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A Hardware Implementation of Channel
Estimation for OFDM Systems with ESPAR

Antenna∗

Rian Ferdian

Abstract

The main objective of this dissertation is to propose a low-complexity hardware
realization of the channel estimation for the orthogonal frequency-division mul-
tiplexing (OFDM) system with electronically steerable parasitic array radiator
(ESPAR) antenna. Consisting of a single active element surrounded by multiple
parasitic elements, ESPAR antenna can achieve the similar diversity order to that
of multiple antennas but only using one RF front-end hardware set. Therefore,
ESPAR based system has huge potential to realize a low-cost and high energy
efficiency for multiple antennas and massive antennas systems. The main draw-
back of the ESPAR based system is that the channel estimation usually should
be realized in time-domain because the received signal for each antenna element
or parasitic element will be overlapped each other both in the frequency and
time domain. Therefore, among the existing methods, compressed sensing (CS)
technique has been theoretically proven to be a suitable channel estimation for
ESPAR antenna. However, due to its very large sensing matrix, the CS algorithm
suffers from a computational burden, making it infeasible for many practical ap-
plications.
This dissertation proposes three methods to reduce the computational cost

of CS in ESPAR antenna deployment. The first method is a multi-column CS
which utilizes only one small segment of sensing matrix to detect all of the chan-
nel impulse response locations simultaneously. The second method is the matrix

∗Doctoral Dissertation, Graduate School of Information Science,
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strength reduction by taking advantage of the sensing matrix structure which
based on symmetrical properties of discrete Fourier transform (DFT) matrix.
The third method is the observation vector optimization by randomly selecting
small set of optimal observation vector locations at the receiver side, which can re-
duce the CS computation complexity involved in channel impulse response (CIR)
locations search. The combination of these three methods can achieve more than
97% reduction in the computational cost. Furthermore, a parallel hardware ar-
chitecture and its field programmable gate array (FPGA) implementation for the
proposed channel estimation are also presented. The hardware implementation
timing result can meet the real-time requirement for any wireless communication
standard.

Keywords:

Channel Estimation, Compressed Sensing, Orthogonal Matching Pursuit, Matrix
Strength Reduction, OFDM, DFT Matrix, Genetic Algorithm, VLSI Architec-
ture, Field Programmable Gate Array, Computational Complexity Reduction.
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1 Introduction

1.1 Background

Wireless communication has been a foundation of the recent technologies ad-
vancement that transformed our world today. The demand of higher data rate
services not only for getting faster mobile browsing time or higher quality tele-
vision broadcasting images, but it also opens up many new technology possibili-
ties. From social media, smartphone, cloud computing, and the internet-of-things
(IoT) are growing from the benefit of high-speed data communication that can
be accessed from anywhere we want.
High data-rate leads to a wide bandwidth transmission known as the broad-

band system. One of the challenge in the broadband system is the multi-path
fading channel. In wireless communication, the transmitted signal will be prop-
agated in many paths before it reached the receiver side, where each path has a
different attenuation and delay profile. Because of the transmission time is very
short in the broadband system, a signal from the previous time slot can interfere
the current signal reception. At the frequency domain, the multi-path fading can
be categorized into frequency-selective fading and flat-fading. The frequency-
selective fading is when each frequency in the signal bandwidth has a different
level of attenuation, while in the flat-fading, all the frequency in the signal band-
width is having an almost the same attenuation. Both frequency-selective fading
and flat-fading can greatly corrupt the received signal in broadband transmission.
To mitigate the multi-path fading problem, a multi-carrier technique with fre-

quency division multiplexing (FDM) was proposed [2]. FDM divides a high-rate
data stream into several low-rate data streams where each stream is transmit-
ted with different carrier frequency [3]. The low-rate data streams are having
a narrow bandwidth which robust to frequency selective fading. However, each
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sub-carrier in the FDM system need a guard space to avoid inter-carrier interfer-
ence, so there will be some unused frequency spectrum in this system. Moreover,
the requirement for separate modulator for each sub-carrier greatly increase the
system complexity.
Orthogonal frequency-division multiplexing (OFDM) is an upgrade from FDM

system [4, 5]. OFDM technique features the orthogonality for each of its sub-
carrier. Each orthogonal sub-carrier is having a non-interfering frequency spec-
trum, thus it can be placed overlapping to each other without having an interfer-
ence to achieve a better efficiency in system total bandwidth. The orthogonality in
the OFDM system is obtained by utilizing the inverse discrete Fourier transform
(DFT) matrix as the modulator [6]. Moreover, OFDM is robust from inter-symbol
interference (ISI) and easy to equalize due to its cyclic prefix (CP) [7]. OFDM
has been a core of the modern wireless communication, it has been implemented
in many standard such as wireless LAN [8], the cellular network [9], and digital
television [10]. However, flat-fading still become a problem in the OFDM system.
Recently, multi-antenna technique, multiple-input, multiple-output (MIMO)

is becoming a hot topic in the wireless communication system area. MIMO can
take advantage of the spatial multiplexing or spatial diversity in the multi-antenna
system. Using the spatial multiplexing where each antenna transmits a different
information signal , MIMO can greatly improve the system capacity. MIMO also
can take advantage of spatial, when transmitting the same signal into multiple
antennas, a MIMO receiver can increae the system reliability by combining all
the received signal together to improve its quality. The implementation of MIMO
into OFDM system is an effective technique to fight flat-fading problem [11,12].
Here, the electronically steerable parasitic array radiator (ESPAR) antenna

offers a new method to gain diversity from multiple antennas while keeping only
one RF front-end [13, 14]. ESPAR antenna is an adaptive beamforming multi-
antenna system [15–18]. An ESPAR antenna consists of one radiator element
and several parasitic elements. The wireless channel at each antenna’s element is
considered to be independent of each other. To gain diversity, ESPAR antenna
changes the directivity of its input signal using inexpensive variable reactances
circuits which connected to each parasitic elements. Then, all the input signals
with different directivity are mixed together into one RF front-end. Hence, the
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implementation of ESPAR antenna can lead to a low-power and low-cost system
with the same reliability and capacity compared to MIMO systems. There have
been several proposals for the implementation of ESPAR antenna into current
generation of wireless communication systems which based on OFDM modulation
[19,20]. However, the trade-off of this method is the complexity increment in both
of equalization and channel estimation process.
The multi-path fading channel can be modeled as a Toeplitz matrix at the

