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Studies on improving two fundamental steps for

Chinese natural language processing: word

segmentation and spelling check∗

Fei Cheng

Abstract

In Chinese, a sentence is written as a sequence of Chinese character without

any indicators of word boundaries. Therefore, Chinese word segmentation

is generally thought as the fundamental step in the Chinese Natural Language

Processing (NLP) pipeline. In the meanwhile, Chinese spelling check is an

automatic mechanism to detect and correct human errors in unsegmented Chinese

documents, which can be seen as the prior process before word segmentation.

Chinese word segmentation and spelling check play such crucial roles as

to directly affect all the other downstream Chinese NLP tasks such as Part-of-

Speech tagging, syntactic parsing and etc. However, both these two tasks are

facing some challenges.

InChinese word segmentation, there are two main issues remaining. First,

various word segmentation standards keep the existing corpora from being used

in combination. Second, highly productive Chinese synthetic words increase out-

of-vocabulary words. We believe that both issues can be addressed by analyzing

the internal structure of words. For this purpose, we construct a dictionary of

synthetic words with the internal structure manually annotated. By taking the

dictionary as training data, we propose a machine learning based word structure

parser which can automatically analyze the internal structure of input words.

We demonstrate that the word segmentation performance can be improved by

parsing the internal structure of the words in the training data. Furthermore, we
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and Technology, NAIST-IS-DD1361023, March 15, 2018.
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propose a simple strategy to transform two different Chinese word segmentation

corpora into a new consistent segmentation level, in which the two corpora are

used in combination. The larger combined training data is verified to be highly

consistent by 10-fold cross-validation. With the help of larger training data size

and internal structure of words, our segmentation system achieves state-of-the-art

performance on the test data of the two corpora.

As for Chinese spelling check, spelling errors are hard to be detected with-

out word boundary information and must be considered within a context. Our

two-stage spelling check system first enlarges the candidate lists by gathering cor-

rections generated by several individual systems. The second ranking component

is to select the most possible correction to balance precision and recall.
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Chapter 1

1. Introduction

This chapter sets the general view of the dissertation. Section 1.1 introduce the

motivation for improving the current issues in two fundamental prior steps of

Chinese natural language processing: Chinese word segmentation and spelling

check. Section 1.2 summarizes the contributions of this dissertation. The outline

of the whole dissertation is listed in Section 1.3.

1.1 Motivation

Chinese word segmentation (CWS) is commonly thought as the fundamental

process in the Chinese natural language processing pipeline, for the reason there

is no word delimiter in Chinese such as ’space’ in English. Two issues with the

conventional pipeline methods involving word segmentation are (1) the lack of

a common segmentation standard and (2) the poor segmentation performance

on OOV words. These two issues may be circumvented if we adopt the view

of character-based parsing, providing both internal structures to synthetic words

and global structure to sentences in a seamless fashion. We believe that synthetic

word analysis is a potentially important but relatively unexplored problem in

Chinese natural language processing. However, the accuracy of synthetic word

parsing is not yet satisfactory, due to the lack of research.

In this thesis, we first focus on building a Chinese synthetic word dictionary

with internal structures annotated, which is a potential useful resource for other

down-streaming Chinese NLP tasks. Then, we develop a synthetic word parser to

predict internal structures of words. Finally, a standard CRF-based segmenter is

adopted to verify the improvement of CWS performance obtained from internal

structure information inside words.

As a consequence of the lack of common segmentation standard, the Chinese

word segmentation corpora accomplished by different research groups can hardly

achieve cooperation. We further proposed a simple strategy to transform different
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CWS corpora to a common segmentation level, in which multiple CWS corpora

can be simply combined to achieve larger training data. The extended training

data is verified to be highly consistent. We make a detailed investigation of the

improvement brought by the extension of training data and additional internal

structure information.

Spelling check is an automatic mechanism to detect and correct human errors,

which is a common task in every written languages. In Chinese natural language

processing, spelling check can be seen as the prior step before word segmentation.

However, Chinese spelling check (CSC) is different from that in other alphabetical

languages. There are no word delimiters in raw documents and most words are

with short lengths (usually one to three characters). Therefore, error detection

is very hard in Chinese and must be considered within a surrounding context,

not just within a single word (such as spelling check in English). The Seventh

SIGHAN Workshop establishes a share task for Chinese spelling check with two

sub-tasks: error detection and error correction, as shown in Figure 1.

Two popular CSC approaches are: language model based (LM-based) method

and statistic machine translation based (SMT-based) method. LM-based method

is to calculate the scores of all possible sentences generated by replacing each

character with a new character in its confusion set (a collection of candidates

for the spelling error). SMT-based method is another solution, which treats a

input sentence with errors as ’source language’ and the correct sentence as ’target

language’.

In this thesis, we develop a two-stage hybrid CSC approach, which first com-

bines the correction candidates generated by several single models. In the second

stage, a Support Vector Machines (SVMs) model is used to rank each candidate

list to generate the most possible character. Our proposed model is expected

to obtain a large correction candidate list for each character compared to a sin-

gle model method and context, dictionary or class-based features can be easily

incorporated into our SVMs ranking step.

1.2 Contribution

Our contributions are summarized as follows:

2



Figure 1. Two common sub-tasks of Chinese spelling check: error detection and

error correction.

• We construct a useful dictionary of 31,849 synthetic words with internal

structure information annotated.

• We define a character-based dependency framework for analyzing internal

structure of Chinese synthetic words and boost parsing performance by

extracting additional features from a dictionary and a large-scale unlabeled

corpus.

• We propose a method to improve Chinese word segmentation performance

by incorporating internal structure information inside Chinese synthetic

words. Our system transforms the words in the original training data into

a fine-grained segmentation level, and achieves state-of-the-art word seg-

mentation performance.

• We propose a strategy to transform two CWS corpora of the the Second

International Chinese Word Segmentation Bake-off data to a consistent seg-

mentation level, in which multiple corpora can be simply combined to ex-

tend larger training data. The extension of training data and the flexibility

of incorporating internal structure information of our pipeline word seg-

mentation system show significant improvement of the word segmentation

performance.

• We propose a two-stage hybrid approach for Chinese spelling check, which

contains two key steps: correction generation and correction rank-

ing Our spelling check approach is simple, effective and consuming low

3



resources. The final test shows that our approach obtains competitive re-

sults of the state-of-the-art systems, which used much more resources.

1.3 Outline of Dissertation

For the lack of available resources for analyzing internal information of Chinese

words, we build a synthetic word dictionary with internal tree structure manually

annotated.

In Chapter 2, we conduct following processes to reach the goal of analyzing

the word structure.

• establish the annotation standard and construct a synthetic word dictionary

with the internal structure annotated.

• design a character-based morphological dependency framework to represent

different structure types of Chinese synthetic words.

• a graph-based dependency parser is implemented to perform the parsing

work and several types of features extracted from a dictionary and a large-

scale unlabeled are incorporated to boost our parser.

In Chapter 3, we introduce our word segmentation model, which is enhanced

by using the internal structure information inside words. The basic idea is to:

• use the synthetic word parser described in Chapter 2 to parse the internal

structure of the words in current word segmentation training data to convert

the data into a fine-grained level.

• use a CRF-based segmenter to predict the combined position label of each

character, which contains both the original annotated and new fine-grained

information.

In Chapter 4, we introduce our pipeline word segmentation system, which is

benefited from the extension of larger training data and the flexibility of incor-

porating internal structure information.

• propose a strategy to transforms multiple CWS corpora to a common seg-

mentation level for a easy extension of larger training data.

4



• the common segmentation data is flexible to introduce internal structure

further.

In Chapter 5, we introduce a two-stage hybrid Chinese spelling check system

with two key steps: correction generation and correction ranking. The basic idea

is to:

• enlarge the correction candidate list by merge the results from a LM-based

model and a SMT-based model.

• adopt a SVMs model to predict a confidence score for each correction in a

candidate list of a character in sentences. Each candidate list is ranked by

the score and the top character is treated as the most possible correction.

In Chapter 6, we summarize this dissertation and discuss the future direction

of this work.

5



Chapter 2

2. Analyzing the Internal Structure of Chinese

Synthetic Words

In this chapter, we construct an useful dictionary of Chinese synthetic words with

the internal structure manually annotated and propose a character-based depen-

dency framework for analyzing the word structure. In Section 2.1, we introduce

the motivation and background of Chinese synthetic word parsing. We define the

classification of Chinese words in Section 2.3. The annotation standard is care-

fully established and the detailed annotation work is introduced in Section 2.4.

In Section 2.5 , we introduce a character-based dependency representation of the

word structure and several feature types extracted from a dictionary and a large-

scale unlabeled corpus are incorporated into our parser. In Section 2.6, a series

of experiments are conducted to evaluate the performance of our synthetic word

parser and the usefulness of features. The summarization of this chapter is at the

last part.

2.1 Introduction

Unlike Indo-European languages, such as English, a sentence in Chinese is written

as continuous characters without distinct word boundaries. Chinese word segmen-

tation (CWS) is commonly treated as the first step, before part-of-speech (POS)

tagging, parsing, and other components in the natural language processing (NLP)

pipeline. The dominant approaches treat word segmentation as a character-based

sequential labeling problem. Conditional Random Fields (CRFs) is the common

learning model applied in this task. This method offers both robust performance

and flexibility to incorporate features.

Unfortunately, there is not a clear and intuitive notion of ’word’ in Chinese.

A highly controversial part is that Chinese synthetic words have a quite com-

plex structure and could be represented by several segmentation levels as shown

in Figure 2. The immediate consequences are two issues: the variety of word

6



Figure 2. The variety of the segmentation levels of a sample synthetic word.

segmentation standards and highly productive out-of-vocabulary (OOV) words.

Thus, one research line is to find more useful statistic or class-based features to

improve segmentation performance. On the other hand, both two issues indicate

one common solution, which is to investigate internal information inside Chi-

nese words. However, less available resources can be found for analyzing internal

structure of Chinese words.

In this work, we propose a series of processes for the purpose of analyzing the

internal structure information of words. Constructing a resource with internal

information annotated is the first step for parsing word structure by using the

supervised learning methods. We first introduce the classification of ’word’ in

Chinese. Based on this classification, we carefully assign the annotation stan-

dard and the annotation work is completed by four students. Then, we design a

character-based dependency relation framework for jointly analyzing segmenta-

tion and structure parsing, which is implemented by a graph-based dependency

model. For boosting the parsing performance, several statistic and cluster features

extracted from a dictionary and a large-scale unlabeled corpus are incorporated

into our parsing model. Finally, a 10-fold cross validation is used to evaluate

the performance of our character-based dependency framework, compared to the

traditional pipeline method. Furthermore, we make a detailed investigation of

the improvement brought by different features.

7



2.2 Related Work

Recently, some work on using the internal structure of words to improve Chinese

process show promising results on different tasks. Li [18] claimed the importance

of word structures. They proposed a new paradigm for Chinese word segmen-

tation in which not only flat word structures are identified but with internal

structures are also parsed in a sentence. They aimed to integrate word structure

information to improve the performance of word segmentation, parsing or other

NLP tasks on sentences. Zhang et al. [46] manually annotated the structures

of 37,382 words, which covered the entire Chinese tree bank 5 (CTB5). then,

they built a shift-reduce parser with the customized actions designed to jointly

perform word segmentation, Part-of-speech tagging and phrase-structure parsing.

Their system significantly outperformed the state-of-the-art word-based pipeline

methods on CTB5 test.

However, these work reply on prior knowledge of internal structure informa-

tion on CTB5, which is provided by the manual annotation processes. Our work

aims to construct a automatic mechanism to analyzing the structure of a word

accurately, which is helpful to any tasks in the Chinese NLP pipelines. For in-

stance, given a synthetic word parser, we can easily reconstruct a character-level

CTB5 corpus to benefit the parsing task in a similar way as Zhang et al. [46]

without relying an additional annotation work. Although the result might not be

as good as the performance based on the gold annotation data, a robust synthetic

word parser can reach a close performance to manual annotation and adapt to

any other word-based resources.

Our character-based word parsing model is inspired by the work [24, 47]. Lu

et al. [24] described the semantic relations between characters. They proposed a

structure analysis model for three-character Chinese words. Zhao [47] presented a

character-level unlabeled dependency scheme as an alternative to linear represen-

tation of sentences for word segmentation task. Their results demonstrated that

the character-based dependency framework can obtain comparable performance

compared to the state-of-the-art word segmentation models.

Instead of adopting a traditional pipeline method with word segmentation

and parsing to analyze the word structure, we extends these previous work by

proposing a character-based morphological dependency framework to represent

8



the internal tree structure of words. In the experiments, our framework signifi-

cantly outperforms the pipeline method without relying any extra resources. In

additional, we further boost our word structure parser by extracting statistic and

cluster features from a large-scale unlabeled corpus and a dictionary. Our word

structure parser is expected to provide reasonable performance to convert the seg-

mentation standards of the existing word segmentation corpora to a fine-grained

level (Section 3.3.1).

2.3 Definition of ‘Word’ in Chinese

In Chinese, word is generally considered as an ambigous definition, because a

clear delimiter space does not exist. For Chinese speakers, a word is a lexical

entry, representing a whole meaning. In this chapter, we adopt the simple classi-

fication of Chinese word proposed by Lu et al. [24], which divided Chinese words

into the following two types.

• Single-morpheme Word: Those words only have one morpheme inside

them and cannot be segmented further. It means that the meanings of

the individual parts do not indicate the meaning of the original word. The

following are three sub-types of single-morpheme words:

– One-character single-morpheme word:

人 (human), 睡 (sleep), 热 (hot)

– Multi-character single-morpheme word:

葡萄 (grape), 徘徊 (wander), 彷徨 (hesitate)

– Transliterated word: Those words are usually translated from other

languages on pronunciation.

