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Abstract

Modern machine learning methods are being used as tools to solve increasingly important and
challenging problems in science, engineering, and the humanities. Be it decoding a large array
of neural signals to control a prosthetic limb, identifying the linguistic or stylistic similarities of
classical literature, early detection of malignant tumors from noisy images, or the autonomous
control of complex systems such as automobiles and power grids, a tremendous amount of
resources are now spent on using learning algorithms to tackle key problems of the 21st century.

Many sophisticated machine learning algorithms have been developed over the years, but
in essence, they are all based on techniques for solving two fundamental problems: statisti-
cal inference and multi-parameter optimization. The former is critical because the observed
phenomena only paint a small picture of the entire system of interest, and proper inductive
decisions must be reliably made in order to succeed under such limited information. The latter
is important because automatic setting of numerous parameters must be done in an efficient
manner in order for these tools to be useful in practice. Traditionally, these two sub-routines
have been studied almost entirely separately. On the statistical side, an evaluation framework
centred on the risk, or the expected value of a pre-designed loss function, has become stan-
dard. Within this framework, minimization of the empirical risk estimate (ERM) has become
a cornerstone of algorithm design. On the computational side, optimization algorithms for
minimizing sums of loss functions in many parameters have been rigorously studied, and these
procedures are a direct complement to the empirical risk minimization learning strategy.

This well-established present framework, however, leaves a major gap in our understanding
of the performance of learning algorithms, and consequently our ability to engineer more effi-
cient and reliable procedures. This gap is due to the fact that formal performance guarantees
for empirical risk minimizers are almost without exception given for arbitrary solutions, mean-
ing the actual method of implementation is completely abstracted away. This makes analysis
simpler, but drastically limits the guarantees that can be made for procedures that are actually
used in practice today. Furthermore, while the simplicity of ERM is appealing, there are many
situations in which the estimates forged by this procedure are demonstrably sub-optimal, and
pursuing the “learner” analogy further, leading to unreliable feedback to the learner.

In this thesis, we pursue a new methodology based on data-robust statistical inference, that
explicitly takes into consideration the computational side of the learning task. In doing so, we
seek to demonstrate, both theoretically and empirically, that by committing a small computa-
tional overhead to better statistical inference, it is possible to substantially improve learning
efficiency and robustness of the overall procedure. That is, better performance can be achieved
with less net computational resources, for more problems. In addition, by considering com-
putation and inference together, it is possible to provide guarantees for real-world algorithms
that can actually be implemented. Taking our proposed new algorithms and the accompany-
ing performance analysis together, this thesis represents a first step beyond the ERM-centric
framework, towards a more flexible and general-purpose algorithm design methodology that is
capable of solving modern learning problems.
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Chapter 1

Introduction

How comes it that human beings, whose contacts with the world are brief and per-
sonal and limited, are nevertheless able to know as much as they do know?

- Bertrand Russell

The quotation above, also referred to as “Plato’s problem” by Noam Chomsky, eloquently
describes the problem of how humans acquire, cultivate, and retain knowledge, or put more
bluntly, how humans learn. The chief topic of this thesis is the design and analysis of learning
algorithms, which are procedures for automated inductive inference in machines, rather than
humans. That said, the human learning mechanism provides a natural basis for many com-
putational learning techniques [46], and an intuitive grasp of our own limitations can provide
useful insights in the context of designing better machine learning systems. One key point of
interest here is the ubiquity of uncertainty in learning processes. Learning is done with highly
incomplete information and an inductive procedure, and thus is inherently uncertain [20, 21,
Ch. 3]. To make this point lucid, let us consider some simple examples. We begin by looking
at the paintings in Figure 1.1 below.

Figure 1.1: Four distinct paintings with similar subject matter. Image credits in A.6.

Which paintings, if any, are from the same artist? In trying to answer this simple, albeit
non-trivial question, one might pay attention to the use of colour, the shape of recognizable
objects, the nature of brush strokes, among countless other visual features. Based on these
features, at the very least, it is intuitively clear that some pairs of paintings are more similar
to each other than others, and such an observation might suggest that multiple paintings
have a common creator. On the other hand, there can be tremendous variation in such visual
features from painting to painting in any particular artist. This potential for variation, coupled
with our limited ability to identify characterizing features, induces uncertainty into the task.
This uncertainty can be mitigated, although not entirely eliminated, by experience, which in
this case can potentially provide background knowledge of artists’ traits, or a sharper eye for
abstract visual qualities [31].
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Let us consider another example in Figure 1.2 below.

Figure 1.2: Excerpts from Tosa Nikki (left) and Man’yōshū (right). Image credits in A.6.

Both are Japanese texts dating back over a millenium, but in actually trying to understand
each, there are unique challenges. First, in the left-hand figure, the characters are written in a
fluid style, including both kanji (Chinese characters) and hiragana (characters of the Japanese
syllabary). Even if one has background knowledge of both character sets, numerous characters
are difficult to identify by visual inspection, and indeed may be written differently depending
on the context of preceding and proceeding characters. This uncertainty can be mitigated by
experience with the author’s handwriting (for identifying common character patterns), as well
as language knowledge, to forge hypotheses which are grammatical and linguistically plausible.
The right-hand image is qualitatively different; in the image displayed, while we have no trouble
identifying which characters are written, significant uncertainty of a linguistic nature exists.
This is because while only Chinese characters are used, the language is Japanese. Thus, based
on knowledge of the language, one must infer the sounds associated with each character, and
based on a candidate sequence of sounds, re-construct a plausible text.

The uncertainty highlighted in the examples above is present in the case of machine learning
as well. For inference based on visual features, we can provide a computer with a vector of
RGB values. For example, the first row of the left-most painting in Figure 1.1 has hexademical
RGB values of

["#5D4F2C", "#5B4D2A", "#5B4E2C", "#5A502D", "#594E30", "#585134", ...]

and the character sequence can be characterized using standardized encodings:

天 皇 遊 猟
内 野 之 時
E5A4A9 E79A87 E9818A E78C9F

E58685 E9878E E4B98B E69982

Figure 1.3: Hexidecimal UTF-8 byte values for a subset of characters on the right-hand side of Figure 1.2.

Implementing a learning procedure on a machine has additional challenges, since there is often
a substantial gap between the information that we possess, and the information that we can
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actually provide the machine with. In the examples above, while we can perceive a wide range
of visual features, translating what we perceive into a form digestible by the machine is a
non-trivial process.1 Furthermore, and most importantly, the actual learning procedure must
be explicitly implemented in machines. For humans, our ability to solve complex tasks based on
experience is the product of sophisticated mechanisms for memory and adaptation [14], with a
critical role played by feedback [53, 10]. Mere introspection certainly will not give us any hints
into the workings of this process, and an intricate neuro-biological explanation has limited
utility beyond providing us with a basis for loose analogies. We thus face some challenging
questions:

1. What kind of feedback should we provide the learning machine in a given task?

2. How should the machine respond to feedback?

3. How do these feedback/response mechanisms impact performance?

The study of learning algorithms is concerned with providing insights, both of a theoretical and
experimental nature, into these realms of inquiry. In this thesis, we propose new algorithms
which can be readily implemented in a variety of machine learning problems. The main message
that we would like the reader to take away from this thesis is as follows:

Paying a small computational price for better feedback can lead to
substantial payoffs in terms of the stability and robustness of learning.

To elucidate and provide evidence for the validity of this statement, we analyze the behaviour
and performance of the proposed routines using both numerical simulations, real-world data,
and the formal theory of statistical inference. By synthesizing and distilling these formal and
empirical insights, we endeavour to draw more general conclusions about the design of learning
machines. Doing so, we contribute to a new methodology of learning algorithm design, while
making a practical contribution in the form of new machine learning tools.

1.1 Overview of related literature
To better position this work within the machine learning literature, here we take a high-level
look at the existing literature which is related to the content of this thesis, without delving
into technical details.

1.1.1 On performance evaluation
Performance evaluation is one of the most fundamental issues in algorithm design. As a first
step, virtually all domains of machine learning make use of probabilistic models for the data-
generating process, and to define ideal “success” metrics on top of this foundation [42, 8, 39].
This lets us explicitly reflect the noise and uncertainty inherent in real-world systems of in-
terest. Given a metric of success, a useful framework for evaluation is the PAC model2 for
learning, originally due to Valiant [50]. Within this model, one explicitly specifies requirements
of accuracy (in the success metric), confidence (over the random draw of the data), and compu-
tational complexity (in executing the algorithm). Traditionally, one compares rival algorithms

1This remains an important issue in machine learning; the “Reliable Machine Learning in the Wild” work-
shops held at the NIPS 2016 and ICML 2017 conferences covered this important issue.

2PAC: Probably approximately correct. Ripley [42, 2.8] provides a good introduction with solid references,
and Kearns and Vazirani [30] is a standard reference with an emphasis on computational complexity. A rich
treatment in the context of neural networks is due to Anthony and Bartlett [4].
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by requiring ε-accuracy at (1− δ)-confidence, and only accepting the algorithm(s) that satisfy
the (ε, δ) condition with the least samples, and in polynomial time.

This framework is useful because it gives us a consistent formal evaluation strategy, and
suggests a natural approach for carrying out experimental tests via numerical simulation. For
truly useful performance evaluation, however, additional effort is required. As has been pointed
out by Agarwal [1, 1.2.1], many polynomial-time algorithms may satisfy the (ε, δ) requirement,
and the PAC framework does not immediately let us identify the “great” algorithms from
amongst the “good” algorithms. Another interesting facet of performance is the inevitable
tradeoff between accuracy and confidence; for a fixed task and algorithm, guaranteeing higher
accuracy demands a reduction in confidence. Recent work by Lugosi and Mendelson [36] looks
at evaluating algorithms in terms of the quality of this tradeoff.

Yet another angle on performance within the PAC setting will be explored in this thesis:
a comparison of the assumptions made on the data distribution. Given two algorithms with
identical (ε, δ)-sample complexity, choose the one which is more “data-robust,” that is, the
algorithm whose guarantees hold over a larger class of distributions. A recent line of theoretical
work can be readily interpreted within this context [33, 37, 24, 25, 9]. Evaluating the robustness
of algorithms in this way can lead to useful new insights, most starkly in the sense of developing
algorithms superior to empirical risk minimization (ERM), the de facto approach to designing
learning algorithms [51]. When we only consider notions of learnability, it is often the case
that learnability by ERM is in fact necessary for learnability by any algorithm, which makes
the investigation of other algorithms all but pointless [2, 43]. Of course, this is unintuitive,
both by practical experience and considering that there are wide data classes where the sample
mean is highly sub-optimal as a location estimator [11, 12, 13]. Paying a small computational
cost for a large increase in data-robustness is a theme that will be explored in Chapter 3.

Generalizing our discussion once more, it must be noted that there is a fundamental limi-
tation to any evaluation framework (including PAC) that starts with some pre-defined success
metric. This limitation is the potential gap between the success metric used, and the in-
tentions of the system designer. Some problems, like binary classification, have an obvious
success metric, but do not admit obvious feedback mechanisms and necessitate the introduc-
tion of “proxies” [41, 7]. On the other hand, the task of “clustering” data, while intuitively
appealing, is vague and does not even admit an obvious success metric, let alone a feedback
mechanism, for all but the most rudimentary scenarios. Indeed, depending on our subjective
perception of clustering, a wide variety of natural success metrics have been demonstrated
[47]. In the literature, we note that the notion of learning reward functions based on expert
demonstrations has long received attention in the reinforcement learning community [40], and
“learning to learn” has appeared in the machine learning community, notably in the form of a
method for learning a first-order update rule [3]. These techniques are explicitly learning data-
based update rules, but there is an implicit success metric being approximated. In terms of
closing the gap between our intentions and our implementations, future results in this domain
are of definite interest in the future, though we do not pursue this direction any further.

1.1.2 On feedback and response mechanisms
In many learning problems, in order to link computable quantities with ideal (unobservable)
success metrics, we utilize loss functions which depend on observable data and the current
candidate parameter.3 Starting with a loss function, we can then induce ideal success metrics

3Virtually all learning problems can be reduced to the process of choosing a vector or function from a class,
or model. Since this will typically be done in an iterative manner, the “current” parameter refers to the state
of the learner at an arbitrary iteration.
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from the distribution of the loss, over the random draw of new data.4 Since learning is then
equivalent to optimizing this success metric, it is natural to consider any (sample) statistic of
the loss to be potential feedback to the learner, and any update rule based on this feedback to
be a possible response.5 Analysis of competing learning algorithms then consists of comparing
different feedback-response pairs.

We argue in this thesis that the feedback-response paradigm is conducive to more useful
performance analysis. More traditionally, the statistical estimation side of learning has been
kept almost entirely separate from the computational side, which is to say, the problem of how
to implement the algorithm. As a case in point, there is a massive body of literature which
focuses on ERM deployed to the risk minimization problem [29, 2, 5, 6]. Note that ERM admits
any minimizer of the sample mean of the losses, and does not by nature specify a computational
method for actually carrying out the minimization. Can all ERM solutions be treated equal?
Daniely and Shalev-Shwartz [17], Daniely et al. [16] prove that even for problems as simple as
multi-class classification, they cannot. More specifically, there exist “good” and “bad” ERM
solutions which have dramatically different generalization properties. Feldman [19] provides a
lucid illustration of how a “bad” ERM choice can be disastrous in the general setting of convex
risk minimization. These findings clearly show that any meaningful performance analysis
must incorporate the implementation of ERM. Some seminal recent works have looked at
the generalization ability of ERM when implemented by stochastic gradient descent (SGD),
hereby denoted ERM-SGD. Hardt et al. [23] use algorithmic stability as tool for analysis, and
giving conditions for the stability of the SGD update, provide learning guarantees for ERM-
SGD. Important work from Lin and Rosasco [34] also looks at ERM-SGD, providing sharp
conditions in the PAC framework, for the functional optimization setting. Such results are
appealing because they account for computational error as well as statistical error, providing
much more realistic guarantees.

A good feedback mechanism should, coupled with a response procedure, provide the learner
with estimates that lead to efficient and reliable optimization of the underlying success metric.
Efficiency here includes the computational cost of feedback, the cost of a feedback-driven
response, and the accumulating effect of the iterations needed to achieve a given level of
performance. Reliability, on the other hand, refers to the variance in performance over the
random draw of the sample. Due to the ubiquity of the sample mean as a feedback mechanism,
much work has been done on the optimization of finite sums of typically convex functions. Well-
known procedures include stochastic gradient descent (SAG) [32], stochastic variance-reduced
gradient descent (SVRG) [28], stochastic dual coordinate ascent (SDCA) [44], doubly stochastic
gradient descent [15, 35], as well as numerous variants using acceleration tweaks and proximity
operators in the case of non-smooth objectives [38]. Linking update procedures of this nature
to more reliable feedback mechanisms is an important research goal of ours, and in Chapter 4
we take the first step in this direction by proposing a robust gradient-based update protocol.
It should be mentioned that in recent years, the notion of “robust estimation” has appeared in
the machine learning literature, in a sense strikingly similar to that of classical robust statistics
[27, 22, 48]. Sophisticated proposals from Diakonikolas et al. [18] and recent interesting work
from Steinhardt et al. [45] are notable for exploring classical robustness in high dimensions.
While the details differ, these methods have a common underlying strategy of trying to identify
and remove “outliers” from the data. While conceptually and technically appealing, the bias

4Without question, the most popular success metric is the risk, defined to be the expected value of the loss,
taken with respect to the underlying data distribution, evaluated at a particular candidate. This quantity dates
back to classical statistical decision theory [52].

5While intuitive, it should be noted that the feedback-response terminology is not widespread in the current
machine learning literature.
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induced by these approaches when the data is simply heavy-tailed (but uncorrupted) is a
matter that merits further investigation. Another straightforward but apparently powerful new
approach when the data is known to be corrupted is the iterative re-weighting/minimization
technique of Vainsencher et al. [49].

1.2 Overview of contributions
This thesis presents two new classes of learning algorithms, along with rigorous experimental
and theoretical performance analysis. Given the context of the preceding section, the key nov-
elty here is that we explicitly design new feedback mechanisms, coupled with efficient feedback-
based response techniques. This allows us to construct procedures which are data-robust, scale
well in dimension and sample size (to both small and large data settings), and are theoretically
tractable. While the tradeoffs discussed in section 1.1.1 are naturally unavoidable, we argue
that an algorithm design which integrates the feedback and response mechanisms makes it
far easier to build reliable and efficient learning machines. We are particularly interested not
just in when learning algorithms succeed, but when they fail as well, and our comprehensive
experimental analysis sheds new light on algorithm limitations. Alongside these performance
analysis results, the specific technical proposals made in the remaining chapters can be taken
as concrete evidence which provides a partial answer to the three questions raised at the start
of this chapter.

Our core techniques all depend on a common tool for efficiently and flexibly robustifying
the feedback provided to the learner. This tool is a class of M-estimators of location and
scale, designed in the vein of the classic work of Huber [26], and reflecting key new insights
from Catoni [12], plus our own technical modifications. This allows us to take advantage of
tightly concentrated location estimators, at the cost of some estimation bias. Fortunately, with
data-dependent re-scaling, we demonstrate that this bias can be satisfactorily controlled. In
Chapter 2, we provide additional technical background by formulating some of the key concepts
discussed above in 1.1.

In Chapter 3, we look at the regression problem, with non-parametric assumptions on the
underlying data. Our chief contribution here is an algorithm which utilizes robust estimates of
the location of the loss, and uses these location estimates as a new objective to be minimized.
A naive attack on this optimization is computationally uncongenial, and to circumvent this we
propose an iterative approximate-check routine. Since the new objective function can at least
be evaluated efficiently, we formulate a re-weighted least squares problem to approximate the
desired update, and then simply check whether the new objective value has improved. This
two-step routine is repeated until convergence or until the approximation fails to improve the
objective. We also provide theoretical analysis of the core procedure, in particular showing
that the desired estimators are well-defined for virtually all problems of interest, and that
the robustification technique used allows for intuitive control of bias. Thorough empirical
analysis highlights the data-robustness of our algorithms compared with a large number of
well-known rival methods, both classical and modern. In both simulations and real data, our
algorithm is highly competitive, irrespective of the data distribution used, with no access to
prior knowledge. In contrast, the rival techniques show significant disparity between situations
in which they succeed and fail. As a whole, we have feedback-response mechanism which is
rooted in theory, has a high degree of practical utility, and most importantly demonstrates
that better feedback indeed can lead to more efficient and reliable learning.

In Chapter 4, we shift our focus to the general setting of risk minimization problems. In
contrast with the previous chapter, instead of beginning with feedback design, this time we
start with an optimization technique, and craft the feedback which can best be utilized by the
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optimizer. The optimizer is steepest descent in the Euclidean metric, namely gradient descent
on Rd. Ideal feedback in this case is immediate: the gradient of the (unknown) risk function.
Since the loss and its gradient are observable, a by-coordinate robust estimate of the gradient
yields a natural “robust gradient descent” procedure. This procedure, as well as in-depth
theoretical and empirical performance analysis, form the chief technical contributions of this
chapter. We provide upper bounds on the excess risk, demonstrating that strong performance
guarantees are available for our routine under much weaker assumptions that are required to
make similar assurances for ERM-GD. Detailed numerical experiments illustrate how ERM-
GD can fail to be efficient under “inconvenient” data distributions, while the proposed routine
remains dominant over a much wider class of data, even under very small samples. Perhaps
most notably, we observe a high degree of efficiency in terms of the number of iterations
required to converge—by making less wasteful jumps within parameter space, the proposed
routine demonstrably gets to a better solution, faster.

Finally, in Chapter 5 we recapitulate the key findings of the preceding technical chapters,
attempt to distill them into lucid conclusions, and subsequently lay out a clear roadmap for
future work, given the context of the literature introduced in 1.1 and Chapter 2. The Appendix
following the final core chapter provides auxiliary technical materials and some history which
may be of interest to some readers. Proofs of theoretical results, where applicable, are given
in the final section of each chapter.

7



Bibliography
[1] Agarwal, A. (2012). Computational Trade-offs in Statistical Learning. PhD thesis, UC

Berkeley.

[2] Alon, N., Ben-David, S., Cesa-Bianchi, N., and Haussler, D. (1997). Scale-sensitive dimen-
sions, uniform convergence, and learnability. Journal of the ACM, 44(4):615–631.

[3] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., and
de Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. In Advances
in Neural Information Processing Systems 29, pages 3981–3989.

[4] Anthony, M. and Bartlett, P. L. (1999). Neural Network Learning: Theoretical Foundations.
Cambridge University Press.

[5] Bartlett, P. L., Long, P. M., and Williamson, R. C. (1996). Fat-shattering and the learn-
ability of real-valued functions. Journal of Computer and System Sciences, 52(3):434–452.

[6] Bartlett, P. L. and Mendelson, S. (2006). Empirical minimization. Probability Theory and
Related Fields, 135(3):311–334.

[7] Ben-David, S., Loker, D., Srebro, N., and Sridharan, K. (2012). Minimizing the misclas-
sification error rate using a surrogate convex loss. In Proceedings of the 29th International
Conference on Machine Learning, pages 1863–1870.

[8] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

[9] Brownlees, C., Joly, E., and Lugosi, G. (2015). Empirical risk minimization for heavy-tailed
losses. Annals of Statistics, 43(6):2507–2536.

[10] Cannon, W. B. (1932). The Wisdom of the Body. WW Norton & Company.

[11] Catoni, O. (2009). High confidence estimates of the mean of heavy-tailed real random
variables. arXiv preprint arXiv:0909.5366.

[12] Catoni, O. (2012). Challenging the empirical mean and empirical variance: a deviation
study. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 48(4):1148–1185.

[13] Catoni, O. (2016). PAC-Bayesian bounds for the Gram matrix and least squares regression
with a random design. arXiv preprint arXiv:1603.05229.

[14] Chaudhuri, R. and Fiete, I. (2016). Computational principles of memory. Nature Neuro-
science, 19(3):394–403.

[15] Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.-F., and Song, L. (2014). Scal-
able kernel methods via doubly stochastic gradients. In Advances in Neural Information
Processing Systems 27, pages 3041–3049.

[16] Daniely, A., Sabato, S., Ben-David, S., and Shalev-Shwartz, S. (2015). Multiclass learn-
ability and the ERM principle. Journal of Machine Learning Research, 16:2377–2404.

[17] Daniely, A. and Shalev-Shwartz, S. (2014). Optimal learners for multiclass problems. In
27th Annual Conference on Learning Theory, volume 35 of Proceedings of Machine Learning
Research, pages 287–316.

8



[18] Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra, A., and Stewart, A. (2017).
Being robust (in high dimensions) can be practical. arXiv preprint arXiv:1703.00893.

[19] Feldman, V. (2016). Generalization of ERM in stochastic convex optimization: The
dimension strikes back. In Advances in Neural Information Processing Systems 29, pages
3576–3584.

[20] Fisher, R. A. (1935). The logic of inductive inference. Journal of the Royal Statistical
Society, 98(1):39–82.

[21] Godfrey-Smith, P. (2003). Theory and Reality: An Introduction to the Philosophy of
Science. University of Chicago Press.

[22] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust
Statistics: The Approach Based on Influence Functions. John Wiley & Sons.

[23] Hardt, M., Recht, B., and Singer, Y. (2015). Train faster, generalize better: Stability of
stochastic gradient descent. arXiv preprint arXiv:1509.01240.

[24] Hsu, D. and Sabato, S. (2014). Heavy-tailed regression with a generalized median-
of-means. In Proceedings of the 31st International Conference on Machine Learning
(ICML2014), pages 37–45.

[25] Hsu, D. and Sabato, S. (2016). Loss minimization and parameter estimation with heavy
tails. Journal of Machine Learning Research, 17(18):1–40.

[26] Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical
Statistics, 35(1):73–101.

[27] Huber, P. J. (1981). Robust Statistics. John Wiley & Sons, 1st edition.

[28] Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using predic-
tive variance reduction. In Advances in Neural Information Processing Systems 26, pages
315–323.

[29] Kearns, M. J. and Schapire, R. E. (1994). Efficient distribution-free learning of proba-
bilistic concepts. Journal of Computer and System Sciences, 48:464–497.

[30] Kearns, M. J. and Vazirani, U. V. (1994). An Introduction to Computational Learning
Theory. MIT Press.

[31] Koide, N., Kubo, T., Nishida, S., Shibata, T., and Ikeda, K. (2015). Art expertise re-
duces influence of visual salience on fixation in viewing abstract-paintings. PLOS ONE,
10(2):e0117696.

[32] Le Roux, N., Schmidt, M., and Bach, F. R. (2012). A stochastic gradient method with
an exponential convergence rate for finite training sets. In Advances in Neural Information
Processing Systems 25, pages 2663–2671.

[33] Lerasle, M. and Oliveira, R. I. (2011). Robust empirical mean estimators. arXiv preprint
arXiv:1112.3914.

[34] Lin, J. and Rosasco, L. (2016). Optimal learning for multi-pass stochastic gradient meth-
ods. In Advances in Neural Information Processing Systems 29, pages 4556–4564.

9



[35] Lin, J. and Rosasco, L. (2017). Generalization properties of doubly online learning algo-
rithms. arXiv preprint arXiv:1707.00577.

[36] Lugosi, G. and Mendelson, S. (2016). Risk minimization by median-of-means tournaments.
arXiv preprint arXiv:1608.00757.

[37] Minsker, S. (2015). Geometric median and robust estimation in Banach spaces. Bernoulli,
21(4):2308–2335.

[38] Murata, T. and Suzuki, T. (2017). Doubly accelerated stochastic variance reduced
dual averaging method for regularized empirical risk minimization. arXiv preprint
arXiv:1703.00439.

[39] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

[40] Ng, A. Y. and Russell, S. (2000). Algorithms for inverse reinforcement learning. In
Proceedings of the 17th International Conference on Machine Learning, pages 663–670.

[41] Nock, R. and Nielsen, F. (2008). On the efficient minimization of classification calibrated
surrogates. In Advances in Neural Information Processing Systems 21.

[42] Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge University
Press.

[43] Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan, K. (2010). Learnability, sta-
bility and uniform convergence. Journal of Machine Learning Research, 11:2635–2670.

[44] Shalev-Shwartz, S. and Zhang, T. (2013). Stochastic dual coordinate ascent methods for
regularized loss minimization. Journal of Machine Learning Research, 14:567–599.

[45] Steinhardt, J., Charikar, M., and Valiant, G. (2017). Resilience: A criterion for learning
in the presence of arbitrary outliers. arXiv preprint arXiv:1703.04940.

[46] Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman, N. D. (2011). How to grow
a mind: Statistics, structure, and abstraction. Science, 331(6022):1279–1285.

[47] Thomann, P., Steinwart, I., and Schmid, N. (2015). Towards an axiomatic approach to
hierarchical clustering of measures. Journal of Machine Learning Research, 16:1949–2002.

[48] Tukey, J. W. (1960). A survey of sampling from contaminated distributions. In Contri-
butions to Probability and Statistics: Essays in honor of Harold Hotelling, pages 448–485.
Stanford University Press.

[49] Vainsencher, D., Mannor, S., and Xu, H. (2017). Ignoring is a bliss: Learning with large
noise through reweighting-minimization. In 30th Annual Conference on Learning Theory,
volume 65 of Proceedings of Machine Learning Research, pages 1849–1881.

[50] Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM,
27(11):1134–1142.

[51] Vapnik, V. N. (1998). Statistical Learning Theory. Wiley.

[52] Wald, A. (1949). Statistical decision functions. Annals of Mathematical Statistics, pages
165–205.

[53] Wiener, N. (1961). Cybernetics. MIT Press, 2nd edition.

10



Chapter 2

Background

Here we look at key concepts discussed in section 1.1 of the introduction, and endeavour to
make them more concrete.

2.1 Probabilistic learning models
The use of probabilistic models is ubiquitous in machine learning. Randomness allows us to
account for the uncertainty that exists in nature, the difficulty of inductive inference based
on incomplete information, and even “intentional” uncertainty where certain computational
routines are randomized, often for reasons of efficiency [77, Ch. 11]. The chief source of
randomness that we are interested in comes from the observed data, denoted z1, . . . ,zn. We
call these random variables, taking values in some space Z. That is to say, once observed,
we have zi ∈ Z for each i = 1, . . . , n. More important than the exact values, however, is
the random process that generates them. Classical probability theory gives us an extremely
flexible framework for expressing this randomness mathematically [16, 6, 79]. Just to give
readers a flavour of this framework, we introduce key terms here.1 We start with a set of
objects Ω, called the sample space. Subsets A ⊆ Ω correspond to events, intuitively observable
phenomena.2 A collection of subsets of Ω is denoted by A, so each A ∈ A satisfies A ⊂ Ω.
Why do we introduce this new class? It is useful when it comes to measuring the “probability”
of phenomena, our chief interest. This is done by introducing functions which measure the size
of sets. This function µ : A → R assigns to each A ∈ A a real number µ(A). As most readers
are assuredly aware, we only formally call such a number a probability if it takes a value on
the unit interval [0, 1]. This non-negativity alongside additivity of disjoint events leads to an
intuitive interpretation of unions of events being more likely than their individual constituents;
a rigorous background is available in the first six chapters of Halmos [45], and the first two
chapters of Ash and Doléans-Dade [6]. How does this link up with our random variables
z1, . . . ,zn? Typically Z is a space we know and understand, say a subset of Rd, or a set of
polynomials. The zi are defined as functions on Ω, and the so-called measurable space (Ω,A)
works quietly in the background. Calling zi : Ω→ Z a random variable is equivalent to saying
that for most reasonable choices of Z ⊆ Z, we have that {ω ∈ Ω : zi ∈ Z} ∈ A, which means
we can use µ to measure the probability of this event. All we are interested in is a systematic
description of the random process generating the actual observation zi ∈ Z, and thus the

1In later chapters, more advanced material appears, although exclusively for matters of technical interest.
For references on these topics, see the bibliography [78, 97, 96, 19].

2The classical example is Ω = {1, . . . , 6} for the roll of a six-sided die. The event of an odd number turning
up is modeled by {1, 3, 5}. The event of a number greater than 3 turning up is given by {4, 5, 6}, and so on. In
more complicated problems, the precise form of Ω, however, is not of critical importance.
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underlying measure µ encodes everything we need to know. When we say that two random
variables zi and zj have the same “distribution” µ, this means that µ{zi ∈ Z} = µ{zj ∈ Z}
for all events Z within our analytical scope. The functions zi and zj could be totally distinct;
if their random behaviour is the same, within the context of a probabilistic model they are
indistinguishable.

Let us move towards a model of learning, in particular, a model which evaluates the per-
formance of learning algorithms. We invoke a useful abstraction here: virtually all learning
tasks can be formulated as algorithms choosing elements from sets, based on data [2]. We
have a model H, often called a hypothesis class, which is a set of elements (numbers, vectors,
functions) that will be interpreted as candidate values for the parameters to be determined
(or “learned”). A learning algorithm, say ĥ, can be understood as a procedure mapping the
observations into the {z1, . . . ,zn} 7→ ĥ ∈ H. Batch algorithms take the data set as input,
online algorithms take a sequence (z1, . . . ,zn), and in both cases the procedure may include a
probabilistic element completely independent from the random draw of the data. In order to
evaluate how well an algorithm is doing, a loss function l : H × Z → R+ is introduced, with
the interpretation that smaller is better. Assuming a plausible task-dependent choice of l, the
distribution of l(h; z) over the random draw of z ∼ µ is the richest evaluation of the quality
of h. Furthermore, the distribution of l(ĥ; z), which depends on both the random draw of the
sample and a novel point z, is used to evaluate the performance of algorithm ĥ. Here, two
problems arise. First, since µ is unknown, so is the distribution of l(h; z) for any choice of h.
Second, even if this distribution was known for each candidate h ∈ H, how would we inter-
pret it? These problems, in particular the latter, are very interesting and highly non-trivial.
Most typically, to circumvent these difficulties we elect to look at the expected value of l(h; z),
namely the risk R(h) ..= Eµ l(h; z). This provides a partial solution to both problems, since
R(h) provides an intuitive quantity to minimize, and because estimating R(·) based on data
is far easier than estimating the law of l(h; z). The only remaining randomness is due to the
sample, and it is precisely the random quantity R(ĥn) to which we apply the PAC learning
framework discussed in 1.1.1.

In learning there are always inevitable tradeoffs; less data means more uncertainty, and
all else constant, we can only be more confident in a performance guarantee if we weaken the
precision required. Understanding the performance of algorithms requires looking at estimation
error, namely the error that is due to the procedure ĥ, given modelH. The PAC-(ε, δ) condition
is often stated as the inequality

P
{
R(ĥn) > R∗ + ε

}
≤ δ, R∗ ..= inf{R(h) : h ∈ H}

for ε > 0 and δ ∈ (0, 1), where P denotes the product measure induced by the sample z1, . . . ,zn
and any randomness internal to ĥn. The smallest n such that this condition holds is called
the sample complexity of ĥ. Analogously, fixing n and δ, the smallest ε for which ĥn satisfies
the PAC-(ε, δ) condition is called the accuracy of ĥn. A smaller ε or δ will push the sample
complexity higher, and a larger n should imply stronger guarantees. Similarly, a decrease in
ε forces an increase in n and δ, and an investigation of the nature of this tradeoff falls into
the realm of fascinating new work from Lugosi and Mendelson [66]. Here, we are particularly
interested in a complementary angle on performance, which may be understood as a modern
version of algorithm robustness, formalized as follows. Let ĝ and ĥ be competing algorithms.
Write P(Z) for all probability distributions on Z, and define

Pε,δ,n(ĥ) ..=
{
µ ∈ P(Z) : ĥn is PAC-(ε, δ)

}
.
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The basic idea then, is to compare distinct procedures, saying

Pε,δ,n(ĝ) ⊆ Pε,δ,n(ĥ) =⇒ ĥ is more data-robust than ĝ

under the task conditions specified by n, ε, and δ. As this robustness depends on the sample
size, an interesting notion is that of superior robustness at both very large and very small sample
sizes, and similarly robustness which holds (or fails to hold) over very high/low confidence and
accuracy ranges. This notion of robustness appeared in a series of ground-breaking works in
the theoretical statistics literature [23, 24, 7, 62, 30], and has these technical contributions
have recently been extended and applied to the context of learning theory, with particularly
important works by Minsker [68], Hsu and Sabato [50], and Brownlees et al. [18] breaking a new
path in the field. In this thesis, we aim to follow this path, building on existing technical results
and introducing new algorithmic ideas in the pursuit of both stronger theoretical performance
guarantees and a high level of utility in practice.

It is worth noting that the learning model discussed above suggests a straightforward
methodology for experimental testing, using numerical simulations. For a given distribution
µ, we can generate two data sets, {z1, . . . ,zn} and {z′1, . . . ,z′m}, and feeding the first n-sized
data set to the algorithm ĥ and getting the output ĥn, we can use the second m-sized data set
to approximate the risk as

R̂(ĥn) ..= 1
m

m∑
j=1

l(ĥn; z′j) ≈ R(ĥn),

noting that conditioned on the “training” set, the law of large numbers gives us almost sure
convergence of the left-hand side to the risk as m → ∞. In the PAC framework, we are
interested in the random draw of the sample, and thus the data generation procedure just
described must be repeated multiple times. Running T trials, we can compute T different
sample-dependent outputs, namely ĥ1

n, . . . , ĥ
T
n . Ideally, we would like to haveR(ĥ1

n), . . . , R(ĥTn ),
but we must in practice settle for R̂(ĥ1

n), . . . , R̂(ĥTn ). For any ε then, assuming R∗ is known we
can approximate

1
T

T∑
t=1

I{R̂(ĥtn) > R∗ + ε} ≈ 1
T

T∑
t=1

I{R(ĥtn) > R∗ + ε} ≈ P
{
R(ĥn) > R∗ + ε

}
.

In this way, we can compare different algorithms, as plot the increase in the probability of
the event {R(ĥn) > R∗ + ε} as we take ε progressively smaller. To evaluate robustness, this
multi-trial procedure must now be repeated for multiple distributions µ1, µ2, . . ., and if strong
performance is confirmed uniformly over these distributions, that can be taken as preliminary
evidence for data-robustness. Naturally, the “size” of the space holding these distributions
depends fundamentally on the distributions used, but even using well-understood parametric
distributions, we can make use of a wide array of distributions, both bounded and unbounded,
symmetric and asymmetric, exponentially-tailed and polynomially-tailed, and so forth. See
sections 2.2 and 2.6 for an exposition of the distributions used in the numerical experiments
contained in this thesis. Both Catoni [24] and Devroye et al. [30] include illuminating dis-
cussions of how classes of data distributions can impact the performance guarantees that are
possible.

2.2 Testing distributional robustness
In the subsequent chapters of this thesis, we shall make use of numerous parametric distribution
families for numerical simulations used to empirically evaluate the performance of different
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learning algorithms. Here we introduce some qualitative features of these distributions, and
give a compact summary that highlights the wide variety of potential data-generating processes
covered here. Explicit definitions and additional background on verifying these properties is
given in section 2.6.

To begin, among the numerous possible characteristics of probability distributions one
could conceivably pay attention to, we shall focus on the following.

• Is the distribution symmetric?

• Do all moments exist? Are they all finite?

• How do the tails behave?

Of these three points, the first two are conceptually very simple, though there may be technical
challenges in actually verifying such properties. We are concerned with observations x ∈ R,
with distribution x ∼ µ, and thus symmetry is intuitively the property that x is just as likely
to take on a value displaced by α to the right of Eµ x as it is to take on a value displaced by
α to the left of Eµ x. More precisely, there exists some pivot x0 ∈ R such that

P{x− x0 ≤ α} = P{−(x− x0) ≤ α}, ∀α ∈ R.

Taking α over all of R may be superfluous; it need only run over the support of the centred
random variable. It follows immediately that if such a x0 exists, then x0 = Eµ x. Put simply,
then, x is symmetric if (x−Eµ x) and −(x−Eµ x) have the same distribution. As regards the
existence and finiteness of moments, note that for m ∈ N,

Eµ x
m =

∫
xm dµ =

∫
(xm)+ dµ−

∫
(xm)− dµ

where (u)+ ..= max(u, 0) and (u)− ..= max(−u, 0). Both summands on the right-hand side are
necessarily on the extended real line R ∪ {∞}, but when the right-hand side takes the form
∞−∞, the integral Eµ x

m, and thus the mth moment about zero, is said to be undefined [6,
Chapter 1]. In all other cases, it is defined, but may potentially be ±∞.

Regarding the behaviour of the “tails” of the distribution µ, this is more conceptually
subtle than the previous two notions, and as such the analyst has some liberty in trying to
characterize such behaviour. As a starting point, perhaps the most common dichotomy is that
of tails which are “heavy” and those which are “light.” Put in completely intuitive terms, the
former refers to the quality of x taking on errant values with some non-negligible probability,
while the latter refers to distributions where such events have negligible probability. The
subtlety arises because the terms errant and negligible are ambiguous.

To formalize these notions, we shall leverage some well-known properties, which allow us
to classify the data-generating processes in a manner useful for performance analysis. As is
common in statistics, the Normal (Gaussian) distribution provides a useful initial benchmark.

Definition 1 (Sub-Gaussian distribution). We say that x (or µ) is sub-Gaussian if there exists
constant(s) such that any of the following hold.

1. Eµ exp(tx) ≤ exp(c1t
2/2), t ∈ R.

2. P{|x| ≥ α} ≤ c2 exp(−α2/k2
2), α ≥ 0.

3. ‖x‖q ≤ c3
√
q, q ≥ 1.

4. Eµ exp(x2/c2
4) <∞.
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Call c1 in 1 the variance factor associated with the moment generating function (MGF) condi-
tion. Condition 2 is super-exponential tail decay. Condition 3 requires control of all moments,
noting ‖x‖q ..= (Eµ |x|q)1/q.

Such a definition is only useful if we have a portmanteau result connecting all these condi-
tions.

Proposition 2 (Sub-Gaussian portmanteau). For any distribution µ on R, the conditions in
Definition 1 satisfy

1 =⇒ 2 ⇐⇒ 3 ⇐⇒ 4.

Furthermore, if Eµ x = 0, then 2 =⇒ 1.

To prove these facts, see for example Chafaï et al. [25], Vershynin [100], Boucheron et al.
[11]. Some technical background on Orlicz spaces may be useful, see van der Vaart and Wellner
[97, Chapter 2], Kosorok [58, Chapter 8], Pollard [79, Ch. 2, problems 22–24]. Even though
the first condition is not necessary for the other conditions in the non-centred case (where
Eµ x 6= 0), the latter conditions capture the qualities that we are interested in, and thus we
have elected to attach the sub-Gaussian name to the union of all distributions satisfying any
such conditions. For distributions with unbounded support, the sub-Gaussian tail behaviour
can be considered highly congenial. All bounded random variables are sub-Gaussian [11,
Lemma 2.2], but we note that this does not preclude the possibility of heavy tails, especially
in the case of distributions supported on a finite set [24, Proof of Proposition 6.2]. See also
Vershynin [100, Section 5.7].

To extend beyond sub-Gaussianity, we consider two closely related properties as defined by
Boucheron et al. [11], which explicitly weaken the moment condition of Definition 1(3).

Definition 3 (Sub-Exponential and sub-Gamma distributions). If for integer q ≥ 1 there
exists a constant c > 0 such that

Eµ x
q ≤ cqq!, (2.1)

then call x ∼ µ sub-Exponential. Further weakening this, if for some c, k > 0 we have

Eµ x
2q ≤ kqq! + c2q(2q)!, (2.2)

then call x ∼ µ sub-Gamma.

Note immediately that all sub-Exponential distributions are sub-Gamma. For the reader’s
reference, we aggregate a few more basic facts.

