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Data-driven System Identification of Signal

Conversion from cGMP to Membrane Potential

in Neuronal Growth Cone∗

Tatsuya Yamada

Abstract

Growth cone, at the tips of growing neurites (axons and dendrites) of devel-

oping neurons are guided to their synaptic targets by various external guidance

molecules to make functional neuronal connections. In the presence of guidance

factor, Sema3A, repulsive movement of the growth cone from Sema3A is accom-

panied by a decrease of membrane potential (MP) of the growth cone. The

growth cone turns to an attractive moving with MP elevation when the intracel-

lular cGMP concentration is increased. This fact indicates that the biochemical

signal encoded by cGMP concentration is converted to the electrical signal of

MP. However, the mechanism of signal conversion among such different physi-

cal modalities remains unknown. In this study, we aim to identify the system

which quantitatively realizes the signal conversion from cGMP to MP in growth

cone. We described MP time series by deterministic computational model and

expressed individual experimental variation and cell-to-cell variation by the prob-

ability distribution of the model parameters. By applying Markov Chain Monte

Carlo (MCMC) method to Bayes’ theorem, we estimated the posterior distribu-

tion of the model parameters, and then we extracted the most plausible system

by comparing models based on logarithmic evidence. Our quantitative analysis

revealed that the inhibition of Chloride ion channel by the downstream factor of

Protein Kinase G is necessary for a core system. In addition, the identified model

∗Doctoral Dissertation, Department of Bioinformatics and Genomics, Graduate School of In-

formation Science, Nara Institute of Science and Technology, NAIST-IS-DD1261018, February

1, 2018.
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quantitatively reproduced the unused time series data and the cGMP dependency

of steady-state MP.

Keywords:

Growth Cone, Membrane Potential, Bayesian Estimation, Signal Conversion,

Data-driven System Identification

ii



神経成長円錐におけるcGMPから膜電位へのシグナル

変換のデータ駆動型システム同定∗

山田 達也

内容梗概

神経突起先端にある成長円錐は，細胞外の環境を検知し，神経突起を適切な

シナプス結合のターゲットへと導く．例えば，細胞外に誘導因子 Sema3Aの濃度

勾配がある場合，通常状態の成長円錐は Sema3Aに対して膜電位の下降を伴いな

がら忌避性の運動を行う．しかし，成長円錐内の cGMP濃度を増加させると，膜

電位の上昇を伴いながら誘引性の運動を行うようになる．この事実は，cGMP濃

度による生化学的シグナルが膜電位による電気的シグナルに変換されていること

を意味する．しかしながら，こうした異なる物理量間のシグナル変換を実現する

メカニズムは未解明である．本研究は，成長円錐における cGMPから膜電位への

シグナル変換を実現するシステムの同定を目的とする．そのために，データ点が

豊富な膜電位時系列を決定論的数理モデルで表し，個々の実験や細胞に含まれる

ばらつきをモデルパラメータの確率分布で表現した．ベイズの定理にマルコフ連

鎖モンテカルロ（MCMC）法を適用することによりモデルパラメータの事後分布

を推定し，対数エビデンスを用いたモデル比較を行うことで細胞内システムの同

定を行った．その結果，既知の相互作用に加え，Protein Kinase G (PKG) の下

流による塩素イオンチャネル抑制が必要であることが推定された．妥当性検証を

行ったところ，推定されたモデルが他の実験条件の膜電位時系列を定量的に再現

するとともに，定常状態後の膜電位においても実験定量データに酷似した cGMP

依存性をみせた．

キーワード

成長円錐，膜電位，ベイズ推定，シグナル変換，データ駆動型システム同定
∗奈良先端科学技術大学院大学 情報科学研究科 情報生命科学専攻 博士論文, NAIST-IS-

DD1261018, 2018年 2月 1日.
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1. Introduction

The structural plasticity of neuronal cells have an important role to construct the

neuronal network in the developmental stage of animals. In the stage, the tip of

neurite (axon and dendrites) called growth cone has the central role of structural

plasticity. The growth cone guides its neuronal fiber to an appropriate neuronal

target by responding to various external signals (Fig. 1). This phenomena is

called growth cone guidance what we deal in this study.

Figure 1. Growth cone guidance. To constructing a neuronal network, growth

cone makes neuronal connection by guiding its neuronal fiber to the appropriate

target neuron.

Growth cone guidance depends on various molecule signals. The main factor

of growth cone guidance is the molecules called guidance factors. Growth cone

receives these molecules as a signal by the receptor on the cell membrane, and

then guides axon or dendrites to an appropriate target [1]. Depending on the

extracellular guidance signal, growth cone behaves differently in elongation speed

and in turning direction. In the case of turning direction, there are two types of

guidance molecules. “Attractants” such as NGF and BDNF attract the growth

cone, whereas “Repellents” such as EphrinA2 and Semaphorin3A (Sema3A) repel

the growth cone [2] (Fig. 2).
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(a) Attractant (b) Repellent

Figure 2. Growth factor. (a) In the attractant gradient, growth cone moves to

the high concentration area. (b) In the repellent gradient, growth cone moves to

the low concentration area.

Although the guidance molecules are well classified into these two groups, it

has become known that growth cone switches behavior depending on the con-

centration of the second messenger such as cyclic-AMP (cAMP) and cyclic-GMP

(cGMP) [3, 4]. For instance, a growth cone, in a control condition, exhibits repul-

sive response to a Sema3A gradient, but the repulsion is inverted to attraction if

the normal cGMP level is elevated [5, 6] (Fig. 3). This suggests the intracellular

biochemical signaling pathways instruct the migration direction of the growth

cone during its navigation [5, 7, 8, 9]. Furthermore, Ca2+ signal is also important

signal for growth cone guidance, which leads to the formation of cellular skeleton

[10]. In addition, baseline of Ca2+ signal switches the direction of growth cone

turning even if the elevation of local Ca2+ signal induced by guidance molecule is

same level [9]. Therefore, unveiling the relationship between the molecular inter-

action via cAMP/cGMP and Ca2+ signaling is an important task to understand

the mechanism of growth cone guidance [6].

Previous study showed that membrane potential (MP) shifts regulated by

cGMP signaling [11] regulate Ca2+ signals through activation of MP-dependent

2



(a) Low cGMP (b) Normal cGMP (c) High cGMP

Figure 3. Sema3A-induced cGMP-dependent growth cone turning. Under the

condition of Sema3A exposure (from right-upper arrow for each panel), growth

cone (a) moves straight, i.e., no response to the Sema3A gradient, (b) repels from

the Sema3A, (c) attracts to the Sema3A.
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calcium channels [12] that governs the growth cone turning direction. In other

words, biochemical signals are converted to electrical signal, which are reconverted

into other biochemical signals through various ion channels [13, 14]. In short,

growth cone guidance is regulated not only by the molecule signals but also by

electrical signal of MP shifts [11].

1.1 MP shifts dependent growth cone turning

In the previous study, the relationship between growth cone turning angle and

MP shifts were examined [11] (Fig. 4). As we described, growth cone turning an-

gle depends on the concentration of the second messenger of guidance molecules.

The growth cone turning direction is also modulated by state of growth cone

MP; a hyperpolarized and depolarized state induces repulsion and attraction, re-

spectively, in response to many diffusible guidance molecules [11]. Moreover, a

low level of cGMP causes growth cone hyperpolarization whereas a high level of

cGMP causes depolarization [11], demonstrating that a cGMP signal regulates

MP shift which eventually determines growth cone turning direction. This in-

dicates that MP has the information to determine the turning direction of the

growth cone.

The signal conversion in the Sema3A growth cone guidance, cGMP and MP

shifts are the input and the output of the intracellular molecular system, respec-

tively. This input-output relation shows bidirectional behavior (Blue square in

Fig. 5). Furthermore, turning angle of the growth cone also shows bidirectional

behavior (Yellow circle in Fig. 5). Surprisingly, these two output of growth cone

signaling are highly correlated. Taking into account the causality from cGMP

molecular signaling to electrical signaling of MP shifts, these facts implies MP

directs the growth cone turning behavior [11] (Fig. 6).
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(a) Turning assay (b) Voltage recording

Figure 4. Experimental configuration of growth cone turning. (a) In turning

assay, growth cone is exposed to the Sema3A gradient with/without 8-Br-cGMP

bath application. Turning angle is calculated by the difference of the position

after 1 hour from exposure and the one of beginning of exposure. (b) In voltage

recording, the experimental configuration is same as turning assay. MP shifts is

calculated by the difference of same period of turning assay. (Modified from [11])
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Figure 5. cGMP dependency of turning angle and MP shift. Change of intracel-

lular cGMP level (green triangle) results in MP shift (blue square) and growth

cone steering (yellow circle) [6]. Growth cone shows bidirectional turning in re-

sponse to Sema3A and the direction has a high correlation with steady-state MP

shift from the resting potential (before cGMP analogue stimulation); attraction

for depolarization (DP) and repulsion for hyperpolarization (HP).