time domain [21]. In the conventional OFDM system, the CP addition at the
transmitter and its removal at the receiver will cause the receiver to consider the
multi-path fading channel as a cyclic Toeplitz matrix. The cyclic Toeplitz matrix
is a special matrix as it has a diagonal structure in the frequency domain. Be-
cause of that, after the DFT process at the OFDM receiver, the channel impact
can be modeled as a simple diagonal matrix multiplication. Because of its diag-
onal structure, the receiver can estimate the channel using several known pilot
tones. Where the other part of the channel information can be recovered using
interpolation method. However, in the OFDM system using ESPAR antenna,
the change on directivity in the ESPAR antenna will correspond to the signal
frequency shift at the frequency domain. In results, the equivalent channel for
the OFDM transmission cannot be modeled as a diagonal matrix anymore. The
received pilot tones at the receiver will be a combination of each element channel
state. Because of that, an interpolation of the adjacent pilot tones cannot be used
to get the channel profile in the ESPAR-OFDM system. This dissertation focuses
on the implementation of the channel estimation for ESPAR-OFDM system.

1.2 Overview of the Problem

Compressed sensing (CS) has been proposed to solve the channel estimation prob-
lem in the ESPAR-OFDM system [20,22–24]. CS is a new data acquisition tech-
nique that enables the reconstruction of a sparse signal with sub-Nyquist sam-
ples [25], [26]. Theoretically, the CS algorithm can recover the channel impulse
response from the ESPAR-OFDM system. However, the cost of computation for
the CS based channel estimation still suffer from a huge matrix inner product
operation. Because of its complexity, there were also only a few schemes for CS

3



Table 1.1: Cyclic Prefix Duration of OFDM-based Wireless Communication
Systems

Communication Standard OFDM Symbol Duration
ISDB-T 31 µS
DVB-T2 28 µS
LTE 14 µS
Wimax 12 µS

hardware realization. Several proposals focused on reducing the least-squares
complexity using modified Grahm-Schmidt [27], [28] and Cholesky decomposi-
tion [29], [30]. Since most of the realizations are based on real number, some
methods such as Cholesky decomposition are not applicable for complex number
problems. Moreover more than 80% of the CS computation lies on the measure-
ment matrix multiplication as mentioned in reference [27]. The implementation of
CS algorithm in a specific application can utilize several optimizations to reduce
its complexity. Recently reference [31] has proposed an CS hardware realization
for radar application with an improvement in inner product computation by uti-
lizing a zero padding FFT. However, for the application where the measurement
matrix is truncated in both column and row directions, the inner product using
FFT method may not yield to the best reduction for its cost of computation.
Wireless communication is one of the real-time system where its computation

need to be performed within a specific timing deadline. To achieve the real-
time processing time, the channel estimation need to be done less than the cylic
prefix duration (CP) [32]. Table 1.1 shows the CP duration for several wireless
communication systems which varies from 12-31 µS. Within the symbol duration
time, a receiver need to performed all the demodulation process from the channel
estimation to the bit demapper. While the fastest available CS hardware imple-
mentation was presented in [31] with 158.7 µS processing time. It can be seen
that the available proposals of the CS hardware implementation can not met the
timing specification from Table 1.1.
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1.3 Research Contributions

The execution of this dissertation is divided into two parts. To simplify the prob-
lem, at the first part, a conventional SISO (single-input, single-output) OFDM
is considered as the system model. Several improvements for OFDM CS based
channel estimation as below:

• CS based channel estimation in the OFDM system has a unique structure
of sensing matrix which based on digital Fourier transform (DFT) matrix.
Computational complexity reduction can be achieved by exploiting the pe-
riodicity and symmetry property which the measurement matrix inherits
from DFT matrix to achieve lower complexity in the measurement matrix
inner product computation [33,34].

• The sensing matrix size depends on the number of pilot tones, while most
of the OFDM system already designed for interpolation based channel es-
timation. A observation vector selection method using genetic algorithm
(GA) at the receiver side is proposed to involve minimum as possible of
pilot tones in the CS algorithm [35].

The second part of this dissertation is to apply the proposed OFDM CS based
channel estimation into ESPAR-OFDM system. The contributions is desribed as
below:

• In this transmission, each antenna element is close to each other, thus we can
assume that all the CIR have the same delay profile. A multi-column OMP
technique is proposed by introducing a new sensing matrix for the inner
product calculation, which size is only equal to the one segment sensing
matrix. Moreover, the new sensing matrix is based on DFT matrix, thus
the proposed OFDM CS based channel estimation can be applied [24].

• A hardware architecture and its realization in field programmable gate ar-
ray (FPGA) is also proposed to assess the effectiveness of the proposed
computational reduction methods [34].

• The random access memory (RAM) usage in the hardware design can be
optimized by exploiting the DFT property [34].

5



1.4 Outline of Dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents the ba-
sic of this dissertation environment, the multi-path fading channel characteristic,
OFDM system structure, MIMO system structure and ESPAR antenna. Chapter
3 introduces the channel estimation in the OFDM system with ESPAR antenna.
The comparison with the conventional OFDM channel estimation and the current
development of the channel estimation are presented in this chapter. This chapter
also shows the computational complexity problem in the channel estimation for
ESPAR-OFDM system. Chapter 4 presents the three methods for the CS com-
putational cost reduction, multi-column OMP, matrix strength reduction and the
observation vector optimization. Chapter 5 provides the VLSI implementation
for the proposed method and its synthesis and timing analysis. Finally, Chapter
6 gives the conclusions of this dissertation.
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2 OFDM Systems with ESPAR
Antenna

This chapter presents the basic environment of this dissertation’s research. The
chapter 2.1 presents the knowledge of the multi-path fading in the wireless com-
munication system. The chapter 2.2 is an overview of the standard OFDM sys-
tem, its transceiver structure and its properties. Then section 2.3 gives an expla-
nation about MIMO system and how it can improve the OFDM system perfor-
mance. The last section 2.4 explains the ESPAR antenna as an improvemet to
the MIMO system.

2.1 Multipath Fading Channel

A transmitted wireless signal will be propagated in many paths before it can
reach the receiver side as shown in the Fig. 2.1. Basically, there are three kinds
of the propagation phenomenon [36]:

• Reflection: When a radio signal collides with a medium which has larger
surface compare to the signal ’s wavelength, some of the signal property
will be reflected and some is still transmitted.

