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quia ignoratio causae destituit effectum.”
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A Physiological Study of the Striatum

Based on Reinforcement Learning

Models of the Basal Ganglia∗

Tomohiko Yoshizawa

Abstract

The reinforcement learning models of the basal ganglia assume that the stria-

tum plays roles of value functions for reward prediction. In this thesis, I designed

rodent’s behavioral tasks based on the reinforcement learning theory and physi-

ologically examined the roles of the striatum for decision making or learning by

recording their neural activities during the task.

The striatum consists of striosome and matrix compartments. It is hypothe-

sized that the striosomes and matrix perform the roles of reward prediction (critic)

and action selection (actor), respectively. Using a selective in vivo calcium imag-

ing method of striosomal neurons for mice, I recorded striosomal neural activities

from the dorsomedial striatum during an odor-classical conditioning task and

found that some striosomal neurons responded to odors associated with rewards.

The amplitude was proportional to expected reward size. These activities encode

values of odors, therefore suggest that the striosomes perform the role of critic.

The striatum is not only involved in decision making but also motor control.

However, previous studies focused on them independently. To investigate paral-

lel neural representations of information related to decision making and motor

control at the single neuron level, I recorded electrophysiologically rat’s neural

activities during a free-choice task and at the same time captured rat’s motions

using a motion tracking system, then analyzed neural representations of task-,

space-, and motor-related variables in the dorsomedial and dorsolateral striatum.
∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, NAIST-IS-DD1461011, March 15, 2018.
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The results of regression analysis of neural activities indicated that majorities of

striatal neurons represented these variables in parallel. This suggests that the

striatum is also involved in motor control during decision making.

Keywords:

Reinforcement learning, Basal ganglia, Striatum, Striosome, Reward prediction
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大脳基底核の強化学習モデルに基づく
線条体の生理学的研究∗

吉澤 知彦

内容梗概

大脳基底核の強化学習モデルは、価値関数に基づく報酬予測の機能を線条体に
仮定してきた。本研究では、学習や意思決定に果たす線条体の生理学的な役割を
強化学習との対比で理解することを目的に、行動課題中のげっ歯類線条体ニュー
ロンの活動計測実験を行い、ニューロンの情報表現を検証した。
線条体は全体の約 15%を占める striosomeと約 85%を占めるmatrixと呼ばれ

る 2種類のコンパートメントから構成されており、それぞれが報酬予測と行動選
択に関与すると想定されている。マウス striosomeニューロンの神経活動を選択
的に記録できる脳深部 in vivoカルシウムイメージング手法を用いて、匂いと報酬
による古典的条件付け時の背内側線条体の striosomeニューロンの活動を観察し
たところ、一部の striosomeニューロンは報酬に先行する匂い刺激に対して、期待
される報酬量に比例した応答をしていた。さらに、matrixニューロンの近似とし
て線条体ニューロンをコンパートメント非選択的に記録した場合には、striosome

ニューロン選択的に記録した場合と比較して、報酬予測的な活動を観察する頻度
が低くなった。これは striosomeニューロンが匂いの価値をコードすることを示
すとともに、striosomeがmatrixよりも強く報酬予測に関与することを示唆する。
また、線条体は意思決定のみならず、運動制御にも関与している。意思決定、

運動制御に関わる情報の単一ニューロンにおける表現を明らかにするため、自由
選択課題中のラットの線条体神経活動と身体の動きを電気生理学的手法とモーショ
ントラッキング手法により同時記録し、課題に関する情報、空間情報、運動情報
の背内側・背外側線条体における神経表現を検証した。その結果、大部分の線条
体ニューロンは課題・空間・運動の情報を同時に表現していた。一方で、背内側・

∗奈良先端科学技術大学院大学 情報科学研究科 博士論文, NAIST-IS-DD1461011, 2018年 3月
15日.
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背外側線条体で表現に差は認められなかった。この結果は、線条体ニューロンは
意思決定に関わる処理と運動制御に関わる処理を並列的に行うことを示唆する。

キーワード

強化学習, 大脳基底核, 線条体, ストリオソーム, 報酬予測
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1. General Introduction

The striatum is a major input site of the basal ganglia, which has been hypothe-

sized as a brain region for prediction of future rewards as state or action values of

reinforcement learning [1, 2]. This thesis aims to clarify physiological functions

of the striatum for learning and decision making from the sight of reinforcement

learning. In this chapter, I firstly introduce animal behavioral learning from psy-

chological view. After that, I explain the reinforcement learning theory, and the

anatomy and the physiology of neural circuits of the basal ganglia. Combined

these knowledge, I describe reinforcement learning models of the basal ganglia.

1.1 Reward-based behavioral learning of animals

In the psychology field, learning is broadly classified into two groups, which are the

non-associative learning and the associative learning. The non-associative learn-

ing including the habituation and the sensitization is the learning of a stimulus

itself when subjects receive it once or repeatedly, whereas the associative learning,

which is classified classical conditioning and operant (instrumental) conditioning,

is the learning of relations between stimuli.

The classical conditioning is also called the Pavlovian conditioning because

its property was found by Pavlov using dogs (Figure 1.1). When you give a

hungry dog a feed, the dog will flow saliva. This phenomenon is an unconditioned

response (UR) called the salivary reflex. The feed is an unconditioned stimulus

(US). Next, you make the dog hear sound of bell before giving a feed. After

repeating this procedure, the dog will become to flow saliva only hearing the

sound of bell. Here, the sound of bell and the salivation are called a conditioned

stimulus (CS) and a conditioned response (CR), respectively. In the classical

conditioning, animals associate the conditioned stimulus with the unconditioned

stimulus.

However, behaviors of humans or other animals are not only acquired by

learning associations between a stimulus and another stimulus. They learn be-

haviors adaptively by observing transition of their environment as the result of

their previous behaviors. This learning process is called an operant (instrumen-

tal) conditioning. For example, when rats are putted on an experimental box in
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Figure 1.1: Classical conditioning. The dog does not respond to a condi-

tioned stimulus (CS), which is the sound of bell in this case, before conditioning,

whereas he shows saliva reflex to an unconditioned stimulus (US), which is visual

stimulus of a food. To condition him, we need to present the sound of bell and

the food at the same time. After conditioning, he becomes to show saliva reflex

only when he hears the sound of bell by learning the association between the

sound and food.

which they will get a feed by pushing a lever in the box, they firstly explore in the

box, then incidentally push the lever and get a feed (reinforcer). As the result,

the frequency of lever pushing after CS gradually increases (reinforce). When a

certain action triggers a good result, such as reward, animals become to select the

same action more frequently under the same situation. Thorndike, a psychologist

in 19-20th century, named this phenomenon“ law of effect”. The“ law of effect”
expresses the basic mechanism of the reinforcement learning theory using natural

language.

1.2 Reinforcement learning

Our learning processes are conducted through interactions with environments,

as the operant conditioning. The reinforcement learning (RL) is an approach

2



Figure 1.2: Architecture of the reinforcement learning. An agent observes

an environment, then takes one of possible actions. Depending on agent’s action,
it can get a reward.

focusing on goal-directed learning based on such interactions. An agent in the

RL learns what should do to maximize digitized reward signal. To achieve this

goal, an agent need to find an action in which it can earn more rewards through

try and error because it does not be taught the best action like the supervised

learning. As illustrated in Figure 1.2, the RL assumes a situation that an agent

(animal, human, robot, program etc.) monitors a state of environment (s), choices

an action (a) and then receives a reward (r).

1.2.1 Elements of the RL

The RL consists of three major elements, those are a policy, reward function and

value function. The policy is a mapping from a state, which an agent perceives

in an environment, to an action that it should select. It corresponds to stimulus-

response rules or associations in psychology. The reward function maps the state

on a single number, a reward. The reward thus defines what are the good and

bad events for the agent. A goal of the agent is to maximize the total reward it

receives over the long run. The value function is the total amount of reward an

agent can expect to accumulate over the future, starting from a state. Whereas

rewards determine the immediate, intrinsic desirability of environmental states,

values indicate the long-term desirability of states after taking into account the

3



states that are likely to follow, and the rewards available in those states. To select

an action leading to the maximum total rewards, an agent tries to find the action

resulting to a state with the highest value rather than immediate reward. In fact,

the most important component of almost all reinforcement learning algorithms is

a method for efficiently estimating values.

1.2.2 State and Action values

The state and action values are defined as functions of a state and of a state-

action pair, respectively. The state value evaluates goodness of a state, in which

an agent is. The action value evaluates goodness of an action that an agent takes

in a state. The goodness is assessed based on expected future rewards. The

value functions are defined in terms of a policy π because the future rewards

depend on actions selected by an agent. The policy π is a probability p(a|s) on
which an agent takes an action a under a state s. The value of a state s under a

policy π, denoted V π(s), is the expected return when starting in s and following

πthereafter. V π(s) is defined formally as

V π(s) = Eπ

{ ∞∑

k=0

γkrt+k+1|st = s

}

(1)

where Eπ {} denotes the expected value of a random variable given that the agent

follows policy π, and t is any time step. The function V π(s) is called the state-

value function for policy π. Similarly, the value of taking an action a in a state s

under a policy π, denoted Qπ(s, a), as the expected return starting from s, taking

the action a, and thereafter following policy π. Qπ(s, a) is defined formally as

Qπ(s, a) = Eπ

{ ∞∑

k=0

γkrt+k+1|st = s, at = a

}

(2)

1.2.3 Actor-Critic method and TD error

The Actor-Critic method is one of the reinforcement learning algorithms. The

Actor plays a role of action selection based on current estimated value functions.

The Critic evaluates goodness of a transition state after taking an action and

updates value functions. The result of evaluation takes a form of TD error as

4



following;

δt = rt+1 + γV (st+1)− V (st) (3)

Using this TD error as a learning signal, a state value can be updated with

satisfying the formula (1) as following;

V (st)← V (st) + αδt (4)

The TD error is also used for evaluation of a selected action. If the TD error

takes a positive value, the action becomes to be taken more frequently, since the

action increases the value of selected action. On the other hand, if the TD error

takes a negative value, the action becomes to be taken less frequently. The action

selection is expressed as following;

πt(s, a) = p(at = a|st = s) =
ep(s,a)

∑
b ep(s,a)

(5)

Then, an update of the actor is as following;

p(st, at)← p(st, at) + βδt (6)

Here, β is a positive step-size parameter.

1.3 RL in animals

1.3.1 Anatomical structures and circuits of the basal ganglia

A brain is anatomically divided into the brainstem, cerebellum, diencephalon and

cerebrum. The cerebrum is divided into the cortex and basal ganglia consisting of

the striatum, globus pallidus, subthalamic nucleus and substantia nigra (Figure

1.3). The striatum receives glutamatergic and dopaminergic inputs from vari-

ous cortex areas and the substantia nigra pars compacta (SNc) respectively, and

sends inhibitory projections to the internal globus pallidus (GPi) and substantia

nigra pars reticulate (SNr), which are the major output site of the basal ganglia,

resulting in a net disinhibition or excitation of the thalamus. This pathway is

called the direct pathway. On the other hand, the indirect pathway originates in

the striatum and inhibits the external globus pallidus (GPe), resulting in disin-

hibition of the GPi which is then free to inhibit the thalamus. Therefore, loop

circuits called the cortico-basal ganglia loop are formed between the cortex and

basal ganglia.
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Figure 1.3: Neural circuit of the basal ganglia. The basal ganglia consists

of the striatum, globus pallidus (GP), subthalamic nucleus (STN) and substantia

nigra (SN). The striatum is an input site, whereas the SNr and GPi are output

site of the basal ganglia.

