control problem in
Eq. (2.34) with coarse optimization, the results are modified by solving the other
problem, Eq. (2.31).
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2.3.4 Input Initialization for Warm-Starting

Warm-starting the optimizer greatly reduces the computational time since opti-
mization starts with a good initial point based on a previously computed trajec-
tory. However, the technique with the time-shifted solutions described in Section
2.2 works from the next optimization procedure to find optimal inputs U⋆

2 after
finding initial optimal input sequence U⋆

1. Therefore we must give the optimizer
a good initial trajectory Uinit

1 to warm-start from the beginning.
Combining offline and online optimization methods achieves either fast com-

putation or good performances since online optimization iteratively improves the
pre-computed approximate optimal results [43, 44]. If MPC is warm-started from
offline computations at every time-step, each optimization process will probably
converge after very few iterations. However, we cannot straightforwardly com-
bine both methods because of the high-dimensionality of a humanoid robot since
storing all the results of the offline optimizations for many tasks is no longer
practically possible.

Thus we adopt a simple input initialization method that combines both op-
timizations; the initial input sequence is optimized offline, and then the online
trajectory optimization starts with the optimal initial inputs to warm-start the
solver from the beginning. The initialization is especially quickened to compute
initial optimal input sequence U⋆

1. From the next time-step, the time-shifted
trajectory is used as the optimization’s initial points.

Figure 2.2 explains the warm-start technique. To warm-start the online com-
putation from the beginning, the initial input sequence is optimized offline. In
online optimization, after solving one optimal control problem in Eq. (2.34) with
the coarse-time resolution in the upper layer, the results are modified by solving
the other problem in Eq. (2.31) in the lower layer. Algorithm 1 summarizes our
proposed method.

2.4 Numerical Example
In this section, we consider a regulator problem for a nonlinear singularly per-
turbed system to explore our approach and present its experimental settings in
simulations and results. We apply three methods, the coarse MPC, the fine MPC,
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Figure 2.2: Simple warm-start technique: an input initialization approach: Only
initial inputs are optimized offline to warm-start solver from beginning
of online computation. In online optimization, decomposed problems
are solved in hierarchical manner to derive robot’s optimal policies.

Algorithm 1 Warm-Starting Coarse-Fast MPC.

1: Input initialization: Initialize Ũinit

1 ← arg min
Ũ1

J c
1 .

2: for k = 1 to T (terminating time-step of experiment) do
3: Coarse optimization: Eq. (2.34) with Ũinit

k .
4: Time shift to generate Ũinit

k+1 from Ũ⋆

k.
5: Fast optimization: Eq. (2.31) with Ninit

k initialized all elements to be 0.
6: Compose new inputs: U⋆

k with Eq. (2.36).
7: Control robot with first few inputs of U⋆

k

8: end for
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Table 2.1: Time-steps and horizons used in numerical example.
Step size (ms) Horizon

Fine ∆t = 1 N = 400
Coarse ∆t = 10 N = 40

Coarse-fast ∆tc = 10, ∆tf = 1 Nc = 40, Nf = 30
Slow-fast ∆tc = 10, ∆tf = 1 Ns = 40, Nf = 30

and the slow-fast MPC in addition to the proposed coarse-fast MPC, and com-
pare the state transitions of the slow and fast states. We demonstrate that the
proposed method can handle singularly perturbed systems in which the equilib-
rium points of the fast dynamics do not uniquely exist or whether they are just
difficult to analytically derive.

2.4.1 Experimental Settings

We consider the following two-dimensional nonlinear singularly perturbed system:

ẏ = −y + z − u1 − u2

εż = −yz − cos z − u1 + u2 ,
(2.37)

where ε = 0.1. In this system, depending on the state and control variables, the
plant does not have a unique root (Eq. (2.26)) (e.g., if y = 0, ẑ = cos−1(−u1−u2)).
Or a unique root of the fast dynamics exists, but a numerical method such as
Newton’s method is necessary to obtain it (e.g., if y = 1.0, u1 = 0, u2 = 0). This
causes an incorrect prediction of the slow state with a slow subsystem.

By defining a state vector as x = [y, z]⊤ and an input vector as u = [u1, u2]⊤,
we consider a regulator problem in which the following total cost is minimized in
each time-step:

Jk =
k+N∑
i=k

(xi − xd)⊤Q(xi − xd) +
k+N−1∑

i=k

u⊤
i Rui, (2.38)

where xd is the desired state and Q and R are the weighting matrices. We set
xd = [yd, zd]⊤ = [1.0, 2.0]⊤, Q = diag(1.0, 1.0), and R = diag(0.01, 0.01) in the
experiment.
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The total cost for the optimal control problem in Eq. (2.34) is given by:

J c
k =

k+Nc∑
i=k

(xi − xd)⊤Q(xi − xd) +
k+Nc−1∑

i=k

u⊤
i Rui. (2.39)

This optimal control problem is the same as the original one except for coarse-
time-step ∆tc and horizon Nc. To modify the derived optimal control sequence,
we determined the total cost for the second optimization at time-step k as follows:

Jf
k =

k+Nf∑
i=k

(xi − xd)⊤Q(xi − xd) +
k+N2nd−1∑

i=k

ν⊤
i Rννi. (2.40)

Here ν = u − û⋆, and û⋆ denotes the optimal control input computed through
the first optimization. We set weighting matrix Rν = R = diag(0.01, 0.01).

We compared the result of our approach with three methods: the fine MPC,
the coarse MPC, and the slow-fast MPC described in Section 2.3. In the slow-
fast MPC, we used identical total cost Js = J c for the first optimization in Eq.
(2.30). Table 2.1 shows the time-steps and the horizon used in each method.
Five simulations were carried out in each one. We measured the series of the
computational times required for deriving each optimal control sequence in a
simulation and computed the maximum computational times in each execution.
We then averaged the values. All simulations were performed by a Core i7-4770,
3.4 GHz computer. The simulation duration was 0.4 s, and the sampling time
was 1.0 ms in all the methods. Regarding the maximum number of iterations
and termination criteria for iLQR, the values used in all the methods were 50
and 1.0× 10−6.

2.4.2 Results

Figures 2.3 and 2.4 respectively show the state transitions of slow state y and
fast state z. The state transition result obtained by the fine MPC solves the
original optimal control problem. As shown in Fig. 2.3, the slow state transition
acquired with the coarse MPC and the coarse-fast MPC are similar to the fine
MPC result. By contrast, as shown in Fig. 2.4, the fast state transition obtained
by the slow-fast MPC and the coarse-fast MPC resemble the fine MPC result.
Since the coarse optimization only considers the optimal control problem in Eq.
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Figure 2.3: State transitions of slow state y: Since slow subsystem fails to cor-
rectly predict slow state trajectories, slow-fast MPC can’t generate an
optimal controller for the slow state, which does not converge to de-
sired state. State trajectory achieved with coarse-fast MPC resembles
the fine MPC result.

Figure 2.4: State transitions of fast state z: Since a course time-step is only used
in coarse MPC, derived controller can’t be sufficiently optimized for
fast state. Coarse-fast MPC achieved similar state trajectory to fine
MPC result.

23



(2.34), the derived controller can’t be optimized enough for the fast state. On
the other hand, the equilibrium points of the fast dynamics cannot be derived in
a particular state or from control variables in the plant, and the slow subsystem
fails to predict the correct slow state trajectories. Thus, the slow-fast MPC can’t
generate an optimal controller for the slow state, which does not converge to the
desired state. In the proposed method, since the slow dynamics optimization
is approximated with coarse optimization and the controller is refined with the
second optimization, good control performance is achieved that resembles a fine
MPC.

Figure 2.5 shows the maximum computational time required for computing an
optimal control sequence in one time-step in the fine and coarse-fast MPCs. Each
value is the average of five simulations. The error bars represent the standard
deviations. The black dashed line in Fig. 2.5 represents the sampling time used
in this experiment. Since the sampling time is 1.0 ms, the optimization must be
finished within 1.0 ms for real-time implementation. As shown in Fig. 2.5, the
computational time of the coarse-fast MPC is shorter than the sampling time.
The proposed method uses a large time-step in the first optimization and reduces
the number of control variables optimized in the first step. Moreover, since the
fast state is evaluated with a short period in the second optimization, just a little
extra computational time is necessary. Therefore, only our proposed method can
achieve real-time optimal control without degrading the control performance.

2.5 Application to a Humanoid Model
In this section, our approach is applied to a humanoid robot model to demonstrate
that versatile movements can be generated in real-time with our proposed method.

2.5.1 System Dynamics

We consider a seven-link humanoid robot with a torso link and three links in
each leg. Its height and total weight are 1.59 m and 47.0 kg. The dynamics
of the robot’s movements in three-dimensional space are given by the following
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Figure 2.5: Maximum computational time required to derive an optimal con-
trol sequence in each method: Since computational time of coarse-
fast MPC is shorter than sampling time (dashed line), our approach
achieves real-time optimal control.
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equations of motion:

M(q)v̇ = c(q, v) + u (2.41a)

q̇ = v, (2.41b)

where M is the inertia matrix and c is the vector of such total external forces as
gravity and coriolis. q is the generalized positions (base link positions, attitude,
and joint angles), v is their velocities, and u is the applied control. State x of the
state-space model consists of the following positions and velocities: x = [q⊤, v⊤]⊤.

In our simulator, we compute inertia matrix M and a part of external forces c
using the Composite Rigid Body and Recursive Newton Euler algorithms [45, 46].
Moreover, a smooth contact model and its solver [11, 47] are used to compute the
contact forces. We adopted those algorithms for their computational efficiency.

2.5.2 Transformation into a Singularly Perturbed System
and Fast Dynamics Extraction

To apply our proposed method to a humanoid robot, we must extract the fast
dynamics from the whole-body dynamics. This can be achieved by transforming
the humanoid robot into a singularly perturbed system. We introduce a new
singularly perturbed system of a humanoid robot, where we decomposed the
inertia matrix relative to base link Mbase and the other Mleg:

M =

 M11 O

O O

 +

 O M12

M21 M22

 = Mbase + Mleg. (2.42)

We can assume that matrix Mbase is only related to the accelerations of the
base link or to both its linear and angular accelerations. If the former assumption
is adopted, M11 equals a diagonal matrix of the total mass. The total weight
is much bigger than each element of Mleg. Thus, inertia Mleg can be clearly
considered a perturbation matrix of Mbase. In this study, however, we adopt the
latter assumption. This eases the computational burden of the proposed method
since fast dynamics has lower dimensionality. Since the elements of new inertia
matrix Mbase may include all the mass parameters, the matrix becomes relatively
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large. Thus, with a positive small parameter ε, the equations of motion in Eq.
(2.41a) become

(Mbase + εQ)v̇ = c + u, (2.43)

where Q = Mleg/ε and ε is defined as ||Mleg||/||Mbase||. We obtain the following
singularly perturbed system by multiplying a matrix (I − εS) on both sides of
Eq. (2.43): M11 εQ12

O εQ22 − ε2Q21M−1
11 Q12

  v̇slow

v̇fast

 = (I− εS)(c + u), (2.44)

where I is an identity matrix and S is the following matrix:

S =

 O O

Q21M−1
11 O,

 (2.45)

and matrix Q is partitioned into four blocks:

Q =

 Q11 Q12

Q21 Q22

 . (2.46)

Let velocities v = [v⊤
base, v⊤

leg]⊤, where slow vslow and fast vfast variables are rep-
resented as [vslow, vfast]⊤ = [vbase, vleg]⊤. In addition to the velocities, we also
assume that their generalized positions are slow and fast states. Thus, slow vari-
ables y and fast variables z are denoted as:

y =

 qslow

vslow

 =

 qbase

vbase

 , z =

 qfast

vfast

 =

 qleg

vleg

 . (2.47)

Now we extract a fast subsystem from the singularly perturbed system. In our
proposed method, we use the subsystem to modify the results of the upper-layer
optimization. Thus we consider the dynamics of the deviation between the fast
state and the optimal fast state derived from upper-layer optimization and define
the deviation as follows:

ζ =

 ζq

ζv

 =

 qfast − q̂⋆
fast

vfast − v̂⋆
fast

 . (2.48)

27



We partition (c + u) on the right side of Eq. (2.44) into slow variables py and
fast variables pz:

c + u = p =

 py

pz

 . (2.49)

After introducing time-scale
√

ετ = t and rewriting Eq. (2.44) with setting ε→ 0,
we obtain a fast subsystem that is described in new time-scale τ and restore the
fast subsystem to original time-scale t. Finally, the subsystem takes the following
form:

v̇slow = 0 (2.50a)

εQ22ζ̇v = pz. (2.50b)

Equation (2.50) describes the dynamics of the fast states under fixed slow vari-
ables. Since control inputs have no effect on slow states, the following discretized
system can be obtained:

yk+1 = yk + ∆tf ĥ(yk) (2.51a)
(2.51b)

ζk+1 = ζk + 1
ε

∆tf ĝ(yk, ζk, νk), (2.51c)

where the time evolution of the slow states does not depend on the control in-
puts. Therefore, in the lower-layer optimization of Eq. (2.31), the reduced-order
subsystem of Eq. (2.51c) is the only constraints that are considered.