Figure 6. Signaling conversion from cGMP to MP signal. Block diagram of

signal conversions among biochemical, electrophysiological, and morphological

factors. Intracellular cGMP shifts MP first, and then MP shift steers growing

angle. Signal conversion from cGMP to MP (highlighted in red) is analyzed by

the model in Fig. 13.
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1.2 Intracellular molecular system

It is previously demonstrated that activation of Cyclic Nucleotide-Gated ion

Channel (CNGC) and cGMP-dependent protein kinase (Protein Kinase G; PKG)

are required for MP shifts [11]. The experiment using PKG inhibitor, KT5823,

suggested the downstream of PKG could activate sodium channel (NaC). In addi-

tion, a high probability was suggested so that CNGC activates chloride channels

(ClC). We confirmed increase of Cl− current through ClC by CNGC activation

during 8-Br-cGMP injection (Fig. 7).

Figure 7. Molecular system which regulates growth cone MP during cGMP stim-

ulation. cGMP diffuses toward the vicinity of growth cone membrane and is

bound by PKG and CNGC, which causes activation of the downstream factor.

As a result, ion channels (NaC and ClC) on the membrane are modified via in-

tracellular molecular interaction and corresponding ions inflow which cause MP

shift.
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1.3 Purpose of this study

In this study, we aim to identify the intracellular molecular system from differ-

ent physical modality, MP time series, by quantitative modeling and Bayesian

approach. Previously, the biochemical experiment is the only way to investigate

the interaction of intracellular molecules, however, it is time consuming. From

this reason, it becomes wanted that the information science approach to extract

the molecular system from the available data [15]. Several researches provide

the solution to extract molecular system from the biochemical data, by using

Bayesian approach [15]. The approach is utilized in the present study, however,

the particular task is to estimate the molecular system from the MP data.

1.4 Approach of this study

Here, we demonstrate the computational derivation of the significant molecu-

lar interaction from a set of time series of electrophysiology recordings obtained

from the palm of single growth cones, by a combination of deterministic mod-

eling and Bayesian theory. We used the electrophysiology data, i.e., MP shifts

recorded from the growth cone during its movement in response to an external

signal, in which each time series contains over 10,000 data points, allowing us

to perform quantitative analysis based on the deterministic modeling. We ad-

dressed the experimental and cell-to-cell variation by probability distributions of

the model parameters and estimated their posterior distributions with datasets

obtained over several experimental conditions. Specifically, in our case, data

points are sufficient to estimate the model parameters of a time series but num-

ber of dataset is insufficient for taking into account the variation of data (a set

of time series). A Bayesian approach is especially effective approach when an

insufficient number of data are available and there are uncontrollable experimen-

tal variations. Applications of Bayesian framework have been well developed in

neuroscience [16, 17, 18, 19]. Reverse engineering technique has a potential to de-

duce unknown biochemical interactions from known biochemical dataset [15, 20],

whereas the particular task in the current study is to estimate unknown biochemi-

cal interactions from electrophysiology dataset while taking into consideration the

experimental variations.
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1.5 Organization of the dissertation

In chapter 2, biological experiments and observed data are explained. In chap-

ter 3, deterministic mathematical model is defined. In chapter 4, employed

Bayesian approach and model criteria are introduced. In chapter 5, the model

selection analysis and the several validation analysis were described. In chap-

ter 6, the supporting studies are glanced and our studies’ limitation and future

direction are described. Finally, in chapter 7, we conclude this study.
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2. Biological experiment and experimental data

In this chapter, we explain the experimental procedure of MP time series (MPTS)

recording performed by previous study [11]. The experimental data of the MPTS

during growth cone guidance which is analyzed in the present study is also de-

scribed.

2.1 Experimental procedure and experimental data

The experimental dataset analyzed in this study were obtained by the electro-

physiological experiment (Fig. 8). The data is measured by attaching a micro

pipette on the palm of growth cone (Left-upper inset of Fig. 8), with intracel-

lular 8-Br-cGMP perfusion under the gradient of Sema3A. The experiments are

performed with different conditions of the 8-Br-cGMP concentration (5 µM and

10 µM) and the pharmacological reagents (Control, DNDS, STX and KT5823).

Pharmacological effects of these reagents are as follows: DNDS and STX block

ClC and NaC, respectively. And KT5823 inhibits PKG activity.

We analyzed these data for identifying the intracellular molecular system. To

make a meaningful discussion, we used the preprocessed 10 µM dataset (Con-

trol/+DNDS/+STX in Fig. 9) only for the identification step and then validated

with 5 µM dataset (Control/+DNDS/+STX in Fig. 10) and 10 µM +KT5823

dataset (Fig. 11).
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Figure 8. Experimental procedure of MPTS recording. Growth cone is rested

before the experiment more than 30 minutes. In the pharmacological condition

(in the presence of DNDS, STX or KT5823), reagent is bath-applied from this

experimental phase, whereas none of them is applied in the control condition.

The MPTS is recorded from the time of micro pipette injection with intracellular

8-Br-cGMP perfusion under the gradient of Sema3A.
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Figure 9. Experimental data. Growth cone MPTS after attachment of the pipette

filled with 10 µM 8-Br-cGMP under three conditions; (a) Control (n=7), (b)

DNDS (n=5) and (c) STX (n=4). Upper panels show preprocessed MPTSs and

lower panels show raw MPTSs
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Figure 10. Experimental dataset of MP time series by 5 µM 8-Br-cGMP stimula-

tion with in three different conditions; (a) Control, in the presence of (b) DNDS,

and in the presence of (c) STX. These profiles showed relatively small changes

than those by 10 µM 8-Br-cGMP stimulation.
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Figure 11. Experimental dataset of MPTS by 10 µM 8-Br-cGMP stimulation

with KT5823 (PKG inhibitor) application.
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2.2 Preprocessing

In contrast with long time phenomena of growth cone turning and MP shifts (in

1h time scale) what the present study interests, raw experimental MPTS shows

several short time events which are dealt as some kind of noise. Specifically,

in the analysis, we used the preprocessed MPTS of 300–900 data points (one

sec interval) resampled from raw data (>10,000 data points). The original time

series contained various noises assumed to be of three different kinds (Fig. 12).

The first kind had a spike-like form such as a post-synaptic action potential. It

was removed by simply applying a smoothing filter with a window of one-second

time interval. The second kind was assumed to be observation noises generated

by experimental conditions like equipment, and was modeled as white Gaussian

in the analysis for introducing the noise into Bayesian framework. The third

kind included abrupt and temporal changes in the time series, probably due to

experimental artifacts. We removed data points during such temporal change

period and complemented with a straight line which connected the onset point

and the end point of the temporal change.

15



Figure 12. Sample time series of the MP observed in experiment (10 µM 8-Br-

cGMP). Black line represent raw MPTS and dots are preprocessed time series,

Preprocessing was performed by removing abrupt and temporal changes manually

and inserting a straight line to the removed regions (blue dots), and then spike-

like noise is also removed by resampling with 1 second interval (i.e., smoothing

with 1 second window). Observation noise is considered as Gaussian noise and its

standard deviation is estimated as the difference of the preprocessed time series

and the smoothed time series (red line) which were obtained by applying moving

average with ±5 second window to each point in the series.
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3. Deterministic model of signaling pathway

In this chapter, we model the growth cone MP regulation incorporating intracellu-

lar molecular system and membrane electrophysiology. And we show 81 possible

model candidates for comparing in the present study.

3.1 Summary of model formulation

To estimate unknown signal interactions (Fig. 13), a quantitative mathematical

model was developed based on biological knowledge and physical constraints. The

cGMP-MP conversion comprises multiple biochemical and biophysical processes

with various time scales (Fig. 9); diffusion of 8-Br-cGMP from an application-

recording pipette, biochemical signal transductions of 8-Br-cGMP downstream

factors (DFs) including CNGC and PKG, modification of effective densities of ion

channels, ClC and NaC, on plasma membrane, and open-close dynamics of the

voltage-dependent ion channels. By quantitative simulation analysis, we found

that the concentration of 8-Br-cGMP in the growth cone attached with the stim-

ulant pipette rapidly increases in the first phase and then reaches a steady state

for several minutes (Fig. 17). Although typical biochemical reactions proceed

on a time scale of seconds, it is unknown how fast the effective densities of ion

channels are modified. In addition, open-close dynamics of the voltage-dependent

ion channels occur on a millisecond time scale [21]. According to the differences

in time scale of these processes, it is suggested that the 8-Br-cGMP diffusion

and the modification of effective channel densities are possible rate-limiting steps

for MPTS, which also shows a fast change within several minutes and a slow

change thereafter (Fig. 9 and 14). The rate-limiting step allows us to intro-

duce quasi-steady state approximation (Fig. 15) into the model, in which the

fast processes are in steady states at all times and therefore can be formulated

by a time-independent function, while the rate-limiting steps are described by

time-dependent functions or ordinary differential equations (ODEs).