Proposition 4 (Properties of sub-Exponential/Gamma). If x is sub-Exponential, then

Eµ exp(tx) ≤ 1
(1− ct) , 0 < t < 1/c. (2.3)

If u ..= x−Eµ x is sub-Gamma, then

Eµ exp(tu) ≤ exp
(

2(k + c2)t2
(1− 2ct)

)
, 0 < t < 1/(2c). (2.4)

For reference, this is called “sub-Gamma on the right tail” by [11, p. 28], and when −u satisfies
this property, u is said to be “sub-Gamma on the left tail.” Similarly, tail properties also hold.
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As one would expect, sub-exponential random variables have exponential tails, in that for some
k1, k2 > 0, we have

P{|x| ≥ α} ≤ k1 exp(−α/k2). (2.5)

Sub-Gamma random variables satisfy a similar property. If x is sub-Gamma, defining

h(α) ..= Eµ x+ 2
√

(k + c2)α+ 2cα,

we have

P{x ≥ h(α)} ∨P{x < −h(α)} ≤ exp(−α). (2.6)

For inequality (2.3), see exercises 2.22 and 2.23 of Boucheron et al. [11, Chapter 2]. In-
equality (2.4) comes from their Theorem 2.3. For (2.5), see Vershynin [100, Lemma 5.5 and
Section 5.2.4]. Finally, (2.6) follows from Boucheron et al. [11, p. 29], which takes the form of
what is typically called a Bernstein inequality; see their Theorem 2.10 and Corollary 2.11, and
Pollard [78, Appendix B] for more background. It should be noted that the use of the term
“sub-Exponential” appears frequently in the statistical literature dealing with characterizing
heavy-tailed distributions, and in particular in the context of extreme values. A well-known
work on evaluating and estimating the heaviness of a distribution’s tails is due to Smith [88].
See Goldie and Klüppelberg [44] and the references within for supplementary information.

In this thesis, we make use of a number of well-known families of probability distributions,
whose properties span numerous combinations of those discussed in the preceding paragraphs.
An introduction to all of these is rather tedious, and thus the details are relegated to section
2.6 at the end of this chapter, with table 2.1 providing a concise summary here.

2.3 Statistical inference and learning
We shall now begin to shift our focus away from methods of evaluating performance, and
towards the procedure for determining ĥn given sample {z1, . . . ,zn}, namely the learning
algorithm itself. If the goal is to make R(ĥ) as small as possible with the highest possible
probability over the random draw of the sample, it goes without saying that any successful
algorithm will require information regarding the function R(·). If R were known, learning
would amount to the optimization of a known function. Of course, it is precisely because R
is unknown that machine learning problems closely parallel the learning tasks of humans, as
discussed at the start of Chapter 1. Hence, we must use the data to approximate R directly, or
properties of R that will be conducive to its efficient minimization. Since R(h) is a parameter of
the distribution of l(h; z), an obvious entry point is any statistic defined on the set {l(h; zi)}ni=1,
readily interpreted as feedback regarding the quality of candidate h. Most simply, the empirical
mean of the measured losses comes to mind, and suggests a simple algorithm taking the form

ĥERM ∈ arg min
h∈H

1
n

n∑
i=1

l(h; zi).

This is the principle of empirical risk minimization (ERM),3 a cornerstone of modern learning
theory and virtually all learning algorithms used in practice today [98]. If the sample mean

3For any real-valued function f on H, we write arg minh∈H f(h) ..= {h : f(h) = inf{f(g) : g ∈ H}}. This
could be empty (no solutions), contain one, or even infinitely many solutions. When f is the empirical risk,
note that the ERM principle admits any valid solution.

16



Symmetric Bounded Moment Control
Arcsine © © G
Beta × © G

Beta Prime × × ×
Chi-squared × × E
Exponential × × E

Exponential-Logarthmic × × E
Fisher’s F × × ×

Folded Normal × × E
Fréchet × × ×
Gamma × × E

Gaussian mixture × × G
Gompertz × × G
Gumbel × × Γ

Hyperbolic secant © × Γ
Irwin-Hall © © G
Laplace © × E

Log-Logistic × × ×
Log-Normal × × ×
Logistic © × E
Maxwell × × G
Pareto × × ×
Rayleigh × × G
Semi-circle © © G
Student’s t © × ×
Triangle × © G
U-Power © © G
Weibull × × G/E

Table 2.1: Table of distributions and their qualities of interest. Having × under Symmetric means that there
are parameter settings in which the distribution is asymmetric, while© means symmetry holds for all parameter
values. The characters G, E, and Γ respectively correspond to sub-Gaussian, sub-Exponential, and sub-Gamma
properties. A × mark in the Moment Control column means that higher-order moments are infinite.

is an accurate representation of the risk, then we can expect the ERM solution to succeed.
Conversely, when the sample mean poorly approximates the risk, it is naturally poor feedback,
and we cannot expect any algorithm depending on such feedback to succeed with high prob-
ability. The first question to ask, then, is whether there are plausible scenarios in which the
sample mean actually does fail. If an affirmative answer can be made to this question, then
we must ask whether an alternative procedure performs better. In this way, a key concept
here, and throughout the rest of this thesis, is that of dedicating computational resources to
providing the learner with better feedback. It turns out that both questions can be answered
in the affirmative, and in fact very precise answers can be given. We begin with some broad
historical context, before giving a straightforward technical example to illustrate the key idea.

Estimation of moments is the canonical statistical estimation task, and the literature is
unsuprisingly massive. For the case of parametric models, we refer the reader to standard
texts for background [22, 61]. The classic paradigm assumes that the underlying distribution
of interest, say µ, is known up to a finite number of parameters, and lives in a space P(Θ) =
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{pθ : θ ∈ Θ}, whose elements (typically density functions) can be specified by a subset of finite-
dimensional linear space, here Θ. It is in this context that likelihood maximization became
the central algorithm design principle, an approach which is cohesive with the notion that all
we need to do is “fit” the model to the data.

As computing technology advanced, new problems arose that hightlighted issues with the
classical framework; it is hard to justify parametric models and the maximum likelihood
methodology when our samples are “contaminated” by errant observations, an idea prolif-
erated by Tukey [95]. The subtext here is that such observations are irrelevant to our original
problem of interest, and should be discarded or ignored. In such a case, we would have
µ = (1 − δ)µ0 + δν, where µ0 belongs to a parametric family known to the statistician, and
ν is an arbitrary probability controlling the contaminating noise. To deal with problems of
this nature and automatically reduce the influence of undesirable data, through the 1960s a
new program, borne of the work of Huber [51] who put things on a solid theoretical footing,
developed into what is now called robust statistics. Large statistical libraries of software, a rich
theory of influence functions, breakdown point analysis, and M/L/R-estimation are among the
most important legacies of this period [52, 46].

When we completely abandon the parametric assumption, and consider non-parametric
models such as

Pk(a) ..= {µ ∈ P(Z) : Eµ |l(h; z)|k ≤ a}, 0 < a ≤ ∞

how does the situation change? Note that this is the norm in the current era of machine
learning, where data sets are complicated and diverse, reducing the applicability of a priori
domain knowledge akin to the near-omniscient statistician of the mid-20th century. In this
setting, the empirical distribution µn induced on the sample {z1, . . . ,zn}, namely

µn(Z) ..= 1
n

n∑
i=1

I{zi ∈ Z}, for each event Z ⊆ Z

was made the focal point. Using µn ≈ µ, the strategy naturally shifted to minimizing
Eµn l(h; z), a computable quantity which is a natural objective function to be minimized by
the computer. As is lucidly discussed by Vapnik [98, Ch. 1], the original theoretical impetus
for this approach is undoubtedly the uniform consistency result of Glivenko and Cantelli for
the empirical distribution function on R, which for any fixed h ∈ H says that taking n → ∞,
we have

sup
α∈R
|Eµn l(h; z)−Eµ l(h; z)| → 0

with probability one. Keeping the risk minimization task in mind, using the fact that a wide
class of distributions are tightly “concentrated” about their means [92, 11], whenever this holds
for Eµn l(h; z), a random variable depending on the sample, it is natural to use this canonical
estimate.

Unfortunately, as we will show in the following paragraphs, the class of data distributions
where the loss is well-behaved does not nearly account for rich models like Pk(a). This presents
a clear technical problem of interest: developing computable moment estimators which have
desirable properties under weak assumptions. In addition to this, as applied statistics and
machine learning practictioners continue to diversify, it seems unreasonable to expect a large
portion of users to check model assumptions, or even be aware of them, which has substantial
well-understood risks [41], especially as socio-economic data becomes more widely available.
Given this context, it appears fruitful to carry out some modeling decisions on the “back-end,”
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that is to pre-program them into general-purpose learning algorithms. This is precisely the
motivation for designing more data-robust algorithms, as discussed in the previous section.
Let us now provide some more formal context for the technical problem.

For simplicity, consider the case of x ∼ µ on the real line, with sample x1, . . . , xn and
non-parametric model Pk(a) = {µ : Eµ |x|k ≤ a}. Writing xn = n−1∑n

i=1 xi, one of the more
prominent classical facts is that for any 0 < a <∞, one has

sup
µ∈P2(a)

E(xn −Eµ x)2 = inf
χ

sup
µ∈P2(a)

E(χ−Eµ x)2

where the infimum over χ is taken over effectively all measurable estimators [101, Section 3],
and the unmarked expectation E is taken with respect to the sample [61, Ch. 4]. This is a
so-called minimax optimality result for the sample mean: in the worst-case situation in terms
of average deviations between xn and the target Eµ x to be estimated, it outperforms all rivals.

On the other hand, a clear issue can be raised: are average deviations a useful description of
performance? Going back to the PAC learning framework, note that we seek high-probability
guarantees over random draw of the sample, rather that statements about the average be-
haviour. One clear reason for doing this is because there is a distinct possibility that in
“integrating out” the sample, we may be undervaluing the potential impact of errant observa-
tions in any given (finite) realization of x1, . . . , xn (correspondingly, the losses {l(h; zi)}ni=1).
Following Catoni [24] and Hsu and Sabato [50], this can be made more concrete with an exam-
ple on R. Consider a class of “good algorithms”, written A, defined for data generated from
distributions in a class P. Here an algorithm is “good” if it enjoys a varµ-modulated confidence
interval of order O(n−1/2), uniformly over µ ∈ P. More precisely, for x̂ to belong to A, we
require that given large enough n, for all ∀µ ∈ P, we have

P{|x̂n −Eµ x| ≤ bµ(x̂)} ≥ 1− 2δ, bµ(x̂) ..= c0cδ(x̂)
√varµ x

n
.

Here c0 is an arbitrary constant, and cδ(·) is a factor that depends on δ and the choice of
algorithm x̂. The dependence of bµ(x̂) on n and δ is suppressed in the notion for readability.
When the data is particularly “well-behaved,” there is no issue with the classical approach. To
see this clearly, observe the fact that for any x̂ ∈ A and sample size n,

bµ(x̂) ≥ bµ(x), ∀µ ∈ {N(u, σ) : u ∈ R, σ > 0}. (2.7)

This says that when P is the set of all Gaussian distributions on R, among all the good
algorithms populating A, none are superior to the sample mean x. When x̂ = x and µ =
N(u, σ) for any u ∈ R, we can evaluate the bound bµ exactly. It takes the form

bµ(x) = Φ−1(1− δ)

√
σ2

n

where µ = N(u, σ), and Φ is the Normal distribution function. As noted by Devroye et al. [30],
sending δ → 0 we get bµ(x) ∼

√
(2 log(δ−1)σ)/n. Since virtually any non-parametric model

will at least include the Gaussian model as a subset, this can be considered a natural lower
bound, i.e., an optimal performance benchmark for the members of A given a more general
P. Based on what we have seen thus far, if we have a very restrictive parametric model, the
empirical mean is optimal, just as it was in the minimax expected loss framework. Assuredly,
this does not match the experience of most practitioners, which suggests that at the very least,
the sample mean should be sub-optimal when extreme values are relatively likely, i.e., when
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the distribution is “heavy-tailed.” An important question: under more general models within
this new (PAC-type) evaluation paradigm, will issues with the empirical mean become more
salient?

An affirmative answer can be made to this question. To see this, consider the rich non-
parametric model P2 = ⋃∞

a=1 P2(a), a massive model by any standard, and note that Cheby-
shev’s inequality implies

P

|xn −Eµ x| >

√
varµ(x)δ−1

2n

 ≤ 2δ, for any µ ∈ P2.

Since this guarantee only gives us an upper bound, one is naturally wary that the bound could
be loose, and potentially not an accurate portrayal of the accuracy of the estimate given by
xn. In particular, the linear dependence on 1/δ is undesirable when the confidence level 1−δ is
high. For what kind of distribution would we expect the classical approach begin to fail? We
know through experience that if µ assigns a relatively large amount of density far away from
regions of central tendency, errant observations can wreak havoc with estimates based on xn.
This empirical insight is essentially correct. Consider the following example based on a proof
given by Catoni [24]. For arbitrary but fixed integer n, from large class P2, consider a class
of symmetric distributions with support of three points {u0 − p, u0, u0 + p} denoted ν(p), and
defined by

ν(p){u0} = 1− 1
n2p2

where each distribution is specified by parameter p ≥ 1/n. Of interest to us is the fact that if
x ∼ ν(p), then as x1, . . . , xn is an independent sample, we have that for any 0 < δ ≤ 1/(2e),

P

|xn −Eν(p) x| ≥

√
δ−1

2n

(
1− 2eδ

n

)n−1
 ≥ 2δ.

This lower bound says that when the distribution is µ = ν(p) for any valid p, there exists an
unavoidable “bad event” of non-zero probability, where the general upper bound on |xn−Eµ x|
is in fact tight in terms of dependence on δ and n. Since this lower bound essentially matches
the upper bound, the confidence interval is as poor as it can possibly be on the large class P2.
Intuitively, this is an example of a class where the sample mean looks to break down. What can
we say about the qualities of this class {ν(p) : p ≥ 1/n} ⊂ P2? Note that if ν(p){u0} = 1− γ,
then by definition p =

√
γ−1/n, i.e., the breadth of the distribution grows quickly as γ is

taken smaller, and values in the tails grow farther from the mean. This can be placed in stark
contrast with other possible symmetric distributions with three-point support, whose breadth
may be comparatively small. The message here is that when data comes from distributions
with a heavy-tailed form, they are not conducive to good estimates via the sample mean.

There remain two key questions: (1) do there exist members of A that realize more desirable
error bounds than the sample mean over non-parametric models like Pk for small k, and
if so, (2) are they computationally tractable? Now coming full circle and returning to the
path-breaking works cited at the end of the previous section, the existence of such dominant
algorithms in the class A, as well as other related classes, has been proved by Catoni [24], and
more recently by Devroye et al. [30]. The former work considers an elegant new class of readily
computable M-estimators [24, Section 2], though re-scaling of observations relies on variance
oracles in order to be done efficiently. Some sophisticated adaptive routines for re-scaling
without a variance oracle are given [24, Section 3–4], though these require either a kurtosis
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oracle or an adaptive procedure not amenable to computation. The latter work considers
broad several model and algorithm classes, gives lower bounds on estimation error (implying an
optimal performance criterion), and provides some artificial routines which have near-optimal
formal properties. Unfortunately, due to their design, these routines are not computationally
amenable, and efficient methods for realizing analogous performance has been left as an open
problem. Our interest in this thesis is an investigation of how more robust statistics of based
on observed loss values {l(h; zi)}ni=1, that is more robust feedback, can be used productively
in computationally congenial optimization procedures.

2.4 Objective-based feedback
Bridging the conceptual gap between feedback and response is easy when the former is provided
in the form of an objective function for the latter to minimize. This is precisely the case when
we invoke the ERM principle: the empirical risk is an objective function, and typically the
response is an as-yet unspecified procedure for actually carrying out the optimization. In close
relation to the content of the previous section, the design of an objective function can indeed
be the central step in engineering a learning algorithm. In this section, we momentarily restrict
our focus to a specific learning task, with the goal of illustrating both the important role (in
learning) that such functions can play, and the wide variety of technical approaches taken to
this problem in the literature.

Here we look at the “regression” problem, under a linear model, with non-parametric as-
sumptions on the data distribution. Our data takes the particular form z = (x, y), and
the goal is to predict output y given a novel instance x. We are given n observations
(x1, y1), . . . , (xn, yn), all independent copies of (x, y) ∼ µ, taking values in x ∈ Rd, y ∈ R.
Compactly denote y ..= (y1, . . . , yn) and X for the n×d “design matrix” of inputs. The classical
situation assumes n > d, but an important and interesting case is that where n � d, given a
sparsity scenario. The underlying process is assumed, for simplicity, to be

y = xTw∗ + ε, Eµ ε = 0, Eµ ε
2 <∞.

Here the “signal” is determined by some pre-fixed but unknown w∗ ∈ Rd. In addition to
the second moment being finite, we assume the noise/residual term ε is independent of all
components of x. The notion of data-robustness here will correspond directly to the strength
of additional assumptions that are required of the noise distribution in order to guarantee
satisfactory performance. Sparsity assumptions are made precise through explicit constraints
on the effective dimension of the underlying model. For example, constraining the value of

‖w∗‖q =

 d∑
j=1
|w∗j |q

1/q

, q ∈ (0, 1)

enforces a natural form of sparsity, with the strongest and most common case being in the
limit of q → 0, where one constrains ‖w∗‖0 ..= ∑d

j=1 I{w∗j 6= 0}.
The problem formulated above has a long history, and spans many fields, often with distinct

research goals. Here we briefly review the basic ideas and key literature. This task can be cast
as a special case of a more general problem, namely that of approximating some functional
relationship, given inputs x ∈ Rd and outputs y ∈ R, as a linear combination of “basis”
functions φ : Rd → R. In practice, these functions are selected from a finite collection, say
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{φ1, . . . , φk}, assumed to contain a sufficient variety of functions. We will have

y =
k∑
j=1

wjφj(x) + ε(k)

where ε(k) represents some residual, due to only having an incomplete set of input/output
pairs available from which to infer the functional relationship. The use of systems of simple
and convenient functions to approximate complex relations is ubiquitous; a canonical example
when d = 1 is the system {φ(u) = eiju/

√
2π}kj=1, which may be used to construct the basic

Fourier series handled in elementary analysis [94]. Our general problem remains: for some
ε > 0 benchmark and an appropriate norm ‖ · ‖, to achieve ‖ε(k)‖ ≤ ε, how should one set the
free parameters w = (w1, . . . , wk) based on data? It may be impossible, in which case there
is no issue. In suprisingly many cases, however, such problems are soluble. Some illustrative
examples appear in the signal processing literature, where the utility of systems of sine waves,
Gabor functions, and wavelets, to name a few examples [29], are well-known. In such problems,
using the full expressive power of k basis functions results in a large amount of redundancy,
and far more free parameters than are necessary to achieve ε-accuracy. Furthermore, when
examples are limited, with so many parameters one faces an ill-posed problem [98, Ch. 1], and
in practice one faces a high risk of arriving at sub-standard solutions.

As put forward in the highly influential work of Chen et al. [26], a useful algorithm design
principle follows from the points made above. One should strive for ε-accuracy using the
smallest number of basis functions possible, i.e., a “sparse” approximation of the functional
relation of interest. That is, algorithms should be explicitly encouraged to discard as many
basis functions as possible, by setting many weights at or near zero. The linear regression
problem formulated above coincides with the case of k = d, and φl(x) = xl. Given n examples,
one seeks to approximate y as a superposition of x(1), . . . ,x(d), the columns of X. To enforce
sparsity, the approach of Chen et al. [26], called (atomic) basis pursuit, advocates the use of
an `1 penalty to do this. Written explicitly, the routine is

min
w∈Rd

‖y −Xw‖22 + λ‖w‖1

for some pre-fixed λ > 0. It is worth noting that in the signal processing community, this
strand of research continued and developed into a major body of work. In the “compressed
sensing” literature originating with Donoho [32], one important problem is that of explicitly
finding the sparsest representation of y using the columns of X, namely executing

min
w∈Rd

‖w‖0, s.t. y = Xw.

Interestingly, Donoho [31] showed that when a solution exists, it is often unique, and in fact
can be obtained in a computationally congenial way, namely by running

min
w∈Rd

‖w‖1, s.t. y = Xw.

This has the substantial advantage of being a convex program. Candès and Tao [21] showed
that in the noiseless case, by solving the `1-minimization problem, one can exactly recover the
optimal solution, using only a finite sample. In the case of Gaussian noise, Candès and Tao
[20] introduced the “Dantzig selector,” which proposes a new algorithm, namely the `1 norm
minimization plus a novel constraint. In addition, they also demonstrate that near-optimal
solutions can be obtained even under noisy observations, using routines which can be readily
implemented.
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It is certainly possible to interpret this approach to algorithm design from the perspective of
the statistician. Taking the classical approach of minimizing ‖y −Xw‖22 can be risky, since the
squared error can be sensitive to noisy, errant observations. If our learning procedure “overfits”
in the sense that algorithm output is unduly influenced by unimportant random idiosyncrasies
in the n-sized sample, then we cannot reasonably expect strong predictive capabilities off-
sample. In addition, when d is large, it is far easier to interpret major contributions from a
few covariates, rather than minute contributions from a plethora of covariates. Breiman [17]
proposed the “non-negative garrote,” namely the constrained convex program

min
w∈Rd

‖y −Xw‖22 , s.t. ‖w‖1 ≤ t, wl ≥ 0, l ∈ [d].

The non-negative weights make interpreting relative contribution easy, and the `1 constraint
encourages sparsity. Motivated by this work, Tibshirani [93] removed the non-negativity, and
provided lucid analysis and novel computational routines, resulting in the well-known LASSO
procedure. This work has obvious links to the developments in signal processing noted above;
the work of Bickel et al. [9] compared the estimation behaviour of the Dantzig selector with that
of the LASSO, and showed that they have fundamental similarities. As a part of the formal
analysis, they introduced the “restricted eigenvalue conditions,” which have become a mainstay
of high-dimensional statistical analysis ever since. Over the years, a tremendous number of
extensions, improvements, and analyses of `1-penalized ERM algorithms has been carried out.
Important theoretical foundations have been laid by work such as Knight and Fu [55], Zhao
and Yu [106], Donoho et al. [33], Meinshausen and Yu [67], Koltchinskii [57]. Influential
computational innovations have come from Osborne et al. [76], Efron et al. [36], Friedman
et al. [42], Wu and Lange [105] to name a few.

Despite the impressive advances described above, these feedback mechanisms do not nec-
essarily provide solutions to our problem of interest. In the compressed sensing context, when
our observations are corrupted by non-Gaussian noise, the problem becomes more difficult and
existing solutions may fail [103]. While regularization can be used to mitigate the impact of
overfitting due to, for example, a quadratic error term, setting the additional weight parameter
can be extremely sample-sensitive and time-intensive, and indeed may be insufficient without
prior information regarding model constraints. It is within this context that many researchers
have investigated more robust sparse regression routines, in the sense that they can be applied
to tasks with data arising from a larger class of distributions than classical methods can. In
keeping with our focus on objective functions, we introduce some well-known work which has
pursued “robustification” in this vein.

Many studies have focused on designing more sophisticated loss functions for use in the
objective. A general form for the objective function can be given as

min
w∈Rd

1
n

n∑
i=1

ρ
(
yi − xTi w

)
+ λΩ(w)

where ρ is a generalized loss, and Ω is a penalty designed to induce sparsity in the estimate.
Starting with the simplest case, recall the classic dichotomy between ordinary least squares
(minw ‖y − Xw‖22) and least absolute deviations (minw ‖y − Xw‖1) in the low-dimensional
case. In the former, one effectively seeks the conditional mean Eµ(y;x), while in the latter one
seeks the conditional median medµ(y;x). The median is insensitive to the distribution tails,
and thus given a finite sample {(xi, yi)}ni=1, the influence of errant observations is limited.
Wang et al. [102] consider the LAD-LASSO, namely the case of

ρ(u) = |u|, Ω(w) = ‖w‖1
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and provide both asymptotic analysis of the resulting estimator, as well as introductory simu-
lations using heavy-tailed noise. Under negligible noise, residuals may tend to be very small,
and the `1 loss will over-penalize such deviations, introducing potentially significant bias; one
is faced with a difficult choice between two extremes.

This can be continuously modulated by introducing parameter l ∈ [1, 2] and setting ρl(u) =
|u|l/l. The properties of this function have been investigated by Rey [80, Section 6] in the
context of robust (non-penalized) regression. Rather than focusing on values between the mean
and median, another approach is to look at the spectrum of quantiles for the distribution of
interest (here, y conditioned on x). Quantile regression [56] generalized the problem using a
new loss

ρτ (u) ..=
{
τu, u > 0
(τ − 1)u, u ≤ 0

τ ∈ (0, 1)

and minimizing Eµ ρτ (y−xTw), noting that any τ -level quantile of y|x is a solution. This has
been considered for non-parametric tasks in the machine learning literature [91], and also for-
mally treated in the penalized high-dimensional regression setting by Belloni and Chernozhukov
[8]. In their work, the procedure is defined using the objective function

ρ(u) = ρτ (u), Ω(w) =
√
τ(1− τ)
n

d∑
j=1

mj |wj |

where the mj are extra weights to be estimated from the data, a notion which has been in
the literature for some time [39]. Denoting the algorithm output by ŵn, their results include
near-optimal convergence rates of ‖ŵn − w0‖2 as n → ∞, which hold uniformly over many
choices of quantile level τ . These results are highly suggestive of the utility of replacing the
`2 loss with another, more robust choice. A very similar problem was considered by Fan et al.
[37], where the penalty was revised slightly to

ρ(u) = ρτ (u), Ω(w) = ‖v ◦w‖1
where ◦ denotes the Hadamard product, v◦w ..= (v1w1, . . . , vdwd), and they pay close attention
to a strategy for adaptively determining the v weights based on initial estimates. Consistency
guarantees are given, under much weaker assumptions on µ than related analysis done by
Bradic et al. [15]. In addition, their Proposition 1 gives a salient example of how the traditional
`2-based LASSO can break down under heavy tails.

Unfortunately, when we have minimal prior information on µ and small samples, selecting
the quantile τ to use is a non-trivial problem, just as the OLS versus LAD decision is difficult.
It is natural, then, to seek out alternative parameters of the target distribution y|x, which
closely approximate Eµ(y;x) when outliers are negligible, but are less sensitive to distribution
tails when those tails become heavy. The idea is that empirical estimates of such parameters
will, in turn, be less sensitive to random idiosyncrasies in the sample. One very interesting
work which adopts this approach is that of Lambert-Lacroix and Zwald [59], which looks at
using the classic choice of the function of Huber [51, 52], defined by

ρM (u) ..=
{
u2, |u| ≤M
2M |u| −M2, |u| > M

and re-scaling observations simultaneously, using a program specified by

ρ(u, s) =


ns+ ρM

(
u
s

)
s, s > 0

2M |u|, s = 0
+∞, s < 0

, Ω(w) = ‖w‖1.
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where in practice u = y−xTw and (w, s) are the parameters over which one minimizes. Formal
results regarding the asymptotic distribution of the estimator, as well as detailed numerical
experiments using simulated and real data, and a discussion of the utility of information criteria
were given. The same algorithm using a pre-fixed scale (i.e., minimize over w only using ρM )
was given a lucid formal treatment in a pre-print by Fan et al. [38], for which sharp bounds on
`2-error under finite-sample estimates under composite gradient-type updates are given, under
weak assumptions on the noise/residual. Initial results were given for an adaptation of the
M-estimator of Catoni [24] as well, however no strategies for setting s and λ in this problem
were offered.

Finally, we note that some rather unique approaches to the problem have also been proposed
in recent years. Some interesting methods have come from the signal processing and computer
vision communities. One nice example from Wright and Ma [103] analyzes the algorithm

min
(w,e)∈Rd+n

‖w‖1 + ‖e‖1, s.t. y = Xw + e

where the residual is treated as an additional parameter to be controlled. Rather strict as-
sumptions are still required on the underlying distribution, but the practical utility in several
tasks was clearly demonstrated [104]. A similar strategy appears in the work of Nasrabadi
et al. [70] and Nguyen and Tran [74], where they use

min
(w,e)∈Rd+n

‖y −Xw − e‖22 + λ1‖w‖1 + λ2‖e‖1

and provide some novel insights into the role that the ratios of n, d, and ‖w∗‖0 play on the
performance of this “extended” LASSO.

In recent years, novel extensions of the median-of-means strategy to high-dimensional prob-
lems by Minsker [68] and Hsu and Sabato [49, 50] have received attention. The basic idea is
to partition the data into k segments, say with indices [n] = I1 ∪ · · · ∪ Ik, and to run the usual
LASSO on each independent segment, setting

ŵ(l) ∈ arg min
w∈Rd

1
n

∑
i∈Il

(yi − xTi w)2 + λ‖w‖1, l = 1, . . . , k.

The estimate is then set as

ŵn
..= med{ŵ(1), . . . , ŵ(k)}

where the “median” here is defined using the geometric median on Rd [99], namely

med{u1, . . . ,uk} ..= arg min
u∈Rd

k∑
l=1
‖u− ul‖2.

Finite-sample `2-error bounds for this routine are given by Minsker [68, Section 4.3], under very
weak assumptions such as a few finite moments of the noise and some regularity conditions on
the carrier matrix. Comparable results are given by Hsu and Sabato [50, Section 6.1], using a
different routine for selecting from the candidates W ..= {ŵ(1), . . . , ŵ(k)}. Their Algorithm 2
says to set

r(l) ..= min{r ≥ 0 : |Br(ŵ(l)) ∩W| > k/2}
? ..= arg min

l∈[k]
r(l)

ŵn
..= ŵ(?)
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where Br(w) = {u : ‖u − w‖2 ≤ r}. This is also a very appealing idea, effectively choosing
the candidate that is close to “most” of the others, a natural generalization of the median
notation. One concern is that under small sample sizes there is potential for significant bias,
limiting utility for smaller samples, and conversely, it may be that once the sample size is large
enough for numerous partitions can be made, less sophisticated techniques may suffice. In any
case, the formal properties, intuition, and ease of implementation are attractive, and seriously
warrant further investigation.

2.5 Implementation of learning rules
In sections 2.3 and 2.4, we considered the statistical impact of different feedback mechanisms,
and highlighted some specific examples of procedures centred around an explicit objective
function, all closely tied to the ERM learning principle. To gain a more thorough understanding
of the behaviour, generalization ability, and fundamental limitations of learning algorithms,
however, we must make concrete the actual implementation, since the only statistical estimates
the learner will ever have in practice are those that it can compute. In the examples of
section 2.4 using objective functions, the chief question of implementation revolves around the
method by which we minimize the objective. This naturally leads us to the need to account
for optimization error, namely the error incurred as a result of not being able to reach an
optimal value in a finite number of steps. In addition, when multiple optima exist, there
may be significant repurcussions in terms of the generalization performance of “good” versus
“bad” optima. We begin this section by highlighting the statistical gap that can exist between
distinct optima, and then shifting our focus to optimization error, we review some important
optimization procedures studied in the machine learning literature.

Keeping with the notation of section 2.1, we start by looking at a special case that follows
from Feldman [40, 3.1]. For concreteness, let H = {h ∈ Rd : ‖h‖p ≤ 1}, the unit ball in
`p norm, for 1 ≤ p ≤ ∞. Let l(·; z) be 1-Lipschitz on H in the `p norm. Then, writing
R̂(h) ..= n−1∑n

i=1 l(h; zi), where z1, . . . ,zn ∼ µ are our independent observations, we have
that

n ≥ O
(
d log(d/(εδ))

ε2

)
=⇒ P

{
sup
h∈H
|R(h)− R̂(h)| ≥ ε

}
≤ δ

where P measures the probability over the random draw of the n-sized sample. As one would
expect, for any valid ERM estimate ĥ minimizing R̂(·), on this high-probability event we have

R(ĥ)−R∗ = R(ĥ)− R̂(ĥ) + R̂(ĥ)−R∗

≤ 2 sup
h∈H
|R(h)− R̂(h)|

≤ 2ε

where the inequality follows from the optimality of ĥ. Thus ignoring log terms, the sample
complexity of any ERM solution for this setting is bounded above by O(d/ε2). We point out
the dependence on d here for comparison puposes; Theorem 3.3 of Feldman [40] provides a
lower bound on the sample complexity of ERM in the problem setting just described, with
p = 2 for simplicity. It is shown that there exists a distribution µ and loss function l(·; z)
satisfying the assumptions of this scenario, where a “bad” ERM implementation ĥ is such that

n ≤ d/6 =⇒ P
{
R(ĥ)−R∗ > 1/4

}
> 1/2,

26



or more generally, that the sample complexity of a poor ERM implementation is bounded
below by O(d/ε), showing that in the worst case, the sample size must scale linearly with
d for the generic ERM. The notion of a “poor” implementation sounds a bit subtle, but in
fact all this means is that one can construct an algorithm which, given any sample z1, . . . ,zn,
returns a valid ERM estimate ĥ, which is poor in the sense of the lower bound just given.
Since an unimplemented ERM procedure naturally includes this contingency, only very weak
guarantees can be made. For comparison, Theorem 3.2 of the cited paper shows that there
exist alternative algorithms which, in the same setting, have sample complexity which is free
of d. To better understand when ERM (or any other learning principle) succeeds, and what its
limitations are, it is now clear that the nature of its implementation cannot be left abstract.

Having established via example the notion that implementation plays an important role in
statistical learning, how are optimization tasks typically solved in the machine learning com-
munity? Due to the simplicity and theoretical groundwork available for ERM, most researchers
formulate the problem as a finite-sum minimization,

min
h∈H

n∑
i=1

fi(h)

where the fi : H → R+ are random functions drawn independently from a common distribution.
When fi(h) = l(h; zi), this problem reduces to the usual empirical risk scenario, though the
setting is far more general, including all varieties of regularization, for example fi(h) = l(h; zi)+
λ‖h‖k for some norm ‖ · ‖ : H → R+, λ > 0 and k ∈ N. Different assumptions on the “sample”
functions {fi}ni=1 leads to different strategies, and here we take time to introduce some of the
more powerful and influential ideas from the literature.

Under the assumption that the objective is differentiable, the vast majority of imple-
mentations in machine learning use “first order descent” methods. Writing the objective as
f(h) = ∑n

i=1 fi(h), and its differential4 at h ∈ H by f ′h : H → R+, this terminology comes
from the first order approximation

f(h+ u) = f(h) + f ′h(u) + o(‖u‖)

used to derive iterative procedures that result in sequences {h(t)}∞t=0 which ideally satisfy
f(h(t+1)) < f(h(t)) for each t ≥ 0, which is to say that they descend the objective in a monotone
fashion, hence the naming. To derive a natural update algorithm, invoke the idea of “steepest
descent”, which says that we should set the update direction u such that the reduction in value
of the first-order approximation of f at h, namely f(h) + f ′h(u) ≈ f(h + u), is as large as
possible. Assuming H is an inner product space,5 the differential at h with increment g takes
the form f ′h(u) = 〈∇f(h), g〉, where ∇f(h) denotes the gradient of f at h, a vector of partial
derivatives when H happens to be a subset of Euclidean space. Writing f̂(u) ..= f(h) + f ′h(u)
for pre-fixed h ∈ H, we seek to minimize

f̂(u)− f̂(0) = 〈∇f(h), u〉, s.t. ‖u‖ = 1.

The norm contraint here lets us identify the optimal direction; as long as this is clear, to finalize
an update will simply require re-scaling the unit update vector. Applying the Cauchy-Schwartz
inequality for the two cases of u and −u with unit norm, we have

−‖∇f(h)‖ ≤ f̂(u)− f̂(0) ≤ ‖∇f(h)‖.
4For background on differentiation, see Rudin [83, Ch. 9] for Euclidean space, and Luenberger [65, Ch. 7] for

more general normed linear spaces.
5Analogous arguments can easily be given for general metric spaces, minimizing f ′h(u) in u on the corre-

sponding unit ball [14, Sec. 9.4].
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Setting u = −∇f(h)/‖∇f(h)‖, we have f̂(u)− f̂(0) = −‖∇f(h)‖, achieving the lower bound.
To see that this is indeed optimal, if there existed an alternate u′ with ‖u′‖ = 1 and f̂(u′) −
f̂(0) < −‖∇f(h)‖, this would imply f̂(−u′)− f̂(0) > ‖∇f(h)‖, contradicting the upper bound
just given. Updating the first-order approximation in the direction of steepest descent (on an
inner product space) and re-scaling at iteration t with α(t) > 0, we have the popular gradient
descent (GD) update

h(t+1) = h(t) − α(t)

n∑
i=1
∇fi(h(t)),

which follows from setting the update vector to u = α(t)(−1)∇f(h), and the linearity of the
gradient operator. Let us take a moment to recapitulate: in the special case of fi(h) = l(h; zi),
this update procedure is none other than a GD implementation of the ERM learning principle.
As most learning algorithms in widespread use today are variants of the ERM-GD procedure,
this represents a useful starting point for comparing and contrasting existing techniques.

We now introduce some key variants of the first-order steepest descent procedure studied
and used in the machine learning community. While gradient descent has been studied in the
context of numerical optimization for over sixty years [28], a seminal application of the tech-
nique is found in the “back-propagation” algorithm for training feed-forward neural networks
with logistic units, due to Rumelhart et al. [84, 85]. One important idea found in their work
is an “online” variant in which the learner is presented with examples sequentially, resulting
in the update

h(t+1) = h(t) − α(t)∇fI(t)(h(t))

where I(t) denotes the sample index. This can be readily implemented in the batch setting
as well, where n observations f1, . . . , fn are given, and the indices I(t) are randomized. This
randomization can be done with replacement, where I(t) ∼ Unif{1, . . . , n} independent of the
step number t, or without replacement, where I(t) cycles over some permutation of {1, . . . , n}.
One natural motivation for this technique comes from the fact that when I(t) follows the
uniform distribution, the expectation (conditioned on h(t)) is

E∇fI(t)(h(t)) = 1
n

n∑
i=1
∇fi(h(t)),

the “full gradient” computed on the entire sample. Noting that initialized at some h(0) ∈ H,
and fixing α(t) = α for simplicity, we have

h(t+1) = h(0) − α
t∑

k=0
∇fi(k)(h(k))

≈ h(0) − α(t+ 1) E∇fI(t)(h(t))

which suggests that at the very least, after t ≈ n iterations with α ∝ 1/(t+ 1), the variations
should iron out such that it approximates one update step using the full gradient. There is
clear appeal here when, for example, n is large and many samples are similar to one another.
In this case, as long as we do not run into wildly errant observations, presumably a good
approximation to the full gradient update can be achieved in t� n steps, meaning substantial
computational savings in high-dimensional problems where computing each ∇fi is expensive.
Obviously, this randomization can introduce a substantial amount of variance into the update
trajectory when compared to the full gradient case; this can be viewed as both a demerit and
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a merit, depending on the perspective and learning task. On the negative side, since we can
understand this procedure as being a cheap approximation to the ideal full gradient update,
excessive deviations from the ideal path will necessitate numerous iterations to correct for
the idiosyncratic updates resulting from single-point estimates. Even though per-step costs
are dramatically reduced, the possibility exists that the number of iterations required may
be so large that the procedure ends up costing more to reach a solution comparable to the
full gradient update after a few iterations. On the positive side, it is precisely this variance
that can be useful for jump-starting the optimizer when it gets stuck in a flat region (where
gradient updates become negligible) or a sub-optimal local minima in the case that f is not
convex [82, p. 156]. This intuitive algorithm has been generalized to utilize “mini-batches,”
where I ⊂ {1, . . . , n} is randomly sub-sampled, and the update takes the form

h(t+1) = h(t) − α(t)
1
|I|

∑
i∈I
∇fi(h(t))

where typically |I| � n. This intuitive update, coupled with both heuristics and theory for
setting step size α(t), is the modern stochastic gradient descent (SGD) algorithm, a cornerstone
of modern neural network applications [13].

Another important notion found in the original paper of Rumelhart et al. [84] is that of
introducing a momentum term to the gradient-based update term. Writing the update as
h(t+1) = h(t) + ∆(t), their proposal is to update using

∆(t) = α(t)(−1)∇f(h(t)) + η∆(t−1)

where the term ∆(t) = h(t+1) − h(t) is the “velocity” of the parameter sequence, namely the
change in position per (t+1)−t = 1 unit of time (i.e., per iteration), and η ∈ (0, 1) is the “mass”
parameter controlling the impact of this modification. Fixing α(t) = α > 0 for simplicity, we
see that η is an exponential decay factor in the sense that

h(t+1) = h(t) − α
t∑

k=0
ηk∇f(h(t−k)).

If we set α = (1 − η)/(1 − ηt+1), the weights {ηk/α}tk=0 induce a convex combination of the
gradients observed at previous steps, with weights that decrease at a geometric rate over time.
Assuming an infinitely long past, α→ 1− η and we have the straightforward update

∆(t) = (1− η)(−1)∇f(h(t)) + η∆(t). (2.8)

This has the natural interpretation of being a simple exponential smoothing of the sequence
(∇f(h(t))), a well-established technique in the time-series analysis domain [1]. Further varia-
tions on this procedure exist in the literature [82, p. 153–158], including the case where the
smoothed update term is multiplied by a separate learning rate, i.e.,

h(t+1) = h(t) + α(t)∆(t)

where ∆(t) is as in (2.8). The practical purpose of this modification is to accelerate the
convergence of this routine to a desirable solution, with the aim that since ∆(t) should mitigate
the impact of an exceedingly steep slope, the learning rate α(t) can be left relatively large. For
reference, modern machine learning researchers have paid much attention to the accelerated
gradient method of Nesterov [73], drawing connections to the “classical” momentum method
given above [90].
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Moving forward chronologically, we set our sights on more modern proposals which have
their roots in the first-order GD variants discussed above. In contrast to GD with momentum,
where the update direction is a non-uniform average using geometrically decreasing weights,
Blatt et al. [10] propose the (incremental) aggregated gradient (IAG) update taking the form

h(t+1) = h(t) −
α

n

t∑
k=0
∇fI(k)(h(k))

for all t ≥ n − 1 (i.e., first n candidates are initialized), where the index I(k) is k modulo n,
cycling over {1, 2, . . . , n}. Here we take an average of past gradients, with weights that do not
decay with time. A well-known randomized version of this algorithm, called stochastic average
gradient (SAG), was proposed by Le Roux et al. [60]. In the SAG routine, IAG is generalized
and randomized, with updates of the form

h(t+1) = h(t) −
α(t)
T

t∑
k=0

yk(t), yi(t)
..=

∇fi(h(t)) I(t) = i

yi(t−1) I(t) 6= i

where I(t) ∈ {1, 2, . . . , T} is randomly generated at each step. Thus, gradients for each of the
sample functions f1, . . . , fn are computed one at a time, updated in random order determined
by the value of I(t). A closely related technique stochastic gradient averaging

h(t+1) = h(t) −
α(t)
t+ 1

t∑
k=0
∇fI(k)(h(k)),

where at each step one new gradient is computed, and all gradients over time (not just n) are
stored and averaged for this update term. This appears in the the dual averaging method of
Nesterov [72]. The randomization in these methods saves on per-iteration costs, and compared
to the case of using just one ∇fi to update at each step, the update variance is reduced via
the aggregation, at the cost of additional memory requirements.