In an original work that derived a singularly perturbed system of a biped robot
[48], inertia matrix M was decomposed into the inertia matrix of the center-
of-mass (CoM) and another based on the fact that the total kinetic energy of
rigid body dynamics can be separated into the kinetic energy associated with the
motion of CoM and the motion relative to it. In this study for faster computation,
our system was derived based on an assumption that the states of the base link
approximate the motion of CoM. Note that this approximation is often used in
biped robot control (e.g., [18]).

28



2.5.3 Computational Complexity

In one iteration of a gradient-based optimization algorithm such as iLQR, the
most computationally intensive part is to compute the derivatives of the dynam-
ics. Deriving analytical differentiations is difficult because humanoid dynamics
are too complex. We approximate them using finite-differencing, which requires
that the dynamics be evaluated many times. The computational complexity of
finite-differencing is O(n) where n is the dimension of the state. Therefore, the
total complexity is O(Nn4) because the derivatives are evaluated along a given
trajectory (horizon N) and a single call to the dynamics function is O(n3) [49].
In practice, we can efficiently compute the dynamics using the branch-induced
sparsity of inertia matrix M. However, dynamics computation remains expensive.

In the proposed method, we solved the original optimal control problem of
Eq. (2.3) with coarse-time-step ∆tc (horizon Nc) in the first optimization; the
complexity is O(Ncn

4) < O(Nn4). In the second optimization, the problem in Eq.
(2.31) is solved with low-dimensional dynamics: O(Nfn4

f ) < O(Nn4). Therefore,
since two smaller problems are solved in the proposed method, the computational
time is reduced.

2.6 Simulation Experiment

2.6.1 Experimental Task and Cost Function Design

In the first experiment, the task was to generate eight movements: standing (I),
walking (II), running (III), sitting on a chair and standing (IV), low jumping (V),
jumping with a half turn (VI), high jumping (VII), and doing a double flip (VIII).
For versatile motion generation, we chose state and control cost functions and
adopted weighted quadratic functions for the state-cost and control-cost terms.

In upper-layer optimization, the state-cost terms have parameters for attitude
a ≡ {ϕ, θ, ξ}, height pz, and velocity v ≡ {vx, vy, vz} of the base link. Various
movements were generated by setting these parameters. We defined the XZ-
plane as the sagittal plane, the YZ-plane as the frontal plane, and ϕ, θ, and ξ

respectively as the roll, pitch, and yaw rotations. The roll, pitch, and yaw were
counterclockwise rotations about the x-, y-, and z-axes.
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We provide the form of each cost term in Chapter 4 (Section 4.3.1). Briefly,
the state-cost consists of six terms. The first term forced the robot to regulate
the attitude of the base link to a rad. If the torso link stands upright, each
angle is 0 rad. In practice, rotations a were transformed into quaternions to
compute the cost since we designed this term using unit quaternions. The second
term penalized the vertical position of the base to pz m. The third term forced
the vertical and horizontal velocity of the base link to be v m/s. The fourth
and fifth terms were penalties on the angles between the vertical axis and a line
connecting each foot and the base. The fourth term forced the robot’s legs to
be spread apart. The fifth term prevented self-collision. The sixth term was
the quadratic penalties on the angular velocities of the base link’s attitude. The
control-cost was the quadratic penalties on the control inputs.

Table 2.2 shows the parameter settings: I: standing, II: walking, and III: run-
ning. In cases I, II, and III, the parameters were the same except for forward
velocity vx.

Table 2.3 shows the settings: IV: sitting on a chair and standing, V: low jump-
ing, VI: jumping with a half turn, VII: high jumping, and VIII: doing a double
flip. We changed some parameters in each of the four or six phases. Specifically,
for case IV, the first and second phases were for sitting on a chair and the oth-
ers were for standing on it. For cases V to VII, the first phase corresponded to
the preparations before initiating the jumping and flipping motions. The target
motions were executed in the second phase. We designed a third phase for the
landing motions so that the robot keeps it balance after the jumping and flipping
motions. The fourth phase was for standing upright. In case VIII, the target
motion was a double flip. Hence, the phases for motion execution and landing
were repeated from the second phase. The last phase was for standing upright.

In the lower-layer optimization, the state-cost was a weighted quadratic func-
tion to minimize the deviation between the fast state and the optimal fast state
derived from the first optimization:

ℓstate
fast = wfastζ

⊤ζ, (2.52)

where wfast is a weight parameter. The control-cost was the quadratic penalty on
the deviation of control inputs as with the state-cost. Since an optimal trajectory
is derived with a coarse-time-step in the first optimization, the trajectory must
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Table 2.2: Parameter settings in state-cost terms for generating motions I to III.
Attitude a (ϕ, θ, ξ) (rad) Height pz (m) Velocity v (vx, vy, vz) (m/s)

I 0, 0, 0 0.85 0, 0, 0
II 0, 0, 0 0.85 1.2, 0, 0
III 0, 0, 0 0.85 2.0, 0, 0

be modified for more fine-time resolution. Thus, we designed cost functions to
find a new trajectory for the fine time-step around the trajectory derived in the
first optimization.

In the second experiment, the task generated a whole-body reaching motion.
In addition to the cost functions for versatile motion generation, we designed
a state-cost for reaching, which is a penalty on the difference between target
reaching position preach and robot’s hand position phand:

ℓreach = wreach(preach − phand)⊤(preach − phand), (2.53)

where wreach is the weight parameter. The target position for the reaching motion
is preach = [0.70,−0.12, 0.70]⊤. We set attitude a = [0, 0, 0]⊤, height pz = 0.82,
and velocity v = [0, 0, 0]⊤ for the other state-cost functions.

2.6.2 Simulation Settings

Our proposed method was applied to a humanoid robot to generate various move-
ments such as running, flipping, and whole-body reaching motions. We set the
sampling time to 30 ms. For real-time motion generation, an optimization at each
time-step must be finished within the sampling time. Since we set the time-step of
the simulator to 1.0 ms, modeling error occurs. All simulations were performed in
a C language programming environment by an Intel Xeon Processor E5-2697 v3,
2.6 GHz computer. In iLQR, derivatives of dynamics and costs were computed
in parallel with ten computer threads using Open Multi-Processing (OpenMP)
[50].

In the first experiment, we show the effectiveness of the optimization of the ini-
tial inputs by measuring the maximum computational times with and without the
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Table 2.3: Parameter settings in state-cost terms for generating motions IV to
VIII.

Phase 1 Phase 2 Phase 3 Phase 4
Attitude a (ϕ, θ, ξ) (rad) 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

IV Height pz (m) 0.65 0.65 0.85 0.85
Velocity v (vx, vy, vz) (m/s) -1.5, 0, 0 0, 0, 0 1.5, 0, 0 0, 0, 0

Phase 1 Phase 2 Phase 3 Phase 4
Attitude a (ϕ, θ, ξ) (rad) 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

V Height pz (m) 0.85 1.8 0.75 0.85
Velocity v (vx, vy, vz) (m/s) 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Phase 1 Phase 2 Phase 3 Phase 4
Attitude a (ϕ, θ, ξ) (rad) 0, 0, 0 0, 0, π 0, 0, π 0, 0, π

VI Height pz (m) 0.85 1.8 0.75 0.85
Velocity v (vx, vy, vz) (m/s) 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Phase 1 Phase 2 Phase 3 Phase 4
Attitude a (ϕ, θ, ξ) (rad) 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

VII Height pz (m) 0.0 1.9 0.75 0.85
Velocity v (vx, vy, vz) (m/s) 2.0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Phase 1 Phase 2, 4 Phase 3, 5 Phase 6
Attitude a (ϕ, θ, ξ) (rad) 0, 0, 0 0, 1.5π, 0 0, 2.0π, 0 0, 2.0π, 0

VIII Height pz 0.0 1.9 0.75 0.85
Velocity v (vx, vy, vz) (m/s) 2.0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

warm-start technique. If the initialization was not executed, we set all of the ini-
tial inputs to zero. We also compared our approach’s results with a conventional
method in different settings: Warm-Starting Coarse MPC and Warm-Starting
Fine MPC, in terms of control performance and the computational time. Since
the Slow-Fast MPC failed to control the simple nonlinear singularly perturbed
system in the numerical example in Section 2.4, we did not apply it to the hu-
manoid robot in this experiment. We carried out five simulations and averaged
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Table 2.4: Time-steps and horizons used in humanoid robot experiment.
Step size (ms) Horizon

Fine ∆t = 10 N = 30
Coarse ∆t = 30 N = 10

Coarse-Fast ∆tc = 30, ∆tf = 10 Nc = 10, Nf = 10

the series of maximum computational times. We applied all the methods to a
humanoid robot whose state dimensionality n was 29. The robot’s fast variables
in Eq. 2.47 have nf = 16 dimensions. Table 2.4 shows the time-step and the hori-
zon used in each method. We decided the length so that the robot can predict
enough long-term future state trajectories to generate target motions because a
short horizon results in myopic behaviors. The maximum number of iteration
and termination criteria for iLQR was respectively 6 and 5.0 × 10−2 in all the
methods.

In the second experiment, we show that a whole-body reaching motion can be
generated with our proposed approach in real-time. We compared our approach’s
result with a whole-body controller based on conventional controllers [51, 52] in
terms of the task execution’s speed. We applied the hierarchical MPC and the
conventional whole-body controller to a humanoid robot with a right arm. Its
state dimensionality n is 31. The state dimension of the fast variables is nf = 18.

We set the time-step to (∆tc, ∆tf ) = (30, 10) and the horizon to (Nc, Nf ) =
(10, 10) for the hierarchical MPC. The maximum number of iterations and the
termination criteria for iLQR was respectively 4 and 5.0× 10−1.

Based on conventional whole-body controllers [51, 52], we designed a whole-
body controller as a conventional method. The diagrams of the conventional
whole-body controller and our hierarchical MPC are represented in Fig. 2.6. For
walking, given a desired center of pressure (CoP) trajectory XCoP, a desired CoM
trajectory XCoM is decided in a high-level controller (the walking controller) under
CoM dynamics fCoM using a trajectory optimization method (iLQR in our imple-
mentation). For standing, the same optimization as the walking controller is per-
formed except that a desired CoP trajectory is designed for double support. The
arm’s desired angle trajectory consists of initial angle XArm = {xArm

init , xArm
init , · · · }
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controller controller controller

(a) conventional whole-body controller (b) hierarchical MPC

Figure 2.6: Control diagrams of conventional whole-body controller and hierarchi-
cal MPC: In conventional whole-body controller, high-level controllers
plan behaviors under low-dimensional dynamics and kinematic mod-
els, and then robot accomplishes tasks by sequentially changing or
blending the designed high-level controllers. In hierarchical MPC,
full-body dynamics are used for motion planning and execution.
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for the walking controller and the current angle for the standing controller. For
the manipulation controller, the desired trajectories to reach a target position are
computed using Inverse Kinematics (IK): XArm

IK . Inverse Dynamics (ID) decides
joint torques u under the full-body dynamics (we use a simple notation f for
f(x, u)) to achieve the desired CoM and arm trajectories. Several targets and
constraints such as tracking a swing leg trajectory and keeping the friction and
CoP are also considered in the ID module.

2.6.3 Simulation Results

Versatile Motion Generation

Figure 2.7 shows the generated movements with the proposed method: Warm-
Starting Coarse-Fast MPC with parameter settings I to IV. In cases I, II, and
III, the robot tried to achieve target horizontal velocity vx of the base link while
standing the base link upright and keeping its position around 0.85 m height.
Depending on the target velocity, the robot generated standing, walking, and
running motions. The double swing phase accounted for 20% of the simulated
duration in the running motion in Fig. 2.7c. We set the chair’s height to 0.65 m
and forced the robot to maintain the base’s vertical position at the same height
in case IV. The robot sat on the chair to keep the position. After the second
phase, the robot stood up since target position pz is higher.