• Diffraction: When a radio signal bounces into a sharp surface material
and create a new wave.

• Diffraction: When a radio signal falls into a rough surface material, it will
create multiple reflections.

The received signal from each path will have a different delay and attenuation.
Each of these received signals will interfere each other at the receiver side. In
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order to reverse the channel fading effect, a receiver needs to have a channel
estimation and equalization.
The multi-path fading channel also can be defined as a combination of selective-

fading and flat-fading channel. The selective-fading channel is when the channel
frequency response bandwidth less than signal transmission bandwidth. Here
each sub-carrier can have a different level of attenuation. While, the flat-fading
is the opposite when the channel frequency response bandwidth is bigger than
the signal transmission. In flat-fading all the signal sub-carrier are having almost
the same level of attenuation. Fig 2.2 shows the difference between frequency-
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selective fading and flat-fading.

2.2 OFDM System

Orthogonal frequency-division multiplexing (OFDM) is a multi-carrier modula-
tion system. OFDM has been long proposed back in the 1970s as a frequency-
division multiplexing system using the discrete Fourier transform (DFT) [37].
OFDM transform the high-rate stream of data into several low-rate streams of
data and transmit it using multiple carrier of frequencies. Furthermore, each of
its carriers is orthogonal to each other, as shown in the the Fig. 2.3b. It can
be seen that a spectrum peak of a sub-carrier always collide with zero-crossing
of other sub-carriers. Because of that as long as the data sampling can be done
correctly at each sub-carriers peak, each sub-carrier can be spaced closer to each
other without having an inter-carrier interference. The orthogonality of OFDM
carrier is achieved by exploiting the discrete Fourier transform property. How-
ever, there was no realization of OFDM into the commercial market until the
invention of fast Fourier transform (FFT). The history of OFDM is a conclusive
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evidence of how computational complexity can hinder the implementation of a
new technology.
Compare to the FDM system spectrum as shown in the Fig. 2.3a, it can

be seen that, for the same bandwidth the OFDM system can accommodate more
sub-carrier and achieve higher data rate compared to the FDM system. Each sub-
carrier in the FDM system must have a guard band to prevent the inter-carrier
interference (ICI). While in the OFDM system, because of the orthogonality of
the DFT matrix the ICI can be avoided. The OFDM system only needs guard
band for each symbol to prevent inter-symbol interference (ISI) from previously
transmitted symbol due to the channel fading effect.
Fig.2.4 shows the structure of the simplified OFDM block diagram. To create

the transmission signal, first the mapper maps the bit stream. Next, the IDFT
processor will create an OFDM symbol by transforming the data sequence into
the time domain. To prevent ISI, the cyclic prefix (CP) is inserted in the OFDM
symbol by copying certain part of the symbol’s rear to its front. Then, the
transmit signal will be sent over a multipath channel. At the receiver, before
the demodulation process can be done, a channel estimation and equalization are
required to combat the multipath channel effects.
The time domain structure of the frequency-selective fading channel in OFDM
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system can be modeled as a Toeplitz matrix h ∈ C(S+L−1)×S as

h =



h0 0
... h0

hL−1
... . . .

hL−1
... h0
. . . ...

0 hL−1


, (2.1)

where L is the number of CP and S is the number of OFDM sub-carriers. Here, we
assume channel has L paths which includes many zero elements for easy analysis.
Another function of CP beside ISI prevention is to ease the equalization and

channel estimation computation. As the receiver removes the CP from the re-
ceived signal, the equivalent channel heq ∈ CS×S can be treated as a circulant
Toeplitz matrix given by

heq =



h0 0 · · · 0 hL−1 · · · h1

h1
. . . . . . ... 0 . . . ...

... . . . h0 0 ... . . . hL−1

hL−1 h1
. . . 0 0

0 . . . ... . . . . . . . . . ...
... . . . hL−1

. . . . . . 0
0 . . . 0 hL−1 · · · h1 h0


, (2.2)

where S is the number of OFDM subcarriers without CP. Because of the Toeplitz
structure, by only knowing the channel impulse response (CIR) which defined as
the first column of the heq, the whole channel matrix can be reconstructed. Here
CIR is [h0, h1, ..., hL−1, 0, ..., 0]T vector.
The matrix heq has an advantage that its frequency domain form H is a diagonal

matrix. Let H is defined as

H = FheqFH , (2.3)

where F ∈ CS×S is the DFT matrix, and its hermitian FH ∈ CS×S is the IDFT
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Figure 2.5: Comparison between SISO system and MIMO system.

matrix. The structure of matrix H ∈ CS×S is represented as

H =


H0 0

H1
. . .

0 HS−1

 , (2.4)

where Hi is the frequency domain frequency-selective fading CSI for i-th subcar-
rier. Accordingly the received signal can be described as

Y = HX + W, (2.5)

where W is the receiver’s noise w in the frequency domain. Thus, to equalize X
from Y, it only requires a simple diagonal H matrix inversion [38]. The frequency
domain channel state information (CSI) also can be considered as the diagonal
part values of the matrix H as [H0, H1, ..., HS−1] vector.

2.3 MIMO System

Although robust from frequency-selective fading, OFDM system is still suffered
from the flat-fading problem. One effective way to fight flat-fading effect is by
using multiple-input, multiple-output (MIMO) technique [11, 39, 40]. MIMO is
a multi-antenna system as shown in the Fig. 2.5. Compare to the single-input,
single-output (SISO) system, MIMO system has a chance to gain spatial diver-
sity transmitting its signal into multiple different channels. At the receiver, the
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received signals from each antennas are combined together to obtain a better
quality signal.
For MIMO system with Nt antennas at the transmitter and Nr antennas at the

receiver side, the received signal can be described as below
y1
...
yNr

 =


h11 . . . h1Nt
... . . . ...

hNr1 . . . hNrNt



x1
...
xNt

+


n1
...
nNr

 , (2.6)

where [y1 . . . yNr ]T is the received signals vector, [x1 . . . xNt ]T is the transmit signal
vector and [n1 . . . xNr ]T is the noise vector from each transmission channel. The
application of MIMO into OFDM system can minimize the effect of the flat-
fading. The structure of the MIMO-OFDM system is shown in the Fig. 2.6.
The main drawback of the MIMO is the requirement of a set radio frequency

(RF) front-end devices such as A/D transfer and power amplifier which consumes
over half of energy at each of antenna unit [41,42]. The large energy consumption
of multiple RF front-ends refrains the usage of MIMO with large number antennas
into mobile devices. On the other hand, for massive MIMO system which is one
of key technique to realize target of 5G system, large number of antenna branch
will not only increase power consumption and CO2 emission, but also increase
the temperature of system devices which require large air-conditioners to make
it work properly [43].