Much attention has been paid to work by Johnson and Zhang [54], who devise an appealing
new strategy for reducing the update variance, with comparatively small memory requirements.
Their algorithm has a two-loop structure. On the outer loop, given a stored candidate h̃, they
compute the full gradient

g̃ ..= ∇f(h̃) = 1
n

n∑
i=1
∇fi(h̃).

This g̃ is stored for use in the inner loop, which runs as

ĝ(t)
..= ∇fI(t)(h(t))−

(
fI(t)(h̃)− g̃

)
h(t+1) = h(t) − α(t)ĝ(t).

After T iterations of the inner loop, the “snapshot” h̃ is updated to h(T ) or an average of
the h(1), . . . , h(T ) candidates computed in the inner loop, and the whole process repeats until
convergence. Here we see that the reference candidate h̃ is used to mitigate the deviation of
each ∇fi from ∇f , with the tacit assumption that the degree and direction of this deviation is
mostly invariant to the parameter being evaluated. As with all the other randomized objectives,
the aim is to decrease the variance as needed such that the step size α(t) can be left as large
as possible to maximize the efficiency of the updates.
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In the preceding paragraphs, ostensibly the learning rate α(t) played an auxiliary role, but
its practical importance should not be understated, and indeed even from the few examples
given above, it is clear that much previous research has been dedicated to optimizing the
tradeoff between stability and speed, controlled directly by the step size. Fixing α(t) = α over
all iterations is one option, but for non-convex objectives, convergence becomes a problem.
To ensure convergence, a fixed “schedule” with α(t) proportional to 1/t is a straightforward
strategy [13]. Since this can require a tremendous number of iterations due to the slow progress,
more sophisticated methods consider adaptive learning rates to make learning more efficient,
often with step size determined based on both recent performance and local topography of the
objective [5, 34, 86].

We have thus far implicitly assumed that all the iterative updates are closed with respect
to H, namely that if h(t) ∈ H, then the updated h(t+1) ∈ H will also be. Depending on the
definition of H, this certainly need not hold in general, as model constraints reflecting prior
information (or a lack of it) play a critical role in the learning process. Arguably the simplest
case is where we are constrained to a ball of radius r > 0 in norm ‖ · ‖, namely

min
h∈H

n∑
i=1

fi(h), s.t. ‖h‖ ≤ r.

Given the context of first-order steepest descent discussed above, perhaps the most direct
method of enforcing these constraints is via projection, namely updating as

h(t+1) = ΠH

(
h(t) − α(t)∇f(h(t))

)
where the projection operator ΠH is defined by ΠH(h) ..= arg ming∈H ‖g − h‖ for any subset
H ⊆ H, and in the r-ball constraint case, we set H = {h ∈ H : ‖h‖ ≤ r}. The complexity
of carrying out this computation depends on the norm and the underlying space. If H = Rd,
using the `2 norm simply requires multiplying the update h(t) + ∆(t) by the scalar r/‖h(t) +
∆(t)‖2, and this task appears naturally when applying support vector machines [87]. For high-
dimensional sparsity scenarios using the `1 norm, the procedure is slightly more involved, but
efficient algorithms have been proposed [35]. More generally, however, the projection operation
can be expensive, and an alternative first-order procedure for inner product spaces is the
conditional gradient technique of Frank and Wolfe, recently re-introduced into the machine
learning community in recent years [53]. For the more general constrained minimization task
of

min
h∈H

n∑
i=1

fi(h), s.t. h ∈ H

for some convex, compact H ⊂ H, the procedure runs as

h̃(t) = arg min
u∈H

〈u,∇f(h(t))〉

h(t+1) = (1− η(t))h(t) + η(t)h̃(t)

with η(t) ∈ (0, 1) a parameter that typically decreases as η(t) ∝ 1/t. The interpretation
is straightforward. First a linear approximation to f at h(t) is made, and this proxy is then
minimized within the feasible region. This new minimum h̃(t) is then used to specify a desirable
descent direction, and the updated parameter is taken on the line between h̃(t) and h(t). When
the constrained minimization of this linear function can be done more efficiently than projecting
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on to H, the approach becomes particularly appealing, and there are well-known learning tasks
fall into this scenario [48].

Closely related to the constrained setting is the situation where our objective f is a convex
composite function including an explicit regularization term, namely

f(h) = 1
n
fi(h) + Ω(h), h ∈ H

where the fi are convex, and smooth in the sense that ‖∇fi(g) − ∇fi(h)‖ ≤ Li‖g − h‖ for
all g, h ∈ H for some constant Li > 0, and with Ω being convex on H but potentially non-
differentiable. An important sub-class of such problems is ERM with a regularizer induced by
a norm. In the convex composite setting, proximal techniques from the convex optimization
literature have been thoroughly explored [75]. The core idea is quite straightforward. For
arbitrary convex function F : H → R, define the proximal operator on H by

proxF (h) ..= arg min
g∈H

(1
2‖g − h‖

2 + F (g)
)
.

Given the context of first-order steepest descent as above, proximal gradient descent (PGD)
takes the form of

h(t+1) = proxΩ

(
h(t) −

α(t)
n

n∑
i=1
∇fi(h(t))

)

which amounts to computing the usual finite-sum steepest descent update, first ignoring the
impact on Ω, and then minimizing a strongly convex proxy function (in the definition of prox) to
get a final updated parameter which is close to the “unregularized” version but is constrained in
the sense that Ω is not allowed to be too large. Another well-known alternative is the composite
gradient method of Nesterov [71], is closely related to both PGD and the projected gradient
descent given above [3]. When computing proxΩ(h) is not prohibitively expensive, using PGD
has obvious practical appeal, and has led to the proposal of numerous proximal variations
of all the procedures discussed above; all manner of combinations of acceleration, proximal
approximation, variance reduction, randomized sub-sampling, and dual representations has
lead to a massive body of work Murata and Suzuki [69, Sec. 1]. Finally, a particularly active
area during the first decade of the 21st century was development of efficient algorithms for the
LASSO model and its multitude of extensions [19, Ch. 2], chiefly in the statistics community.
Here Ω(h) = λ‖h‖1 on H = Rd, where typically n � d and a sparsity assumption is in
place. As the role played by λ is significant, “path-following” procedures which optimize f
for a whole array of λ choices [36]. For very high-dimensional (sparse) settings, a popular
class of path-following algorithms are those that operate in a coordinate-wise fashion. Writing
h = (h1, . . . , hd) ∈ Rd, the basic operation is simply

hj = arg min
u∈R

f(h1, . . . , hj−1, u, hj+1, . . . , hd)

where in the simplest case we simply cycle over j ∈ {1, 2, . . . , d}, although more sophisticated
strategies which skip variables deemed inactive early on have been proposed [63]. In the con-
text of first-order approximations using sub-gradients, coordinate descent routines effectively
implementing a by-coordinate steepest descent procedure have been thoroughly studied and
rich software libraries have been developed [42, 43].

To close this section, let us recapitulate the key points made here. We began by noting that
when we only consider feedback to the learner and do not specify a response mechanism, as in
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the ERM learning principle, we can rarely say anything definitive about learning performance,
and that analysis that accounts for the response mechanism, typified by the optimization
procedures introduced in the preceding paragraphs, is the only way to provide guarantees that
apply to the learning machines we actually implement. Tackling this problem theoretically is
challenging, though important breakthroughs have been made by Hardt et al. [47], Lin and
Rosasco [64], Chen et al. [27] recently, and the content of our chapter 4 represents a novel
contribution to this line of work.

2.6 Data distributions used in simulation
In this section, we introduce the families of distributions that we leveraged for use in our
numerical experiments, and explicitly highlight their properties for later classification, given
the context of the previous section. Denote random variable of interest in each case by X. For
ease of readability, we do not make reference to all sources, since most of the facts given below
are part of the existing literature, or follow directly from it. Some encylopedic sources we have
made substantial use of are Stuart and Ord [89], Rinne [81], and a useful online resource due
to K. Siegrist.6

Arcsine

Parameters are a ∈ R (shift), b > 0 (scale). Support is [a, a+ b]. Distribution function is

P{X ≤ x} = 2
π

sin−1
(√

x− a
b

)
. (2.9)

Distribution is symmetric, bounded, and thus sub-Gaussian.

Beta

Parameters are a and b (both shape). Support is [0, 1]. Distribution is defined as follows.
Recall the Beta function of Euler, defined by

B(a, b) ..=
∫ 1

0
ua−1(1− u)b−1 du = Γ(a)Γ(b)

Γ(a+ b) ,

where Γ denotes the usual gamma function

Γ(x) ..=
∫ ∞

0
ux−1e−u dx.

With this notation in hand, a density function is naturally constructed as

p(x) = 1
B(a, b)x

a−1(1− x)b−1. (2.10)

The distribution is then simply

P{X ≤ x} =
∫ x

0
p(u) du. (2.11)

If a = b then the distribution is symmetric about 1/2, otherwise it is asymmetric. Beta is
sub-Gaussian.

6The project is called “Random: Probability, Mathematical Statistics, Stochastic Processes”, and at the time
of publishing this thesis, is available online at http://www.math.uah.edu/stat/.
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Beta Prime

Parameters are a and b (both shape). Support is (0,∞). Distribution is defined by

P{X ≤ x} = P
{
Beta(a, b) ≤ x

1 + x

}
, (2.12)

where Beta(a, b) denotes a Beta random variable with shape parameters (a, b). Beta Prime is
asymmetric, and note that

EXm =
{
∞ m ≥ b∏m
k=1

a+k−1
b−k m < b.

This implies that the distribution is not sub-Gamma. To see this, look at Boucheron et al. [11,
Theorem 2.3], where their equations (2.7) and thus (2.6) fail to hold.

Chi-squared

Parameter is d > 0 (degress of freedom). Support is [0,∞). Density function is

p(x) = 1
2d/2Γ(d/2)

xd/2−1e−x/2 (2.13)

and thus the distribution is specified by

P{X ≤ x} =
∫ x

0
p(u) du. (2.14)

The distribution is asymmetric, and has integer moments of

EXm = 2m
(
d

2 +m− 1
)
· · ·
(
d

2 + 1
)(

d

2

)
.

Defining f(k) = (d/2 + k − 1), note that for fixed d > 0 we can always take a constant c > 0
such that ck > f(k) for any integer k. It thus follows

EXm ≤ (2c)mm!

for all integer m > 0. We thus have that the Chi-squared distribution is sub-Exponential.

Exponential

Parameter is r > 0 (rate). Support is [0,∞). Distribution function is

P{X ≤ x} = 1− e−rx. (2.15)

The distribution is asymmetric, and its moment distribution function is

E exp(tX) = 1
1− t/r , t ∈ (0, r).

While not sub-Gaussian, this is sub-Exponential, noting Proposition 4 and Boucheron et al.
[11, p. 50].
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Exponential-Logarithmic

Parameters a ∈ (0, 1) (shape) and b > 0 (scale). Support is [0,∞). Distribution function is

P{X ≤ x} = 1− log(1− (1− a) exp(−x/b))
a

. (2.16)

This distribution is asymmetric, and sub-Exponential. To see this, note that the moments for
integer m are

EXm = −bmm!Lim+1(1− a)
log(a) ,

where Li denotes the “polylogarithm” (often attributed to A. Jonquière), defined

Lim(u) ..=
∞∑
k=1

uk

km
, u ∈ (−1, 1).

For any m, when a → 0, Lim(1 − a) converges to a constant (Riemann’s zeta function), and
the denominator − log(a) heads to infinity. On the other hand, when a→ 1, it can be readily
shown that Lim(1− a)/ log(a)→ 1. From this, for any shape a ∈ (0, 1) we can find a constant
c > 0 such that

EXm ≤ cmm!,

implying the sub-Exponential property.

Fisher’s F

Parameters dU , dL > 0 (degrees of freedom, Upper and Lower). Support is [0,∞). This
distribution can be defined using the rather complicated density

p(x) =

dU
dL

1
B(dU/2, dL/2)

(
dU
dL
x
)dU/2−1

(
1 + dU

dL
x
)dU/2+dL/2

 , (2.17)

and distribution function

P{X ≤ x} =
∫ x

0
p(u) du. (2.18)

The distribution is asymmetric, and has moments

EXm =

∞ dL ≤ 2m(
dL
dU

)m Γ(dL/2−m)Γ(dU/2+m)
Γ(dL/2)Γ(dU/2) dL > 2m.

It follows that the distribution cannot be sub-Gamma.

Folded Normal

Parameters a ∈ R (Normal shift), b > 0 (Normal scale). Support is [0,∞). Distribution
function is

P{X ≤ x} = Θ
(
x− a
b

)
−Θ

(
−x− a

b

)
. (2.19)
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This distribution is asymmetric, and in the case of a = 0 (the “Half-Normal”), moments can
be easily computed as

EX2m = b2m(2m)!
2mm!

EX2m+1 =
√

2
π
b2m+12mm!

which implies sub-Gaussianity as follows. Noting that for even-valued m we have

m!
(m/2)! = m(m− 1) · · · (m/2 + 1) < mm/2,

and it follows immediately that for an appropriate constant c > 0,

EXm < cmmm/2

holds for each even m. For the odd m case, we have

EXm < cm
(
m− 1

2

)
! < cmmm/2

again for some appropriate constant c > 0. This gives us sub-Gaussianity by Definition 1(3).

Fréchet

Parameters a ∈ R (shift), b > 0 (scale), and k > 0 (shape). Support is (a,∞). Distribution is
defined by

P{X ≤ x} = exp
(
−
(
x− a
b

)−k)
. (2.20)

It is asymmetric, and as for any fixed k > 0, high-order moments are infinite, this distribution
is not sub-Gamma.

Gamma

Parameters b > 0 (scale) and k > 0 (shape). Support is (0,∞). Density is defined by

p(x) = 1
Γ(k)bk x

k−1 exp(−x/b) (2.21)

with the distribution function

P{X ≤ x} =
∫ x

0
p(u) du. (2.22)

The Gamma distribution is asymmetric, and has moments of the form

EXm = bm
Γ(m+ k)

Γ(k) ≤ cmm!

for an appropriate constant c > 0, and is thus sub-Exponential. This is just as seen in the
section on Chi-squared, which is a special case of the Gamma.
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Gaussian mixture

A k-component Gaussian mixture takes the form

X = I{i = 1}N(a1, b1) + · · ·+ I{i = k}N(ak, bk)

where i is a Categorical random variable with probabilities pj ..= P{i = j} ∈ (0, 1), j ∈ [k],
and N(a, b) denotes a Normal random variable with mean a and standard deviation b > 0.
Thus the k-component mixture has 3k parameters in total. The distribution function takes
the form

P{X ≤ x} = p1Φ1(x) + · · ·+ pkΦk(x)

where Φj(x) ..= P{N(aj , bj) ≤ x}. The support is R. One would intuitively expect that
this distribution is sub-Gaussian. Indeed this is the case. We have the following series of
inequalities,

E |X|m =
∫
|X|m dµ

≤ 2m−1
∫

(I{i = 1}|N(a1, b1)|m + · · ·+ I{i = k}|N(ak, bk)|m) dµi dµN

= 2m−1
∫

(p1|N(a1, b1)|m + · · ·+ I{i = k}|N(ak, bk)|m) dµN

≤ 2m−1
(
p1c

m
1 m

m/2 + · · ·+ pkc
m
k m

m/2
)

≤ mm/2cm

where c > 0 is an appropriate constant, and µi denotes the distribution of i conditioned on the
Normals, and µN denotes the distribution of the Normals. Using Definition 1(3), the Gaussian
mixture is sub-Gaussian.

Gompertz

Parameters a > 0 (shape) and b > 0 (scale), and support [0,∞). The distribution function
takes the form

P{X ≤ x} = 1− exp (−a (exp(x/b)− 1)) .

With the observation that exp(u)− 1 ≥ u2 for all u ≥ 0, the tails can be bounded as

P{X > x} = exp (−a (exp(x/b)− 1)) ≤ exp
(
−ax

2

b2

)

which implies sub-Gaussianity by Definition 1(2), super-exponential tail decay.

Gumbel

With parameters a ∈ R (shift) and b > 0 (scale), support of (−∞,∞), the Gumbel distribution,
also known as the maximal type-1 extreme value distribution, takes the form

P{X ≤ x} = exp
(
− exp

(
−x− a

b

))
.
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First, observe that the left tail is sub-Gaussian, in the following sense. Letting a = 0 for
simplicity, note that for x ≥ 0, we have

P{−X > x} = exp
(
− exp

(
x

b

))
≤ exp

(
−x

2

b2

)

which is the super-exponential tail decay of Definition 1(2). On the other hand, from Boucheron
and Thomas [12] and [11, p. 51], we have that the right tail is effectively sub-Gamma. To see
this, for the special case of a = 0, b = 1, one can show that

log E exp(t(X −EX)) ≤ var(X) t2

2(1− t) , t ≥ 0

which is used as a standard definition of the one-tailed sub-Gamma property (see Proposition
4). Since sub-Gaussianity on the left tail implies the sub-Gamma property, the distribution as
a whole can be considered sub-Gamma.

Hyperbolic secant

With parameters a ∈ R (shift) and b > 0 (scale), on support (−∞,∞), the Hyperbolic secant
distribution is determined by

P{X ≤ x} = 2
π

atan
(

exp
(
π
x− a

2b

))
.

The density function is symmetric, and all moments clearly exist as the moment generating
function takes the form

E exp(tX) = sec(t), t ∈ (−π/2, π/2).

The function is not quite sub-Gaussian by direct inspection, but we can readily prove that it
is sub-Gamma, in that

log E exp(tX) ≤ t2

(1− ct) , 0 < t <
1
c

for an appropriate c > 0. To show this, first note that

sec′′(t) =
(tan(t)

cos(t)

)′
= sec3(t)(1 + sin2(t))

and is thus sec′′(0) = 1. On the other hand,

(exp(t2))′′ = 4t2 exp(t2) + 2 exp(t2) ≥ 2, t ≥ 0.

Since at t = 0, we have both (exp(t2))′ = 0 = sec′(t) and exp(t2) = 1 = sec(t), we thus
conclude by continuity that for an appropriate k > 0,

sec(t) ≤ exp(t2), 0 ≤ t < k.

It thus follows immediately that

log E exp(tX) = log sec(t) ≤ t2 ≤ t2

(1− ct)

for all t ∈ (0, 1/c), where c = 1/k. As a note on the nomenclature, the name of the distribution
comes from the fact that the characteristic function is the hyperbolic secant function.

38



Irwin-Hall

The k-component Irwin-Hall distribution is defined by the random variable

X = U1[0, 1] + · · ·+ Uk[0, 1]

where the Ui[0, 1], i ∈ [k], denote independent Uniform random variables on the unit interval.
The support is thus [0, k], and k is the only parameter. As it is bounded, this distribution is
sub-Gaussian. The density function takes the form

p(x) = 1
2(k − 1)!

k∑
j=1

(−1)j
(
k

j

)
sign(x− j)(x− j)k−1

is symmetric for all k ≥ 1, and for k > 1 the mean/mode are unique, and take the value
EX = k/2.

Laplace

With parameters a ∈ R (shift) and b > 0 (scale), the Laplace distribution has the probability
density

p(x) = 1
2b exp

( |x− a|
b

)
with distribution function

P{X ≤ x} =


1
2 exp

(
|x−a|
b

)
, x ≤ a

1− 1
2 exp

(
−x−a

b

)
, x > a

over support (−∞,∞). The Laplace distribution is symmetric, and a canonical example of a
distribution with tails that are exponential, but not super-exponential as in the Gaussian case.
Note first that all the moments are finite and bounded as

E(X − a)k =
{

0, k odd
bkk!, k even

.

This means for a = 0, we have EXk ≤ k!/(1/b)k which by Boucheron et al. [11, p. 50] implies
that the distribution is sub-Exponential.

Log-Logistic

With parameters a > 0 (shape) and b > 0 (scale), the log-Logistic distribution is specified by

P{X ≤ x} = 1
1 + (b/x)a

with support (0,∞). This distribution is bounded below on the left side, and for all m ≥ a,
the moments are EXm =∞. Thus the distribution cannot even be sub-Gamma.
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Log-Normal

The log-Normal distribution is defined by x = exp(N(a, b)), where N(a, b) is a Normal random
variable with mean a ∈ R and standard deviation b > 0. As the name implies, “the log is
Normal,” which means the the distribution function is

P{X ≤ x} = Φ
( log(x)− a

b

)
with support of (0,∞), where Φ is the distribution function of the standard Normal N(0, 1).
The log-Normal distribution is typically perceived as a “heavy-tailed” distribution, which is
natural considering the fact that it is the exponential of an unbounded sub-Gaussian distribu-
tion. That said, as

EXm = exp
(
am+ 1

2(bm)2
)

for all m ∈ N, we have that all moments are defined and indeed finite. The distribution
is asymmetric, and is not sub-Exponential. To see this simply requires some algebra. For
simplicity, consider the special case of a = 0, b =

√
2. We want to show

EXm = em
2
>

2m+1

am
m!

for any pre-fixed a > 0. To do this, note that for any constant c > 0, using the obvious
inequality m! ≤ mm, it follows that

c(m!)1/m ≤ cm < em

for large enough m > 0. Taking powers of m, we have

cmm! ≤ em2 = EXm.

For any arbitrary value of a > 0 then, if we set c = 4/a, this implies cm ≥ 2m+1/am for all
m > 0, and thus connecting the inequalities, implies

2m+1

am
m! ≤ cmm! ≤ EXm,

which is the desired result. In this sense, the log-Normal is a rather interesting sort of hybrid
distribution, since all moments are finite, but it is not sub-Exponential.

Logistic

Defined in terms of the well-known logistic function, with parameters a ∈ R (shift) and b > 0
(scale), the distribution function takes the form

P{X ≤ x} = 1
1 + exp(−(x− a)/b)

over support (−∞,∞). The distribution is symmetric and unbounded, and when a = 0, its
moments take the form

EXm =
{

0, m odd
(2m − 2)(πb)m|Bm|, m even
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where the Bm denote Bernoulli numbers for even-valued integers m. From Alzer [4], there
exists l > 0 such that

|Bm| ≤
2m!

(2π)m(1− 2l−m)

holds for all even m. This implies the sub-Exponential property, and suggests that the distri-
bution is, as visual inspection suggests, similar to the Gaussian distribution but has slightly
heavier tails.

Maxwell

The standardized Maxwell distribution can be considered the Euclidean norm of a vector
in three-dimensional space, where the elements are independent standard Normal random
variables. That is, writing ni = Ni(0, 1), i = 1, 2, 3, representing three independent standard
Normal random variables, the standardized Maxwell random variable takes the form

U ..=
√
n2

1 + n2
2 + n2

3.

The generalized version introduces a scaling parameter b > 0, and is defined by X ..= bU . The
distribution function takes the form

P{X ≤ x} = P{U ≤ x/b}

where the standardized distribution function is

P{U ≤ u} = 2Φ(u)−
√

2
π
u exp(−u2/2)− 1

over support [0,∞). Intuitively, this is a quantity we would expect to be sub-Gaussian, and
this is indeed the case. To see this, note that for arbitrary integer m > 0, the moments take
the form

EXm = bm

√
2m+2

π
Γ
(
m+ 3

2

)
.

Dealing with the Gamma function factor first, recalling for integer a we have Γ(a + 1) = a!,
we can easily bound this for all integer m > 0 by

Γ
(
m+ 3

2

)
≤ (d(m+ 3)/2e − 1)!

≤ m× · · · ×m, with (m+ 3)/2 multiplicands
= m3/2mm/2

≤ cm1 mm/2

for large enough constant c1 > 0. Similarly, one can take a c2 > 0 large enough that

bm

√
2m+2

π
≤ cm2

for all m. Setting c = c1c2, we have

EXm ≤ cmmm/2

which implies sub-Gaussianity by Definition 1(3).
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Pareto

The Pareto distribution is the canonical “polynomial-tailed” distribution, and with parameters
a > 0 (shape) and b > 0 (scale), takes the form

P{X ≤ x} = 1−
(
b

x

)a
with support of [b,∞). The distribution is bounded below, asymmetric, and just looking at
the tails, one can observe that they decay exponentially slower than sub-Gaussian tails. The
higher-order moments are infinite, with

EXm =
{
∞, m ≥ a
bm a

a−m , m < a

implying that the Pareto distribution cannot be sub-Gaussian.

Rayleigh

Analogous to the Maxwell distribution, the Rayleigh distribution corresponds to the norm of
a vector of independent standard Gaussian components, written ni = Ni(0, 1), i = 1, 2, taking
the form

U =
√
n2

1 + n2
2.

The generalized Rayleigh has a scale parameter b > 0, and is definedX ..= bU . The distribution
function is

P{X ≤ x} = 1− exp
(
− x2

2b2

)

over support [0,∞). The distribution is bounded below, and asymmetric. As the moments
about zero take the form EXm = bm2m/2Γ(1 +m/2), it follows that

EX2m = (2b2)mm!

for all integer m > 0, thereby implying that Rayleigh is sub-Gaussian by Definition 1(3).

Semi-circle

Named for the shape of the graph of its density function, the semi-circle distribution is sym-
metric and has two parameters, c ∈ R and r > 0, which respectively correspond to the centre
and radius of the circle concerned. The distribution function takes the form

P{X ≤ x} = 1
2 + x− c

πr2

√
r2 − (x− c)2

with support of [c− r, c+ r]. Since this distribution has bounded support, it is sub-Gaussian.
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Student’s t

Another canonical example of a distribution whose tails decay much slower than a Gaussian,
the so-called “t distribution” of Student is specified by integer parameter k > 0 (degrees of
freedom), and density function

p(x) = Γ((k + 1)/2)√
πkΓ(k/2)

(
1 + x2

k

)−(k+1)/2

over support (−∞,∞). The distribution is symmetric and unbounded. For the mth moment
about zero, if m ≥ k, then EXm is either infinite (when m is even), or it is undefined (when
m is odd), and thus Student’s t distribution cannot be sub-Gaussian.

Triangle

Analogous to the semi-circle distribution, the Triangle distribution is named for its triangle-
shaped density function. It is bounded and thus sub-Gaussian, and depending on parameter
settings can be either symmetric or asymmetric. The distribution function is elementary but
somewhat convoluted, though we reproduce it here for reference. We have three parameters:
vertex v ∈ [0, 1], shift a ∈ R, and scale b > 0. The distribution function is defined as follows.
For the limit cases, we have

P{X ≤ x} =
{

1− 1
b2 (a+ b− x)2 v = 0

1
b2 (x− a)2 v = 1

and for the case of 0 < v < 1, we have

P{X ≤ x} =
{

1− 1
b2 (a+ b− x)2 x ∈ [a, a+ vb]

1
b2 (x− a)2 x ∈ [a+ vb, a+ b]

and clearly the support is [a, a + vb]. Shifting the vertex v along the unit interval moves the
location of the “vertex” (i.e., the mode) of the density function between a and a+ b, with the
symmetric case being where v = 1/2.

U-Power

This bounded distribution has a bowl-shaped density function, and is specified by parameters
k ∈ N (shape), a ∈ R (shift), and b > 0 (scale), taking the form

P{X ≤ x} = 1
2

(
1 +

(
x− a
b

)2k+1
)

over support [a− b, a+ b]. The distribution is symmetric and thus sub-Gaussian.

Weibull

With parameters a > 0 (shape) and b > 0 (scale), the Weibull distribution is defined by

P{X ≤ x} = 1− exp
(
−
(
x

b

)a)
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with support [0,∞). Weibull moments take the form

EXm = bmΓ(1 +m/a)

and thus are finite for all integer m > 0. The shape parameter a dramatically impacts the tail
behaviour of this distribution. Note that for a ≥ 2, we have

EX2m = b2m(2m/a)! ≤ (b2)mm!

and thus is clearly sub-Gaussian by Definition 1(3). For the case of a ≥ 1, from Definition 3
we clearly have that the distribution is sub-Exponential. The tails grow heavier and heavier
as a < 1 approaches zero. It is easy to check that a < 2 implies that the Weibull is not
sub-Gaussian. To see this, assuming 0 < a < 2, note that for any positive constants c1 and c2,
there is always a value x0 such that

x > x0 =⇒ c1 exp(−(x/c2)2) > exp(−(x/b)a) = P{X > x}

and thus the tails are not sub-Gaussian by Definition 1(2).
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Chapter 3

Learning using robust objectives

3.1 Introduction
Accurate prediction of response y ∈ R from novel pattern x ∈ Rd, based on an observed sample
sequence of pattern-response pairs (z1, . . . ,zn), z ..= (x, y), is one of the most fundamental
of statistical estimation tasks. Under particular assumptions such as bounded losses or sub-
Gaussian residuals, a rich theory has developed in recent decades [32, 6, 2, 7, 44, 8], with
variants of empirical risk minimization (ERM) routines playing a central role. The principle
underlying such procedures is the use of the sample mean to approximate the risk (expected
loss), which in turn functions as a location parameter of the unknown loss distribution. When
the loss is concentrated around this value, this approximation is accurate, and ERM procedures
perform well with appealing optimality properties [43].

Unfortunately, these assumptions are stringent, and in general, without a priori evidence
of the contrary, our data cannot reasonably be expected to satisfy them. The fundamental
problem manifests itself clearly in the simple setting of heavy-tailed real observations, in which
the sub-optimality of the empirical mean is well-known [14]. A simple solution when using ERM
is to leverage slower-growing loss functions (e.g., `1 instead of `2), but making this decision
is inherently ad hoc and requires substantial prior information. Another option is model
regularization [47, 8, 26], potentially combined with quantile regression [33, 46], though both
methods introduce new parameters and we are faced with a difficult model selection problem
[15], whose optimal solution is in practice often very sensitive to the empirical distribution. Put
simply, in a non-parametric setting, one incurs a major risk of bias in the form of minimizing an
impractical location parameter (e.g., the median under asymmetric losses), in order to ensure
estimates are stable.

Considering these issues, it would be desirable to design an objective function which
achieves the desired stability, but pays a smaller price in terms of bias, and therefore has
minimal a priori requirements (Fig. 3.1). It is the objective of this chapter to derive a regres-
sion algorithm which utilizes such a mechanism at tolerable computational cost. In section
3.2 we review the technical literature, giving our contributions against this backdrop. Section
3.3 introduces the core routine and important ideas underlying its construction in an intu-
itive manner, with formal justification and convergence analysis following in 3.4. Numerical
performance tests are given in section 3.5, with key take-aways summarized in section 4.5.
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Figure 3.1: A one-dimension regression example (see Appendix 3.6). When additive noise is heavy-tailed (the
right half), estimating E(y;x) via least squares is difficult under small samples. On the other hand, estimating
med(y;x) often introduces an unacceptable bias. In this chapter we investigate “robust objectives” which act
as all-purpose parameters to be estimated under diverse settings.

3.2 Background and contributions
In this section we review the technical literature which is closely related to our work, and then
within this context establish the main contributions made in this chapter.

Related work Many tasks involve minimizing a function, say L(·), as a function of candidate
h ∈ H, which depends on the underlying distribution and is thus unknown. One line of work
explicitly looks at refining the approximate objective function used. A key theme is to down-
weight errant observations automatically, and to construct a new estimate L̂(h) ≈ L(h) of the
risk, re-coding the algorithm as ĥ ..= arg minh∈H L̂(h). The now-classic work of Rousseeuw
and Yohai [40] on S-estimators highlights important concepts in our work. They use the M-
estimator of scale of the residual h(x)− y, written ŝ(h), directly as objective function, setting
L̂(h) = ŝ(h). The idea is appealing and has (classical) robustness properties, though serious
issues of stability and computational cost have been raised [31], and indeed even the fast
modern routines are designed only for the rather special parametric setting where errant data
can be discarded [42], which severely limits utility in our setting.

Re-weighting of extreme observations using M-estimators of the mean has been recently
revisited by Catoni [13], later revised and published as Catoni [14]. A multi-dimensional
extension of this theory appears in Audibert and Catoni [4], where they propose a function of
the form

d(h, h′) ..= λ(‖h‖2 − ‖h′‖2) + EψC
(
l(h; z)− l(h′; z)

)
,

52



where λ > 0 is a user-set parameter, l(h; z) is a penalty assigned to h on the event of observing
z, and ψC is a sigmoidal truncation function

ψC(u) ..=


− log(1− u+ u2/2), 0 ≤ u ≤ 1
log(2), u ≥ 1
−ψ(−u), u ≤ 0.

The refined loss is then L̂(h) = sup{d(h, h′) : h′ ∈ H}, and is effectively a robust proxy of the
“ridge risk” E l(h; z)+λ‖h‖2. Many novel results are given, but it is not established whether an
algorithm realizing the desired performance actually exists or not. More precisely, they show
that one requires L̂(ĥ) = infh∈H L̂(h) + O(d/n) where d is model dimension. Unfortunately,
construction of such a ĥ is left as future work, though a sophisticated iterative attempt is
proposed by the authors. Another natural extension is given by Brownlees et al. [12], who
directly apply these foundational results by using the Catoni class of M-estimators of risk,
generalizing ψC above, to build L̂, which amounts to minimizing the root of the sample mean
of {ψC(l(h; zi) − θ)}ni=1 in θ. Novel bounds on excess risk are given, but this depends on an
“optimal” scaling procedure which requires knowledge of the true variance. In addition, as
this “robust loss” is defined implicitly, actually minimizing it is a non-trivial and expensive
computational task.

Another interesting line of recent work revisits the merits of aggregation, a well-known
notion from, for example, the bagging and boosting literature [10, 22]. The idea is to construct k
candidates ĥ(1), . . . , ĥ(k), typically by partitioning the dataD = ∪kj=1Dj , and to aggregate them
such that estimates derived from errant or uncharacteristic sub-samples are downweighted. One
lucid example is the work of Minsker [36], who uses

ĥ = arg min
h∈H

k∑
i=1
‖h− ĥ(i)‖, ĥ(i)

..= arg min
h∈H

1
|Di|

∑
j∈Di

l(h; zj)

namely the geometric median of the candidates (in norm ‖ · ‖), where each ĥ(i) is the ERM
estimate on the ith partition. The key notion here is that as long as most of the candidates
are not overly poor, the aggregrate will be strong. This same notion was explored by Lerasle
and Oliveira [34], where the “not overly poor” notion was made concrete with margin type
conditions (section 5.1, page 14). As well, the work of Hsu and Sabato [27, 28] generalizes the
formulation of these two works, casting the aggregation task as a “robust distance approxima-
tion,” which is highly intuitive, is suggestive of algorithm design techniques, and yields tools
applicable to many other problems [17, 35]. One major issue is that when sample sizes are
small, very few partitions can be made. The key concern then is that when samples are large
enough that k can be taken large, a less sophisticated method might already perform equally
well on the full sample.

Our contributions In this work, the key idea is to use an approximate minimization tech-
nique to efficiently make use of powerful but computationally unwieldy robust losses. We
propose a novel routine which is rooted in theoretical principles, but makes enough conces-
sions to be useful in practice. Our main contributions can be summarized as follows:

• A fast minimizer of robust losses for general regression tasks, which is easily implemented,
inexpensive, and requires no knowledge of higher-order moments of the data.

• Analysis of conditions for existence and convergence of the core routine.
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• Comprehensive empirical performance testing, illustrating dominant robustness in both
simulated settings and on real-world benchmark data sets.

Taken together, the theoretical and empirical insights suggest that we have a routine which
behaves as we would expect statistically, converges quickly in practice, and which achieves
a superior balance between cost and performance in the non-parametric setting standard to
machine learning problems.

3.3 Fast minimization of robust objectives
In this section, we introduce the learning task of interest and give an intuitive derivation of
our proposed algorithm. More formal analysis of the convergence properties of this procedure,
from both statistical and computational viewpoints, is carried out in section 3.4.

3.3.1 A general learning task
Given “candidate” h ∈ H, member of a class of vectors or functions, and particular in-
put/output instance z = (x, y), we assign a penalty, l(h; z) ≥ 0 via loss function l—smaller
is better—and evaluate the quality of h. Assuredly, doing this for a single observation z is
insufficient; as this is a learning task, given incomplete prior information, we must choose h
such that when we draw z randomly from an unknown probability distribution µ, representing
unknown physical or social processes in our system of interest, the (random) quantity l(h; z) is
small. If the expected value Lµ(h) ..= Eµ l(h; z), also called the risk, is small, then we expect
the penalty l(h; z) to be small on average. As such, a natural strategy is to choose a “best”
candidate by the following program:

minLµ(h), s.t. h ∈ H.

At this point, we run into a problem: µ is unknown, and thus Lµ is unknown. All we have
access to is n independent draws of z, namely the sample z1, . . . ,zn, and from this we must
approximate the true objective, and then minimize this approximation as a proxy of Lµ.
Example 5 (Typical formulations). The pattern recognition problem has generic input space
X and discrete labels, namely x ∈ X and y ∈ {1, . . . , C}. Here the “zero-one” loss l(h; z) =
I{h(x) 6= y} makes for a natural penalty to classifier h. More generally, the regression problem
task has response y ∈ R, and the classic metric for evaluating the quality of predictor h : X → R
is the quadratic loss l(h; z) = (y − h(x))2.

3.3.2 Issues to overcome
Intuitively, if our approximation, say L̂, of Lµ, is not very accurate, then any minima of L̂ will
likely be useless. Thus the first item to deal with is making sure the approximation L̂ ≈ Lµ is
sharp. Perhaps the most typical approach is to set L̂(h) to the sample mean, ∑n

i=1 l(h; zi)/n.
In this case, the estimate is “unbiased” as E L̂(h) = Lµ(h), but unfortunately the variance can
be highly undesirable [13, 14]. There is no need to constrain ourselves to unbiased estimators,
as Figure 3.2(a) illustrates; paying a small cost in term of bias (allowing E L̂(h) 6= Lµ(h)) for
much stabler output (large reduction in variance of L̂) is an appealing route.

One strategy to do this is as follows. Consider a “re-weighted” average approximation,
namely L̂(h;α) given as

L̂(h;α) =
n∑
i=1

αil(h; zi)

54



*
(a) (b)

Figure 3.2: (a) Schematic of two estimators of Lµ (their density in n-sample space), one unbiased but with high
variance (turquoise), another biased but concentrated (purple). (b) Points along the black line are observations
x1, . . . , xn ∈ R sampled from a heavy-tailed distribution (n = 7). The three vertical rules are: true mean
(thick grey), sample mean (turquoise), and the M-estimate of location (purple). Vertical ranges associated
with each point denote weight sizes, computed by 1/n (pale turquoise) and ρ′(xi − γ)/(xi − γ) (pale purple).
Down-weighting errant observations has a clear positive impact on estimates.

where α = (α1, . . . , αn) with 0 ≤ αi ≤ 1 are our weights. In the sample mean case, αi = 1/n
for all observation points. However, since n is finite, one often runs into “errant” points which,
when given the same amount of weight as all other points, do not accurately reflect the true
underlying distribution. Thus, down-weighting these errant points by assigning them small
weights (αi near 0), and subsequently treating all the “typical” points as equals, should in
principle allow us to overcome this issue. A mechanism which effectively does this for us is to
use the M-estimate of location [29]; that is, to set

L̂(h; ρ, s) = arg min
θ

n∑
i=1

ρ

(
l(h; zi)− θ

s

)
(3.1)

for each h ∈ H. Here ρ is a convex function which is effectively quadratic around the origin,
but grows much more slowly (Figure 3.3), and s > 0 is a scaling parameter. The re-weighting
is implicit here, enacted via a “soft” truncation of errant points. Data points which are fairly
close to the bulk of the sample are taken as-is (in the region where ρ is quadratic), while the
impact of outlying points is attenuated (in the region where ρ is linear). We remark that such
an estimator is assuredly biased in the sense that E L̂(h; ρ, s) 6= Lµ(h) in most cases, but the
desired impact is readily confirmed via simple tests, as in Figure 3.2(b).

Following such a strategy, the algorithm to run is

ĥ = arg min
h∈H

L̂(h; ρ, s).

Given knowledge of the true variance, the utility of this approach from a statistical perspective
has been elegantly analyzed by Brownlees et al. [12]. That we do not know the true variance
is one issue; another critical issue is that this new “robust loss” L̂(h; ρ, s) is defined implicitly,
and is thus computationally quite uncongenial. Derivatives are not available in closed form,
and every call to L̂(h; ρ, s) requires an iterative sub-routine, a major potential roadblock. In
what follows, we propose a principled, practical solution to these problems.
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Figure 3.3: From left to right, each figure houses the graphs of ρ(u), ρ′(u), and ρ(u)/u respectively. Colours
denote different choices for ρ, namely the `2 loss (turquoise), the `1 loss (green), and the Gudermannian function
(purple) from Example 7.

3.3.3 Deriving a fast minimizer
Here we pursue an efficient routine for approximately minimizing the robust loss L̂(h; ρ, s), in
the context of the general regression task (z = (x, y), with y ∈ R). A useful heuristic strategy
follows from noting that given any candidate h ∈ H, and computing a central tendency metric
γ (e.g., the median or average of {l(h; zi)}ni=1), since l ≥ 0, in order for L̂(h; ρ, s) to be small,
it is necessary that the deviations |l(h; zi) − γ| be small for most i. To see this, note that if
most deviations are say larger than A, then there must be some points where L̂ is far to the
right, that is i where

L̂(h; ρ, s)− l(h; zi) > A, which implies L̂(h; ρ, s) > A.

With this condition in hand, note that the quantity

q(h) ..=
n∑
i=1

ρ

(
l(h; zi)− γ

s

)

in fact directly measures these deviations. If most points are far away from γ, then q(h) will
be large; if most points are close to γ, then q(h) will be small.