The clear advantage of using full-body dynamics in MPC is complex, and
dynamic behaviors can be generated just by specifying simple high-level task
descriptions. Fig. 2.8 represents the complex behaviors generated in real-time
with our proposed method. Since the robot tries to raise up its torso from a
standing position in case V, jumping is generated. In addition to case V, the
robot was forced to half-rotate its base link (i.e., ξ = π rad) when the parameter
setting is case VI. This results in a half turn while jumping. The robot jumps
higher in case VII since we set the parameters to include preparation before the
jumping began. In the first phase, the robot bends its torso back, and then using
the reaction force, it tried to reach a higher position than in case V. In case
VIII, the robot also tried to rotate its body to generate a jumping movement
(case VII). As a result, the first flip motion was generated. Since we designed
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(a) standing

(b) walking

(c) running

(d) sitting on a chair and standing from chair

Figure 2.7: Real-time movement generation with Warm-Starting Coarse-Fast
MPC in cases from I to IV: At each time-step, all motions are gener-
ated within sampling time: 30 ms.
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(a) low jumping

(b) jumping with half turn

(c) high jumping

(d) double flip

Figure 2.8: Real-time movement generation with our proposed method in cases
V to VIII: All four motions were successfully generated in real-time.
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the state-cost so that flipping and landing motions were generated again, the
second flip was accomplished. Generating these motions is difficult just using the
inverted pendulum model because the motions have a certain moment in which
both feet are off the ground.

Figure 2.9 represents the effectiveness of the warm-start technique described in
Section 3.2. If the initial inputs are not optimized (Coarse-Fast MPC was only
applied to the robot), the computational time of the initial optimization exceeds
the sampling time and corresponds to the maximum computational time. On the
other hand, the computational time is significantly reduced when we combined
the warm-start technique with Coarse-Fast MPC. As a result, the maximum
computational time becomes lower than the sampling time.

We compared Warm-Starting Coarse-Fast MPC with Warm-Starting Fine MPC
and Warm-Starting Coarse MPC in terms of control performances and compu-
tational times. In this case, we did not truncate the MPC computations at the
sampling time. Fig. 2.10 shows the accumulated cost during each simulated du-
ration and represents the control performances of each method. We normalized
all the costs with the total cost of the Fine MPC. Thus, its costs are all one in
Fig. 2.10. As examples of the generated movements with the conventional MPC
approach, the generated running patterns and double flip motions with Coarse
MPC and Fine MPC are shown in Fig. 2.11. In this case, the optimizations are
truncated at the sampling time. The robot did not generate stable running and
flipping motions with both methods.

Figure 2.12 shows the maximum computational time required for computing
an optimal control sequence in one time-step. Each value is the average of
five simulations. Although a computation for deriving an optimal control se-
quence must be finished within 30 ms, all of the maximum computational times
of the Warm-Starting Fine MPC are more than twice as much as the sampling
time, but no results of the Warm-Starting Coarse-Fast MPC were exceeded (Fig.
2.12). The maximum computational time averaged over eight motions of the
Warm-Starting Coarse-Fast MPC was 27.0 ms. This value is about one-third as
large as that of the Warm-Starting Fine MPC: 79.0 ms. As described in Section
2.5.3, MPC’s computational complexity mainly depends on the state dimension:
O(Nn4). Since the number of state dimensions can be reduced in the lower-layer
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Figure 2.9: Effectiveness of input initialization: Maximum computational time
exceeds sampling time (dashed line) when initial inputs are not op-
timized before control. After combining Warm-Start Technique with
Coarse-Fast MPC, computational time of initial optimization is sig-
nificantly reduced (orange bar). All motions are generated with our
proposed method.
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Off scale Off scale

Figure 2.10: Comparison of control performances: Since normalized total costs
are shown, costs of Warm-Starting Fine MPC are all one where
lower value represents better performance. Each accumulated cost
was computed with each generated motion trajectory. Performances
of Warm-Starting Coarse MPC are the worst in all motions. Since
the coarse optimization result is modified in the second optimiza-
tion in our proposed method, the Warm-Starting Coarse-Fast MPC
performances improved.
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(a) generated running with Warm-Starting Fine MPC

(b) generated running with Warm-Starting Coarse MPC

(c) generated double flip motion with Warm-Starting Fine MPC

(d) generated double flip motion with Warm-Starting Coarse MPC

Figure 2.11: Real-time motion generations with Warm-Starting Fine and Warm-
Starting Coarse MPCs: If we truncate computational times at sam-
pling time, running and flipping motions are not generated with Fine
MPC (e.g., figures (a) and (c)) because there is not enough time to
compute optimal motions. Although two motions are not gener-
ated with just the coarse optimization (e.g., figures (b) and (d)),
by refining them with the second optimization, they are successfully
generated with proposed method.
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Figure 2.12: Maximum computational time required to derive optimal control
sequence in each method: Maximum computational time of Warm-
Starting Fine MPC is more than twice sampling time (dashed line),
but no Warm-Starting Coarse-Fast MPC results are over the sam-
pling time. For real-time robot motion generation with proposed
method, we truncated the optimization when computational time
reached the sampling time. Since truncation has no influence, all
eight motions were successfully generated in real-time with proposed
method.
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optimization, the computational complexity of our proposed MPC can be ap-
proximated as O(Ncn

4), which is the complexity of the upper-layer optimization.
In the experiments, we set horizon N = 30 for the Warm-Starting Fine MPC and
Nc = 10 for the Warm-Starting Coarse-Fast MPC. Therefore, the computational
time was reduced by one-third.

Required Time for Whole-body Reaching

Figure 2.13a shows the generated whole-body reaching motion with our proposed
hierarchical MPC (Warm-Starting Coarse-Fast MPC). The target position is in-
dicated as a yellow ball. The robot moved forward while controlling its arm to
reach the target. The task started from 0.8 s, and the distance between the tar-
get and hand position was minimized at 2.46 s. Since the averaged maximum
computational time was 29.2 ms, which is less than the sampling period of 30 ms,
the whole-body reaching motion was successfully generated in real-time.

Figure 2.13b represents the result of the conventional full-body controller.
Whole-body reaching was accomplished through three sub-tasks: walking, stand-
ing, and manipulation. Since the robot was close to the target in 1.66 s when
we applied MPC, we designed the center of pressure trajectory for the left and
right steps per 0.8 s (including a double support phase for 0.1 s) for the walking
controller. After maintaining standing posture for 0.8 s with the standing con-
troller, the manipulation sub-task was initiated from 3.3 s. To generate reaching,
CoM’s desired trajectory was derived with the standing controller, and that of
the arm was given by the manipulation controller. Since the robot rotated its
arm with an average velocity of -0.269 rad/s until the hand reached the target
by MPC, we adjusted the manipulation speed to be close to the value for the
conventional controller. The actual averaged velocity was -0.269 rad/s. Finally,
the robot successfully reached the target reaching position at 5.2 s.

Using the same conventional controller, we tried to generate whole-body reach-
ing motions in different settings by changing the time at which the manipulation
was initiated. In the first case, the manipulation was started right after walking
(Conventional 2 in Fig. 2.14a). In the second case, walking and manipulation
were simultaneously started, where the desired trajectory of the CoM and the
arm were decided by the walking and manipulation controllers (Conventional 3

43



(a) generated whole-body reaching with Warm-Starting Coarse-Fast MPC

(b) generated whole-body reaching with conventional full-body controller (Conventional 1)

Figure 2.13: Generated whole-body reaching: Yellow ball indicates target reach-
ing position. (a) Robot simultaneously executed walking and ma-
nipulation and reached target position at 2.46 s with the proposed
hierarchical MPC. (b) Using conventional full-body controller, the
robot sequentially walked, stood, and manipulated the ball. Dis-
tance between target and hand position was minimized at 5.2 s.
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in Fig. 2.14b). If the manipulation were started earlier, the robot could complete
the task more quickly. The robot, however, did not reach the target position and
fell over after initiating the arm movements (Fig. 2.14)). The standing duration
(0.8 s) in Conventional 1 was decided by increasing the time by 0.1 s from the
setting of Conventional 2. The robot reached the target while keeping its balance
after standing for 0.8 s. The distances between the target and hand positions at
5.2 s for all methods are represented in Fig. 2.15.

We attribute these results to the restricted representation of the humanoid
robot in the high-level controllers. Since the walking controller of the conven-
tional whole-body controller only considers the CoM dynamics, it cannot deter-
mine future plans while taking into account the influences of the arm motions.
In contrast, since the manipulation controller for the arm trajectories ignores the
CoM dynamics, the planning of one controller acts as if they are disturbances
for the other controllers. The disturbances caused fatal falls in this experiment.
Since simultaneously moving the CoM and arm is difficult, the standing sub-task
had to be executed for 0.8 s after walking to rest the CoM’s motion. This re-
sulted in sequential execution of the three sub-tasks. On the other hand, MPC
does consider the full-body dynamics of the humanoid robot for motion planning.
Therefore, walking and manipulation were simultaneously executed with our ap-
proach and improved the slow speed of the robot operation. By comparing cases
in which the robot successfully reached its target, our proposed approach gen-
erated a reaching motion more than twice as fast as the conventional controller;
the required time of the hierarchical MPC to minimize the distance between the
target and the hand was 1.66 s and that of the conventional whole-body controller
was 4.40 s.

2.7 Real Robot Experiment

2.7.1 System Identification

In addition to the simulation experiment, we evaluated our method on a real robot
whose lower extremity is CB-i [53], which is a hydraulically actuated humanoid
robot. Several control approaches, such as passivity-based full-body force control
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(a) generated whole-body reaching with conventional full-body controller (Conventional 2)

(b) generated whole-body reaching with conventional full-body controller (Conventional 3)

Figure 2.14: Generated whole-body reaching where robot initiated manipulation
at different times: (a) Manipulation was started immediately after
walking (from 2.5 s). (b) Robot simultaneously tried to execute
walking and manipulation from 0.8 s. Robot failed to reach the
target in both cases. Since two high-level controllers for walking
and manipulation cannot determine future plans while taking into
account the influences of each other’s motion, dynamically changing
or blending controllers is generally difficult.
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Figure 2.15: Distances between target and hand position of robot at 5.2 s in
whole-body reaching task: In Conventionals 2 and 3, distances in-
creased due to fatal falls.
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[54] and biologically inspired locomotion control [55], were performed on this
robot in the past. This is the first time that a real-time full-body optimal control
approach has been applied to it.

In simulation experiments, we used CAD data to predict the motion trajectories
of the humanoid robot. However, we found that they are not reliable because they
don’t include the inertial parameters of either the components of the hydraulic
actuators or the new parts of the torso. We estimated the mass, the CoM position,
and the inertia matrix of each body segment using a real robot’s motion data.

The equations of motion of a robot manipulator can be written in a linear
regression form with respect to the inertial parameters [56, 57]. By using the
equations as an inverse dynamics model, a system identification problem can
be formulated, where output torques are computed using the inverse dynamics
model and then the inertial parameters are optimized to minimize the differences
between the observed and computed torques. Since the identification problems
can be solved efficiently, the approach can be applied to high-dimensional systems
such as a human being and a humanoid robot [58, 59]. However, the estimated
parameters for a humanoid robot with the inverse dynamics model are not always
accurate for forward dynamics since the robot is a highly nonlinear system. We
consider a problem formulation using the forward dynamics model in which the
accumulated cost over finite-horizon T is minimized:

min
Φ

∑
t=1···T

∥x̂t − xt(Φ)∥, (2.54)

where xt(Φ) is the predicted state using the forward dynamics model at time-step
t. Variables Φ include the viscous friction coefficient of each joint and the param-
eters of the smoothed contact dynamics [11] as well as the inertial parameters
(the mass, the CoM position, and the inertia matrix of each body segment). In
our implementation, we minimized Eq. (2.54) with a gradient-based optimiza-
tion: L-BFGS [60] in minFunc [61]. A similar approach was developed [62], where
inertial parameters were estimated and sensors were calibrated at the same time,
but we did them separately. We collected motion data x̂ using position tracking
control with fine-tuned PID parameters.
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2.7.2 State Estimation

Since future state trajectories are predicted from estimated current states in MPC,
the control performances of the controller greatly depend on estimation accuracy.
On the other hand, a fast estimation is another crucial issue for real-time model-
based control. Therefore, fast and accurate state estimation is an essential part
for real-time full-body optimal control.

Internal sensors such as joint encoders and an inertial measurement unit (IMU)
can be used with a high sampling rate. Although the state of a humanoid robot
can be partially measured with them, the position and velocity of the base link of
the robot are not directly observable. Thus, a whole-body state estimator based
on an unscented Kalman filter (UKF) was developed [63], where candidates of the
current state are computed with the full-body dynamics model through forward
dynamics. To obtain the current estimation, a weighted average of the sample
points is combined with the current observations of the inertial sensors. Although
using full-body dynamics is too expensive for real-time state estimation, they
exploit their fast and accurate physics engines [47, 64]. Since our simulator can
evaluate the dynamics fast enough for the UKF approach, we adopted it as the
state estimator of our real robot.