1.3.2 Striatum

Types of cells in the striatum include medium spiny neurons, cholinergic interneu-

rons and GABAergic interneurons. The medium spiny neurons (MSN) are middle

sized GABAergic projection neurons having many spines on their dendrite and

occupy about 80-95% of neurons in the striatum. While activities of the MSNs

are normally silent, they fire only when there are inputs. The MSNs are classified

according to their projection sites and expressing types of dopamine receptors as

follows; 1) the direct pathway neurons expressing dopamine D1 receptors project

to the SNr/GPi and contain the substance P and dynorphin, 2) the indirect path-

way neurons expressing dopamine D2 receptors project to the GPe and contain

the enkephalin. The interneurons receive inputs from the cortex, thalamus or

6



SNc and make synapses to projection neurons. Therefore, the interneurons are

thought to modify activities of projection neurons.

These neurons do not form layer structures like the cortex and cerebellum.

Although they exist randomly in the striatum at a glance, they are scattered

across embryologically different two compartments called the striosomes and ma-

trix. The striosomes are embryologically older than the matrix and appears with

receiving dopaminergic inputs. On the other hand, the matrix appears after form-

ing the striosomes, however, it finally becomes to occupy about 85% of the entire

striatum. Both of them contain direct and indirect pathway MSNs and other

interneurons. Inputs to the striosomes derive from the limbic cortex such as the

orbitofrontal cortex or insular cortex and those to the matrix derive from broad

cortical areas including motor, somatosensory and parietal cortices. Further, un-

like the matrix, direct pathway neurons in the striosomes project not only to

GPi/SNr but also directly to SNc, where dopaminergic neurons are present [3-6].

1.3.3 Substantia nigra pars compacta and dopamine

Major neurons in the SNc are dopaminergic and especially send projections to

the striatum. Dopamine receptors are one of the G-protein-coupled receptors

and have D1-D5 subtypes. The adenylate cyclase is activated and inhibited by

binding of dopamine to the D1 (also D5) and D2 (also D3 and D4) receptors

respectively. The direct and indirect pathway MSNs in the striatum express the

D1 and D2 receptors, respectively. Therefore, actions of dopamine are excitatory

to the direct pathway, while inhibitory to the indirect pathway.

Schultz and his colleagues found that dopaminergic neurons in the SNc of

monkeys showed activities like the TD signals used as learning signals in the

RL [7]. They recorded activities of dopaminergic neurons during an operant

task in which monkeys could get juice reward by pushing a button at lighting

of a lamp. Dopaminergic neurons responded to juice itself in the beginning of

learning, then were activated by lighting of a lamp that indicate pushing a button

after sufficient learning. Moreover, when monkeys could not get juice reward

even if they pushed a button at lighting of a lamp, dopaminergic neurons were

inhibited. This finding indicates that dopaminergic neurons do not respond to

reward itself but discrepancy between expected and actual reward. The activities

7



of dopaminergic neurons are much similar to the TD signals in the RL.

1.3.4 RL models of the basal ganglia

The striatum, in which reward-predictive neural activities have been recorded,

is a brain site that received dopaminergic inputs most strongly. Samejima and

his colleagues recorded neural activities of monkey’s dorsal striatum during a

free-choice task [8]. In the task, monkeys turned a handle to the left or right,

then were able to get probabilistically large or small water rewards depending on

their actions. They found many neurons whose activities were different between

reward probability 90% and 50% to the left action when monkeys turned a handle

to the left. Moreover, they estimated action value functions using a reinforcement

learning model and calculated correlations between estimated action values and

firing of striatal neurons. The results indicated that activities of many striatal

neurons before turning a handle highly correlated with action values of the left

or right action.

Based on the above findings, the actor-critic model was proposed as a rein-

forcement learning model of basal ganglia (Figure 1.4), which assumes that the

striosomes and matrix perform the roles of reward prediction (critic) and action

selection (actor), respectively [1]. According to this model, the striosomes rep-

resents the state values, while the reward prediction error is calculated in the

SNc dopaminergic neurons using output from striosomal neurons. The matrix

contributes to action selection through acquisition of the rule (policy) to choose

the best action, depending on environmental states. However, lateral inhibitory

connections between striatal neurons have been shown not to be very strong, in

order to effect winner-take-all type action selection [9-11]. Another hypothesis is

that the striosome represents the state value whereas the matrix represents the

action value, with action selection realized downstream of matrix projections [2,

12].

The hierarchical reinforcement learning model is another model of the stria-

tum [13, 14]. In the striatum, the more dorsolateral parts receive sensorimotor-

related information, whereas the more ventromedial areas receive associative and

motivational information. Reflecting the anatomical connections, it is known that

subdivided striatal areas have different roles for learning, such as the DMS is as-

8



Figure 1.4: Actor-critic model of the basal ganglia. This model hypoth-

esizes that neurons in striosomes and matrix represent state and action values,

respectively.

sociated with goal-directed behaviors, whereas the DLS contributes to habitual

behaviors [15]. The model hypothesizes that VS, DMS and DLS are involved

in actions at different physical and temporal scales. That is, VS is the coarsest

module in charge of the action of the whole animal, such as aiming for a goal,

avoiding a danger, or just take a rest. DMS is the middle module in charge of

abstract actions, such as turn left or go straight. DLS is the finest module in

charge of physical actions, such as the control of each limb.
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1.4 Aims and composition of this thesis

Many lines of research, including functional brain imaging [16, 17] and neural

recording [8, 18-20] have demonstrate that the striatum plays a critical role in

reward-based learning and decision making. However, they could not show spe-

cific roles of striatal compartments, because the discrimination of striosomes and

matrix is difficult due to their mosaic-like structure in the striatum. In addition,

I can list another problem that they only focused on neural representations of

task-related variables, such as states, actions or rewards, therefore, ignored the

striatal functions for motor control.

Aims of this thesis are 1) to examine specific roles of stratal compartments

for reward-based learning and 2) to demonstrate parallel processing of task- and

motor-related information in the striatum during decision making. In order to

address these research questions, I conducted behavioral and neural recording ex-

periments using rodents. For the striatal compartments, I conducted Ca2+ imag-

ing experiments during an odor-classical conditioning using striosome-selective

cre-expression transgenic mice and found that reward prediction was conducted

in striosomal neurons. This is described in Chapter 2. For the striatal paral-

lel information processing, I conducted electrophysiological recoding experiments

during a free-choice decision-making task using rats, and got the data supporting

parallel information processing in the striatum. This is described in Chapter 3.

As a conclusion, I conduct general discussions and show future research directions

in Chapter 4.
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2. Calcium imaging experiment of striatal neu-

rons in striosomes

2.1 Introduction

The striatum consists of two neurochemically and anatomically distinct com-

partments: the striosomes (also known as patches), which are rich in mu opioid

receptors (MOR), receive inputs from the limbic cortex, and project monosynap-

tically to midbrain dopaminergic neurons, and the matrix, which receives inputs

from the sensorimotor and associative cortices [21-24]. Many lines of research,

including functional brain imaging [16, 17] and neural recording [8, 18-20] have

demonstrate that the striatum plays a critical role in decision making and rein-

forcement learning. In the process of reinforcement learning, prediction of forth-

coming rewards from the present sensory state and possible actions such as ’state

value’ and ’action value’, respectively, comprise the basis for learning and action

selection [25]. These values are updated by a reward-prediction error, defined as

the discrepancy between the predicted and actual rewards. The striatum is a ma-

jor cortical-input site of the basal ganglia and also receives inputs from midbrain

dopaminergic neurons encoding the reward-prediction error [7]. Cortico-striatal

synapses show dopamine-dependent plasticity that is suitable for reinforcement

learning [26]. From these observations, the striatum has been hypothesized as the

brain region that predicts future rewards as state or action values [16, 27-29]. In

fact, electrophysiological studies have shown that striatal neurons encode state

or action values [8, 18-20, 30, 31], but they could not identify whether recorded

neurons belonged to striosomes or matrix, because these compartments form a

mosaic-like structure [32-34]. Because striosomal neurons comprise only about

15% of striatal neurons, it is particularly unclear whether striosomal neurons are

engaged in reward prediction. It is important to characterize their activities dur-

ing reward-based learning because almost all striatal neurons directly projecting

to midbrain dopaminergic neurons belong to striosome compartments [5, 6, 35,

36].

Recently, a transgenic mouse line became available that selectively expresses

Cre protein, which is a site-specific DNA recombinase, in striosomal neurons [37,
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38]. In combination with optical neural imaging, it is possible to image deep brain

structures using endoscopic microscopes [39-41]. In this study, to test whether

striosomal neurons show reward-predictive activities, we recorded activities of

neurons in striosomes during classical conditioning using endoscopic in vivo cal-

cium imaging of transgenic mice with selective calcium indicator expression in

their striosomal neurons.

2.2 Materials and Methods

2.2.1 Subjects

Male Sepw1-NP67 [37] mice (n = 8; 25-35 g body weight; 8-12 weeks old) were

housed individually under a 12-hr light/dark cycle (lights on at 07:00; off at

19:00). Experiments were performed during the light phase. Water was restricted

to 1-2 mL per day for two weeks before experimental initiation and during the

experimental period. Food was provided ad libitum for the entire period. The Ok-

inawa Institute of Science and Technology Graduate University Animal Research

Committee approved the study.

2.2.2 Surgery

Mice were anesthetized with isoflurane (1.0-3.0%) and placed in a stereotaxic

frame. The skull was exposed, a hole (diameter: 1.0 mm) was drilled in the skull,

and the dura was removed over the imaging site. For calcium imaging, 0.4-0.6 µ

L of AAV2/9.Syn.Flex.GCaMP6s (n = 5 mice) or AAV2/9.Syn.GCaMP6s (n =

3, Penn Vector Core) were injected into the striatum (AP: +0.50 mm; ML: ±
1.75 mm; DV: 2.85 mm from brain surface). Three weeks after virus injection, an

endoscope (GRIN lens; PartID: 130-000151; diameter: 0.5mm; length: 6.1 mm;

Inscopix) with a custom endoscope holder was slowly implanted at the following

coordinates: AP: +0.50 mm; ML: ± 1.75 mm; DV: 2.60 mm. The endoscope

was fixed with UV adhesive (LOCTITE 4305, Henkel) and clear dental cement

(Super bond, Sun Medical) and protected by a PCR tube. A head plate (CF-

10, NARISHIGE) was fixed with pink dental cement. Two to four weeks after

endoscope implantation, awake mice were head-fixed with a head plate holder.

A baseplate (Part ID: 100-000279; Inscopix) attached to the miniature micro-
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scope was positioned above the endoscope. The focal plane (100-300 µm working

distance) was adjusted until neuronal structures and GCaMP6s responses were

clearly observed. After mice were anesthetized with isoflurane, the baseplate was

fixed with black-painted dental cement (CLEARFIL MAJESTY ES Flow; Ku-

raray Noritake Dental) and a baseplate cover (Part ID: 100-000241; Inscopix) was

secured to the baseplate with a set screw to protect the lens until imaging.