2.4 ESPAR Antenna

Electronically steerable parasitic array radiator (ESPAR) antenna is a novel low-
cost technique to gain horizontal diversity while maintaining one RF front-end,
low power consumption, and simple wiring at the mobile receiver. The structure
of the ESPAR antenna hardware is shown in Fig. 2.7 a. This antenna consists of
a circular ground planar as a base, one radiator element and multiple of parasitic
elements. The radiator element is placed in the middle of the ground planar and
connected to an active reactor. While the parasitic elements are placed surround
the radiator element with the same distance and connected to a passive variable
reactor diode. ESPAR antenna has been proposed to be used in very broad of

14



RF Front-end

radiator

parasitic #1

parasitic #2

a) b)

Figure 2.7: a) ESPAR antenna hardware structure, b) Equivalent circuit model
for ESPAR antenna.

applications, the OFDM based wireless communication [44–46], digital broadcast-
ing system [23,47], truck to truck communication [48], IoT system [49], wearable
system [50] and robot tracking system [51, 52]. ESPAR antenna is promising
a better energy efficiency in the multi-antenna system. Wireless system using
ESPAR antenna can obtain almost the similar diversity order to that of MIMO
system while just using only one set of device for RF front-end [13,14].
The beamforming is done at the analog part of the ESPAR antenna. The

reactance circuit between the parasitic and the radiator element is worked as an
oscillator circuit. The antenna element location, variable reactance value and
the bias voltage will determine the alternating current which flow from parasitic
element to the radiator element. The equivalent circuit model of the ESPAR
antenna is shown in Fig. 2.7 b. The output from the antenna RF front-end can
be described as

v(t) = v0(t) + v1(t)ej2πkfst + v2(t)e−j2πkfst, (2.7)

where v0 is the input signal from radiator element, v1 and v2 are the inputs from
parasitic elements, kfs is the oscillator circuit frequency controlled by the variable
reactance.
To achieve an optimum antenna radiation elevation pattern, the ESPAR an-

tenna structure must be designed as shown in the Fig. 2.8 [13]. For a transmission
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RF signal with λ wavelength, the configuration of the ESPAR antenna is as below:

• The circular ground planar radius is equal to 0.5 λ.

• Antenna element length is 0.25 λ.

• Spacing between radiator element and parasitic element is 0.25 λ.

• Radius of antenna element is 0.01 λ.
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3 Channel Estimation for OFDM
Systems with ESPAR Antenna

This chapter presents the channel estimation for the OFDM system with ESPAR
antenna. The chapter 3.1 shows the system model and mathematical represen-
tation of the channel estimation problem in the ESPAR-OFDM system. The
chapter 3.2 presents the current compressed sensing based channel estimation for
the ESPAR-OFDM system. The chapter 3.3 explains the computational com-
plexity problem in the current compressed sensing based channel estimation for
ESPAR-OFDM ssytem.

3.1 System Model

In the conventional OFDM system, the receiver can exploit the structure of the
diagonal channel matrix to estimate the CSI. The channel estimation acquires
pilot tones which are inserted into the transmitted signal. Pilot tones are BPSK
signals which known in both the transmitter and receiver. Basically there are
two types of the pilot insertion, block type and comb type insertion as shown in
the Fig. 3.1.
The block type pilot insertion is also considered as a preamble. In this type

of the insertion, all the pilot tones occupy all the sub-carrier in one transmission
time slot. Using this method, the CSI can be fully recovered by a simple division
operation at the receiver side. This method is suitable for a slow fading channel
when the CSI not rapidly changing over time. The block type pilot also can be
used to do the synchronization at the receiver side to detect the delay difference
of the clock of the receiver and the transmitter.
The comb type pilot insertion is done by inserting the pilot in the several sub-
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Figure 3.1: Pilot arrangement types

carrier tones in every transmission time slot. This method is suitable for the fast
fading channel where the channel changing in almost of every OFDM symbol.
The pilot tones are distributed evenly in the OFDM sub-carriers, thus in order
to obtain the complete CSI an interpolation method is necessary.
To get the frequency domain CSI, the receiver needs to separate the pilot tones

from the demodulated signal. Then, by using the known transmitted pilot value,
an observation vector Hob can be calculated as

Hob = Y((i−1)(S/T ))

X((i−1)(S/T ))
, i = 1,2,3...,T (3.1)

where T is number of the pilot tones. The observation points are spreading evenly
in the frequency domain CSI [53]. Because of that, to get the unknown CSI values,
receiver can utilize an interpolation method between two observation points [54].
After the equalization, then the receiver can utilize multilevel QAM de-mapper
to convert the signal into its original bit stream form. The CSI after the channel
estimator then are used recovers the Heq matrix, the equalization process can
be performed to remove the fading effect. Finally, the M-QAM demapper will
demodulate the sub-carrier symbols into the bit stream.
The block diagram structure of the OFDM system using ESPAR antenna is

shown in Fig. 3.2. In this dissertation, we use 3-element ESPAR antenna, with
one radiator element and two parasitic elements. The varactor at each pair of
the parasitic elements are adjusted so that its oscillator circuit has an alternate
directivity as sine and cosine with the same fs frequency. The element with the
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cosine oscillator is called the positive shifted element and the negative shifted
element for the element with sine oscillator.
The transmitter part is the same with the conventional OFDM. The input bit

stream is mapped by the multilevel quadrature amplitude modulation (M-QAM).
Then pilot sub-carriers are inserted in this data sub-carrier. The transmitter uses
IDFT to generate the OFDM symbol. Before the OFDM symbol is transmitted
trough the multipath channel, the cyclic prefix (CP) is inserted to the OFDM
symbol by copying a certain part of the symbol’s rear to its front. CP has a
purpose to prevent the inter-symbol interference (ISI). Moreover, CP removal at
the receiver side will create a cyclic form of the channel matrix, similar to the
SISO-OFDM as shown in the Eq. 2.2. Thus, the frequency domain H matrix
will be a diagonal as shown in Eq. 2.4.
The received signal at each antenna element will have an independent CIR.