Our new task then, is to minimize q(·) in h. Fortunately, this can be done efficiently, using
the re-weighting idea (see L̂(h;u)) discussed earlier. More precisely, let us set the weights to

αi(h) = ρ′
((l(h;zi)− γ)

s

)
/

(
l(h;zi)− γ

s

)
For proper ρ (see section 3.4), we can ensure 0 ≤ αi ≤ 1, and intuitively αi will be very small
when l(h;zi) is inordinately far away from γ. Solving a re-weighted least squares problem,
namely

min
n∑
i=1

αi(yi − g(xi))2, s.t. g ∈ H

can typically be done very quickly, as Example 6 illustrates. What does this re-weighted least
squares solution have to do with minimizing q(·)? Fortunately, fixing any h, if we set update
F as

F (h) ..= arg min
g∈H

n∑
i=1

αi(h)(yi − g(xi))2
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then using classic results from the robust statistics literature [30, Ch. 7], we have that

q(F (h)) ≤ q(h)

meaning the update from h to F (h) is guaranteed to move us “in the right direction.” That
said, as our motivating condition was necessary, but not sufficient, the simplest approach is to
check if this update actually monotonically improves the objective L̂(·; ρ, s), namely:

Update to F (h) if and only if L̂(F (h)) < L̂(h).

The merits that this technique offers are clear: if we limit the number of iterations to T , then
over t = 1, 2, . . . , T we need only compute L̂ once per iteration, meaning that the sub-routine
for acquiring L̂ will only be called upon at most T times total. Initializing some h(0) and
following the procedure just given, with re-centred (via the term γ) and re-scaled (via the
factor s) observations at each step, we get Algorithm 1 below.

Algorithm 1 Fast robust loss minimizer (fRLM)
for t ∈ [T ] do

ui ←
(
l(h(t−1); zi)− γ(D(t−1))

)
/s(D(t−1))

αi ← ρ′(ui)/ui . Downweight errant points; i ∈ [n].

h̃← arg min
h∈H

n∑
i=1

αi(yi − h(xi))2 . Fast approximate update.

D(t) ← {l(h̃; zi)}ni=1 . Compute loss for new candidate.

L̂(t) ← arg min
θ∈R

n∑
i=1

ρ

(
l(h̃; zi)− θ
s(D(t))

)
. Evaluate using robust loss.

if L̂(t) < L̂(t−1) then . Check for monotonic improvement.
h(t) ← h̃

else
return h(t−1)

end if
end for

Example 6 (Update under linear model). In the special case of a linear model where h(x) =
wTx for some vectorw ∈ Rd, then inverting a d×dmatrix and then some matrix multiplication
is all that is required. Writing X = [x1, . . . ,xn]T for the n×d design matrix, y = (y1, . . . , yn),
h(X) = (h(x1), . . . , h(xn)), and U = diag(u1, . . . , un), then the solution is (XTUX)†XTU(y−
h(X)), where (·)† denotes the Moore-Penrose inverse. �

Example 7 (Choice of ρ function). Extreme examples of ρ, the convex function used in (4.4),
are the `2 and `1 losses, namely ρ(u) = u2 and ρ(u) = |u|. These result in estimates of the
sample mean and median respectively. A more balanced choice might be ρ(u) = log cosh(u).
We can also define ρ in terms of its derivative; for example, one useful choice is

ρ(u) =
∫ u

0
ψ(x) dx, ψ(u) = 2 atan (exp (u))− π/2,

where ψ here is the function of Gudermann [1, Ch. 4], though there are numerous alternatives
(see Appendix A.1). �
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Figure 3.4: In the left plot, we have the graphs of three χ choices with common value χ(0). From light to dark
brown, χ is respectively the absolute Geman-type, quadratic Geman-type, and Tukey function (see Example
8). In the right plot, we have randomly generated data D, and solved (4.6) using the three χ functions in the
left plot (colours correspond), with γ(D) as the sample mean (turquoise rule). Coloured horizontal rules in ±
direction from γ(D) represent s(D) for each choice of χ.

3.3.4 Actual computation of key quantities
Here we discuss precisely how we carry out the various sub-routines required in Algorithm
1, namely the tasks of initialization, re-centring, re-scaling, and finding robust loss estimates.
Initialization is the first and the easiest: h(0) is initialized to the `2 empirical risk minimizer.
When this value is optimal, it should be difficult to improve L̂, and thus the algorithm should
finish quickly; when it is highly sub-optimal, this should result in a large value for L̂(h(0); ρ, s),
upon which subsequent steps of the algorithm seek to improve.

The “pivot” term γ is computed given a set of losses D = {l(h; zi)}ni=1 evaluated at some
h; in particular, the losses are computed for h(t−1) at iteration t of Algorithm 1. This γ(D) is
used to centre the data; terms l(h; zi) which are inordinately far away from γ(D), either above
or below, are treated as errant. One natural choice that requires sorting the data is the median
D. A rough but fast choice is the arithmetic mean of D, which we have used throughout our
tests.

As with γ, we carry out the re-scaling of our observations using D, denoting a set of
losses. While there exist theoretically optimal scaling strategies [14], these require knowledge
of varµ l(h; z) and setting of an additional confidence parameter. Since estimating second-order
moments in order to estimate first-order moments is highly inefficient, we take the natural
approach of using γ to centre the data, seeking a measure of how dispersed these losses are
about this pivot, which will be our scale estimate. More concretely, for D induced by h ∈ H,
we seek any s satisfying

n∑
i=1

χ

(
l(h; zi)− γ(D)

s

)
= 0, s > 0. (3.2)

as our choice for s(D). Here χ is an even function, assumed to satisfy χ(0) < 0 and χ(u) > 0
as u → ±∞, ensuring that the scale is neither too big nor too small when compared with
the deviations; see Figure 3.4 and Hampel et al. [25] for both theory and applications of this
technique.

Our definition of s(D) in (4.6) is implicit, as indeed is the robust loss computation L̂ in
(4.4). We thus require iterative procedures to acquire sufficiently good approximations to these
desired quantities. Updates taking a fixed-point form are typical for this sort of exercise, and
we use the following two routines. Starting with the location estimate for h and given s > 0,
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we run

θ̂(k+1) ← θ̂(k) + s

n

n∑
i=1

ρ′
(
l(h; zi)− θ̂(k)

s

)
(3.3)

noting that this has the desired fixed point, namely a stationary point of the function in (4.4)
to be minimized in θ. For the scale updates, centred by γ ∈ R, we run

s(k+1) ← s(k)

(
1− 1

χ(0)n

n∑
i=1

χ

(
l(h; zi)− γ

s(k)

))1/2

(3.4)

which has a fixed point at the desired root sought in (4.6).
Intuitively, for h and D, we expect that as k →∞

θ̂(k) → L̂(h; ρ, s) and s(k) → s(D),

and indeed such properties can be both formally and empirically established (see section 3.4.4).
Example 8 (Role of scale, choice of χ). Take the simple choice of χ(u) ..= u2 − β for any
fixed β > 0. If we have data set D with |D| = n, and let γ(D) be the sample mean, then it
immediately follows from (4.6) that s(D)2 = (n − 1) sd(D)/(nβ), namely a re-scaled sample
standard deviation. Countless alternatives exist; one simple and useful choice is the Geman
type function

χ(u) = |u|p

1 + |u|p − β, p ∈ {1, 2}

which originate in widely-cited image processing literature [24, 23] and also appear in machine
learning work [50]. More classical choices include the bi-weight antiderivative of Tukey (see
Appendix A.1), which has seen much use in robust statistics over the past half-century [25,
Section 2.6]. �

3.3.5 Summary of fRLM algorithm
To recapitulate, we have put forward a procedure for minimizing the robust loss L̂(h; ρ, s) in
h, by using a fast re-weighted least squares technique that is guaranteed to improve a quantity
(q above) very closely related to the actual unwieldy objective L̂. Using the iterative nature
of this routine, we can perform the re-scaling and location estimates sequentially (rather than
simultaneously), making for simple and fast updates. All together, this allows us to leverage the
ability of ρ to truncate errant observations, while utilizing the fast approximate minimization
program to alleviate issues with L̂ being implicit, all without using moment oracles for scaling
as in the analysis of Catoni [14] and Brownlees et al. [12], which are notable merits of our
proposed approach.

This algorithm makes use of statistical quantities that are defined as the minimizer of
a class of estimators. As discussed in our literature review of section 3.2, the properties of
learning algorithms that leverage these statistics have been analyzed by Brownlees et al. [12].
This does not, however, capture the properties of the resulting estimator itself: how does it
behave as a function of sample size? Does it converge to a readily-interpreted parameter? We
address these questions in the following section.
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3.4 Theoretical analysis
In this section, we formulate the problem of interest with a bit more rigour in 3.4.1, give some
fundamental existence results in 3.4.2, and then show that robust loss minimizers converges
in a manner analogous to classical M-estimators in 3.4.3, using computationally convergent
sub-routines examined in 3.4.4. All proofs are relegated to section 3.8.

3.4.1 Preliminaries
Data model The learning problem, as discussed in the previous sections, is that of predicting
response y ∈ R, given an instance x ∈ Rd, based on a sequence of pairs (x1, y1), . . . , (xn, yn)
generated independently from an unknown distribution, z ..= (x, y) ∼ µ. Denote by H a
collection of candidates h : X → R from which the learning algorithm will select an appropriate
member. The task is of an “agnostic” nature, in that we do not know or assume knowledge
of the relation between y and x, all we want is to find an h ∈ H which reliably approximates
h(x) ≈ y, without concern of identifying any true underlying model.

Evaluation mechanism To facilitate both formal analysis and the learning decision process,
a loss function l(h; z) ≥ 0 will be utilized, which evaluates candidate h upon the random draw
of z, with smaller values being interpreted as more desirable, or a “better fit.” We shall
frequently use ĥ to denote the output of an algorithm, typically as ĥn(x) ..= ĥ(x; z1, . . . ,zn),
a process which takes the n-sized data sample and returns a function ĥn ∈ H to be used for
prediction. A standard metric of generalization ability is the risk

Lµ(h) ..= Eµ l(h; z) =
∫
l(h; ·) dµ.

One considers the performance of an algorithm ĥn to be good if the risk is sufficiently small,
up to computational cost. Since µ is unknown, this can either be estimated formally, using
inequalities that provide high-probability confidence intervals for this error over the random
draw of the sample, or via controlled simulations where the performance metrics are computed
over many independent trials.
Example 9. As a concrete case, the classical linear regression model with quadratic risk has
z = (x, y) with h(x) = wTx for some w ∈ Rd, and l(h; z) = (y − wTx)2. When the model
is correctly specified, i.e., when we have y = wT

0 + ε for an unknown w0 ∈ Rd, and noise
Eµ ε = 0, the loss takes on a convenient form, making additional results easy to obtain, though
our general approach does not require such assumptions.

Additional notation We shall denote by µ a probability on Rd+1, equipped with some
appropriate σ-field, say the Borel sets Bd+1. Let µn denote the empirical measure supported
on the sample, namely µn(B) ..= n−1∑n

i=1 I{zi ∈ B}, B ∈ Bd+1. Expectation of vectors is
naturally element-wise, namely Eµ(x, y) = (Eµ x1, . . . ,Eµ xd,Eµ y), and we shall use varµ z to
denote the (d+ 1)× (d+ 1) covariance matrix of z, and so forth. P will be used to denote a
generic probability measure, though in almost all cases it will be over the n-sized data sample,
and thus correspond to the product measure µn. Let [k] ..= {1, . . . , k} for integer k.

3.4.2 Properties of the robust objective
Generalization performance is completely captured by the distribution of l(h; z). Unfortu-
nately, inferring this distribution from a finite sample is exceedingly difficult, and so we es-
timate parameters of this distribution to gain insight into performance; the expected value

60



Lµ(h) is a case in point. In pursuit of a routine for estimating the risk, with low variance
and controllable risk, the basic strategy ideas in section 3.3 seem intuitively promising. Here
we show that following the strategy outlined, one can create a procedure which is valid in a
statistical sense, under very weak assumptions.

Our starting point is to introduce new parameters, distinct from the risk, which have
controllable bias, and can be approximated more reliably than the expected value, using a
finite sample. The following definition specifies such a parameter class.

Definition 10 (General target parameters). For ρ : R→ [0,∞) and scale s > 0, define

θ∗(h) ∈ arg min
θ∈R

Eµ ρ

(
l(h; z)− θ

s

)
(3.5)

where s may depend on h. We require that ρ be symmetric about 0, with ρ(0) = 0, and further
that

ρ(u) = O(u), as u→ ±∞
ρ(u)
u2 → K <∞, as u→ 0.

For clean notation, normalize such that K = 1/2. If ρ is differentiable, denote ψ ..= ρ′. If
twice-differentiable and ψ′ > 0, say that ρ specifies a robust objective, namely θ∗(·).

Remark 11. The logic here is as follows: the mean Lµ(h) can be considered a good target if the
data are approximately symmetric, or if (regardless of symmetry) they are tightly concentrated
about the mean. In both of these cases, we have θ∗(h) ≈ Lµ(h). To see this, If l(h; z) is
symmetric about some l0, that is to say for all ε > 0,

P{l(h; z)− l0 ≥ ε} = P{−(l(h; z)− l0) ≥ ε},

it is sufficient to minimize ∫
{l(h;z)≥l0}

ρ

(
l(h; z)− θ

s

)
dµ

on [l0,∞), where θ = l0 = Lµ(h) is a solution. Thus in the symmetric case, we end up with
θ∗(h) = Lµ(h), irrespective of scaling and truncating mechanisms. Here “tightly concentrated”
is relative, in the sense that

|l(h; z)− Lµ(h)| < s

with high probability. Since we have required ρ(u) ∼ u2, tight concentration would imply
θ∗(h) ≈ Lµ(h). As for the linear growth requirement, ρ(u) = o(u2) as u → ±∞ is necessary
if we are to reduce dependence on the tails, but making the much stronger requirement of
ρ(u) = O(u) is very useful as it implies that ψ is bounded. Note that of the functions ρ given
in Example 7, the `p choices do not meet our criteria, but the Gudermannian and log cosh
choices both satisfy all conditions. �

This θ∗(·), a new parameter of the loss l(·; z), can be readily interpreted as an alternative
performance metric to the risk Lµ(·). Denote optimal performance in this metric on H by

θ∗(H) ..= inf
h∈H

θ∗(h) ≥ 0 (3.6)
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and the empirical estimate of these parameters by

θ̂(h) ∈ arg min
θ∈R

1
n

n∑
i=1

ρ

(
l(h; zi)− θ

s

)
. (3.7)

Note that we call this the empirical estimate as we have simply replaced µ by µn in the
definition of θ∗ to derive θ̂. The procedure of Algorithm 1 outputs an approximation of

ĥn ∈ arg min
h∈H

θ̂(h) (3.8)

which is none other than a minimizer of the robust loss θ̂, an empirical estimate of the alter-
native performance metric θ∗.

First, we show that these new “objectives” are indeed well-defined objective functions,
which is important since our algorithm seeks to minimize them.

Lemma 12 (Existence of parameter and its estimate). Let ρ specify a robust objective θ∗(h).
This function is well-defined in h, in that for each h ∈ H, the value of θ∗(h) is uniquely
determined, characterized by

Eµ ψ

(
l(h; z)− θ∗(h)

s

)
= 0. (3.9)

Analogously, the empirical estimate is uniquely defined, and almost surely given by
n∑
i=1

ψ

(
l(h; zi)− θ̂(h)

s

)
= 0. (3.10)

With a well-defined objective function, next we consider the existence of the minimizer of
this new objective. While measurability is by no means our chief concern here, for completeness
we include a technical result useful for proving the existence of a valid minimizer of the proxy
objective.

Lemma 13. Let ρ be even and continuously differentiable with ρ′ non-decreasing on R. Let
sh : Rd+1 → R+ be measurable for all h ∈ H. For any n ∈ N, denote sequence space Z ..=
(Rd+1)n. Then defining

θ̂(h) ..= inf
(

arg min
u∈R

n∑
i=1

ρ

(
l(h; zi)− u
sh(zi)

))
, (3.11)

we have that θ̂ is measurable as a function on H×Z.

This gives us a formal definition of θ̂(h) which has the desired property specified by (3.7).
It simply remains to show that we can always minimize this objective in h.

Theorem 14 (Existence of minimizer). Let h 7→ sh be continuous and sh > 0, h ∈ H. Using
θ̂ from Lemma 13, define

θ̂(H) ..= inf
h∈H

θ̂(h). (3.12)

For any ρ specifying a robust objective (Defn. 10), and any sample z1, . . . ,zn,

∃ ĥ ∈ H, θ̂(ĥ) = θ̂(H),

and there exists a random variable ĥn such that P{θ̂(ĥn) = θ̂(H)} = 1.
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There are many potential methods for carrying out the scaling in practice. Here we verify
that the simple method proposed in section 3.3 does not disrupt the assurances above. Let us
start with a definition.

Definition 15 (General-purpose scale). For random variable x ∼ ν, introduce even function
χ : R→ R, non-decreasing on R+, which satisfies

0 < lim
|u|→∞

χ(u), χ(0) < 0.

Let β ≥ 0 be the value such that χ(0) = −β. With the help of χ and pivot term γν which may
depend on ν, define

σν ..= inf
{
σ > 0 : Eχ

(
x− γν
σ

)
= 0

}
. (3.13)

With this definition in place, substituting ν = µn yields an empirical scale estimate

sh = inf
{
σ > 0 :

n∑
i=1

χ

(
l(h; zi)− γµn(h)

σ

)
= 0

}
(3.14)

with ∑n
i=1 l(h; zi)/n a natural pivot value, though we certainly have more freedom in con-

structing γµn(h), as the following result shows.

Proposition 16 (Validity of scaling mechanism). If γµn(h) <∞ almost surely for all h ∈ H,
and χ (Defn. 15) is increasing on R+, then the minimizer ĥn (3.8) as constructed in Theorem
14 satisfies

θ̂(ĥn) = θ̂(H)

almost surely when scaling with s = sh as in (3.14).

Note that γµn(h) here corresponds directly to γ(D) in Algorithm 1, whereD = {l(h; zi)}ni=1.
One intuitively expects that taking a large s > 0 would imply θ∗ ≈ Eµ x. The following basic
fact makes this precise.

Theorem 17 (Scaling parameter and bias). Let ρ specify a robust target, normalized such that
ρ′(0) = 1. Let x be an arbitrary random variable with distribution ν. Assuming Eν |x|3 < ∞
and ‖ρ(4)‖∞ <∞, it follows that

|θ∗ −Eν x| ≤ cs−2, s > 0

for constant c > 0.

Example 18 (Higher-order moments of ρ). It is admittedly tedious to check the condition of
‖ρ(4)‖∞, but for typical examples we can easily see that the property is satisfied. For example
for the Gudermannian function, we have

ρ(4)(u) = η′(u)− 12 exp(3u)
(1 + exp(2u))2 + 16 exp(5u)

(1 + exp(2u))3 .

Since η is Lipschitz and the latter two terms vanish in the limit, |ρ(4)|∞ < ∞ is immediate.
An upper bound of 1 is sufficient.
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Similarly for the logistic function,

ρ(4)(u) = 6c1c
3
2 exp(−3c2u)

(1 + exp(−c2u))4 −
4c1c

3
2 exp(−2c2u)

(1 + exp(−c2u))3 − c2η
′(u),

and for log cosh,

ρ(4)(u) = (−2)
(
(η(u))2 + tanh(u)η′(u)

)
,

for which bounds follow again via bounds on η and its derivative. �

With basic facts in hand pertaining to the estimator used to construct a robust objective, we
proceed to look at some convergence properties of the estimators and computational procedures
concerned in the sections 3.4.3–3.4.4.

3.4.3 Statistical convergence
For some context, we start with a well-known consistency property of M-estimators, adapted
to our setting.
Theorem 19 (Pointwise consistency under known scale). For any ρ specifying a robust objec-
tive, fixing any h ∈ H and s > 0, then

P
{

lim
n→∞

θ̂(h) = θ∗(h)
}

= 1.

Note that this strong consistency result is “pointwise” in the sense that the event of prob-
ability 1 is dependent on the choice of h ∈ H. Were we to take a different h′ ∈ H, while
the probability would still be one, the events certainly need not coincide. This becomes trou-
blesome since ĥn will in all likelihood take a different h value for distinct samples z1, . . . ,zn.
Intuitively, we do expect that as n grows, the estimate ĥn should get progressively better and
in the limit we should have

θ̂(ĥn)→ θ∗(H), n→∞.

Here we show that such a property does indeed hold, focusing on the case where H is a linear
model, though the assumptions on x and y are still completely general (agnostic). More
precisely, we assume that H is defined by a collection of real-valued functions ϕ1, . . . , ϕk on
Rd, and a bounded parameter space W ⊂ Rk. The model is thus of the form

H =

h =
k∑
j=1

wjϕj : (w1, . . . , wk) ∈ W

 . (3.15)

Under this model, the class of parameters given in Defn. 10 and the corresponding estima-
tors (3.7) are such that convenient uniform convergence results are available using standard
combinatorial arguments. First a general lemma of a technical nature.
Lemma 20 (Uniform strong convergence). Let H satisfy (3.15), and ρ specify a robust objective
(Defn. 10). Denoting Λ ..= H× R× R+, λ ..= (h, u, s) ∈ Λ, and

ψ(z;λ) ..= ψ

(
l(h; z)− u

s

)
,

we have that

lim
n→∞

sup
λ∈Λ

∣∣∣∣∣ 1n
n∑
i=1

ψ(zi;λ)−Eµ ψ(z;λ)
∣∣∣∣∣ = 0

almost surely.
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A corollary of this general result will be particularly useful.

Corollary 21. The robust objective minimizer ĥn defined in (3.8), equipped with any scaling
mechanism s depending on ĥn (and thus potentially random), satisfies

lim
n→∞

Eµ ψ

(
l(ĥn; z)− θ̂(ĥn)

s

)
= 0

almost surely.

These facts are sufficient for showing that a very natural analogue of the strong pointwise
consistency of M-estimators (Theorem 19) holds in a uniform fashion for our robust objective
minimizer ĥn.

Theorem 22 (Consistency analogue). Let ĥn be determined by (3.8) equipped with any fixed
scaling mechanism sh : Rd+1 → R+. Let ρ specify a robust objective, with ρ′ concave on R+.
If there exists constants s1, s2, ε such that

0 < s1 ≤ sh(z) ≤ s2 <∞
0 < ε ≤ inf

h∈H
Eµ ψ

′(l(h; z)/s1)

then it follows that

P
{

lim
n→∞

θ̂(ĥn) = θ∗(H)
}

= 1.

That is, θ̂(ĥn) is a strongly consistent estimator of the optimal value θ∗(H).

With these rather natural statistical properties understood, we shift our focus to the be-
haviour of the computational routines used.

3.4.4 Computational convergence
As regards computational convergence, since Algorithm 1 is meant to be a fast approximation
to a minimizer of L̂(·) on H, we should not expect the ĥ produced after t → ∞ iterations
to actually converge to the true ĥn in (3.8). What we should expect, however, is that the
sub-routines (3.3) and (3.4), used to compute L̂(t) and s(D(t)) for each t, should converge to
the true values specified by (4.4) and (4.6) respectively. We show that this convergence holds.

Proposition 23 (Convergence of updates). Let ρ specify a robust objective (Defn. 10). Fixing
s > 0, and any initial value θ̂(0), the iterative update (θ̂(k)) specified in (3.3) satisfies

lim
k→∞

θ̂(k) = θ̂(h),

recalling that θ̂(h) = L̂(h; ρ, s) from section 3.3. Similarly, for χ as specified by Defn. 15,
under some additional regularity conditions on χ, (see proof) we have that for any initialization
s(0) > 0, the update (s(k)) in (3.4) satisfies

n∑
i=1

χ

 l(h; zi)− γ
lim
k→∞

s(k)

 = 0.

Using ρ as in Defn. 10 and χ as in Prop. 16, note that the above convergence guarantees
will not be ambiguous, since the location and scale estimates are uniquely determined.
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3.5 Empirical analysis
We derived a new algorithm in 3.3, formally investigated statistical properties in 3.4.2–3.4.3,
and computational properties in 3.4.4. Here we evaluate the actual performance of this algo-
rithm against standard competitive algorithms in a variety of situations, including both tightly
controlled numerical simulations and real-world benchmark data sets. We seek to answer the
following questions.

1. How does the robustification sub-routine depend on the task?

2. How well does fRLM (Algorithm 1) generalize off-sample?

3. Fixing ρ, can we still succeed under both light- and heavy-tailed noise?

4. How does performance depend on n and d?

We look directly at the first question in sub-section 3.5.1. For the remaining three questions,
our experimental setup and competing algorithms used are described in 3.5.2–3.5.3, and results
follow in 3.5.4–3.5.5 where we give concrete responses to these inquiries. All experimental
parameters, as well as source code for all methods used, are included in the supplementary
source code.1

3.5.1 Efficiency of iterative sub-routines
As a complement to the formal convergence properties just examined, we conduct numerical
tests in which we run (3.3) and (3.4) until they respectively compute the true θ̂ and s values up
to a specified degree of precision. It is of practical importance to answer the following questions:
Do the iterative routines reliably converge to the correct optimal value? How many iterations
does this take on average? How does this depend on factors such as the data distribution,
sample size, and our choice of ρ and χ?

To investigate these points, we carry out the following procedure. Generating x1, . . . , xn ∈
R from some distribution, denote

f1(u) ..= 1
n

n∑
i=1

ρ

(
xi − u
s

)
, f2(u) ..= 1

n

n∑
i=1

χ

(
xi − γ
u

)
.

The location task is to minimize f1 on R, and the scale task is to seek a root of f2 on R+. Two
choices of distribution were used. First is x ∼ N(0, 3), i.e., centred Normal random variables
with variance of nine. The second is asymmetric and heavy-tailed, generated as exp(x) where
x is again N(0, 3); this is the log-Normal distribution. For f1, the s value is a parameter; this
is set to the standard deviation of the xi. For f2, the γ value is a parameter; this is set to
the sample mean of the xi. As for ρ and χ, we examine five choices of each,2 all defined in
Appendix A.1. Initial values are θ̂(0) = n−1∑n

i=1 xi and s(0) = sd{xi}ni=1.
In Figure 3.5, we show the average iterations to converge, as a function of sample size n,

computed as follows. The terminating iteration for these tasks, at accuracy level ε, is defined

Kε(θ̂) ..= min{k : |θ̂(k) − θ̂OR| ≤ ε}, Kε(s) = min{k : |s(k) − sOR| ≤ ε}
1All materials available at https://github.com/feedbackward/rtm_code.
2For location, we have used the simple algebraic function (denoted here by al), the Gudermannian function

(gud), the modified Huber function (hmd), the original Huber function (hub), and the log hyperbolic cosine
function (lch). For scale, we have used the absolute and quadratic settings of the Geman function (respectively
ga and gq), the two transformed robust loss derivatives (quadratic: pq; log-quadratic: lq), and the bi-weight
antiderivative of Tukey (tuk). We use ρ set to lch to specify χ in the case of pq and lq.
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Figure 3.5: Iterations required to reach ε-accurate estimates given n sample, under Normal/log-Normal ob-
servations. Top row: average Kε(θ̂). Bottom row: average Kε(s). See Appendix A.1 for ρ and χ definitions.

where θ̂OR and sOR are “oracle” values of the minimum/root of f1/f2. These are obtained
via uniroot in R [39], an implementation of Brent’s univariate root finder [11], recalling the ρ
minimization can be cast as a root-finding problem (Lemma 12). These Kε values are thus the
number of iterations required; 100 independent trials are carried out, and the arithmetic mean
of these values is taken. Updates θ̂(k) and s(k) are precisely as in (3.3) and (3.4). Accuracy
level is ε = 10−4 for all trials.

We have convergence at a high level of precision, requiring very few iterations, and this
holds uniformly across the conditions observed. As such, the convergence of the routines is just
as expected (Proposition 23), and the speed is encouraging. In general, convergence tends to
speed up for larger n, and the relative difference in speed is very minor across distinct ρ choices,
though slightly more pronounced in the case of χ, but even the slowest choice seems tolerable.
Finally, location estimation is slightly slower in the Normal case than in the log-Normal case,
while the opposite holds for scale estimation.
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3.5.2 Experimental setup
Every experimental condition and trial has us generating n training observations, of the form
yi = wT

0 x+εi, i ∈ [n]. Distinct experimental conditions are specified by the setting of (n, d) and
µ. Inputs x are assumed to follow a d-dimensional isotropic Gaussian distribution, and thus to
determine µ is to specify the distribution of noise ε. In particular, we look at several families
of distributions, and within each family look at 15 distinct noise levels. Each noise level is
simply a particular parameter setting, designed such that sdµ(ε) monotonically increases over
the range 0.3–20.0, approximately linearly over the levels (cf. Appendix A.5).

To ensure a wide range of signal/noise ratios is spanned, for each trial, w0 ∈ Rd is randomly
generated as follows. Defining the sequence wk ..= π/4 + (−1)k−1(k − 1)π/8, k = 1, 2, . . . and
uniformly sampling i1, . . . , id ∈ [d0] with d0 = 500, we set w0 = (wi1 , . . . , wid). As such, given
our control of noise standard deviation, and noting that the signal to noise ratio in this setting
is computed as SNµ = ‖w0‖22/ varµ(ε), the ratio ranges between 0.2 ≤ SNµ ≤ 1460.6.

Regarding the noise distribution families, the tests described above were run for 27 different
families, but as space is limited, here we provide results for four representative families: log-
Normal (denoted lnorm in figures), Normal (norm), Pareto (pareto), and Weibull (weibull).
Even with just these four, we capture both symmetric and asymmetric families, sub-Gaussian
families, as well as heavy-tailed families both with and without finite higher-order moments.

Our chief performance indicator is prediction error, computed as follows. For each con-
dition and each trial, an independent test set of m observations is generated identically to
the corresponding n-sized training set. All competing methods use common sample sets for
training and are evaluated on the same test data, for all conditions/trials. For each method,
in the kth trial, some estimate ŵ is determined. To approximate the `2-risk, compute root
mean squared error ek(ŵ) ..= (m−1∑m

i=1(ŵTxk,i − yk,i)2)1/2, and output prediction error as
the average of normalized errors ek(ŵ(k)) − ek(w0(k)) taken over all trials. While n and d
values vary, in all experiments the number of trials is fixed at 250, and test size m = 1000.

3.5.3 Competing methods
Benchmark routines used in these experiments are as follows. Ordinary least squares, denoted
ols and least absolute deviations, denoted lad, represent classic methods. In addition, we look
at three very modern alternatives, namely three routines directly from the references papers
of Minsker [36] (geomed), Brownlees et al. [12] (bjl), and Hsu and Sabato [28] (hs). The hs
routine used here is a faithful R translation of the MATLAB code published by the authors.
Our implementation of geomed uses the geometric median algorithm of [49, Eqn. 2.6], and all
partitioning conditions as given in the original paper are satisfied. Regarding bjl, scaling is
done using a sample-based estimate of the true variance bound used in their analysis, with
optimization carried out using the Nelder-Mead gradient-free method implemented in the R
function optim.

For our fRLM (Algorithm 1, section 3.3), we tried several different choices of ρ and χ, includ-
ing those in Appendix A.1, and overall trends were almost identical. Thus as a representative,
we use the Gudermannian for ρ and χ(u) = sign(|u|−1) as a particularly simple and illustrative
example implementation. Estimates of location and scale were carried out by (3.3) and (3.4).

3.5.4 Test results: simulation
Here we assemble the results of distinct experiments which highlight different facets of the
statistical procedures being evaluated.
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Figure 3.6: Prediction error as a function of noise level, with n = 15 and d = 5. Moving from left to right on
the horizontal axis corresponds to larger noise magnitude.

Performance over noise levels Fig. 3.6 shows how predictive performance deteriorates as
the noise magnitude (described in 3.5.2) grows larger, under fixed (n, d) setting. We see that
our method closely follow the performance of ols only when it is strong (the Normal case), but
critically remain stable under settings in which ols deteriorates rapidly (all other cases). Our
method, much like the other robust methods, incurs a bias by designing objective functions
using estimators for target parameters other than the true risk. It is clear, however, that the
bias in the case of our method is orders of magnitude smaller than that of competing routines,
suggesting that the proposed procedure for minimizing a robust loss is effective. Note that
bjl needs an off-the-shelf non-linear optimizer and directly requires variance estimates; our
routine circumvents these steps, and is seen to be better for it.

Impact of sample size (n grows, d fixed) In Fig. 3.7 we look at prediction error, at the
middle noise level, for different settings of n under a fixed d. We have fixed d = 5 and the
sample size ranges between 12–122. Once again we see that in the Normal case where ols is
optimal, our routine closely mimics its behaviour and converge in the same way. On the other
hand for the heavier-tailed settings, we find that the performance is once against extremely
strong, with far better performance under small sample sizes, and a uniformly dominant rate
of convergence as n gets large.

Impact of dimension The role played by model dimension is also of interest, and can
highlight weaknesses in optimization routines that do not appear when only a few parameters
are being determined. Such issues are captured most effectively by keeping the d/n ratio fixed
and increasing the model dimension.

Prediction error results are given in Fig. 3.8, at the middle noise level, for different model
dimensions ranging over 5 ≤ d ≤ 140. The sample size is determined such that d/n = 1/6
holds; this is a rather generous size, and thus where we observe deterioration in performance,
we infer a lack of utility in more complex models, even when a sample of sufficient size is
available. We see clearly that most procedures considered see a performance drop as model
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Figure 3.7: Prediction error as a function of sample size n, with d = 5, at noise level = 8.

dimension grows, whereas our routine performs exactly the same, regardless of dimension size.
This is a particularly appealing result illustrating the scalability of our fRLM in “bigger” tasks.

3.5.5 Test results: real-world data
We have seen extremely strong performance in the simulated situation; let us see how this
extends to a number of real-world domains. The algorithms run are precisely the same as in
the simulated cases, just the data is new. We have selected four data sets from a database of
benchmark data sets for testing regression algorithms.3 Our choices were such that the data
come from a wide class of domains. For reference, the response variable in bpres is blood
pressure, in psych is psychiatric assessment scores, in rent is cost to rent land, and in oct
is petrol octane rating. All the data sets used here are included with a description in the
online code repository referred at the start of this section. Depending on the data set, the
dimensionality and sample size of the data sets naturally differ. Our protocol for evaluation is
as follows. If the full data set is {zi}Ni=1, then we take n = d0.3Ne for training, and m = N −n
observations for testing. We carry out 100 trials, each time randomly choosing the train/test
indices, and averaging over these trials to get prediction error.

Results are given in Fig. 3.9. While the data sets come from wildly varying domains
(economics, manufacturing of petroleum products, human physiology and psychology), it is
apparent that the results here very closely parallel those of our simulations, which again are
the kind of performance that the theoretical exposition of sections 3.3–3.4 would have us
expect. Strong performance is achieved with no a priori information, and with no fine-tuning
whatsoever. Exactly the same routine is deployed in all problems. Of particular importance
here is that we are able to beat or match the bjl routine under all settings here as well; both
of these routines attempt to minimize similar robust losses (defined implicitly), however our
routine does it at a fraction of the cost, since we have no need to appeal to general-purpose
non-linear optimizers, a very promising result.

3Compiled online by J. Burkardt at http://people.sc.fsu.edu/~jburkardt/.
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Figure 3.8: Prediction error as a function of model dimension d with fixed ratio d/n = 1/6, at noise level = 8.

3.6 Implementation of one-dimensional example
To create Figure 3.1, a simple experiment was carried out, as described in the following para-
graphs.

Data generation On the left half, we have the well-behaved symmetric noise setting, while
the noise on the right-hand side is asymmetric and heavy-tailed. More precisely, for the left
side, we generated (x1, y1), . . . , (xn, yn) by x ∼ Unif[0, 0.5] and y = f(x) + ε, where the noise ε
is independent of x, and zero-mean Normal with variance E ε2 = 0.25. The functional relation
is f(x) = sin(2πx). To generate the right half, the same procedure was done, this time with
x ∼ U [0.5, 1], and noise ε being a Fréchet random variable with shift 0, scale 1, and shape
2.1, shifted such that E ε = 0. The noise magnitude on the right side is larger as well, with√

E ε2 ≈ 4.

Solid curves We illustrate the deterministic parameters of the conditional distribution of
response y as a function of input x using solid curves. The solid red curve is the graph of
E(y;x) = E ε + f(x) = f(x), taking x ∈ [0, 1]. Solid green denotes the graph of med(y;x) =
med ε + f(x). On the left side, med ε = 0, but on the right half this is not the case and the
two graphs diverge. Finally, solid blue denotes the ρ-induced M-estimate of the location of y,
conditioned on x. More precisely, the graph of ỹ(x) ..= arg minθ E ρ((f(x) + ε− θ)/s). Here we
used the Gudermannian for ρ, and set s = med |ε| independent of x.

Dashed curves Next we look at statistical estimates of the deterministic parameters just
mentioned, based on the sample. A simple fifth-degree polynomial model is assumed, taking
the form ĥ(x) = ∑5

k=1wkx
k. Running OLS to specify the weights results in the red dashed

curve (the graph of ĥ). Similarly, the green dashed line is the estimate due to running LAD.
Finally, the blue dashed line is the product of running fRLM (Algorithm 1) just as specified in
section 3.5.3. Each algorithm was run twice: once for the well-behaved data on the left domain,
and once for the uncongenial data on the right domain. Finally, we should remark that while
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Figure 3.9: Prediction error on four distinct real-world data sets.

OLS and LAD do indeed correspond to trying to learn E(y;x) and med(y;x) respectively, the
correspondence is not quite so clear for fRLM. Here the routine explicitly tries to minimize θ∗(h)
from Defn. 10, though the relation between h∗ satisfying θ∗(h∗) = θ∗(H) and the closeness of
h∗ ≈ ỹ remains a matter of both technical and conceptual interest.

3.7 Concluding remarks
In this work, we have introduced and explored a novel approach to the regression problem,
using robust loss estimates and an efficient routine for minimizing these estimates without
requiring prior knowledge of the underlying distribution. In addition to theoretical analysis
of the fundamental properties of the algorithm being used, we showed through comprehensive
empirical testing that the proposed technique indeed has extremely desirable robustness prop-
erties. In a wide variety of problem settings, our routine was shown to uniformly outperform
well-known competitors both classical and modern, with cost requirements that are tolerable,
suggesting a strong general approach for regression in the non-parametric setting.

Looking ahead, there are a number of interesting lines of work to be taken up. Extending
this work to unsupervised learning problems is an immediate goal. Beyond this, a more care-
ful look at the optimality of different algorithms from a cost/performance standpoint would
assuredly be of interest. When is it more profitable (under some metric) to use “balanced”
methods such as that of Minsker [36], Brownlees et al. [12], Hsu and Sabato [28] or ours, rather
than committing to one of two extremes, say OLS or LAD? The former perform very well,
but require extra computation. Characterizing such situations in terms of the underlying data
distribution is both technically and conceptually interesting. Clear tradeoffs between formal
assurances and extra computational cost could shed new light on precisely where traditional
ERM algorithms and close variants fail to be economical.

3.8 Proofs
Proof of Lemma 12. For notational simplicity, given any h ∈ H, write xi = l(h; zi), i ∈ [n].
Taking u ∈ [mini{xi},maxi{xi}], clearly the right-hand side of (3.7) is non-empty, i.e., an
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M-estimate exists. Since ρ is differentiable and strongly convex on R, the minimum is uniquely
determined, characterized by the Eµn ψ condition in the Lemma statement, noting ψ is mono-
tone increasing on its domain, we have that θ̂(h) is well-defined.

Regarding θ∗(h), writing x = l(h; z), since |ρ(u)| ≤ c|u| for some c > 0, integrability follows
by monotonicity of the Lebesgue integral, that is for any u ∈ R, we have by x ∈ L2(µ) that∫

ρ

(
x− u
s

)
dµ ≤

∫
c|x− u|

s
dµ <∞.

Since ρ′ = ψ is bounded, again for any u we have that

d

du
Eµ ρ

(
x− u
s

)
= −1

s
Eµ ψ

(
x− u
s

)
holds [3, Ch. 1.6]. Existence of the minimum, given as a root of the right-hand side of this
equation, is now immediate. Uniqueness follows from the strong convexity of ρ, noting for any
functions u and v of z,

Eµ ρ(αu(z) + (1− α)v(z)) < αEµ ρ(u(z)) + (1− α) Eµ ρ(v(z))

for any α ∈ (0, 1).

Proof of Lemma 13. Fix arbitrary values l1, . . . , ln ∈ R+ and s1, . . . , sn > 0. To compactly
denote these variables, write a = (l1, . . . , ln, s1, . . . , sn). Denote B0 ..= B(R2n) here, and define

F (u,a) ..=
n∑
i=1

ρ

(
li − u
si

)
, f(u,a) ..= d

dt
F (t,a)|t=u, u ∈ R.

Let û ..= inf arg minu F (u,a), a map from R2n to R. If ρ specifies a robust penalty, then
from Lemma 12 the minimizer is unique and thus the infimum is superfluous. More generally,
even when the minimizer is not unique, the infimum û will be a valid minimizer. To see this,
denoting ρ0 ..= minu F (u,a), say we have F (û,a) > ρ0. By continuity and monotonicity,
there exists u1 > û such that ρ0 < F (u1,a) < F (û,a), and thus u1 lower bounds the set
arg minu F (u,a), a contradiction of θ̂(h) being the greatest lower bound. Thus F (û,a) = ρ0.
It follows that û is also root of f(·,a).

For arbitrary α ∈ R, define events

Aα
..= {a ∈ R2n : û ≤ α}

A′ ..=
∞⋂
k=1

⋃
u∈Uα

{
a ∈ R2n : |f(u,a)| < 1

k

}
, Uα ..= {q ∈ Q : q ≤ α}.

Indexing over the rationals is to make the union countable. First note that as f(u, ·) is con-
tinuous, it is measurable for every u, and equivalently

{|f(u,a)| < 1/k} ∈ B0, ∀u ∈ R, k ∈ N.