2.2.3 Behavioral task

Mice were head-fixed using the head plate and habituated for 3-5 days before task

training. A custom-built olfactometer (O’Hara) delivered a 1:9 mixture of air

saturated with one of four odors (isoamyl acetate, citral, eugenol, or (-)carvone)

and clean air. The olfactometer constantly delivered clean air during inter-trial

intervals (ITIs). ITIs were randomly selected from 10 to 20 sec. In each trial,

we delivered one of four odors, selected pseudorandomly, for 2 sec., followed by

a delay of 0.5 sec. and an outcome. Each odor was associated with a different

outcome: a big drop of water (4µL), a small drop of water (2 µL), no outcome,

or an air puff delivered to the animal’s face. These outcomes were randomly

omitted with a 20% probability. The combination of odor and outcome differed

for different mice. A daily session consisted of 100 trials. Licks were detected by

interruptions of an infrared beam placed in front of the water tube. 1 g of water

gel (HydroGel; ClearH2O) was provided after daily sessions.

2.2.4 Calcium imaging

In each daily session, we first head-fixed mice using the head plate and holder.

Then we connected the microscope to the magnetic baseplate, and fixed it in

place with the baseplate set screw. Fluorescence images were acquired at 20 fps

with LED power at 20% of 1.2 mW/mm2 maximum and the image sensor gain at

1.0-4.0 before A/D conversion. To compare calcium activity in different sessions,

image acquisition parameters were held constant for each mouse across days. An

external signal (5V TTL) from the control device triggered the start or end of

recording. Neural activities in each trial were recorded from 2.5 sec. before odor

onset to 5 sec. after US onset (total: 10 sec./trial) in order to minimize photo

toxicity.
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2.2.5 Image processing

All image processing was performed in Mosaic (version 1.1.3; Inscopix) and Mat-

lab (version 2016b; Mathworks). First, the raw image of each frame was trans-

lated into a 16-bit tiff image. In order to reduce data size and processing time,

spatial down-sampling (spatial binning factor: 4) was applied to each tiff image.

After image sequences of all trials for each session were concatenated, a motion

correction process was applied to remove movement artefacts and to compensate

for shifts in microscope positioning. After removing the post-registration black

borders, average fluorescence F was calculated over the whole motion-corrected

image sequence and percentage-change-over-baseline (∆F/F = (Fn − F )/F ) im-

ages were generated for each frame. Here, Fn was the motion-corrected image

at n-th frame. Finally, ∆F/F image sequences of all sessions for each animal

were concatenated, and temporally down-sampled (temporal binning factor: 4),

then spatial filters to extract activities of single neurons were calculated with a

cell-sorting algorithm using independent and principal component analyses [42].

2.2.6 Extraction of calcium signals and event detection

To extract calcium signals of each neuron at 20 Hz, spatial filters were applied to

the original ∆F/F image sequence of each session. The extracted calcium signal

of each neuron was normalized to: mean=0, variance=1 (normalized ∆F/F )

for each session because the expression levels of GCaMP6s could have differed

between neurons and sessions. Then,“ Ca2+ events” [43, 44] were detected by

applying the following procedure. For the normalized ∆F/F trace in each trial i,

all local maxima were detected and for j-th local maximum (Mij), the preceding

local minimum (mij) was registered. When the difference (∆mij = Mij − mij)

between the local maximum and the preceding minimum exceeded a threshold

(4x the median absolute deviation, 4 MAD), ∆mij was registered as a Ca2+ event

of amplitude (yik) at the midpoint time (tik) between the time of Mij and mij,

where k is the index of the event in a trial.
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2.2.7 Experimental design and statistical analysis

To show that a neuron encodes outcomes expected from odor stimuli rather than

odor natures, changing of CS-US combinations between mice is effective. There-

fore, we needed at least 2 mice each from the striosome and control groups. We

actually used 5 and 3 mice from the striosome and control groups, respectively,

to collect enough samples to analyze their properties.

Two-sample t-tests were employed for statistical tests for frequencies of licking

or Ca2+ events between task conditions. In order to evaluate neural representa-

tions of behavioral variables, we carried out regression analyses of Ca2+ events

during the CS-delay period (2.5 sec. between CS onset and US onset) and the US

period (2.5 sec. following US onset). Regression analysis employed the variables

licking frequency (Lick), prediction of reward (V r), air puff (V a), delivery of

reward (Rwd), and air puff (Air). The variables V r and Rwd took one of three

levels: 0 (0 µL), 0.5 (2 µL) and 1 (4 µL) while V a and Air took 0 or 1. Note

that Rwd and Air took 0 in omission trials, so that they were different from V r

and V a. The sum of the amplitudes of all Ca2+ events during the CS-delay or

US period of i-th trial was registered as, y(i,CS) and y(i,US). First, to remove

the effects of licking on neural activities, we performed the following regression

analysis and obtained the residual activities z:

y(i, s) = β0 + βLickLick(i, s) + z(i, s) (7)

where s = CS or US denotes the time period. We then analyzed residual activities

in the CS and US periods using the following regression models.

For big, small, and no reward conditions:

z(i,CS) = β1 + βVrVr(i) (8)

z(i,US) = β2 + βRwdRwd(i) (9)

For air-puff and no reward conditions:

z(i,CS) = β3 + βVaVa(i) (10)

z(i,US) = β4 + βAirAir(i) (11)
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When the p-value of the regression coefficient was<0.05, we concluded that neural

activity and the explanatory variable were significantly correlated. Chi-squared

tests were used for comparison of proportions of predictive/responsive neurons

between groups or stages.

For the decoding analysis, we used n = 1 to 10 simultaneously recorded

neurons. Since the number of simultaneously recorded neurons differed between

mice, we randomly selected nneurons from simultaneously recorded populations

and regressed V r or V a, and Rwd or Air with the sum of amplitudes of Ca2+

events of them during the CS-delay and US period.

For big, small, and no reward conditions:

V r(i) = wV r,0 +
n∑

j=1

wV r,jxj(i,CS) (12)

Rwd(i) = wRwd,0 +
n∑

j=1

wRwd,jxj(i,US) (13)

For air-puff and no reward conditons:

V a(i) = wV a,0 +
n∑

j=1

wV a,jxj(i,CS) (14)

Air(i) = wAir,0 +
n∑

j=1

wAir,jxj(i,US) (15)

where xj(i,CS) and xj(i,US) are the sum of amplitudes Ca2+ events during the

CS-delay and US period, and wV r,j, wRwd,j, wV a,j, wAir,j are weights for j-th neu-

ron out of n neurons. After 100 iterations of these procedures for each population

size n, we averaged MSEs of each group’s mouse in order to compare the popula-

tion coding of expected and actual US between two groups, and tested them by

paired t-test.

2.2.8 Immunohistochemistry

We adapted an immunohistochemical protocol for identifying striosomes in rats

[45] for use with mice. After all experiments were completed, mice were deeply

anesthetized with pentobarbital sodium and then perfused with 4% paraformalde-

hyde (PFA). Brains were carefully removed so that endoscopes would not cause
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tissue damage, post-fixed in 4% PFA at 4◦C overnight, and then transferred to

a 30% sucrose/PBS solution at 4◦C until brains sank to the bottom. Coronal or

horizontal sections were cut at 30 µm on an electrofreeze microtome (REM-710;

Yamato) and stored in wells containing PBS at 4◦C. Free-floating sections were

washed in PBS for 5 min and placed in blocking buffer (5% normal donkey serum

and 0.4% Triton X-100 in PBS) for 2 h at room temperature (RT). Sections were

simultaneously incubated in primary antibody-rabbit anti-MOR (ab10275; Ab-

cam) diluted 1:500 in blocking buffer, for 48 h at 4◦C. Two days later, sections

were washed 6x for 10 min in PBS and placed in blocking buffer for 1 h at RT.

Sections were simultaneously incubated in secondary antibody donkey anti-rabbit

(Alexa Fluor 594; Invitrogen) diluted 1:250 in blocking buffer for 2 h at RT. Sec-

tions were washed 6x for 10 min in PBS, mounted on glass slides and coverslipped

with VECTASHIELD Mounting Medium with DAPI (Vector Laboratories). To

inspect stained tissue, a confocal microscope (LSM780; Carl Zeiss) was used and

pictures were taken using ZEN software.

2.3 Results

2.3.1 Spout-licking behavior during odor conditioning

We employed classical odor conditioning, a standard reward-based learning task

for rodents [46, 47]. Water-deprived mice were classically conditioned with dif-

ferent odor cues predicting water (reward) or air puffs (aversive stimuli) under

head-restrained conditions (Figure 2.1A). Daily training sessions were composed

of 100 trials. Each trial began with a conditioned stimulus (CS; odor, 2 sec.),

followed by a delay period (0.5 sec.) and an unconditioned stimulus (US; water

4 µL/water 2 µL/air puff/nothing, Figure 2.1B). For each mouse, the CS was

randomly selected from four odor cues that the mouse had to associate with dif-

ferent US, and the CS was fixed for all days. The combination of CS-US was

varied among mice. In order to evaluate reward-prediction performances of the

mice, we counted the number of licks toward the water-delivery spout.

In early training, mice licked the spout immediately after reward onset in

some trials. After days of conditioning, they began licking during the CS-delay

period before rewards arrived (Figure 2.1C). In order to detect stages of learning,
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we quantified each mouse’s mean daily licking frequency during the CS-delay

period. Licking frequency showed no significant differences between the four

odor conditions until day 5. Then commencing at day 6, it became significantly

higher in the big-reward condition than in other conditions (Figure 2.1D). By

day 11, licking frequencies in big-reward, small-reward, and no-reward conditions

differed significantly. Although the numbers of days for CS-US learning differed

depending on the mouse, all 8 mice displayed similar behavior. Therefore, we

defined two learning stages: ’Early stage’, comprising the first three days that

licking frequency in the CS-delay period became significantly faster in the big-

reward condition than in the no-reward condition (p < 0.05, two-sample t-test),

and ’Late stage’, comprising the first three days that licking frequencies during the

CS-delay period in big-reward, small-reward, and no-reward conditions all differed

significantly (p < 0.05). The number of days from training initiation to the Early

stage was 4.6± 0.71 (average ± standard error) and to the Late stage was 12±
1.1. Licking frequency during the CS-delay period increased monotonically with

reward size in both stages (Figure 2.1E). This result indicates that mice predicted

forthcoming rewards from odor stimuli by learning CS-US associations.

2.3.2 Selective in vivo calcium imaging of neurons in striosomes

We used transgenic mice (Sepw1-NP67) expressing Cre selectively in their strioso-

mal neurons [37, 38, 48]. In order to express GCaMP6s selectively in striosomal

neurons using the Cre-loxP system, AAV2/9.Syn.Flex.GCaMP6s was injected

unilaterally (left hemisphere: 2 mice, right hemisphere: 3 mice) into the dorso-

medial striatum (DMS) of transgenic mice (striosome group, Figure 2.2A). MOR

immunohistochemistry of virus-injected brain slices confirmed that GCaMP6s was

selectively expressed in striosomes (Figure 2.2B). We also prepared mice express-

ing GCaMP6s in both striosomes and matrix as the control group by injecting

AAV2/9.Syn.GCaMP6s (not contain the loxP sequences, left hemisphere: 2 mice,

right hemisphere: 1 mouse) to the DMS (Figure 2.2CD).

An endoscope (GRIN lens, diameter: 0.5 mm) was implanted into the DMS,

and neural activities were recorded through the endoscope using a miniature mi-

croscope integrating an LED light source and an image sensor [39] (Figure 2.2E).