However, since we sometimes experienced estimation divergences of the base
position and the velocity, we utilized the measurements of an accelerometer in an
IMU. The sensor measures the three-axis acceleration of the base link. There are
several works on the state estimation of the base link of a legged robot with ac-
celerometer measurements. A base state estimator with a Kalman filter (KF) was
developed [65, 66]. The KF approach can model the bias terms of the accelerom-
eter because the drift effect must be reduced. A complementary filter combined
the leg kinematics and the IMU data [67]. This approach can be applied to a
more general context of motion generation where a supporting foot is not fixed
to the ground. We used a base state estimator based on KF because no force
sensors were available to measure the ground reaction forces. They are required
to adaptively adjust the crossover frequency of the complementary filter. The
estimation result of the base state estimator and the UKF’s weighted average
were used as each other’s observations. In both estimators, we used generalized
Rodrigues parameters to perturb the attitude of the base link (quaternion) [68].
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2.7.3 Cost Function Design and Experimental Setting

We performed three tasks in our real robot experiment. In the first task, the robot
tried to maintain its initial hip position with hierarchical MPC. The second task’s
control objective was to stand upright. The third task was to demonstrate that
different motions can be generated with MPC by changing the control objectives.
We switched the control objective from standing to squatting. The warm-start
technique (explained in Section 3.2) was not used in this experiment. Instead we
applied Coarse-Fast MPC to the robot as the hierarchical MPC. Before initiating
each task execution, the robot maintained its initial standing posture by a PID
controller, which is switched from the PID to the hierarchical MPC in 10 seconds.

Weighted quadratic functions were adopted for the state-cost and control-cost
terms as in the simulation experiment. The weights were constant through the
experiments. The state-cost forces the robot to achieve a target hip position while
minimizing the linear and angular velocities of the base link and the joints. The
control-cost consists of two terms. The first term is a quadratic penalty on the
control inputs. The second forces the robot to smoothly change the control inputs
since sudden jumps in the control inputs can cause undesired oscillations on it.
For squatting, we used a sinusoidal trajectory as the target hip positions. We
used the same cost function for the lower-layer optimization as in the simulation
experiment.

We set the sampling time to 12 ms. The time-step and the horizon for the
upper-layer optimization were 12 ms and 10, respectively. We selected the control
joints of the humanoid robot to have state dimensionality n = 29. The robot’s
fast variables in Eq. 2.47 became nf = 16 dimensions. For the lower-layer
optimization, they are 6 ms and 10. All the computations in the state estimation
and motion generation were executed by an Intel Xeon Processor E5-2697 v3, 2.6
GHz computer. The maximum number of iterations and termination criteria for
iLQR were respectively 6 and 5.0×10−2. In iLQR, the derivatives of the dynamics
and the costs were computed in parallel with ten computer threads using Open
Multi-Processing (OpenMP) [50]. As each joint level controller, we implemented
a PID controller with load velocity feedback to compute the valve commands
while compensating the actuator dynamics [69, 70]. The control period of the
joint level controllers was 6 ms.
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2.7.4 Experimental Results

Figure 2.16 shows the generated motions for the first task. Although the robot’s
controller was switched from PID to the hierarchical MPC during the task exe-
cution, the robot successfully maintained its initial hip position. The maximum
computational time was 13.30 ms, which is slightly over the sampling period
(12 ms). However, since only 0.84% (7/833) of the computations exceeded the
limit, the overruns only slightly influenced the optimization result. Fig. 2.17
represents a series of motions of CB-i to stand upright from the initial posture
in which it bent its legs. Since a finite optimal control problem was solved at
each time-step in MPC, the robot generated smooth transient trajectories from
the initial hip positions to the targets online. When the control objective was
switched from standing to squatting in the third task, the robot changed its be-
havior smoothly to achieve the new objective (Fig. 2.18). In the third task,
the maximum computational time was 12.02 ms, but only 0.12% (1/833) of the
computations exceeded the sampling period. The above results demonstrate the
advantage of our hierarchical MPC for versatile motion generation of a humanoid
robot because the whole-body motions were automatically generated by changing
the control objectives.

2.8 Summary
In this chapter, we proposed a Warm-Starting Hierarchical MPC approach for
humanoid robot control. In the proposed method, we combined a hierarchical
MPC approach named Coarse-Fast MPC with a simple warm-start technique.
To warm-start the optimizer from the beginning, we optimized the initial inputs
offline. Online computation began with the offline optimization result as good
starting points. The upper layer of the hierarchical MPC derived an optimal
control sequence of whole-body dynamics with a coarse-time resolution. In the
lower layer, the derived control sequence was further optimized on extracted low-
dimensional dynamics with fine-time resolution.

We evaluated our proposed MPC in a simulated 3D seven-link biped model.
By transforming the humanoid robot dynamics into a singularly perturbed sys-
tem, we extracted a fast subsystem to apply the proposed method. The robot fell
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Figure 2.16: Motion generation with our proposed method: Coarse-Fast MPC
for the first task. Robot successfully kept initial hip position after
switching controller from PID to Coarse-Fast MPC.

Figure 2.17: Snapshots of motion generation result with Coarse-Fast MPC for
second task: Robot successfully generated series of motions to stand
upright from initial posture where it bent its legs. Our proposed
method derived smooth transient trajectory from initial hip position
to the target online.
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(standing) (squatting)

Figure 2.18: Generated motion with Coarse-Fast MPC in third task: motion gen-
eration in changing controllers and control objectives. Yellow line
indicates initial hip position. Solid yellow circle denotes current
hip position. Robot generated slow squatting motion when control
objectives were switched from standing to squatting. This result
demonstrates that different motions were generated with MPC by
changing the control objectives on a real robot.
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over when the motions were generated with conventional MPC settings. When
using the Warm-Starting Fine MPC, the method required a lot of time to com-
pute the optimal policies. Thus, few optimizations converged if we truncated the
computation at the sampling time for real-time control. On the other hand, the
computational time was reduced with Warm-Starting Coarse-Fast MPC. Since
the controller derived by the coarse optimization was refined with the lower-
layer optimization, better motions were also generated in all cases I to VIII than
the Warm-Starting Coarse MPC. Therefore, real-time motion generations were
achieved without significantly degrading the control performances with our pro-
posed method: Warm-Starting Coarse-Fast MPC.

We compared our hierarchical MPC with a conventional full-body controller
in terms of the required time to generate a whole-body reaching motion. Since
the hierarchical MPC planned whole-body motions under full-body dynamics, a
walking to approach a target position and a reaching motion were simultaneously
generated and improved the task execution’s speed.

We also evaluated our approach on a real robot experiment. Since the tar-
get motions were very simple (standing and slow squatting), they were suc-
cessfully generated with Coarse-Fast MPC without the input initialization ap-
proach. When the control objectives were switched from standing to squatting,
our method generated a smooth transient trajectory that connected them online.

In this chapter, we manually designed the parameters of the cost functions and
estimated them from human demonstrations using the Inverse Optimal Control
(IOC) approach [31, 71]. In Chapter 4, we explore a framework that combines
our proposed MPC approach with IOC. With the approach, we can easily design
cost functions for various motions. Future work will apply our proposed MPC to
a real robot to generate more dynamic movements such as walking and jumping.
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3 Two-Stage Control Scheme for
a Hybrid Actuator System

3.1 Introduction
Although robotics technologies have rapidly improved and are widely used in
industry and daily life, it remains difficult for robots to generate human-like fast
and flexible movements to work in cluttered environments [2] or to assist human
behaviors [72]. One reason that deters the development of such robot systems
is that robots lack a light, compliant but strong actuator that works like the
human muscles. As a matter of practice, electric motors with high reduction
gears, which are dominantly used as robot actuators, tend to be heavy and rigid
for generating large torques. Although such muscle-like actuators as a pneumatic
artificial muscle (PAM) have similar properties to human muscles, control latency
due to the air flow is inevitable since PAM uses air pressure to generate joint
torque. Therefore, PAM has not been widely used in robot systems.

On the other hand, humans use multiple muscles to efficiently generate a joint
movement. For example, at least the biceps and triceps are involved in the one
degree of freedom of an elbow joint movement. In the biceps, there are two
different bundles: biceps long head and biceps short head. The triceps has three
different bundles: triceps long head, triceps lateral head, and triceps medial head
[73]. Similarly, from a technical point of view, robots might be able to use multiple
actuators to generate a joint motion. To explore this possibility, hybrid actuation
systems have been developed and implemented in robot systems [17, 23, 74].
However, how to distribute the desired torque to each actuator has not been
scrutinized. One possible approach to cope with this torque distribution problem
is using an optimal control method [24, 75]. The optimal control framework
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provides a powerful tool for robot motion generation in a diverse set of tasks and
applications to actuator control [76, 77] since optimal motor commands can be
derived under the constraint of their own dynamics by specifying simple high-level
task goals. However, solving an optimal control problem at each control time step
has not been considered as a practical approach due to the large computational
burden.

In this chapter, we propose a computationally efficient method to derive an
optimal control strategy for a hybrid actuation system composed of multiple
actuators, where each actuator has different dynamical properties. We derive
a new singularly perturbed system of hybrid actuator dynamics to subdivide
the original control problem into smaller subproblems so that the optimal control
outputs for each actuator can be derived at each control time step. The singularly
perturbed system has been intensively studied to describe fluid dynamics [78, 79],
which shows different properties in the regions close and far from the wall due
to its viscosity. Inspired by these kinds of studies, it was found that even robot
systems, which have particular dynamic properties such as a biped robot or a
flexible robot manipulator, can be represented as singularly perturbed systems
[80, 81].

A method that derives optimal control outputs at each control time step is
known as Model Predictive Control (MPC). MPC methods have been applied to
such slow dynamical systems as chemical plants [33] or ship maneuvering prob-
lems [10]. However, directly applying MPC to the real-time control of such faster
dynamics as robot systems is unrealistic. In this study, we newly derived a
singular perturbed system for a hybrid actuator and applied MPC to the subdi-
vided control problems. Based on an idea of using MPC for a simulated system
that includes different time scale dynamics [35], we developed a two-stage MPC
framework for the hybrid actuation system, in which a two-stage control scheme is
derived based on the singular perturbed system of the hybrid actuator and the hi-
erarchical MPC in Chapter 2 decides the optimal torque distributions. We showed
that our proposed method was able to successfully control the real robot. Both
optimization stages correspond to either the extracted fast components of the
singularly perturbed system or the original dynamics that include a slow dynam-
ical component. Then for the fast dynamical component, we propose short-term

56



optimization with fine-control time resolution. Since a robot can quickly change
its behavior with the fast dynamical component, the long-term optimization is
not necessary. Instead, we can utilize computational resources to generate precise
movements with higher time resolution. On the other hand, for the original dy-
namics, we address long-term optimization with coarse-time resolution. Since a
robot cannot quickly change its behavior with the original dynamics that includes
the slow dynamical component, we need to consider the long-term optimization
problem. However, for the original dynamics, we can use the optimization prob-
lem with lower time resolution that requires less computation since we can rely
on the optimization of the fast dynamical component to generate movements for
fine-time resolution.

To evaluate the torque distribution performance of our proposed approach, we
applied the two-stage optimization procedure to our pneumatic-electric hybrid
actuator system, where PAM dominantly generates joint torques but is assisted
by a small and lightweight electric motor for precise movements (Fig. 3.1). We
first derived a singularly perturbed system for the hybrid actuation system based
on the difference of the dynamic properties between PAM and the electric mo-
tor. From this theoretical analysis, we found that only the lower-dimensional
subspace of the original system needs to be considered in the fast dynamical
component and that only the electric motor outputs affect the behavior of the
lower-dimensional subspace. Our method properly derived a torque distribution
strategy for the hybrid actuation system by solving a real-time optimal control
problem and successfully reduced the computation time without significantly de-
teriorating the control performance. In the proposed approach, after deriving the
optimal input voltages for the air valve and the motor driver with coarse-time
resolution, only the optimal sequence of the input voltage for the motor driver
was further optimized with fine-time resolution under the lower-dimensional dy-
namics. For a comparison, we also applied two standard implementations of the
MPC method with two different time resolutions each: optimal control strategies
with fine-time resolution and coarse-time resolution to our hybrid actuator sys-
tem. The coarse strategy corresponds to the optimization process for the original
dynamics of our proposed method. Therefore, we can evaluate the effectiveness
of the optimization for the fast dynamics component by comparing the tracking
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results of the coarse strategy and our proposed approaches. To the best of our
knowledge, for the first time in the literature, a real robot with a hybrid actuator
system is proposed as a singularly perturbed system and is successfully controlled
in real-time with the new two-stage optimal control method.