As such every set indexed in A′ is measurable. As A′ is a countable intersection of a countable
union of measurable sets, A′ itself is measurable. First, say a ∈ A′. On this occasion, for
each integer k > 0, there exists a rational u ≤ α such that the objective f(·,a) falls within
± k−1 of zero. Now assume û(a) > α for this a. By definition f(û(a),a) = 0. As f depends
monotonically on u, and û is infimal, we have for some ε > 0 that

∃u1 ∈ (α, û(a)) ∩Q, f(u1,a) ≥ ε.
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Taking k ∈ N large enough (so that 1/k < ε), we can necessarily secure a rational q ≤ α such
that |f(q,a)| < ε. However as q < u1, this means that

f(q,a) ≥ f(u1,a) ≥ ε > 0,

which is a contradiction. Thus û(a) ≤ α. The a choice was arbitrary, so A′ ⊆ Aα.
The converse is even simpler. Let a ∈ Aα. We can always take a sequence (qm) of qm ∈ Q

where qm ↑ û(a). For any k ∈ N, there exists m0 <∞ where

m ≥ m0 =⇒ f(qm, w,z)− f(û(a),a) < 1/k

which in turn implies |f(qm,a)| < 1/k, that is a ∈ A′. We have Aα ⊆ A′ and thus Aα = A′,
concluding that Aα ∈ B0 for any choice of α, and any w ∈ W. Note Aα is just û−1(−∞, α], the
inverse image of this segment induced by û. Denoting these intervals as D = {(−∞, α] : α ∈ R},
the σ-field generated by this class is σ(D) = B(R), and the class D′ = {B ∈ B : û−1(B) ∈ B0}
is a σ-field [9, Ch. 2.7]. We proved above that D ⊆ D′, and by minimality of the generated
field, D′ = B1. We conclude û−1(B) ∈ B0 for all B ∈ B(R). With this, and the measurability
of l(·; ·) and sh, the Lemma follows; the specific requirement is B(H) × Bd+1 measurability
of l and either B(H) × Bnd+1 or B(H) × Bd+1 measurability of sh, depending on whether it is
determined by µn or individual instances.

Proof of Theorem 14. Use θ̂(h) as in the statement of Lemma 13. Fix an arbitrary set of
instances Z ..= (z1, . . . ,zn) ∈ Z, and

θ̂(H) ..= inf
{
θ̂(h) : h ∈ H

}
f(u, h;Z) ..=

n∑
i=1

ψ

(
l(h; zi)− u
sh(zi)

)
, h ∈ H, u ∈ R.

Construct a sequence (θm) of θm ∈ {θ̂(h) : h ∈ H} such that θm ↓ θ̂(H). To each θm, there
is an accompanying hm ∈ H such that f(θm, hm,Z) = 0. As supm ‖hm‖ < ∞, there exists
a convergent subsequence (hk). Denote ĥ ..= lim

k→∞
hk. Subsequence θk converges to θ̂(H).

Continuity of L and s implies f(·, ·,Z) is continuous, and thus

f(θ̂(H), ĥ,Z) = lim
k→∞

f(θk, hk,Z) = 0,

which by uniqueness of the root of f(·, ĥ,Z) (Lemma 12) implies that

∀Z, ∃ ĥ ∈ H, θ̂(ĥ) = θ̂(H). (3.16)

That is, for any set of observations Z, we can find such an ĥ minimizing the new objective
function.

From this point, measurability is a purely technical endeavour. Useful references are Dudley
[19, Ch. 5], Pollard [38, Appendix C], and Dellacherie and Meyer [16, Ch. 1–3]. We assume
H ia separable; the special case of H ⊂ Rd is an archetypal example. Index and assemble
all possible (random) values of our objective in Θ ..= {θ̂(h) : h ∈ H}, with z1, . . . ,zn left
free to vary randomly. As θ̂(h) has been shown to be H × Z-measurable (Lemma 13), under
an innocuous regularity condition, [38, Appendix C, 1(ii)], the class Θ is sufficiently regular,
called “permissible.” It is readily verified that θ̂(H) is B(Z)-measurable. Next, define the set

A3 ..= {(Z, h) : θ̂(h) = θ̂(H)}
= θ̃−1(−∞, 0] ∩ θ̃−1(−∞, 0)c
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where we have written θ̃(Z, h) ..= (θ̂(h) − θ̂(H)). We have already verified the measurability
of the two terms being subtracted, thus θ̃ is B(H)× B(Z) measurable. Looking at the second
equality, we have that A3 is an analytic subset of Z ×H. Taking the projection π of A3 onto
the observation space, namely

π(A3) ..= {Z : (Z, h) ∈ A3, h ∈ H},

and note that by our existence result (3.16), Pπ(A3) = 1. From Pollard [38, Appendix C(d)],
it follows that there exists a random variable ĥ(Z) such that (Z, ĥ(Z)) ∈ A3 for almost all
Z ∈ π(A3). Since the latter set has P-measure 1, we conclude that this ĥ realizes the properties
sought in the statement of Theorem 14, concluding the argument.

Proof of Proposition 16. Consider any sample z1, . . . ,zn. Write γ(h) = γµn(h) for simplicity.
Fix any ε > 0. By continuity of L, exists δ > 0 where ‖h− h′‖ ≤ δ implies

max
{
|l(h; zi)− γ(h)− l(h′; zi) + γ(h′)|

}n
i=1 ≤ ε.

Denote s ..= sh and s′ ..= sh′ . Now assume |s− s′| > ε, say for concreteness that s+ ε < s̃ < s′.
This implies that for any s̃ taken such that s+ ε < s̃ < s′, we have

l(h′; zi)− γ(h′)
s′

<
l(h′; zi)− γ(h′)

s̃
<
l(h; zi)− γ(h)

s
, i = 1, . . . , n

and by the weak monotonicity of χ, and the definitions of the two roots s and s′,

0 =
n∑
i=1

χ

(
l(h′; zi)− γ(h′)

s′

)
≤

n∑
i=1

χ

(
l(h′; zi)− γ(h′)

s̃

)

≤
n∑
i=1

χ

(
l(h; zi)− γ(h)

s

)
= 0,

and thus the middle sum is in fact zero. This implies

s̃ ∈
{
s > 0 :

n∑
i=1

χ((l(h′; zi)− γ(h′))/s) = 0
}
,

but since s̃ < s′, this is a contradiction of s′ as the infimum of this set. An identical argument
holds for the other case of s′ + ε < s, and so |s − s′| ≤ ε. We conclude for any ε > 0, there
exists δ > 0 such that ‖h− h′‖ ≤ δ implies |sh − sh′ | ≤ ε.

Proof of Theorem 17. The techniques are standard; see Fan et al. [20, 21] for example. First,
note that

|θ∗ −Eν x|2 = Eν((x− θ∗)2 − (x−Eν x)2).

Focusing on the right-hand side, let f(u) ..= u2 and fs(u) ..= 2s2ρs(u), where the rescaling
is purely for technical reasons, noting θ∗ = arg minu Eν fs(x − u) = arg minu Eν ρs(x − u).
The difference between f and fs should grow small as s → ∞. Write this difference as
ds(u) ..= f(u)− fs(u). With the optimality of θ∗, it follows that in our new notation

Eν(f(x− θ∗)− f(x−Eν x)) ≤ Eν(ds(x− θ∗)− ds(x−Eν x)). (3.17)
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Fixing arbitrary x for now, by a first-order exact Taylor expansion [41, Chapter 5], one has
that

ds(x− θ∗) = ds(x−Eν x) + d′s(x− θ̃)(Eν x− θ∗), θ̃ = tθ∗ + (1− t) Eν x (3.18)

for some t ∈ [0, 1]. This t, and thus the value of θ̃, may depend on x and thus in taking
expectations we will need some general results. Plugging (3.18) into (3.17), we see that

|θ∗ −Eν x|2 ≤ Eν d
′
s(x− θ̃)(Eν x− θ∗),

implying |θ∗ −Eν x| ≤ Eν d
′
s(x− θ̃).

To deal with this term, looking at higher order terms is fruitful due to the nice behaviour
of ρ and its derivatives. For clean notation, let g(u) ..= d′s(u). Applying the Taylor expansion
with integral remainder [5, Section 23], we have

g(b) = g(a) + g′(b− a) +
b∫
a

(u− b)2

2 g(3)(u) du.

Checking the terms, we have

g(u) = 2u− 2sψs(u)
g′(u) = 2− 2ηs(u)

g(3)(u) = − 2
s2 ρ

(4)
s (u)

and thus setting a = 0 in the above expansion, all terms but the right-most summand will
clear, leaving us with

d′s(x) = − 1
s2

x∫
0

(u− x)2ρ(4)
s (u) du

regardless of the value of x. Note that writing M ..= ‖ρ(4)‖∞, we have

|d′s(x)| ≤ M

s2

x∫
0

(u− x)2 du

= M

3s2 (x)3.

Setting this x value to our x− θ̃, it follows that for c = M/3 we have

d′s(x− θ̃) ≤ cs−2|x− θ̃|3

where x is arbitrarily selected. Note that

Eν |x− θ̃|3 ≤ Eν |x− θ∗|3 ∨Eν |x−Eν x|3 <∞,

and as s tends to infinity, since the two terms being maximized over will encroach upon each
other, and using our finite third moment assumption, we can always find a value to bound this
from above. This implies the result.

76



Proof of Theorem 19. For h ∈ H, write x = l(h; z) and θ̂ = θ̂(h), θ∗ = θ∗(h) for simplicity. Let
s be either a fixed positive constant, or be generated on a per-observation basis, i.e., s1, . . . , sn
are independent positive random variables, where say s = s(z) for z ∼ µ. The existence of θ̂
and θ∗ is given by Lemma 12. For convenience denote ψu ..= ψ((x− u)/s) and note that

{θ̂ < u} = {Eµn ψu < 0}, {θ̂ > u} = {Eµn ψu > 0} (3.19)

for any choice of u. Use the typical set lim inf definition, which is to say for any given sequence
of sets Am, let lim infmAm ..= ⋃∞

m=1
⋂
k≥mAk. For arbitrary fixed ε > 0, we have

P
{

lim
n
θ̂ < θ∗ + ε

}
= P lim inf

n
{θ̂n < θ∗ + ε}

= P lim inf
n
{Eµn ψθ∗+ε < 0}

= P
{

lim
n

Eµn ψθ∗+ε < 0
}

≥ P
{

lim
n

Eµn ψθ∗+ε = Eµ ψθ∗+ε
}

= 1.

The final equality holds via the strong law of large numbers, which is where we require
Eµ x

2 < ∞ [9, Theorem 3.27]. The inequality prior to that holds since Eµ ψθ∗+ε < 0, and
the remaining equalities by lim inf definition and (3.19). An indentical argument can be used
to show P{lim

n
θ̂ > θ∗ − ε} = 1, which implies

P
{

lim
n
|θ̂ − θ∗| ≥ ε

}
≤ P

{
lim
n
θ̂n ≥ θ∗ + ε

}
∪
{

lim
n
θ̂ ≤ θ∗ − ε

}
= 0.

This holds for any choice of ε > 0, and thus |θ̂ − θ∗| → 0 almost surely, yielding strong
consistency.

Proof of Lemma 20. If ρ specifies a robust objective, then ψ is a bounded measurable function,
and can be uniformly approximated by a sequence of weighted indicators as follows. For
concreteness, say |ψ| ≤M <∞. Let sequence εm ↓ 0, and for each m ∈ N partition the range
[−M,M ] into km ..= 2M/εm segments Aj ..= {t : aj−1 ≤ ψ(t) < aj} defined by

a0 = −M, aj = aj−1 + εm, j = 1, . . . , km.

The approximating function sm is then defined as

sm(u) ..=
km∑
j=1

ajIAj (u), u ∈ R.

By strong convexity, there is no u ∈ R where |ψ(u)| = M , and thus the uniform approximation
is immediate. That is, |sm(u) − ψ(u)| ≤ εm holds uniformly in u. Note that each Aj can be
given as an interval. Defining bj to be the unique element in R where ψ(bj) = aj , the marginal
sets are A1 = (−∞, b1) and Akm = [bkm−1,∞) respectively, and the remainder are half-closed
real intervals Aj = [bj−1, bj).

Denote Pn = Eµn and E = Eµ for clean notation. Our interest is with the quantity

‖Pn ψ −Eψ‖ ..= sup
u,h,s

∣∣∣∣Pn ψ

(
l(h; z)− u

s

)
−Eψ

(
l(h; z)− u

s

)∣∣∣∣
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where s > 0, h ∈ H, and u ∈ R when taking the supremum. For any observation z1, . . . ,zn an
application of the triangle inequality yields

‖Pn ψ −Eψ‖ ≤ ‖Pn ψ −Pn sm‖+ ‖Pn sm −E sm‖+ ‖E sm −Eψ‖ (3.20)

where the ‖ · ‖ terms on the right-hand side denote taking the exact same suprema as on the
left-hand side. The first and third terms are readily dealt with. Note for example that

‖E(sm − ψ)‖ ≤ ‖sm − ψ‖∞ ≤ εm → 0

whenever we set index m = m(n) → ∞ as n → ∞. An identical argument holds for the first
term. This convergence is deterministic, in the sense that it holds for arbitrary observations,
and thus also holds almost surely.

The second term in (3.20) is slightly more involved but the approach is rather standard.
To get started, denoting for convenience the events

Ej ..= {l(h; z) ∈ [sbj−1 + u, sbj + u)}, j = 1, . . . , km

with the understanding that for the index j = 1 the interval is (−∞, sb1 + u) and j = km it is
[sbkm−1 + u,∞). The obvious but important fact is that each event Ej , specified by s, h, u,
and the bj values, is naturally captured by a larger class of sets C

C ..=
{
{z : l(h; z) ∈ [a, b)} : h ∈ Rd, a, b ∈ R, a < b

}
.

Note we are assuming H is specified by elements of d-dimensional Euclidean space. Since each
Ej ∈ C, we have that

‖Pn sm −E sm‖ = sup

∣∣∣∣∣∣
km∑
j=1

aj
(
Pn IEj (z)−PEj

)∣∣∣∣∣∣
≤Mkm‖Pn IC −PC‖C (3.21)

where ‖ · ‖C denotes taking the supremum over C ∈ C. We will frequently use IC to denote
IC(·), with domain Rd+1. It remains to show the strong convergence to zero of the supremal
factor in (3.21), with convergence rates to deal with the increasing km sequence.

A typical symmetrization inequality is of use next [48, Lemma 2]. Take an artificial sample
z′1, . . . ,z

′
n, independent from z1, . . . ,zn, but identically distributed. For any ε > 0, whenever

n > 2/ε2, we have

P {‖Pn IC −PC‖C > ε} ≤ 2 P
{
‖Pn IC −P′n IC‖C ≥ ε/2

}
(3.22)

where P′n analogously denotes µ′n supported on the new sample. Next a randomization tech-
nique due to Pollard [37]. Let σ1, . . . , σn be iid, and independent from both samples, with
distribution P{σ = −1} = P{σ = 1} = 1/2. Checking cases one immediately confirms that
for any C ∈ C, the random quantities IC(z) − IC(z′) and σ(IC(z) − IC(z′)) have the same
distribution. As such for any ε > 0,

P
{
‖Pn IC −P′n IC‖C ≥ ε

}
= P

{∥∥∥∥∥ 1
n

n∑
i=1

σi(IC(zi)− IC(z′i))
∥∥∥∥∥
C

≥ ε
}

≤ P
{
‖Pn σIC‖C + ‖P′n σIC‖C ≥ ε

}
≤ 2 P {‖Pn σIC‖C ≥ ε/2}
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where for the first inequality one leverages the triangle inequality, and for the second a union
bound. We can conclude up to this point for large enough n that

P {‖Pn IC −PC‖C > ε} ≤ 4 P {‖Pn σIC‖C ≥ ε/4} .

Fixing arbitrary sample z1, . . . ,zn, a combinatorial indicator of the complexity C is given by

∆n(C) ..= |{C ∩ {z1, . . . , zn} : C ∈ C}|
= |{(IC(z1), . . . , IC(zn)) ∈ {0, 1}n : C ∈ C}| .

Naturally the number of distinct subsets captured by members of C is identical to the number of
distinct n-length binary-valued vectors than can be built on the sample when indexing over C.
Trivially ∆n(C) ≤ 2n. Again conditioning on a fixed sample, we can always take C1, . . . , Ck ∈ C
such that all possible realizations of Pn σIC are captured by indexing over these k = ∆n(C)
sets. That is, denoting Z ..= (z1, . . . ,zn),

P {‖Pn σIC‖C ≥ ε;Z} = P
{

max
1≤j≤k

∣∣∣Pn σICj

∣∣∣ ≥ ε;Z}

≤ P
k⋃
j=1

{∣∣∣Pn σICj

∣∣∣ ≥ ε;Z}
≤ ∆n(C) max

1≤j≤k
P
{∣∣∣Pn σICj

∣∣∣ ≥ ε;Z} .
The two multiplicands need to be controlled. Let us start with the former. When we do not
fix Z, naturally ∆n(C) is a random quantity. Note that the possible forms any C ∈ C can take
are characterized into three types as

{z : l ∈ [a, b)}, {z : l ∈ [a,∞)}, {z : l ∈ (−∞, b)},

also {l ∈ (−∞,∞)} = Rd+1, and setting b ≤ 0 returns the empty set since l ≥ 0. We have
denoted l(h; z) by l for simplicity. For concreteness consider l(h; z) = (y−h(x))2 case, though
the exact same argument clearly holds for other related losses. Take any a, b ∈ R where a < b.
Then setting

G1 ..=
{
y −wTx ≥

√
|a|
}
, G2 ..=

{
y −wTx ≤ −

√
|a|
}

G′1
..=
{
y −wTx <

√
|b|
}
, G′2

..=
{
y −wTx > −

√
|b|
}

and recalling under the linear model assumption on H, for any h ∈ H we have h(x) = wTx
for some w ∈ Rd, thus clearly we have

{l ∈ [a, b)} = (G1 ∪G2) ∩G′1 ∩G′2.

If one defines g(z) ..= (y − wTx −
√
|a|)(−1), then G1 = {g(z) ≤ 0}. Setting g′(z) ..=

(y−wTx−
√
|b|)(−1), have G′1 = {g′(z) ≤ 0}c where the superscript denotes the complement.

If our observations are d+ 1 dimension vectors of the form z = (x1, . . . , xd, y), define functions
f0(z) ..= 1 and fj(z) ..= πj(z) for j = 1, . . . , d + 1, where πj denotes the jth coordinate
projection. That is, e.g., f1(z) = x1 and so forth. Construct a linear space of functions on
Rd+1 as

F ..= span{f0, . . . , fd+1}.
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One may check the linear independence of these functions, and thus the dimension of is precisely
dimF = d+2. Note clearly that g, g′ ∈ F . From this one naturally induces two classes of sets,
namely

G ..= {{f(z) ≤ 0} : f ∈ F} , Gc ..= {Gc : G ∈ G} .

A classic result [45, 18] says that, using more modern parlance the class G has a VC dimension
bounded by dimF . The fundamental property of classes with finite VC dimension is that the
supremum of ∆n taken over all samples is bounded by a polynomial in n. More precisely, for
some constant c0, for all n we have

E ∆n(G) ≤ sn(G) ..= sup
Z

∆n(G) ≤ c0n
d+2,

where the expectation is being taken over the sample Z = (z1, . . . ,zn). It is then clear that

{z : l ∈ [a, b)} ∈ (G ∪ G) ∩ Gc ∩ Gc.

For all the other forms the sets C ∈ C take, it is clear that each is composed of sets from G,
Gc, or {Rd+1, ∅}. The zero function g0(z) = 0, is g0 ∈ F , and as such Rd+1 = {g0(z) ≤ 0} ∈ G.
Also the basis function f0 used in defining F is such that ∅ = {f0(z) ≤ 0} ∈ G. It thus follows
that ∅,Rd+1 ∈ Gc as well. We thus conclude

C ⊆ G∗ ..= (G ∪ G) ∩ Gc ∩ Gc.

Basic combinatorial arguments [38, Lemma 15] show that for a constant c1 > 0 we have

sn(G∗) ≤ sn(G)2sn(Gc)2 ≤ c1n
4d+8

which implies E ∆n(C) ≤ c1n
4d+8. This is the desired bound for the combinatorial parameter.

As for the conditional probability term, note that with fixed Z and the σi left random, taking
expectation with respect to σ we have for any C ∈ C that

E Pn σIC(z) = (Eσ) Pn IC(z) = 0,

and so Pn σIC(z) is a zero-mean sum of random variables taking values on [−1/n, 1/n]. Direct
application of Hoeffding’s inequality yields, with an application of the union bound to get
two-sided inequalities,

P
{
|Pn σIC | ≥ ε|z(n)

}
≤ 2 exp

(
−nε2

2

)

for all n. Since the exact same bound holds regardless of z(n) and choice of C, we connect
things by integrating, noting for large enough n and constant c2 > 0 we have

P {‖Pn IC −PC‖C > ε} ≤ 4 P {‖Pn σIC‖C ≥ ε/4}

= 4 E
(

∆n(C) max
1≤j≤k

P
{∣∣∣Pn σICj

∣∣∣ ≥ ε;Z})
≤ c2n

4d+8 exp
(
−nε2

32

)
.
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Application of the root test immediately shows that summing the right-hand side of the final
inequality over n, the series converges and thus

∞∑
n=1

P {‖Pn IC −PC‖C > ε} <∞.

The Borel-Cantelli lemma then says that for any ε > 0,

P lim sup
n
{‖Pn IC −PC‖C > ε} = 0

and since {
lim
n→∞

‖Pn IC −PC‖C = 0
}c

=
∞⋃
k=1

lim sup
n
{‖Pn IC −PC‖C > 1/k} ,

using a union bound we have

P
{

lim
n→∞

‖Pn IC −PC‖C = 0
}
≥ 1−

k∑
k=1

P lim sup
n
{‖Pn IC −PC‖C > 1/k} = 1

which means ‖Pn IC −PC‖C → 0 almost surely.
Returning to sequence km from (3.21), while we are free to make this grow as slow as we

like, a convergence rate for the term converging to zero makes the argument more transparent.
This is done applying Theorems 37 and the Approximation Lemma of Pollard [38, Ch. 2], using
the fact that C has polynomial discrimination, which is precisely what was proved above. In
particular, setting km(n) = O(n1/3) is sufficient to imply ‖Pn IC − PC‖C = o(k−1

m(n)) almost
surely. Thus via (3.21) we have that ‖Pn sm −E sm‖ → 0 almost surely, implying the desired
result via (3.20).

Proof of Theorem 22. We start by controlling the random sequence θ̂(h) from above. Fix any
h ∈ H. By the usual strong law of large numbers, for any fixed δ > 0, the event

A ..=
{

lim
n→∞

1
n

n∑
i=1

ψ

(
l(h; zi)− (θ∗(h) + δ)

sh(zi)

)
= Eµ ψ

(
l(h; z)− (θ∗(h) + δ)

sh(z)

)}

has P(A) = 1. Given arbitrary ω ∈ A, and any ε > 0, we can choose N(ω) < ∞ where
n ≥ N(ω) implies |Eµn ψ − Eµ ψ| ≤ ε, where this notation represents the absolute difference
between the sample mean (pre-limit) and expectation taken in the definition ofA. By definition
of θ∗(·) and monotonicity of ψ, one has that

0 = Eµ ψ

(
l(h; z)− θ∗(h)

sh(z)

)
> Eµ ψ

(
l(h; z)− (θ∗(h) + δ)

sh(z)

)
.

It follows that there exists ε′ > 0 such that

1
n

n∑
i=1

ψ

(
l(h; zi)− (θ∗(h) + δ)

sh(zi)

)
≤ (−1)ε′ < 0

eventually (in n ∈ N), on this ω ∈ A, and similarly by the definition of θ̂(·), we have

θ̂(H) ≤ θ̂(h) < θ∗ + δ.
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This shows us that A ⊆ {lim supn θ̂(H) < θ∗(h) + δ}. Letting δ = 1/k, for each k = 1, 2, . . .
denote the corresponding convergence event A particularly as Ak. Noting Ak+1 ⊆ Ak, we
have

Am ⊆
m⋂
k=1

Ak, m = 1, 2, . . .

Basic continuity of measures gives us that

P
{

lim sup
n

θ̂(H) ≤ θ∗(h)
}

= lim
m→∞

P
m⋂
k=1

Ak = 1,

and the same result holds for arbitrary choice of h ∈ H. Similarly, construct a sequence (hm)
of hm ∈ H such that θ∗(hm) ↓ θ∗(H). Clearly{

lim sup
n

θ̂(H) ≤ θ∗(hm+1)
}
⊆
{

lim sup
n

θ̂(H) ≤ θ∗(hm)
}

with each event occurring with probability 1. Again via measure continuity it follows that

P
{

lim sup
n

θ̂(H) ≤ θ∗(H)
}

= lim
m→∞

P
m⋂
k=1

{
lim sup

n
θ̂(H) ≤ θ∗(hm)

}
= 1.

Thus we have that

lim sup
n

θ̂(H) ≤ θ∗(H) ..= inf
h∈H

θ∗(h), a.s.

Now we look at the lim inf side of the argument. At this point, we have

0 ≤ lim inf
n

θ̂(H) ≤ lim sup
n

θ̂(H) ≤ θ∗(H),

which follows from the above argument and the fact that L ≥ 0, so

θ̂(h) ≥ 0 and | lim inf
n

θ̂(h)| <∞

almost surely. Label the event

A′ ..=
{

lim inf
n

θ̂(H) < θ∗(H)
}
,

and start by assuming PA′ > 0. On this event, we can fix a distance δ > 0 such that taking n
over N, the sequence θ̂(H) drops more than δ below θ∗(H) infinitely often. To make this more
concrete, fix θL ..= lim infn θ̂(H), and take any δ ∈ (0, θ∗(H) − θL). Then for all N < ∞, can
find index n ≥ N where θ̂(H) < θ∗(H)− δ < θ∗(H). This gap, between θ̂(H) and θ∗(H), of at
least δ, occurs infinitely often. For any such n, we have

Eµ ψ

(
l(ĥn; z)− θ̂(H)

shn(z)

)
> Eµ ψ

(
l(ĥn; z)− θ∗(H)

s
ĥn

(z)

)

≥ Eµ ψ

(
l(ĥn; z)− θ∗(ĥn)

s
ĥn

(z)

)
= 0.
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The second inequality and the final inequality hold for all n, by the optimality of θ∗(H) and
the definition of θ∗(·). Depending on the ω ∈ A′, the actual value of this δ > 0 will differ,
but what matters is that such a δ-gap is fixed as we take n over N. By the lim sup bound
shown above, taking any θU ∈ (θ∗(H),∞), we have that θ̂(H) ∈ [0, θU ] eventually. That is,
there exists N <∞ where n ≥ N implies θ̂(H) ∈ [0, θU ]. Using concavity, note for any u∗ > 0,
u ∈ [0, u∗ − δ], s > 0 and l ≥ 0, we have

ψ

(
l − u
s

)
− ψ

(
l − u∗

s

)
≥ δ

s
ψ′
(
l − u∗ + δ

s

)
.

Set l = l(h; z), u∗ = θ∗(H), s = sh(z), and integrate with Eµ. Note that by assumption, there
exists ε > 0 such that

δEµ
1

s
ĥn

(z)ψ
′
(
l(ĥn; z)− θ∗(H) + δ

s
ĥn

(z)

)
≥ δ

s2
inf
h∈H

Eµ ψ
′
(
l(h; z)− θ∗(H) + δ

s1

)
≥ ε

noting that ψ′ is non-increasing on R+, by concavity of ψ. We thus have that on the event A′,
and any “bad index” n where θ̂(H) < θ∗(H)− δ, we have

Eµ ψ

(
l(ĥn; z)− θ̂(H)

s
ĥn

(z)

)
−Eµ ψ

(
l(ĥn; z)− θ∗(H)

s
ĥn

(z)

)
≥ ε > 0.

Since this occurs infinitely often as n ranges over N and ε is free of n, it implies

A′ ⊆
{

lim
n→∞

Eµ ψ

(
l(ĥn; z)− θ̂(H)

s
ĥn

(z)

)
= 0

}c
,

which contradicts the strong convergence guaranteed by Corollary 21, noting θ̂(ĥn) = θ̂(H) by
definition and Theorem 14. We conclude PA′ = 0, which is to say that almost surely

lim inf
n

θ̂(H) ≥ θ∗(H) ≥ lim sup
n

θ̂(H).

We thus conclude that θ̂(ĥn) = θ̂(H)→ θ∗(H) as n→∞.

Proof of Proposition 23. We verify the statements by adapting a standard comparison function
technique [31, Lemma 7.7]. Fix arbitrary sample x1, . . . , xn where xi = l(h; zi) in the setting
of this chapter. We consider the case of arbitrary s, where it may be completely determined
by µn. Here defining two functions

g(θ) ..= 1
n

n∑
i=1

ρ

(
xi − θ
s

)
s

g̃(u; θ) ..= g(θ) + 1
2ns

n∑
i=1

((
ψ

(
xi − θ
s

)
s− u

)2
− ψ

(
xi − θ
s

)2
s2
)
,

for any choice of θ, u ∈ R, we have a bound from above in g̃(u; θ) ≥ g(θ+ u). To see this, note
that the difference function dθ(u) ..= g̃(u; θ)− g(θ + u) satisfies

dθ(0) = 0, d′θ(0) = 0, d′′θ ≥ 0

for any choice of θ. The first two follow immediately from definitions, and the final inequality
follows from ρ′′ ≤ 1 assuming we’ve standardized ρ such that ρ′ is 1-Lipschitz, noting

d′′θ(u) = 1
s

(
1− 1

n

n∑
i=1

ψ′
(
xi − (θ + u)

s

))
,
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which implies dθ(u) ≥ 0 for all u ∈ R, and also

g(θ)− g(θ + u) ≥ g(θ)− g̃(u; θ). (3.23)

To make the best possible update to θ, we should set u to maximize the right-hand side,
equivalently minimize g̃(u; θ). Noting g̃′′ = 1/s > 0, and defining

u0(θ) ..= s

n

n∑
i=1

ψ

(
xi − θ
s

)
we have g̃′(u0(θ)) = 0 which is thus the unique minimum. Plugging u0(θ) into (3.23), some
algebra reveals

g(θ)− g(θ + u0(θ)) ≥ 1
2su0(θ)2 ≥ 0. (3.24)

Note that the right-hand side is zero iff θ = θ̂(h), otherwise it is strictly positive. Defining
θ̂(k)

..= θ̂(k−1) +u0(θ̂(k−1)) is equivalent to the update (3.3). Looking at sequences taking k ∈ N,
g(θ̂(k)) is bounded and monotonic, and thus convergent. Since it is also Cauchy, this naturally
implies u0(θ̂[t]) → 0 as well, from which it follows that θ̂(k) → θ̂(h). To see this, assume θ̂(k)
is not Cauchy. Then there exists scale ε0 > 0 at which for any K < ∞, there exist k, k′ ≥ K
such that |θ̂(k) − θ̂(k′)| > ε0. By the update definition and (3.24), for fixed sample Z the
sequence θ̂(k) is bounded. For concreteness, denote these bounds as 0 ≤ θ̂(k) ≤ θU . By strong
monotonicity of ψ it then follows that defining

ε1 ..= inf
θ∈[0,θU ]

∣∣∣∣∣
n∑
i=1

(
ψ

(
xi − θ
s

)
− ψ

(
xi − (θ ± ε0)

s

))∣∣∣∣∣
we have ε1 > 0, with a value that is determined once the sample Z is observed and the update
routine is intitialized. On the bad indices k, k′ where |θ̂(k) − θ̂(k′)| > ε0, we always have∣∣∣∣∣

n∑
i=1

(
ψ

(
xi − θ̂(k)

s

)
− ψ

(
xi − θ̂(k′)

s

))∣∣∣∣∣ ≥ ε1

which would imply that u0(θ̂(k)) is not Cauchy, contradicting u0(θ̂(k)) → 0. Thus θ̂(k) is
convergent. Using continuity of ψ, we have

u0

(
lim
k→∞

θ̂(k)

)
= lim

k→∞
u0(θ̂(k)) = 0,

implying θ̂(k) → θ̂(h).
Shifting our focus to the scale result, consider χ as in Defn. 15, but with some additional

restrictions. Similar to ψ in the location estimation setting, treat χ as a gradient of some
convex objective to be minimized. The general form of the objective function is to be

g(s) ..= Eµn

(
r

(
x− γ
s

)
+ β

)
s, s > 0

where the function r(·) is assumed to be r ≥ 0, convex and even, with a unique minimum at
r(0) = 0. In addition, r(u)/u should be concave on R+. The idea then is to construct χ using
the gradient of this auxiliary objective, namely we seek that

g′(s) = (−1) Eµn

(
χ

(
x− γ
s

))
. (3.25)

84



To achieve this given a valid r, one need only set χ(u) ..= r′(u)u− r(u)− β.
A brief remark on constructing valid robust control functions of this form. Perhaps the

simplest setting of r with the desired properties is r(u) = u1+k, for k ∈ (0, 1]. Clearly r′′ > 0
on R+, and since (r(u)/u)′′ = k(k − 1)uk−2 ≤ 0, we have the concavity desired. Furthermore,
χ(u) = ku1+k − β, and

s =
(
k

β
Eµn (x− γ)1+k

) 1
1+k

is the unique root of Eµn χ((x− γ)/s) in s > 0. There are no issues with zero-valued solutions
given this formulation.

Returning to the main proof, a critical property of the update (3.4) is that for any k =
1, 2, . . . we have

g(s(k))− g(s(k+1)) ≥
β

s(k)

(
s(k+1) − s(k)

)2
. (3.26)

To simplify notation even further, denote li ..= xi − γ for i = 1, . . . , n. We set χ(u) ..=
r′(u)u − r(u) − β as above, and denote χ̃(u) ..= χ(u) + β. Just as for the location case, a
comparison function is introduced of the form

g̃(u; s) ..= g(s) + (u− s)β + 1
n

n∑
i=1

χ̃

(
li
s

)(
s2

u
− s

)
.

A few remarks regarding this form. First of all, we want g̃(s; s) = g(s), thus the need for the
first constant. The second term ensures β appears in the first derivative of g̃. The third term
takes the form that it does such that in addition to u = s implying g = g̃, we also get that
g′(·) and g̃′(·; s) coincide when evaluated at s. With this form, it is immediate as

g̃′(u; s) = 1
n

n∑
i=1

χ̃

(
li
s

)
s2

u2 (−1) + β

since we can note

g′(s) = 1
n

n∑
i=1

r′
(
li
s

)(
li
s

)
(−1) + 1

n

n∑
i=1

r

(
li
s

)
+ β

= (−1) 1
n

n∑
i=1

χ

(
li
s

)
= g̃′(s; s).

Defining the difference function for pre-fixed arbitrary s > 0 by ds(u) ..= g̃(u; s)−g(u), we have
that ds(s) = 0, d′s(s) = 0. Since we want to show ds(u) ≥ 0 for all u > 0, it remains to show
that ds(·) is convex. This is straightforward, if one notices that there are positive constants
α0 and α1 which depend on s but are free of u such that

ds(u) = α0 + α1
u

+ −1
n

n∑
i=1

r

(
li
u

)
u

= α0 + α1σ + −1
n

n∑
i=1

r (liσ) 1
σ
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when defining σ ..= 1/u. The first two terms together form an affine function of σ, and by
assumption r(u)/u is a concave function on R+. Note that having li scaling this has no impact
on convexity, since letting f(u) ..= r(u)/u and for any α 6= 0 setting f̃(u) ..= r(αu)/(αu), using
first-order characterization of concavity, we have for any u, v ≥ 0 that

f̃(u)− f̃(v) = f(αu)− f(αv)
≤ (u− v)αf ′(αv)
= (u− v)f̃ ′(v),

showing f̃ is concave on R+ when f is. Thus the third summand in ds is a convex function
of σ > 0, and ds(1/σ) ≥ 0 for all σ > 0, implying ds(u) ≥ 0 for all u > 0 as desired, and
g̃(u; s) ≥ g(u) for all u > 0. Since we seek an update routine where g gets smaller, fixing s > 0
as the scale value from a previous iteration, we naturally seek that g(s) − g(u) is maximized
in u. Note that g̃(·; s) has its unique critical point at

uA =
(

1
nβ

n∑
i=1

χ̃

(
li
s

)
s2
)1/2

= s

(
1 + 1

nβ

n∑
i=1

χ

(
li
s

))1/2

noting that the term inside the square root is non-negative as χ ≥ −β by definition. Plugging
uA into g̃(·; s) and some algebra then readily yields

g(s)− g(uA) ≥ g(s)− g̃(uA; s)

= β

s
(uA − s)2

and thus implying 3.26 by the update definition (3.4).
We now move on to the final step of this proof. Initialize using s(k) > 0. Beginning with

some basic facts, note that by (3.26), we have

g(s(0)) ≥ g(s(k)) ≥ g(s(k+1)) ≥ 0,

so g(s(k)) is a bounded, monotone sequence, and thus the limit lim
k→∞

g(s(k)) certainly exists and
is finite. As for the sequence s(k), note first that

χ̃′(u) = χ′(u) = ur′′(u) > 0, ∀u > 0.

It follows that χ and χ̃′ are uniquely minimized at 0, meaning in particular that unless l1 =
· · · = ln = 0, we have Eµn χ̃(li/s[0]) > 0. Assuming a continuous distribution function, this
occurs with probability zero. Thus by definition of the update rule, s(k) > 0 almost surely
for all k ∈ N. Henceforth we assume at least once li 6= 0. An upper bound is also simple
to check. Taking s → ∞, necessarily g(s) → ∞, meaning g(s) > g(s(0)) for s large enough.
Since g(s(k)) > g(s(0)) is a contradiction, necessarily s(k) is bounded above as well. Regarding
convergence, note that

g′′(u) = 1
n

n∑
i=1

r′′
(
li
u

)(
l2i
u3

)
,

so by strong convexity of r, g′′ > 0 on R+, and has a unique minimum. Denote this by
u0 ..= arg min g(u). Certainly either u0 = 0 or u0 > 0 are possible, but convergence is readily
confirmed as follows. Since

g(s(k)) = g(s(k+1)) ⇐⇒
1
n
χ

(
li
s(k)

)
= 0

⇐⇒ g(s(k)) = min
u
g(u),
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we have that g(s(k)) → minu g(u) = g(u0) as t → ∞. Now say s(k) under update (A) is not
Cauchy. Then, there exists some ε0 > 0 such that for any K ∈ N, we can find bad indices
k1, k2 ≥ K such that |s(k1) − s(k2)| > ε0. Note that by continuity and strong convexity of g,
for any ε > 0, we can find a δ > 0 such that |s − u0| > δ =⇒ |g(s) − g(u0)| > ε. Taking
ε arbitrarily small lets us take δ arbitrarily small. Choose ε > 0 such that δ ≤ ε0/2. Since
g(s(k))→ g(u0), exists K0 such that k ≥ K0 implies |g(s(k))− g(u0)| ≤ ε. Taking K ≥ K0 and
bad indices k1, k2 ≥ K, we have |s(k1)− s(k2)| > ε0 ≥ 2δ, but also |g(s(k))− g(u0)| ≤ ε for both
t = k1, k2. Taking k1 for instance, note that s(k1) ∈ [u0 − δ, u0 + δ]. Looking at k2 then, one
sees

|s(k1) − s(k2)| > ε0 =⇒ s(k2) /∈ [u0 − δ, u0 + δ]
=⇒ |g(s(k2))− g(u0)| > ε,

a contradiction since k2 ≥ K ≥ K0. We conclude that s(k) must be Cauchy and thus convergent
to the unique minimizer u0, implying the desired result.

Remark 24. It should be noted that the convergence of (3.4) given by Proposition 23 is con-
vergence to a solution, but it is possible that the solution may in fact be zero. This depends
on the loss observations (and thus choice of h ∈ H), the form of r, and the value of χ(0) < 0 in
a rather complex manner. For any given sample z1, . . . ,zn and candidate h, the solution will
be positive if and only if Eµn χ((l(h; z)− γ)/s) can be made positive for small enough s > 0,
and the natural control for this is to ensure χ(0) is far enough below zero. Thus if χ is built
following (3.25) with a strictly convex r and small enough β, one can rest assured that the s(k)
updates of 3.4 used as a sub-routine in Algorithm 1 will converge to a positive solution.
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Chapter 4

Learning using robust gradients

4.1 Introduction
Any successful machine learning application depends both on procedures for reliable statistical
inference, and a computationally efficient implementation of these procedures. This can be
formulated using a risk R(w) ..= E l(w; z), induced by a loss l, where w is the parameter
(vector, function, set, etc.) to be specified, and expectation is with respect to z, namely the
underlying data distribution. Given data z1, . . . ,zn, if an algorithm outputs ŵ such that R(ŵ)
is small with high probability over the random draw of the sample, this is formal evidence for
good generalization, up to assumptions on the distribution. Performance-wise, the statistical
side is important because R is always unknown, and the method of implementation is important
since the only ŵ we ever have in practice is one we can actually compute.

Empirical risk minimization (ERM), which admits any minimizer of n−1∑n
i=1 l(·; zi), is the

canonical strategy for machine learning problems, and there exists a rich body of literature
on its generalization ability [20, 4, 2, 5]. In recent years, however, some severe limitations of
this technique have come into light. ERM can be implemented by numerous methods, but its
performance is sensitive to this implementation [11, 13], showing sub-optimal guarantees on
tasks as simple as multi-class pattern recognition, let alone tasks with unbounded losses. A
related issue is highlighted in recent work by Lin and Rosasco [25], where we see that ERM
implemented using a gradient-based method only has appealing guarantees when the data is
distributed sharply around the mean in a sub-Gaussian sense. These results are particularly
important due to the ubiquity of gradient descent (GD) and its variants in machine learning.
They also carry the implication that ERM under typical implementations is liable to become
highly inefficient whenever the data has heavy tails, requiring a potentially infinitely large
sample to achieve a small risk.