122 neurons were recorded from 5 mice in the striosome group and 83 neurons
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Figure 2.1: Mice showed odor-induced reward-predictive licking be-

havior proportional to expected reward size. (A) Schematic illustration

of the behavioral apparatus. Mice were restricted, head and body, by the metal

frame and tube. The odor mask, water spout and air-puff tube were set in front

of their noses, mouths, and eyes. Spout-licking behaviors were monitored us-

ing an infrared sensor. The miniature microscope was mounted on their heads.

(B) Time sequence of a classical conditioning task. (C) An example of reward-

predictive spout-licking behaviors after sufficient learning. In trials of reward con-

ditions, spout-licking behaviors started during odor presentation periods. Black

dots indicate spout-licking behaviors. Yellow areas show CS-delay periods. (D)

Daily changes of spout-licking frequency during CS-delay periods of the mouse

illustrated in C. Early and late stages were defined based on the appearance

of reward-predictive licking. Error bars indicate standard errors. (E) Average

spout-licking frequencies during CS-delay periods of all 8 mice. Error bars indi-

cate standard errors.
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from 3 mice in the control group. On average, we were able to simultaneously

record 24 neurons (maximum 45) from one mouse in the striosome group and 28

neurons on average (maximum 36) in the control group. Because the advantage

of this imaging method is that we can continuously observe the same neurons for

several weeks [40, 41], calcium imaging was performed in all mice every day from

the first to the final day of behavioral experiments (Figure 2.2F). We measured

fluorescence intensity of each neuron during a resting state (for 2.5 sec. before

odor onset in each trial) to check changes GCaMP6s expression level. Although

7% and 8% maximum increases in the median rate of change of fluorescence inten-

sity were observed in the striosome and control groups, respectively, differences

between sessions had no significant effect upon the rate of change in either group

(striosome: p = 0.69, control: p = 0.64, Kruskal Wallis test). This indicates that

neural activities were stably recorded throughout early and late stages.

After the imaging experiment, we made coronal brain slices including the

trace of the endoscope and checked GCaMP6s expression and MOR immuno-

histochemistry. In all 5 mice of the striosome group, we confirmed that the

GCaMP6s-expressing neurons were located within the working distance of the

endoscope (250-300 µm) and that they were included in the MOR-positive strio-

some compartments (Figure 2.2G).
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Figure 2.2: An endoscopic microscope was used for selective in vivo cal-

cium imaging of striosomal neurons in the striata of Sepw1-NP67 mice

expressing Cre-dependent GCaMP6s. (A) Striosome group. In order to ex-

press GCaMP6s selectively in striosomal neurons, AAV.Syn.Flex.GCaMP6s was

injected into the DMS. (B) GCaMP6s (green) was selectively expressed in strio-

somes (red) 3 weeks after virus injection. Scale bar: 50µm. (C) Control group.

To express GCaMP6s in both striosomes and matrix, AAV.Syn.GCaMP6s was in-

jected to DMS. (D) GCaMP6s expressed in both striosomes and matrix 3 weeks

after virus injection. (E) Schematic illustration of endoscopic in vivo calcium

imaging. (F) Averaged fluorescence images recorded by miniature microscope.

White dots indicate neurons. The same neurons in striosomes were stably ob-

served over 2 weeks. (G) Images showing endoscope placement and cre-dependent

GCaMP6s-expressing neurons within the striatum. The focal plane in tissue is

250-300 µm from the bottom of the endoscope, as indicated by the white arrow

heads. Scale bar: 200 µm.
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2.3.3 Reward-predictive neural activities

We first examined responses of striosomal neurons to odor stimuli. After normal-

izing the ∆F/F trace of recoded neurons (normalized ∆F/F ), we detected“Ca2+

events”[43, 44], which estimate the strength of neural activity while taking into

account the slow decay time of GCaMP6s [49] (See Methods). In the early stage,

the normalized ∆F/F of a representative striosomal neuron (Figure 2.3AB) rose

with the presentation of odor stimuli associated with the big reward, whereas no

rise was observed in the no-reward condition. The sum of amplitudes of Ca2+

events during the CS-delay period in the early stage was significantly larger in the

big-reward condition than in the no-reward condition (p = 1.2e− 04, two-sample

t-test, Figure 2.3C), while the amplitude in the late stage displayed no signif-

icant difference between the big-reward condition and the no-reward condition

(p = 0.61), as the response to the odor stimulus associated with the big reward

became weak. The amplitude correlated positively with forthcoming reward size

in the early stage (r = 0.25, p = 1.6e− 04, Figure 3D), but not in the late stage

(r = −0.038, p = 0.58).

In contrast, the sum of amplitudes of Ca2+ events in another striosomal neuron

during the CS-delay period in the early stage showed no significant difference

between the big-reward condition and the no-reward condition (p = 0.62, Figure

2.3E-G), while the response in the late stage was significantly larger in the big-

reward condition (p = 8.2e − 06). The amplitude did not significantly correlate

with forthcoming reward size in the early stage (r = −0.035, p = 0.60, Figure

2.2H), but positively in the late stage (r = 0.31, p = 1.7e−06). Neurons in which

the sum of amplitudes of Ca2+ events during the CS-delay period correlated with

forthcoming reward size in one of the learning stages were found in the control

group as well.
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Figure 2.3: Reward-associated odors activated striosomal neurons in a

specific learning stage. (A) Normalized ∆F/F of a striosomal neuron show-

ing reward-predictive activity specifically in the early stage. Black dots indicate

detected Ca2+ events. (B, C) Averaged ∆F/F and Ca2+ events of the striosomal

neuron illustrated in A. Yellow areas show the CS-delay period. (D) Amplitudes

of CS-delay period Ca2+ events of the striosomal neuron illustrated in A were

averaged over trials and plotted against reward size. In the early stage, Ca2+

events show a positive correlation with reward size (r = 0.25, p = 1.6e− 04). On

the other hand, this correlation disappeared in the late stage (r=-0.038, p=0.58).

Error bars and lines indicate standard errors and regression lines. (E) Normalized

∆F/F of another striosomal neuron showing reward-predictive activity specifi-

cally in the late stage. (F, G) Averaged ∆F/F and Ca2+ events of the striosomal

neuron illustrated in E. (H) Amplitudes of CS-delay period Ca2+ events of the

striosomal neuron illustrated in E were averaged over trials and plotted against

the reward size. In the early stage, Ca2+ events show no significant correlation

with reward size (r = −0.035, p = 0.60). However, a positive correlation was

observed in the late stage (r = 0.31, p = 1.7e− 06).
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To quantify proportions of reward-predictive neurons in the striosome, we

performed a regression analysis of the sum of amplitudes of Ca2+ events during the

CS-delay period. In order to eliminate neural activities directly related to licking

movements, we first conducted a regression analysis with licking frequencies and

then analyzed residual components with the reward (V r) predicted from the

odor cues (See Methods). In most neurons of both striosome and control groups,

reward-predictive activities that had significant regression coefficients to V r were

observed specifically in the early or the late stage (Figure 2.4A). 8% of striosomal

neurons (10 of 122) and 13% of control neurons (11 of 83) were reward-predictive

in the early stage, but not in the late stage. On the other hand, 10% of striosomal

neurons (12 of 122) and 1% of control neurons (1 of 83) were reward-predictive

in the late stage, but not in the early stage. In the striosome group, only 2% (2

of 122) of the neurons were reward-predictive in both learning stages. Therefore,

total proportion of the striosome group was not significantly different from that of

the control group in the early stage, while it was larger in the late stage (Early:

10%, striosome, and 13%, control, p = 0.45, Late: 11%, striosome, and 1%,

control, p = 0.0056, Chi-squared test, Figure 2.4B). Compared with the early

stage, reward-predictive neurons in the control group decreased in the late stage

(p = 0.0027). Moreover, the majority of reward-predictive neurons had positive

regression coefficients to V r (Early: 50%, striosome, and 82%, control, Late:

93%, striosome, and 100%, control).

Furthermore, to study neural representation of expected reward at the pop-

ulation level, we performed a decoding analysis of forthcoming reward size from

simultaneously recorded neuronal activities. Since the numbers of simultaneously

recorded neurons were different in each mouse, we randomly selected n neurons

from each simultaneously recorded population and used their activities during

the CS-delay period for linear regression of forthcoming reward size (Figure 2.4C,

See, Methods). We varied the sub-population size n from 1 to 10 and for each n,

we took 100 random combinations of neurons and compared the mean squared

errors (MSE) for striosome and control groups in early and late stages (Figure

2.4D). The results indicated that MSEs of the striosome group were significantly

larger in the early stage and smaller in the late stage than those of the control

group (Early: p = 1.1e− 04, Late: p = 0.0020, paired t-test).
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Figure 2.4: During each learning stage, different neural ensembles par-

ticipated in reward prediction and population coding of expected re-

ward differed between two groups. (A) In order to remove effects of motor

behavior on neural activities, we first performed a regression analysis of the sum

of amplitudes of Ca2+ events during the CS-delay period with frequencies of lick-

ing. Then we analyzed the residual component using prediction of reward (V r).

Scatter plots of t-values for regression coefficients of V r in each learning stage.

Dashed lines indicate levels of significant V r slope at p = 0.05. Letters A and E

indicate the example neurons in Figures 2.3A and E. (B) Proportions of reward-

predictive neurons in each learning stage. Numbers in bars indicate actual counts

of reward-predictive neurons. **: p < 0.01, n.s.: p ≥ 0.05, Chi-squared test. (C)

Schematic illustration of neural decoding analysis. Forthcoming reward size was

estimated from the sum of weighted neuronal activities. xj: sum of amplitudes

of Ca2+ events during the CS-delay period. wj: weight for j-th neuron out of n

neurons. (D) Mean squared errors between actual and decoded reward sizes at

each number of neurons used for analyses. **: p < 0.01, paired t-test.
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These analyses of reward-predictive neural activities revealed that neurons in

striosomes represent reward values of odor stimuli in specific learning stages, and

that reward-predictive striosomal neurons are more dominant in the late learning

stage.

2.3.4 Air-puff-predictive neural activities

We next examined whether recorded neurons responded to air-puff-predictive

odor stimuli. In the early stage, the normalized ∆F/F of a representative strio-

somal neuron (Figure 2.5AB) rose with the presentation of odor stimuli associated

with an air puff, whereas this rise was not observed in the no-reward condition.

The sum of amplitudes of Ca2+ events during the CS-delay period in the early

stage was significantly larger in the air-puff condition than in the no-reward con-

dition (p = 0.036, two-sample t-test Figure 2.5C). On the other hand, CS-delay

period activity in the late stage showed no significant difference between the air-

puff condition and the no-reward condition (p = 0.98) as the ∆F/F response to

odor stimuli associated with the air puff became weak.

Contrastingly, the sum of amplitudes of Ca2+ events in another striosomal

neuron (Figure 2.5DE) during the CS-delay period in the early stage showed no

significant difference between air-puff and no-reward conditions (p = 0.35), while

amplitudes in the late stage were significantly larger in the air-puff condition than

in the no-reward condition (p = 1.0e − 04, Figure 2.5F). Neurons in which the

sum of amplitudes of Ca2+ events during the CS-delay period differed significantly

between the air-puff and no-reward conditions in one of the learning stages were

also found in the control group.