To identify the interactions which regulate MP shift on the growth cone,

81 possible models are considered based on the molecular-molecular interactions

(Fig. 13) as formulated in this chapter.

17



Figure 13. Signaling pathways from cGMP to MP. Black arrows are known as

positive pathways, whereas blue arrows represent possible pathways which are

examined. cGMP binding to CNGC and PKG activate their downstream factors

(DFs) first. CNGC- and PKG-DFs regulate efficacies of ion channels, ClC and

NaC, respectively, which cause MP shift. Parallel blue arrows, (X2Y) and (Y2X),

indicate possible interactions between DFs whereas cross blue arrows, (X2W) and

(Y2Z) indicate possible interactions from DFs to the ion channels. Each of the

interactions has one of three types; activation, inhibition, and no interaction.

These interaction types of blue arrows in the gray box are interactions to be

identified. Italic characters indicate the model variables; S, X, Y , Z, W , and V

are 8-Br-cGMP concentration, relative concentrations of CNGC- and PKG-DFs,

relative changes of ClC and NaC densities, and MP shift from the potential before

8-Br-cGMP stimulation, respectively.
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Figure 14. Time scale of the membrane potential regulation. The phenomenon

includes several processes which have different time scale. Open-close dynamics

of ion channels and chemical reactions are faster than ion channel modulation by

the regulator. Notations of each variable are same as Fig. 13

Figure 15. Quasi-steady state approximation. In the slow time scale, the fast

event can be ignored. Mathematically, it is equivalent to setting zero to the

derivative of the fast time scale variable.
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3.2 Formulation of 8-Br-cGMP

In the experiment, the pipette filled with solution of 8-Br-cGMP was attached

near the center of the growth cone, from which cGMP analogues (8-Br-cGMP)

diffused over the whole growth cone (Fig. 16). The averaged time series of the 8-

Br-cGMP concentration, S, was approximated as the simple exponential function

of time t,

S = Smax(1− e−t/τS), (1)

where Smax was the same as the 8-Br-cGMP concentration in the pipette.

Figure 16. 8-Br-cGMP diffusion. By the intracellular perfusion, 8-Br-cGMP

achieves the vicinity of the growth cone from the attached patch pipette.

The time constant, τS, was estimated from numerical calculation of a model

growth cone consisting of three shell compartments (Fig. 17(a)). The inner two

shell compartments were of 1 µm thickness and the most outside shell was of a

variable thickness given by 1 µm added by Gaussian noise, N(0, 12). In addition

to these three compartments, we added one pipette compartment, indexed by

0, in which the cGMP analogue is abundant with a fixed concentration. The

8-Br-cGMP concentration in the n-th compartment, Cn (µM), obeys the Fick’s

law,

d

dt
Cn = D

An−1,n

dn−1,nVn

(Cn−1 − Cn) +D
An,n+1

dn,n+1Vn

(Cn+1 − Cn), (2)

where D, An−1,n, dn−1,n, and Vn are the diffusion coefficient of 8-Br-cGMP (1

m2/s, [22]), the surface area between the (n− 1)-th and the n-th compartments,
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the distance between the compartment midpoints, and the volume of the n-th

compartment, respectively. We solved Eq. (2) numerically with the boundary

condition, C0 = Smax, and confirmed that the time course in the third compart-

ment (the outmost shell) can be well approximated by the exponential function

in Eq. (1) (Fig. 17(b)). Monte Carlo simulation with various growth cone sizes

gave the distribution of the time constant, τS, whose mean was 40 sec.

(a) Model (b) Time course

Figure 17. Computation of the 8-Br-cGMP diffusion. (a) Growth cone model

for computing time series of diffusing 8-Br-cGMP. It is composed of three shell-

shaped compartments and the 0-th compartment is a pipette which is filled with

abundant 10 µM 8-Br-cGMP. To express size variation of growth cone, Gaussian

noise ϵ N(0, 12) was added to the thickness of the outmost shell compartment

(compartment #3). (b) Sample time series of the concentration in the compart-

ment #3 (red line) by solving the diffusion equation (Eq. (2)). Blue line is the

exponential function (Eq. (1)) fitted to the red one.

As we described, injection of 8-Br-cGMP from a pipette raises intracellular

8-Br-cGMP concentration in the growth cone by diffusion. This process is rate-

limiting and its time series is well fitted to simple exponential function of time

(Eq. (1)). We used this simple function instead of calculating the diffusion
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equation.

3.3 Formulation of 8-Br-cGMP binding and downstream

factors

Diffused 8-Br-cGMP first binds to CNGC and PKG, which transduce the signal

to their DFs (Fig. 13 and 18) by the chain of chemical reaction (Appendix A).

If we express the normalized activity levels of CNGC- and PKG-DFs as X and

Y , respectively, their reaction rates are faster than the change rate of MPTS. By

applying quasi-steady state approximation, they can be written as the Hill-type

functions of S,

X =
Sn

KX + Sn
, KX =

kXb

kXf

(3)

Y =
Sm

KY + Sm
, KY =

kY b

kY f

, (4)

where Hill coefficients, n and m, are effective ones incorporating influence of the

downstream processes, rather than the numbers of 8-Br-cGMP binding sites. KX

and KY are dissociation parameters defined by the ratio of backward rate (kXb

and kY b) to forward rate (kXf and kY f ) of the reactions.

Figure 18. 8-Br-cGMP binding and DFs. 8-Br-cGMP is bound by CNGC and

PKG, and then the signals are transduced to the DFs by chain of chemical reac-

tions

To describe interactions between CNGC-DF and PKG-DF (parallel blue ar-

rows in Fig. 13), the linear approximation was applied to forward and backward

reaction rates in Eqs. (3) and (4). Such a linear approximation is acceptable
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because the MP shows a small shift (within several tens mV) from the potential

before the 8-Br-cGMP stimulation and gradual change during the entire obser-

vation period, implying that strong nonlinearities are unlikely to exist in these

interactions. The effective dissociation parameters, KX and KY , can be written

as,

KX(Y ) =
kXb0 + kXbY Y

kXf0 + kXfY Y
(5)

KY (X) =
kY b0 + kY bXX

kY f0 + kY fXX
, (6)

where the denominator and numerator represent the forward and backward re-

actions, respectively. The values of the eight parameters reflect the structure of

model pathways; for instance, only kXbY takes zero in Eq. (5) if PKG-DF accel-

erates the forward reaction of CNGC-DF, and both of kXfY and kXbY are zero

if PKG-DF has no effect on CNGC-DF. Therefore, each of these equations can

represent three possible interactions, activation, inhibition, and no interaction

from one to another, and thus the total of nine interactions can be considered

(parallel blue pathways in Fig. 13). In the estimation step, we normalized these

parameters by dividing them by kXf0 or kY f0 to reduce the number of parameters

(see Table 1).

3.4 Formulation of ion channel regulation

CNGC- and PKG-DFs regulate the effective densities of chloride and sodium

channels (ClC and NaC, respectively; Fig. 13 and 19). The regulation of both ClC

by CNGC-DF and NaC by PKG-DF are known (black arrows in Fig. 13) whereas

their cross interactions are unknown (cross blue arrows in Fig. 13). Here we

modeled the dynamics of the difference in the effective channel densities between

with and without regulation, by defining the normalized change ratios of the

channel densities, Z for ClC and W for NaC. They take constant values if no

regulations occur (no 8-Br-cGMP stimulation) but variable values if they are

modulated when 8-Br-cGMP stimulation occurs. Due to rate-limitations, we
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described their dynamics by ODEs of the biochemical reactions,

dZ

dt
= kZf (1− Z)− kZbZ (7)

dW

dt
= kWf (1−W )− kWbW, (8)

where k with a subscript is the effective forward or backward reaction rate which

is either a constant or a function of the normalized variables, X and/or Y , similar

to the case of the interactions between X and Y .