麦当劳 (McDonald’s), 瓦伦西亚 (Valencia), 大卫・贝克汉姆 (David

Becham)

• Synthetic Word: These words are composed of two or more single-morpheme

words and represent a new meaning which can be indicated from the inter-

nal constituents. Figure 3 is the internal structure of the synthetic word总

/ 工程 / 师 (chief engineer):

9



Figure 3. An example of the internal tree structure of a Chinese synthetic word.

Given the internal tree structure of the word 总 / 工程 / 师 , the meaning

can be inferred as ’chief master of engineering’.

A special case in Chinese is some two-character words, such as工程 (engineer-

ing) can be further segmented into two single character 工 (craft) and 程 (pro-

cess). In this thesis, we treat this type of two-character words in the same way

as single-morpheme words, which are the minimal units (leaf) in a parse tree.

2.4 Annotation

A serious challenge for internal structure analysis of synthetic words is the lack of

available resources. Therefore, we decide to manually annotate the internal struc-

ture of Chinese synthetic words in Cradle [25], which is a lexicon management

system with friendly interfaces to annotate and present internal tree of words

(Figure 4).

2.4.1 Annotation Standard

Given a list of Chinese synthetic words, we carefully establish the following an-

notation based on the definition of Chinese word in Section 2.3.

• Determine whether the current word is a synthetic word or not. If it is a

single-morpheme word, the annotator skips to the next word in the list.

10



Figure 4. A tree structure example of a synthetic word in Cradle.

• Split the target word into meaningful parts (normally two parts on each

level) from top to bottom.

• Stop annotating until that all the split parts are single-morpheme words.

2.4.2 Annotation Data

Chinese Wikipedia is a rich extending resource, which contains plenty of Chinese

synthetic words. An article title in Chinese Wikipedia generally takes a indepen-

dent meaning, such as a place, a historical event or a technical term. There are

826,557 article titles in our 2012 crawl of Chinese Wikipedia. According to our

annotation standard, four students randomly annotated 31,849 words 1 with the

length distribution shown in Table 1. Each student’s annotation is revised by

another student.

For investigating the quality of our annotation, we required two of the students

to annotate additional 200 words. We evaluate the annotation agreement in

two levels. They first do word segmentation on the input words. Secondly,

they annotate brackets on the gold segmented words. The Kappa-coefficient on

1https://github.com/racerandom/chcomparser
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character-Length Number of Words

3-character 21848

4-character 2292

5-character 1838

6-character 1516

7-character 1433

≥ 8-character 2992

Table 1. The word length distribution of our annotated data.

the word boundary between characters in the first step is 0.947. The Kappa-

coefficient on matching the brackets is 0.921.

Although the definition of ‘word’ in Section 2.3 is clear to follow, there are still

some vague cases in the middle of single-morphine words and synthetic words. For

instance, the word 工程 (engineering) is categorized as a single-morphine word in

the modern Chinese. However,工程 is derived from the meaning of the characters

工 (craft) and程 (process). These words are paraphrased from western terms (e.g.

社会 society, 纪律 discipline), by compounding two Chinese characters based on

their meanings. It suggests that the internal structure of Chinese words can be

annotated into a deeper character level in the further studies. Certainly, the

annotation requires more linguistic knowledge of Chinese characters.

2.5 Character-based Dependency model

Parsing is a common NLP task for analyzing the syntax structure of sentences.

Dependency grammar [12] is a modern syntactic framework, which presents the

sentence structure as all dependency relations (each dependency points to the a

single parent, from the modifier). Intuitively, the internal tree structure of words

can be seen as a small-scale analog of the sentence structure and dependency

parsing is a natural method to reach our goal.

However, correctly parsing Chinese synthetic words is challenging, not only

because word segmentation step exists, but also for the reason that standard

part-of-speech (POS) tags provide limited information. For instance, 中国 NN

/ 国际 NN / 广播 NN / 电台 NN contains a sequence of identical NN tags,

giving little clue about their internal branching structure. Our work is concerned
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with parsing Chinese synthetic words into a parse tree without replying on POS

tagging.

For these reasons, we design a character-based dependency model for predict-

ing internal word structure. Instead of using a traditional pipeline method with

word segmentation and word level parsing processes. Our model allows joint word

segmentation and internal structure parsing. Each dependency arc in our model

represent a morphological relation between two characters. The label set of the

model is introduced in Table 2.

Label Relation

B Branching relation (external)

C Coordinate relation (external)

WB Beginning inside a single-morpheme word (internal)

WI Other part inside a single-morpheme word (internal)

Table 2. The label set of character-level morphological dependency relations.

These four morphological dependency relations can be further classified into

two categories: internal and external. B and C are used to present the external

relation between two words. WB andWI are used to present the internal relation

of two character inside a single-morpheme word. However, the direction of the

internal relation is ambiguous to be assigned, even for native speakers. In this

work, all the single-morpheme words take a flat structure, which means that

the modifier always points to the head from left to right for all the internal

relations. For instance, an example of the flat structure of the transliteration

(single-morpheme) word 奥林匹克 (Olympic) is shown in Figure 5.

Figure 5. An example of the flat structure of a transliteration word
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2.5.1 Internal Structure with Character-level Dependency Represen-

tation

Before illustrating the internal structure of words by our dependency relation label

set, we classify two morphological structure types of Chinese words as follows.

Branching is the most common morphological relation connecting two in-

ternal parts. The branching structure of a tree-character word ABC can be

enumerated as three sub-types: A+BC, AB+C and A+B+C. For instance in

Figure 6, 副总统 (vice president) is an A+BC type synthetic word composed

by two single-morpheme words 副 (vice) and 总统 (president). The word 联系

人 (contact person) is composed by two single-morpheme words 联系 (contact)

and 人 (person). 中日韩 (China, Japan and Korea) is an A+B+C type word

composed by three single-morpheme words中 (China),日 (Japan) and韩 (Korea)

with coordinate relations between each other.

Merging is the other morphological phenomenon in Chinese. It means two

semantically related words sharing a common internal part, can be merged into

one word by removing one of the common parts. The Merging structure of a word

ABC can be also classified into three sub-types: AB+AC, AC+BC and AB +

BC. For instance in Figure 7, a word ABC 国内外 (domestic and overseas) can

be composed by AB 国内 (domestic) and AC 国外 (overseas), which are shar-

ing the common A 国 (country). The example 动植物 (animal and vegetation)

is consisted by 动物 (animal) and 植物 (vegetation) sharing the common right

character物 (object). 干电池 (dry cell) takes the AB + BC structure consisted

by two words 干电 (dry power) and 电池 (battery) sharing the common middle

character 电 (electricity).

The internal structure of a long synthetic word ’Olympic Games ’can be

represented as a character-level dependency tree as shown in Figure 8. 奥林匹克

with the labels WB WI WI represents a single-morpheme transliterated word

’Olympic’. 运动会 (sports competition) is composed by two single-morpheme

words 运动 (sports) and 会 (competition). 奥林匹克 and 运动会 take a external

branching relation between them.
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Figure 6. Branching structures of three-character synthetic words

Figure 7. Merging structures of three-character synthetic words

2.5.2 Graph-based Dependency Parsing

Graph-based dependency parsing algorithm [12, 26] defines the score of a depen-

dency graph as the sum of the scores of all the arcs s(i, j, l) it contains. Here,

s(i, j, l) is the arc between words i and j with label l. This problem is equivalent

to finding the highest scoring directed spanning tree in the complete graph over

the input sentence. It is represented by:

s(x, y) =
∑

(i,j,l)∈y

s(i, j, l) (1)

Second order sibling factorization [26, 4] is proposed as an extension of the

original graph-based dependency parsing, which shows the significant improve-

ment compared to first order parsing. The score of a tree for second order parsing

is

s(x, y) =
∑

(i,k,j,l)∈y

s(i, k, j, l) (2)

which is the sum of adjacent edge score in y. The new score function contains k

as the middle modifier between i and j, which can be easily reduced to standard

first-order model by ignoring k.

The implementation of graph-based parsing model adopted in this work is
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Figure 8. An example tree structure of a long word with our dependency repre-

sentation

MSTParser2 [26].

2.5.3 Feature Types

Our task can be seen as a joint prediction for position information (the word

segmentation task) and structure information (the parsing task). Both tasks

are inspired by the improvement from statistic features [13, 35] or cluster-based

features [23, 16] in the past decade. Therefore we plan to boost our parser by

incorporating the features extracted from two existing resources: a dictionary

(Naist Chinse dictionary 3 and a large-scale unlabeled corpus (Chinese Gigaword

second edition 4).

For easily demonstrating the feature types used in our graph-based synthetic

word parser, we denote a character ci to a character ck and cj with their context

[...ci−2, ci−1, ci, ci+1, ci+2...], [...ck−2, ck−1, ck, ck+1, ck+2...] and [...cj−2, cj−1, cj, cj+1,

cj+2...]. Table 3 is the template of all the context character sequence features

including both first order and second order types.

We further classifier the into three categories: Local, Long, 2-order. Lo-

cal features include the uni-gram cs to 4-gram cscs+1cs+2cs+3 character sequence

surrounding ci or cj. Considering the difference of our character-based word

structure parsing from the normal word-based parsing, Local plays an important

role to detect the internal relations (Table 2), which are designed to indicate the

position of a character inside a word. Long features are responsible to detect

2https://sourceforge.net/projects/mstparser/
3https://cl.naist.jp/index.php?%B8%F8%B3%AB%A5%EA%A5%BD%A1%BC%A5%B9%

2FNCD
4https://catalog.ldc.upenn.edu/LDC2005T14
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Type Feature Template

Local cs (i− 2 < s < i+ 2 and j − 2 < s < j + 2)

cscs+1 (i− 3 < s < i+ 2 and j − 3 < s < j + 2)

cscs+1cs+2 (i− 4 < s < i+ 3 and j − 4 < s < j + 3)

cscs+1cs+2cs+3 (i− 5 < s < i+ 4 and j − 5 < s < j + 4)

Long ci + cj, ci + cj−1cj, ci + ci−2ci−1ci

ci−1ci + cj, ci−1ci + cj−1cj, ci−1ci + cj−2cj−2cj

ci−2ci−1ci + cj, ci−2ci−1ci + cj−1cj, ci−2ci−1ci + cj−2cj−2cj

2-order ck + cj, ck−1ck + cj, ck + cj−1cj

ci + ck + cj, ci−1ci + ck + cj

ci + ck−1ck + cj, ci−1ci + ck−1ck + cj

ci + ck−1ck + cj−1cj, ci−1ci + ck−1ck + cj−1cj

Table 3. The character sequence feature template for the synthetic word parser.

’+’ denotes the combination of two character sequences. For Instance, the Brown

Cluster feature of the sequence ci+cj−1cj is the combination of two Brown Clusters

of ci and cj−1cj.

whether a external relation should be established between two head characters.

2-order features help our parser to more accurately predict sibling cases. For

instance, 副总统 in Figure 7 takes a most common Merging structure in which

two modifiers 副 and 总 point to a common head 统 with two different external

B and internal WB relations.

The feature types extracted from the extra resources are list as follows:

• Dictionary Feature: If a context character sequence in the feature tem-

plate (Table 3), exists in the NAIST Chinese dictionary (with 129,560 en-

tries), the existing POS tags in the dictionary of the sequence are used as

features. It is possible for one word to correspond to multiple POS tags

in the dictionary. For instance, 稳定 contains two possible POS tags: ’NN’

(noun) and ’VV’ (verb) in the dictionary.

• Brown Cluster Feature: Koo et al. [16] trained a dependency parser in

English and Czech and used Brown clusters [2] with different lengths as

additional features. we use our basic CRF-based segmenter (Section 3.3.2)

to do word segmentation on Chinese Gigaword second edition. Then we
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conduct a word-level Brown clustering on the segmented corpus. If a context

character sequence in the feature template (Table 3), exists in the word

list of the segmented corpus, its corresponding Brown cluster id is used

as a feature. ’k = 100’ reaches highest parsing performance in the cross-

validation experiments.

• Accessor Variety Feature: Feng et al. [13] first introduce the accessor

variety (AV) to identify meaningful Chinese words. The number of the

distinct occurrence (accessor variety) of character types before or after a

target character is a important statistic indicator to evaluate how likely

word boundaries surround it. The access variety value AV of a character

sequence s defined as following formula [48] is adopted as statistic feature

into their segmenter.

AV (s) = min{Lav(s), Rav(s)} (3)

where the left and right AV values Lav(s) and Rav(s) are defined, respec-

tively, as the numbers of its distinct predecessor and successor characters.

Since AV is a statistic number of distinct character types, the sparse data

problem exists. Zhao and Kitalleviate [48] narrow down the feature repre-

sentation to alleviate the sparse problem by the new feature function for

the AV (s) of a character sequence s as follows.

f(s) = t, if 2t ≤ AV (s) < 2t+1, (4)

where t is an integer to logarithmize the score. The AV score of a char-

acter sequence is proportion to the possibilities of the left and right word

boundaries surrounding it, which indicates s is a meaningful word or not. In

this work, all the AV scores are calculated from Chinese Gigaword second

edition in advance. The scores of all the character sequences in the feature

template (Table 3) are adopted as features.
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2.6 Experiments

2.6.1 Experiment Setting

For investigating the performance of our synthetic word parser 5, we perform a

10-fold cross-validation on the whole 31,849 synthetic words (obtained in Sec-

tion 2.4). Since the total 31,849 words are not repeated, the cross-validation

results can be seen as the analysis performance of our synthetic word parser on

the OOV words.

Intuitively, a pipeline method with word segmentation and parsing is a rea-

sonable baseline for comparison to evaluate the performance of our system. For

the pipeline method, we implement a word segmenter (Section 3.3.2) and a word

level MST parser with the default features [27, 28] to complete this task as the

baseline.

For evaluating the performance of our synthetic word parser, the evaluation

metric of CoNLL 2006 shared task6 is adopted in character-level, which includes

unlabeled attachment score (UAS), unlabeled complete match (UCM), labeled

attachment score (LAS) and labeled complete match (LCM).