Next, we analyzed air-puff-predictive activity using the predicted delivery of

an air puff (V a) as the regressor. As in the case of reward-predictive activities,

air-puff-predictive activities were observed specifically in one learning stage or

the other (Figure 2.5G). 11% of striosomal neurons (13 of 122) and 1% of control

neurons (1 of 83) were air-puff-predictive in the early stage, but not in the late

stage. On the other hand, 10% of striosomal neurons (12 of 122) and 2% of

control neurons (2 of 83) were air-puff-predictive in the late stage, but not in

the early stage. 3% of striosomal neurons (4 of 122) and 1% of control neurons

(1 of 83) were air-puff-predictive in both learning stages. This means that total
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Figure 2.5: During each learning stage, different neural ensembles in

the striosome predicted air-puff stimuli. (A) Normalized ∆F/F of a strio-

somal neuron showing air-puff-predictive activities specifically in the early stage.

Black dots indicate detected Ca2+ events. (B, C) Averaged ∆F/F and Ca2+

events of the striosomal neuron illustrated in A. Yellow areas show the CS-delay

period. **: p < 0.01, n.s.: p ≥ 0.05, two-sample t-test. (D) Normalized ∆F/F

of another striosomal neuron showing air-puff-predictive activities specifically in

the late stage. (E, F) Averaged ∆F/F and Ca2+ events of the striosomal neu-

ron illustrated in D. **: p < 0.01, n.s.: p ≥ 0.05. (G) Scatter plots of t-values

for regression coefficients of prediction of air puff (V a) in each learning stage.

Dashed lines indicate levels of significant V a slope at p = 0.05. Letters A and D

indicate the example neurons in Figures 2.5A and D. (H) Proportions of air-puff-

predictive neurons in each learning stage. Numbers in bars indicate actual counts

of air-puff-predictive neurons. n.s.: p ≥ 0.05, Chi-squared test. (I) Mean squared

errors between actual and decoded air-puff values at each number of neurons used

for analyses. **: p < 0.01, paired t-test.
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proportions of the striosome group were significantly larger than those of the

control group in both learning stages (Early: 14%, striosome, and 2%, control,

p=0.0052, Late: 13%, striosome, and 4%, control, p=0.021, Chi-squared test,

Figure 2.5H). Moreover, the majority of air-puff-predictive striosomal neurons

had positive regression coefficients to Air (Early: 58%, striosome, and 100%,

control, Late: 75%, striosome, and 100%, control).

Furthermore, to compare the population neural coding of expected aversive

stimulus between two groups, we decoded forthcoming air-puff stimuli from the

activities of various sizes of sub-populations of simultaneously recorded neurons

(Figure 2.5I). In both learning stages, MSEs of the striosome group were sig-

nificantly smaller than those of the control group (Early: p = 1.1e − 05, Late:

p = 2.1e−04, paired t-test). These analyses of air-puff-predictive neural activities

showed that neurons in striosomes also represent aversive values of odor stimuli

in learning-stage specific ways, as is the case with reward values, and suggest that

aversive values are more strongly encoded in the striosomes than in the matrix.

2.3.5 Reward- and air-puff-responsive neural activities

The normalized ∆F/F of a representative striosomal neuron (Figure 2.6AB) rose

with reward presentation, whereas that rise was not observed in the absence of a

reward. The sum of amplitudes of Ca2+ events during the US period in rewarded

trials was significantly larger in the big-reward condition than with no-reward

(p = 1.35e− 10, two-sample t-test, Figure 2.6C). On the other hand, amplitudes

in reward-omitted trials did not differ significantly between big-reward and no-

reward conditions (p = 0.25). Amplitude positively correlated with reward size in

rewarded trials (r = 0.42, p = 9.4e− 10, Figure 2.6D), but not in reward-omitted

trials (r = 0.16, p = 0.096). This indicates that striosomal neurons responded

to the rewards themselves. Reward-responsive activities were also observed in

neurons of the control group.

After subtracting the licking component (see Methods), regression analyses

of the sum of amplitudes of Ca2+ events during the US period revealed that

most reward-responsive neurons, which had significant regression coefficients to

the acquired reward size Rwd, had learning-stage-specific properties, similar to

those of reward-predictive neurons (Figure 2.6E). 13% of striosomal neurons (16
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of 122) and 13% of control neurons (11 of 83) were reward-responsive in the early

stage, but not in the late stage. On the other hand, 11% of striosomal neurons

(13 of 122) and 13% of control neurons (11 of 83) were reward-responsive in the

late stage, but not in the early stage. 7% of all neurons showed reward-responsive

activities in both learning stages in the striosome group (9 of 122), but only 1%

in the control group (1 of 83). Therefore, total proportions of the striosome group

were not significantly different from those of the control group in either learning

stage (Early: 20%, striosome, and 14%, control, p = 0.27, Late: 18%, striosome,

and 14%, control, p = 0.50, Chi-squared test, Figure 2.6F).

In addition, we decoded acquired reward size from various numbers of simulta-

neously recorded neuronal activities during the US period (Figure 2.6G). In both

learning stages, MSEs of the striosome group were significantly smaller than those

of the control group (Early: p = 0.0034, Late: p = 5.9e− 04, paired t-test). This

decoding result also shows that the reward acquisition is more robustly presented

by the striosome neurons.

The normalized ∆F/F of another striosomal neuron (Figure 2.6HI) rose with

the presentation of an air-puff stimulus, whereas this rise was not observed with-

out the air puff. The sum of amplitudes of Ca2+ events during the US period

was significantly larger in the air-puff condition than in the no-reward condition

(p = 1.49e− 08, Figure 2.6J), whereas the response in the air-puff-omitted trials

was not significantly different from that in the no-reward condition (p = 0.28).

This indicated that the striosomal neuron respond to the air-puff stimulus itself.

The air-puff-responsive activities were observed in neurons of the control group

as well.

We analyzed air-puff-responsive activity using received air puff (Air) as a re-

gressor in much the same way as with reward-responsive activities (Figure 2.6K).

25% (31 of 122) of striosomal neurons and 19% of control neurons (16 of 83) were

air-puff-responsive in the early stage, but not in the late stage. On the other

hand, 11% of striosomal neurons (14 of 122) and 14% of control neurons (12 of

83) were air-puff-responsive in the late stage, but not in the early stage. 16% of

striosomal neurons (20 of 122) and 17% of control neurons (14 of 83) were air-puff-

responsive in both learning stages. This means that the two groups did not differ

significantly in total proportions of air-puff-responsive neurons in either learning
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stage (Early: 42%, striosome, and 36%, control, p = 0.42, Late: 28%, striosome,

and 31%, control, p = 0.59, Chi-squared test, Figure 6L). Finally, we decoded re-

ceived air-puff stimuli from various numbers of simultaneously recorded neuronal

activities during the US period (Figure 6M). MSEs of the striosome group were

significantly larger in the early stage and smaller in the late stage than those of

the control group (Early: p = 6.2e− 04, Late: 3.2e− 06, paired t-test).

These results indicate that some striosomal neurons respond directly to reward

or air-puff stimuli.

Figure 2.6: Both rewards and air puffs activated striosomal neurons.

(A) Normalized ∆F/F of a striosomal neuron showing reward-responsive activi-

ties. This is ∆F/F in the late stage. Black dots indicate detected Ca2+ events.
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Figure 2.6: (B, C) Averaged ∆F/F and Ca2+ events of the striosomal neuron

illustrated in A. Yellow areas show the US period. (D) Amplitudes of US pe-

riod Ca2+ events of the striosomal neuron illustrated in A were averaged over

trials and plotted against reward size. In rewarded trials, Ca2+ events show a

positive correlation with reward size (r = 0.42, p = 9.4e − 10). On the other

hand, there was no significant correlation in reward-omitted trials (r = 0.16,

p = 0.096). Error bars and lines indicate standard errors and regression lines.

(E) Scatter plots of t-values for regression coefficients of delivery of reward (Rwd)

in each learning stage. Dashed lines indicate levels of significant Rwd slope at

p = 0.05. Letter A indicates the example neuron in Figure 2.6A. (F) Proportions

of reward-responsive neurons in each learning stage. Numbers in bars indicate

actual counts of reward-responsive neurons. n.s.: p ≥ 0.05, Chi-squared test. (G)

Mean squared errors between actually received and decoded reward size at each

number of neurons used for analyses. **: p < 0.01, paired t-test. (H) Normalized

∆F/F of a striosomal neuron showing air-puff-responsive activities. This is also

∆F/F in the late stage. Black dots indicate detected Ca2+ events. (I, J) Aver-

aged ∆F/F and Ca2+ events of the striosomal neuron illustrated in G. **: p¡0.01,

n.s.: p ≥ 0.05, two-sample t-test. (K) Scatter plots of t-values for regression co-

efficients of delivery of air puff (Air) in each learning stage. Dashed lines indicate

levels of significant Air slope at p = 0.05. Letter H indicate example neurons

in Figure 2.6H. (L) Proportions of air-puff-responsive neurons in each learning

stage. Numbers in bars indicate actual counts of air-puff-responsive neurons.

n.s.: p ≥ 0.05. (M) Mean squared errors between actually received and decoded

air-puff stimuli at each number of neurons used for analyses. **: p < 0.01, paired

t-test.
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2.4 Discussion

We performed selective in vivo calcium imaging of neurons in striosomes and

monitored neural activities of mice performing a classical odor-conditioning task.

To the best of our knowledge, this is the first report to characterize striosomal

neuronal activities of living animals. The major findings were as follows:

1. Striosomal neurons showed reward- or air-puff-predictive activities; there-

fore, they encoded the values of odor stimuli.

2. Most reward or air-puff-predictive activities were specific to early or late

learning stages.

3. Some striosomal neurons responded to presentation of a reward or an air

puff.

4. Striosomal neurons have more significant roles in reward and air-puff pre-

diction than randomly recorded striatal neurons.

2.4.1 Predictive neural activities in striosomes

Although previous electrophysiological studies reported that striatal neurons rep-

resent value information [8, 18, 20], they did not distinguish between striosomal

and matrix neurons. In this study, we found that neurons in striosomes show

reward- or air-puff-predictive activities that matched the definition of value, both

by regression of single neuron activities and by decoding from population activ-

ities. We also found about 10% of non-selectively recorded neurons in the DMS

showed reward-predictive activities in the early stage. This proportion is consis-

tent with a recent electrophysiological study [20]. Since the licking frequency in

cue period correlated with forthcoming reward size, it was possible that reward-

predictive striosomal activity might represent motor behavior instead of reward

size expected from odor stimuli. However, those activities represented the reward

size even after removing the effects of licking. Thus, the striosome encodes values

of odor stimuli.

This result that striosomal neurons encode values of present sensory states,

supports reinforcement learning models that postulate that striosomal neurons
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learn state values [1, 2, 12]. These models postulated that matrix neurons are

involved in either action selection (actor) or action value learning. An alternative

view, based on human brain imaging or lesion experiments, is that the dorsal and

ventral striatum assume the roles of actor and critic, respectively [16]. However,

the striosomes comprise a larger portion of the ventral striatum than of the dorsal

striatum; whereas the matrix constitutes a smaller portion of the ventral striatum

and a larger portion of the dorsal striatum [50]. Therefore, the striosome-matrix

difference may contribute to ventral-dorsal functional differences. A recent ra-

bies tracing study indicated that both striosomal and matrix neurons project to

dopaminergic neurons, with a higher density of SNc projecting neurons in the

striosome, but a larger number in the matrix, given its larger volume [38]. This

new finding raises the possibility that matrix neurons are also directly involved in

computation of reward prediction error signals. In order to test those hypotheses,

we will need to record and analyze the activities of striosomal and matrix neurons

during an operant conditioning task that involves choices between multiple ac-

tions. It would also be desirable to record selectively not only striosomal neurons,

but also matrix neurons from the ventral, dorsomedial and dorsolateral striatum.