Figure 19. Ion channel regulation. CNGC- and PKG-DFs modify the conduc-

tances of ion channels on the membrane.

The reaction rates in Eqs. (7) and (8) are regulated by CNGC- and PKG-DFs

(cross blue arrows in Fig. 13). By the linear approximations, these regulations

are described as,

kZf (X,Y ) = kZf0 + kZfXX + kZfY Y (9)

kZb(X,Y ) = kZb0 + kZbXX + kZbY Y (10)

kWf (X,Y ) = kWf0 + kWfXX + kWfY Y (11)

kWb(X,Y ) = kWb0 + kWbXX + kWbY Y, (12)

where the reaction rates, k∗∗0, are constant (X/Y independent) while the others

are the maximum rates contributed by X or Y . In these four interactions, only

ClC activation by CNGC-DF (kZfX) and NaC activation by PKG-DF (kWfY )

are known regulations, and the other interactions are unknown (Fig. 13). We

excluded the simultaneous combinations of forward and backward regulations on
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the same effectors. There are three possible effects (activation, inhibition, and

no interaction) in each regulation, and then the total of nine interactions can be

considered (3×3 interactions in cross blue arrows in Fig. 13).

In model equations (3)-(12), we replaced positive feedback loop pathway

among the molecules to an effectively alternative feedforward pathway in the

concerned system (Fig. 13). The reason for this is that positive feedback with

some conditions leads the system’s state to oscillation, bistability, or divergence.

However, none of such highly unstable responses were observed in the trends of

MPTS (Fig. 9 and Fig. 10). This implies that even if the system contains a

feedback loop, it can be modeled effectively as a feedforward process.

3.5 Formulation of MP regulation

The signal conversion from the ion channel densities to the MP is well established

by Hodgkin and Huxley [21] (Fig. 20 and Appendix B),

Cm
dV

dt
= −gNa(V − VNa)− gK(V − VK)− gCl(V − VCl), (13)

with the membrane capacitance, Cm, the membrane potential (MP), V , the re-

versal potentials, VNa, VK, and VCl, and the channel conductances, gNa, gK, and

gCl, which depends on channel density and/or MP. The potassium conductance

at the resting state has a dominant permeability (gK ≫ gCl, gNa ). By setting the

left-hand side of Eq. (13) to zero, the MP at the steady state, including resting

state before the 8-Br-cGMP stimulation, can be approximately given by

V =
ḡKVK + ḡClVCl + ḡNaVNa

ḡK + ḡCl + ḡNa

≈ ḡKVK + ḡClVCl + ḡNaVNa

ḡK
, (14)

where ḡNa, ḡK, and ḡCl are the conductance at the steady state. In our model,

densities of NaC and ClC are modulated by DFs of 8-Br-cGMP. Approximating

change of V around the resting potential, the MP with 8-Br-cGMP stimulation

obeys the following formula,

V̂ = VK − AZZ + AWW, (15)

where AZ = (ḡCl|VCl|)/ḡK and AW = (ḡNaVNa)/ḡK representing the maximum

amplitude of MP shifts. The parameters, VK, AZ , and AW , depend on cell char-

acteristics, so each of them takes different values between cells. We define Z and
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W as the normalized change of the effective densities of ClC and NaC induced

by the 8-Br-cGMP stimulation, respectively; they take one if their changes reach

their maximum. We ignored the dependency of Z and W on the MP because

their changes are little with small MP shift around the resting potential [21].

Figure 20. Membrane potential regulation and pharmacological agents. Modified

ion channels regulate the inward current of the corresponding ionic molecules

which lead to the change in MP.

In the experiments, phormacological agents are employed to measure the in-

dividual output of the ion channels (Fig. 20). This effects can be formulated

as

V̂ = VK − ηZAZZ + ηWAWW, (16)

where ηZ (DNDS) and ηW (STX) are the effects of the channel blockers which

are implemented as the gain parameters. Here, we assumed that the blockers

completely suppress the channel functions, by setting these parameters to zero

(blocker applied) or one (control).

3.6 Model candidates

We considered all possible interactions caused by CNGC- and PKG-DFs. There

are four possible pathways (blue arrows in Fig. 13), where each pathway consists of

three possible reactions, activation, inhibition, and no interaction. Therefore total

of 81 possible models were examined; the simplest model has no interactions while

the most complex model has four interactions, other than known interactions

(Fig. 21 and 22). A complex model is compatible with simpler models.
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Figure 21. Summary of all the possible models incorporating or not incorporating

blue pathways in the gray box in Fig. 13. For easy visibility, activation, inhibition,

and no interaction are represented by green, red, and gray lines, respectively.
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Figure 22. Summary of model complexity. Graded five colors indicate complexity

levels of the system, which are defined as the number of possible interactions

ranging from 0 to 4.
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4. Bayesian formulation and model evaluation cri-

teria

In this chapter, we formulate the posterior probability based on the Bayesian

theorem. Then we introduce model evaluation criterion and model comparison

criteria for model estimation and model validation, respectively.

4.1 Model parameters and posterior distribution

Since the actual MPTS is significantly affected by parameters such as growth cone

volumes and ion channel densities, we adopted a Bayesian framework to model

growth cone MPTS with the parameters categorized to three attributes; cell-

dependent, cell-independent, and experimental condition (Table 1 and Fig. 23).

The cell-dependent parameter set, ϕ = {VK, AZ , AW , τS}, is highly dependent on

characteristics of individual neurons (e.g., growth cone volume, expression levels

of ion channels and other physical conditions), which expresses the peripheral

system of the intracellular molecular system. The parameters in this set were

estimated from each MPTS. On the other hand, the parameters, in the cell-

independent parameter set, θ (reaction rates, Hill coefficients, and means of AZ

and AW ), take a common value for any neurons, which expresses the core system

of the intracellular molecular system. And they were estimated from all of the MP

dataset. The experimental condition parameter set, c = {ηZ , ηW , Smax}, represent
the experimentally controllable parameters, such as pharmacological condition

and 8-Br-cGMP concentration, and then were given at the initial setting (not

necessary to be estimated).

Due to our configuration of model candidates (Fig. 22), complex models have

more capability to fit the given dataset than the nested structures which corre-

spond simpler ones. This makes it difficult to identify what part of the model

structure is really important. To deal this problem, we designed the prior distri-

butions as the complex model exhibits the capability of its nested structures with

high probability when extra parameters with regards to its simpler model be-

come 0. We implemented this strategy by utilizing the left-truncated Gaussians

for most of the parameter priors (Table 1) with appropriate parameter ranges

(σ). Then we employed Bayes’ theorem to estimate the posterior distribution of
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Figure 23. Graphical representation of relationship among MPTS, model vari-

ables, and parameters. Preprocessed MP value of the i-th data at time t (Vi,t) is

characterized by three parameter sets, which are dependent on experimental con-

dition (ci), dependent on cell (ϕi), independent of cell (θ), in each deterministic

model (Mk).
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them as,

p(ϕ, θ|V, c) = p(V |ϕ, θ, c)p(ϕ|θ, c)p(θ)∫ ∫
p(V |ϕ, θ, c)p(ϕ|θ, c)p(θ)dϕdθ

, (17)

where the likelihood, fitness to the given dataset, is the product of the Gaussians,

p(V |ϕ, θ, c) =
I∏

i=1

p(Vi|ϕ, θ, ci) (18)

=
I∏

i=1

Ti∏
t=1

1√
2πσ2

i

exp

−
(
Vi,t − V̂t(ϕi, θ, ci)

)2

2σ2
i

,

where V = {Vi,t} is the set of observed MPTS and Vi,t is the MP value of the

i-th MPTS at time t (I = 16 and Ti=300–900), while V̂t(ϕi, θ, ci) is the MP value

computed from the deterministic model above. The s.d. of the i-th MPTS, σi,

was determined from the differences between the preprocessed and the smoothed

data (Fig. 12).

To estimate posterior distribution (Eq. (17)), we determine the parameters of

prior distribution by taking biophysical and phenomenological information into

account. A left-truncated Gaussian is used for a prior distribution of the time

constant, τS. The s.d. of the Gaussian (100 sec) is larger than the mean obtained

by the Monte Carlo simulation. Similarly, all the other parameters in ϕ and

θ except for VK have the non-negative probability distributions were given as

summarized in Table 1. The hyperparameters of the prior distributions (µ, σ)

were determined by following accounts:

1. Reversal potential of potassium channel (VK; ϕ) was set to around −60mV

in the experiment.