2.6.2 Main Results

In Table 4, we present the main performance of our synthetic word parser. ’Base-

line’ denotes the pipeline method (Section 2.6.1). ’MST-2’ denotes our graph-

based parser with only first-order features ( the local and long features in Ta-

ble 3). ’MST’ denotes our graph-based parser including the second-order features.

’Dict’, ’Brown’ and ’AV’ denote those feature types (introduced in Section 2.5.3)

separately incorporated into the parser. ’all’ denotes that all features are used.

The results of ’MST’ and ’MST-2’ clearly suggest that our character-based

dependency framework significantly outperforms the pipeline method ’Baseline’

without relying extra resources. Second order sibling factorization brings a 0.58%

improvement on LAS. ’MST-2’ significantly improves the parsing performance

by around 4.5% on LAS and 12.2% on LCM, compared to the ’baseline’. The

5The synthetic word parser described in Section 2.5 and the synthetic word dictionary de-

scribed in Section 2.4 are released in https://github.com/racerandom/chcomparser
6http://ilk.uvt.nl/conll/
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UAS UCM LAS LCM

Baseline 93.65 80.19 90.32 71.06

MST 97.96 93.01 94.3 81.72

MST-2 98.07 93.26 94.88 83.31

MST-2 + Dict 98.15 93.58 96.34 87.64

MST-2 + Brown 98.17 93.56 96.41 87.73

MST-2 + AV 98.2 93.75 96.27 86.82

MST-2 + all 98.25 93.87 96.66 89.09

Table 4. The main parsing results of our synthetic word parser.

observation of this improvement can attribute to our well-designed character-

based dependency framework.

We further boost the parsing performance by separately incorporating differ-

ent feature types. ’Dict’ and ’Brown’ are two word-level features carrying both

word boundary and semantic meaning information of words. Both ’Dict’ and

’Brown’ are proved to be helpful to boost the parsing performance with improve-

ments around 1.5% on LAS, compared to ’MST-2’. As a statistic type of feature,

’AV’ provides distinctive evidences of word boundaries, which shows an obvious

overall improvement on F-score from 94.88 to 96.27, especially the highest UCM

93.75% with each single feature. The final combination of all three feature types

further achieves the best parsing performance with improvement around 1.8% on

LAS and 5.8% on LCM, compared to the ’MST-2’. The extra resources for fea-

ture extraction conduct main efforts in these improvements, based on the same

character-based parsing framework.

2.6.3 Additional Results

Although in Table 4, our best parsing model reaches reasonable performance with

96.66% LAS and 89% LCM, we are concerned about that three-character words

take a high proportion around 68.6% of the whole 31,849 words (Table 9). An

overall evaluation is far from enough to make a detailed observation of the real

performance of our system. The original motivation of synthetic word parsing is

to analyzing the internal structure of the words in the existing word segmentation
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corpora. An import view is to evaluate the parsing performance on the words

with different character lengths. Figure 9 presents the LAS performance of our

best system (’MST2-all’) against different character lengths of the words. As we

expected, our parser reaches a very high LAS score 98.63% on 3-character words.

As the word length increases, the LAS performance starts to drop. A special

case is that for 6-character words, our system obtains even a slightly higher LAS

95.85% than 95.82% on 5-character words. For the words with 8 characters or

more, our system obtains 94.34% LAS, which has dropped by 4.2% compared to

3-character words.
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Figure 9. Labeled attachment score against character lengths of words. The

character length equal to 8 means greater or equal to 8.

The current state-of-the-art word segmentation systems reach 96 to 97 F-

score on Bakeoff-2015 data. For the purpose of enhancing the word segmentation

performance, our system is also expected to perform well on labeled complete

match (LCM). Table 10 shows the LCM performance of our system against char-

acter lengths of words. For 3-character words, the system achieves an ideal result

96.4%. As the word length increases, the LCM drops quickly. The LCM on the

words with 8 characters or more has dropped to 64.93%. It is hard to determine

whether the performance is enough or not, because the word length distributions
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of different CWS corpora are various. We will discuss the parsing performance

in two different CWS corpora in the next Chapter.
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Figure 10. Labeled complete match against character lengths of words. The

character length equal to 8 means greater or equal to 8.

2.7 Summary

In this paper, we claim that synthetic word parsing is an important but overlooked

problem in Chinese NLP. Our first contribution is the annotation of 31,849 Chi-

nese synthetic words, which is potentially useful to other Chinese NLP tasks.

The data is distributed as free available data7. In the second step, we propose a

well designed character-based dependency parsing framework, which significant

outperforms the traditional pipeline method. Furthermore, we highly boost the

performance of our synthetic word parser by extracting features from a large-scale

unlabeled corpora and a dictionary. We believe that this is a first-step toward a

more robust character-based processing of Chinese that does not require explicit

word segmentation.

7https://github.com/racerandom/chcomparser
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Chapter 3

3. Enhancing Chinese Word Segmentation with

Internal Structure Information

In this chapter, we illustrate how to enhance the Chinese word segmentation

performance by using internal structure information of words. We first introduce

the background (Section 3.1) and related work (Section 3.2) about Chinese word

segmentation. In Section 3.3, we present our enhanced word segmentation system

with two steps of processes: 1) Conversion of the word segmentation training

data to a fine-grained level (Section 3.3.1) by our synthetic word parser, which

is presented in Chapter 2. 2) Using a word segmenter to predict a combined

position label of two segmentation levels. (Section 3.3.2). The results of the

main experiments of our word segmentation system are shown in Section 3.4.2.

The summary is made at last.

3.1 Introduction

Since Chinese has no spaces between words to indicate word boundaries, word

segmentation is a task to determine word delimiters in Chinese sentences. In

recent years, Chinese word segmentation has progressed significantly, with the

state-of-the-art performance around 96 to 97 F-score on the the Second Interna-

tional Chinese Word Segmentation Bakeoff (Bakeoff-2005) data. However, issues

still remain and we summarize two as follows.

• 1. The variety of word segmentation standards

Due to the difficulty of defining ’word’ in Chinese, the resources are anno-

tated in compliance with the different specified ’rules’ of the providers. In

Bakeoff-2005, Peking university supplied a very specific segmentation guide-

line with 19 pages for Peking University (PKU) corpus . For instance, one

clause in the guideline indicates that most of the community, institution and
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Figure 11. An example of a OOV word with all the internal parts as in-vocabulary

words.

organization names are synthetic words, which are to be segmented. There-

fore, the word 北京国安队 is segmented into 北京 (Beijing) / 国安 (Guoan)

/ 队 (club) in PKU. On the other hand, according to the guideline of the

Microsoft Research (MSR) corpus, a Named Entity like 北京国安队 is to

be treated as a single word. The ambiguity on word segmentation stan-

dards not only makes it hard to share annotated resources among different

research groups, but also has an adverse impact on other downstream Chi-

nese NLP tasks.

• 2. Low recall of Out-of-vocabulary (OOV) words

Frequent OOVs are another crucial issue that causes low accuracy in word

segmentation. Li and Zhou [19] defined those words that are OOVs but

consisting of frequent internal parts (In-vocabulary words, called IV words)

as pseudo-OOVs and estimated that over 60% of OOVs are pseudo-OOVs

in five common Chinese corpora. For instance (Figure 11), PKU corpus

does not contain the word陈列室 (exhibition room), even though the word

陈列 (exhibit) and 室 (room) appear hundreds of times.

Goh et al. [14] also claimed that most OOVs are proper nouns taking the

form of Chinese synthetic words. These previous works suggest that analyzing

the internal structure of the synthetic words brings two improvements on word

segmentation: 1) The segmentation standard is more consistent. For instance,

two words 中国国际广播电台 and 中央/广播/电台 are inconsistently annotated

in MSR, because中国国际广播电台 is treated as a Named Entity. A fine-grained
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中国/国际/广播/电台 structure obvious makes the corpus more consistent in-

side. 2) Parts of pseudo-OOVs are converted into in-vocabulary words (IVs). By

running a synthetic word parser on each of the words in a existing word segmen-

tation training data, we can generate a fine-grained segmentation standard which

is more consistent inside and with lower OOVs rate. Since the current Condi-

tional Random Fields (CRFs) word segmenters [39, 35] perform well on IVs, this

converting process can conceivably improve the handling of pseudo-OOV words.

In this chapter, we propose a pipeline word segmentation system to address the

segmentation standard and OOVs issues. Our system first converts the original

training data to a fine-grained segmentation level by parsing the words with a

synthetic word parser. Each original character-level position label is combined

with the label derived from the new fine-grained standard. Then a CRF-based

word segmenter is trained on the training data with new combined labels. Our

system is evaluated on the Bakeoff-2005 data to verify the usefulness which the

internal structure information of Chinese words brings.

3.2 Related Work

Xue et al. [42] first proposed this method which treated Chinese word segmen-

tation as a character-based sequential labeling problem and exploite several dis-

criminative learning algorithms. Tseng et al. [39] adopted the CRFs model as the

learning method and obtained the best results in Bakeoff-2005. One research line

is to find effective feature types. Sun and Xu [35] attempted to extract statistical

information from large unlabeled data to enhance the CWS performance. Re-

cently, Liu et al. [23] introduced character representations as a new cluster-based

feature for the CRF-based segmenter. These feature types successfully improved

current CWS performance.

Recently, studies that explored the use of the internal structures of words

to improve Chinese processing have shown promising results. Sun et al. [37]

presented a joint model for Chinese word segmentation and OOVs detection.

Their models achieved fast training speed, high accuracies and increase on OOV

recall. Sun [33] proposed a similar sub-word structure to our work, which is

generated by merging the segmentations provided by different segmenters (a word-

based segmenter, a character-based segmenter and a local character classifier).
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However, their model does not actually analyze the sub-words structure of all the

synthetic words in a corpus, but only those words with different segmented results

of the three segmenters. Her work maximizes the agreement of different models

to improve CWS performance. Different from their work, we aim to provide a

simple and unified way to incorporate internal morphological information of the

synthetic words into the CWS task or other Chinese NLP tasks.

Li and Zhou [19] claimed the importance of word structures. They proposed

a new parsing paradigm, in which the internal structures of words are identified.

Zhang et al. [46] manually annotated the internal structures of 37,382 words,

which covers the entire Chinese TreeBank 5 (CTB5). Then, they constructed a

shift-reduce parser with customized actions to jointly perform word segmentation,

part-of-speech tagging, and parsing. Their system significantly outperformed

current pipeline methods. However, these studies relied on prior knowledge of

internal structure information, which is manually annotated. In this work, we

employ an automatic parsing mechanism to analyze the internal structures of

words to improve word segmentation performance.

Some other researches focus on adapting different segmentation standards

of multiple corpora. Jiang et al. [15] presented a simple strategy to train a

source classifier a source corpus, which is used to label the target corpus and

results in a“ source-style” annotation of the target corpus. Then the final

segmenter was trained on the target corpus with the“source-style”prediction as

additional features. Their method was similar to some ideas in domain adaptation

[11, 10]. Unlike the ’source-style’ prediction, our work intends to create a fine-

grained segmentation prediction on the original corpus by a synthetic word parser,

which is expected to be more consistent inside and with lower OOVs rate. Our

work doesn’t rely on another annotated corpus. The fine-grained level prediction

attributes to the internal structure information inside words.

3.3 Word Segmentation System Enhanced by Internal struc-

ture of Word

The framework of our word segmentation system includes two key components

as shown in Figure 12.
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• Synthetic word parser is used to analyze the internal tree structure

of the words in the original word segmentation training data. Then we

convert training data to a fine-grained segmentation level according to the

flat segmentation representations of the internal trees of the words.

• CRF-based word segmenter is adopted to predict a character-level com-

bined position label of the original annotation and new fine-grained stan-

dard.

Figure 12. The framework of our word segmentation system.

3.3.1 Conversion to Fine-grained Segmentation Level

Intuitively, the internal structure information inside words is helpful to improve

word segmentation performance. In Chapter 2, we introduced our character-

based synthetic word parser, which achieves high performance by incorporating

different types of features extracted from a dictionary and a large-scale unlabeled

corpus. We use our synthetic word parser to parse the internal tree structure of

the words in the training data of Bakeoff-2005 (PKU and MSR). Each word in
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Figure 13. The tree structure and flat segmentation of a sample word.

Table 5. The conversion of an example sentence from the original standard to

the new fine-grained level.

the original training data is converted to a flat segmentation result of its parse

tree, as shown in Figure 13.

For native Chinese speakers, single character and 2-character words are usu-

ally treated as the basic units. In this step, all the words longer than 2-character

in the original training data are parsed by the synthetic parser. With the flat seg-

mentation information inside the words, the original training data are converted

into a fine-grained level as Table 5.

3.3.2 Word Segmenter for a Combination of Two Segmentation Labels

The Character-based labeling method is a dominate approach for Chinese word

segmentation. A 4-label set {B, I, E, S} is widely used to represent the position

information (begin, intermedia, end, single) of a character inside a word. Table 6

shows an example sentence 在激昂奋进的音乐声中辞旧迎新 (ring the old year

out and welcome the new year in this passionate music) labeled with the 4-label
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Table 6. An example sentence labeled with the {B, I, E, S} set.

set.