In both learning stages, the proportion of air-puff-predictive neurons was

larger in the striosomes than in the control. Air-puff stimuli are widely used

as aversive stimuli in rodents and known to cause avoidance behaviors such as

predictive eye blinks [46, 51-53]. A recent study revealed anatomical connections

to striosomes from the bed nucleus of the stria terminalis [38], which is known to

be involved in fear or anxiety [54, 55]. Furthermore, optogenetic inhibition of axon

terminals of prefrontal neurons projecting to the striosomes reduced sensitivity to

aversive light exposure in a cost-benefit conflict situation [56]. Air-puff-predictive

neurons in striosomes might link aversive signals to avoidance behaviors through

their projection to the SNr and the internal globus pallidus and fear or anxiety

through their projection to the stria terminalis.

In the Sepw1-Cre mouse line used in this study, 83.2% of Cre-expressing neu-

rons were D1 medium spiny neurons (MSNs), projecting monosynaptically to

dopaminergic neurons in the SNc, while matrix neurons that do not express Cre

had no such projections [38]. It was shown in the same Sepw1-Cre line that stri-

atonigral fibers originating from the striosome form bouquet-like arborizations
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innervating clusters of dopamine-containing neurons with tightly bundled den-

drites [48]. Therefore, it is expected that the majority of striosomal neurons that

showed reward- and air-puff-predictive activities in this study have monosynaptic

projections to dopaminergic neurons in the SNc, which encode reward-prediction

errors [7]. Our present discovery that the majority of reward-predictive strioso-

mal neurons showed activities positively correlated with reward values suggests

that they contribute to subtraction of predicted reward in computing reward

prediction errors. On the other hand, striosomal neuronal activities that were

correlated negatively with reward or positively with air puffs might contribute to

computation of saliency, including both reward and aversive information, which

is represented by a subset of dopaminergic neurons [57].

2.4.2 Learning-stage-specific neural ensembles coding value informa-

tion

Since the endoscopic in vivo calcium imaging method made it possible to observe

activities of the same neurons over long periods, we were able to compare value

representations of each striatal neuron across learning stages. It was an unex-

pected finding that reward- or air-puff-predictive activities observed in the early

stage disappeared in the late stage. It was also surprising that there were few

neurons that showed reward- or air-puff-predictive activities in both early and

late learning stages. This result indicates that value-coding neurons form unique

ensembles depending on the learning stage. Combined with the finding of Thorn

et al. [15] that population activities of the striatum change with learning, the

ensemble representation of value information in the early stage might contribute

to goal-directed behavior, while that in the late stage might support habitual

behavior.

2.4.3 Differences in reward-related neural coding in striosomes and

matrix

Different parts of the striatum, especially near its ventromedial to dorsolateral

axis, have different roles in goal-directed and habitual behaviors [58]. It was re-

ported that population activities of DMS neurons become weaker after acquisition

of habitual behavior [15]. In this study, we implanted endoscopes in the DMS
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and monitored their neural activities during reward-based learning. Our regres-

sion analyses show that the number of reward-predictive neurons in the control

group in the late stage decreased from that in the early stage. This is consistent

with the result of non-selective recording of DMS neurons. In the late stage, the

proportion of reward-predictive neurons was larger in the striosome group than

in the control group. Our decoding analyses also showed that population neu-

ral activities of striosomes represented expected rewards more strongly than the

control in the late stage. It is expected that recorded neural activities from the

control group are mostly derived from the matrix, since roughly 85% of striatum

neurons belong to the matrix. This suggests a possibility that striosomal neu-

rons assume a more dominant role in reward prediction after habituation than

do matrix neurons. On the other hand, roughly 80% of neurons in striosomes

are D1-MSNs and another 20% are D2-MSNs, whereas the proportion is around

50%-50% in matrix [5]. Therefore, the differences between the striosome and

control groups may reflect the difference in D1/D2 percentages.

Our finding of reward- and air-puff-predictive activities of neurons in strio-

somes contributes to understanding of mechanisms of reinforcement learning in

the brain. The next important issues to clarify are whether striosomal neurons

encode the state value rather than the action value in a choice task, and to

test whether and how striosomal neurons contribute to computation of reward-

prediction error.
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3. Electrophysiological experiment of the stria-

tum and the cortex

3.1 Introduction

It is well known that the cortico-basal ganglia circuits are involved in motor

control, whereas recent studies have demonstrated that they are also engaged in

reward prediction and decision making [7, 8]. Especially, the striatum, which is a

major cortical input site of the basal ganglia, have important roles for both motor

control and reward prediction. Anatomically, it is subdivided into the dorsolateral

striatum (DLS), the dorsomedial striatum (DMS), and the ventral striatum (VS).

Because the DLS and the DMS are received inputs from sensorimotor and frontal

cortices, respectively [59], it is supposed that they have different roles for motor

control or decision making. In fact, recent lesion and recording studies of DLS

and DMS suggest that the DLS is necessary for habitual behaviors, whereas that

the DMS is important for goal-directed behaviors with reward prediction [60]. For

example, when rats learned a reward-based choice task with two options, such as

left and right, neurons in the DMS were activated depending on expected reward

to each option, whereas those in the DLS showed short-term activations in various

timing of trials [20]. These DLS neural activities are thought to be involved in

motor behaviors and contribute to habituation of motor patterns [60-62]. These

studies only focused on neural responses to one modality, such as reward, animal’s

position or locomotion speed, however, it is possible that neurons in the basal

ganglia including the striatum do not purely represent one modality but also

parallely encode multiple modalities.

In this study, we recorded rat’s neural activities from DLS, DMS, M1 and

PL during a reward-based free-choice task, and captured rat’s motions in paral-

lel. Then, we tested whether the recorded neural activities purely encoded one

modality or parallely encoded multiple modalities.
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3.2 Materials and Methods

3.2.1 Subjects

Male Long-Evans rats (n = 6; 260-310 g body weight; 16-37 weeks old at the first

recording session) were housed individually under a light/dark cycle (lights on

at 7:00, off at 19:00). Experiments were performed during the light phase. Food

was provided after training and recording sessions so that body weights dipped

no lower than 90% of initial levels. Water was supplied ad libitum. The Oki-

nawa Institute of Science and Technology Graduate University Animal Research

Committee approved the study.

3.2.2 Apparatus

All training and recording procedures were conducted in a 40×40×50 cm experi-

mental chamber placed in a sound-attenuating box (O’Hara & Co.). The chamber

was equipped with three nose-poke holes in one wall and a pellet dish on the oppo-

site wall (Figure 3.1A). Each nose-poke hole was equipped with an infrared sensor

to detect head entry, and the pellet dish was equipped with an infrared sensor

to detect the presence of a sucrose pellet (25 mg) delivered by a pellet dispenser.

The chamber top was open to allow connections between electrodes mounted on

the rat ’s head and an amplifier. House lights, two video cameras, two infrared

(IR) LED lights and a speaker were placed above the chamber. A computer

program written with LabVIEW (National Instrument) was used to control the

speaker and the dispenser, and to monitor states of the infrared sensors.

3.2.3 Behavioral task

Animals were trained to perform a choice trial and a no-choice trial using nose-

poke responses. In either task, each trial began with a tone presentation (start

tone: 3000 Hz, 1000 ms). When the rat performed a nose-poke in the center hole

for 500-1000 ms, one of two cue tones (choice tone: white noise, 1000-1500 ms;

no-choice tone: 900 Hz; 1000-1500 ms) was presented (Figure 3.1B).

After onset of the tone A (choice trials), the rat was required to perform a

nose-poke in either the left or right hole within 2 s after the exit from the center

hole. If the rat exited the center hole before the offset of the choice tone, the choice
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Figure 3.1: Apparatus and behavioral task. (A) Experimental chamber was

equipped with three holes for nose poking and a pellet dish. (B) Time sequences

of choice task. The behavioral task consisted of choice and no-choice trials.

tone was stopped. When the rat performed left or right poking, ether a reward

tone (500 Hz, 1000 ms) or a no-reward tone (500 Hz, 250 ms) was probabilistically

determined depending on the selected action, and presented. The probabilities

were ether (Left, Right) = (75%, 25%) or (25%, 75%) and switched for every

block. The reward tone was followed by delivery of a sucrose pellet (25 mg) in

the food dish. If the rat did not perform neither left nor right nose-poke within

2 s, the trial was ended as an error trial after the error tone (9500 Hz, 1000 ms).

For the tone B (no-choice trials), the rat was required not to perform left nor

right nose pokes during 2 s after the exit from the center hole. Then, the trial

was correctly finished by the presentation of the no-reward tone. In this no-choice

trial, the rat could not obtain any pellets, but if the rat could not perform this

trial correctly, that is, if the rat incorrectly performed left or right nose-poke

for the no-choice tone, the trial was ended as an error trials after the error tone

presentation, and the no-choice trial was repeated again in the next trial.

We designed the continuous condition (CC) consisting of only choice trials,

and the intermittent condition (IC) where no-choice trial was inserted after every
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choice trial. Because it was hard for the rats to keep performing IC, we had to

limit the number of choice trials to 20 trials in one sequential of IC condition.

First three blocks were CC and the subsequent two blocks were IC. A block is

defined as a sequence of the trials under the same reward probabilities. The

probabilities of the first block were randomly selected from (Left, Right) = (75%,

25%) or (25%, 75%) for every recording session.

To adjust the block-change conditions in CC and IC, the first CC and the

third IC blocks were ended when the choice frequency of the rats in the last 10

choice trials reached 80% optimal. The second IC, and, fourth and fifth CC blocks

were ended when 10 choice trials had been conducted. By this setting, the first

20 choice trials in the second and the third CC blocks, and in the fourth and fifth

IC blocks could be comparable; starting from 80% biased choice and switching

reward probabilities after 10 choice trials. These set of five blocks were repeated

basically six times in one day recording session.

3.2.4 Surgery

After rats mastered the choice tasks, they were anesthetized with pentobarbital

sodium (50 mg/kg, i.p.) and placed in a stereotaxic frame. The skull was exposed

and holes were drilled in the skull over the recording site. Three drivable electrode

bundles were implanted into DLS in the right hemisphere (1.0 mm anterior, 3.5

mm lateral from bregma, 3.3 mm ventral from the brain surface), M1 in the

right hemisphere (1.0 mm anterior, 2.6 mm lateral from bregma, 0.4 mm ventral

from the brain surface), DMS in the left hemisphere (1.0 mm posterior, 1.6 mm

lateral from bregma, 3.7 mm ventral from the brain surface), and PL in the left

hemisphere (3.2 mm anterior, 0.7 mm lateral from bregma, 2.0 mm ventral from

the brain surface).