2. According to the MPTS (Fig. 9), maximum MP shifts by ClC (AZ ; ϕ) and

NaC (AW ; ϕ) depends on each cell, but we assumed their means take cell-

independent value (AZ0 and AW0; θ). The time constants of the MP shift

(1/kZ and 1/kW ; θ), can be more than a second according to the data.

3. The numbers of binding sites of cGMP to CNGC and PKG are four and

four, respectively [23, 24]. These values are not corresponding to the Hill
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coefficients of Eqs. (3) and (4) in the text (n and m; θ). Generally, if the

relaxation time of a reaction (backward reaction) is slow compared to an

input rate (forward reaction), the system acts as a low-pass filter and the

input signal is degraded [25], which corresponds to input-output relation

with small Hill coefficient. Here we set the prior distributions for n and m

to the non-negative part of the Gaussians, N(0, 12), whose s.d. is smaller

than the number of the binding sites.

4. The distributions of the ratio, kX∗/kXf0 and kY ∗/kY f0 in Eqs. (5) and (6),

become Cauchy distributions because all the rates are given as Gaussians.
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Table 1. Summary of prior distributions of model parameters. Parameter types;

ϕ (cell-dependent), θ (cell-independent), and c (experimental condition). Distri-

butions; N (Gaussian), N+ (left-truncated Gaussian), and N+/N+ (left-truncated

standard Cauchy distribution). Asterisk(*) represents f, b,X or Y .

Parameter Description Unit Equation Type Distribution µ σ

VK

Reversal potential
of K+ channel mV ϕ N −60 5

AZ0 Mean of AZ mV - θ N+ 0 10

AW0 Mean of AW mV - θ N+ 0 10

AZ

Maximum MP shift
by ClC mV ϕ N+ AZ0 5

AW

Maximum MP shift
by NaC mV ϕ N+ AW0 5

kZ∗, kW∗
Reaction rates

of Z,W sec−1 θ N+ 0 1

n,m Hill coefficient - θ N+ 0 1
kXf∗/kXf0

kXb∗/kXf0

Normalized
reaction rates of X

-
(µM)n θ N+/N+ - -

kY f∗/kY f0

kY b∗/kY f0

Normalized
reaction rates of Y

-
(µM)m θ N+/N+ - -

τS Time constant sec ϕ N+ 0 100

Parameter Description Unit Equation Type Value

ηZ DNDS application - c 0 (applied) or 1 (control)

ηW STX application - c 0 (applied) or 1 (control)

Smax

Maximum conc.
of 8-Br-cGMP µM c 10 or 5
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4.2 Model evaluation criteria

In the system identification, we need the criterion to evaluate some index such as

the plausibility by the subjectve view point. For this reason, we introduce criteria

for both identification step and validation step based on Bayesian perspective.

4.2.1 Evaluation criterion in model selection step

In the Bayesian formulation above, model Mk is omitted because it is trivial. If

we denote the denominator of Eq. (17) by p(V |Mk), then,

p(Mk|V ) ∝ p(V |Mk)p(Mk), (19)

represents model plausibility for the given dataset V according to the Bayesian

theorem. Here, considering p(Mk) is uniform distribution, i.e., all the models are

equally plausible beforehand, p(V |Mk) also represents model plausibility. This is

the reason why the denominator of Bayesian formulation is called evidence.

Therefore, A log-evidence (logarithm of marginal likelihood) was employed for

a criterion to compare the model plausibility. For estimating the log-evidence by

sampling from the posterior distribution, we practically carried out Markov Chain

Monte Carlo (MCMC) simulation (Appendix C) [19, 26], in which resultant pos-

terior samples reflect the bias stemming from the priors. Using the parameters

given as MCMC samples, we evaluated the model plausibility (model criterion,

see below) for 81 possible models by regarding larger log-evidence as more plau-

sible. We introduced Ogata’s method [27, 28] for calculating the log-evidence

(Appendix D). The log-evidence of the k-th model, E(Mk), is described as fol-

lows with the MCMC-based posterior parameters plugged-in over the entire MP

time-series,

E(Mk) =
L−1∑
l=1

log
B∑
b=1

exp

{
(βl+1 − βl)

I∑
i=1

log p
(
Vi|θb,li

)}
− (L− 1) logB, (20)

where θ
(b,l)
i = {ϕ(b,l)

i , θ(b,l), ci} represents the b-th set of parameter samples from

MCMC simulation (total B > 105)(Appendix D) and βl is l-th inverse temper-

ature of Ogata’s method (L = 16) with equal interval. We also computed mean

values of the samples leading to mean a posteriori (MAP) parameters, which were

used for reconstructing MP time series in the section of model validation.
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4.2.2 Comparison criterion in model validation step

Logarithm of likelihood (log-likelihood) is also employed as a criterion for compar-

ing the fitness or expressiveness for the given dataset among the model candidates,

e(Mk) =
I∑

i=1

{
1

Ti

1

B

B∑
b=1

log p(Vi|θ(b)i )

}
, (21)

where θ
(b)
i = {ϕ(b)

i , θ(b), ci} represents MCMC sample. The log-likelihood takes

larger value if the given model outperforms to represent the given dataset than

the other models. We confirmed whether the model criterion depends on the

dataset or not, by performing Leave One Out Cross Validation (LOO-CV; see Ap-

pendix E) procedure, which evaluates the reproduction ability of a single MPTS

by our model that employed the MAP parameters estimated from the remaining

set of time series. We also examined generalization capability of each model by

estimating the log-likelihood for 5 µM 8-Br-cGMP dataset.
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5. Result

5.1 PKG-mediated ClC inhibition is essential for MP-shifts

We evaluated the model criterion, the log-evidence Eq. (20), for all the 81 model

candidates based on 10 µM 8-Br-cGMP dataset (Control/+STX/+DNDS con-

ditions) (Fig. 24). According to the log-evidence, models are clearly separated

into two groups (a and b in Fig. 24). If we term the simplest model in group a

as Ma and that in group b as Mb (Fig. 24), both of Ma and Mb are minimal in

the structure within their respective model groups. This suggests that Ma and

Mb are core models in respective groups and that PKG-mediated ClC inhibition

(inset of Fig. 24 and 25) is the most essential pathway for reconstructing the

given dataset. In fact, the MPTS were well reconstructed by the model Mb with

the MAP parameters (Fig. 26 and Table 2).

Checking the stability of the identification by the LOO-CV procedure (Fig. 27),

we also confirmed that the models in group b are superior to those in group a,

irrespective of the applied MPTS dataset (Fig. 28). We also examined whether

the estimated parameters of the model Mb do not over-fit to the employed MP

dataset by comparison with the MAP parameters estimated during the LOO-CV

procedure (Table 2); the MAP parameters estimated based on whole 10 µM 8-Br-

cGMP dataset were all within the mean ±s.d. of the set of MAP parameters over

the LOO-CV procedure, suggesting the robustness of the parameter estimation

by system-identification method regardless of the employed MP dataset.
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(a) Log-evidence map (b) Histogram

Figure 24. Comparison of model plausibility (10 µM). (a) Model plausibility was

represented in terms of log-evidence (in color) computed from the MPTS given

by 10 µM 8-Br-cGMP stimulation in all the conditions (control/+DNDS/+STX).

The matrix representation of model configurations follows Fig. 21. A model with

a large log-evidence (red) is more plausible than that with a small log-evidence

(white). Models with no interaction or activation (rather than inhibition) from

Y to Z are labeled as model group a, while those with inhibition (rather than

activation) from Y to Z as model group b. Models indicated by Ma and Mb

(insets) contain fewest and common interactions in groups a and b, respectively;

that is, they are minimal models in respective model groups. (b) Histograms of

log-evidence in the model groups a and b, showing that log-evidence in group b

is substantially larger than that in group a. Vertical dashed lines indicate the

log-evidence values of the two representative models, Ma and Mb.
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Figure 25. Identified minimal core model Mb. The model is consisted with known

interaction (ClC activation by CNGC-DF and NaC activation by PKG-DF) and

estimated interaction, ClC inhibition by PKG-DF.

Table 2. Comparison of estimated parameters θ for model Mb; mean a posteriori

values by all the dataset and mean±s.d. of mean a posteriori values by LOO-CV.