Moreover, the signals at each parasitic elements will be oscillated to create the
diversity. A pair of cos(2πfst) and sin(2πfst) applied to the received signal
at each parasitic element. The final received sub-carrier (Y), that goes to the
demodulator part, can be defined as

Y = F(gphp + h0 + gnhn)FHX, (3.2)

where vector X ∈ CN is the transmitted sub-carrier, h0 ∈ CN×N ,hp ∈ CN×N , and
hn ∈ CN×N are the time domain CIR for radiator, positive shifted and negative
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shifted element respectively. Matrices gp ∈ CN×N and gn ∈ CN×N are diagonal
matrices form of cos(2πfst) and sin(2πfst) respectively. Using Eq. (2.3), the
frequency domain form of Eq. (3.2) can be redefined as

Y = (GpHp + H0 + GnHn)X, (3.3)

where matrices H0 ∈ CN×N , Hp ∈ CN×N and Hn ∈ CN×N are the frequency do-
main channel matrices for radiator, positive shifted, and negative shifted element
respectively. The Gp ∈ CN×N and Gn ∈ CN×N are shift matrices with alternate
directivity of frequency fs.
The equivalent channel matrix (Heq ∈ CN×N) in this transmission can be

defined as

Heq = (GpHp + H0 + GnHn). (3.4)

Fig. 3.3 shows a more detail structure of the equivalent channel matrix. Because
the matrix is no longer diagonal, a channel estimation with the interpolation
method cannot be applied here. Moreover, to prevent the inter-carrier interference
between pilot and data sub-carrier, the oscillator frequency (fs) at each parasitic
element is adjusted to be equal to the pilot spacing. For ESPAR-OFDM system
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the channel estimator need to estimate the CIR for each antenna element. For
3-elements ESPAR antenna, the CIR can be defined as

e = [ep e0 en]T . (3.5)

here the e0 ∈ CL , ep ∈ CL , and en ∈ CL are the CIR from radiator, positive
and negative parasitic element respectively.

3.2 Compressed Sensing based Channel
Estimation

3.2.1 Compressed Sensing

Recently, compressed sensing (CS) has became a new prominent technique in
channel estimation [55–58]. Compressed sensing is a new data acquisition tech-
nique that enables the reconstruction of a sparse signal with sub-Nyquist sam-
ples [25], [26]. The implementation of CS based channel estimation in the OFDM
system is offering better accuracy and less pilot utilization. The core of CS algo-
rithms is to find the locations of the non-zero elements in sparse signal. There
are two main groups of compressed sensing approach, basis pursuit and greedy
pursuit [59]. Basis pursuit algorithms acquire Lp-norm to find all the locations of
the non-zero element at once. While, greedy pursuit algorithms use the iterative
method to get the locations. In most cases, the greedy pursuit will have some per-
formance degradation compared to that of basis pursuit. However, it offers a lower
cost of computation. The major greedy algorithms are matching pursuit (MP)
and orthogonal matching pursuit (OMP). MP has the least complexity among all
the CS algorithms, but it requires a high number of iterations in its process [60].
OMP reduces MP’s high iterations number by acquiring least-squares in every
step of its iteration, thus, it can avoid choosing the same location of non-zero
element twice [61]. OMP is preferable in real-time application because it pro-
vides a short execution time. However, the implementation of OMP algorithm
still requires a heavy cost of computation for its sensing matrix multiplication
and least-squares computation.
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The main purpose of the CS algorithm is to allow a signal reconstruction with
the sub-Nyquist samples. Hence, its sampling process can be described as an
under-determined linear system as

b = Ψa + w, (3.6)

where Ψ ∈ CN×M is the sensing matrix, a ∈ CM×1 is the reconstructed signal,
b ∈ CN×1 is the sampled signal, N is the number of samples and N < M .
However, if signal a is sparse, we can neglect the columns in matrix Ψ that
correspond to the zero elements. Consequently, the overall system in Eq. (3.6)
can be a determined linear system.
As proposed by Donoho in [25], the CS algorithm can utilize the inner product

of a matrix that has a restricted isometric property (RIP) to locate the non-zero
element location α in the sparse signal a as

α = arg max
i=1...M

|〈ΨH
i ,b〉|, (3.7)

where ΨH
i is the i-th row in the matrix ΨH . The RIP matrix multiplication holds

a special property where the location of its maximum result α will also be the
location of one of the non-zero elements in signal a.el
The wireless communication system is a real-time application that requires

strict execution time for its processes, greedy pursuit based CS algorithm is a
good practical approach to met fast reconstruction time with acceptable hardware
complexity. This research choose orthogonal matching pursuit (OMP) which is
one of the prominent greedy pursuit based CS algorithms that offer small iteration
number and good reconstruction performance [61].
Algorithm 1 shows the detail of the OMP computation. After the initialization

step, every iteration will require inner product computation. The sensing matrix
inner product as in Eq. (3.7) is the requirement for every CS algorithm to get
the locations of the non-zero elements. The Φ matrix will hold the columns from
Ψ that correspond to the sparse locations. Next, OMP uses least-squares to get
the approximate solution for the current set of non-zero element locations. To
evaluate this current solution, a residue is computed as in the step 11 of Algorithm
1. The residue is the subtraction of the sampled signal b with the current solution
contribution (Φta). If the residue value satisfies the stopping criterion, the current
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Algorithm 1 OMP Algorithm
1: init:
2: r← b; Φ0 ← [ ]
3: loop:
4: g← 〈ΨH , r〉
5: α← arg max

i=1...M
|gi|

6: augment:
7: Φt ← Φt−1|ΨH

α

8: least square:
9: a← arg mina||r−Φta||2

10: update:
11: r← b−Φta
12: if the stopping criterion of r is not met goto loop.

approximate solution can become the final output. In contrast, If the stopping
criterion cannot be met, OMP will require an additional iteration. This residue
will be the input for the next inner product multiplication. Since the current
solution contribution has been removed from the residue, the maximum inner
product result will always be calculated for the new location.
However, compared to the interpolation method, the implementation of OMP

will still raise the hardware’s resources. There are two main operations in OMP
that require a high computational complexity, the inner product multiplication
in step 4 and the least-squares in step 9 of Algorithm 1. Since the ΨH matrix
has M ×N dimension, its multiplication will also require at least M ×N number
of complex multipliers. In the OFDM system case, this multipliers requirement
will become very high that make it hard to be realized in a mobile system. The
practical approach is to compute the matrix multiplication iteratively row by row
as proposed in [27] and [30]. However, the iterative method has a drawback of
long hardware cycle period.
The most common way to solve the least-squares problem is using the ma-

trix inversion. Furthermore, the combination of the QR decomposition and the
backward substitution can provide a less complex solution for the matrix inver-
sion. In this paper we use givens rotations for the QR decomposition method
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Algorithm 2 Givens Rotations Algorithm
1: input: A ∈ Cd×d