The rest of our paper is organized as follows. Section 3.2 introduces our pro-
posed two-stage optimal control method. Section 3.3 describes about the tasks,
their goals and experimental setting. Section 3.4 shows the experimental results.

3.2 Proposed Method

3.2.1 Fast Dynamics of a Pneumatic-Electric Hybrid
Actuator System

We, first, derive a singularly perturbed system for a hybrid actuator composed of
a pneumatic artificial muscle and a small lightweight electric motor. By investi-
gating the time constant of the first-order air pressure dynamics as a time scale
to extract the fast dynamical component from the hybrid actuation system, we
find that only the electric input affects the fast dynamical component.

The motion equations of a forearm robot with the hybrid actuator are expressed
as follows:

TpṖ = −kvpP + vp

Iθ̈ = c(θ, θ̇) + τp(P, θ) + τm(vm),
(3.1)

where I is the inertia and c is the vector of the total external forces, such as
gravity and friction forces. The output torques generated with the pneumatic
actuator and the electric motor are τp and τm, respectively. The transformation
coefficient of the pressure to a voltage scale is denoted as kvp. The time constant
parameter of the air valve is represented as Tp.

The joint angle and angular velocity are denoted as θ and θ̇, P stands for the
PAM pressure, and vm and vp are the input voltages for the electric motor and
PAM. State x of the state-space model consists of the positions, the velocities,
and the PAM pressure: x = [θ, θ̇, P ]⊤ ∈ R3. The input vector is composed of the
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input voltages: u = [vm, vp]⊤ ∈ R2. We adopted a smooth friction model [82] and
a second-order pneumatic actuator model [75].

In general, the PAM pressure does not change as fast as the electrical motors
since the air flow is much slower than the electrical current. Air pressure P is
slower than joint angle θ and its velocity θ̇ is affected by the electric motor as
a result of the relatively large value of time constant parameter Tp. To extract
the fast dynamics, we define ε in Eq. (2.23) as ε = 1/Tp and use the deviations
of the fast states and the control input from the optimal fast ones in the coarse
optimization as ζ1 = θ − θ̃⋆, ζ2 = θ̇ − ˜̇θ⋆ and ν = vm − ṽ⋆

m. By rewriting Eq.
(3.1) with the defined variables and setting ε → 0, we obtain the following fast
subsystem:

Ṗ = 0. (3.2a)

Iζ̇2 = c(ζ1 + θ̃⋆, ζ2 + ˜̇θ⋆) + τp(P̃ ⋆, ζ1 + θ̃⋆) + τm(ν + ṽ⋆
m) (3.2b)

(3.2c)

Equation (3.2) describes the dynamics of the fast states under the fixed slow
variables.

3.2.2 Two-stage Optimal Control Scheme

From the derived singularly perturbed system for the hybrid actuation system,
we found that only the lower-dimensional subspace of the original system needs
to be considered in the fast dynamical component and that only the electric
motor outputs affect the behavior of the lower-dimensional subspace. Based on
this theoretical analysis, we derived a two-stage optimal control scheme where
each optimization stage corresponds to either the fast component of a singularly
perturbed system of Eq. (3.2) or the original dynamics of Eq. (3.1).

The optimal torque distributions are decided with our proposed hierarchical
MPC in Chapther 2. For the fast dynamical component, we used a short-term
optimization with fine-control time resolution. Since a robot can quickly change
its behavior with the fast dynamical component, we can disregard the long-term
optimization problem and utilize computational resources to generate precise
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movements with fine-time resolution. Since control inputs do not only affect the
slow states, the discretized reduced-order subsystem of Eq. (3.2c) is considered
as a constraint in the fine optimization of the hierarchical MPC (Eq. (2.31) in
Chapter 2). On the other hand, for the original dynamics, we address long-term
optimization with coarse-time resolution. Since a robot cannot quickly change
its behavior with the original dynamics that includes slow dynamical component,
we need to consider the long-term optimization problem. However, for the orig-
inal dynamics, we can use the optimization problem with lower time resolution
that requires less computation since we can rely on the optimization of the fast
dynamical component to generate movements with fine-time resolution. Fig. 3.2
shows the proposed two-stage control scheme: the two-stage MPC.

MPC’s computation time depends on prediction length N , the dimensionality
of state space n, and dimensionality of control input m. We thus divided the
original control problem into two smaller problems in terms of the prediction
horizon and the state and input dimensions.

3.3 Experiments
We evaluated our proposed method on our forearm robot with the hybrid actu-
ation system (Fig. 3.1) in tracking control problems. For the target joint trajec-
tories we used different sinusoidal patterns in terms of frequencies at 0.25, 0.5,
and 1.0 Hz with a peak-to-peak amplitude of ±30 deg. From the derived singu-
larly perturbed system, we applied the two-stage optimization approach to the
slow and fast dynamical components of the actuator system. We used one PAM
actuator and one electric motor of our forearm robot to evaluate our proposed
approach.

In this experiment, the cost function for the optimal control method was com-
posed of four terms: error between the desired and current joint angles, penalties
on the PAM pressure, control cost for joint torques due to the PAM and the elec-
tric motor outputs, and control cost for input voltages of the air valve and the
motor driver. Specifically, the robot minimized the total cost of the immediate
cost function ℓ accumulated along the predicted trajectory and the terminal cost
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function ℓT , where

ℓ = wθ(θ − θd)2 + wP smin(P − P0, 0)2 + wτ (τ 2
p + τ 2

m) + wv(v2
p + v2

m), (3.3a)

and

ℓT = wθ(θ − θd)2 + wP smin(P − P0, 0)2. (3.3b)

smin(a, b) is a smooth approximation to min(a, b). In this experiment, we utilized
the following function:

smin(a, b) = −

√
(a− b)2 + γ2 − a− b

2
, (3.4)

where γ is a constant to regulate the smoothness. We used γ = 0.1 in the
experiment. The target angle at a time step is denoted as θd. If the PAM pressure
falls below P0, the wire connecting the PAM and the robot loses its tension and
the pneumatic actuator cannot generate any torque. The second term on the
right-hand side in Eq. (3.3) is the penalty on it. In the proposed method, the
same cost function is used in both stages except the control costs. In the second
stage, the immediate cost includes the deviation of the fast control input instead
of the input voltages. We set the each weight as wθ = 40, wP = 30, wτ = 0.1,
wv = 0.002 and limited the domains of the control variables, as in 0 ≤ vp ≤ 5.0
and −5.0 ≤ vm ≤ 5.0. For comparisons presented in Fig. 3.4, we varied the
weight for the voltage input as wv = 0.02, 0.002 and 0.0002. The forearm robot
weighed 2.7 kg. The sampling and control periods were 4.0 ms. Optimal input
voltage command to the air valve of the PAM and the motor driver of the small
lightweight electric motor needed to be derived within the control period.

In this experiment, we also applied two standard implementations of the MPC
method each to compare the results with our proposed method. In the fine
optimal control strategy, the optimal control sequence Eq. (2.3) for a fine time
step is derived while a coarse time step is used in the coarse control strategy. Table
3.1 shows the time steps and the horizon used in each method. To investigate
the effect of the time step size for the standard MPC implementations, we varied
the time step size as 4.0 ms and 8.0 ms for the fine strategies and as 20.0 ms and
40.0 ms for the coarse strategies. At each control step, we solved finite optimal
control problems with a 200-ms time horizon.
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Method Step size (ms) Horizon
Fine 4ms ∆tf = 4 N = 50
Fine 8ms ∆tf = 8 N = 25

Coarse 20ms ∆tc = 20 N = 10
Coarse 40ms ∆tc = 40 N = 5
Two-stage ∆tf = 4, ∆tc = 20 Nf = 20, N = 10

Table 3.1: Experimental setups of time step size and horizon length.

All the optimal controllers presented in the study were derived through a C
language programming environment on an Intel Xeon Processor E5-2697 v3, 2.6-
GHz computer. The maximum number of iteration and termination criteria for
iLQR were 50 and 5.0 × 10−4 respectively in all the methods. In iLQR, we
computed the derivatives of the dynamics and the costs in parallel with ten
computer threads using Open Multi-Processing (OpenMP) [50].

3.4 Results and Discussion

3.4.1 Computational Times and Control Performances

We first compared the fine and coarse optimal control strategies with our pro-
posed method in terms of computational times and control performances. Fig.
3.3a shows the maximum computation times required to derive an optimal con-
trol sequence to track the sinusoidal target trajectories with frequencies of 0.25,
0.5, and 1.0 Hz. We showed the average maximum computation times of five
experimental trials. The 4.0-ms control period is depicted by the dashed black
line. Although a calculation process to derive an optimal control sequence must
be terminated within 4.0 ms for real-time control, all of the maximum compu-
tational times of the fine strategies exceeded the threshold, but not the coarse
and proposed strategies (Fig. 3.3a). These results indicate that optimal control
calculation with fine-time resolution cannot be an option for the real-time control
of a hybrid actuator system.

Figure 3.3b shows the average accumulated cost for a 10-s duration of five
tracking control trials. The accumulated cost was computed with the cost func-
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tions in Eq. (3.3). Fine 4ms strategy resulted in the largest total cost for all
the target frequencies. This is mainly due to the large deviation from the target
trajectory. This large deviation occurred since Fine 4ms strategy requires a large
amount of computation time and was unable to finish the calculation within the
control period. Although Fine 8ms strategy shows better performance than Fine
4ms, control outputs were not able to be derived in real time. If the computation
exceeds the period, the control is delayed in the real robot experiment. The delay
results in degradation of the control performances. Therefore, the fine strategies
showed the large total costs. The coarse strategies and proposed strategy showed
similar tracking performance for the target sinusoidal trajectory of 0.25 Hz. On
the other hand, for the coarse strategies, the total cost gradually increased for
the target trajectories with higher frequencies. Although Coarse 20ms strategy
shows the best performance in all the standard MPC implementations, our pro-
posed approach shows even better performance than Coarse 20ms for all the
target frequencies

Figure 3.4 represents the accumulated cost for the three different weights of
the voltage input cost: wv = 0.02, 0.002 and 0.0002. Here, we utilized the target
trajectory with frequency of 1.0 Hz. The proposed approach shows the best
control performance regardless of the weight settings. The above results indicate
that our two-stage optimal control framework with a newly derived singularly
perturbed system successfully worked for a real hybrid actuation system.

3.4.2 Generated Trajectories

Here, we show the generated joint angle profiles for the target sinusoidal trajec-
tories of 0.25 and 1.0 Hz using the three different optimal control strategies in
Fig. 3.5. We depicted the results of the proposed method with those of the worst
and the best implementations of the standard MPC in terms of the compari-
son depicted in Fig. 3.3, where the worst one corresponds to Fine 4ms strategy
and the best one corresponds to Coarse 20ms strategy. The target trajectories
are represented by dashed orange lines. We conducted five experimental trials
for each strategy and depicted the five trajectories generated using each optimal
control method.

As shown in Fig. 3.5a, for the 0.25-Hz sinusoidal target pattern, the generated
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movements using the fine strategy frequently deviated from the target trajectory.
Even with the coarse strategy, small fluctuations were observed. On the other
hand, with our proposed strategy, the generated movements consistently followed
the target trajectory. For the target trajectory with a 1.0-Hz sinusoidal pattern,
the joint trajectories were not properly generated when we used either the fine or
the coarse strategies (Fig. 3.5b).

We quantitatively compared the tracking errors of the three MPC approaches
both for 0.25-Hz and 1.0-Hz sinusoidal target movements in Fig. 3.6. We again
found that our proposed approach outperformed the standard MPC implemen-
tations.

Figure 3.7 shows the generated motions of our forearm robot for the 1.0-Hz
target trajectory using the three optimal control strategies. The target trajec-
tories are depicted by dashed orange lines. For the fine and coarse strategies,
the generated joint motions significantly deviated from the target movements
and failed to recover from failure situations after the large deviations (Fig. 3.7).
The motions generated by the proposed method successfully followed the target
trajectory without any large tracking errors.

The above results again clearly showed the advantage of using our two-stage
optimal control strategy based on the singular perturbation method. Although
we evaluated our approach on the 0.25-, 0.5- and 1.0-Hz sinusoidal trajectories,
similar tracking performances were observed up to a target trajectory with 1.8-Hz
frequency.