Parameter All dataset LOO-CV

n 2.26 2.19±0.59
m 2.61 2.58±0.18

n
√
KX 1.15 1.07±0.61

m
√
KY 16.61 15.87±4.49

kZf0 0.04 0.04±0.03
kZb0 0.16 0.15±0.11
kWf0 0.00 0.04±0.15
kWb0 0.18 0.60±0.90
kZfX 1.06 1.69±2.62
kZbY 8.22 6.72±3.66
kWfY 5.74 6.02±4.00
AZ0 36.87 41.46±11.98
AW0 30.41 40.99±26.27
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(a) Control (b) DNDS

(c) STX

Figure 26. Reconstructed MPTS. Reconstruction of MP time series generated

by the model with 10 µM 8-Br-cGMP in control (a), in presence of DNDS (b),

and in presence of STX (c). Reconstructed data (red) showed good agreement

with experimental data (blue) in Fig. 9. Mean a posteriori parameters were used

(Table. 2).
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Figure 27. Schematic procedure of the leave-one-out (LOO) data selection for

cross validation. Black and gray horizontal bars represent experimental MPTS.

When the i-th MPTS is left out from the 10 µM 8-Br-cGMP datasets (n=16), it is

used to estimate peripheral parameters (ϕi) and validate model fitness (product

of all the likelihood in white box), whereas the remaining MPTS (n=15) are

completely separated from the left-out MPTS to estimate the MAP core system

parameters (θMAP
i ). Repeating LOO for all the datasets, 16 system parameter

sets are obtained (θMAP
i ;i=1,· · · ,16). The model fitness to the left-out MPTS was

taken the logarithm and averaged over all the data points.
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Figure 28. Fitness (Log-likelihood) map of leave one out cross validation for 10

µM 8-Br-cGMP dataset. This result supported that the model group b is superior

to the model group a, showing stability of our system-identification methodology.
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5.2 Specificity test for different conditions

Next, we tested the specificity of the identified model to the given 10 µM 8-

Br-cGMP-induced MPTS datasets (Fig. 9). To test the degree of specificity, we

introduced untrained datasets of MPTSs induced under different experimental

conditions (Fig. 29). When we introduced the MPTS induced by a different

concentration of stimulant 5 µM, instead of 10 µM 8-Br-cGMP, the model fitness

matrix shows a similar pattern of model groups, as in Fig. 30 (a). This might

indicate that core system parameters have a small dependency on the stimulus

intensity between 5 µM and 10 µM concentration of 8-Br-cGMP. In contrast,

when we introduced the MPTS induced by 10 µM 8-Br-cGMP in the presence of

KT5823 (n=5), a PKG activity inhibitor that abolishes the PKG activation in

the core system, the model fitness matrix shows the total absence of the distinct

segregation between the model group a and b (Fig. 30 (b)). This supports that

PKG activation is required for the pattern of model groups observed in Fig. 24, at

least partially. Taken together, these tests indicate that our system identification

method has high specificity.

Figure 29. Schematic procedure of model specificity test using MPTSs in different

conditions using MAP core system parameters estimated from all the 10 µM 8-Br-

cGMP datasets (θMAP
all ; n=16; black horizontal bars in the left side of the shaded

band). The model likelihood to the i-th MPTS from other testing datasets (white

bars) was computed while computing the cell-dependent parameters, ϕi, and by

repeating this the model fitness to all the n datasets were obtained. Testing

datasets are the datasets untrained by the core system (5 µM 8-Br-cGMP and

10 µM 8-Br-cGMP+KT5823).
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(a) 5 µM 8-Br-cGMP (b) 10 µM 8-Br-cGMP

+KT5823

Figure 30. (a) Matrix representations of model fitness by the datasets derived by

the control core system with 5 µM 8-Br-cGMP-induced MPTS (c; total n=11;

control: n=2; with DNDS blocking ClC: n=5; with STX blocking NaC: n=4).

(b) Same as a, but the datasets derived by the different core systems; 10 µM

8-Br-cGMP-induced MPTS under the PKG-inhibited condition (KT5823).
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5.3 Predictability test by data assimilation

If we know the model parameters, we can predict how the MP behaves toward the

future with high certainty because of the system noise-free character of the deter-

ministic model, Eqs. (3)-(16). In our model, however, there are cell-dependent

parameters (ϕi), which can be estimated only from the data from the cell. To

perform behavior prediction even in such case, we used an idea from the tech-

nique called data assimilation which has been getting popular in earth science

[26]. More specifically, when predicting MPTS, the cell-independent parameters

were estimated from the LOO-CV (for 10 µM) or whole 10 µM dataset (for 5 µM),

and the cell-dependent parameters were estimated based on the data points in the

early phase of the time series to be predicted (Fig. 31 and 33). The surprisingly

good prediction ability (red lines in Fig. 32(a) and 34(a)) suggests the reliability

of the model we estimated, and moreover, significantly better prediction ability

of the model group b than that of the group a (Fig. 32(b) and 34(b)) again shows

the plausibility of the model configuration in b.

Figure 31. Schematic illustration of the procedure for testing model predictability

for the late-phase of MPTS induced by 10 µM 8-Br-cGMP. The initial-phase (250

sec) of the left-out i-th MPTS was extracted to estimate the MAP peripheral

parameters (ϕi), and the remaining i-th MPTS (after 250 sec, late-phase) was

used to test the model predictability. The MAP core system parameters were

estimated from the initial and late phase of the remaining MPTS (θMAP
i ; n=15).
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(a) Time course (b) Comparison

Figure 32. (a) Sample time series predicted by model group a (white) and b (red)

for 10 µM 8-Br-cGMP stimulations. Black lines represent experimental data. MP

time series in the gray regions (up to 250 seconds) were used for cell-dependent

parameter estimation, but those in the non-gray regions (after 250 seconds) were

never used for the parameter estimation. (b) Box plots of prediction error for

10 µM 8-Br-cGMP stimulations. The prediction error was given by standardized

root mean square error, (1/I)
∑I

i=1

{
(1/Tp)

∑Tp+250
t=251

√(
Vi,t − V̂t(ϕi, θ, ci)

)2

/σi

}
, where Tp is the number of data points in later phase of the MPTS to be predicted

(i.e., after 250 seconds). The errors depending on the models were distributed in

each group and thus represented by box plots to show the difference between the

two groups (red bar); student’s t-test with unequal variances, *P ¡0.01.
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Figure 33. Same as Fig. 31, but 5 µM 8-Br-cGMP MPTS was predicted with

ϕi given the initial-phase MPTS (up to 250 sec) and θMAP
all by all the 10 µM

8-Br-cGMP MPTS. Black and white bars represent experimental MPTS. MPTS

in the white regions (after 250 sec, the late-phase) were never used for the pa-

rameter estimation; these MPTSs were completely untrained data sets even for

the peripheral parameters.

(a) Time course (b) Comparison

Figure 34. Same as Fig. 32 except for using 5 µM 8-Br-cGMP dataset
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5.4 Reproduction of bidirectional MP shift responding to

cGMP level

Here, we examined how the estimated model shows MP shift in its steady state (60

min after 8-Br-cGMP stimulation in the experiment). Experiments showed that

under steady state of Sema3A application, the growth cone produces bidirectional

MP shift that is dependent on the cGMP level [11].

To examine whether the core model Mb in group b can show the bidirectional

MP shift in the steady state, we computed time series when the model Mb was

stimulated by various levels of 8-Br-cGMP (Fig. 35). The model time series

showed different patterns; (i) gradual hyperpolarization (0.5 µM), (ii) sharp hy-

perpolarization and gradual recovery to the resting level (6 µM), and (iii) sharp

hyperpolarization and depolarization (20 µM). We defined the model’s steady-

state MP shift as the difference between the MPs at times zero and infinity,

namely, V (t → ∞|θMAP) − V (t = 0|θMAP), where the cell-independent param-

eters (θMAP) were given as the MAPs estimated from the 10 µM 8-Br-cGMP

dataset. For the cell-dependent parameters, VK is a mere constant bias in V (t)

(Eq. (16)) and therefore was canceled out, τS was ignorable at times zero and

infinity, and AZ and AW were replaced by their means in θMAP. Using this def-

inition, the cGMP level-dependent bimodal steady-state MP shifts (Fig. 36(a))

appear, as observed in experiment [11]. Our identified model Mb also expresses

that the decomposition of the MP shift into those induced by ClC and NaC. In

the range of lower cGMP, MP shift is induced by the ClC-dependent hyperpo-

larization. On the other hand, the MP shift in the range of higher cGMP level

is formed by the NaC-dependent depolarization, as summarized in Fig. 36(b).