An electrode bundle was composed of eight Formvar-insulated, 25 µm bare

diameter nichrome wires (A-M Systems) and was inserted into a stainless-steel

guide cannula (0.3 mm outer diameter; Unique Medical). Tips of the microwires

were cut with sharp surgical scissors so that ∼ 1.5 mm of each tip protruded from

the cannula. Each tip was electroplated with gold to obtain an impedance of 100-

200 kΩ at 1 kHz. Electrode bundles were advanced by 125 µm per recording day

to acquire activity from new neurons.
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3.2.5 Electrophysiological recoding

Recordings were made while rats performed the choice tasks. Neuronal signals

were passed through a head amplifier at the head stage and then fed into the

main amplifier through a shielded cable. Signals passed through a band pass

filter (50∼3000 Hz) to a data acquisition system (Power1401; CED), by which all

waveforms that exceeded an amplitude threshold were time-stamped and saved

at a sampling rate of 20 kHz. The threshold amplitude for each channel was ad-

justed so that action potential-like waveforms were not missed while minimizing

noise. After a recording session, the following off-line spike sorting was performed

using a template-matching algorithm and principal component analysis by Spike2

(Spike2; CED): recorded waveforms were classified into several groups based on

their shapes, and a template waveform for each group was computed by averaging.

Groups of waveforms that generated templates that appeared to be action poten-

tials were accepted, and others were discarded. Then, to test whether accepted

waveforms were recorded from multiple neurons, principal component analysis

was applied to the waveforms. Clusters in principal component space were de-

tected by fitting a mixture Gaussian model, and each cluster was identified as

signals from a single neuron. This procedure was applied to each 50 min data

segment; and if stable results were not obtained, the data were discarded. Then,

gathered spike data were refined by omitting data from neurons that satisfied at

least one of the five following conditions:

(1) The amplitude of waveforms was < 7× the SD of background noise.

(2) The firing rate calculated by perievent time histograms (PETHs) (from -4.0

s to 4.0 s with 100 ms time bin based on the onset of cue tone, the exit of the

center hole, or the entrance of the left or right hole) was < 1.0 Hz for all time

bins of all PSTHs.

(3) The estimated recording site was considered to be outside the target.

Furthermore, considering the possibility that the same neuron was recorded

from different electrodes in the same bundle, we calculated cross-correlation his-

tograms with 1 ms time bins for all pairs of neurons that were recorded from

different electrodes in the same bundle. If the frequency at 0 ms was 10 × larger

than the mean frequency (from -200 ms to 200 ms, except the time bin at 0 ms)

and their PETHs had similar shapes, either one of the pair was removed from
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the database.

3.2.6 Motion tracking

Three IR-reflection markers for motion tracking were attached on rat’s head,

back and tail. We used sphere markers (diameter; 15 mm) for head and back and

fixed by adhesive (Aron Alpha, Konishi) and a screw implanted in their back,

respectively. IR-reflection seal (width; 8mm) was used as a tail marker and fixed

on base of tail. Rat’s motion during the task was recorded at 30 fps using two

monochrome cameras set on the top of chamber. After experiments, marker’s

positions were calculated from two movies in three dimensions using Move-tr/3d

(Library). In the procedures, we firstly calibrate coordinates using six reference

points in the chamber. The calibration was conducted in every session since the

chamber might be moved by cleaning etc.

3.2.7 Histology

After all experiments were completed, rats were anesthetized as described in the

surgery section, and a 10 µA positive current was passed for 30 s through one

or two recording electrodes of each bundle to mark the final recording positions.

Rats were perfused with 10% formalin containing 3% potassium hexacyanoferrate

(II), and brains were carefully removed so that the microwires would not cause

tissue damage. Sections were cut at 60 µm on an electrofreeze microtome and

stained with cresyl violet. Final positions of electrode bundles were confirmed

using dots of Prussian blue. The position of each recorded neuron was estimated

from the final position and the moved distance of the bundle of electrodes. If the

position was outside DLS, M1, DMS, or PL, recorded data were discarded.
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3.3 Results

3.3.1 Behavioral performance

We trained the free-choice task to 6 rats and conducted 28 sessions totally. In

the continuous condition (CC), rats became to choose an optimal side with large

reward probability (75%) with their reward experiences (Figure 3.2A). When

the side switched to the opposite after some trials, their choice tendencies also

changed. In the CC, the probability of choosing an optimal side in choice trials

was 0.65 on average and was significantly larger than the chance level (p = 1.8e−
04, two-sample t-test, Figure 3.2B). However, in the intermittent condition (IC),

the probability was 0.53 on average and was not significantly larger than the

chance level (p = 0.40). In addition, the probability was significantly larger in

the CC than in the IC (p = 1.4e − 13, paired t-test). These results indicate

that rats recognized a side with large reward probability and reflected it to their

action selections in the CC, whereas that no-choice trials in the IC inhibited their

optimal action selections.

Figure 3.2: Behavioral results.
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Figure 3.2: (A) A representative example of a rat’s performance. The blue vertical

lines indicate individual choices in choice trials. The red vertical lines indicate

no-choice trials. The long lines and short lines represent rewarded and no-reward

trials, respectively. The green trace in the middle indicates the probability of a

left choice in choice trials (average of the last 10 choice trials). (B) The gray

bars indicate average probabilities of optimal action selection. The blue circles

indicate the probabilities in each session.

3.3.2 Neural responses to task-, space- and motor-related variables

We succeeded in recording of 185, 71, 81 and 171 neurons from DMS, DLS, PL

and M1, respectively. To investigate parallel neural representation during the

task, we distinguished behavioral variables into following three classes. Task-

related variables were presented cues (tone A/B), rat’s choices (left/right), and
delivery of reward. Space-related variables were rat ’s head positions and head

directions in the chamber. Motor-related variables were rat ’s head velocities

(lateral/anterior), accelerations (lateral/anterior) and rotation. Note that there

is a possibility that the task-, space- and motor-related variables are correlated

with each other. As an example, when a cue tone was presented, rats’ motion

stopped, since they entered their noses into the center hole.

We firstly checked neural responses to the task-related variables. The averaged

activities of an example of DMS neuron rose with the presentation of tone A,

whereas no rise was observed to tone B (Figure 3.2A). To statistically test these

responses, we compared firing rates during 0.5 sec. following cue onset of tone

A or B. The result showed significance difference (p < 0.05, Mann-Whitney U

test) at p = 1.0e − 13, therefore, we classified this neuron as a tone-correlated

neuron. Another example DMS neuron was more strongly activated when a rat

chose the right poke hole than when he chose the left one (Figure 3.2B). The firing

rate during 0.5 sec. following poke C offset was significantly different (p < 0.05)

between in action L and R (p = 4.3e − 29). This type of neuron was named

an action-correlated neuron. In addition, another example of neural activities

recorded from DMS was activated by deliveries of reward, whereas not activated

in no-rewarded trials (Figure 3.2C). We compared firing rates during 0.5 sec.
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following reward or no-reward tone onset between rewarded and no-rewarded

trials. As the result, these activities were significantly different (p < 0.05) at

p = 0.0073, therefore this neuron was a reward-correlated neuron.

In summary of neural representations of task-related variables, the proportions

of tone-correlated neurons (Figure 3.2D) were 39% (73 of 185 neurons; DMS), 49%

(35 of 71; DLS), 49% (40 of 81; PL) and 29% (50 of 171; M1). The proportion

of the PL was significantly larger than that of the M1 (p = 0.0016, Chi-squared

test). The proportions of action-correlated neurons (Figure 3.2E) were 45% (84

of 185; DMS), 55% (39 of 71; DLS), 26% (21 of 81; PL) and 59% (101 of 171;

M1). The proportion of the M1 was significantly larger than that of the PL

(p = 1.1e − 06). The proportions of reward-correlated neurons (Figure 3.2F)

were 14% (26 of 185; DMS), 8% (6 of 71; DLS), 16% (13 of 81; PL) and 22% (37

of 171; M1).

We next checked neural responses to the space-related variables. To investi-

gate neural activities to rat’s head position, we calculated average firing rates in

160 (40×40) subdivided places, therefore, the area of each subdivide place was 1

cm2. The result of a DMS neuron was presented as a heat map (Figure 3.3A). It

seemed that this neuron had place preference around right-poking hole. In order

to quantify its place preference, we changed the numbers of subdivide areas from

160 to 12 (3 × 3 in chamber + 3 poking holes), then calculated averaged firing

rates in each area. The averaged firing rates in the place #9 and #R were over

the entirely averaged firing rate plus 0.5 standard deviation (Figure 3.3B). We

defined the space-preference neuron as neuron whose averaged firing rates in each

area was over the entirely averaged firing rate plus 0.5 standard deviation (s.d.)

at least one area.

We also examined whether recorded neurons showed activities depending on

rat’s head directions in the chamber. Head directions were defined as the facing

side of line drawn from back to head markers. We showed an example of activities

of a DMS neuron (Figure 3.3D). Here, we discretized head directions to eight

directions in order to simplify analyses, then calculated average firing rates at

each direction. The averaged firing rate at 90 ◦ was over the entirely averaged

firing rate plus 0.5 s.d. (Figure 3.3E). We defined the head-direction neuron as
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Figure 3.3: Examples of tone-, action- and reward-correlated neurons.

(A) Averaged firing rate of a tone-correlated DMS neuron. Yellow areas indicate

significant difference between tone A and B. (B) Averaged firing rate of an action-

correlated DMS neuron. (C) Averaged firing rate of a reward-correlated DMS

neuron. (D-F) The proportions of tone-correlated neurons (D), action-correlated

neurons (E) and reward-correlated neurons (F).
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neuron whose averaged firing rates at each direction was over the entirely averaged

firing rate plus 0.5 s.d. at least one direction.

In summary of neural representations of space-related variables, the propor-

tions of place-preference neurons (Figure 3.3C) were 32% (59 of 185; DMS), 8%

(6 of 71; DLS), 33% (27 of 81; PL) and 26% (45 of 171; M1). The proportions of

head-direction neurons (Figure 3.3F) were 17% (31 of 185; DMS), 1% (1 of 71;

DLS), 10% (8 of 81; PL) and 9% (16 of 171; M1). In both cases of space and

head direction, the proportions of the DMS were significantly larger than those

of the DLS (space; p = 1.1e− 04, head direction; p = 8.9e− 04).

Figure 3.4: Examples of neural activities with preferences for place

or head direction. (A) Heat map of averaged firing rate of a DMS neuron

at each place. The gray numbers indicate # of place. (B) This neuron was

strongly activated in the place #9 and #R. Each bar indicates differences from

the averaged firing rate of entire place. (C) The proportions of neurons with place

preference. **; p < 0.01, n.s.; p ≥ 0.05, Chi-squared test. (D) Averaged firing

rates at each head direction.
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Figure 3.4: (E) This neuron was strongly activated at 90◦. Each bar indicates

differences from the averaged firing rate of all directions. (F) The proportions of

neurons with head-direction preference.

Thirdly, to check neural responses to the motor-correlated variables, we cal-

culated head velocities in each 100 ms time bin on rat’s egocentric axes and

analyzed correlations between the head velocities and firing rates. These veloc-

ities took positive values when head moved to right or anterior side, whereas

negative values when it moved to left or posterior side. An example of neural

activities of the DLS was shown in Figure 3.4A and C. The firing rate of this neu-

ron became higher when the head moved to left or posterior side. The correlation

coefficient between lateral velocities and firing rate (rlateral) was significantly

negative (rlateral = −0.25, p < 1.0e − 256). And the correlation coefficient be-

tween anterior velocities and firing rate (ranterior) was also significantly negative

(ranterior = −0.24, p < 1.0e− 256).