In this work, the fine-grained segmentation provided by the previous step

brings new segmentation labels for the characters in the training data. We make

a simple combination of the original label and new fine-grained label for each

character, as shown in Table 7. We extend the 4-label set into a combined label

set as:

Combined label = Original label + Fine-grained label . (5)

Conditional random fields (CRFs) are a class of statistical sequence modeling

framework first introduced into language processing in Lafferty et al. [17]. The

probability model and feature function is defined given a set H × T , where H is

a set of context features predefined and T is a possible tag in the tag set. The

feature function is defined as follows,

f(h, t) =

1, if h = hi and t = tj

0, otherwise
, where hi ∈ H and tj ∈ T (6)

CRFs perform well in the Chinese word segmentation task and many re-

searches adopt CRFs as the baseline segmenter. For predicting the new combined

position label of each character, we adopt a CRF-based model as the baseline seg-

menter. Unlike common feature selection work on word segmentation (different

features are separately added into the baseline segmenter to observe the changes

of the system performance ), our segmenter includes all the features as shown in

the next subsection to perform an idea baseline result to observe, whether the new

combined segmentation labels can further enhance the baseline to state-of-the-art

performance.
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3.3.3 Feature Types for the CRF-based Word Segmenter

To demonstrator the features easily, we denote a current character to be labeled

ci with a context [...ci−2ci−1cici+1ci+2...]. c[s:e] expresses a character sequence that

starts from cs and ends at ce.

• Character Context

– Character uni-gram: cs (i− 3 < s < i+ 3)

– Character bi-gram: cscs+1 (i− 3 < s < i+ 2)

– Whether cs and cs+1 are identical, for (i− 2 < s < i+ 2)

– Whether cs and cs+2 are identical, for (i− 4 < s < i+ 2)

• Dictionary

– The identity of the character sequence c[s:i] (i − 5 < s < i) , if it

matches a word in Naist Chinese dictionary.

– The identity of the character sequence c[i:e] (i < e < i + 5) , if it

matches a word in Naist Chinese dictionary.

• Accessor Variety The definition for calculating AV score is as same as

in Section 2.5.3. The accessor variety features are included in our model as

follows,

– The AV score of the character sequence c[s:i] (i− 5 < s < i)

– The AV score of the character sequence c[i:e] (i < e < i+ 5)

• Vector-based Character Sequence Representation focuses on embed-

ding a word or character n-gram as a low-dimensional real-valued vector.

The goal is to place similar character n-grams into nearby points in the

vector space. Liu et al. [23] introduced vector-based character representa-

tions as a new type of feature. Given a sentence [c0, c1, c2, c3, c4, ...] , they

generate its Bi-gram chunks [c0c1, c1c2, c2c3, c3c4, c4c5...] and tri-gram chunks

[c0c1c2, c1c2c3, c2c3c4, c3c4c5, c4c5c6...]. Next, they learn the vector-based rep-

resentations of all the Uni-gram, Bi-gram, Tri-gram character sequences

30



Table 7. An example of the way to obtain the new combined segmentation labels

of a sentence in the training data.

from a large-unlabeled corpus. Finally, their cluster-based features come

from the K-Mean method applied on these vector-based representations.

In this work, we do a similar process and use the following cluster-based

features:

– Uni-gram clusters: cs (i− 3 < s < i+ 3)

– Bi-gram clusters: cscs+1 (i− 3 < s < i+ 2)

– Tri-gram clusters: cscs+1cs+2 (i− 4 < s < i+ 2)

3.4 Experiments

3.4.1 Experiment Setting

In Chapter 2, we constructed a 31,849 synthetic word dictionary with internal

structure annotated. However, a number of transliteration words (e.g. 奥林

匹克 Olympic) exist in the Chinese corpora, our synthetic word parser should

perform well not only on synthetic words but also on transliteration words. We

further extract 6,574 transliteration words from the NAIST Chinese Dictionary

and automatically assign the flat structure (each modifier character points to its

successor head character from left to right) for these words. As a result, we obtain

38,423 words as the training data for our parser.

CRFSuite8 is a speed oriented implementation of CRFs for labeling sequential

data. We incorporate the dictionary (NAIST Chinese Dictionary) and access

8http://www.chokkan.org/software/crfsuite/
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variable feature (Chinese Gigaword Second Edition) in the same manner described

in (Sun and Xu [35]). Based on (Liu et al. [23]), we use word2vec9 to train the

vector representations of the unigram, bigram and trigram character sequences

of Chinese Gigaword Second Edition. The cluster-based results with K=100

are treated as the features for the segmenter. The segmenter also provides the

baseline results for comparison.

The second international Chinese word segmentation Bakeoff-2005 provides

two annotated simplified Chinese corpora: PKU and MSR. We conduct all the

word segmentation experiments on these two corpora.

In this paper, OOVs are defined as words not seen in the training set; thus,

even if a word is in the NAIST dictionary, it could be OOV with respect to the

training set. In PKU, there are 2404 OOVs and among them 1097 are seen in

the dictionary. In MSR, there are 1960 OOVs and 259 are seen in the dictionary.

3.4.2 Word Segmentation Results

Table 8 summarizes the word segmentation results on PKU and MSR corpora.

”Bakeoff-2005” denotes the best results of the second international Chinese word

segmentation bakeoff-2005 on two corpora. Since we use extra resources and our

proposed method replies on the synthetic word parser trained on an dictionary

with internal structure annotated, the results might not be directly compared with

the state-of-the-art systems. For comparison, we give a baseline result by training

a CRF word segmenter on the original PKU and MSR data sets. Although the

baseline achieves very ideal performance by inluding the state-of-the-art features,

our proposed system is expected to improve the word segmentation performance,

especially on OOVs recall without relying on any new feature types.

Compared to the baseline, the proposed method improves 0.2 points F-score

on both PKU and MSR corpora. Especially, the proposed system obtains the

improvements of OOV recall from 81.9 to 83.6 on PKU and 72.5 to 74 on MSR.

Our proposed system achieves the highest F-score with 0.962 on PKU and 0.974

on MSR. Our proposed method obtains a overall higher performance, compared to

the results of Zhang et al [45] who extracted dynamic statistical features from both

in-domain and out-domain corpus. The OOV recall of our system significantly

9https://code.google.com/archive/p/word2vec/
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System
PKU MSR

P R F Roov P R F Roov

Baseline 96.3 95.7 96.0 81.9 97.1 97.4 97.2 72.5

Proposed method 96.5 95.9 96.2 83.6 97.3 97.5 97.4 74.0

Zhang 2013 96.5 95.8 96.1 73.1 - - 97.4 -

Sun 2009 95.6 94.8 95.2 77.8 97.3 97.3 97.3 72.2

Bakeoff-2005 95.3 94.6 95.0 63.6 96.2 96.6 96.4 71.7

Table 8. Comparison of the Proposed Method to the Baseline and Previous works

on PKU and MSR Corpora.

Corpus
3-char 4-char 5-char 6-char longer

Count Rate Count Rate Count Rate Count Rate Count Rate

PKU 11,320 20.5% 6,812 12.3% 1,746 3.2% 611 1.1% 887 1.6%

MSR 17,081 19.4% 12,545 14.2% 6,879 7.8% 5,103 5.8% 10,195 11.6%

Table 9. The character length distribution of the words with three characters or

more in PKU and MSR corpora. ’Count’ denotes the number of the word types

with a specific character length. ’Rate’ denote the number of the word types with

a specific character length against the total word types in a corpus.

outperforms theirs with a 10.9 points lead. In MSR, we obtain higher OOV recall

and slightly higher F-score than the state-of-the-art system [38], which adopted a

latent variable CRF model. Our system also outperforms their system in PKU. In

both corpora, our proposed system outperforms the best ”Bakeoff-2005” results.

3.4.3 Additional Experiments

In Table 9, we investigate the character length distribution of the words with

three characters or more in PKU, MSR. MSR is obviously a coarse standard

data compared to PKU with higher rates in almost all the character lengths.

Especially, the words with 7-character or more account for around 11.6% of all

the word types in MSR, while the rates are only 1.6% in PKU.

We are interested in how much parsing accuracy is needed for improving the

word segmentation step. We conduct a 10-fold cross validation on the whole

38,423 words with the best parsing model in Table 4. Instead of using LAS, we

use the more restrict metric LCM to observe the parsing performance against the
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Figure 14. Labeled Complete Match parsing performance against the training

data size.

training data size in Figure 14. As we mentioned, 3-character words still take a

high proportion of the whole 38K words. The system reaches 85.68% LCM with

only 5k training data. The reason is that the LCM of 3-character words is much

higher and the features also performance well. As the size of the training data

increases, the overall LCM increases quickly. The finally parsing performance

reaches 88.73% with the total 38K words for training. we can expect that the

3% gain of LCM mainly comes from the improvement of the long words parsing

performance. Considering the character length distribution in Table 9, we believe

that the overall 88.73 LCM is a reasonable parsing performance.

We also evaluate the LCM performance on the different word lengths of the

whole 38,423 words in Figure 15. The results are similar to the results on 31,849

synthetic words Figure 10. For 3-character words, the system achieves a reason-

able result 96.29%. As the word length increases, the LCM drops quickly. The

LCM of the words with 8 characters or more has dropped to 64.91%. Considering

that the words with 5 character or more barely exist in PKU (Table 9), our parser

perform really well on 3-character or 4-character synthetic words. On the other

hand, MSR is a coarse level corpus with 11.6% words longer than 6 characters.

However, the parsing performance is not the only factor to influence the overall
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segmentation result. The fine-grained level brings two improvements: more con-

sistent inside a corpus and lower OOVs. As we mentioned in Section 2.6.1, the

results of the cross-validation on the unduplicated 38,423 words can be seen as

the parsing performance on OOVs. Therefore, OOV rate is another key element

to connect the parsing performance to the final word segmentation performance.

Our model still achieves 0.2% improvement to 97.4 segmentation F-score on MSR

in Table 8. One clue is that the OOV rate of MSR is 2.6%, which is lower than

5.8% of PKU. Another suggestion is that more inconsistencies exist in MSR.
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Figure 15. Labeled complete match against character lengths of words on the

whole 38,423 words. The character length equal to 8 means greater or equal to

8.

Figures 17, 16 display the OOV recall results of our word segmentation system

when the synthetic word parser is trained with different size of training data. As

the data size increases, our word segmentation system obtains consistent gains of

OOV recall on both corpora. On the whole 38K words training data, our system

reaches the highest OOV recall. An interesting observation is that the OOV

recall on MSR is more sensitive on data size increasing. The main reason is the

different annotation standard of the two corpora. PKU is a correspondingly fine-

grained annotated corpus with shorter average word length than MSR (Table 9).
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Figure 16. The OOV Recall Evaluation against the training data size on MSR

Our synthetic word parser reaches high parsing accuracy on short length words

(three-character and four-character words) even with a small training data size.

With the increase of word length, the parser needs more training data. These

factors cause that our system reaches high OOV recall on PKU starting from

a small training data size and obtains more OOV recall gains on MSR when

increasing the training data size.

3.4.4 Analysis

As we expected, the proposed method obtains overall improvement, especially

on OOV recall. In both corpora, we observed a number of OOVs are segmented

correctly. For instance, 管理法 (management law) is an OOV word in PKU

corpus. In this word, 管理 (management) appears frequently and 法 (law) is a

common suffix in Chinese synthetic words, such as行政法 (administrative law) or

国际法 (international law). This type of pseudo-OOVs share a major contribution

to improvement the system performance.
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Figure 17. The OOV Recall Evaluation against the training data size on PKU

3.5 Summary

In this chapter, we present a simple yet two-stage word segmentation system.

Our system first do a fine-grained conversion of the segmentation standard on

two common word segmentation corpora by a synthetic word parser (in Chap-

ter 2). The conversion makes the corpora more consistent inside and reduces

OOVs. In the second step, our CRF-based segmenter is enhanced by predict-

ing combined segmentation labels with the original and new fine-grained level

information, without relying on any new feature types. Our proposed method

achieves state-of-the-art F-score and OOV recall on two common corpus PKU

and MSR. However, note that we only exploit the flat segmentation of internal

word structure here. As future work, we plan to exploit the full tree structure

of synthetic words to improve not only word segmentation but also additional

down-streaming tasks, such as sentence parsing.
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Chapter 4

4. Extending Training Data in a Consistent Seg-

mentation Level across Multiple Corpora

In this chapter, we propose a pipeline word segmentation system that adapts two

different corpora, i.e., PKU and MSR into one consistent segmentation level and

improves segmentation performance on each individual corpus. The proposed

model is based on two basic components: synthetic word parser (Section 2) and

CRF-base word segmenter (Section 3.3.3). In Section 4.2.1, we explain how the

proposed method maps two different word segmentation corpora to a consis-

tent segmentation level (to extend data). We further explain how we achieve

finer-grained segmentation (to reduce OOVs) using a synthetic word parser (Sec-

tion 4.2.2), and how we transform the segments back to the PKU and MSR stan-

dards (Section 4.2.3). In Section 4.3.3, we compare the final segmentation results

obtained by the proposed system to a baseline and state-of-the-art systems.

4.1 Introduction

Due to the lack of a common word segmentation standard, the Chinese word

segmentation corpora accomplished by different research groups can hardly share

different corpora in combination. One solution is to find a suitable segmenta-

tion level that is consistent across multiple corpora and where a part of OOVs

are naturally segmented into IV words. Here, segmentation level is defined as

any middle segmentation standard between the most fine-grained (character) and

most coarse-grained standard (original corpora). A consistent level is expected

to be not only more consistent across different corpora, but also more consistent

inside each individual corpus. For instance, as shown in Figure 18, two words 石

油天然气集团公司 (Oil and Gas Corporation) and 天然气 (natural gas) inconsis-

tently exist in Standard 1, because 石油天然气集团公司 is a named entity that

is treated as a single word. In the consistent level, 石油天然气集团公司 takes a

more natural standard 石油 / 天然气 / 集团公司 close to 天然气.
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Figure 18. An example of a sentence in several different segmentation levels.

Even in the consistent level, many synthetic words, such as天然气and集团公

司, still exist. A synthetic word parser is used to analyze the internal structure

of 天然气 (a possible OOV word) and generate the flat sub-word segmentation

天然 / 气 (natural / gas). Our goal is to create a strategy to find a consistent

level automatically and extend training data using heterogeneous data. Then,

the internal word structure information helps convert the extended data to a

finer-grained level (to reduce OOVs).