These results suggest that the model, Mb, with the estimated model parameters

expresses a general mechanism of this system in a satisfactory manner.
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Figure 35. Reconstructed MPTS with several 8-Br-cGMP levels; (i) 0.5, (ii)

6, and (iii) 20 µM. VK=−60, τS=100, and mean a posteriori cell-independent

parameters (AZ and AW in the cell-dependent parameters are replaced by its

mean, AZ0 and AW0 in the cell-independent parameters, respectively.) were used

in control condition of model Mb in Fig. 24. Each time series reaches the steady-

state level at about 300 sec which is three times of the diffusion time constant of

8-Br-cGMP (τS=100 (sec)).
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(a) MPS (b) Mechanism

Figure 36. (a) Predicted dependency of steady-state MP shift (blue) on cGMP

levels with the experimental data (black square). Dashed blue line shows the

model prediction with the intracellular cGMP perfusion. On the other hand,

solid blue line shows the modified model prediction with the cGMP permeation

model (Appendix F). Vertical dashed lines are corresponding to the three con-

ditions shown in Fig. 35. (b) Schematic figures describing mechanism of cGMP-

MP converter; (i) MP is hyperpolarized by high affinity CNGC-mediated ClC

activation in a low cGMP level, (ii) MP is recovered to around resting level by

PKG-mediated ClC inhibition and NaC activation in the middle range of cGMP

level where CNGC-mediated ClC activation is saturated, and (iii) in a higher

cGMP level, MP is depolarized by low affinity PKG-mediated ClC inhibition and

NaC activation.
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6. Discussion

By computationally analyzing the experimental MP shift time series recorded

from the growth cone responding to an external signal, we were able to deduce

a core molecular system that converts a biochemical signal to an electrophys-

iological one. Specifically, our system-identification methodology revealed that

PKG-mediated ClC inhibition is an essential pathway that acts in concert with

CNGC-mediated ClC activation and PKG-mediated NaC activation (Fig. 36(b)).

Actually, even the known interactions are putative signaling pathway demon-

strated by the experiments [11], i.e., the cascades are unknown. A second mes-

senger, cGMP-activated PKG is known as a regulator of the Mitogen-activated

Protein Kinase (MAPK) such as ERK and p38 [29]. Furthermore, MAPK acts

as not only a regulator of transcription but also a regulator of membrane protein

including ion channels. On the growth cone, a TTX-resistant sodium channel,

Nav1.8 [30], we called NaC in this study, is expressed. In addition, consistent

with our speculation from the experimental data, Nav1.8 is activated by p38 as

a downstream factor of PKG [31]. Surprisingly, it is also reported that ERK and

p38 inhibit calcium-dependent ClC [32] which is consistent with the interaction

identified by our present study on the growth cone.

Our computational analysis suggests that these three interactions form the

core system which converts a biochemical signaling of the cGMP pathway to

an electrophysiological signal of MP shifts. The validation of the system stabil-

ity by LOO-CV method (Fig. 28 and Table 2) proves that the resultant model

must represent a minimal and core system. It is also proved that the identified

model has an ability to predict time series with the cell-dependent parameters

estimated from the data in initial phase of the time series. However, although our

computational analysis revealed that model Mb represents a core and minimum

required system for converting the biochemical signal to the electrophysiological

signal (Fig. 24), it does not completely eliminate the existence of other potential

signaling cascades that facilitate the MP shifts in the growth cone.

Validating the model with 5µM 8-Br-cGMP demonstrated that some mod-

els in model group b with a pathway from X to Y (activation or inhibition)

had larger log-likelihoods than their minimal model Mb (Fig. 30a). This may

suggest that another, a more complicated model could be better fitted than the
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modelMb, which cannot be excluded by our current computational analysis. Such

large log-likelihood by more complicated models than the model Mb might have

occurred because larger number of model parameters would simply lead better

expressiveness of the MP time series for 5µM 8-Br-cGMP.

The bidirectional cGMP-dependency of MP shifts (hyperpolarization to de-

polarization, Fig. 36(a)) showed that CNGC-mediated ClC activation is due to a

high-affinity of cGMP ( n
√
KX = 1.15), while PKG-mediated NaC activation is due

to a low-affinity of cGMP ( m
√
KY = 16.61). The bidirectional phenomenon based

on a difference of dissociation constants can be seen in the molecular system of

synaptic plasticity, in which the phosphorylation of α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) receptors occurs as a competition between the

kinase and phosphatase [33, 34]. Interestingly, unlike for synaptic plasticity, for

the bidirectional cGMP-dependency of MP shifts, PKG not only facilitates mem-

brane depolarization, but also inhibits hyperpolarization. This means that the

PKG-mediated ClC inhibition works to expand the dynamic range of MP shift

against the input of 0.1–10µM cGMP stimulation, which may contribute to widen-

ing the dynamic range of the growth cone turning driven by external guidance

cues. ClC inhibition may also be explained by ClC self-adaptation to cGMP

level, which is independent of the status of other system components. In the case

of ClC self-adaptation, however, due to the lack of harmony with other system

components, the output of the whole system becomes relatively unstable in re-

sponse to identical cGMP stimulation. This suggests that the adaptation by the

PKG-mediated ClC inhibition is more feasible than ClC self-adaptation.

The computational analysis of the electrophysiological dataset, e.g. the growth

cone MP shifts, in conjunction with well-established experimental methods pro-

vides a significant advantage because it allows the identification of system com-

ponents that cannot be otherwise determined by solely molecular or biochem-

ical methods. Moreover, electrophysiological techniques such as a patch clump

method are well established [35], and the MP can be measured with high temporal

resolution (up to 40 msec interval in our case). Although electrical data contain

observable noise, the time series of MP measurements provides greater informa-

tion about intracellular biochemical processes (on a time scale of minutes) that

is otherwise difficult to obtain. The biophysical mechanism connecting the rele-
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vant biochemical molecules to the establishment of the MP has been extensively

studied [21]. As a result, it has become possible, with the use of computational

analysis, to unveil the mechanism of signal conversion from biochemical molecular

signals to biophysical MP shifts.

The present data-driven system identification analysis employed empirical and

phenomenological equations to describe a quantitative relationship between in-

put stimulus (cGMP) and output response (MP shift) of the growth cone, but

did not explicitly incorporate all possible signaling molecules into the model.

Equation converting between different physical quantities has been often derived

from empirical-quantitative laws; for instance, general biochemical equation (e.g.,

Michaelis-Menten kinetics) quantitatively describe dynamics of molecular con-

centrations without explicitly incorporating detailed biophysics such as thermo-

diffusion, collision, structural change of proteins, and bindings. The Hodgkin-

Huxley equations [21] is a well-established successful example of such empirical-

quantitative modeling of biological functions. Such simplified but still biologically

plausible empirical-quantitative modeling is indeed effective to know essential bi-

ological structure underlying the observed time-series in a data-driven fashion.

The experimental and cell-to-cell variation of the data is one of the difficulties

of the present study. Such a variation easily hides a core mechanism of the system

because it is impossible to infer which parameter is the source of variation when

the model parameter has redundancy. Thus, we employed Bayesian framework

to constraint the expressiveness of the model by introducing the cell-independent

parameters which are common among the given dataset. This constraint allows

us to access the intracellular system parameter such as reaction rate and Hill

coefficient by the estimation with the whole dataset, even if the number of data

is insufficient. In our present analysis, the approach succeeded due to the rel-

atively small number of the cell-dependent parameters, i.e., the variation of a

set of time series is well expressed by the variation of the small number of pa-

rameters. Although the current study doesn’t present a systematic approach to

determine parameter’s attribute such as cell-independent and cell-dependent, it

suggests that it is important to characterize each parameter as common or un-

common among the data (Fig. 23) and also to incorporate the prior based on

phenomenologically or physically consistent manner (Table 1).
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7. Conclusion

We identified the molecular system which regulates MP shifts during the growth

cone turning, from MP time series dataset. The result shows ClC inhibition by

PKG-DFs likely exists. Moreover, the earlier biochemical studies about MAPK

(ERK and p38) interaction are consistent with the result. This probably con-

tribute to the successive studies of the growth cone guidance.

The present study provide the system-identification methodology which is

consisted with empirical-quantitative modeling and parameter characterization.

In the modeling part, we bridged electrophysiology and intracellular molecular

system based on the well quantified equations such as Hodgkin-Huxley equation.

In the estimation part, we modeled the experimental and cell-to-cell variation

based on the Bayesian formulation. Based on the two main attempt, we success-

fully applied the method for electrophysiology data during growth cone turning.

This tool benefit the biological experiments which are very time consuming in

the measurements.