3.4.3 Torque Distributions

In the previous sections, we evaluated the control performances of our proposed
optimal control strategy. Here, we show how it distributed the commanded torque
to the PAM and the electric motor for precise target trajectory tracking by our
proposed method. Figure 3.8a shows the contributions of each actuator to gen-
erate the joint torques. We showed the average distributions of five experimental
trials. Error bars represent standard deviations. Our results indicate that the
contribution of the electric motor was much smaller than that of the PAM in
terms of the amount of generated torque.

We then compared the tracking performance of our proposed hybrid control
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strategy with that of the control approach, which only uses PAM on joint tra-
jectory tracking tasks. For PAM control, we simply used the coarse optimal
control method with the settings of Coarse 20ms strategy in Table 3.1, which is
equivalent to the optimization procedure for the original dynamics in our two-
stage optimization method. Figure 3.8b shows the averaged tracking errors of five
experimental trials each of the proposed hybrid control method and the PAM-
only approach. Error bars are standard deviations. The electric motor greatly
improved the tracking performances although the amount of output torque was
much smaller than that of PAM. Therefore, using multiple actuators to control
a joint movement through real-time optimal control methods seems promising.
Figure 3.9 depicts the generated joint torque profiles to show how the torque was
distributed to each actuator for the target sinusoidal trajectories of 0.25- and
1.0-Hz frequencies. For both target frequencies, the PAM and the electric motor
were cooperatively activated for the target tracking tasks. The role of each actu-
ator was dynamically changed according to the frequency of the target trajectory.
The electric motor showed its peak torque earlier than the PAM to generate the
upward movements at each cycle of the target trajectory with 1.0-Hz frequency.
The quicker torque response of the electric motor successfully compensated the
slower PAM movement.

3.5 Summary
We applied our proposed optimal control approach to derive a torque distribu-
tion strategy for our hybrid actuation system that is composed of a pneumatic
artificial muscle and small and lightweight electric motors. We derived a singu-
larly perturbed system to extract the fast dynamics for a forearm robot with a
hybrid actuator. This property resembles the human muscle system, which is also
composed of muscle fibers that have different twitch speeds [73].

Optimal control methods are getting much attention as control algorithms for a
wide variety of robots due to the recent rapid improvement of powerful computa-
tional resources [3, 7, 9, 18, 20]. However, a standard optimal control framework
that can be applied to nonlinear systems only provides an optimized control se-
quence that is calculated in an offline manner. Since such a pre-designed control
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sequence is susceptible to external disturbances, these standard offline optimal
control approaches are not directly applicable for robot control in real environ-
ments. On the other hand, an online optimal control approach, also known as
Model Predictive Control (MPC), can be useful since it updates an optimal con-
trol sequence at each control time step based on the current situation and can
cope with the external disturbances influencing a robot [10, 83]. Moreover, MPC
can derive control policies under a situation in which robots need to generate mo-
tions adaptively with changing objectives, e.g., dynamically changing the location
of a target object or a target motion indicated by a human [12, 21].

In our study, we proposed a two-stage optimal control strategy to reduce
MPC’s computational burden. We first derived the optimal control sequence
for the original dynamics with coarse-time resolution and then optimized the
short-term control sequence for the fast dynamical component with fine-time res-
olution. Since the extracted fast dynamical component of the forearm robot has
lower-dimensional state space with lower-dimensional input, its computational
burden was further reduced. Although application of the structured MPC based
on a singularly perturbed system was previously explored on a simulated chemi-
cal plant model [35] and a biped model as in Chapter 2, in this study, we newly
derived a singularly perturbed system for a hybrid actuator. To the best of our
knowledge, ours is the first scheme that applied the two-stage MPC method to a
real system and achieved successful results. As we presented in the experimen-
tal results, the computation time of the proposed approach was reduced much
more than the required calculation time for solving the original optimal control
problem. In our proposed two-stage MPC approach, after computing the optimal
input voltages for the pneumatic actuator and the electric motor with coarse-
time resolution, only the optimal sequence of the input voltages for the electric
motor is re-optimized with fine-time resolution on fast dynamics. Thus, the pro-
posed method successfully tracked the target trajectories in real-time without
deterioration of the control performances (Fig. 3.3 and Fig. 3.4).

We empirically found that our proposed approach with properly selected time
step sizes and horizons was able to generate stable and high control performance
of the real hybrid actuation system. On the other hand, Lyapunov-based analy-
ses for theoretically stable MPC have been studied [84, 85]. The near-optimality
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related to the singular perturbation parameter of a slow-fast MPC is analyzed
in [35]. There exists a singular perturbation parameter ε′ which decides whether
behaviors of the slow and fast subsystems can approximate those of the original
dynamics under appropriate assumptions. The value of the total cost for the
original dynamics converges to the sum of the total costs of the slow and fast
subsystems if a singular perturbation parameter (ε ≤ ε′) is sufficiently small.
Similarly, theoretical consideration about the stability and optimality for our
two-stage MPC can be an important future research topic. Furthermore, future
work will apply our proposed method to an exoskeleton robot with hybrid actu-
ators [16, 17, 86]. Since the dynamics of a biped robot can be transformed into
a singularly perturbed system [80], we might study a hierarchically combined
singularly perturbed system for a bipedal exoskeleton robot with a hybrid actu-
ator system. We will explore our approach on more versatile motion generation
including non-periodic movements.
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Figure 3.1: Forearm robot with pneumatic-electric hybrid actuator system: pneu-
matic artificial muscle dominantly generates torques but is assisted by
small and lightweight electric motor for precise movements. vp denotes
voltage input for air valve, and vm denotes voltage input for motor
driver. We used one pneumatic artificial muscle and one electric mo-
tor.
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Figure 3.2: Two-stage optimization strategy: Each thread corresponds to either
fast component of singularly perturbed system or original system.
For fast dynamical component, we propose short-term optimization
with fine-control time resolution. Since a robot can quickly change
its behavior with fast dynamical component, long-term optimization
problem is not necessary and we utilize computational resources to
generate precise movements with higher time resolution. For orig-
inal dynamics, we address long-term optimization with coarse-time
resolution. Since a robot cannot quickly change its behavior with
original dynamics that includes slow dynamical component, we need
to consider long-term optimization problem. However, in two-stage
optimization strategy, we can use optimization problem with lower
time resolution that requires less computation since we can rely on
optimization of fast dynamical component to generate movements for
fine-time resolution. vp denotes voltage input for air valve, and vm

denotes voltage input for motor driver.
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Figure 3.3: Computational times and control performances: (a) maximum com-
putation times to derive optimal control sequence for target trajec-
tories with frequencies of 0.25, 0.5, and 1.0 Hz. We show averaged
maximum computation times of five experimental trials. 4.0-ms con-
trol period is depicted by dashed black line. (b) averaged accumulated
cost for 10-s duration of five tracking control trials. Fine 4ms strat-
egy resulted in largest total cost for all target frequencies. Coarse
20ms, 40ms and proposed two-stage strategies showed similar track-
ing performances for target sinusoidal trajectory of 0.25 Hz. On the
other hand, for Coarse 20ms and 40ms strategies, total cost increased
for target trajectories with higher frequencies. Error bars represent
standard deviations.
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Figure 3.4: Control performances with three different weight of voltage input cost:
wv = 0.02, 0.002 and 0.0002. Accumulated costs for 10-s duration of
five tracking control trials were compared. We utilized the target
trajectory with frequency of 1.0 Hz. Our proposed approach showed
best control performance regardless of weight settings. Error bars
represent standard deviations.

71



Figure 3.5: Generated joint angle profiles: Generated joint angle profiles are
shown for target sinusoidal trajectories of 0.25 and 1.0 Hz using three
different optimal control strategies. Target trajectories are repre-
sented by dashed orange lines. Since we conducted five experimental
trials for each strategy, five trajectories are depicted for each opti-
mal control method. (a) generated movements using the fine strategy
for 0.25-Hz sinusoidal target patterns frequently deviated from tar-
get trajectory. Even with the coarse strategy, small fluctuations were
observed. On the other hand, when we used our proposed strat-
egy, generated movements consistently followed target trajectory. (b)
for target trajectory with 1.0-Hz sinusoidal pattern, joint trajecto-
ries were not properly generated when we used either fine or coarse
strategies. On the other hand, with proposed method, generated tra-
jectories successfully followed target trajectory.
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Figure 3.6: Averaged tracking errors of five experimental trials each of the fine,
coarse and proposed strategies: We found that our proposed approach
outperformed the standard MPC implementations. Error bars repre-
sent standard deviations.
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Figure 3.7: Snapshots of generated motions of our forearm robot for target tra-
jectory of 1.0 Hz using three optimal control strategies: Target tra-
jectories are depicted on snapshots by dashed orange lines. (a), (b)
for Fine 4ms and Coarse 20ms strategies, generated joint motions
significantly deviated from target movements and failed to recover
from failure situations after large deviations. (c) motions generated
by proposed method successfully followed target trajectory without
any large tracking errors.
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PAM and motor
PAM only

Figure 3.8: Torque distribution: (a) contributions of each actuator to generate
joint torques. Contribution of electric motor was much small than
that of PAM in terms of amount of generated torque; (b) tracking
errors of proposed hybrid control method and PAM-only approach.
Results clearly indicated that electric motor greatly improved tracking
performances, even though amount of output torque was much smaller
than that of PAM.

75



Figure 3.9: Generated joint torque profiles: Generated joint torque profiles
presents how torque was dynamically distributed to each actuator
for target sinusoidal trajectories of 0.25- and 1.0-Hz frequencies. For
both target frequencies, PAM and electric motor were cooperatively
activated for target tracking tasks. Moreover, the electric motor some-
times acted like antagonistic muscle in both cases for precise tracking
by properly generating force to opposite direction of force generated
by PAM.
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4 Inverse Optimal Control for
Hierarchical MPC

4.1 Introduction
The Optimal Control framework is a powerful approach for motion generation
with a diverse set of tasks because such motions can be derived by specifying
high-level task goals as objective functions. In practice, Model Predictive Control
(MPC), also known as online trajectory optimization, is becoming a popular
approach [11, 21] for generating a wide variety of robot movements due to the
recent major improvements in computing performance as well as optimization
algorithms. By repeatedly solving a finite-horizon optimal control problem at
each time-step, MPC can effectively provide a feedback policy for even high-
dimensional nonlinear systems.

However, for such high-dimensional robots as humanoid robots, designing the
objective functions is time-consuming because suitable functions have to be se-
lected by trial and error to connect the task goals and the behaviors of many-
DOF robot systems. One possible way of dealing with this problem is to estimate
the objective functions from the demonstrations of experts by Inverse Optimal
Control (IOC), also known as Inverse Reinforcement Learning (IRL) methods
[27, 30]. If an expert can operate an agent [87, 88] or kinesthetically demonstrate
the desired trajectories [89], objective functions can be directly estimated from
the demonstrations. For the whole-body motion generation of a humanoid robot,
however, nobody can be the ideal expert except the robot itself, and it is not
practical to perform a kinesthetic demonstration while keeping the robot’s bal-
ance. Therefore, we learn the objectives using the human movements captured by
the behaviors of experts since humans and humanoid robots share similar body
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structure. For offline optimization, an IOC method actually learned the objective
functions for biped locomotion from human demonstrations [29], and humanoid
robots successfully generated locomotion behaviors with offline calculation [31].

To generate motions with MPC, however, applying the conventional framework
used for offline optimization is insufficient. This is because, in the conventional
framework, the trade-off between the computational time and MPC’s control
performance is ignored. Since MPC is a computationally intensive method, for
real-time motion generation, IOC should estimate an objective function with a
coarse-time resolution. However, coarse objectives may fail to generate a hu-
manoid robot’s motions. Therefore, we propose a new framework to generate
such motions with MPC using the estimated objective function by IOC and
adopt a hierarchical MPC approach in Chapter 2 to cope with the trade-off.
While IOC estimates the coarse-objective functions for upper-layer optimization
in the hierarchical MPC, lower-layer optimization modifies the results of the first
optimization. Therefore, we can achieve real-time motion generation without de-
grading the control performance. To estimate the coarse objectives for the upper
layer in the hierarchical structure, human trajectories are reproduced with the
coarse-time resolution before initiating the learning. Fig. 4.1 shows a schematic
diagram of the proposed framework, each part of which is described in Section
4.2.

As experiments, we apply our proposed framework to a humanoid robot and
show that two different movements, jumping and squatting, can be generated
with different objective functions estimated with IOC. Furthermore, we show
that both movements can be generated online by real-time calculation with our
hierarchical MPC approach. The experimental settings and results are given in
Section 4.3.