Since tasks with such “inconvenient” data are common [14], it is of interest to investigate
and develop alternative procedures which can be implemented as readily as the GD-based ERM
(henceforth, ERM-GD), but which have desirable performance for a wider class of learning
problems. In this chapter, we introduce and analyze an iterative routine which takes advantage
of robust estimates of the risk gradient.

Review of related work Here we review some of the technical literature related to our
work. As mentioned above, the analysis of Lin and Rosasco [25] includes the generalization of
ERM-GD for sub-Gaussian observations. ERM-GD provides a key benchmark to be compared
against; it is of particular interest to find a technique that is competitive with ERM-GD when it
is optimal, but which behaves better under less congenial data distributions. Other researchers
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have investigated methods for distribution-robust learning. One notable line of work looks at
generalizations of the “median of means” procedure, in which one constructs candidates on
disjoint partitions of the data, and aggregates them such that anomalous candidates are effec-
tively ignored. These methods can be implemented and have theoretical guarantees, ranging
from the one-dimensional setting [24, 29] to multi-dimensional and even functional models
[28, 17, 23]. Their main limitation is practical: when sample size n is small relative to the
complexity of the model, very few subsets can be created, and robustness is poor; conversely,
when n is large enough to make many candidates, cheaper and less sophisticated methods often
suffice.

An alternative approach is to use all the observations to construct robust estimates R̂(w) of
the riskR(w) for eachw to be checked, and subsequently minimize R̂ as a surrogate. An elegant
strategy using M-estimates of R was introduced by Brownlees et al. [7], based on fundamental
results due to Catoni [8, 9]. While the statistical guarantees are near-optimal under very
weak assumptions on the data, the proxy objective R̂ is defined implicitly, introducing many
computational roadblocks. In particular, even if R is convex, the estimate R̂ need not be, and
the non-linear optimization required by this method does not scale well to higher dimensions.

Our contributions To deal with these limitations of ERM-GD and its existing robust al-
ternatives, the key idea here is to use robust estimates of the risk gradient, rather than the
risk itself, and to feed these estimates into a first-order steepest descent routine. In doing so,
at the cost of minor computational overhead, we get formal performance guarantees for a wide
class of data distributions, while enjoying the computational ease of a gradient descent update.
Our main contributions:

• A learning algorithm which addresses the vulnerabilities of ERM-GD, is easily imple-
mented, and can be parallelized or adapted to stochastic sub-sampling for big problems.

• High-probability bounds on excess risk of this procedure, which hold under mild moment
assumptions on the data distribution, and suggest a promising methodology.

• In a variety of learning settings, numerical tests comparing our routine with ERM-GD
and other cited benchmarks reinforce the practical utility and flexibility suggested by the
theory.

Content overview In section 4.2, we introduce the key components of the proposed al-
gorithm, and provide an intuitive example meant to highlight the learning principles taken
advantage of. Theoretical analysis of algorithm performance is given in section 4.3, including
a sketch of the proof technique and discussion of the main results. Empirical analysis follows
in section 4.4, in which we elucidate both the strengths and limits of the proposed procedure,
through a series of tightly controlled numerical tests. Finally, concluding remarks and a look
ahead are given in section 4.5.

4.2 Robust gradient descent
Before introducing the proposed algorithm in detail, we motivate the practical need for a
procedure which deals with the weaknesses of the traditional sample mean-based gradient
descent strategy.
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Figure 4.1: A comparison of the minimizing sequence trajectories in a two-dimensional approximate risk
minimization task, for the traditional ERM-based gradient descent (left) and a simple re-weighting procedure
(right). Trajectories of the oracle update using R′ (black) is pictured alongside the approximate methods (red).
All procedures use α(t) = 0.35, t = 0, . . . , 9.

4.2.1 Why robustness?
Recall that since ERM admits any minima of n−1∑n

i=1 l(·; zi), the simplest implementation of
gradient descent (for ŵ(t) ∈ Rd) results in the update

ŵ(t+1) = ŵ(t) − α(t)
1
n

n∑
i=1

l′(ŵ(t); zi) (4.1)

where α(t) are scaling parameters. Taking the derivative under the integral we have R′(·) =
E l′(·; z), meaning ERM-GD uses the sample mean as an estimator of each coordinate of R′,
in pursuit of a solution minimizing the unknown R. Without rather strong assumptions on
the tails and moments of the distribution of l(w; z) for each w, it has become well-known that
the sample mean fails to provide sharp estimates [9, 28, 12, 27]. Intuitively, the issue is that
we expect bad estimates to imply bad approximate minima. Does this formal sub-optimality
indeed manifest itself in natural settings? Can principled modifications improve performance
at a tolerable cost?

A simple example suggests affirmative answers to both questions. The plot on the left of
Figure 4.1 shows contour lines of a strongly convex quadratic risk to be minimized, as well as
the trajectory of 10 iterations of ERM-GD, given four independent samples from a common
distribution, initiated at a common ŵ(0). With data z = (x, y) ∈ Rd+1, losses are generated
as l(w; zi) = (〈w,xi〉 − yi)2/2. We consider the case where the “noise” 〈w,xi〉 − yi is heavy-
tailed (log-Normal). Half of the samples saw relatively good solutions after ten iterations, and
half saw rather stark deviation from the optimal procedure. When the sample contains errant
observations, the empirical mean estimate is easily influenced by such points.

To deal with this, a classical idea is to re-weight the observations in a principled manner,
and then carry out gradient descent as normal. That is, in the gradient estimate of (4.1), we
replace the summands n−1l′(·; zi) with ωil′(·; zi), where 0 ≤ ωi ≤ 1, i ∈ [n] and ∑n

i=1 ωi = 1.
For example, we could set

ωi ..= ω̃i∑n
k=1 ω̃k

, ω̃i ..= ψ (〈w,x〉 − yi)
(〈w,x〉 − yi)

where ψ is an odd function of sigmoidal form (see 4.6.1). The idea is that for observations zi
that induce errors which are inordinately large, the weight ωi will be correspondingly small,
reducing the impact. In the right-hand plot of Figure 4.1, we give analogous results for this
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procedure, run under the exact same settings as ERM-GD above. The modified procedure
at least appears to be far more robust to random idiosyncracies of the sample; indeed, if we
run many trials, the average risk is far better than the ERM-GD procedure, and the variance
smaller. The fragility observed here was in the elementary setting of d = 2, n = 500; it follows
a fortiori that we can only expect things to get worse for ERM-GD in higher dimensions
and under smaller samples. In what follows, we develop a robust gradient-based minimization
method based directly on the principles illustrated here.

4.2.2 Algorithm introduction
Were the risk to be known, we could update using

w∗(t+1)
..= w∗(t) − α(t)g(w∗(t)) (4.2)

where g(w) ..= R′(w), an ideal procedure. Any learning algorithm in practice will not have
access to R or g, and thus must approximate this update with

ŵ(t+1)
..= ŵ(t) − α(t)ĝ(ŵ(t)), (4.3)

where ĝ represents some sample-based estimate of g. Setting ĝ to the sample mean reduces to
ERM-GD, and conditioned on ŵ(t), E ĝ(ŵ(t+1)) = g(ŵ(t+1)), a property used throughout the
literature [34, 22, 19, 35, 16, 30]. While convenient from a technical standpoint, there is no
conceptual necessity for ĝ to be unbiased. More realistically, as long as ĝ is sharply distributed
around g, then an approximate first-order procedure should not deviate too far from the ideal,
even if these estimators are biased. An outline of such a routine is given in Algorithm 2.

Algorithm 2 Outline of robust gradient descent (rgd)
for t ∈ {0, 1, . . . , T − 1} do

D(t) ← {l′(ŵ(t); zi)}ni=1 . Update loss gradients.
σ̂(t) ← rescale(D(t)) . Eqn. (4.5); scale for truncation.
θ̂(t) ← locate(D(t), σ̂(t)) . Eqns. (4.4), (4.6); truncate losses, estimate risk gradient.
ŵ(t+1) ← ŵ(t) − α(t)θ̂(t)

end for

Let us flesh out the key sub-routines used in a single iteration, for the w ∈ Rd case. When
the data is prone to outliers, a “soft” truncation of errant values is a prudent alternative to
discarding valuable data. We saw a rudimentary application of this maxim in section 4.2.1.
This can be done systematically using a convenient class of M-estimators of location and
scale [38, 18]. The locate sub-routine entails taking a convex, even function ρ, and for each
coordinate, computing θ̂ = (θ̂1, . . . , θ̂d) as

θ̂j ∈ arg min
θ∈R

n∑
i=1

ρ

(
l′j(w; zi)− θ

sj

)
, j = 1, . . . , d. (4.4)

Note that if ρ(u) = u2, then θ̂j reduces to the sample mean of {l′j(w; zi)}ni=1, thus to reduce
the impact of extreme observations, it is useful to take ρ(u) = o(u2) as u → ±∞. Here the
sj > 0 factors are used to ensure that consistent estimates take place irrespective of the order
of magnitude of the observations. We set the scaling factors in two steps. First is rescale,
in which a rough dispersion estimate of the data is computed using

σ̂j ∈
{
σ > 0 :

n∑
i=1

χ

(
l′j(w; zi)− γj

σ

)
= 0, j = 1, . . . , d.

}
. (4.5)
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Here χ : R → R is an even function, satisfying χ(0) < 0, and χ(u) > 0 as u → ±∞ to ensure
that the resulting σ̂j is an adequate measure of the dispersion of l′j(w; z) about a pivot point,
say γj = ∑n

i=1 l
′
j(w; zi)/n. Second, we adjust this estimate based on the available sample size

and desired confidence level, as

sj = σ̂j

√
n/ log(2δ−1) (4.6)

where δ ∈ (0, 1) specifies the desired confidence level (1−δ), and n is the sample size. This last
step appears rather artificial, but can be derived from a straightforward theoretical argument,
given in section 4.3.1. This concludes all the steps1 in one full iteration of Algorithm 2 on Rd.

In the remainder of this chapter, we shall investigate the learning properties of this proce-
dure, through analysis of both a theoretical (section 4.3) and empirical (section 4.4) nature.
As an example, in the strongly convex risk case, our formal argument yields excess risk bounds
of the form

R(ŵ(T ))−R∗ ≤ O
(
d log(dTδ−1)

n

)
+O

(
(1− αβ)T

)
with probability no less than 1−δ, for small enough α(t) = α over T iterations. Here β > 0 is a
constant that depends only on R, and analogous results hold without strong convexity. Of the
underlying distribution, all that is assumed is a bound on the variance of l′(·; z), suggesting
formally that the procedure should be competitive over a diverse range of data distributions.

4.3 Theoretical analysis
Here we analyze the performance of Algorithm 2 on hypothesis class W ⊆ Rd, as measured by
the risk achieved, which we estimate using upper bounds that depend on key parameters of
the learning task. A general sketch is given, followed by some key conditions, representative
results, and discussion. All proofs are relegated to 4.6.

Notation For integer k, write [k] ..= {1, . . . , k} for all the positive integers from 1 to k. Let
µ denote the data distribution, with z1, . . . ,zn independent observations from µ, and z ∼ µ
an independent copy. Risk is then R(w) ..= Eµ l(w; z), its gradient g(w) ..= R′(w), and
R∗ ..= infw∈W R(w). P denotes a generic probability measure, typically the product measure
induced by the sample. We write ‖ · ‖ for the usual (`2) norm on Rd. For function F on Rd
with partial derivatives defined, write the gradient as F ′(u) ..= (F ′1(u), . . . , F ′d(u)) where for
short, we write F ′j(u) ..= ∂F (u)/∂uj . In addition to asymptotic notation O and OP [38], we
use . to suppress terms which are not of leading order.

4.3.1 Sketch of the general argument
The analysis here requires only two steps:

• A good estimate ĝ ≈ g implies that approximate update (4.3) is near the optimal update.

• Under variance bounds, coordinate-wise M-estimation yields a good gradient estimate.
1For concreteness, in all empirical tests to follow we use the Gudermannian function [1], ρ(u) =

∫ u
0 ψ(x) dx

where ψ(u) = 2 atan(exp(u))− π/2, and χ(u) = u2/(1 + u2)− c, for a constant c > 0. General conditions on ρ,
as well as standard methods for computing the M-estimates, namely the θ̂j and σ̂j , are given in 4.6.1.
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We are then able to conclude that with enough samples and iterations (but not too many
iterations), the output of Algorithm 2 can achieve an arbitrarily small excess risk. Here we
spell out the key facts which motivate this approach.

For the first step, let w∗ ∈ Rd be a minimizer of R. When the risk R is strongly convex,
then using well-established convex optimization theory [31], we can easily control ‖w∗(t+1)−w

∗‖
as a function of ‖w∗(t) −w∗‖ for any step t ≥ 0. Thus to control ‖ŵ(t+1) −w∗‖, in comparing
the approximate case and optimal case, all that matters is the difference between g(ŵ(t)) and
ĝ(ŵ(t)) (Lemma 28). For the general case of convex R, since we cannot easily control the
distance of the optimal update from any potential minimum, we instead directly compare the
trajectories of ŵ(t) and w∗(t) over t = 0, 1, . . . , T , which once again amounts to a comparison
of g and ĝ (Lemma 30). This inevitably leads to more error propagation and thus a stronger
dependence on T , but the essence of the argument is identical to the strongly convex case.

For the second step, since ĝ is based on a random sample {z1, . . . ,zn}, we need an esti-
mation technique which admits guarantees for any choice of w, with high probability over the
random draw of this sample. A basic requirement is that

P {‖ĝ(w)− g(w)‖ ≤ ε} ≥ 1− δ, ∀w ∈ W. (4.7)

Then running Algorithm 2 for T steps, we can invoke (4.7) once for each step, and use a union
bound to get a 1 − Tδ event on which ŵ(T ) closely approximates the optimal GD output,
up to the accuracy specified by ε. Naturally this ε will depend on confidence level δ, which
implies that to get 1− δ confidence intervals, the upper bound in (4.7) will depend on T . As
an example, assume we were to run ERM-GD, namely using an empirical mean estimate of
the gradient. Using Chebyshev’s inequality,2 with probability 1 − δ all we can guarantee is
ε ≤ O(

√
Td/(nδ)). On the other hand, with a reasonable ancillary estimate of the gradient

variance, one can readily construct a stronger estimator using a smooth truncation scheme as
in the locate sub-routine of Algorithm 2. One important property of ρ in (4.4) is that we
can show

− log(1− u+ Cu2) ≤ ρ′(u) ≤ log(1 + u+ Cu2), ∀u ∈ R (4.8)

for a fixed C > 0, a simple generalization of the key property utilized by Catoni [9]. For the
Gudermannian function (section 4.2.2 footnote), we can take C ≤ 2, with the added benefit
that ρ′ is bounded and increasing. As to the quality of these estimates, note that they are
distributed sharply around the risk gradient, as follows.

Lemma 25 (Concentration of M-estimates). For each coordinate j ∈ [d], the estimates θ̂j of
(4.4) satisfy

P
{

1
2 |θ̂j − gj(w)| ≤

C varµ l′j(w; z)
sj

+ sj log(2δ−1)
n

}
≥ 1− δ, (4.9)

for large enough n and sj.

To get the tightest possible confidence interval as a function of sj > 0, we must set

s2
j =

Cn varµ l′j(w; z)
log(2δ−1) ,

from which we derive (4.6), with σ̂2
j corresponding to a computable estimate of varµ l′j(w; z). If

the variance over all choices ofw is bounded by some V <∞, then up to the variance estimates,
2In the statistics and probability literature, this is often called Markov’s inequality.
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we have ‖ĝ(w) − g(w)‖ ≤ O(
√
dV log(2dδ−1)/n), with ĝ = θ̂ from Algorithm 2, yielding a

bound for (4.7) free of w. This log(T/δ) dependence provides an exponential improvement
over the T/δ dependence in the case of ERM-GD, and an appealing formal motivation for
using M-estimates of location as an alternative strategy.

4.3.2 Conditions and results
On the learning task, we make the following assumptions.

(A1) Risk R(·) is to be minimized over closed, convex W ⊆ Rd.

(A2) R is λ-smooth, convex, and continuously differentiable on W.

(A3) There exists w∗ ∈ W at which g(w∗) = 0.

(A4) Distribution µ satisfies varµ l′j(w; z) ≤ V <∞, for all w ∈ W, j ∈ [d].

Algorithm 2 is run following (4.4), (4.5), and (4.6) as specified in section 4.2. For rescale,
the choice of χ is only important insofar as the scale estimates (the σ̂j) should be moderately
accurate. To make the dependence on this accuracy precise, take constants cmin, cmax > 0
such that

cmin
√

varµ l′j(w; z) ≤ σ̂j ≤ cmax
√

varµ l′j(w; z), j ∈ [d] (4.10)

for all choices of w ∈ W, and write c0 ..= (cmax + C/cmin). For 1 − δ confidence, we need a
large enough sample; more precisely, for each w, it is sufficient if

1
4 ≥

C log(2δ−1)
n

(
1 +

C varµ l′j(w; z)
σ̂2
j

)
, j ∈ [d]. (4.11)

For simplicity, fix a small enough step size,

α(t) = α,∀ t ∈ {0, . . . , T − 1}, α ∈ (0, 2/λ). (4.12)

Dependence on initialization is captured by R0 ..= R(w∗(0))−R∗, and D0 ..= ‖w∗(0)−w
∗‖. Under

this setup, we can control the estimation error.

Lemma 26 (Accuracy of gradient estimates). For each step t = 0, . . . , T − 1 of Algorithm 2,
we have

‖θ̂(t) − g(ŵ(t))‖ ≤ 2c0

√
dV log(2dδ−1)

n

with probability no less than 1− δ.

Remark 27 (Projected descent case). The above analysis proceeds on the premise that ŵ(t) ∈ W
holds after all the updates, t ∈ [T ]. To enforce this, a standard variant of Algorithm 2 is to
update as

ŵ(t+1) ← πW
(
ŵ(t) − α(t)θ̂(t)

)
, t ∈ {0, . . . , T − 1}

where πW(u) ..= arg minv∈W ‖u − v‖. By (A1), this projection is well-defined [26, Sec. 3.12,
Thm. 3.12]. Using this fact, it follows that ‖πW(u) − πW(v)‖ ≤ ‖u − v‖ for all u,v ∈ W,
by which we can immediately show that Lemma 30 holds for the projected robust gradient
descent version of Algorithm 2.
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Under strongly convex risk In addition to assumptions (A1)–(A4), assume that R is
κ-strongly convex. In this case, w∗ in (A3) is the unique minimum. First, we control3 the
estimation error by showing that the approximate update (4.3) does not differ much from the
optimal update (4.2).

Lemma 28 (Minimizer control). Assume that (4.7) holds with bound ε. Consider (4.3), with
α(t) = α such that 0 < α < 2/(κ+ λ). Write β ..= 2κλ/(κ+ λ). Then, with probability no less
than 1− Tδ, we have

‖ŵ(T ) −w∗‖ ≤ (1− αβ)T/2D0 + 2ε
β
.

With control over the distance of the robust GD approximation from the risk minimizer, the
smoothness of R implies a risk bound.

Theorem 29 (Excess risk bounds). Write ŵ(T ) for the output of Algorithm 2 after T iterations,
run such that (4.11)–(4.12) hold, with step size α(t) = α for all 0 < t < T , as in Lemma 28.
It follows that

R(ŵ(T ))−R∗ ≤ λ(1− αβ)TD2
0 + 16λc2

0
β2

dV log(2dTδ−1)
n

with probability no less than 1− δ.

Let us discuss these formal guarantees. There are two terms in the upper bound of Theorem
29: first an optimization term which decreases in T , and an estimation term which decreases
in n, and increases in T . We intuitively expect that for any fixed n, taking T too large should
result in overfitting. This is reflected by the tradeoff between optimization error and estimation
error here. Notably, however, the impact of taking too large here (a log(T ) factor) is much less
than the case of running ERM-GD (a T factor), as we would expect. As the optimization term
shows linear convergence (shrinks exponentially with T ), T only needs to be large enough to
make up for the initial error D0, and thus we expect fast convergence. That said, even letting
T → ∞ as n → ∞, as long as T = o(exp(n)) holds, an arbitrarily small excess risk can be
achieved. Furthermore, since α(t) requirements are rather lenient, even a rather large pre-fixed
step-size should be expected to perform well. Finally, we note that up to variance estimates, all
we assume is finite second-order moments. If we assume finite kurtosis, the argument of Catoni
[9] can be used to create analogous guarantees for an explicit scale estimation procedure. Most
importantly, since the guarantees are available whether the data is sub-Gaussian or heavy-
tailed with infinite higher-order moments, we have the important implication of robustness to
the underlying distribution.

A related question is that of learning efficiency: are there important learning settings in
which running only a few iterations is sufficient to match or outperform competing methods?
Certainly, it would be desirable if it arrives at a better solution, faster, but this hinges on
the estimate sharpness and initialization. How sensitive is this performance to initial ŵ(0)
settings? Can c0 be assumed small using dispersion-based estimates as in Algorithm 2? Are
there problem settings in which the poor accuracy of ERM-GD makes a substantial impact on
learning quality and efficiency? All of these points are addressed in the numerical experiments
of section 4.4.

3This useful fact is a modified version of related results due to Chen et al. [10], whose preprint appeared
after the preparation of our original manuscript. Using strong convexity makes for a much stronger argument
than is possible in the convex case, as we discuss below.
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Without strong convexity When the risk is not strongly convex, it becomes difficult to
control the distance between ŵ(t) in (4.3) and any particular w∗ minimizing R. Here we adopt
the tactic of directly comparing the trajectories of our approximate ŵ(t) and the ideal procedure
w∗(t) given in (4.2), when initialized at a common point. Error propagates over iterations, but
we can use a good gradient estimate to mitigate this effect.

Lemma 30 (Comparing trajectories). Comparing (4.2) and (4.3), assume that ĝ satisfies
(4.7). Setting α(t) ∈ (0, 1) for all 0 ≤ t < T , and initializing to ŵ(0) = w∗(0), with probability
at least 1− Tδ, we have

‖ŵ(T ) −w∗(T )‖ ≤ ε
(
T−1∏
t=0

(1 + λα(t))− 1
)
. (4.13)

Using this property, we can obtain risk bounds analogous to those in the strong convexity
scenario.

Corollary 31. Run Algorithm 2 for T iterations as in Theorem 29, and fixing arbitrary con-
stant q ≥ 1, take step size as λα ≤ exp(log(q + 1)/T )− 1. We then have that

R(ŵ(T ))−R∗ . 2
√

2λc0q

(
CdV log(2dTδ−1)τ(T, α)

n

)1/2

+ τ(T, α)

with probability no less than 1− δ, where

τ(T, α) ..=
(
Tα(2− λα)

2D2
0

+R0

)−1
.

Here we discuss these results. The general form of the excess risk bound is similar to
Theorem 29, though the impact of running too many iterations is decidely stronger. A more
accurate approximation of ŵ(t) ≈ w∗(t) at each step implies that we can run more iterations
or take larger steps, which in turn controls how close the ideal w∗(T ) gets to a risk minimizer.
How do settings of T , α, and the sample size n interact? As an illustrative example, perhaps
the simplest setting is to fix α = 0.1 for all n choices. Since this step size is rather large, error
propagation may be significant, and one naturally expects that this algorithm should achieve
its best performance after relatively few iterations. More precisely: to make use of a α = 0.1
rate for any n, and achieve a O(log(n)/

√
n) rate on the estimation error term, it is sufficient to

set T = 10 log(log(n)), since letting q = log(n)− 1 then implies exp(log(q+ 1)/T )− 1 ≈ 0.105.
Needless to say, for pre-fixed α, T can only grow very slowly in n. On the other hand, if
α = 1/

√
n, the results hold for all T ≤ 1/ log2(1 + n−1/2), a large relaxation. One would

expect that taking T too large (stopping late) leads to overfitting, and these results support
this intuition, with T taking the “regularizer” role as reported by Lin and Rosasco [25].

With all this understood, the particularly strong dependence on T is expected to be an
artifact of the analysis technique, though the degree to which this can be improved is a matter
of interest. The implications, however, are natural, as having only convexity makes minimizing
R harder even when it is known, and thus a fortiori the approximate optimization required
in risk minimization is also made substantially more difficult. If this dependence is not tight,
is there much of a penalty for taking T too large? Since stopping conditions are non-obvious
and problem-specific, one hopes that running until numerical convergence would not be sub-
optimal. The key to this is whether our algorithm is accurate enough to “follow” the ideal
algorithm closely for the first few iterations; if we can quickly get to a good region where ‖g(·)‖
is very small, then we would not expect much damage from running the routine too long.
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With prior information An interesting concept in machine learning is that of the relation-
ship between learning efficiency, and the task-related prior information available to the learner.
In the previous results, the learner is assumed to have virtually no information beyond the
data available, and the ability to set a small enough step-size. What if, for example, just the
gradient variance was known? A classic example from decision theory is the dominance of the
estimator of James and Stein over the maximum likelihood estimator, in multivariate Normal
mean estimation using prior variance information. In our more modern and non-parametric
setting, the impact of rough, data-driven scale estimates was made explicit by the factor c0.
Here we give complementary results that show how partial prior information on the distribution
µ can improve learning.

Lemma 32 (Accuracy with variance information). Run Algorithm 2, with σ̂(t) = (σ̂1, . . . , σ̂d)
modified to satisfy σ̂2

j = C varµ l′j(ŵ(t); z), j ∈ [d] over each step t = 0, . . . , T − 1. It follows
that

‖θ̂(t) − g(ŵ(t))‖ ≤ 4
(
C trace(Σ(t)) log(2dδ−1)

n

)1/2

with probability no less than 1− δ, where Σ(t) is the covariance matrix of l′(ŵ(t); z).

One would expect that with sharp gradient estimates, the variance of the updates should be
small with a large enough sample. Here we show that the procedure stabilizes quickly as the
estimates get closer to an optimum.

Theorem 33 (Control of update variance). Run Algorithm 2 as in Lemma 32, with arbitrary
step-size α(t). Then, for any t < T , taking expectation with respect to the sample {zi}ni=1,
conditioned on ŵ(t), we have

E ‖ŵ(t+1) − ŵ(t)‖2 ≤ 2α2
(t)

(
32Cd trace(Σ(t))

n
+ ‖g(ŵ(t))‖2

)
.

In addition to these results, one can prove an improved version of Theorem 29 and Corollary
31, in a perfectly analogous fashion, using Lemma 32.

4.3.3 Uniform confidence
In our general sketch of 4.3.1, recall that we considered the case of high-probability events
pointwise in the parameter w to be determined. That is, we showed that our algorithm of
interest satisfied (4.7). Certainly, it is natural to ask whether the same algorithm can satisfy
a uniform version of such a result, namely whether we can show

P
{

sup
w∈W

‖ĝ(w)− g(w)‖ ≤ ε
}
≥ 1− δ (4.14)

holds for some ε that depends on the sample size and task dimension. If such a result was
available for the analysis in 4.3.2, the dependence on T in the estimation error terms (the log(T )
factors) could be removed, and in the strongly convex case this would remove all tradeoffs,
allowing the algorithm to freely run until convergence regardless of the sample size.

Obtaining such a result is more involved than the pointwise case. For our Algorithm 2 in
4.2.2, we make use of an even function ρ with a derivative ρ′ that is increasing on R+, though
the slope of that derivative monotonically tapers off in the limit, i.e., ρ′′(u)→ 0 as u→ ±∞.
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The main potential problem can be illustrated as follows. If we place no restrictions onW ⊆ Rd
or µ, then for arbitrarily large constant A > 0, we can always find a “bad” w ∈ W such that
‖ĝ(w) − l′(w; zi)‖ > A for a fixed fraction of the indices i ∈ [n], with probability over 50%.
This gets in the way of a high-probability uniform bound on supw∈W ‖ĝ(w)− g(w)‖.

To deal with this, we must ensure the scaling parameters sj > 0 used in locate are large
enough that for almost all samples z1, . . . ,zn, and each choice of w ∈ W, we have

|θ̂j(w)− l′j(w; zi)| ≤ sj , j ∈ [d]

for at least one i ∈ [n]. Here we have made the dependence of θ̂j on w explicit for clarity. Note
that we can still deal with an arbitrarily large fraction of errant data. As long as a certain
fraction, however small, of the data is within the limits set by sj , Algorithm 2 looks to behave
as we would hope. This analysis is provided in the following section, which can be skipped by
the reader not interested in chiefly results of a chiefly technical nature. For reference, we note
that under this additional assumption, it follows that

sup
w∈W

‖θ̂(w)− g(w)‖ . O
(
d3/2 log(dδ−1)∆√

n

)
+OP (1) (4.15)

with probability no less than 1 − δ. This result is given in Theorem 42. Here . suppresses
terms of O(1/n) order, ∆ is the diameter of W, and OP (1) is stochastic asymptotic notation
for a term bounded in probability, which can ordinarily be taken small. Further investigation
of related algorithms and their uniform estimation error is interesting from both technical and
conceptual standpoints.

Technical preparation Our generic data shall be denoted by z ∈ Z. Let µ denote a
probability measure on Z, equipped with an appropriate σ-field. Data samples shall be assumed
independent and identically distributed (iid), written z1, . . . ,zn. We shall work with loss
function l : Rd×Z → R+ throughout, with l(·; z) assumed differentiable for each z ∈ Z. Write
P for a generic probability measure, most commonly the product measure induced by the
sample. Let f : Z → R be an measurable function. Expectation is written Eµ f(z) ..=

∫
f dµ,

with variance varµ f(z) defined analogously.
Denote the Lp norms (1 ≤ p < ∞) under µ by ‖f‖p = (Eµ |f(z)|p)1/p. For the L∞ norm

taken over some Z ⊆ Z, write ‖f‖Z ..= supz∈Z |f(z)|. With these norms we specify the usual
function spaces Lp(µ) = {f : ‖f‖p <∞}. We shall also make use of metrics on subsets of these
spaces, denoted by dp(f, g) ..= ‖f−g‖p and d∞(f, g) ..= ‖f−g‖∞. For d-dimensional Euclidean
space Rd, the standard (`2) norm shall be denoted ‖·‖ unless otherwise specified. For function F
on Rd with partial derivatives defined, write the gradient as F ′(u) ..= (F ′1(u), . . . , F ′d(u)) where
for short, we write F ′j(u) ..= ∂F (u)/∂uj . In addition to asymptotic notation O and OP [38], we
use . to suppress terms which are not of leading order. For integer k, write [k] ..= {1, . . . , k}
for all the positive integers from 1 to k. Risk shall be denoted R(w) ..= Eµ l(w; z), and its
gradient g(w) ..= R′(w).

Smoothness and convexity of functions shall also be utilized. For convex function F on
convex set W, say that F is λ-Lipschitz if, for all w1,w2 ∈ W we have |F (w1) − F (w2)| ≤
λ‖w1−w2‖. We say that F is λ-smooth if F ′ is λ-Lipschitz. Finally, F is strongly convex with
parameter κ > 0 if for all w1,w2 ∈ W,

F (w1)− F (w2) ≥ 〈F ′(w2),w1 −w2〉+ κ‖w1 −w2‖2

for any norm ‖ · ‖ on W, though we shall be assuming W ⊆ Rd. If there exists w∗ ∈ W such
that F ′(w∗) = 0, then it follows that w∗ is the unique minimum of F on W.
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Regarding numerical constants, there are numerous constant coefficients which appear
throughout different results, and to keep each result presentable, we shall re-use characters
for representing these constants, and they should not be taken to be common across distinct
results unless otherwise noted. Precise values of these constants are discussed in the proofs.

Desired error estimates We assume that we can differentiate under the integral sign in
each coordinate [3, 37], namely that

g(w) =
(

Eµ
∂l(w; z)
∂w1

, . . . ,Eµ
∂l(w; z)
∂wd

)
. (4.16)

This ensures that a good estimate of Eµ l
′(w; z) will imply a good estimate of g. In this chapter,

we take the naive approach of constructing robust estimates in a by-coordinate fashion. Denote
the jth component of ĝ(w) and g(w) by ĝj and gj respectively. Note that if

P {|ĝj − gj |W ≤ ε} ≥ 1− δ/d

for arbitrary j ∈ [d], an application of a union bound yields

P
{
‖ĝ − g‖W ≤

√
dε
}
≥ 1− δ. (4.17)

Our objective, then, must be to control |ĝj(·)−gj(·)| in the L∞ norm onW, a random quantity
depending on the sample.

A useful class of estimators We shall leverage a special type of M-estimator here, built
using the following convenient class of functions.
Definition 34 (Function class for location estimates). Let ρ : R→ [0,∞) be an even function
(ρ(u) = ρ(−u)) with ρ(0) = 0 and the following properties. Denote ψ(u) ..= ρ′(u).

1. ρ(u) = O(u) as u→ ±∞.

2. ρ(u)/(u2/2)→ 1 as u→ 0.

3. ψ′ > 0, and for some C > 0, and all u ∈ R,

− log(1− u+ Cu2) ≤ ψ(u) ≤ log(1 + u+ Cu2).

Of particular importance in the proceeding analysis is the fact that ψ = ρ′ is bounded, mono-
tonically increasing and Lipschitz on R, plus the upper/lower bounds which let us generalize
the technique of Catoni [9].
Example 35 (Valid ρ choices). In addition to the Gudermannian function (section 4.2.2 foot-
note), functions such as 2(

√
1 + u2/2−1) and log cosh(u) are well-known examples that satisfy

the desired criteria. Note that the wide/narrow functions of Catoni do not meet all these cri-
teria, nor does the classic Huber function. See Appendix A.1 for more.
For random variable x ∼ ν, and iid sample x1, . . . , xn ∈ R, define

θ∗ ..= arg min
θ

Eν ρs(x− θ) (4.18)

θ̂ ..= arg min
θ

1
n

n∑
i=1

ρs(xi − θ) (4.19)

where ρs(u) ..= ρ(u/s), and s > 0 is a scaling parameter. Note that θ∗ satisfies Eν ψs(x−θ∗) = 0
and analogously for θ̂ under the empirical measure, thus root-finding and minimizing are
equivalent here. Both θ∗ and θ̂ are concentrated around Eν x. This was shown in Lemma 25,
and we give a more general statement here.
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Lemma 36. Given an n-sized sample from x ∼ ν, and assuming Eν x
2 <∞, we have

P
{

1
2 |θ̂ −Eν x| >

C varν x
s

+ s log(δ−1)
n

}
≤ 2δ

whenever 1/4 ≥ C2(varν x)/s2 + C log(δ−1)/n. Furthermore, we have that

|θ∗ −Eν x| ≤
2C varν x

s
.

For cleaner notation in the following results, we shall proceed without loss of generality taking
C = 1/2.

Uniform control In what follows, we spend some time developing more general results of
a technical nature. Doing so yields conditions on the scale s and distribution µ under which
uniform control of the estimation error ‖ĝ − g‖ is possible. Let F ⊆ L2(µ) be a general class
of functions. To get started, denote

θf ..= arg min
θ

Eµ(f(z)− θ)2 = Eµ f(z) (4.20)

θ∗f
..= arg min

θ
Eµ ρs (f(z)− θ) (4.21)

θ̂f ..= arg min
θ

1
n

n∑
i=1

ρs (f(zi)− θ) (4.22)

for each f ∈ F . Note the dependence of θ∗ and θ̂ on s, though this is not made explicit in the
notation. We will need to restrict F and µ to some degree, and this can be done with mild
bounds on the low-order moments. More precisely, we shall require that there exist v < ∞
such that

varµ f(z) ≤ v, ∀f ∈ F . (4.23)

By design, ρs(·) closely approximates (·)2/2 as s→∞, which suggests that θ∗f ≈ θf should be
sharp irrespective of f , for a sufficiently regular function class. By Lemma 36,

(4.23) =⇒ |θ∗ − θ|F ≤
v

s
. (4.24)

Let us introduce some additional notions. The empirical process {Xf (θ) : f ∈ F} with
random variables defined by

Xf (θ) ..= s

(
1
n

n∑
i=1

ψs (f(zi)− θ)−Eµ ψs (f(z)− θ)
)
, θ ∈ R

is an object of general technical interest, and for pre-fixed θ, bounds on the increments of this
process were obtained by Brownlees et al. [7]. Our focus is on a closely related new setting,
in which the θ value is not pre-fixed, but also varies with f , though in a specific way. In
particular, our focus is the new process {X∗f : f ∈ F} with

X∗f
..= Xf (θ∗f ) = s

n

n∑
i=1

ψs
(
f(zi)− θ∗f

)
.
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We are interested in controlling |X∗|F = supf∈F |X∗f |, which can be done up to finite precision
as follows. Fixing any f0 ∈ F , we have

|X∗|F ≤ |X∗ −X∗f0 |F + |X∗f0 |. (4.25)

On the event {|X∗|F ≤ ε}, one expects that θ̂f and θ∗f will tend to be close for any choice of
f , under proper scaling. The following result makes this explicit.

Lemma 37 (Control of uniform estimation error). Fix arbitrary ε > 0, and condition on
{|X∗|F ≤ ε}. Under appropriate scaling as specified by event E in (4.46), there exists a
constant c > 0 such that

|θ̂ − θ∗|F ≤ cε.

Under the conditions of Lemma 37 then, using Lemma 36 and (4.23), we have with probability
no less than P{|X∗|F ≤ ε} that

|θ̂ − θ|F ≤ |θ̂ − θ∗|F + |θ∗ − θ|F ≤ cε+ v/s (4.26)

where s > 0 is noted to control the bias induced by using ρs instead of the squared error.
It only remains to control |X∗ − X∗f0

|F . Using the (deterministic) M-estimate θ∗f , we
introduce a metric d∗, defined by

d∗(f, g) ..= |θ∗f − θ∗g |, f, g ∈ F . (4.27)

By the properties of ρ (Defn. 34), for any f ∈ F , the value θ∗f is uniquely determined, and thus
f = g =⇒ d∗(f, g) = 0. Furthermore, d∗(f, h) ≤ d∗(f, g) + d∗(g, h) for any f, g, h ∈ F , and d∗
is symmetric in its arguments. Strictly speaking, however, d∗ is a quasi-metric, due to the fact
that d∗(f, g) = 0 need not imply f = g. To see this, say for example that f(z) has a symmetric
distribution about 0. Let g(z) ..= kf(z) for some k 6= 0. Then θ∗g = kEµ f(z) = 0 = θ∗f ,
but f 6= g. In any case, it has the properties we require. In particular, this metric is used to
develop a Bernstein-type inequality for the increments of X∗f .

Lemma 38 (Increment tails). For any f, g ∈ F , we have

P
{
|X∗f −X∗g | > t

}
≤ 2 exp

(
−nt2

2 (V (f, g) + tb(f, g)/3)

)
(4.28)

where V (f, g) ..= 2(d2(f, g)2 + d∗(f, g)2) and b(f, g) ..= d∞(f, g) + d∗(f, g).

This inequality allows us access to metric entropy estimates, via a chaining argument in a
form pioneered by Talagrand [36]. To give such a result concisely, some additional notation is
required. Let ∆(F ;D) denote the diameter of F in arbitrary metric D. We use N(ε,F , D)
to denote the covering number of F at radius ε in metric D [39, Section 2.1], and denote the
covering integral by

Eβ(D) ..=
∫ ∆(F ;D)

0
(logN(ε,F , D))1/β dε (4.29)

where dependence on F is suppressed in the notation.

Theorem 39 (Entropy-based bounds). Fixing any f0 ∈ F and δ ∈ (0, 1), there exists a positive
constant c such that

|X∗ −X∗f0 |F ≤ c log(δ−1)
(
E1(d∞) + E1(d∗)

n
+ E2(d2) + E2(d∗)√

n

)
with probability no less than 1− δ.
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Returning to the risk With these general results in hand, let us return to the context of
approximate risk minimization. Here the general function class F corresponds to

F = {l′j(w; ·) : w ∈ W}, j ∈ [d].

This is a class of functions on Z, indexed by the parameter space W. Using this new index,
for θf we write θw = Eµ l

′
j(w; ·), and so forth for θ̂w and θ∗w. The estimate θ̂w is used as our

gradient ĝj , and corresponds directly to the locate step (4.4) given in our overview of the
algorithm. To evaluate the Eβ(·) terms in Theorem 39, note that the d∞ on F in our setting
is

d∞(w1,w2) = sup
z
|l′j(w1; z)− l′j(w2; z)|,

noting that d∞ is a function on F × F , despite the notation. Analogous statements hold for
d2 and d∗(w1,w2) = |θ∗w1 − θ

∗
w2 |. Assuming l(·; z) is smooth in its parameters, we have for any

z that there exists a c(z) > 0 such that for all w1,w2 ∈ W,

|l′j(w1; z)− l′j(w2; z)| ≤ c(z)‖w1 −w2‖.

Note that if supz c(z) ≤ c <∞, it follows that

d∞(w1,w2) ≤ c‖w1 −w2‖ (4.30)

and similarly if Eµ c(z) ≤ c <∞, we have d2(w1,w2) ≤ c‖w1,w2‖, and d∗ can be controlled by
both of these distances. Such assumptions hold under very weak assumptions, as the following
example shows.
Example 40 (Uniform Lipschitz property). Consider the agnostic regression task, where z =
(y,x), and our function approximation is done with a linear model. Under quadratic loss, we
have l′(w; z) = −(y − 〈w,x〉)x, and thus in the Euclidean norm we have

‖x(〈w2 −w1,x〉)‖ ≤ ‖x‖2‖w1 −w2‖.

If ‖x‖ is bounded byM , then (4.30) is implied, and holds with c ≤M2. It should be remarked
that this holds without any assumptions on y. That is, the response (and consequently the
noise distribution) need not be bounded or even sub-Gaussian.

For any metric space F with arbitrary metrics D1 and D2, if D1 ≤ D2, then any ε-cover in
metric D2 is an ε-cover in metric D1. It follows that N(ε,F , D1) ≤ N(ε,F , D2). In our setting,
this implies that if W is contained in the unit ball in Euclidean metric ‖ · ‖, this amounts to a
c-radius ball in the scaled metric of (4.30), and thus we have

N(ε,F , d∞) ≤ N(ε,W, c‖ · ‖) ≤
(3c

2ε

)d
(4.31)

for all ε ∈ (0, c), where the latter inequality is a basic property of d-dimensional Euclidean
space [21]. One gets clean results for this case, as follows.