During navigation, the growth cone must reconvert an electrical signal of MP

shifts into other type of signals, i.e., biochemical and molecular signals, to achieve

a morphological change, e.g. turning direction. Our understanding of the process

of signal conversion is substantially incomplete. The computational analysis we

describe here will facilitate a better understanding of those mechanisms of signal

conversion. As the growth cone bimodal behavior depends on Ca2+ concentration

[36, 37, 38, 39], voltage-dependent calcium channels are one of the major compo-

nents of the MP-Ca2+ conversion mechanism. A recent biophysical computational

study showed that the growth cone bimodal behavior depends on CaMKII and

CaN, the downstream factors of Ca2+ signal [40]. It should subsequently be pos-

sible to integrate these findings into the current model to further elucidate the

mechanism of growth cone motility.
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Appendix

A. Biochemical reaction and its regulation

Basic of biochemical reaction is the state transition between active and inactive

state (Fig. A.1(a)). This dynamics can be written as

d[A∗]

dt
= kf [A]− kb[A

∗], (A.1)

which is known as the law of mass-action, where the parentheses represent the

concentration of the corresponding molecule. Constants, kf and kb, represent the

rate of chemical reaction, which are called reaction rate of forward and backward

reaction, respectively. Thus, the equation expresses auto-activation (1st term of

right-hand side) and self-inactivation (2nd term of right-hand side).

Modulation of the chemical reaction is often modeled by the linear effect of the

concentration of regulator molecules. If forward reaction is positively regulated

(Fig. A.1(b)), the dynamics become

d[A∗]

dt
= (kf0 + kfB[B])[A]− kb[A

∗], (A.2)

where kf0 and kfB are constant of forward reaction rate. In the similar way, if

both forward and backward reaction are positively regulated (Fig. A.1(c)), the

dynamics can be described as

d[A∗]

dt
= (kf0 + kfC [C])[A]− (kb0 + kbDxo[D])[A

∗], (A.3)

where kf0 and kfB are constants of forward reaction rate and kb0 and kbD are

constants of backward reaction rate.
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(a) No modulation (b) Partial modulation (c) Both-side modula-

tion

Figure A.1. Biochemical reaction and its regulation. A, B, C and D represent

molecules and asterisk (*) represents active state of molecule. (a) Molecule A

is activated/inactivated by itself or by physical state such as temperature. (b)

Molecule A is activated by molecule B. (c) Molecule A is activated by molecule

C and inactivated by molecule D, simultaneously.
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B. Parallel conductance model

Membrane potential of a cell is modeled by electrical circuit which is known

as parallel conductance model. Each ion channel on the cell membrane can be

modeled as a battery with internal conductance (Fig. A.2(a)). Therefore, cell

itself forms electrical circuit (Fig. A.2(b)) and it can be described by

Cm
dV

dt
= −gNa(V − VNa)− gK(V − VK)− gCl(V − VCl), (A.4)

which is same as Hodgkin-Huxley type equation (Eq. (13)).
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(a) Conductance model of ion channel

(b) Parallel conductance model

Figure A.2. Parallel conductance model. (a) Ion channel acts as battery on the

cell membrane (Vi with internal conductance gi). Electrical circuit is formed with

cell membrane capacity (Cm), which drives electrical potential called membrane

potential (V ). (b) Cell contains several ion channels such as potassium, chloride

and sodium channels. These make parallel circuit and modify its cell membrane

potential.
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C. MCMC algorithm

To obtain Markov Chain Monte Carlo (MCMC) sample, we utilized the modified

Metropolis-Heisting algorithm [41]:

Algorithm 1 Modified Metropolis-Heisting algorithm

Set appropriate number of sample candidates L and iteration H

Initialize sample candidates set {Θ̄(l)| = 1, . . . , L} appropriately
for h = 1 to H do

for l = 1 to L do

◦ Generate new sample candidate

Randomly choose l1 and l2 from the set {1, . . . , L}
Randomly choose η from standard uniform distribution U(0, 1)

Θ̃(l) ← Θ̄(l) + η
(
Θ̄(l1) − Θ̄(l2)

)
◦ Decide to accept or reject of the sample candidate

Randomly choose r from U(0, 1)

if r < min
{
1, p(Θ̃

(l)|D)

p(Θ̄(l)|D)

}
, then

◦ Accept the Θ̃(l)

Θ̃(l) ← Θ̄(l)

else

◦ Reject the Θ̃(l)

end if

Θ(hL+l) ← Θ̄(l)

end for

end for
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D. Calculation of log-evidence by Ogata’s method

Practically, simple MCMC algorithm such as Metropolis-Heisting tends to accept

proposals from regions of high probability density rather than from the entire

space where the posterior density resides. Such an inadequacy in sampling pro-

cess may make marginalization practically inaccurate. Ogata’s method [27, 28]

attempts to solve this practical issue by defining a modified marginal likelihood

function weighted by an inverse temperature β,

z(β) =

∫
p(x|Θ)βp(Θ)dΘ, (A.5)

where z(1) is equivalent to the marginal likelihood (evidence) and z(0) = 1.

From these observation, it is apparent that the marginal likelihood, p(x) = z(1),

is simply given by the product of quotients, each given by two adjacent modified

marginal likelihood values as,

p(x) =
z(βL)

z(βL−1)
× · · · × z(β2)

z(β1)
=

L−1∏
l=1

z(βl+1)

z(βl)
, (A.6)

where 0 = β1 < β2 < · · · < βL = 1. Using the definition of Eq. (A.5), the fraction

term can be transformed as,

z(βl+1)

z(βl)
=

∫
p(x|Θ)βl+1−βl

p(x|Θ)βlp(Θ)

z(βl)
dΘ =

∫
p(x|Θ)βl+1−βlp(Θ|x; βl)dΘ.

(A.7)

The most right-hand side can be approximated as the mean of p(x|Θ(b,l))βl+1−βl ,

with the b-th MCMC sample for modified posterior with the l-th inverse temper-

ature βl, Θ
(b,l). Therefore, Eq. (A.6) can be computed as,

p(x) =
L−1∏
l=1

1

B

B∑
b=1

p(x|Θ(b,l))βl+1−βl , (A.8)

with MCMC samples from the modified posterior. Logarithm of Eq. (A.8) is the

same as Eq. (20) in the main text.
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E. Leave one out cross validation (LOO-CV) al-

gorithm

Leave one out cross validation is performed as the following algorithm with B ≥
105. Briefly, in this process, generalization fitness (negative of generalization

error) can be estimated by the test phase which is performed as calculating the

fitness with the estimated cell-independent parameter in the training phase:

Algorithm 2 LOO-CV algorithm

for i = 1 to #data do

Let LOO(i) a dataset omitting the i-th data

Training phase

Obtain MCMC samples
{
ϕ(b), θ(b)

}
, b = 1 :B using LOO(i)

Test phase

Obtain MCMC samples
{
ϕ
(b)
i

}
, b = 1 :B using mean a posteriori (MAP)

parameter θMAP and i-th data Vi

Calculate Fitness (Log-likelihood) for Vi

e(i) = 1
Ti

1
B

∑B
b=1 log p(Vi|ϕ(b)

i , θMAP, ci)

end for

Finally, total leave one out fitness,
∑#data

i=1 e(i), is calculated.
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F. 8-Br-cGMP permeation model

We modeled the 8-Br-cGMP permeation into the cytoplasm in a growth cone to

convert the extracellular 8-Br-cGMP concentration (bath-applied) to its intra-

cellular concentration. We utilized a common enzymatic reaction, in which the

membrane permeated 8-Br-cGMPs are in two forms in the cytoplasm upon per-

meation through the plasma membrane: bounded to the target proteins and in

free forms. The model considers the permeation of 8-Br-cGMP into the cytoplasm

with a fixed rate (Fig. A.A.3 (a)). The model also considers that the intracellular

8-Br-cGMP concentration decreases proportionally at a rate at which the target

bounded 8-Br-cGMP increases. Thus, the intracellular 8-Br-cGMP concentration

(Sin) is expressed by the following ODE,

dSin

dt
=

aSbath

K + Sbath

− bSin, (A.9)

where Sbath is the extracellularly applied concentration that corresponds to sub-

strate in the Michaelis-Menten equation. By taking a steady state condition

(dSin/dt = 0), the following relationship is obtained,

Sin =
ASbath

K + Sbath

, (A.10)

We set A = a/b = 7.8 and K = 8.3, which Sin saturates at Sbath = 100 µM

(Fig. A.A.3 (b)). These parameters were estimated to minimize the error between

the model and experimental data (Fig. 36(a)).
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Figure A.3. (a) Bath-applied extracellular 8-Br-cGMPs permeates through the

plasma membrane into the cytoplasm with a fixed diffusion rate. Simultane-

ously, the level of the intracellular free 8-Br-cGMPs decreases as the uptake by

bio-molecular reactions increases. (b) Computed intracellular 8-Br-cGMP con-

centration using the permeation model in (a).
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