4.2 Proposed Framework

4.2.1 Reproducing Human Demonstrations

Since the kinematics and the dynamics of humans and robot models are not
exactly identical, human demonstrations are not always feasible for robots. Ac-
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Figure 4.1: Schematic diagram of proposed framework.

cordingly, we cannot directly utilize human joint-angle trajectories to estimate a
robot’s objective. To deal with this problem, the human behaviors need to be
transformed into feasible trajectories for it. Although complicated dancing be-
haviors were achieved with movement features to convert human movements into
robot behaviors [25], this approach is unfavorable for generating a wide variety of
robot movements since these movement features need to be carefully hand-tuned
for each specific movement task. Therefore, we focus on the time axis as com-
mon features among all the movements and adopt the time warping technique.
By changing the time lines of the human motions, we convert them to feasible
ones for the robot. The time warping technique has been widely used in the
past for speech recognition and pattern matching of human movements [90, 91].
It has also recently been successfully applied to motion adaptation [26]. They
introduced a motion feasibility index that measures how far a human motion is
from the feasible or infeasible region on a humanoid robot. Intuitively, a human
pose is feasible if the robot can achieve it without slipping. We can quantify the
feasibility by computing the distance between a contact wrench and a friction
cone [92].

In the proposed framework, we first use the joint-angle mapping method [93]
to modify the kinematic difference and then apply the time warping technique
so that the infeasible motions closely approximate the feasible ones. After that,
the modified trajectories are tracked with a conventional MPC to minimize the
quadratic deviation between the modified joint angles and robot states to repro-
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duce human motions on the robot.
Although tracking control was only used to construct human demonstrations

in the previous work [31], we fixed the difference of the kinematics and dynam-
ics before tracking the human trajectories, because in the proposed framework,
tracking control is achieved with a coarse-time-step for learning the objective
functions with a coarse-time resolution. In this case, the differences between the
human and the robot may significantly affect the tracking performances.

4.2.2 Inverse Optimal Control

The objective function can be estimated from the reproduced human movements
as the expert’s demonstrations.

We consider nonlinear system dynamics described by:

xk+1 = f(xk, uk), (4.1)

where x ∈ Rn and u ∈ Rm respectively denote the state and the control vectors.
Let U1 ≡ {u1, u2, · · · , uN−1} as a control sequence and define total cost

J(x1, U1):

J(x1, U1) =
N−1∑
i=1

ℓ(xi, ui) + ℓf (xN), (4.2)

where ℓ(x, u) is an immediate cost and ℓf (x) is a terminal cost.
Based on an assumption that an expert performs optimal state trajectories that

minimize Eq. (4.2), IOC seeks a cost function to match the expert’s behaviors.
In particular, we provide features that represent cost function fk : (xt, ut) → R,
as suggested by standard IOC approaches. Concretely, the cost is represented as
a linear combination of weights and features:

ℓ(xt, ut) = wT f(xt, ut) =
∑

k

wkfk(xt, ut). (4.3)

Then weights w are estimated with IOC.
Since the captured human data include variant motion trajectories due to the

probability of a sequence of actions or noise-contaminated signals, we employed
the probabilistic IOC method. The expert’s demonstrations are given by

D = {{x1
1, U1

1}, {x2
1, U2

1}, · · · {xM
1 , UM

1 }}, (4.4)
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where the number of demonstrated trajectories is denoted as M . Based on proba-
bilistic model p(D|ℓ) = ∏

m p(Um
1 |xm

1 , ℓ) = ∏
m

∏
t p(um

t |xm
1 , ℓ) that represents the

expert’s trajectories as a distribution, its likelihood is evaluated to estimate the
costs. Since human behaviors are not always perfectly optimal, the trajectory
(action) distribution should be wide enough to represent the uncertainty. Such
a distribution can be derived based on an expected total cost augmented with
entropy term H(p):

Ep[−J(x1, U1)] +H(p), (4.5)

where the entropy term H(p) is given by,

H(p) = −
∫

p(ut|xt, ℓ) log p(ut|xt, ℓ). (4.6)

By maximizing Eq. (4.6), the action distribution at each time-step t is derived:

p(ut|xt, ℓ) = 1
Zt

e−Qt(xt,ut) = e−Qt(xt,ut)
[∫

e−Qt(xt,ût)dût

]−1
. (4.7)

If the log likelihood of the maximum entropy model is maximized with respect to
the cost in Q, the cost functions can be estimated. However, computing partition
function Z requires that a forward optimal control problem be repeatedly solved
in the learning process. Thus, it is intractable to apply the approach to a high-
dimensional system such as a humanoid robot.

Action distribution is approximated with the Laplace approximation to avoid
computing the partition function [30]. The model is approximated with a second
order Tylor expansion of Q around u:

Q(ût) ≈ Q(ut) + (ût − ut)⊤Qut + 1
2

(ût − ut)T Quut(ût − ut). (4.8)

We used simple notations Q(ut) as Qt(xt, ut). After plugging the approximation
into Eq. (4.7), the action distribution becomes:

p(ut|xt, ℓ) ≈ e−Q(ut)
[∫

e−Q(u)−(ût−ut)⊤Qut− 1
2 (ût−ut)T Quut(ût−ut)dut

]−1

=
[∫

e
1
2 Q⊤

utQ−1
uutQut− 1

2 (Quut(ût−ut)+Qut)⊤Q−1
uut(Quut(ût−ut)+Qut)dut

]−1

= e− 1
2 Q⊤

utQ−1
uutQut| −Quut|−

1
2 (2π)

du
2 .

(4.9)
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Finally, the cost is estimated by maximizing the sum of the model’s log likelihood
related to the cost:

log p(D|ℓ) =
M∑

m=1

T∑
t=1

(−1
2

Q⊤
um,tQ

−1
uum,tQum,t + 1

2
log |Quum,t|). (4.10)

In our implementation, we divided a captured motion trajectory with Torg

steps into N -step trajectories. Trajectory-length T is set to horizon N and M =
D(Torg/N). The number of demonstrations is denoted as D; we utilized D = 40
capture movements each for jumping and squatting in the experiment.

The gradient of the likelihood in Eq. (4.10) for time-step t with respect to cost
parameter wk is

∇wk
log p(ut|xt, ℓ) = −Q⊤

utQ
−1
uut[∇wk

Qut] + 1
2

Q⊤
utQ

−1
uut[∇wk

Quut]Q−1
uutQut

+ 1
2

tr(Q−1
uut[∇wk

Quut]).
(4.11)

Gradients ∇Qut and ∇Quut are given by

∇Qut = ∇wk
ℓut + f⊤

ut[∇wk
Vxt+1] (4.12)

∇Quut = ∇wk
ℓuut + f⊤

ut[∇wk
Vxxt+1]fut, (4.13)

where ∇wk
ℓut and ∇wk

ℓuut are easily obtained when a cost function is in the form
of Eq. (4.3):

∇wk
ℓut = futk (4.14)

∇wk
ℓuut = fuutk. (4.15)

Based on Eqs. (2.16) and (2.17), the gradients of value functions V are

∇wk
Vxt =∇wk

Qxt − [∇wk
Qxut]Q−1

uutQut −QxutQ
−1
uut[∇wkQut]

+ QxutQ
−1
uut[∇wk

Quut]Q−1
uutQut

(4.16)

∇wk
Vxxt =∇wk

Qxxt − [∇wk
Qxut]Q−1

uutQuxt −QxutQ
−1
uut[∇wk

Quxt]
+ QxutQ

−1
uut[∇wk

Quut]Q−1
uutQuxt,

(4.17)
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where

∇Qxt = ∇wk
ℓxt + f⊤

xt[∇wk
Vxt+1] (4.18)

∇Quxt = ∇wk
ℓuxt + f⊤

ut[∇wk
Vxxt+1]fxt (4.19)

∇Qxxt = ∇wk
ℓxxt + f⊤

xt[∇wk
Vxxt+1]fxt. (4.20)

Finally, the weight is updated with the gradient:

∇wk
log p(D|ℓ) =

M∑
m=1

T∑
t=1
∇wk

log p(um
t |xm

t , ℓ). (4.21)

A previous work [30] used a gradient-based optimization approach (LBFGS)
while regularizing the Hessian Quu to be positive definite with the Augmented
Lagrangian method. We used both approaches to learn the cost functions of the
humanoid robot.

4.2.3 Forward Optimal Control

Finally, the estimated objectives are used in a hierarchical MPC method to gener-
ate the motions of a humanoid robot. In our hierarchical MPC approach explained
in Chapter 2, total-cost Jc is minimized with coarse-time ∆tc in the upper layer:

minUc
k

J c
k(xk, Uc

k) (4.22)
s.t. xk+1 = xk + ∆tcfd(xk, uc

k), (4.23)

where uc denotes the vector of the control inputs. Uc denotes a control sequence
for the first optimization. The weights in total cost J c are estimated with IOC.
In the second step, total cost Jf is defined to modify the results of the first op-
timization with fine-time-step ∆tf . An optimal control sequence is composed of
the control sequences of both optimizations. Since the coarse-time-step is used in
the upper-layer optimization, only the low-dimensional dynamics are considered
to minimize total-cost Jf in the lower-layer optimization, and the computational
time can be reduced without degrading the control performance (for further de-
tails, see Chapter 2). Therefore, we can cope with the trade-off between the
computational time and the control performance.
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4.3 Simulation Experiment

4.3.1 Cost Function Design and Simulation Settings

We consider a seven-link humanoid robot: a torso link and three in each leg.
The robot’s height and weight are 1.59 m and 47.0 kg. We applied our proposed
framework to learn the objectives for the jumping and squatting movements and
generated both of them with the hierarchical MPC. We utilized 40 capture move-
ments each for jumping and squatting in the learning with IOC.

We adopt the same cost features that were used for the simulation experiment
in Chapter 2. Control-cost ℓcontrol was the quadratic penalties on joint torques τ :

ℓcontrol = τ ⊤Wcontrolτ . (4.24)

Wcontrol is diag(wHAA, wHFE, wKFE, wAFE, wHAA, wHFE, wKFE, wAFE). wHAA and
wHFE are respectively the weights for the hip abduction-adduction and flection-
extension. wKFE is for the knee flection-extension, and wAFE is for the ankle
flection-extension. The state-cost consists of six terms. The first term, ℓattitude,
forced the robot to regulate the attitude of the base link to a rad. In practice,
rotations a were transformed into quaternions q(a) to compute the cost since we
designed this term using unit quaternions:

ℓattitude = (q(ar)− q(a))⊤Wattitude(q(ar)− q(a)), (4.25)

where qr stands for the robot’s actual position. The weight matrix Wattitude is a
4 by 4 diagonal matrix whose diagonal entries are represented as wq1, wq2, wq3 as
weight parameters for the vector part of the quaternion, and wq4 for the scalar
part of the quaternion. Second term ℓheight penalized the vertical position of base
pr

z to be pz m with weight wheight:

ℓheight = wheight(pr
z − pz)2. (4.26)

Third term ℓvelocity forced the vertical and horizontal velocities of the base link
to be v m/s:

ℓvelocity = (vr − v)⊤Wvelocity(vr − v). (4.27)
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Weight matrix Wvelocity has diagonal elements wvx, wvy, and wvz for the velocities
in the x, y, and z directions, respectively. The fourth and fifth terms are penalties
on the angles between the vertical axis and the line connecting each foot and the
base. The angles are described in Fig. 4.2 as αR, αL in the sagittal plane and
βR, βL in the frontal plane. Fourth term ℓα forced the robot’s legs to remain
spread apart to maintain its balance:

ℓα = wα(αr
R − αr

L)2. (4.28)

With this term, the robot tries to maintain the position of the base link between
its feet. Fifth term ℓβ prevented a self-collision:

ℓβ = wβ((βr
R − βinit

R )2 + (βr
L − βinit

L )2), (4.29)

where βinit
R and βinit

L indicate angles α and β at the initial position. Sixth term
ℓω was the quadratic penalties on the angular velocities of the attitude of base
link ωr:

ℓω = ωr⊤Wωωr. (4.30)

Wω is a 3 by 3 diagonal matrix, whose diagonal entries are wωx, wωy, and wωz.
We used the reproduced human demonstrations for target attitude a, height

pz, and velocity v of the base link. The weights of the cost function are estimated
by IOC. The weight parameters are

w = {w1, · · · , w13} = {w1,2,3,4, w5,6,7, w8,9,10, w11,12,13}, (4.31)

where

w1,2,3,4 = {wHAA, wHFE, wKFE, wAFE}, (4.32)
w5,6,7 = {wα, wβ, wheight}, (4.33)

w8,9,10 = {wq1, wq2, wq3}, (4.34)
w11,12,13 = {wvx, wvy, wvz}. (4.35)

The weight parameters for the state- and control-costs were initialized with the
values of 1.0 and 0.001 in both cases. The weights for the vector part of the
quaternion were only estimated. We set wq4 to 0. We did not estimate the
weights for the angular velocity of the attitude of the base link wωx, wωy and wωz.
They are all zero in the experiment.
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Figure 4.2: Definition of some variables of robot used in cost function.
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4.3.2 Simulation Results

Figure 4.3 shows the estimated weights for squatting (pink bars) and jumping
(red bars). The blue bars indicate the initial weight setting. The descriptions of
weights w1,··· ,13 are explained in Eqs. (4.31) and (4.35). For each movement, dif-
ferent weights were learned from the human demonstrations. The demonstrated
jumping movement and the learned behavior with the hierarchical MPC are il-
lustrated in Fig. 4.4, and the demonstrated and learned squatting behaviors
are shown in Fig. 4.5. The generated jumping and squatting motions with the
initial weights are also represented as the results of the previous learning. The
demonstrated behaviors were not utilized for the IOC learning. They were used
as target attitude a, height pz, and velocity v of the base link for motion gen-
eration with the hierarchical MPC. A similar jumping movement was generated
using our proposed framework. The robot also successfully generated squatting
behavior. Here, since the robot did not have a joint at the torso link, it stood
more upright than the human behavior.