Corollary 41. Let F = {l′j(w; ·) : w ∈ W}, writing ∆ ..= ∆(W; ‖ · ‖), and assume (4.30)
holds for W ⊂ Rd. Then there exist positive constants a and c such that

|X∗ −X∗f0 |F ≤ cd log(δ−1)
(
a∆2 + ∆ log(a)

n
+ ∆√

nd

(√
log(a) + a

√
π

2

))

with probability no less than 1− δ.
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Let us now connect all the steps to illustrate the property of interest. On the underlying
learning task, we assume that ∆(W; ‖ · ‖) <∞ and l′ satisfies (4.30), without loss of generality
assuming c = 1. On the learning procedure, we run Algorithm 2, with scaling s = O(

√
vn)

such that the premise of Lemma 37 holds almost surely.

Theorem 42. Under the above assumptions, the estimates of Algorithm 2 satisfy

sup
w∈W

‖θ̂(w)− g(w)‖ . d3/2 log(dδ−1)O
( ∆√

n

)
+OP (1)

with probability no less than 1− δ.

We thus have high-probability bounds on the accuracy, up to an additive term bounded in
probability. This extra term arises as a result of our analysis technique, and sharper bounds
may be available using a different tactic. In any case, this result can be leveraged for any convex
risk to prove risk bounds in the vein of Theorem 29 and Corollary 31, though convergence to
the minimum risk naturally would only be guaranteed when the OP (1) term can be taken
arbitrarily small.

4.4 Empirical analysis
The chief goal of our experiments is to elucidate the relationship between factors of the learning
task (e.g., sample size, model dimension, initial value, underlying data distribution) and the
behaviour of the robust gradient procedure proposed in Algorithm 2. We are interested in
how these factors influence performance, both in an absolute sense and relative to the key
competitors cited in section 4.1.

We have carried out two classes of experiments. The first considers a concrete risk mini-
mization task given noisy function observations, and takes an in-depth look at how each exper-
imental factor influences algorithm behaviour, in particular the trajectory of performance over
time (as we iterate). The latter is an application of the proposed algorithm to the correspond-
ing regression task under a large variety of data distributions, meant to rigorously evaluate the
practical utility and robustness in an agnostic learning setting.

4.4.1 Noisy convex minimization
Experimental setup In this experiment, we construct a risk function taking a canonical
quadratic form, setting R(w) = 〈Σw,w〉/2 + 〈w,u〉 + c, for pre-fixed constants Σ ∈ Rd×d,
u ∈ Rd, and c ∈ R. The task is to minimize R(·) without knowledge of R itself, but rather
only access to n random function observations r1, . . . , rn. These r : Rd → R are generated
independently from a common distribution, satisfying the property E r(w) = R(w) for all w ∈
Rd. In particular, here we generate observations ri(w) = (〈w∗−w,xi〉+ εi)2/2, i ∈ [n], with x
and ε independent of each other. Here w∗ denotes the minimum, and we have that Σ = ExxT .
The inputs x shall follow an isotropic d-dimensional Gaussian distribution thoughout all the
following experiments, meaning Σ is positive definite, and R is strongly convex.

For the bulk of these tests, we run three procedures. First is ideal gradient descent, denoted
gd, which assumes the objective function R known. This corresponds to (4.2). Second, as a
standard approximate procedure (4.3), we use the ERM-GD routine, denoted erm and defined
in (4.1), which approximates the optimal procedure using the empirical risk. Against these
two benchmarks, we compare our Algorithm 2, denoted rgd, as a robust alternative for (4.3).
In addition, we also look at the technique of Brownlees et al. [7], denoted bjl, using a general-
purpose first-order optimizer, and directly compare it with rgd.
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Figure 4.2: Risk as a function of iterations after a common initial point. Each trial corresponds to a new
random sample, and all values on the vertical axis are averaged over 250 trials. Error bars are standard deviation
over trials. Left is Normal noise, right is log-Normal noise. n = 500, d = 2, α(t) = 0.1 for all t.

Several experimental parameters are systematically modified to explore their impact on
algorithm performance. The distribution generating the data {ri}ni=1, sample size n, task
dimension d, and the initialization of ŵ(0) are key parameters of interest. Results for several
settings are given below.

Results: light/heavy-tailed samples We begin with the simplest and most important
question: are there natural learning settings in which rgd outperforms ERM-GD? Also, how
does it fare in situations where ERM is optimal? Under Gaussian noise, ERM-GD is effectively
optimal [25, Appendix C]. We thus consider the case of Gaussian noise (mean 0, standard
deviation 20) as a baseline, and use centred log-Normal noise (log-location 0, log-scale 1.75)
as an archetype of asymmetric heavy-tailed data. We have set w∗ = (1, 1) and initialize
as w∗(0) = w∗ + (Unif[−5, 5],Unif[−5, 5]). Risk results are given in Figures A.18–A.19, with
corresponding sample error results in Figure A.20.

Several observations can be made immediately. In the situation favorable to erm, differences
in performance are basically negligible. On the other hand, in the heavy-tailed setting, the
performance of rgd is superior in terms of quality of the solution found and the variance of the
estimates. Furthermore, we see that at least in the situation of small d and large n, taking T
beyond numerical convergence has minimal negative effect on rgd performance; on the other
hand erm is more sensitive. Comparing true risk with sample error, we see that while there is
some unavoidable overfitting, in the heavy-tailed setting rgd is slower in the rate at which it
departs from the ideal routine.

Results: impact of initialization At this point, we still have little more than a proof of
concept, with rather arbitrary choices of n, d, noise distribution, and initialization method.
We proceed to investigate how each of these experimental parameters impacts performance,
starting with initialization. Given a fixed sample size, how does the quality of the initial guess
impact estimates in the noisy convex minimization task? We consider three initializations of
the form w∗ + Unif[−∆,∆], with ∆ = (∆1, . . . ,∆d), values ranging over ∆j ∈ {0.5, 5, 10},
j ∈ [d], where larger ∆j naturally correspond to potentially worse initialization. Figure A.21
displays the risk achieved by the two competing techniques under the same settings, with
log-Normal noise.

Some interesting observations can be made here. That rgd achieves a better solution on
average in all settings is immediate. As well, its degradation in terms of departure from the
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Figure 4.3: Results of Figure A.18, given in log10 scale. Error bars, say log10(u)± ε, are computed as relative
error, namely ε = sd(u)/(u log(10)).

ideal routine (gd here) is much slower than erm, as we would expect from Lemmas 26 and
30. Finally, here we see impact of taking T large for both methods. When the initial value
is very good (∆j = 0.5 case), the poor estimates of the ERM-based routine only make the
solution worse on average, while rgd gets no worse, and even can improve on this solution if
stopped early enough. This of course suggests that the tradeoff induced by T in our estimation
error bounds is not superfluous. Considering the discussion of section 4.3.3, it may be that
Algorithm 2 as in section 4.2.2 satisfies (4.7), but not (4.14).

Results: impact of distribution The process generating the sample, namely the under-
lying data distribution, plays an equally critical role in algorithm performance. In the noisy
convex minimization task here, we can observe performance changes that occur as we modify
the data distribution, all while keeping the exact same risk function. This means the underlying
optimization problem is the same, and all that changes is the statistical estimation side, high-
lighting the divergence between optimal oracle-based procedures and approximate procedures
under less congenial data. Here we run the two algorithms of interest from common initial
values as in the first experimental setting, and measure performance changes as the noise dis-
tribution is modified. We consider six situations, three for Normal noise, three for log-Normal
noise. The location and scale parameters for the former are respectively (0, 0, 0), (1, 20, 34);
the log-location and log-scale parameters for the latter are respectively (0, 0, 0), (1.25, 1.75, 1.9).
Results are given in Figure A.22.

Looking first at the Normal case, where we expect ERM-based methods to perform well, we
see that rgd is able to match erm in all settings, and even tends to out-perform it in the high-
variance setting. In the log-Normal case, as our previous example suggested, the performance
of erm degrades rather dramatically, and a clear gap in performance appears. This flexibility of
rgd in dealing with both symmetric and asymmetric noise, both exponential and heavy tails,
is indicative of the robustness suggested by the weak conditions of section 4.3.2. In addition,
it suggests that our simple dispersion-based technique (σ̂j settings in 4.2.2) provides tolerable
accuracy, implying a small enough c0 factor, and reinforcing the insights from the proof of
concept case in Figures A.18–A.20.

Results: impact of sample size Since the true risk is unknown, the size and quality of the
sample {zi} is critical to the output of all learners. To evaluate learning efficiency, we examine
how performance depends on the available sample size, with dimension and all algorithm
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Figure 4.4: Sample error gap for the tests shown in Figure A.18, computed as R̂(ŵ) − R̂(w∗), with R̂(w) =
n−1∑n

i=1 l(w; zi). First row is original coordinates, second row is log10 scale. The latter graphs stop once the
gap (before log transform) becomes negative. Left is Normal noise, right is log-Normal noise.

parameters fixed. Figure A.23 gives the accuracy of erm and rgd in tests analogous to those
above, using common initial values across methods, and n ∈ {25, 50, 100, 200, 400, 800}.

Both algorithms naturally show monotonic performance improvements as the sample size
grows, but the most salient feature of these figures is the speed with which the performance of
erm saturates, and its degradation as T gets large in the small sample case. On the other hand,
under the exact same settings, rgd shows essentially monotonic improvement over iterations.
It is also evident that the robust GD approach realizes better performance than ERM-GD with
less samples, implying better learning efficiency in the heavy-tailed setting.

Results: impact of dimension The role of dimension d, namely the number of parameters
to be determined, plays a key role in practice and in theory, as seen in the error bounds of
section 4.3.2. Fixing the sample size and all algorithm parameters as above, we investigate the
relative difficulty each algorithm has as the dimension increases. Figure A.24 shows the risk
of erm and rgd in tests just as above, with d ∈ {2, 4, 8, 16, 32, 64}.

Here we see that both algorithms degrade monotonically in the dimension, just as the
optimal gd does. We see that rgd maintains superiority over all d settings. In contrast to erm,
whose performance hits bottom very quickly in high dimensions, rgd continues to improve for
more iterations, presumably due to updates which are close to that of the optimal (4.2).

Results: against implicit robust loss minimizers Here we compare the performance
of the robust GD given in Algorithm 2 with the procedure analyzed by Brownlees et al. [7]
(denoted bjl henceforth). The former algorithm was designed using the exact same principles
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Figure 4.5: Risk as a function of iterations, in log10 scale. Values are averaged over 250 trials. The “del”
refers to ∆j . n = 500, d = 2, α(t) = 0.1 for all t.
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Figure 4.6: Risk as a function of iterations, in log10 scale. Values averaged over 250 trials. Here “lnorm” and
“norm” denote log-Normal and Normal samples, with “low,” “med,” and “high” designating the three parameter
settings. n = 500, d = 2, α(t) = 0.1 for all t.

that makes their algorithm formally appealing, but with the merit of being far more compu-
tationally straightforward. Indeed, implementing their procedure as-is can turn a convex risk
minimization into a non-convex minimization task, and requires general-purpose non-linear
optimization. Such procedures can be sensitive to initial values, are at risk of getting stuck
near sub-optimal local minima, and may require a large number of iterations to complete.
To give a simple comparison between bjl and rgd, we run multiple trials of the same task,
starting both routines at the same (random) initial value each time, generating a new sample,
and repeating this process for d ∈ {2, 4, 8, 16, 32, 64}, as in the tests above.

To implement bjl, we use the conjugate gradient method of Fletcher and Reeves [15],
as implemented in the optim function of the R stats library [33], using the recommended
stopping conditions. This gives us a standard first-order technique for minimizing the bjl
objective. To see how well our procedure can compete with a pre-fixed max iteration number,
we set T = 25 for all settings. Computation time is computed using the microbenchmark R
library, under which multiple runs of each trial are conducted internally; the median of these
times is used as the representative time for each trial. Results are given in Figure A.25.

In the low-dimensional setting, the behaviour of both routines is similar, but as the number
of parameters increases, bjl tends to deteriorate much faster, with a clear reduction in stability
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Figure 4.7: Risk as a function of iterations, in log10 scale. Values are averaged over 250 trials. The black
horizontal rules are set for reference between the two plots, whose coordinates differ slightly. d = 2, α(t) = 0.1
for all t.
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Figure 4.8: Risk as a function of iterations, in log10 scale. Values averaged over 250 trials. The black horizontal
rules are set for reference between the two plots, whose coordinates differ slightly. n = 500, α(t) = 0.1 for all t.

(increased variance) and a large increase in computation time. On the other hand, even with
very few iterations and a pre-fixed stopping rule, the simple rgd achieves smaller risk and
greater stability. Let us remark that since this rgd is a stable prototype implementation in R,
a “production” version can naturally be made much more efficient.

4.4.2 Regression task
Experimental setup In this experiment, we apply our algorithm to a general regression
task, under a wide variety of data distributions, and compare its performance against stan-
dard regression algorithms, both classical and modern. For each experimental condition, and
for each trial, we generate n training observations of the form yi = xTw∗+ εi, i ∈ [n]. Distinct
experimental conditions are delimited by the setting of (n, d) and µ. Inputs x are assumed to
follow a d-dimensional isotropic Gaussian distribution, and thus our setting of µ will be deter-
mined by the distribution of noise ε. In particular, we look at several families of distributions,
and within each family look at 15 distinct noise levels. Each noise level is simply a particular
parameter setting, designed such that sdµ(ε) monotonically increases over the range 0.3–20.0,

111



rgd bjl rgd bjl

0

3

6

9

12

0 20 40 60

Model dimension

R
is

k

0

1

2

3

0 20 40 60

Model dimension

D
is

ta
n

c
e
 f

ro
m

 m
in

im
u

m

0

500

1000

1500

2000

10 100

Model dimension (log10 scale)

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

m
s
)

Figure 4.9: Performance as a function of the number of parameters to optimize. Left: excess risk. Centre:
`2 distance from the minimum. Right: computation times. Performance values and computation times are
averaged over 250 trials. n = 500, α(t) = 0.1 for all t.

approximately linearly over the levels (cf. Appendix A.5).
To ensure a variety of signal/noise ratios are captured, for each trial, w∗ ∈ Rd is randomly

generated as follows. Defining the sequence wk ..= π/4 + (−1)k−1(k − 1)π/8, k = 1, 2, . . . and
uniformly sampling i1, . . . , id ∈ [d0] with d0 = 500, we set w∗ = (wi1 , . . . , wid). Computing
SNµ = ‖w∗‖22/ varµ(ε), we have 0.2 ≤ SNµ ≤ 1460.6. Regarding the noise distribution families,
the tests described above were run for 27 different families, but as space is limited, here we
provide results for four representative families: log-logistic (denoted llog in figures), log-
Normal (lnorm), Normal (norm), and symmetric triangular (tri_s). Even with just these
four, we capture both bounded and unbounded sub-Gaussian noise, and heavy-tailed data
both with and without finite higher-order moments.

In the figures here, we call the risk prediction error, computed as follows. For each con-
dition and each trial, an independent test set of m observations is generated identically to
the corresponding n-sized training set. All competing methods use common sample sets for
training and are evaluated on the same test data, for all conditions/trials. For each method,
in the kth trial, some estimate ŵ(k) is determined. To approximate the `2-risk, compute root
mean squared test error ek(ŵ) ..= (m−1∑m

i=1(ŵTxk,i − yk,i)2)1/2, and output prediction error
as the average of normalized errors ek(ŵ(k)) − ek(w∗(k)) taken over all K trials. While n
values vary, in all experiments we fix K = 250 and test size m = 1000.

Finally, we summarize the competing methods used. Classical choices are ordinary least
squares (`2-ERM, denoted ols) and least absolute deviations (`1-ERM, lad). We also look
at two very recent methods of practical and theoretical importance described in section 4.1,
namely the robust regression routines of Hsu and Sabato [17] (hs) and Minsker [28] (geomed).
For the former, we used the source published online by the authors. For the latter, on each
subset the ols solution is computed, and solutions are aggregated using the geometric median
(in `2 norm), computed using the well-known algorithm of Vardi and Zhang [40, Eqn. 2.6], and
the number of partitions is set to max(2, bn/(2d)c). For comparison to this, we also initialize
rgd to the ols solution, with confidence δ = 0.005, and α(t) = 0.1 for all iterations. Maximum
number of iterations is T ≤ 100; the routine finishes after hitting this maximum or when the
absolute value of the gradient falls below 0.001. These settings are used across all trials of all
subsequent experiments.

Results: impact of noise levels In Figure 4.10, we look at performance over noise settings,
from negligible noise to significant noise with potentially infinite higher-order moments. We

112



llog lnorm norm tri_s

4 8 12 4 8 12 4 8 12 4 8 12

0.0

2.0

4.0

6.0

0.0

2.0

4.0

6.0

8.0

0.0

1.0

2.0

3.0

0.1

0.2

0.3

0.4

Noise levels

P
r
e

d
ic

ti
o

n
 e

r
ro

r
geomed hs lad ols rgd_1

Figure 4.10: Prediction error over noise levels, for n = 30, d = 5.

see that rgd generalizes well, in a manner which is effectively uniform across the distinct noise
families. We note that even in such diverse settings with pre-fixed step-size and iteration
numbers, very robust performance is shown. It appears that under small sample size, rgd
reduces the variance due to errant observations, while incurring a smaller bias than the other
robust methods. When ols (effectively ERM-GD) is optimal, note that rgd follows it closely,
with virtually negligible bias. When the former breaks down, rgd remains stable.

Results: impact of n and d First we fix the model dimension d, and evaluate performance
as sample size n ranges from very small to quite large. For a fixed noise level, prediction error
is displayed in Figure 4.11. We see that regardless of distribution, rgd effectively matches the
optimal convergence of OLS in the norm and tri_s cases, and is resiliant to the remaining
two scenarios where ols breaks down. There are clear issues with the median of means based
methods at very small sample sizes, though the geometric median based method does eventually
at least surpass OLS in the llog and lnorm cases. Essentially the same trends can be observed
at all noise levels.

Next we fix the ratio n/d and look at the role played by increasingly large dimension.
Prediction error as a function of d at a fixed noise level is given in Figure 4.12, and we see that
for all distributions, the performance of rgd is essentially constant. This coincides with the
theory of section 4.3.2, and our intuition since Algorithm 2 is run in a by-coordinate fashion.
On the other hand, competing methods show sensitivity to the number of free parameters,
especially in the case of asymmetric data with heavy tails.

4.5 Concluding remarks
In this work, we introduced and analyzed a learning algorithm which takes advantage of robust
estimates of the unknown risk gradient, integrating statistical estimation and practical imple-
mentation into a single routine. Doing so allows us to deal with the statistical vulnerabilities
of ERM-GD and partition-based methods, while circumventing computational issues posed by
minimizers of robust surrogate objectives. The price to be paid is new computational overhead
and potentially biased estimates. Is this price worth paying? Bounds on the excess risk are
available under very weak assumptions on the data distribution, and we find empirically that
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Figure 4.11: Prediction error over sample size 12 ≤ n ≤ 122, fixed d = 5, noise level = 8.
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Figure 4.12: Prediction error over dimensions 5 ≤ d ≤ 40, with ratio n/d = 6 fixed, and noise level = 8.

the proposed algorithm has desirable learning efficiency, in that it can competitively generalize,
with less samples, over more distributions than its competitors.

Moving forward, a more careful analysis of the role that prior knowledge can play on
learning efficiency, starting with the first-order optimizer setting, is of significant interest.
Characterizing the learning effiency enabled by sharper estimates could lead to useful insights
in the context of larger-scale problems, where a small overhead might save countless iterations
and dramatically reduce budget requirements, while simultaneously leading to more consistent
performance across samples. Another natural line of work is to look at alternative strate-
gies which operate on the data vector as a whole (rather than coordinate-wise), integrating
information across coordinates, in order to infer more efficiently.
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4.6 Proofs
Basic facts: smooth convex functions Let f : Rd → R be a continuously differentiable,
convex, λ-smooth function.

f(u)− f(v) ≤ λ

2 ‖u− v‖
2 + 〈f ′(v),u− v〉 (4.32)

1
2λ‖f

′(u)− f ′(v)‖2 ≤ f(u)− f(v)− 〈f ′(v),u− v〉 (4.33)

for all u,v ∈ Rd.

Basic facts: Orlicz norms For ψ assumed convex and non-decreasing, satisfying ψ(0) = 0,
one defines the Orlicz norm of random variable z as

‖z‖ψ ..= inf{c > 0 : Eψ(|z|/c) ≤ 1}. (4.34)

Setting ψ(u) ..= uq yields the special case of the Lq norm, and ψq(u) ..= exp(uq)− 1 is used in
Theorem 39. The ψq version of this norm is very sensitive to the distribution tails, and thus
when finite implies much stronger tail control than is possible with Lq bounds. Most simply,
if we fix q ≥ 1 and δ ∈ (0, 1), whenever ‖z‖ψq <∞, one has

P
{
|z| ≤ ‖z‖ψq(log δ−1)1/q

}
≥ 1− 2δ. (4.35)

Furthermore, note that

‖z‖ψq ≤ ‖z‖ψp(log 2)1/q−1/p, q ≤ p. (4.36)

For more background, van der Vaart and Wellner [39], Pollard [32] provide a good start.

Basic facts: Evaluating metric entropy integrals Some basic facts for fixed A > 0 and
a < b:∫ b

a
log(A/ε) dε = A(b− a) + b log(A/b)− a log(A/a) (4.37)∫ b

a

√
log(A/ε) dε =

b
√

log(A/b)− a
√

log(A/a)− A
√
π

2

(
erf
(√

log(A/b)
)
− erf

(√
log(A/a)

))
(4.38)

It follows that taking a→ 0 and setting b = ∆ ..= ∆(W; ‖ · ‖),

E1(d∗) ≤ E1(d∞) ≤ A∆ + ∆ log(A/∆)

E2(d∗) ≤ E2(d∞) ≤ ∆
√

log(A/∆)− A
√
π

2

(
erf
(√

log(A/∆)
)
− 1

)
≤ ∆

√
log(A/∆) + A

√
π

2 .

Identical inequalities hold for the L2 distance as Eβ(d2) ≤ Eβ(d∞), since d2 ≤ d∞. To see
this, just note d2(f, g)2 =

∫
(f(z)− g(z))2 dµ(z) ≤ d∞(f, g)2 ∫ dµ(z) = d∞(f, g)2. To see that

d∗ ≤ d∞ holds for d∗ defined in (4.27) is straightforward. Writing ε(z) ..= f(z) − g(z) for
arbitrary functions f and g in the class of interest, first make the trivial observation that

0 = Eµ ψs(g(z)− θ∗g) = Eµ ψs(f(z)− (θ∗g + ε(z))). (4.39)
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Now, say |θ∗f − θ∗g | > d∞(f, g). Note that d∞(f, g) ≥ |ε(z)|, and writing δ ..= |θ∗f − θ∗g |, say
WLOG that θ∗f = θ∗g + δ. Then, we have

0 = Eµ ψs(f(z)− θ∗f )
= Eµ ψs(f(z)− (θ∗g + δ))
< Eµ ψs(f(z)− (θ∗g + ε(z)))
= 0.

The strict inequality follows from the strict monotonicity of ψ and the fact that δ > ε(z)
almost surely. The last equality comes directly from (4.39). Since this is a contradiction, we
conclude that |θ∗f − θ∗g | ≤ d∞(f, g).

Pointwise error setting

Proof of Lemma 25. For cleaner notation, write x1, . . . , xn ∈ R for our iid observations. Here
ρ is assumed to satisfy the conditions of Defn. 34. A high-probability concentration inequality
follows by direct application of the specified properties of ρ and ψ ..= ρ′, following the general
technique laid out by Catoni [8, 9]. For u ∈ R and s > 0, writing ψs(u) ..= ψ(u/s), and taking
expectation over the random draw of the sample,

E exp
(

n∑
i=1

ψs(xi − u)
)
≤
(

1 + 1
s

(Ex− u) + C

s2 E(x2 + u2 − 2xu)
)n

≤ exp
(
n

s
(Ex− u) + Cn

s2 (varx+ (Ex− u)2)
)
.

The inequalities above are due to an application of the upper bound on ψ, and the inequality
(1 + u) ≤ exp(u). Now, letting

A ..= 1
n

n∑
i=1

ψs(xi − u)

B ..= 1
s

(Ex− u) + C

s2 (varx+ (Ex− u)2)

we have a bound on E exp(nA) ≤ exp(nB). By Chebyshev’s inequality, we then have

P{A > B + ε} = P{exp(nA) > exp(nB + nε)}

≤ E exp(nA)
exp(nB + nε)

≤ exp(−nε).

Setting ε = log(δ−1)/n for confidence level δ ∈ (0, 1), and for convenience writing

b(u) ..= Ex− u+ C

s
(varx+ (Ex− u)2),

we have with probability no less than 1− δ that

s

n

n∑
i=1

ψs(xi − u) ≤ b(u) + s log(δ−1)
n

. (4.40)
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The right hand side of this inequality, as a function of u, is a polynomial of order 2, and if

1 ≥ D ..= 4
(
C2 varx
s2 + C log(δ−1)

n

)
,

then this polynomial has two real solutions. In the hypothesis, we stated that the result holds
“for large enough n and sj .” By this we mean that we require n and s to satisfy the preceding
inquality (for each j ∈ [d] in the multi-dimensional case). The notation D is for notational
simplicity. The solutions take the form

u = 1
2

(
2 Ex+ s

C
± s

C
(1−D)1/2

)
.

Looking at the smallest of the solutions, noting D ∈ [0, 1] this can be simplified as

u+ ..= Ex+ s

2C
(1−

√
1−D)(1 +

√
1−D)

1 +
√

1−D

= Ex+ s

2C
D

1 +
√

1−D
≤ Ex+ sD/2C, (4.41)

where the last inequality is via taking the
√

1−D term in the previous denominator as small as
possible. Now, writing x̂ as the M-estimate using s and ρ as in (4.4), note that x̂ equivalently
satisfies ∑n

i=1 ψs(x̂− xi) = 0. Using (4.40), we have

s

n

n∑
i=1

ψs(xi − u+) ≤ b(u+) + s log(δ−1)
n

= 0,

and since the left-hand side of (4.40) is a monotonically decreasing function of u, we have
immediately that x̂ ≤ u+ on the event that (4.40) holds, which has probability at least 1− δ.
Then leveraging (4.41), it follows that on the same event,

x̂−Ex ≤ sD/2C.

An analogous argument provides a 1 − δ event on which x̂ − Ex ≥ −sD/2C, and thus using
a union bound, one has that

|x̂−Ex| ≤ 2
(
C varx
s

+ s log(δ−1)
n

)
(4.42)

holds with probability no less than 1 − 2δ. Setting the xi to l′j(w; zi) for j ∈ [d] and some
w ∈ Rd, i ∈ [n], and x̂ to θ̂j corresponds to the special case considered in this Lemma. Dividing
δ by two yields the (1− δ) result.

Proof of Lemma 26. For each t = 0, . . . , T − 1, and j ∈ [d], note that

|θ̂j − gj(ŵ(t))| ≤ εj ..= 2
(
C varµ l′j(ŵ(t); z)

sj
+ sj log(2δ−1)

)

= 2

√
log(2δ−1)

n

(
C varµ l′j(ŵ(t); z)

σ̂j
+ σ̂j

)

≤ ε∗ ..= 2

√
V log(2δ−1)

n
c0 (4.43)
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holds with probability no less than 1 − δ. The first inequality holds via direct application of
Lemma 25, which holds under (4.11) and using ρ which satisfies (4.8). The equality follows
immediately from (4.6). The final inequality follows from (A4) and (4.10), along with the
definition of c0. In d dimensions, writing θ̂(t) = (θ̂1, . . . , θ̂d), we then have for any ε > 0

P
{
‖θ̂(t) − g(ŵ(t))‖ > ε

}
= P

{
‖θ̂(t) − g(ŵ(t))‖2 > ε2

}
≤

d∑
j=1

P
{
|θ̂j − gj(ŵ(t))| >

ε√
d

}
.

Using the notation of εj and ε∗ from (4.43), filling in ε =
√
dε∗, we thus have

P
{
‖θ̂(t) − g(ŵ(t))‖ >

√
dε∗
}
≤

d∑
j=1

P
{
|θ̂j − gj(ŵ(t))| > ε∗

}

≤
d∑
j=1

P
{
|θ̂j − gj(ŵ(t))| > εj

}
≤ dδ.

The second inequality is because εj ≤ ε∗ for all j ∈ [d], and the final inequality is due to (4.43).
Setting the per-coordinate confidence to δ/d, and plugging into these inequalities, we get the
desired result.

Proof of Lemma 28. Given ŵ(t), running the approximate update (4.3), we have

‖ŵ(t+1) −w∗‖ = ‖ŵ(t) − αĝ(ŵ(t))−w∗‖
≤ ‖ŵ(t) − αg(ŵ(t))−w∗‖+ α‖ĝ(ŵ(t))− g(ŵ(t))‖.

The first term looks at the distance from the target given an optimal update, using g. Using
the κ-strong convexity of R, via Nesterov [31, Thm. 2.1.5] it follows that

‖ŵ(t) − αg(ŵ(t))−w∗‖2 ≤
(

1− 2ακλ
κ+ λ

)
‖ŵ(t) −w∗‖2.

Writing β ..= 2κλ/(κ+ λ), the coefficient becomes (1− αβ).
To control the second term is immediate using ε via (4.7), and thus we have

‖ŵ(t+1) −w∗‖ ≤
√

1− αβ‖ŵ(t) −w∗‖+ αε

with probability no less than 1 − δ. For notational ease, write a ..=
√

1− αβ and ∆k
..=

‖ŵ(k) −w∗‖ for each 0 < k ≤ t. To unfold the recursion, we must apply (4.7) an additional t
times, for a total of t+ 1 applications, yielding

‖ŵ(t+1) −w∗‖ ≤ at+1∆0 + αε
(
1 + a+ a2 + · · ·+ at

)
= at+1∆0 + αε

(1− at+1)
1− a

with probability no less than 1− (t+ 1)δ. To clean up the second summand,

αε
(1− at+1)

1− a ≤ αε(1 + a)
(1− a)(1 + a)

= αε(1 +
√

1− αβ)
αβ

≤ 2ε
β
.
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Taking this to the original inequality yields the desired result.

Proof of Theorem 29. Using strong convexity and (4.32), we have that

R(ŵ(T ))−R∗ ≤
λ

2 ‖ŵ(T ) −w∗‖2

≤ λ(1− αβ)TD2
0 + 4λε2

β2 .

The latter inequality holds by direct application of Lemma 28, followed by the elementary fact
(a+ b)2 ≤ 2(a2 + b2). Controlling the gradient accuracy with ε is done using Lemma 26, which
implies the desired result.

Proof of Lemma 30. For arbitrary step t, comparing the results of updates (4.2) and (4.3) with
common step size α(t), we have

‖ŵ(t+1) −w∗(t+1)‖ ≤ ‖ŵ(t) −w∗(t)‖+ |α(t)|
(
‖ĝ(ŵ(t))− g(ŵ(t))‖+ ‖g(ŵ(t))− g(w∗(t))‖

)
≤ ‖ŵ(t) −w∗(t)‖

(
1 + λα(t)

)
+ α(t)ε. (4.44)

The latter inequality follows from the ε-accuracy and λ-smoothness in the hypothesis. Next,
note that for any t ≥ 1, if we have

‖ŵ(t) −w∗(t)‖ ≤
ε

λ

(
t−1∏
k=0

(
1 + λα(k)

)
− 1

)
,

then using (4.44), it follows that in the next iteration

‖ŵ(t+1) −w∗(t+1)‖ ≤
ε

λ

(
t−1∏
k=0

(
1 + λα(k)

)
− 1

)(
1 + λα(t)

)
+ α(t)ε

= ε

λ

(
t∏

k=0

(
1 + λα(k)

)
− 1

)
.

Finally noting that we have the base case

‖ŵ(1) −w∗(1)‖ ≤ α(0)ε = ε

λ

(
(1 + λα(0))− 1

)
,

taking the form assumed in the induction step. The desired result follows by mathematical
induction.

Proof of Corollary 31. Begin by controlling the risk, using (A2) and (4.32):

R(ŵ(T ))−R∗ = R(ŵ(T ))−R(w∗(T )) +R(w∗(T ))−R∗

≤ λ

2 ‖ŵ(T ) −w∗(T )‖
2 + 〈g(w∗(T )), ŵ(T ) −w∗(T )〉+R(w∗(T ))−R∗

≤ λ

2 ‖ŵ(T ) −w∗(T )‖
2 + ‖g(w∗(T ))‖‖ŵ(T ) −w∗(T )‖+R(w∗(T ))−R∗.

Furthermore, using g(w∗) = 0 and (4.33), we have

‖g(w∗(T ))‖2 = ‖g(w∗(T ))− g(w∗)‖2

≤ 2λ
(
R(w∗(T ))−R(w∗)− 〈g(w∗),w∗(T ) −w

∗〉
)

= 2λ
(
R(w∗(T ))−R(w∗)

)
.
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By convexity and (A3), we have R∗ = R(w∗). Writing A ..= ‖ŵ(T ) − w∗(T )‖
2 and B ..=

R(w∗(T ))−R(w∗), it follows that

R(ŵ(T ))−R∗ ≤
λA

2 +
√

2λAB +B.

Control of the estimation error A can be done using a direct application of Lemmas 26 and
30, which naturally yield

‖ŵ(T ) −w∗(T )‖ ≤ 2c0

√
dV log(2dδ−1)

n

(
(1 + λα)T − 1

)
with probability at least 1−δ, and taking λα ≤ exp(log(1+q)/T )−1 implies (1+λα)T −1 ≤ q.

As for the optimization error B, this can be controlled using Theorem 2.1.14 of Nesterov
[31], as

B ≤ 2R0D
2
0

2D2
0 + Tα(2− λα)R0

=
(
Tα(2− λα)

2D2
0

+R0

)−1

which is valid using (A2) and (4.12). Plugging these into A and B above, we have

R(ŵ(T ))−R∗ ≤2λ(c0q)2CdV log(2dTδ−1)
n

+
(
Tα(2− λα)

2D2
0

+R0

)−1

+
√

2λ2c0q

(
CdV log(2dTδ−1)

n

)1/2 (
Tα(2− λα)

2D2
0

+R0

)−1/2
.

The result stated gives this inequality, using . to suppress the term of order O(n−1) for
readability.

Proof of Lemma 32. As in the result statement, we write

Σ(t)
..= Eµ

(
l′(ŵ(t); z)− g(ŵ(t))

) (
l′(ŵ(t); z)− g(ŵ(t))

)T
, w ∈ W.

Running this modified version of Algorithm 2, we are minimizing the bound in Lemma 25 as
a function of scale sj , j ∈ [d], which immediately implies that the estimates θ̂(t) = (θ̂1, . . . , θ̂d)
at each step t satisfy

P

|θ̂j − gj(ŵ)| > 4
(
C varµ l′j(ŵ(t); z) log(2δ−1)

n

)1/2
 ≤ δ. (4.45)

For clean notation, let us also denote

A ..= 4
(
C log(2δ−1)

n

)1/2

, ε∗ ..= A
√

trace(Σ(t)).
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For the vector estimates then, we have

P
{
‖θ̂(t) − g(ŵ(t))‖ > ε∗

}
= P


d∑
j=1

(θ̂j − gj(ŵ(t)))2

A2 > trace(Σ(t))


= P


d∑
j=1

(
(θ̂j − gj(ŵ(t)))2

A2 − varµ l′j(ŵ(t); z)
)
> 0


≤ P

d⋃
j=1

{
(θ̂j − gj(ŵ(t)))2

A2 > varµ l′j(ŵ(t); z)
}

≤ dδ.

The first inequality uses a union bound, and the second inequality follows from (4.45). Plugging
in A and taking confidence δ/d implies the desired result.

Proof of Theorem 33. From Lemma 32, the estimation error has exponential tails, as follows.
Writing

A1 ..= 2d, A2 ..= 4
(
C trace(Σ(t))

n

)1/2

,

for each iteration t we have

P{‖θ̂(t) − g(ŵ(t))‖ > ε} ≤ A1 exp
(
−
(
ε

A2

)2
)
.

Controlling moments using exponential tails can be done using a fairly standard argument.
For random variable X ∈ Lp for p ≥ 1, we have the classic equality

E |X|p =
∫ ∞

0
P{|X|p > t} dt

as a starting point. Setting X = ‖θ̂(t)−g(ŵ(t))‖ ≥ 0, and using substitution of variables twice,
we have

E |X|p =
∫ ∞

0
P{X > t1/p} dt

=
∫ ∞

0
P{X > t}ptp−1 dt

≤ A1p

∫ ∞
0

exp
(
− (t/A2)2

)
tp−1 dt

= A1A
p
2p

2

∫ ∞
0

exp(−t)tp/2−1 dt.

The last integral on the right-hand side, written Γ(p/2), is the usual Gamma function of Euler
evaluated at p/2. Setting p = 2, we have Γ(1) = 0! = 1, and plugging in the values of A1 and
A2 yields the desired result.

Uniform error setting

Proof of Lemma 36. See proof of Lemma 25. The deterministic version follows basically the
same strategy Brownlees et al. [7, Lemma 3], looking at θ∗ rather that θ̂.
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Proof of Lemma 37. By our definition of ρ, while ρ′ is increasing on R+, its slope becomes
arbitrarily small as one gets far away from the origin, i.e., ρ′′(u)→ 0 as u→ ±∞. To alleviate
this issue, we require that for most samples z1, . . . ,zn, at least one of the zi observations is
such that the gap |f(z)− θ̂f | is not too large, for any choice of f ∈ F . For example, if F and
µ are totally unrestricted, then for arbitrarily large A > 0 and say confidence 1/2, one could
always find a f such that f(z) satisfies |f(zi)− θ̂f | > A for a fixed fraction of the indices i ∈ [n]
with probability no less than 1/2, which would make a uniform bound on |θ̂f − θ∗f | impossible.
A natural solution, then, is to constrain F and µ as follows. Fixing B > 0, for each f ∈ F ,
define a “good index” If ⊆ [n] by the property

i ∈ If =⇒ |f(zi)− θ̂f | ≤ B

where θ̂f is defined by (4.22) using ρB. The event we need is

E ..=
{

sup
f∈F

max
i∈If
|f(zi)− θ̂f | ≤ B

}
(4.46)

which implicitly requires inf{|If | : f ∈ F} > 0. Taking any ε0 > 0, by continuity there exists
a > 0 such that ψ(1 + a) − ψ(1) = ε0. Take slope K ..= ρ′′(1 + a). On the event E , for any
f ∈ F and i ∈ If , we have∣∣∣∣∣ψ

(
f(zi)− θ̂f

B
− θ

B

)
− ψ

(
f(zi)− θ̂f

B

)∣∣∣∣∣ > ε0 (4.47)

as soon as θ is such that |θ| ≥ Bε0/K holds.
With this in place, the final argument can be made easily. Denote

xf (θ) ..= B

n

n∑
i=1

ψB (f(zi)− θ)

and given ε in the hypothesis, write

r ..= inf{|If | : f ∈ F}

and set ε0 = ε/(Br). Say |θ̂ − θ∗|F > ε/(Br). Then there exists an f ∈ F such that

|xf (θ̂f − θ)− xf (θ̂f )| > s|If |ε0
n

≥ ε

using (4.47) and r ≤ |If |/n. From this we see

|X∗f | = |xf (θ∗f )− xf (θ̂f )|
= |xf (θ̂f − θ)− xf (θ̂f )|
> ε

which is a contradiction. Thus on the event in the hypothesis, we have |θ̂−θ∗|F ≤ ε/(Br).

Proof of Lemma 38. Fix any f, g ∈ F , and write

xi(f, g) ..= s
(
ψs(f(zi)− θ∗f )− ψs(g(zi)− θ∗g)

)
, i ∈ [n].
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Note that n(X∗f −X∗g ) = ∑n
i=1 xi(f, g). First we bound the xi using the 1-Lipschitz property

of ψ, observing

xi(f, g) ≤ |f(zi)− g(zi)|+ d∗(f, g).

Similarly for the second moment, we have

Eµ xi(f, g)2 ≤ Eµ

(
f(zi)− g(zi) + θ∗g − θ∗f

)2

≤ 2
(
d2(f, g)2 + d∗(f, g)2

)
.

The result follows from Eµ xi(f, g) = 0,

P{|X∗f −X∗g | ≥ t} = P
{
|
n∑
i=1

xi(f, g)| ≥ nt
}
,

and a direct application of the inequality of Bernstein [6, Section 2.8].

Proof of Theorem 39. Using the quantities γβ of Talagrand [36] and the generic chaining pro-
tocol of Brownlees et al. [7, Theorem 12], via our Lemma 38, there exists a constant c > 0 such
that for any f0 ∈ F , we have

H ..=
∥∥∥|X∗ −X∗f0 |F

∥∥∥
ψ1
≤ c

(
γ1(F , D1)

n
+ γ2(F , D2)√

n

)
(4.48)

where ψ1(u) = exp(u) − 1 is the function which induces an Orlicz norm (see appendix); this
notation is standard, and has nothing to do with the ψ in our Definition 34. The metrics are

D1(f, g) = 1
3 (d∞(f, g) + d∗(f, g))

D2(f, g) =
√

2
(
d2(f, g)2 + d∗(f, g)2

)1/2

and the quantity γβ is defined as follows. Let D be a quasi-metric for F . Let A = (Ak)∞k=1
denote a sequence of partitions of F . That is, each Ak = {A1, . . . , Am} for some 0 < m < ∞
and ∪Ai = F , Ai ∩ Aj = ∅ for i 6= j. A sequence of partitions is “admissible” if it does not
become too fine too quickly, namely if |Ak| ≤ 22k for all k.

γβ(F , D) ..= inf
A

sup
f∈F

∞∑
k=0

2k/β∆(Ak(f))

≤ c′Eβ(D)

for some constant c′ > 0, where the inf is taken over all admissible sequencesA, and Ak(f) ∈ Ak
denotes the element of partition Ak including f , which is uniquely determined by the definition
of partition.