In this chapter, we further propose a simple strategy to transform two different

Chinese word segmentation (CWS) corpora into a new consistent segmentation

level, which enables easy extension of the training data size. The extended data

is verified to be highly consistent by 10-fold cross-validation. In addition, we

use a synthetic word parser to analyze the internal structure information of the

words in the extended training data to convert the data into a more fine-grained

standard. Then we use two-stage Conditional Random Fields (CRFs) to perform

fine-grained segmentation and chunk the segments back to the original PKU or

MSR standard. The extension of the training data and reduction of the OOV rate

in the new fine-grained level significantly improve the segmentation performance

of the recall and F-score on the PKU and MSR corpora.
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This method involves the research topic about using heterogeneous data to

improve word segmentation performance. Jiang et al. [15] presented a simple

strategy to train a source segmenter to segment the target corpus. Then the

proposed segmenter is trained on the target corpus including ‘source-style’ pre-

dictions as guide-features. Their method is similar to the ideas in domain adapta-

tion [11, 10]. Chao et al. [6] proposed a coupled Conditional Random Fields model

to exploit multiple heterogeneous data to improve segmentation performance on

Weibo data. Although our proposed pipeline method contains a similar “source-

style” prediction step, the following strategy to find a consistent segmentation

level differs from simply treating predictions as guide-features in their work. Our

work aims to do a more detailed investigation on the conversions between dif-

ferent segmentation levels. In addition, our idea of a consistent segmentation

level is friendly to introduce synthetic words parsing to boost the segmentation

performance further.

4.2 Word Segmentation System Involving Different Seg-

mentation Levels

4.2.1 Consistent Segmentation Level for PKU and MSR Corpora

In the proposed model, the first step is to find a consistent segmentation level

for multiple CWS corpora. In Figure 19, the raw sentences in the training data

of the MSR corpus (MSR train) are segmented by a segmenter trained on PKU.

We refer to the output as PKU-level MSR train. Our strategy finds a new seg-

mentation level by including word boundaries that appear in either the original

MSR annotation or the PKU-level MSR train (Figure 20). The same process is

performed on the PKU side. The new segmentation level maximizes the number

of word boundaries based on the annotation standards of the original corpus and

the other corpus, which is expected to be fine-grained compared to the two orig-

inal standards. We hypothesize that the new segmentation level MSR and PKU

training data are consistent and can be easily combined into a larger training

dataset.
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Figure 19. Workflow of the proposed method to find a consistent segmentation

level of multiple CWS corpora. ‘PKU train’ denotes the original annotated PKU

training data and ‘MSR train’ denotes the original annotated MSR training data.

Figure 20. Example of the strategy to find a new consistent segmentation level.

Figure 21. Example of a sentence with the consistent segmentation level converted

to a finer-grained level.

4.2.2 Finer-grained Conversion using Synthetic Word Parser

As mentioned in Section 3, we demonstrated that a fine-grained segmentation

level improves word segmentation performance due to the morphological infor-
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Figure 22. Workflow of the two-stage word segmenter.

mation and low OOV rate. Intuitively, the consistent segmentation level data can

be further converted into a finer-grained level using a synthetic word parser. In

this work, we train a graph-based parsing model on 38,432 synthetic words with

annotated internal structures to perform the conversion.

In this work, the words longer than two characters in the new consistent level

data provided by the previous stage are parsed by the synthetic word parser.

With the flat sub-word segmentation of each word, the consistent level data are

converted to a finer-grained level (Figure 21).

4.2.3 Finer-grained Word Segmentation and Chunking to Original Seg-

mentation Level

After obtaining finer-grained PKU and MSR data, we combine the data into a

larger training dataset. Then, the first-stage CRF-based segmenter predicts the

fine-grained output of the test data. The second-stage CRF-based chunker is

used to recover the fine-grained output to the original segmentation level. The

workflow of this step is shown in Figure 22.
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Figure 23. Chunking tags of an example sentence.

Precision Recall F-score Roov

10-fold cross-validation 98.25 98.03 98.14 70.21

Table 10. 10-fold cross-validation results on new extended data.

The training data of the chunker is constructed on the fine-grained and orig-

inal standard training data. An example of the chunking tags of a sentence is

shown in Figure 23. In this sentence, two words 歌剧 (opera) and 院 (house)

are chunked to the synthetic word 歌剧院 (opera house). 合唱 (chorus) and

团 (group) are chunked to the word 合唱团 (chorus group). Note that the same

features (Section 3.3.3) of the first-stage segmenter are used in the second-stage

chunker and the basic units of the features for the chunker are words rather than

characters.

4.3 Experiments

4.3.1 Settings

The proposed methods contains the same two components (synthetic word parser

and CRF-based word segmenter) as the described in Section 3.4.1. In this section,

we adopt the previous settings to construct the exact same synthetic word parser

and CRF-based word segmenter.

The basic CRF-based word segmenter also provide a baseline to investigate

the improvement brought by the extension of training data and internal structure

information.

4.3.2 Consistency of New Segmentation Level

An important hypothesis is the process described in Section 4.2.1 on two different

corpora may reach a new consistent segmentation level. To prove this, we first
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Corpus
3-char 4-char 5-char 6-char longer

Count Rate Count Rate Count Rate Count Rate Count Rate

PKU 11,320 20.5% 6,812 12.3% 1,746 3.2% 611 1.1% 887 1.6%

MSR 17,081 19.4% 12,545 14.2% 6,879 7.8% 5,103 5.8% 10,195 11.6%

Extended 13,706 17.90% 9,053 11.8% 3,689 4.8% 1,465 1.9% 1,536 2%

Table 11. Character length distribution of words in PKU and MSR corpora.

‘Count’ denotes the number of the word types with specific character length;

‘Rate’ denotes the number of word types with specific character length against

the total word types in the corpus.

combine the consistent level PKU and MSR training data into a single extended

dataset. Then we randomly shuffle the order of the sentences and divide the data

into 10 equal pieces. We use the basic CRF-based segmenter trained on 90%

data do segmentation on the other 10% (10-fold cross-validation). The results in

Table 10 show that the new extended data is highly consistent inside.

Table 11 shows the character length distribution of the words in PKU, MSR,

and the extended data. Since the synthetic word parser is performed on the

words with three or more characters, we just ignore the 1-char and 2-char words

(generally considered as the smallest units in Chinese) in this table. MSR is

obviously coarse standard data compared to PKU with higher rates for nearly all

character lengths. Particularly, words with seven or more characters account for

approximately 11.6% of all word types in MSR, while the rates of the other two

corpora are only 1.6% and 2%. The extended data have the most fine-grained

level among the three corpora.

The highly different character length distribution of words in two corpora also

prevent us from build a natural baseline of directly predicting the test data of one

corpus with a model trained on the other corpus and vice versa. The previous

researches of incorporating heterogeneous data have included such baselines of

very low performance. For these reasons, we do not include these results for

comparison.
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System
PKU MSR

Precision Recall F-score Roov Precision Recall F-score Roov

Baseline 96.34 95.69 96.01 81.87 97.13 97.35 97.24 72.5

Internal Structure Information

+ bpe (10K) 96.21 95.37 95.79 81.58 97.08 97.36 97.22 72.61

+ bpe (20K) 96.21 95.55 95.88 81.33 97.12 *97.45 97.28 72.43

+ bpe (30K) 96.28 95.76 96.02 81.17 97.12 *97.47 97.29 72.32

+ bpe (40K) 96.30 95.81 96.05 81.13 97.13 *97.51 97.32 72.47

+ bpe (50K) 96.30 95.81 96.05 81.13 97.10 *97.48 97.29 72.12

+ leftmost 96.43 *95.87 *96.15 *83.43 *97.24 *97.45 *97.34 *73.89

+ synthetic words *96.45 *95.92 *96.19 *83.57 *97.28 *97.46 *97.36 *74.03

Heterogeneous Data

Jiang et al. [15] *96.57 *95.96 *96.26 *82.38 97.16 97.33 97.25 *73.5

Proposed-1 96.26 *96.18 *96.22 *82.2 97.03 *97.46 97.23 *73.25

Heterogeneous + Sub-word

Proposed-2 96.36 *96.27 *96.31 *83.07 97.21 *97.52 *97.36 *73.38

Table 12. Comparison of the proposed methods to the state-of-the-art Chi-

nese word segmenter using heterogenous data and on PKU and MSR corpora.

Proposed-1 can be directly compared to Jiang et al. [15] because they use the

same baseline segmenter and heterogeneous data. Proposed-2 finally combines

heterogenous data and synthetic word parsing. * denotes significance at p < 0.05,

compared to the baseline.

4.3.3 Main Results

Table 12 summarizes the main segmentation results obtained by the proposed

methods. Here, we specify two different settings Proposed-1 and Proposed-2

for our model. In the first setting, the system simply uses the consistent level

extended training data (Section 4.2.1) to train the first-stage segmenter (the

synthetic word parser process is omitted). Proposed-1 helps us estimate the

benefit of larger extended training data (including heterogeneous data). In the

second setting, the extended training data are converted to a finer-grained stan-

dard by synthetic word parsing. The improvement of Proposed-2 compared to

Proposed-1 indicates the benefit of including the internal structure information

of words.

Since analyzing the internal structure information of words is a general com-

ponent in our pipeline framework, the synthetic word parser can be flexibly al-

ternated by other sub-word analysis algorithms. In the ‘Sub-word Information’

parts, we first investigate the benefits provided by three different sub-word seg-
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mentation analyzers. In Table 12, ‘synthetic words’ denotes the segmentation

system based on the baseline segmenter with all the words in the training data

transformed into sub-word segmentation by a synthetic word parser, ‘bpe’ denotes

the system with sub-word segmentation predicted by byte-pair encoding10 (Sen-

nrich et al. [32]) with different vocabulary settings, and ‘leftmost’ denotes the

system with sub-word segmentation predicted heuristically by a leftmost dic-

tionary match (using the NAIST Chinese Dictionary). ‘synthetic words’, and

‘leftmost’ demonstrates improvements on both PKU and MSR, and our synthetic

word parser achieves the most overall gains, particularly in OOV Recall.

The results of ‘bpe’ are not stable. ‘bpe’ does not show drop on MSR when

the vocabulary size is 10K; compared to the very low performance on PKU. As

vocabulary size increases from 10K to 50K, the recall of ‘bpe’ increases. How-

ever, OOV recall is dropping continuously. When the vocabulary is 40K, ‘bpe’

obtains the highest F-score, which is slightly better than the baseline. Although

‘leftmost’ obtains F-score and OOV recall that are close to ‘synthetic words’,

we find some issues such as 1) 总 / 司令 (chief/commander) is incorrectly split

into 总司 (Japanese given name) / 令 (command). 2) the inconsistency of 太

仓 / 县 (Taicang/county) and 宣汉县 (Xuanhan county) caused by the absence

of 宣汉 in the dictionary. Moreover, the synthetic words parser is designed to

predict real tree structure rather than such flat sub-word segmentation.

Although Jiang et al. [15] reported a F-score improvement +0.8 on Chinese

TreeBank 5.0 (CTB5) (guided by People’s Daily), the results of re-implementation

obtained on PKU and MSR are surprisingly lower. This can be attributed to two

points: 1) the difference in the segmentation standards between PKU and MSR

is large (as shown in Table 11), which brings a big barrier to benefit each other.

2) the large difference in the sizes of the two corpora (19K and 87K sentences).

It is difficult for a large corpus to obtain improvements considering the additional

loss in the pipeline processing.

Both Jiang et al. [15] and Chao et al. [6] intended to improve word segmen-

tation performance on a small data with large heterogeneous data. As Chao et

al. [6] showed in the paper, their coupled CRF obtains an F-score improvement of

+0.5 on Chinese TreeBank 7.0 (CTB7, 50K) with the help of PD (280K) while

10https://github.com/rsennrich/subword-nmt
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the guide-feature method obtains an improvement of +0.34. In our experiments,

we also investigate another case, i.e., a large corpus (MSR, 87K) guided by a

small corpus (PKU, 19K). Jiang’s method obtains an improvement of +0.21 on

PKU (guided by MSR) and +0.02 on MSR (guided by PKU), while Proposed-1

shows slightly lower F-scores. The results of the Jiang’s method and Proposed-1

on MSR suggest that the large corpus can hardly obtain an obvious improvement

guided by a small corpus, considering the additional loss from different segmen-

tation standards and chunking. However, our consistent level data are friendly

to incorporate synthetic word parsing to further boost performance.

Parsing synthetic words (Proposed-2) contributes an additional +0.1 F-score

on both PKU and MSR, based on Proposed-1 (with only heterogeneous data).

Proposed-2 finally obtains +0.3 on PKU and +0.12 on MSR, compared to the

baseline, which outperforms Jiang et al. [15] and Proposed-1.

4.3.4 Analysis

Although we decompose words into the consistent level standard (similar to the

PKU standard shown in Table 11), many synthetic words still exist in this data.

Synthetic word parsing helps analyze the internal information of these words,

which provides major improvement compared to Proposed-1 and [15]. We man-

ually detect some difference between the results of Proposed-1 and Proposed-

2. OOV words such as紫团 /山 (Zituan/mountain) and二 /进制 (binary/numeral

system) are correctly identified with the help of the internal information of words

because other mountain names and 十 / 进制 (decimal/numeral system) exist in

the training data. The internal information of synthetic words also helps identify

IV words such as 数学 / 家 (mathematic/ian), 有钱 / 人 (rich/people), because

they get more consistency with other words like 教育 / 家 (educat/or). We also

observed that some polysemous characters result in ambiguous errors. For in-

stance, 非 can be a prefix ‘non-’ in 非 /军事 (non-/military) or an auxiliary verb

‘must’.