2: The givens algorithm create QHA = R
3: loop:
4: for i=1; i≤d; i++;
5: for j=d; j≥i; j- -;
6: V ejθa = A(j − 1, i)
7: Zejθb = A(j, i)
8: θ1 = tan−1(V/Z)
9: Atmp = A(j − 1 : j, i : d)

10: Atmp =
cosθ1e

−jθa sinθ−jθb1

−sinθ−jθa1 cosθ−jθb1

Atmp

11: A(j − 1 : j, i : d) = Atmp

12: end for
13: end for

which is shown in Algorithm 2. This algorithm decomposes A matrix into up-
per triangular matrix R using a series of rotation matrix multiplications. Every
iteration of this algorithm will change the element A(j, i) to be zero. The step
5 to step 8 are to define the phase difference between the element A(j, i) and its
lower row element A(j − 1, i). An rotation matrix which this phase difference is
multiplied to the whole elements in row j and (j − 1). In this algoritm we use
a temporary matrix Atmp to address all the non zero elements in these j-th and
(j − 1)-th rows. The whole processes are repeated for every pair of elements in
lower diagonal parts until matrix A becomes triangular. Then, the inversion of
this triangular matrix can utilizes backward substitution easily. This algorithm
has an advantage in hardware implementation because the series of rotation ma-
trix multiplications can be realized with a systolic array of coordinate rotation
digital computer (CORDIC) [62].
The implementation of CS algorithm in OFDM channel estimation can lead

to better channel reconstruction quality and less pilot utilization. To apply the
CS algorithm in OFDM channel estimation, we need to redefine the observation
vector in Eq. (3.1) as an multiplication of a RIP matrix with a sparse signal as in
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Eq. (3.6). Because CSI is sparse in the time domain [63], the sparse requirement
can be met by changing the frequency domain CSI into time domain one as

H = diag(Fh[0]), (3.8)

where h[0] is the time domain CIR as described in the chapter 2.2. The Eq. (3.1)
then can be redefined as

Hob = FPh[0] + W. (3.9)

where FP ∈ CN×M is a truncated DFT matrix. The row elements of FP are from
the DFT matrix rows that correspond to the pilot positions, and N equals to T
as number of pilots. Because the receiver is only able to equalize a signal with
maximum delay spread less than CP, the column elements of FP can be chosen
to be the first M columns of DFT matrix that correspond to the CP length.
Now, Eq. (3.9) has met all the CS requirements, as Hob is the sampled vector,
h[0] is the sparse reconstructed signal and FP is the sensing matrix [64]. The CS
representation of this OFDM channel estimation is shown in Fig. 3.4.
The CP and pilot configuration will influence the structure of the sensing matrix

FP . CP length will define the number of column in the FP matrix and the number
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of pilot will determine the row length in the FP matrix. The size of FP matrix is
closely related to the complexity in both inner product and least square operation
in the OMP algorithm. Moreover, in term of reconstruction performance, the
structure of the sensing matrix will define the number of path that the system
can reconstruct [65].

3.2.2 Compressed Sensing in ESPAR-OFDM System

CS with OMP has been proposed as a solution to the channel estimation problem
in the ESPAR-OFDM system [22]. The channel estimation can be modeled as
a compressed sensing underdetermined linear system problem, where the sensing
matrix is the union of multiple Fourier matrices proportional to the number of
the antenna element. The OMP computation can be divided into two main parts.
First, the inner product computation to obtain the sparse CIR locations. The
maximum value from the sensing matrix and the observation vector multiplication
will hold the location of the CIR. Second main part is the CIR reconstruction
with the least square method. Using the known CIR locations, the least square
is simplified as only the columns of sensing matrix that correspond to the sparse
element involved. Since the CIR is sparse, the matrix size will be greatly reduced
for the least square.
Let us define the channel estimation problem from the following equation as

B = Ψa + n, (3.10)

where B is the sampled signal, a is the sparse reconstructed signal, n is the
AWGN noise and Ψ is the sensing matrix. The sampled signal B which is used
for channel estimation can be defined as an observation vector as

B = (Gc
pHc

p + Hc
0 + Gc

nHc
n)P, (3.11)

where (.)c is the truncated matrix which only includes the matrix elements that
related to the pilot locations in both row and column direction. The size of each
truncated matrix (.)c is supposed as T × T , where T is the pilot or observation
vector number. Here, the vector P ∈ RT×1 is the pilot vector. Using the unfolding
technique, we can rewrite Eq. (3.11) as

B =
[
Gc
pHc

p Hc
0 Gc

nHc
n

]
[P P P]T . (3.12)
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Algorithm 3 Multi-column OMP Algorithm
1: input: B; Ψ
2: init: r← B; t← 0; Φ0 ← [ ];
3: loop:
4: α← arg max|〈ΨH , r〉|
5: l← α mod L

6: create index set Ω← α + i ∗ L; i = 0, 1, 2, ..At
7: augment:
8: Φt ← Φt−1|ΨH

Ω

9: least square:
10: a← arg min||b−Φta||2

11: update:
12: r← b−Φta
13: t← t+ 1
14: if stoping criterion not met goto loop.