The averaged maximum computational time over five motion generations for
jumping was 26.3 ms, and the time for squatting was 26.5 ms. Since they were
shorter than the sampling time of 30 ms, real-time control was achieved. We
applied the hierarchical MPC, which can reduce the computational time, and
thus real-time control was achieved.

4.4 Summary
In this chapter, we proposed a framework that combined IOC and MPC for hu-
manoid control. In the proposed estimation framework, the humanoid robot’s
control objectives were learned by IOC with demonstrated human motions. The
proposed framework addresses the difficulty of a humanoid robot’s motion gener-
ation, since ideally we just capture the human behaviors. The objective functions
are estimated with IOC, and then full-body motions that satisfy the objectives
are automatically derived with MPC.

To evaluate our proposed method, we applied the proposed framework to a
humanoid robot model and generated two different movements, jumping and
squatting, with different objective functions estimated with IOC. Furthermore, we
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Figure 4.3: Initial and learned weights for squatting and jumping: For each move-
ment, different weights were learned from human demonstrations.
With estimated weights, robot successfully generated squatting and
jumping motions in real-time with our proposed MPC.
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Jumping (demonstrated)

(a) demonstrated jumping movement

Jumping (before learning)

(b) initial jumping movement

Jumping (learned)

(c) learned jumping movement

Figure 4.4: Demonstrated and learned jumping behaviors: Using proposed frame-
work, robot successfully generated jumping behavior. Movement re-
sembled the demonstrated jumping movement.
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Squatting (demonstrated)

(a) demonstrated squatting

Squatting (before learning)

(b) initial squatting

Squatting (learned)

(c) learned squatting

Figure 4.5: Demonstrated and learned squatting behaviors: Robot also generated
squatting behavior. Since it did not have a joint at the torso link, the
link stood upright.
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showed that both movements can be generated in real time with our hierarchical
MPC. Future work will apply our proposed method to control our real humanoid
robot [53].
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5 Conclusion

5.1 Summary
Although a humanoid robot can perform a diverse set of tasks in real environments
due to the recent rapid growth in humanoid technology, the execution speed of
such tasks is obviously an area that leaves much room for improvement. Humans
can easily generate a wide variety of whole-body dynamic movements. On the
other hand, it remains difficult for humanoid robots to achieve them. The lack of
agility, which is a crucial issue to be solved before humanoid robots can engage
in disaster response tasks instead of humans, can be partially attributed to two
factors: the current control approach and actuation systems.

MPC is a candidate for an alternative control approach because a wide variety
of whole-body robot motions can be derived by specifying high-level task goals
as objective functions. The robot efficiently achieves each task’s goal because
motions can be planned under full-body dynamics without restricting generable
movements. A hybrid actuator, which is composed of multiple actuators, is a
desirable actuation system in terms of the power-to-weight ratio because even
though it is light, it can still generate large torque. Therefore, we develop a
control framework (Fig. 1.1) where a unified MPC controller plans whole-body
motions based on full-body dynamics and the hybrid actuation system executes
them. For developing a framework, this thesis addressed three problems related
to MPC, the hybrid actuation system, and the control objectives.

MPC is a powerful approach for motion generation in a diverse set of tasks
since such motions can be automatically derived just by designing simple high-
level task goals. However, the motion generation of a humanoid robot with MPC
has been considered impractical. Since a humanoid is a high-dimensional system
that needs to generate fast movements based on the predictions of its long-term
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future, a large finite optimal control problem is required to be solved within a
very short time period. To cope with this problem, in Chapter 2, we proposed an
MPC method that combined a hierarchical MPC with a simple warm-start tech-
nique for the development for real-time humanoid robot control. In our proposed
method, an optimizer was warm-started from the beginning of an optimization.
An upper-layer optimization coarsely decided the whole-body motions. The de-
tailed movements were derived in a lower layer based on low-dimensional fast
dynamics extracted from a humanoid robot. We formulated two optimization
problems to be smaller than the original one to ease MPC’s computational bur-
den. We evaluated our proposed MPC in a simulated 3D humanoid model and
showed that it reduced the computational time without significantly degrading
the control performances. As a result, eight humanoid robot motions were suc-
cessfully generated in real-time, including such complex behaviors as jumping
and flipping. In the whole-body reaching task, our proposed MPC was com-
pared with a conventional whole-body controller in terms of the required time to
execute the task. Since the high-level controllers in the conventional controller
planned the motion trajectories of the low-dimensional dynamical and kinematic
components of the humanoid robot, dynamically switching or blending the con-
trollers to generate whole-body motions was difficult. On the other hand, since
our MPC planned the motion trajectories under full-body dynamics, walking to
approach the target position and the reaching motion were simultaneously gener-
ated. The generated whole-body reaching motion was about twice as fast as the
conventional controller. In addition, we evaluated our approach on a real robot
and demonstrated that slow squatting can be generated online by switching the
control objective from standing.

Humans use multiple muscles to generate such joint movements as elbow mo-
tions. With multiple lightweight and compliant actuators, joint movements can
also be efficiently generated. Similarly, robots can use multiple actuators to ef-
ficiently generate a one-DOF movement for which the desired joint torque must
be properly distributed to each actuator. One approach to cope with this torque
distribution problem is an optimal control method. However, solving the opti-
mal control problem at each control time-step has not been deemed a practical
approach due to its large computational burden. In Chapter 3, we proposed a
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computationally efficient method to derive an optimal control strategy for a hy-
brid actuation system where each actuator has different dynamical properties.
We investigated a singularly perturbed system of the hybrid actuator model that
subdivided the original large-scale control problem into smaller subproblems to
derive the optimal control outputs for each actuator at each control time-step and
applied our proposed method to our pneumatic-electric hybrid actuator system.
Our method derived a torque distribution strategy for the hybrid actuator by
dealing with the difficulty of solving real-time optimal control problems.

Designing objective functions for high-dimensional robots, such as humanoid
robots, is time-consuming because appropriate objective functions have to be
designed through trial and error. In Chapter 4, we derived a hierarchical ar-
chitecture in both forward and inverse optimal control so that a policy can be
derived in real-time using MPC. In the proposed hierarchical architecture, the
control objectives for MPC were estimated by IOC, and the learned objectives
generated the movements of a humanoid robot. By using captured human expert
movements, human movement skills were transferred to a humanoid robot model
through the estimated objective functions. To evaluate our proposed method,
we applied the proposed framework to a humanoid robot model and showed that
two different movements, jumping and squatting, can be generated with differ-
ent objective functions estimated with IOC. Furthermore, we showed that both
movements can be generated in real-time with our hierarchical MPC approach.

5.2 Future Work and Perspectives
Future work will apply our proposed hierarchical MPC to a real robot to gener-
ate more dynamic movements such as fast squatting, walking, and push recov-
ery. We empirically found that by selecting time-step sizes and horizons, MPC’s
computational time was reduced and the humanoid robot successfully generated
whole-body motions in real-time with our hierarchical MPC. However, how to
properly select them is unclear in the current implementation.

As a theoretical consideration about an optimal horizon, under an appropriate
assumption and cost functions, a condition has been derived with respect to the
horizon under which the value function is a Lyapunov function [94]. The minimum
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value under it is an optimal horizon that minimizes MPC’s computational burden.
However, it is generally difficult for a humanoid robot to provide such a condition
because it is a highly nonlinear system. As one possible approach to address this
problem, we will develop a method to estimate the horizons and the time-step
sizes from a set of motion data. By using the method, we can estimate the
required horizon and the step sizes to achieve the demonstrated motions. An
elegant approach might learn them as well as weight parameters by IOC because
the optimal horizon condition would also be related to the cost functions [94]. By
estimating all of the parameters for each hierarchical and conventional MPC, we
can compare the computational time and the control performances.

Furthermore, we will evaluate the ideal control framework of Fig. 1.1 on an
anthropomorphic robot with hybrid actuators [16, 17, 86]. One possible realiza-
tion of such a framework is that first, the hierarchical MPC plans the whole-body
motion trajectory, as in Chapter 2, and then the desired trajectory is tracked
with a two-stage control scheme while distributing the torque to each actuator
of the hybrid actuation system, as shown in Chapter 3. The control objectives
for the hierarchical MPC are estimated from human demonstrations, as in Chap-
ter 4, to avoid the labor of designing cost functions. However, a great deal of
work remains to be done before an ideal control framework can be achieved for
whole-body motion generation in a diverse set of tasks.

Although our proposed hierarchical MPC successfully eased MPC’s compu-
tational burden, further improvements that reduce the computational time are
necessary for better control performances or higher-dimensional robots. Since
the control performances were task-dependently improved with the hierarchical
structure, as shown in Chapter 2, we expect that an optimal policy can be derived
effectively if an appropriate hierarchical structure were constructed for each task
for further reducing MPC’s computational time. Hence, developing a method
where the hierarchical structure changes adaptively depending on the current
task is one possible direction to generate versatile whole-body motions with a
hierarchical MPC. Moreover, an efficient algorithm for forward dynamics com-
putation has been proposed to achieve parallel computation with respect to the
robot’s links [95]. Since MPC’s computational time greatly depends on the speed
of the dynamics computation, parallel computation will contribute to its reduc-
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tion. A different parallel computation scheme with respect to the horizon has
already been implemented to compute the dynamics derivatives. Many threads
are required if we perform both link- and horizon-wise computation. Therefore,
we must develop a parallel algorithm in which the granularity of parallelism can
be scheduled for future state trajectories (both the number of links and the hori-
zon) to reduce the number of threads. In addition, the form of the constraints
on the control should be appropriately selected. Control limits greatly affect the
convergence property of an optimization algorithm [96]. For fast convergence, it
is also important to model the robot’s dynamics more accurately, for example,
using an accurate contact model and its solver [97]. Due to the recent improve-
ments of a nonlinear function approximator with a neural network, deep neural
network dynamics [98, 99, 100] might be a good alternative to precisely predict
the future state trajectories. However, a trade-off always exists between accuracy
and computational speed.

Better system identification will further improve the overall performance. To
achieve this, we need to seek better formulations or algorithms to estimate inertial
parameters as well as contact forces [101]. More accurate state estimation will also
benefit whole-body motion generation. Humanoids should be outfitted with many
sensors. By combining all of the sensor information, a reliable state estimation
can be achieved [102], for instance, with a tri-modal 3D range sensor named
MultiSense SL [103].

Although several sophisticated PAM models have been proposed (e.g., [104,
105]), it remains challenging to operate them at a wide range of pressure levels
because of their highly nonlinear behaviors. Thus, an accurate PAM model must
be explored in either parametric or nonparametric ways to reduce the modeling
errors to achieve better control performances for the two-stage control scheme of
the hybrid actuation system.

Since the generated torque patterns of a human are not directly observable,
human demonstrations are reproduced on the robot by tracking control before
estimating the control objectives. The estimation accuracy greatly depends on
the performances of the tracking control. For apprenticeship learning by ob-
serving, an IOC algorithm based on expectation-maximization (EM) has been
developed that can learn objective functions with hidden actions [106]. However,
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IOC effectiveness with an EM-algorithm is restricted in low-dimensional systems
with discrete state-action space. Developing an IOC method is needed that can
estimate with hidden data, which can be applied to a high-dimensional system
with continuous state-action space such as a humanoid robot.
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