47



4.4 Summary

In this section, we have further proposed a method to find a new consistent

segmentation level across two different corpora. This consistent level makes it

possible for multiple corpora to be extended easily. Using a synthetic word parser,

we converted the consistent level extended data to a finer-grained level, in which

our first-stage segmenter is expected to provide more accurate prediction of both

IV and OOV words. Although the second-stage chunking brings an additional

loss, the proposed system achieves state-of-the-art recall and F-score results on

both PKU and MSR. We also perform additional investigations of the benefits

of three different sub-word analysis algorithms: synthetic word parsing, byte-

pair encoding and leftmost dictionary match. A further idea for improvement is

that part-of-speech information may offer important clues for the second-stage

chunking prediction.
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Chapter 5

5. A Hybrid Approach for Chinese Spelling Check

Chapter 5 is organized as follows. First, we briefly introduce the background

of Chinese spelling check in Section 5.1 and the related work in Section 5.2. A

overview of our framework is presented in Section 5.3, including the Candidate

Generation component (Section 5.3.1 and 5.3.2) and the Candidate Ranking

component (Section 5.3.3). In Section 5.4, we discuss the experiment setting and

results. The conclusion is made at the last section.

5.1 Introduction

Spelling check, which is an automatic algorithm to detect and correct human

spelling errors in every written language, has been an active research area in

Natural Language Processing (NLP) [36, 22, 8]. As a fundamental process taking

raw documents with spelling errors inside as inputs, Chinese spelling check can be

seen as a prior step before word segmentation and other down-streaming Chinese

NLP tasks. The study of such human spelling errors can help both native speaker

and second language learners [20], as well as language processing systems, such

as web search engines [36].

Unlike Indo-European languages, Chinese has a non-alphabetic writing system

without word boundary indicator, such as space. Its graphic unit character,

do not represent phonemes, but rather morphemic syllables. Furthermore, the

average length of a Chinese word is very short: usually one to three characters.

Because of such differences, Chinese Spelling errors can not be detected inside

a single word like English, but in a larger range with more context information.

For these reason, Chinese spelling check requires more researches.

Current research shows that 97% of Chinese spelling errors are due to phono-

logical and visual similarity between the correct character and spelling error.

[8, 21]. Phonologically similar Chinese characters have similar pronunciation,

which involves the nucleus and the tone. For instance, the four phonologically
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similar Chinese characters of 挫 (cuo4) are: 1) 措 (cuo4), with same nucleus and

same tone, 2) 撮 (cuo1), with same nucleus and different tone, 3) 啜 (chuo4),

with different nucleus and same tone and 4) 戳 (chuo1), with different nucleus

and different tone. On the other hand, the visually similar Chinese characters

share the same partial component, such as the Chinese character 挫 mentioned

before is similar to the Chinese character 銼by sharing the part 坐. Based on

these evidences, Chinese Spelling Check can be treated as a process to reduce the

scope of a large-scale phonological and visual error candidates.

In this paper, we propose a novel hybrid framework to deal with Chinese

Spelling errors and perform our experiments on the data of Chinese Spelling

Check shared task of the Seventh SIGHAN Workshop (SIGHAN 7). Our frame-

work includes two main parts: candidate generation and candidate ranking.

For the candidate generation step, our effort is to generate as many as possible

correction candidates in the confusion set provided by the shared task. In the

ranking step, we select the most possible characters to correct the errors in the

given sentence. Additionally, to address the scarceness of resources, we further

generate around 2 million artificial training sentences by using the Chinese char-

acter confusion sets.

5.2 Related Work

As we mentioned that 97% of Chinese spelling errors are made due to phonologi-

cal and visual similarity to the correct characters. One important research topic

is the generation of confusion sets, whichn are collections of spelling error can-

didates for each Chinese character. In the early work of Chang [5], the confusion

sets were manually edited from 4 viewpoints, i.e., shape, pronunciation, mean-

ing and input keystroke sequence. Then by substituting each character in the

input sentence with the characters in the corresponding confusion set, they used

a language model to generate a plausibility score to evaluate each possible sub-

stituted sentence. Because of the importance of confusion sets, some researchers

attempted to automatically extend confusion sets by using different Chinese input

methods. Intuitively, the characters with similar input key sequences are similar

in shape. Furthermore, similar input sequence is a main factor of misspelling

errors in electronic documents. Zhang [44] proposed a method to automatically
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generate confusion sets based on the Wubi method by replacing one key in the

input key sequences of a certain character. Lin et al. [20] used the Cangjie input

method to extend confusion sets automatically.

One main approach for Chinese spelling check is Language Model based (LM-

based) method [22, 43, 7], which is usually trained on a large-scale corpus to

evaluate the correctness of all the possible sentences with correction candidates

replaced each time. Another approach is the Statistical Machine Translation

based (SMT-based) model [22, 9, 40]. Given a input sentence with or without

errors as ’source’, a SMT-based method is trained to ’translate’ it to the best

correction sentence as ’target’. However, the shortcoming is that large bitexts

are required to train a good translation model.

Our hybrid framework intends to enlarge the size of the correction candidates

by gathering the corrections generated by several different models. Furthermore,

an SVMs classifier is employed to evaluate the correctness of each corrections in

a candidate list for more accurate performance.

5.3 Our Hybrid Framework for Chinese Spelling Check

The processing steps of our hybrid system are shown in Figure 24, which includes

two key components: Candidate Generation and Candidate Ranking.

• Candidate Generation is the process to collect the correction candidates

generated from our LM-based model and SMT-based model, which is ex-

pected to obtain larger size candidate lists compared each single model.

• Candidate Ranking is the process to select the most possible correction

in each candidate list (generated by the previous step), which is expected

to obtain more accurate results compared to each single model.

5.3.1 Candidate Generation with Language Model

The confusion set, which lists likely phonological and visual character confusions,

is a very valuable resource in generating likely correction candidates. However,

it does not include context information, so it may over-generate candidates if

applied blindly to a sentence. Therefore we propose a method that combines the
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Figure 24. Our hybrid framework for Chinese spelling check.

confusion sets with language models (LMs), which effectively handle context, to

efficiently generate correction candidates.

The LM based candidate generation includes three steps: 1) word segmenta-

tion, which breaks the Chinese sentence into character chunks, called words; and

then 2) candidate lattice construction based on the confusion sets, which are a

set of Chinese characters with corresponding similar shape and similar pronunci-

ation characters; 3) generation of the k -best most likely candidates by using the

forward algorithm. Next, we will describe the three steps in detail as follows.

Chinese word segmentation, which breaks the Chinese sentence into words, is

one of the fundamental parts of the Chinese language processing. In this study, we

use the character-based Conditional Random Fields (CRFs) model for Chinese

word segmentation [42] by using the open source CRFsuite11 which tends to

perform well in out-of-vocabulary recall. The model is trained on the Academia

Sinica corpus, released under the Chinese word segmentation bake-off 200512 and

the feature templates are the same as in Sun [34].

Given a Chinese sentence with spelling errors, the word segmentation results

near the spelling error character are divided into two categories:

• spelling error character is in a multiple characters word.

For instance, in a segmented word sequence (where words are delimited by

slash ”/” and red character indicates error): 想必/他們/很/煩腦/吧/！” the

error character 腦 (brain) is in a multiple character chunk 煩腦. Since it is

not a word, it is not included in the Chinese dictionary.

11The CRFsuite package: http://www.chokkan.org/software/crfsuite/
12http://www.sighan.org/bakeoff2005/
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• spelling error character is in a single character word. For instance, in the

segmented sequence: ”學校/的/課桌椅/大/不/分/在/上面/都/有/許多/的/

塗鴉/。” the spelling error character 不 (no) is segmented into a single

character word.

Based on such evidence, which is also reported by [40, 43], we construct the

candidate lattice by the following rules:

• If a word only contains a single Chinese character, add all the candidates

in the confusion set.

• If a word contains more than one Chinese character and it is not in the

dictionary, then replace all the characters in the word with candidates in

the confusion set. If the generated word is in the dictionary, add it as a

candidate.

• If a word contains more than one Chinese character and it is in the dictio-

nary, do nothing.

The previous sub-sequence of Chinese sentences are built as shown in Fig-

ure 25. For instance, the Chinese word 煩腦, is not in the Chinese dictionary,

however, by replacing the candidates from confusion sets, we find that the word

煩惱 (worry or bother) in the Chinese dictionary, and we add it into the lattice.

Since for a single character word, there is no way to reduce the candidates in the

confusion sets, we add all the candidates in the confusion sets as nodes in the

lattice. For instance, the single character word 很 (very, quite), we add all the

candidates in the confusion sets, like 恨 (hate), as nodes into the lattice.

Finally, the forward algorithm [31] is used to find the k-best sentences, where

the score for each sentence is computed by

P (X1X2...XN) =
∏
i

P (Xi|Xi−n...Xi−1) (7)

here, X1X2...XN denotes a sequence of Chinese characters (a.k.a, a sentence), N

is length of the sentence and n is order of language model. We estimated the

conditional probabilities of the language model on Chinese Gigaword by using

the open source SRILM13 package. From our experiments on both the training

13http://www.speech.sri.com/projects/srilm/
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Figure 25. Examples of generated candidate lattices. Note that we first perform

the word segmentation and then build lattices. The highlight characters are the

spelling errors.

data and the dry run data provided by SIGHAN 7, when the order of language

model is larger than 5, the accuracy does not change any more. Therefore, the

parameter, the order of the language model, is set to 5 in our experiment.

5.3.2 Candidate Generation with Statistic Machine Translation

As an alternative, we also employ a statistical machine translation model [2] as

a way to detect and correct character errors [40].

Given a sentence with errors treated as a source language, our goal is to

find the best correction sentence. Formally, given a sentence S which might

contain error characters in it as a source sentence, the output is the sentence Ĉ

in the target language with the highest probability of different replacement C.
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Symbolically, it is represent by:

Ĉ = argmax
c

p(C|S) (8)

Using the Bayes Rule, we can rewrite Formula 8 as:

Ĉ = argmax
p(S|C)p(C)

p(S)

= argmax p(S|C)p(C) (9)

Here, p(S|C) is called ”error model”, which is the chance that a Chinese

character is wrongly written; while p(C) is the language model which evaluates the

quality of the corrected Chinese sentence. Traditionally, p(S|C) can be estimated

by using the word alignment models [2, 29] from the ”error-correct” sentence pairs.

Unlike the language model based candidate generation model, the SMT mod-

els detect and correct the spelling errors by incorporating both the ”error model”

and language model. If we have a large training corpus to estimate a better

”error model”, which is treated as how likely a Chinese character is wrongly writ-

ten, we can obtain better results. However, due to the scarcity of training data

for the ”error model”, it is difficult to estimate the true parameters of ”error

model”. To deal with this problem, we generate 2 million of artificial training

data by replacing each character in the provided 700 sentences in the training

set with candidates in the confusion sets, as shown in Fig 26. Given a sentence,

we traverse each character c in the sentence, and replace c by its all candidates

ĉ in the confusion sets. For example, we replace Chinese character 想 at the be-

ginning of sentence by its candidates in confusion sets 享 and 香; and then we

treat the generated sentence (享必他們很煩腦吧! ) with the gold standard (想

必他們很煩惱吧!) as a training pair for SMT. These generated training data are

very important for training ”error model” SMT, because most candidates, not

observed in training data, have zero probabilities. Empirically, we conduct a set

of experiments and observe that without generated data, SMT can not generate

any candidates. One of important assumption under this algorithm is that the

probabilities of error candidates in the confusion sets tend to be same, in other

words, it is a uniform distribution; and by observing more spelling errors, the

probabilities of such candidates increase while other candidates, which could not
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Figure 26. An example of generating the training data for SMT.

be observed, decrease. Therefore, comparing with LM model, SMT model can

generate more candidates.

To train our ”error model”, we adopt the IBM 4 model with default iteration

number (153343) by using the GIZA++ toolkit, which is an open source pack-

age14 for word alignment. For the language model, we use the SRILM package,

mentioned before, with Kneser-Ney smoothing algorithm. The order of LM is

set to 5, same as the LM generation method.

In the decoding step, we employ the Moses toolkit15 to find the best transla-

tions. Since there is no character re-ordering in Chinese Spelling check, we disable

the distortion, setting it to 0, in all the experiment. For parameter optimization,

we tried Minimum Error Rate training (MERT) in the Moses toolkit, however,

the results only changed slightly. Therefore, we only tune the language model

factor, denoted as α, of SMT model in the following experiment.

5.3.3 Candidate Ranking with Support Vector Machines

Although any ranking algorithm can be a ranking component in our framework,

for simplicity yet good performance, we adopt the Support Vector Machines

(SVMs) in our system, which are supervised learning models used for classifi-

cation and regression analysis [3]. The goal of spelling error detection is to

detect whether there are any errors in a given sentence, which can be treated as

14https://code.google.com/p/giza-pp/
15http://www.statmt.org/moses/
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a series of binary classification problems16: if the current character is a spelling

error, the result is 0, otherwise the result is 1.

Pitler et al. [30] use the SVMs-derived confidence score17 to determine the

brackets between two words in English noun phrases. It inspired us to use such

confidence score to determine how likely the current character is a spelling error.

By merging the original input character and the error candidates of the previous

models, the system creates a candidate list for each character in the input text.

And then candidates in the list will be ranked based on the confidence score com-

puted by the SVMs classifier. Finally the character with the highest confidence

score will be treated as the correct character of our system. Besides improving

precision, this approach also allows us to perform error detection task and the

correction task simultaneously. In Figure 27, we give an example to show how

our ranking component works. For instance, for the fourth character 有 in the

input sentence 他們擁有不怕固難勇与面對的心, the SMT 1-best model predicts

a candidate 由. Then we merge the input character and the predicted candidate

and create a candidate list containing two characters: 有 and由. Finally, we rank

them based on the confidence score computed by the SVMs classifier and pick

the candidate with the highest score as the output.

The features for our SVMs classifier are defined as follows: we denote a char-

acter token c0 with a context sequence: ...c−2c−1c0c+1c+2... and cs:e as a character

sequence that starts at the position s and ends at position e. Our system extracts

the following features for each candidate:

• Character features: c−3, c−2, c−1, c0, c+1, c+2, c+3, c−1:0, c0:+1, c−1:+1,

c−2:−1, c+1:+2.