Using (4.48) and our D1, D2 above, it requires only some algebraic manipulations to show

H ≤ 192
√

2 log(2)
(
γ1(F , d∞) + γ1(F , d∗)

n
+ γ2(F , d2) + γ2(F , d∗)√

n

)
.

Using the metric entropy bound on γβ, this implies there is a constant c′′ such that

H ≤ c′′
(
E1(d∞) + E1(d∗)

n
+ E2(d2) + E2(d∗)√

n

)
.
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Note by (4.35), we have that

P{|X∗ −X∗f0 |F > H log(δ−1)} ≤ δ

which implies the desired result, with constant c = c′′.

Proof of Corollary 41. This follows immediately from Theorem 39, using equations (4.37),
(4.38), and the exposition following them to evaluate the definite integrals Eβ(D) for β ∈ {1, 2}
and D ∈ {d∞, d2, d

∗}. Since W is always contained in a ‖ · ‖-ball of radius ∆, we can take
A = 3∆/2, and thus the a in the stated result satisfies a ≤ 3/2, using (4.31), from which the
d factor arises. The constant c is precisely the one that appears in Theorem 39.

Proof of Theorem 42. Setting arbitrary coordinate j ∈ [d] we have F as in Corollary 41. The
ε in (4.17) is controlled by ε ≤ (|X∗ − X∗f0

|F + |X∗f0
|). Fixing an arbitrary u ∈ W to set

f0 = l′j(u; ·), the term |X∗f0
| in (4.25) is OP (1) taking s→∞ as O(

√
vn). Using . to suppress

terms of O(1/n) order, we get

|θ̂ − θ∗|F . c1

(
c2d log(dδ−1)O

( ∆√
n

)
+OP (1)

)
with probability no less than 1 − δ/d, via Corollary 41. Here c1 is the constant from Lemma
37, while c2 is that from Corollary 41. Setting |ĝj − gj |W = |θ̂ − θ|F , analogous results hold
for each coordinate j ∈ [d], though constant may differ. Absorbing these into the asymptotic
notation, it follows from (4.17) that

‖ĝ(w)− g(w)‖ . d3/2 log(dδ−1)O
( ∆√

n

)
+OP (1)

with probability no less than 1− δ.

4.6.1 Computational methods
Here we discuss precisely how to compute the implicitly-defined M-estimates of (4.4) and (4.6).
Assuming s > 0 and real-valued observations x1, . . . , xn, we first look at the program

min
θ

1
n

n∑
i=1

ρs (xi − θ)

assuming ρ is as specified in Defn. 34, with ψ = ρ′. Write θ̂ for this unique minimum, and note
that it satisfies

s

n

n∑
i=1

ψs
(
xi − θ̂

)
= 0.

Indeed, by monotonicity of ψ, this θ̂ can be found via ρ minimization or root-finding. The
latter yields standard fixed-point iterative updates, such as

θ̂(k+1) = θ̂(k) + s

n

n∑
i=1

ψs
(
xi − θ̂(k)

)
.

Note the right-hand side has a fixed point at the desired value. In our routines, we use the
Gudermannian function

ρ(u) ..=
∫ u

0
ψ(x) dx, ψ(u) ..= 2 atan(exp(u))− π/2
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which can be readily confirmed to satisfy all requirements of Defn. 34.
For the dispersion estimate to be used in re-scaling, we introduce function χ, which is even,

non-decreasing on R+, and satisfies

0 <
∣∣∣∣ lim
u→±∞

χ(u)
∣∣∣∣ <∞, χ(0) < 0.

In practice, we take dispersion estimate σ̂ > 0 as any value satisfying

1
n

n∑
i=1

χ

(
xi − γ
σ̂

)
= 0

where γ = n−1∑n
i=1 xi, computed by the iterative procedure

σ̂(k+1) = σ̂(k)

(
1− 1

χ(0)n

n∑
i=1

χ

(
xi − γ
σ̂(k)

))1/2

which has the desired fixed point, as in the location case. Our routines use the quadratic
Geman-type χ, defined

χ(u) ..= u2

1 + u2 − c

with parameter c > 0, noting χ(0) = −c. Writing the first term as χ0 so χ(u) = χ0(u)− c, we
set c = Eχ0(x) under x ∼ N(0, 1). Computed via numerical integration, this is c ≈ 0.34.
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Chapter 5

Conclusion

To conclude the main body of this thesis, we recall the chief message that was foreshadowed
early on in chapter 1:

Paying a small computational price for better feedback can lead to
substantial payoffs in terms of the stability and robustness of learning.

In chapters 3 and 4, we proposed novel learning algorithms which invest additional computa-
tional resources into carrying out better statistical inference, with the express goal of providing
the learning machine with more useful feedback. Through both analysis of the theoretical per-
formance guarantees that can be made, as well as comprehensive numerical tests of off-sample
generalization and sensitivity to task parameters, we verified that the aforementioned strategy
can lead to a significant increase in learning efficiency. That is, by taking on some additional
computational overhead in exchange for better feedback, when compared with more traditional
empirical risk minimizers and other robust methods, the two main algorithms proposed in this
thesis were able to achieve better solutions, faster. The “fast RLM” algorithm of chapter 3
can be applied to any regression problem where the loss is observable, and the core idea is
sufficiently flexible that extending the tool to tasks aside from regression should be straight-
forward. On the other hand, the “robust gradient descent” algorithm of chapter 4 requires
gradient information for the loss, but it has the appeal of being applicable to any learning task
where slope information is available, and enjoys much stronger theoretical guarantees. We
believe the chief contribution of this thesis to be methodological, since we have demonstrated
the practical and formal appeal of a new approach to designing learning algorithms. That said,
both algorithms are easy to implement, sufficiently fast, and flexible enough to be deployed in
a wide variety of machine learning problems.

To close, we put forward some interesting lines of potential research work that are related
to both the core ideas and technical tools that appear throughout this thesis.

Optimizer-centric robustification Perhaps the chief appeal of the robust gradient descent
strategy laid out in chapter 4 is that there is virtually no gap between the algorithm being
analyzed formally, and the algorithm that a practioner will use in practice. This is due to
the fact that we start with a computational routine (namely steepest descent), and re-assign
computational resources to more effectively approximate the unknown parameters of interest,
from the perspective of that routine. Plugging more sophisticated statistical estimators into
the routine results in a simple routine which is analytically tractable, all without inducing
computationally intractable sub-routines that need to be circumvented (as in chapter 3). Such
a strategy should be valid for a much wider class of optimizers, and we are actively pursuing
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additional research in this direction. Routines which use second-order approximations, con-
strained situations which make use of projections or Frank-Wolfe type estimates, non-smooth
losses, high-dimensional sparse settings, important learning scenarios with respectively distinct
optimizers. To more fully demonstrate the merits of this new methodology, it is necessary to
prove its efficacy in a wider range of tasks.

Efficiency through robust feedback One of the chief empirical findings of this thesis was
that the proposed algorithms could reach superior solutions faster than rival routines, with
less observations, and with smaller variance over the draw of the sample. The numerical ex-
periments, however, did not capture the ultra-high dimensional situation, where a tremendous
number of parameters need to be culled, and a certain subset need to be precisely deter-
mined. This computationally intensive task can be thought to benefit greatly from more
efficient search of the parameter space, a task which depends directly on the quality of the
feedback provided to the learner. Using small mini-batches to forge very rough estimates and
save on per-iteration complexity has been ubiquitous in machine learning applications, but as
we discussed in 2.5, speeding this up with sophisticated learning rate strategies has proved
challenging. On the other hand, putting more resources into achieving substantially better
per-iteration estimates may ease the difficulty of setting learning rates, and indeed allow for
much larger steps, since the likelihood of getting off track is decreased. Two scenarios of inter-
est are the high-dimensional sparse setting, and the distributed high-dimensional setting, in
particular the “federated learning” scenario [6].

When does ERM fail to be economical? In this thesis, one of the chief problems raised
with existing techniques was the fact that the sample mean does not always furnish a reliable
estimate of the desired parameter, and consequently that only very weak guarantees are possible
for ERM-based algorithms. It is easy to say that “without sub-Gaussianity, ERM fails,” but
of course this is false. Traditionally, sub-Gaussian assumptions on the loss have provided
a convenient scenario in which sharp confidence bounds on the risk are readily available.
Simply lacking a guarantee of good performance assuredly does not imply bad performance,
but when such guarantees are technically extremely challenging to make, it does suggest that
such guarantees may not be possible. That said, in more recent theoretical efforts, new tools
have been developed to better characterize the class of data distributions for which appealing
performance guarantees are available for ERM. Notable work is due to Mehta and Williamson
[3], Grünwald and Mehta [2], Dinh et al. [1], Mendelson [4, 5]. These works provide new, weaker
conditions for upper bounds on the excess risk of ERM that decrease at a desirable rate, and
represent an important technical contribution to a sub-domain which was stalled for a number
of years. That said, from our perspective, the more important question is not when the ERM
strategy as a whole fails to have satisfactory guarantees, but when it cannot be guaranteed
to be economical. Consideration of this facet of the problem necessarily requires explicit
consideration of the method by which ERM is implemented, and applying the new technical
tools that have recently appeared in the literature to analyze what implementions fail/succeed
to be economical, and when, is an important and interesting direction to be pursued.

Non-risk performance metrics Finally, the reader has assuredly noticed that our focus,
and the focus of virtually all the cited work, has been on creating learning machines which
“generalize” in the extremely narrow sense of achieving small risk. While we have touched
on this point at other locations in this thesis, it must be understood that the expected value
simply one parameter of the distribution of the loss, among countless others, and has obvious
limitations. For example, depending on the application, “above average” losses might be
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particularly undesirable, in which case a quantile of the distribution larger than the risk would
likely provide a better performance metric, strictly speaking. In other cases, sample-wise
variation in performance might be highly undesirable, in which case both the risk and the
variance of the loss should be simulateously minimized. The requirements of the system can
be encoded directly in the loss(es) used, or can be reflected in the choice of ideal parameters
to be optimized, which subsequently guides the algorithm design and selection process. The
basic motivation of using non-risk “targets” for algorithm design is the core idea at the heart
of the “fast RLM” routine proposed in chapter 3, but the literature on multi-parameter and
non-risk learning models is extremely sparse. We believe this to be a potentially extremely
fruitful direction, both in terms of creating a richer theory of learning machines, but also in
engineering learning algorithms which are better able to reflect the needs and desires of the
end-users of the systems to which they are applied.
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Appendix A

Supplementary resources

A.1 Functions for M-estimation
In Definitions 10 and 34, we made use of a very particular class of M-estimators of location,
which played a central role in the algorithms where they were applied. In addition, a more
auxiliary role was played by M-estimators of scale. Here we provide some supplementary
information regarding this class of estimators, along with some references that provide historical
context.

A.1.1 Location
Starting with the location estimator, recall that we made use of a function ρ with the following
properties:

• ρ : R→ [0,∞) is even

• ρ(u) = O(u) as u→ ±∞.

• ρ(u)/u2 → K as u→ 0, for some K > 0.

• ρ′′ > 0, and for some C > 0, and all u ∈ R,

− log(1− u+ Cu2) ≤ ρ′(u) ≤ log(1 + u+ Cu2)

The uniform bounds on ρ′ are a generalization of the key property utilized in the analysis
of Catoni [4, 5]. While other forms for these bounds are assuredly plausible, this form is
convenient for finding confidence intervals, and gives us a tool to build robust estimators with
a controllable bias, as explored in chapters 3–4. The value of C > 0 determines the range over
which ρ is effectively quadratic. Figure A.1 shows the impact of this value clearly.

Next we explore some examples of ρ which satisfy the above conditions, all of which appear
in the statistics and/or machine learning literature with varying frequencies. Strong convexity
is immediate, and the limiting properties can often be checked directly, or by using an appli-
cation of L’Hôpital’s rule. Checking the bounds on ρ′ formally can be rather tedious, but is
usually an elementary exercise (e.g., Lemma 43). The names in parentheses are the abbrevi-
ations used throughout our source code implementing numerical tests considered later in this
chapter. Denote ψ ..= ρ′, and η ..= ρ′′.
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Figure A.1: Upper and lower bounds for a sigmoidal function. Left to right, C = 1/2, 1, 2, 4.
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Figure A.2: Six examples of ρ (left) and their corresponding derivatives ψ (middle) and η (right). Three are
valid, three are not. Crimson: quadratic. Red: wide Catoni. Green-blue: logistic, Gudermannian, and log cosh.
Olive green: absolute.

Simple algebraic function While there are numerous possible choices, a rather appealing
choice of algebraic function with the desired properties is the simple function

ρ(u) ..= 2
(√

1 + u2/2− 1
)
,

with derivatives

ψ(u) = u√
1 + u2/2

, η(u) = 1√
1 + u2/2

(
1− u2

2 + u2

)
.

Inverse tangent function Another familiar choice based on inverse trigonometric functions
is

ρ(u) ..= u atan(u)− log(1 + u2)/2,

with derivatives

ψ(u) = atan(u), η(u) = 1
1 + u2 .

Gudermannian function This function is specified implicitly by a sigmoidal function as
follows.

ρ(u) ..=
∫ u

0
ψ(x) dx, ψ(u) ..= 2 atan (exp (u))− π/2, η(u) = 2 exp(u)

exp(2u) + 1 . (A.1)

Historically, ψ here is known as the Gudermannian function [1, Ch. 4], named after C. Guder-
mann1. As an illustrative result, we show that this function is bounded for small C.

1Christoph Gudermann (1798–1852). Well-known as a teacher of K. Weierstrass, and for foundational work
on elliptic functions [16].
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Lemma 43. There exists a constant C such that for all u ∈ R,

− log(1− u+ Cu2) < 2 atan (exp (u))− π/2 < − log(1 + u+ Cu2) (A.2)

Proof of Lemma 43. Let ψ denote the Gudermannian function. Start with the upper bound
on R+, denoting ψU (u) ..= log(1 + u+ Cu2), with derivative

ψ′U (u) = 1 + 2Cu
1 + u+ Cu2 .

Clearly ψ′U (0) = 1 and ψ′U (u) > 1 ⇐⇒ 2C > 1 +Cu. Taking C = 1/2 + ε, this will occur for
all 0 < u < 2ε/(ε+ (1/2)). Note that

ψ′(u) = 2 exp(u)
exp(2u) + 1 ,

and so we have ψ′(u) ≤ 1 as long as 2 ≤ exp(u) + (1/ exp(u)), which holds for all u ≥ 0. With
this and ψ′(0) = 1, the bound ψ ≤ ψU holds on the ε-specified window. That it holds on all of
R+ is checked easily.

Next, for the lower bound, denote ψL(u) ..= − log(1− u+ Cu2). Again the derivative is

ψ′L(u) = 1− 2Cu
1− u+ Cu2 .

Looking at the inequality ψ′L(u) ≤ ψ′(u), one requires

A ..= 2 exp(u) + 2Cu exp(2u)− 2u exp(u) + 2Cu2 exp(u) ≥ B ..= exp(2u) + 1− 2Cu.

Defining A′ ..= 2 exp(u) + 2Cu2 exp(u) and using the fact that for C ≥ 1, 2Cu exp(2u) ≥
2u exp(u), it follows that A ≥ A′. Then, noting that A′ − B = 0 at u = 0, and that taking C
large enough, we can clearly get d/du(A′ − B) > 0 on u ∈ (0, δ) for some positive δ. We thus
have A ≥ B on this window, and similarly ψL(u) ..= − log(1 − u + Cu2) as desired. To show
that once separated these two functions do not meet is again readily checked. We thus have
the upper bound on all of R+. Symmetry of ψ and the fact that −ψL(u) = ψU (−u) implies
the remaining results for R−, concluding the proof.

Log-hyperbolic cosine function A well-known function which grows slowly, and which
was featured rather prominently in tests for the FastICA algorithm [14].

ρ(u) ..= log(cosh(u)), ψ(u) = tanh(u), η(u) = 1
cosh2(u)

.

Logistic function Another implicitly-defined ρ, based on the well-known “logistic function,”
properly shifted and re-scaled with parameters κ1, κ2 > 0, as

ρ(u) ..=
u∫

0

ψ(x) dx, ψ(u) ..= κ1
1 + exp(−κ2u) −

κ1
2 , η(u) = κ1κ2 exp(−κ2u)

(1 + exp(−κ2u))2 .

Setting κ1 = 4, κ2 = 1, we get K = 1/2 in the conditions for ρ. The history of this function in
the sciences is long. It appears in classical work of P.F. Verhulst2 from the 1840s, as the solution

2Pierre François Verhulst (1804–1849), mathematician and pupil of A. Quetelet, who introduced the term
“logistic” (logistique) in work published between 1838–1847 [7].
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to a differential equation modeling population growth (in continuous time). More recently, the
“logistic equation” featured famously in Li and Yorke [15] is a discrete-time variant of this
model, which we note also featured prominently in an article by May [17].

In contrast with the above examples, we now provide some particularly well-known exam-
ples of ρ which do not meet the criteria given, from literature both classical and modern. For
more, see references such as Andrews et al. [2], Rey [18], Hampel et al. [12].

Sub-quadratic function The following function behaves as desired around the origin, but
fails to satisfy the ρ(u) = O(u) requirement.

ρ(u) ..= |u| log(1 + |u|), ψ(u)|u6=0 = sign(u)
(

log(1 + |u|) + |u|
1 + |u|

)
(A.3)

Catoni function Defined implicitly, from Catoni [5] comes the widest member of his pro-
posed class,

ψ(u) ..=
{

log(1 + u+ u2/2) u ≥ 0
− log(1− u+ u2/2) u < 0

η(u) =


1+u

1+u+u2/2 u ≥ 0
1−u

1−u+u2/2 u < 0

and the narrowest member

ψ(u) ..=


log(2) u > 1
− log(1− u+ u2/2) u ∈ (0, 1]
log(1 + u+ u2/2) u ∈ [−1, 0]
− log(2) u < −1.

η(u) =


0 u > 1

1−u
1−u+u2/2 u ∈ (0, 1]

1+u
1+u+u2/2 u ∈ [−1, 0]
0 u < −1.

The wide version is not bounded above by a linear function, and the narrow version does not
have strong convexity.

Fair function A choice whose practical utility was emphasized by Rey [18, Section 6.4.5],
with parameter c > 0, is defined as

ρ(u) ..= c2
( |u|
c
− log

(
1 + |u|

c

))
with derivatives

ψ(u) = u

1 + |u|
c

, η(u) =
1− |u|c
1 + |u|

c

.

and default value c = 1.3998. This function is not convex over R.

Huber function The classic function originally proposed in the seminal work of Huber [13]
is

ρ(u) ..=

c2
(
|u|
c −

1
2

)
|u| > c

u2/2 |u| ≤ c
(A.4)

with associated functions

ψ(u) =
{
c sign(u) |u| > c

u |u| ≤ c
, η(u) =

{
0 |u| > c

1 |u| ≤ c

and default setting of c = 1.3450 for consistency at the Normal model. Satisfies both asymp-
totic conditions, but does not have strong convexity.
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Smooth Huber function A nice modification of the Huber function in order to secure
continuous second-order derivatives is from Rey [18, Section 6.4.4], and defined by

ρ(u) ..=
{
c|u|+ c2(1− π/2) |u| > cπ/2
c2(1− cos(u/c)) |u| ≤ cπ/2

with derivatives

ψ(u) =
{
c sign(u) |u| > cπ/2
c sin(u/c) |u| ≤ cπ/2

, η(u) =
{

0 |u| > cπ/2
cos(u/c) |u| ≤ cπ/2

all implemented as hmod. Default is c = 1.2107. Once again, strong convexity does not hold
on R in this case.

A.1.2 Scale
The issue of “re-scaling” is a rather subtle one, though the precise operations carried out are
typically very simple. Note that in setting s > 0 based on either prior knowledge or the
observed data, assuming valid ρ, the impact of s on the resulting estimate is clear, since we
have

arg min
u∈R

E ρ

(
x− u
s

)
= arg min

u∈R
E ρ

(
x

s
− u

)
s. (A.5)

It is worth observing that this reflects some implicit assumptions about the scale, the underlying
distribution, and the function ρ. Evidently, it assumes that the location of the distribution
of x can be readily approximated by re-scaling the ρ-based location estimate of a “baseline”
observation, namely the original normalized by a factor of 1/s. More concretely, if we denote

x̂ ..= arg min
u∈R

E ρ

(
x− u
s

)
, x̂0 ..= arg min

u∈R
E ρ

(
x

s
− u

)
(A.6)

it assumes that

• the location of observation x scales with it;

• x̂0 is a good estimate of the location of x/s to begin with.

If both of these assumptions hold, then since x̂0 effectively reflects location, and as this location
scales, then x̂ = sx̂0 must be a good location estimate of x = (x/s)s. The first assumption
is by no means trivial in general, but in the special case of seeking the mean directly, since
E(x/s) = (Ex)/s by linearity of the integral, it is satisfied. The second assumption is the chief
challenge here, and naturally depends on what is meant by location. As to actually measuring
the scale, an analogous class of M-estimators can be readily used:

ŝ = inf
{
s > 0 : 1

n

n∑
i=1

χ

(
xi
s

)
= 0

}
(A.7)

Here χ : R → R is typically non-decreasing on R+, even, and takes on both positive and
negative values over its range. This intuitively forces the scale estimate not to be too large
or too small, given the values taken by the observations x1, . . . , xn used in this measurement.
This approach has roots dating back well over a half-century [13, 20, 19], though we have
made several modifications in chapters 3–4 when making use of this approach for our tasks of
interest. To make things more concrete, we give some useful examples of χ below. The value
β > 0 is a constant parameter.
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Andrews function

χ(u) ..=
{

2c2 (1− cos (u/c))− β |u| ≤ cπ
4c2 − β |u| ≥ cπ.

(A.8)

This function was featured in the famous Princeton study on robust statistics in the early 1970s,
summarized in [2, Section 2C3]. The precise form given here is from Rey [18, Section 6.4.9],
with default parameter value c = 1.3387. Alternate versions using cos2 have also appeared in
the computer vision literature [3].

Dennis-Welsh function

χ(u) ..= c2
(
1− exp

(
−u2/c2

))
− β (A.9)

Default parameter value c = 2.9846 [9, 18]. Since this is just a re-scaled and shifted negative
Normal density, this kind of function has also been featured prominently in nonparametric
statistical literature [23].

Geman-type functions

χ(u) ..= |u|
1 + |u| − β (A.10)

χ(u) ..= u2

1 + u2 − β (A.11)

These originate in highly-cited image processing literature [11, 10], are included in the com-
prehensive robust computer vision methods outlined by Black and Rangarajan [3], and more
recently in the context of fast robust regression by Yu et al. [24].

Huber’s proposal 2 Originally given in Huber [13, Section 11] in the context of simultaneous
estimation of both location and scale parameters, one has

χ(u) ..= min(u2, c2) (A.12)

with a default parameter of c = 1.5 [22, Chapter 5].

Median absolute devations One important classical choice is

χ(u) ..= sign(|u| − 1) (A.13)

which for arbitrary γµ, induces the explicit scale estimate

ŝ = medµ |x− γµ|, (A.14)

namely the median absolute deviations about γµ. In particular, the case where γµ = µ−1(0.5),
that is the MAD about the median, was discussed in detail by Andrews et al. [2], and hailed
as a very useful robust scale estimate for use in more general location problems. In our tests
this is madmed, while the MAD about the mean is madmean.
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Transformed robust loss derivative (quad, lquad) Let ρ be an even function, and assume
that it is valid according to the conditions of the previous sub-section. Then defining

χ(u) ..= ψ2(u)− β (A.15)
χ(u) ..= log(1 + ψ2(u))− β (A.16)

we have a general-purpose class of scale estimates, the first of which is a generalization of
“proposal 2” discussed above.

Biweight antiderivative (tukey)

χ(u) ..=
{
c2

6 − β |u| ≥ c
x6

6c4 − x4

2c2 + x2

2 − β |u| < c
(A.17)

The derivative of this function is the well-known function known in the literature as Tukey’s
bi-weight. Default value c = 1.547 [19, p. 261].

Additional choices Here we include some miscellaneous choices for looking at dispersion,
aside from the χ-based M-estimation framework. Some are classical, some are rather modern.
Note that in our use of pivot term γµ above, given the sample we shall have to compute γµn ,
an initial estimate of “central tendency,” and then measure dispersion of the data using this
point as a reference. Of course the standard deviation sµ = (Eµ(x−Eµ x)2)1/2 is the canonical
example, and so is MAD given above. On the other hand, some methods do not require such
an ancillary estimate, and instead look at the range spanned by “most” of the data. Perhaps
the most ubiquitous ideal estimate comes from the interquartile range, defined here as

s ..= µ−1(0.75)− µ−1(0.25). (A.18)

Naturally this can be generalized to arbitrary range as µ−1(p2)−µ−1(p1) with 0 < p1 < p2 < 1.
This is a simple and useful tool for roughly capturing the range over which large portions of the
data are captured, which only requires a sort of our n observations, and can be done efficiently
[6, Section 2]. Two more recent empirical proposals come from Rousseeuw and Croux [21],
focusing on pairwise deviations. The first, called Sn in their work, is

ŝ ..= cmed{med{|xi − xj | : j ∈ [n]} : i ∈ [n]} (A.19)

with default value c = 1.1926. The second, called Qn in their work, is

ŝ ..= c{|xi − xj | : i < j}(k), (A.20)

where (k) here denotes the kth order statistic of this set of pairwise deviations, and default
factor c = 2.2219. For both of these computations, algorithms requiring just O(n log(n)) time
have been proposed [8], with additional bias corrections for very small values of n.

A.2 Figures (Ch. 3): Prediction error for all noise classes
This section includes supplementary figures for chapter 3, including results for additional fam-
ilies of noise distributions.

A.2.1 Over noise levels
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Figure A.3: Average error, over levels, for n = 30, d = 5.
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Figure A.4: Average error, over levels, for n = 30, d = 5.
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Figure A.5: Average error, over levels, for n = 30, d = 5.
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Figure A.6: Average error, over levels, for n = 30, d = 5.
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Figure A.7: Average error, over levels, for n = 30, d = 5.
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A.2.2 Over sample size
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Figure A.8: Average error over n sizes, all methods. Level = 8.
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Figure A.9: Average error over n sizes, all methods. Level = 8.
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Figure A.10: Average error over n sizes, all methods. Level = 8.
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Figure A.11: Average error over n sizes, all methods. Level = 8.
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Figure A.12: Average error over n sizes, all methods. Level = 8.
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A.2.3 Over dimension
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Figure A.13: Average error over dimension d, all methods. Level = 8.
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Figure A.14: Average error over dimension d, all methods. Level = 8.
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Figure A.15: Average error over dimension d, all methods. Level = 8.
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Figure A.16: Average error over dimension d, all methods. Level = 8.
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Figure A.17: Average error over dimension d, all methods. Level = 8.
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A.3 Figures (Ch. 4): Risk trajectory and task parameters
This section includes figures given in chapter 4 in larger size, as well as additional figures that
were excluded for readability.

A.3.1 Light/heavy-tailed samples
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Figure A.18: Risk as a function of iterations after a common initial point. Each trial corresponds to a new
random sample, and all values on the vertical axis are averaged over 250 trials. Error bars are standard deviation
over trials. Left is Normal noise, right is log-Normal noise. n = 500, d = 2, α(t) = 0.1 for all t.
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Figure A.19: Results of Figure A.18, given in log10 scale. Error bars, say log10(u) ± δ, are computed as
“relative error,” namely δ = sd(u)/(u log(10)).
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Figure A.20: Sample error gap for the tests shown in Figure A.18, computed as R̂(ŵ)− R̂(w∗), with R̂(w) =
n−1∑n

i=1 l(w; zi). First row is original coordinates, second row is log10 scale. The latter graphs stop once the
gap (before log transform) becomes negative. Left is Normal noise, right is log-Normal noise.
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A.3.2 Impact of initialization
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Figure A.21: Risk as a function of iterations, in log10 scale. Values are averaged over 250 trials. The “del”
refers to ∆j . n = 500, d = 2, α(t) = 0.1 for all t.
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A.3.3 Impact of distribution
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Figure A.22: Risk as a function of iterations, in log10 scale. Values averaged over 250 trials. Here “lnorm” and
“norm” denote log-Normal and Normal samples, with “low,” “med,” and “high” designating the three parameter
settings. n = 500, d = 2, α(t) = 0.1 for all t.
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A.3.4 Impact of sample size
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Figure A.23: Risk as a function of iterations, in log10 scale. Values are averaged over 250 trials. The black
horizontal rules are set for reference between the two plots, whose coordinates differ slightly. d = 2, α(t) = 0.1
for all t.
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A.3.5 Impact of dimension
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Figure A.24: Risk as a function of iterations, in log10 scale. Values averaged over 250 trials. The black
horizontal rules are set for reference between the two plots, whose coordinates differ slightly. n = 500, α(t) = 0.1
for all t.
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A.3.6 Against implicit robust loss minimizers
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Figure A.25: Performance as a function of the number of parameters to optimize. Top: excess risk and
`2 distance from the minimum. Bottom: computation times. Performance values and computation times are
averaged over 250 trials. n = 500, α(t) = 0.1 for all t.
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A.4 Figures (Ch. 4): Prediction error for all noise classes
This section includes supplementary figures for chapter 4, including results for additional fam-
ilies of noise distributions.

A.4.1 Over noise levels
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Figure A.26: Average error, over levels, for n = 30, d = 5.
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Figure A.27: Average error, over levels, for n = 30, d = 5.
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Figure A.28: Average error, over levels, for n = 30, d = 5.
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Figure A.29: Average error, over levels, for n = 30, d = 5.
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Figure A.30: Average error, over levels, for n = 30, d = 5.
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A.4.2 Over sample size
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Figure A.31: Average error over n sizes, all methods. Level = 8.
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Figure A.32: Average error over n sizes, all methods. Level = 8.
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Figure A.33: Average error over n sizes, all methods. Level = 8.
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Figure A.34: Average error over n sizes, all methods. Level = 8.
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Figure A.35: Average error over n sizes, all methods. Level = 8.
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A.4.3 Over dimension
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Figure A.36: Average error over dimension d, all methods. Level = 8.
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Figure A.37: Average error over dimension d, all methods. Level = 8.
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Figure A.38: Average error over dimension d, all methods. Level = 8.
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Figure A.39: Average error over dimension d, all methods. Level = 8.
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Figure A.40: Average error over dimension d, all methods. Level = 8.
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A.5 Parameter settings for simulations
$asin

shift scale
1 0 0.8485281
2 0 4.8285292
3 0 8.8085302
4 0 12.7885312
5 0 16.7685322
6 0 20.7485333
7 0 24.7285343
8 0 28.7085353
9 0 32.6885363
10 0 36.6685374
11 0 40.6485384
12 0 44.6285394
13 0 48.6085404
14 0 52.5885415
15 0 56.5685425

$bpri
shape1 shape2

1 1.5 6.164485
2 1.5 2.614809
3 1.5 2.266684
4 1.5 2.147522
5 1.5 2.092674
6 1.5 2.063206
7 1.5 2.045686
8 1.5 2.034483
9 1.5 2.026910
10 1.5 2.021564
11 1.5 2.017656
12 1.5 2.014715
13 1.5 2.012448
14 1.5 2.010665
15 1.5 2.009238

$chisq
df

1 0.0450
2 14.3275
3 28.6100
4 42.8925
5 57.1750
6 71.4575
7 85.7400
8 100.0225
9 114.3050
10 128.5875
11 142.8700
12 157.1525
13 171.4350
14 185.7175
15 200.0000

$exp
rate

1 3.33333333
2 0.18680986
3 0.13219836
4 0.10796782
5 0.09351514
6 0.08364907
7 0.07636481
8 0.07070272
9 0.06613820
10 0.06235706
11 0.05915814
12 0.05640588
13 0.05400516
14 0.05188700
15 0.05000000

$explog
shape scale

1 0.95 0.310000
2 0.95 1.717143
3 0.95 3.124286
4 0.95 4.531429
5 0.95 5.938571
6 0.95 7.345714
7 0.95 8.752857
8 0.95 10.160000
9 0.95 11.567143
10 0.95 12.974286
11 0.95 14.381429
12 0.95 15.788571
13 0.95 17.195714
14 0.95 18.602857
15 0.95 20.010000

$f
df1 df2

1 15 111.935617
2 15 5.801913
3 15 4.698612
4 15 4.371894
5 15 4.229641
6 15 4.155263
7 15 4.111698
8 15 4.084079
9 15 4.065511
10 15 4.052448
11 15 4.042919
12 15 4.035759
13 15 4.030246
14 15 4.025913
15 15 4.022445
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$frec
shift scale shape

1 0 1 5.5000
2 0 1 4.0000
3 0 1 3.0000
4 0 1 2.5000
5 0 1 2.3000
6 0 1 2.2500
7 0 1 2.2000
8 0 1 2.1500
9 0 1 2.1000
10 0 1 2.0500
11 0 1 2.0250
12 0 1 2.0125
13 0 1 2.0100
14 0 1 2.0075
15 0 1 2.0050

$gamma
scale shape

1 5 0.0036000
2 5 0.1165735
3 5 0.3879510
4 5 0.8177327
5 5 1.4059184
6 5 2.1525082
7 5 3.0575020
8 5 4.1209000
9 5 5.3427020
10 5 6.7229082
11 5 8.2615184
12 5 9.9585327
13 5 11.8139510
14 5 13.8277735
15 5 16.0000000

$gmm
mean1 mean2 sd1 sd2 wt1 wt2 k

1 -15 15 0.3 43 0.99999 0.00001 2
2 -15 15 0.3 43 0.99750 0.00250 2
3 -15 15 0.3 43 0.99500 0.00500 2
4 -15 15 0.3 43 0.98250 0.01750 2
5 -15 15 0.3 43 0.97000 0.03000 2
6 -15 15 0.3 43 0.95750 0.04250 2
7 -15 15 0.3 43 0.94500 0.05500 2
8 -15 15 0.3 43 0.93250 0.06750 2
9 -15 15 0.3 43 0.92000 0.08000 2
10 -15 15 0.3 43 0.90750 0.09250 2
11 -15 15 0.3 43 0.89500 0.10500 2
12 -15 15 0.3 43 0.88250 0.11750 2
13 -15 15 0.3 43 0.87000 0.13000 2
14 -15 15 0.3 43 0.85750 0.14250 2
15 -15 15 0.3 43 0.84500 0.15500 2

$gomp
shape scale

1 1.00000000 15
2 0.92857857 15
3 0.85715714 15
4 0.78573571 15
5 0.71431429 15
6 0.64289286 15
7 0.57147143 15
8 0.50005000 15
9 0.42862857 15
10 0.35720714 15
11 0.28578571 15
12 0.21436429 15
13 0.14294286 15
14 0.07152143 15
15 0.00010000 15

179



$gum
shift scale

1 0 0.414593
2 0 2.359231
3 0 4.303870
4 0 6.248508
5 0 8.193147
6 0 10.137785
7 0 12.082424
8 0 14.027062
9 0 15.971701
10 0 17.916339
11 0 19.860978
12 0 21.805616
13 0 23.750255
14 0 25.694893
15 0 27.639532

$hsec
shift scale

1 0 0.300000
2 0 1.707143
3 0 3.114286
4 0 4.521429
5 0 5.928571
6 0 7.335714
7 0 8.742857
8 0 10.150000
9 0 11.557143
10 0 12.964286
11 0 14.371429
12 0 15.778571
13 0 17.185714
14 0 18.592857
15 0 20.000000

$lap
shift scale

1 0 0.212132
2 0 1.207132
3 0 2.202133
4 0 3.197133
5 0 4.192133
6 0 5.187133
7 0 6.182134
8 0 7.177134
9 0 8.172134
10 0 9.167134
11 0 10.162135
12 0 11.157135
13 0 12.152135
14 0 13.147135
15 0 14.142136

$llog
shape scale

1 5.5000 1
2 4.0000 1
3 3.0000 1
4 2.5000 1
5 2.3000 1
6 2.2500 1
7 2.2000 1
8 2.1500 1
9 2.1000 1
10 2.0500 1
11 2.0250 1
12 2.0125 1
13 2.0100 1
14 2.0075 1
15 2.0050 1

$lnorm
meanlog sdlog

1 0 0.300
2 0 0.500
3 0 0.750
4 0 1.000
5 0 1.100
6 0 1.200
7 0 1.300
8 0 1.400
9 0 1.500
10 0 1.550
11 0 1.600
12 0 1.625
13 0 1.650
14 0 1.700
15 0 1.730

$lgst
shift scale

1 0 0.1653987
2 0 0.9411972
3 0 1.7169957
4 0 2.4927942
5 0 3.2685927
6 0 4.0443913
7 0 4.8201898
8 0 5.5959883
9 0 6.3717868
10 0 7.1475853
11 0 7.9233838
12 0 8.6991824
13 0 9.4749809
14 0 10.2507794
15 0 11.0265779
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$maxw
scale

1 0.4454742
2 2.5349606
3 4.6244469
4 6.7139332
5 8.8034195
6 10.8929059
7 12.9823922
8 15.0718785
9 17.1613648
10 19.2508511
11 21.3403375
12 23.4298238
13 25.5193101
14 27.6087964
15 29.6982827

$norm
shift scale

1 0 0.300000
2 0 1.707143
3 0 3.114286
4 0 4.521429
5 0 5.928571
6 0 7.335714
7 0 8.742857
8 0 10.150000
9 0 11.557143
10 0 12.964286
11 0 14.371429
12 0 15.778571
13 0 17.185714
14 0 18.592857
15 0 20.000000

$pareto
a b

1 5.239266 1
2 2.414201 1
3 2.164561 1
4 2.086463 1
5 2.052701 1
6 2.035287 1
7 2.025208 1
8 2.018877 1
9 2.014651 1
10 2.011694 1
11 2.009547 1
12 2.007939 1
13 2.006704 1
14 2.005736 1
15 2.004963 1

$rayl
scale

1 0.4579199
2 2.6057824
3 4.7536449
4 6.9015074
5 9.0493699
6 11.1972324
7 13.3450949
8 15.4929574
9 17.6408199
10 19.7886824
11 21.9365449
12 24.0844074
13 26.2322699
14 28.3801324
15 30.5279949

$scir
center rad

1 0 0.600000
2 0 3.414286
3 0 6.228571
4 0 9.042857
5 0 11.857143
6 0 14.671429
7 0 17.485714
8 0 20.300000
9 0 23.114286
10 0 25.928571
11 0 28.742857
12 0 31.557143
13 0 34.371429
14 0 37.185714
15 0 40.000000

$t
df

1 11.523810
2 2.399800
3 2.148810
4 2.078362
5 2.048485
6 2.032991
7 2.023912
8 2.018132
9 2.014224
10 2.011457
11 2.009427
12 2.007893
13 2.006705
14 2.005767
15 2.005013
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$tri_a
vert shift scale

1 0.9 0 1.334249
2 0.9 0 7.592511
3 0.9 0 13.850773
4 0.9 0 20.109035
5 0.9 0 26.367297
6 0.9 0 32.625559
7 0.9 0 38.883821
8 0.9 0 45.142083
9 0.9 0 51.400345
10 0.9 0 57.658608
11 0.9 0 63.916870
12 0.9 0 70.175132
13 0.9 0 76.433394
14 0.9 0 82.691656
15 0.9 0 88.949918

$tri_s
vert shift scale

1 0.5 0 1.469694
2 0.5 0 8.363258
3 0.5 0 15.256822
4 0.5 0 22.150386
5 0.5 0 29.043950
6 0.5 0 35.937514
7 0.5 0 42.831078
8 0.5 0 49.724642
9 0.5 0 56.618206
10 0.5 0 63.511770
11 0.5 0 70.405334
12 0.5 0 77.298898
13 0.5 0 84.192462
14 0.5 0 91.086026
15 0.5 0 97.979590

$upwr
shape shift scale

1 2 0 0.3549648
2 2 0 2.0199187
3 2 0 3.6848726
4 2 0 5.3498264
5 2 0 7.0147803
6 2 0 8.6797342
7 2 0 10.3446881
8 2 0 12.0096420
9 2 0 13.6745958
10 2 0 15.3395497
11 2 0 17.0045036
12 2 0 18.6694575
13 2 0 20.3344114
14 2 0 21.9993653
15 2 0 23.6643191

$wald
mean shape

1 1 11.111111111
2 1 0.343131248
3 1 0.103105799
4 1 0.048915743
5 1 0.028451154
6 1 0.018582972
7 1 0.013082575
8 1 0.009706617
9 1 0.007486848
10 1 0.005949806
11 1 0.004841725
12 1 0.004016656
13 1 0.003385827
14 1 0.002892729
15 1 0.002500000

$weibull
scale shape

1 1 0.990
2 1 0.900
3 1 0.800
4 1 0.700
5 1 0.650
6 1 0.600
7 1 0.550
8 1 0.525
9 1 0.500
10 1 0.475
11 1 0.450
12 1 0.425
13 1 0.400
14 1 0.375
15 1 0.350

A.6 Image credits
Several digital images were used for illustrative purposes. Detailed references are provided here.
In Figure 1.1, digital images of paintings are displayed. All images were downloaded from the
online repository of the United States National Gallery of Art (NGA), and are designated
as Open Access images, determined by the Gallery to be in the public domain. The original
images were resized (reduction) with original height/width ratios preserved, and cropped to a
common size. The four paintings (left to right) are

Artist: Paul Cezanne
Title: Still Life with Apples and Peaches (c. 1905)

Artist: Paul Cezanne
Title: Still Life with Milk Jug and Fruit (c. 1900)
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Artist: Auguste Renoir
Title: Peaches on a Plate (1902/1905)

Artist: Paul Cezanne
Title: The Peppermint Bottle (1893/1895)

In Figure 1.2, we have two digital images of classical Japanese texts, respectively of Tosa Nikki3

(left) and Man’yōshū4 (right). The original images are provided by the Center for Open Data
in the Humanities, and the original texts are from the National Institute of Japanese Litera-
ture (NIJL), shared under a Attribution-ShareAlike 4.0 International license. Low-resolution
screenshots of the original images were cropped to a common size.

3From image 3 of 34 (NIJL ID: 200010982).
4From image 13 of 1070 (NIJL ID: 200015542).
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