Moreover, rat’s rotations were detected using head and back markers. For

the detection, we drew lines connecting head and back markers at each time bin,

then measured angles between lines before and after rotation. Here, positive an-

gle means right rotation, whereas negative angle means left rotation. An example

of neural activities of the DMS was presented in Figure 3.4E. This neuron was

more strongly activated when the rat rotated left side. The correlation coeffi-

cient between rotation angle and firing rate (rrotation) was significantly negative

(rrotation=-0.34, p < 1.0e− 256).

In summary, the medians of rlateral were DMS; 0.024, DLS; 0.016, PL; 0.017

and M1; 0.032 (Figure 3.4B). The medians of ranterior were DMS; 0.023, DLS;

0.022, PL; 0.021 and M1; 0.041 (Figure 3.4D). The medians of rrotation were

DMS; 0.024, DLS; 0.018, PL; 0.014 and M1; 0.033 (Figure 3.4F). In the cortex,

the M1 had significant larger rlateral (p = 4.2e − 04, Mann-Whitney U test),

ranterior (p = 1.4e− 05) and rrotation (p = 1.2e− 04) than the PL, whereas in the

striatum, there were no significant differences between the DMS and DLS.
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Figure 3.5: Examples of neural activities correlated with head veloc-

ities or rotation. (A) Averaged firing rate of a DLS neuron at each velocity

range (lateral motion). Right motion has positive velocity. Error bars indicate

standard errors. (B) Medians of correlation coefficients between lateral velocity

and firing rate. **; p < 0.01, n.s.; p >= 0.05, Mann-Whitney U test.
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Figure 3.5: (C) Averaged firing rate of same DLS neuron at each velocity range

(anterior motion). Anterior motion has positive velocity. Error bars indicate

standard errors. (D) Medians of correlation coefficients between anterior velocity

and firing rate. (E) Averaged firing rate of a DMS neuron at each rotation angle.

Right rotation has positive. Error bars indicate standard errors. (E) Medians of

correlation coefficients between rotation angle and firing rate.

3.3.3 Parallel neural representations of task-, space- and motor-related

information in the striatum and cortex

As I showed in the preceding sections, we confirmed neurons in four recorded

brain regions responded to task-, space-, or motor-related variables. In this sec-

tion, to examine parallel neural representations of these variables, we designed

multiple regression models, and tested which model did most explain each neural

activity. The regression models were 1) task model including information of con-

ditions (CC or IC), type and presentation of cues, rat’s choice, and delivery of

reward, 2) space model including information of rat’s place and head directions,

3) motor model including rat’s head velocities (lateral/anterior), acceleration (lat-

eral/anterior) and angle of rotation, 4) task-space model combining task model

and space model, 5) task-motor model combining task model and motor model, 6)

space-motor model combining space model and motor model, 7) task-space-motor

model combining task model, space model and motor model, 8) null model.

After fitting firing rates of each neuron to these models, we got BICs as model

criteria, then selected a model with the minimum BIC. The proportions of each

model were presented in Figure 3.7A. In all recorded areas, the task-space-motor

model was most frequently selected (DMS; 64%, 119 of 185, DLS; 56%, 40 of

71, PL; 72%, 58 of 81, M1; 74%, 128 of 172). In the DMS, DLS and M1, the

space-motor model was second-frequently selected (DMS; 21%, 39 of 185, DLS;

24%, 17 of 71, PL; 5%, 4 of 81, M1; 16%, 28 of 172). In the PL, the task-motor

model was second-frequently selected (DMS; 4%, 7 of 185, DLS; 6%, 4 of 71,

PL; 12%, 10 of 81, M1; 5%, 9 of 172). In total, 68% of DMS neurons (126 of

185), 61% of DLS neurons (44 of 71), 84% of PL neurons (68 of 81) and 80% of

M1 neurons (137 of 172) were represented task-related variables (Figure 3.7B).
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Focusing on space-related variables, 85% of DMS neurons (158 of 185), 80% of

DLS neurons (57 of 71), 77% of PL neurons (62 of 81) and 91% of M1 neurons (156

of 172) represented them. In the case of motor-related variables, 90% of DMS

neurons (166 of 185), 87% of DLS neurons (62 of 71), 90% of PL neurons (73

of 81) and 97% of M1 neurons (167 of 172) represented motor-related variables.

In the cortex, the total proportions of neurons coding space- or motor-related

variables were significantly larger in the M1 than in the PL (task; p = 0.42,

space; p = 0.0023, motor; p = 0.019, Chi-squared test), whereas there were no

significant differences in the striatum (task; p = 0.35, space; p = 0.32, motor;

p = 0.58). These results indicate that majorities of striatal and cortical neurons

encoded multiple modalities in parallel and that the M1 encoded space and motor

information more strongly than the PL.
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Figure 3.6: Results of model selection. (A) The proportions of selected

models. **: p < 0.01, *: p < 0.05, n.s.: p ≥ 0.05, Chi-squared test. (B) The

total proportions of neurons coding task-, space- or motor-related variables. **:

p < 0.01, *: p < 0.05, n.s.: p ≥ 0.05, Chi-squared test.
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3.4 Discussion

We captured motions of rats performing a choice task and performed electrophys-

iological recording of neurons in DMS, DLS, PL and M1 in parallel. The major

findings were as follows;

1. Neurons in DMS, DLS, PL and M1 responded to task-, space-, or motor-

related variables.

2. Majorities of striatal and cortical neurons encoded multiple modalities in

parallel.

3. Compared with neurons in the PL, those in the M1 encoded space or motor

information more strongly.

In analyses of neural activities based on the task-related variables, the activ-

ities of neurons modulated by types of cue tones (tone-correlated neurons) may

code either the difference in expected reward (i.e., no pellet for the no-choice

tone, and less than one pellet for the choice tone) or the difference in behaviors

after the tone. In another case, the activities of neurons modulated by differ-

ent actions during the execution of the poking (action-correlated neurons) might

code either differences in the physical movements or differences in the spatial po-

sition of rats. In the current study, we recorded rat’s physical motions and neural

activities in parallel, therefore, could analyze the activities on space- and motor-

related variables as well. The results demonstrated that many neural activities

would not only be explained by task-related variables, but also by other variables,

such as place, head velocity or rotation and so on. This is because variables in

each modality were related to each other. For example, when rats were poking

to a hole or eating a pellet, their head velocities became nearly zero. Therefore,

we tried to determine which combination of task-, space- and motor-related vari-

ables did most explain neural activities. For this purpose, we compared BICs of

eight linear regression models and selected the model with the minimum BIC.

In all recorded brain regions, task-space-motor coding neurons were majorities.

Moreover, in the DMS, DLS and M1, space-motor coding neurons were second-

frequently observed. On the other hand, neurons coding only one modality of
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variables were rare. These results suggest the parallel information processing in

the cortico-basal ganglia loops.

In the striatum, there were no significant differences on the distribution of

selected model. This is an unexpected result, since the DMS and the DLS are

received anatomical inputs from frontal and sensorimotor cortices, respectively

[59]. We just focused on the proportions of selected models in this analysis,

therefore, the amount of each information might be different between the DMS

and the DLS. On the other hand, the total proportions of neurons coding space-

or motor-related variables were larger in the M1 than in the PL. These results

are consistent with well-known roles of cortex; that is the M1 is involved in motor

function.

In conclusion, neurons in the cortico-basal ganglia loops including striatum,

prefrontal cortex and motor cortex processes multi-modal information in paral-

lel. This observation encourages to record and analyze neural activities with the

animal ’s motion.
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4. Conclusion and future directions

4.1 Conclusion

Based on the reinforcement theory, I examined physiological functions of the stria-

tum for reward-based learning or decision making. Current major research direc-

tions of the striatum are 1) striosome/matrix, 2) subregions and 3) direct/indirect

pathway. This thesis covered two topics as the following. Chapter 2 covered the

topic of striosome/matrix. Using a cell-type specific calcium imaging method for

striosomal neurons, I could record activities of neurons in striosomes during a

classical conditioning task and found reward-predictive activities. According to

the reinforcement learning theory, these activities encode values of sensory states.

Chapter 3 covered the topic of striatal subregions. By conducting electrophysi-

ological experiments of behaving rats and linear regression analysis of recorded

neural activities, I found that majorities of striatal neurons parallery encoded

multiple modalities. However, I could not find any differences of information

coding between the DMS and the DLS unfortunately.

This thesis would give knowledge about neural representations of the stria-

tum during reward-based learning or decision making and a suggestion that the

reinforcement learning theory is an useful framework to understand physiological

functions of the cortico-basal ganglia circuits.

4.2 Future directions

In the Ca2+ imaging experiment of striosomal neurons, there was no concept of

action selection since its behavioral task was the classical conditioning. For this

reason, I could not approach a question whether reward prediction and action

selection are separated between striosomes and matrix. In addition, I could not

record matrix neural activities selectively due to technical difficulties at that time.

However, a matrix-cre line (Plxnd1-OG1) has been developed recently [37, 38] and

become available from mutant mouse research resource center (MMRRC). Using

same Ca2+ imaging method applied to striosomal neurons, we are able to record

matrix neurons selectively. By recording and manipulating striosome/matrix neu-

rons during an operant conditioning task that involves choices between multiple
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actions (Figure 4.1), we might be able to answer the question.

Figure 4.1: Head-fixed dual-licking choice task. Mice choose the left or

right by licking spouts and acquire water rewards.

As I mentioned in the previous chapter, it is known that the ratios of D1-

MSNs and D2-MSNs were different between striosomes and matrix [5]. I think

that selective recording of striosomal and matrix neurons is not enough to future

study. I am predicting that one of the next research trends in the field of the

striatum is to record or manipulate neurons with discrimination of striosome-D1,

striosome-D2, matrix-D1 and matrix-D2. A strategy is to combine transgenic

animals and retrograde viruses. These viruses retrogradely infects neurons via the

axon terminals. AAV2-retro is one of the retrograde virus and its properties are

non-pathogenic and high-efficient infection [63]. It is theoretically possible that

we conduct selective recording and manipulation of striosome-D1 and matrix-D1

MSNs by infecting AAV2-retro from SN to striatum (Figure 4.2).
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Figure 4.2: Concept of striatal compartment-pathway selective virus

infection. (A) Striosomal D1-MSNs selective GCaMP expression. (B) Matrix

D1-MSNs selective GCaMP expression. S: striosome, M: matrix, SNc: substantia

nigra pars compacta, SNc: substantia nigra pars reticulate, GPe: external globus

pallidus, STN: subthalamic nucleus.
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With respect to parallel information coding in the striatum, we should next

record neurons of the VS. The VS receives inputs from prefrontal cortex [59].

Thus, it is expected that its neurons represent more strongly task-related vari-

ables, such as context [13], than the others. On the other hand, neurons in each

subarea are not specialized in information processing at a specific modality, and

it does not know whether it really affects decision making. Although it is known

that lesions of DMS and DLS trigger inhibition of acquisition of goal-directed and

habitual behaviors, respectively [15], it is necessary to conduct lesion or optoge-

netic experiment from the angle of parallel information processing. It is expected

that activation or inhibition of neurons in VS, DMS and DLS effect to task initi-

ation, abstract action selection and physical movement, because the hierarchical

reinforcement learning model hypothesizes that they represent states or actions

at different physical and temporal scales.
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