• Pointwise mutual information [1] between two characters: PMI(c−2; c0),

PMI(c−1; c0), PMI(c0; c+1), PMI(c0; c+2).

• Dictionary & N-gram features: Identity of the character sequence if

16It can be treated as a sequence labeling problem as well, where we have two tags: 0 (not a

spelling error) and 1 (a spelling error). However, the results were very bad by using such kind

of model, such as Conditional Random Fields (CRFs) model. It is likely due to the unbalance

label problem (we only have average less than 2 spelling errors in each sentence).
17http://www.csie.ntu.edu.tw/ cjlin/libsvm/faq.html Following the instruction of Q06: prob-

ability outputs.
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SMT output:

LM output:

Input text:

Candidates:

Output text:

Figure 27. An example of SVMs ranking. The SVMs is applied independently at

each candidate position.

it exists in the dictionary and the n-gram word list. For instance: 2-

character window c−1:0, 3-character window c−2:0, 4-character window c−3:0,

5-character windows c−4:0

We adopt the LIBLINEAR toolkit, an open library for SVMs18, to train our

linear classifier with the L2-loss function. We tune the penalty parameter of the

error term C, by using the 5-fold cross-validation on the training data and the

dry run data as well.

Further, we additionally applied a down-scaling factor to the confidence scores

of the generated candidates in order favor the original input character and prevent

excessive correction. Empirically on the dry run data, we found that multiplying

the confidence scores of the generated candidates (but not the original input

character) by a factor of 0.625 gave good precision and recall.

To obtain more training data for the classifier, we generated 100-best artificial

sentences using the LM procedure described in Section 3.1. Correct candidates

are labeled as positive and incorrect candidate characters are labeled as negative.

18http://www.csie.ntu.edu.tw/ cjlin/liblinear/.
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In our data set, the number of training sentences is small and the average number

of spelling errors in each sentence is one, and we found that such a large k-best

is helpful for ensuring that the SVMs observes the corrections.

5.4 Experiments

5.4.1 Datasets

To train our models, we use the following data sets:

1. Confusion Set: Confusion sets are sets of Chinese characters including

5,401 common Chinese characters with similar shape, same and similar

pronunciation candidates, which is further divided into five categories: 1)

same nucleus and same tone; 2) same nucleus and different tone; 3) different

nucleus and same tone; 4) different nucleus and different tone; 5) same

number of stokes. For more details, please refer to the Bakeoff 7 [41, 21].

2. Dictionary: CC-CEDICT, a free traditional Chinese dictionary released

by Creative Commons Attribution-Share Alike 3.0 License is used in our

experiment.19 It total includes around 71,886 Chinese words which contains

two or more Chinese characters.

3. Bakeoff 7 Data: The statistics of the data set, including the training, dry

run and test data, are shown in Table 13. The training data only contains

700 sentences, including 350 sentences without spelling errors which are

pretty small to train a better statistical model. Furthermore, comparing

with test data, the error rate and error distributions are totally different

between the training data and dry run data.

4. Generated Artificial Data: From the Table 13, we can see that the size

of the training data is insufficient to estimate a better ”error model” for

training the SMT model. To handle with this problem, we generated around

2 million sentences from the training data by replacing each character in

the provided 700 sentences with candidates in the confusion set, as shown

in Fig 26.

19http://www.mdbg.net/chindict/chindict.php?page=cedict
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Data Task #sentence #sentencewith errors #total errors
#sentence with N errors

N = 1 N = 2 N ≥ 3

Training Sub1&2 700 350 350 350 0 0

DryRun
Sub1 50 10 15 5 5 0

Sub2 50 50 74 36 9 5

Test
Sub1 1,000 300 376 238 49 13

Sub2 1,000 1,000 1,266 788 168 44

Table 13. Statistics of Training, Dryrun and Test Data. Here, Sub1 and

Sub2 indicate Chinese Spelling Error Detection Task and Chinese Spelling Error

Correction Task, respectively.

5. Chinese Segmentation Data: Academia Sinica corpus in Bake-off 2005

for traditional Chinese word segmentation is used to train the segmenter,

CRF-based Chinese word segmentation tools, in our experiment. The cor-

pus includes a total of 5,449,698 words and 8,368,050 Chinese characters20.

6. Chinese Gigaword: We use the whole traditional Chinese documents,

acquired from Central News Agency of Taiwan, in Chinese Gigaword Second

Edition, which is released by the Linguistic Data Consortium (LDC)21. The

traditional Chinese corpus includes 1,769,953 documents and 792 millions

words.

5.4.2 Evaluation Metrics

In the Chinese Spelling Check shared task, there are two sets of evaluation metrics

for Error Detection (sub-task 1) and Error Correction (sub-task 2) [41],

which are introduced in detail as follows.

For the error detection sub-task, the shared task adopts sentence level met-

rics for performance evaluation, defined as:

False− AlarmRate (FAR) =
#sentences with false positive errors

#testing sentences without errors
(10)

DetectionAccuarcy (DA) =
#sentences with correctly detected results

#all test sentences
(11)

20http://www.sighan.org/bakeoff2005/
21http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId =LDC2005T14
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DetectionPrecision (DP) =
#sentence with correctly detected errors

#test sentences with true errors
(12)

DetectionRecall (DR) =
#sentence with correctly detected errors

#test sentence with errors
(13)

DetectionF1 (DF1) =
2 ∗DP ∗DR

DP +DR
(14)

Error LocationAccuarcy (ELA) =
#sentences with correct error locations

#all test sentences
(15)

Error LocationPrecision (ELP) =
#sentences with correct error locations

#sentences with true errors
(16)

Error LocationRecall (ELR) =
#sentences with correct error locations

#test sentences with errors
(17)

Error LocationF1(FLF1) =
2 ∗ ELP ∗ ELR

ELP + ELR
(18)

For the error correction sub-task, the shared task adopts similar sentence

level evaluation metrics, which is defined as follows:

LocationAccuracy (LA) =
#sentences correctly detected error location

#all test sentences
(19)

CorrectionAccuracy (CA) =
#sentences correctly corrected error

#all test sentences
(20)

CorrectionPrecision (CP) =
#sentences correctly corrected error

#sentences corrected by system
(21)
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However, the sentence-level evaluation metric provided by the shared task can

not make a accurate measurement on the sentences with errors more than one.

A reasonable character-level evaluation metric is expected to help us to tune our

Candidate Generation and Candidate ranking component. Therefore, we

further employ new metrics to evaluate the accuracy of Chinese Spelling Check

in the character-level. The additional evaluation metrics are:

Precisionsub1 =
#correct error location detected

#predicted error location
(22)

Recallsub1 =
#correct error location detected

#true error location
(23)

F − scoresub1 =
2 ∗ Precisionsub1 ∗Recallsub1
Precisionsub1 +Recallsub1

(24)

Precisionsub2 =
#correct error candidate detected

#predicted error candidate
(25)

Recallsub2 =
#correct error candidate detected

#true error candidate
(26)

F − scoresub2 =
2 ∗ Precisionsub2 ∗Recallsub2
Precisionsub2 +Recallsub2

(27)

In the next two sub-sections, we will use our character-level metric to evaluate

the true qualities of our candidate generation and candidate ranking components.

5.4.3 Candidate Generation Quality

An investigation of the candidate generation quality is very import, because the

candidate generation step determines the upper bound of the recall of our system

and the missing corrections can not be recovered by the second ranking step.

In this subsection, we investigate the performance of our candidate generation

component, which includes the language model based approach and statistical

machine translation method. We are interested in knowing how many k -best

candidates we need to generate to achieve good recall. Note that in our paper,

we only concatenate all the candidates from different systems together. Although,

there are different ways to make LM and SVM work together, such as intersection
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the candidates from both systems, it may loss the true candidates, which cannot

be recovered in the ranking part. Our strategy is obtaining a higher recall in

candidates generation step and obtaining a higher precision in ranking part. In

the following experiments, we perform them on the dry run data set to tune and

to select the parameters.

k-Best Oracle Recall Computed by Eq 23

Systems K=1 K=2 K=5 K=10 K=15 K= 20

LM 0.6 0.73 0.9333 1 1 1

SMT 0.6 0.6 0.6 0.6 0.6 0.6

SMT,α = 0.7 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667

SMT,α = 0.8 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667

SMT,α = 0.9 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667

LM + SMT,α = 0.9 0.7333 0.7333 0.9333 1 1 1

Table 14. Comparison of different candidate generation approaches on

the error detection (sub-task 1). Note that k -best denotes the k -best candi-

date sentences; LM + SMT denotes concatentation of both LM and SMT; and α

indicates the language model factor in Moses.

k-Best Oracle Recall Computed by Eq 26

Systems K=1 K=2 K=5 K=10 K=15 K= 20

LM 0.4865 0.5946 0.6351 0.6622 0.7297 0.7568

SMT 0.2568 0.2703 0.2838 0.2838 0.2838 0.2838

SMT,α = 0.7 0.3378 0.3514 0.3514 0.3514 0.3514 0.3514

SMT,α = 0.8 0.3784 0.3784 0.3784 0.3784 0.3784 0.3784

SMT,α = 0.9 0.3919 0.3919 0.3919 0.3919 0.3919 0.3919

LM + SMT,α = 0.9 0.5946 0.6757 0.7027 0.7162 0.7568 0.7838

Table 15. Candidate generation results on the error correction (sub-task

2). Note that k -best denotes the k -best candidate sentences; LM + SMT denotes

concatentation of both LM and SMT; and α indicates the language model factor

in Moses.

Table 14 shows the character level recall on error detection task, also known
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as the sub-task 1. We show the recall when picking the best possible (oracle)

candidate in the k -best list. Note that k refers to the number of candidates

generated, which is added to the original input sequence; So, the column k=1

refers to the oracle recall of a list of 2 sentences, the column k=2 refers to the

oracle recall of a list of 3 sentences, and so on. Comparing the SMT model with

the default language model factor parameter (α = 0.5), the LM obtained higher

recall. Furthermore, with the number of k -best increasing, the LM outperforms

the SMT at all the different settings. We hypothesize this is because (1) the

word segmentation module is very effective at reducing the number of incorrect

candidates, and (2) even with the artificial training data, the SMT is not able to

generate sufficiently diverse k -best when k is relatively small.

Nevertheless, the advantage of a hybrid model can be see, by concatenating

the candidate of both the LM and SMT. It outperforms either the single lan-

guage model or SMT because the candidates generated by the LM and SMT are

different. In other words, the candidates generated by the LM and SMT are

complementary to each other. The same observation can be obtained from the

Table 15, which shows the results for subtask 2 (Error correction). Also, note

that the recall on the error detection task (sub-task 1), which is 1 in the 20 best

list, is much better than the recall on the error correction task (sub-task 2), which

is 0.7838 in the 20 best list. We hypothesize that the reason is the inconsistency

of the error distribution and the error rate, which is shown in Table 13.

Figure 28 shows an example of how we catch the oracle candidates, given a

real instance in the test data. First, our LM and SMT models generate the 2-

best candidates, respectively. Note that these two k-best candidate lists usually

contain different error candidates. Last, we merge those all the candidates for

ranking.

5.4.4 Candidate Ranking Quality

To estimate the importance of the SVMs ranking step, we perform a set of ex-

periments and tune parameters on the dry run data set. The evaluation metrics

are the character-level metrics, introduced in Subsection 5.4.2.

Feature selection plays a crucial role in machine learning community and

natural language processing. We are interested in which kinds of features should
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這兩種上學的感覺非常不一樣，一個是討厭、排擠，令一個卻
是以嘗試找出它的樂趣來，開心的度過，看你要選則哪一種？

Input sentence:

LM model SMT model

LM 2-best list
1.這兩種上學的感覺非常不一樣，一個是討厭、
排擠，另一個卻是以嘗試找出它的樂趣來，開
心的度過，看你要選則哪一種？

2.這兩種上學的感覺非常不一樣，一個是討厭、
排擠，令一個卻是以嘗試找出它的樂趣來，開
心的度過，看你要選這哪一種？

SMT 2-Best list
1.這兩種上學的感覺非常不一樣，一個是討厭、排
擠，令一個卻是以嘗試找出它的樂趣來，開心的
度過，看你要選擇哪一種？

2.這兩種上學的感覺非常不一樣，一個是討厭、排
氣，令一個卻是以嘗試找出它的樂趣來，開心的
度過，看你要選擇哪一種？

Candidate lists
22: 擠 24: 令 51:則
氣 另 這

擇

Figure 28. An example of catching the oracle candidate by merging two 2-best

list of LM and SMT models. The red characters denote the true errors in the

sentence. The blue characters denote the error candidates generated by LM or

SMT models. The brown characters denote the true corrections of the gold test

data. The number 22, 24, 51 denote the character locations inside the sentence.

In this example, our system finally catch all the true corrections in the candidate

lists.

be used in our ranking component to obtain a good performance.

As shown in Tables 16 and 17, comparing the SVMs ranking model, which only

uses the local context character features, the model which uses all feature types

including the local character feature, the dictionary feature, the n-gram language

model feature and the pointwise information feature, significantly improved the

F-score in both sub-tasks. Comparing to the original LM output, our SVMs
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Precision Recall F-score

LM-based 0.18 0.6 0.2769

SVM 0.5 0.2667 0.3478

SVM + DICT 0.625 0.3333 0.4348

SVM + N-GRAM 0.5385 0.4667 0.5

SVM + PMI 0.7 0.4667 0.56

SVM + all 0.75 0.6 0.6667

Table 16. Comparison of feature selection on error detection (sub-task

1) in the dry run data set. Here, SVM denotes the SVMs ranking performance

with only character features; DICT, N-GRAM and PMI indicate extra dictionary

features, the n-gram language model features and the pointwise information fea-

tures. Please refer to Section 5.3.3 for detail.