Because of the diagonal structure of channel matrices Hp, H0 and Hn, the
channel estimation equation can be derived as

B =
[
Gc
pP P Gc

nP
] 
diag(Hc

p)
diag(Hc

0)
diag(Hc

n)

 . (3.13)

The diagonal of channel matrix H can be derived from the CIR as

diag(H) = Fe, (3.14)

where e is the CIR from the first column of the matrix h. Using Eq. (3.14), the
Eq. (3.13) can be modified as

B =
[
Gc
pPFL PFL Gc

nPFL

] 
ep
e0

en

 , (3.15)

where FL ∈ RT×L is a partial DFT matrix which its T row vectors are from DFT
matrix according to the pilot locations and each row vector just includes the first
L values of DFT vectors related to the CP length.
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Figure 3.5: Expected CIR (a) reconstruction result

Finally we can define the sensing matrix Ψ ∈ CT×3L as

Ψ =
[
Gc
pPFL PFL Gc

nPFL

]
, (3.16)

Then, the sparse reconstructed signal a ∈ C3L×1 is defined as

a = [ep e0 en]T . (3.17)

Fig. 3.5 shows the structure of the expected CIR (a) reconstruction result
from the channel estimation. The vector a consists of three component, posi-
tive shifted, non-shifted and negative shifted element. Each component has a
length of L.
Because each antenna element is close to each other (less than 1 λ) as shown

in Fig. 2.8, we can assume the sparse locations on each CIR are the same. The
reference [23] proposed a multi-column OMP by exploiting this property as shown
in Alg. 3. The main difference of multi-column OMP with the conventional OMP
lies in the Step 4 and 5. As shown in the Fig. 3.5, if the each component has the
same delay profile, then we only need to get the relative delay profile and retrieve
the delay profile for all the CIR components by adding 0 for positive shifted part,
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L for non-shifted part and 2L for negative shifted part. In the Step 4, when a
location of a non-zero element is found in a sub-set CIR, the CS need to get the
relative location by applying a modulo operation with L. Then, in the Step 5, the
proposed multi-column OMP can calculate multiple non-zero elements location
at once from Step 4. Therefore, the total number of iteration involved in the
OMP computation can be largely reduced. However, the sensing matrix involves
in the multi-column OMP computation still has a huge size and requires huge
computational complexity. Reader can find the detail of multi-column OMP for
ESPAR antenna system in [22].

3.3 Computational Complexity

The computational cost to compute the multi-column OMP algorithm from the
Algorithm. 3 in OFDM system with An elements ESPAR antenna is shown in the
Table. 3.1. The main bottleneck in the multi-column OMP is the inner product
computation where it need to compute a multiplication with a huge matrix with
the size of AnTL. Where, the latter part after the inner product, the OMP only
need to deal with a much smaller truncated matrix which defined by the CIR
locations.
The usual approach to perform the inner product is by performing the matrix

multiplication row by row as proposed in [27–30]. Thus, to perform one inner
product it will require AtL number of iterations. This will lead to a very long
computational time in each iteration of Algorithm. 3. In results, it will be
very hard to meet the real-time timing requirement, which required the channel
estimation to be done between CP period.
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Table 3.1: Computational cost for the multi-column OMP per Iteration.
No Term × / CORDIC
1. g = 〈ΨH

N , r〉 AnTL

2. α = arg max|g| AnL

3. Ω = [α + iL] - - -
4. Φt = Φt−1|ΨH

Ω - - -
5. bt = ΦHb AnT

6. S = ΦHΦ - - -
7. S−1 = inv(S) - - (A2

nκ
2+Anκ)
2

8. a = S−1bt (A2
nκ

2 − Anκ)/2 Anκ -
9. r = b−Φta AnT

Total AnTL+ AnL+ 2AnT + (A2
nκ

2 − Anκ)/2 Anκ
(A2
nκ

2+Anκ)
2
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4 Computational Complexity
Reduction Methods

This chapter provides the OMP algorithm modification in the ESPAR-OFDM
system to achieve lower complexity. The OMP computation for the channel
estimation in the ESPAR-OFDM system has a huge sensing matrix which size is
also determined by the number of the antenna element. However, the full size of
the sensing matrix only used in the inner product computation in order to detect
CIR delay location as shown in the Alg. 3. While, in the latter processes, the
OMP only need to deal with the truncated matrix (Φ). Matrix Φ size is equal to
the T ×3κ, where κ is the number of sparsity in the CIR. Compare to the matrix
Ψ which size T × 3L, the size of matrix Φ is extremely small. Because of that,
we can say that the bottleneck of the multi-column OMP in the Alg 3 is lies at
the inner product computation in the step 4.
There are several unique properties that we can exploit to reduce the inner

product computational complexity. First, because the CIR delay profile is the
same for all antenna element, we propose a modified multi-column OMP method.
Here, we introduce a new sensing matrix which size is T × L, smaller compared
to the original T × 3L size matrix Ψ. We present the detail of the modified
multi-column OMP in the sub-section 4.1. Second, because of the sensing matrix
is based on the DFT matrix, we can exploit its symmetrical property to apply the
matrix strength reduction. Using this method we can further reduce the sensing
matrix size to be Q×R. The detail of Q will be presented in the sub-section 4.2.
Third, due to the nature of the CS algorithm itself which can work with small
number of measurement, we propose a observation vector selection method to
reduce the row size of the sensing matrix. The combination of the 3 methods can
suppress the size of the sensing matrix into R×Q, the detail of the parameter R
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Figure 4.1: General description of the propose methods for sensing matrix
reduction

is presented in the sub-section 4.3. General description of the 3 propose methods
can be seen in Fig. 4.1.

4.1 Multi-column OMP

The CIR delay profile of each antenna element are the same. Accordingly, the
maximum value from the inner product projection of each 3 sub-matrices will
have the same relative location. Instead of only exploit this property to reduce
the number of iteration as proposed in [22,23], we propose a modification in result
to a reduction in both iteration time and multiplier number. To achieve that,
in this paper we introduce a new sensing matrix which is an overlap of the 3
sub-matrices as

ΨN = Gc
pPFL + PFL + Gc

nPFL. (4.1)

The new sensing matrix will have a dimension of T ×L, which is equal to only
one sub-element of the original sensing matrix Ψ. The multiplication results value
itself is not necessarily required in the OMP inner product, as we only interested
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in the maximum value location. The new sensing matrix ΨN will combine the
inner product result from each sub-matrices. It will change the multiplication
result, but the maximum value location will remain the same.

Algorithm 4 Modified multi-column OMP algorithm
1: input: b; Ψ; ΨN

2: init: r← b; t← 0; Φ0 ← [ ];
3: loop:
4: α← arg max|〈ΨH

N , r〉|
5: create index set Π← α + α ∗ L; i = 0, 1, 2, .., At
6: augment:
7: Φt ← Φt−1|ΨH

Π

8: least square:
9: a← arg min||b−Φta||2

10: update:
11: r← b−Φta
12: t← t+ 1
13: if stoping criterion not met goto loop.