Precision Recall F-score

LM+based 0.72 0.4865 0.5806

SVM 0.75 0.1216 0.2093

SVM + DICT 0.8846 0.3108 0.46

SVM + N-GRAM 0.8235 0.3784 0.5185

SVM + PMI 0.875 0.3784 0.5283

SVM + all 0.8611 0.4189 0.5636

Table 17. Comparison of feature selection on error correction (sub-

task 2) in the dry run data set. Here, SVM denotes the SVMs ranking

performance with basic character features; DICT, N-GRAM and PMI indicate

extra dictionary features, the n-gram language model features and the pointwise

information features. Please refer to Section 5.3.3 for detail.

model with all feature types obtains significant improvement in the precision

from 0.18 to 0.75 without dropping the recall on the error detection task. In the

error correction task, although the recall dropped, the SVMs with all features

obtains a competitive F-score, which is a trade-off between the precision and

recall. One interesting observation is that the LM model obtains a higher F-score

compared to our model with the SVMs ranker. The reason is mainly because of

the extremely unbalanced error distribution in the training and dry run data as

shown in Table 13. On the other hand, it implies that we can choose a larger

number of k-best in the candidate generation step to improve the recall, which

will be reported in the next subsection.
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Precision Recall F-score

LM 0.18 0.6 0.2769

SMT 0.04 0.6667 0.0755

LM 1-best with SVM ranking 0.75 0.6 0.6667

LM 2-best with SVM ranking 0.6471 0.7333 0.6875

LM 5-best with SVM ranking 0.52 0.8667 0.65

LM 10-best with SVM ranking 0.518 0.9333 0.6667

SMT 1-best with SVM ranking 0.5556 0.6667 0.6061

SMT 2-best with SVM ranking 0.5556 0.6667 0.6061

SMT 5-best with SVM ranking 0.5556 0.6667 0.6061

SMT 10-best with SVM ranking 0.5556 0.6667 0.6061

LM + SMT 1-best with SVM ranking 0.5789 0.7333 0.6471

LM + SMT 2-best with SVM ranking 0.55 0.7333 0.6286

LM + SMT 5-best with SVM ranking 0.4643 0.8667 0.6047

Table 18. Comparison of SVM ranking on error detection (sub-task 1)

in the dry run data. Note that k-best denotes the number of generated error

candidates; these are ranked together with the original input sentence. LM +

SMT denotes concatentation of both LM and SMT.

Table 18 shows how the accuracy is affected by the ranking component on the

dry run data set for the error detection task (sub-task 1). One observation is that

comparing the systems without ranking, our proposed approach with ranking

reduces wrongly generated candidates and improves the precision score with a

small sacrifice on the recall, however, the F-score is improved. For example,

in the LM model of 1-best setting, the precision increased to 0.75 from 0.18

by using the SVMs ranker. One more interesting observation is that the LM

outperforms the SMT due to the lack of training data to estimate a better error

model, which is introduced in Subsection 5.3.2. Similar observations can be

obtained from the Table 19, which is shown the results of sub-task 2. All these

evidences demonstrate the importance of our ranking component. To avoiding the

bias on the small dry run data, we also conduct a serial experiments on training

data by using 5-fold validations and can have similar observation as on the dry

run data.
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Precision Recall F-score

LM 0.72 0.4865 0.5806

SMT 0.1381 0.3919 0.2042

LM 1-best with SVM ranking 0.8611 0.4189 0.5636

LM 2-best with SVM ranking 0.7778 0.473 0.5882

LM 5-best with SVM ranking 0.7059 0.4865 0.576

LM 10-best with SVM ranking 0.6066 0.5 0.5481

SMT 1-best with SVM ranking 0.6111 0.2973 0.4

SMT 2-best with SVM ranking 0.5946 0.2973 0.3964

SMT 5-best with SVM ranking 0.5789 0.2973 0.3929

SMT 10-best with SVM ranking 0.5789 0.2973 0.3929

LM + SMT 1-best with SVM ranking 0.7059 0.4865 0.576

LM + SMT 2-best with SVM ranking 0.7037 0.5135 0.5938

LM + SMT 5-best with SVM ranking 0.6667 0.5135 0.5802

Table 19. Comparison of SVM ranking on error correction (sub-task 2)

in the dry run data. Note that k-best denotes the number of generated error

candidates; these are ranked together with the original input sentence. LM +

SMT denotes concatentation of both LM and SMT.

5.4.5 Main results

In the final test, we use the standard test data sets provided by the shared task.

Note that we use the best setting, which is empirically suggested by Section 5.4.4.

These data sets contain 1000 sentences for each sub-task: the error detection sub-

task and error correction sub-task.

In Table 20, FAR denotes the false-alarm rate computed by Eq. 10; DA, DP,

DR and DF indicate detection accuracy, detection precision, detection recall and

detection f-score, computed by the Eq. 11, Eq. 12, Eq. 13 and Eq. 14, respectively;

ELA, ELP, ELR and ELF denote error location accuracy, error location precision,

error location recall and error location f-score, computed by Eq. 15, Eq. 16, Eq. 17

and Eq. 18, respectively. Note that SIGHAN7 best1 and SIGHAN7 best2 were the

two best systems reported in the shared task, however, they used more resources.

The Sinica&NTU1 system used similar resources as ours, however, in their sys-

tems of Sinica&NTU2 and Sinica&NTU3, they further used information obtained

from a web search engine (Baidu). Our system outperformed the Sinica&NTU1,

which used similar resources as ours, and achieved lower false alarm rate, as
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Systems FAR DA DP DR DF1 ELA ELP ELR ELF

Our result 0.1557 0.8070 0.6646 0.7200 0.6912 0.7350 0.4431 0.4800 0.4608

Sinica&NTU1 0.4471 0.6540 0.4603 0.8900 0.6068 0.5490 0.2793 0.5400 0.3682

Sinica&NTU2 0.1414 0.8350 0.7027 0.7800 0.7393 0.7460 0.4354 0.4833 0.4580

Sinica&NTU3 0.1414 0.8360 0.7036 0.8833 0.7413 0.7490 0.4431 0.4933 0.4669

SIGHAN7 Best1 0.0514 0.8610 0.8455 0.6567 0.7392 0.8200 0.6695 0.5200 0.5854

SIGHAN7 Best2 0.0957 0.8560 0.7690 0.7433 0.7559 0.8050 0.5931 0.5733 0.5830

Table 20. Comparison of final results on error detection (sub-task 1) in the

standard test data.

well as higher detection F-score and error location F-score. Furthermore, our

system even exceeded the Sinica&NTU2 and Sinica&NTU3 systems in perfor-

mance, which used additional information from a web search engine (Baidu) [7].

However, our system was beaten by the two best systems reported in the shared

task. Comparing our system, these two best systems in shared task used more

resources, such as the POS tagging information, a considerable larger dictionary

and an large idiom dictionary. We strongly believe that such resources have a

great contribution to improve the Chinese Spelling Check System, and they can

be flexibly incorporated into our proposed system if available.

We can obtain similar results in the error correction task (sub2) shown in Ta-

ble 21. Here, LA, CA and CP denote location accuracy, correction accuracy and

correction precision, computed by Eq. 19, Eq. 20 and Eq. 21,respectively. Note

that SIGHAN7 best1 and SIGHAN7 best2 were the two best systems reported in

the shared task, however, they used more resources. The Sinica&NTU1 system

used similar resources as ours, however, in their systems of Sinica&NTU2 and

Sinica&NTU3, they further used information obtained from a web search engine

(Baidu). Our system also outperformed all the three systems of Sinica&NTU,

which used the same resource as ours. However, the two best systems, reported

in the shared task, also obtained the best performance in the error correction

task. To recap, our system significantly outperformed the three systems of

Sinica&NTU, which is the best system that used similar resources in the shared

task. Even comparing with the state-of-the-art systems, which used more re-

sources than ours, our results are still competitive.
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Systems LA CA CP

Our result 0.498 0.457 0.621

Sinica&NTU1 0.507 0.467 0.467

Sinica&NTU2 0.489 0.445 0.445

Sinica&NTU3 0.487 0.450 0.450

SIGHAN7 Best1 0.663 0.625 0.703

SIGHAN7 Best2 0.370 0.356 0.705

Table 21. Comparison of final results on error correction (sub-task 2) in the

standard test data.

5.4.6 Error Analysis

Chinese spelling check is a hard problem because the error detection must be done

within a context. The situation is that the context information is also ambiguous.

We found that our system is quite effective if the local context provides sufficient

information, but fails otherwise. The main error types produced by our system

are:

• Semantic error: In the sentence with id ”0003” in the error detection task

(sub-task 1), our system detected the 真 (really) as an error in the context

力量真大 (the force is really big.) and correct it to 增 (increase) with the

context 力量增大 (the force increases.). In a local context, both characters

真, and 增, can be regarded as correct in meaning, but our correction is

incorrect when considering the semantics of the whole sentence.

• Pronoun agreement error: In the sentence with id ”0008” in the error

detection task (sub-task 1), our system corrected 他 (he) to 它 (it). Unless

we can the find its pronoun agreement with the person 貝多芬 (Beethoven)

in previous text, it is difficult to determine which is correct.

5.5 Summary

We proposed a simple and effective framework for Chinese Spelling Check which

includes two key components: candidate generation and candidate ranking. Firstly,

we generated the candidates by using the LM and SMT to achieve large recall.
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Then, to improve the precision, we employed an SVMs classifier to rank the gen-

erated candidates and give the most likely correction. In this paper, we examined

in depth issues such as what type/number of candidates are most effective in im-

proving recall, and what ranking features are best for improving precision. We

also proposed a simple approach to improve the SMT model by replacing the

characters in the training data with all the candidates in the confusion set, to

generate many artificial samples. Our final test results reveal that our framework

outperforms other systems, which adopted the same or similar resources as ours

in the SIGHAN 7 shared task; even comparing with the state-of-the-art systems,

which used more resources, such as a considerable large dictionary, an idiom dic-

tionary and other semantic information, our framework still obtains competitive

results.
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Chapter 6

6. Conclusion and Future Work

6.1 Conclusion

In this thesis, we improve two fundamental steps before Chinese NLP pipeline:

Chinese word segmentation and spelling check.

Our hypothesis of the word segmentation task is that the main segmentation

standard and OOVs issues can be addressed by analyzing the internal informa-

tion of Chinese words. However, due to the lack of existing resources, the first

challenge becomes to create an effect way to automatically analyze the word

structure.

For this purpose, we carefully build an annotation standard and a synthetic

word dictionary with manual annotation. Instead of adopting a traditional pipeline

method, we design a novel character-based morphological dependency framework

for representing the internal structure of words, which can jointly perform word

segmentation and parsing work. Furthermore, our synthetic word parser is flexi-

ble to be boosted by several feature types, which are extracted from a dictionary

and a large-scale unlabeled corpus.

Our word segmentation system is composed by two-stage processes. The

existing word segmentation corpora are first converted to a fine-grained segmen-

tation level by our synthetic word parser. Then, a CRF-based segmenter with

the state-of-the-art features is used to predict a new label of each character,

which combines both the original and the fine-grained level information. The

experiment results show a significant improvement of our segmentation system

compared to the baseline segmenter without relying on any new feature types.

We further propose a strategy to transform CWS corpora to a consistent

segmentation level, in which multiple corpora can be easily combined to extend

larger training data. The extended training data is verified to be highly consistent

by cross-validation. Due to the extension of larger training data and flexibility

of incorporating internal structure information, our proposed word segmenter
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achieves a significant improvement compared to the baseline and state-of-the-art

system using heterogeneous data.

For Chinese spelling check, we propose a hybrid spelling check framework with

two key components: candidate generation and candidate ranking. Candidate

generation intends to enlarge the size of candidate lists by gathering the results

from two single spelling check system. Candidate ranking adopts a SVMs classi-

fier to provide a confidence score for each candidate for ranking. The ranking step

is designed to provide high precision of the system performance without losing

too much recall. Our framework is flexible to extend the correction candidate lists

by adding more single spelling check systems and substitute any ranking tech-

niques for the SVMs classifier. Our spelling check system achieves competitive

results with less resources consuming, compared to the state-of-the-art systems

in SIGHAN 7.

6.2 Future Work

Most modern Chinese words are derived from the Chinese characters, each of

which contains an independent meaning. It is a straightforward thinking that

Chinese synthetic words can be represented in the form of fully character-level

internal trees in the future studies. Rich information can be integrated into this

new direction such as Part-of-Speech tag of each character, directed morpholog-

ical dependency between two characters, etc. It can reinforce the current word

structure analyzer (i.g. synthetic word parser) by overcoming two short-comings,

i.g. relying on the minimal granularity definition of single-morphine words and

undirected dependencies in word-level.

In this work, we demonstrate that the automatic word structure analyzer can

improve the performance of Chinese word segmentation. A further extension is

to apply our word structure analyzer into another downstream task, i.e. syntactic

parsing. It is natural to consider that whether word is necessarily the minimal

unit of Chinese, since each Chinese character takes a independent meaning. Com-

bining morphological analysis and syntactic parsing into one parsing model is an

attractive goal for the Chinese NLP community.

In our current spelling check system, the language model (LM) method con-

ducts main effort for the candidate generation step. However, a obvious problem
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is that the LM replies on the prior word segmentation process. It means that if

an error character is segmented into a different word from the correct segmen-

tation, this error is likely to be undetectable for our LM method. There is the

space to improve the LM method by including more complex cases of different

word segmentation results or even jointly perform the spelling check and word

segmentation processes.

In recent years, deep learning has swept across the NLP community. In the

task of Chinese word segmentation, conventional CRF models are beaten by

various recurrent neural networks. The modern neural networks rely on the com-

bination with lookup tables of words with random initialization or pre-trained

process, which capture word representations based on context information. In

contrast to this, our internal structure of words provides independent informa-

tion from words themselves, which can be seen an additional information source

to be integrated into word representations in the future.
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