Using the new sensing matrix, we can specify the modified multi-column OMP
as shown in the Alg. 4. In this propose method, beside the original sensing
matrix Ψ, there will be an additional new matrix ΨN at the input part. Then,
the inner product at the step 4 will use the matrix ΨN instead of matrix Ψ. The
modulo operation at the step 5 of the Alg. 3 is unnecessary as the maximum value
location already represent the relative distance for each sub-matrices element. In
each iteration, the modiified multi-column OMP add At indices to the vector Π.
For 3 elements ESPAR, the set of indices can be obtained by adding 0, L and
2L to the maximum projection result α from the step 4. The 3 indices is used to
truncate 3 columns of the original sensing matrix Ψ into matrix Φ. Accordingly,
the expected CIR vector a will grow 3 times faster at each iteration.
The modified 3C-OMP will keep the advantage of the original 3C-OMP as

multiple of CIR locations can be detected at each iteration. Furthermore, the
number of multipliers in the inner product computation can be reduced from 3TL
into TL. The implementation of this method in the OFDM system with 3-element
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ESPAR antenna can reduce both of the iteration and the multiplier number. For
the 3-element ESPAR antenna, this method can bring 66% reduction to the inner
product computation. However, the possibility to implement this method into the
ESPAR antenna with larger elements can result to a greater impact of reduction.
Using the distributive property of the matrix multiplication, we can further

decompose the new sensing matrix from the Eq. 4.1 into

ΨN = (Gc
pP + P + Gc

nP)FL. (4.2)

Then, the inner product computation can be redefined as

|〈ΨH
N , r〉| = |〈FH

L (Gc
pP + P + Gc

nP)H , r〉|. (4.3)

Now, let define vector Θ as

Θ = (Gc
pP + P + Gc

nP)Hr. (4.4)

Vector Θ is easy to compute as it only a combination of three shifted vector r
which consist of ones and zeros. Now we can redefine the inner product compu-
tation again as

|〈ΨH
N , r〉| = |〈FH

L ,Θ〉|. (4.5)

Here, an additional memory usage to store the new sensing matrix ΨN is not
necessary as the matrix FH

L can be retrieved from the non-shifted element of the
matrix Ψ.

4.2 DFT Matrix Strength Reduction

The main complexity for the inner product from the Eq. 4.5 is the matrix FH
L ,

since the P matrix only consist of BPSK signal of 1 and -1. The matrix FH
L

is a truncated DFT matrix in both column and row direction, because of that
the FFT algorithm may not give an efficient hardware implementation result.
However, some of the symmetrical property of the DFT will remain in this matrix.
Moreover, the size of the matrix FH

L is smaller than a full DFT matrix. The matrix
strength reduction technique as proposed in ref. [34] can be implemented in the
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matrix FH
L multiplication to achieve even lower complexity compare to the full

FFT technique.
The measurement matrix has some unique properties which inherited from

DFT matrix. Let us describe the measurement matrix Ω as the Hermitian of Ψ
matrix represented as

Ω = FH
L

=



ω0 ω0 ω0 · · · ω0

ω0 ωp ω2p · · · ω(T−1)p

ω0 ω2p ω4p · · · ω2(T−1)p

ω0 ω3p ω6p · · · ω3(T−1)p

ω0 ω4p ω8p · · · ω4(T−1)p

... ... ... ... ...
ω0 ωLp ω2Lp · · · ω(L−1)(T−1)p


,

(4.6)

where ω is e−2πj/N from N size DFT and p is the pilot period. The Ω matrix
elements are well structured that for the element at a certain k-th row and l-th
column can be obtained as

Ω(k, l) = ω(pkl). (4.7)

Since the elements in Ω are exponent function, any matrix element can be ob-
tained with multiplication of two others elements as

Ω(k1 + k2, l) = Ω(k1, l)× Ω(k2, l) = ω(k1pl)ω(k2pl). (4.8)

Furthermore, the sensing matrix also still has the periodicity and symmetry prop-
erties from the DFT matrix. The k and l from eq. 4.7 define the degree of the ω.
Because the degree has a modulo of 2π property, there will exist a periodicity of
the same element at several rows of the sensing matrix. We can express the each
element in Eq. 4.7 as

Ω(k, l) = ejmod( (2πpkl)
N

,2π)

= e2πjmod( (pkl)
N

,1),
(4.9)

where mod(a, b) defines the modulo operation of dividend a and divisor b. It easy
to conclude from Eq. 4.9 that for k-th row index, where k is a big common divisor
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of N , there will exist a periodicity of the same elements at that row. Because, N
is a multiples of 2 number, we can find big divisors of N in L by dividing L with
C evenly, where C is also a multiples of 2 number as shown in Fig. 4.2.
Using Eq. 4.8 and Eq. 4.9, we can compute C rows of the sensing matrix at

once in relation to the C unique rows which shown in Fig. 4.2 as

g[k]

g[k+L/C]

g[k+2L/C]
...

g[k+L(C−1))/C]


= Γdiag(ψ0[k])r, (4.10)

where matrix Γ ∈ CC×T consists all of the C unique rows in the sensing matrix
Ω as

Γ =
[
Ω[0] Ω[L

C
] Ω[2L

C
] . . .Ω[ (C−1)

C
]
]T
. (4.11)

The main idea is to further reduce the complexity by sharing the multiplier for the
same matrix coefficients at the same row. To find the number of different elements
at each k-th row, we can reduce the constant fraction (pk)/N to its lowest term
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using greatest common divisor (GCD). The number of unique coefficient at a k-th
row can be defined as

Ur = N

GCD(pk,N) (4.12)

Then the total of unique multiplier in the matrix Γ is as follow

U =
C−1∑
i=1

N

GCD(ipL/C,N) . (4.13)

Moreover, there is a symmetry property in the matrix Γ. Because the elements
of Γ matrix can be represented using complex unit circle and these elements will
divide this complex unit circle evenly. Thus, by using only the elements on the
first quadrant of complex unit circle (phase less than π/2), we can obtain all the
different elements located on other quadrants. In term of quadrants, the elements
of Γ matrix can be defined as

Γ(k,l) =



Γq1(θk,l) = e−jθk,l , 0 < θk,l ≤ π
2

Γq2(θk,l) = −jΓq1(mod(θk,l,π2 )),
π
2 < θk,l ≤ π

Γq3(θk,l) = −Γq1(mod(θk,l,π2 )), π < θk,l ≤ 3π
2

Γq4(θk,l) = jΓq1(mod(θk,l,π2 )).
3π
2 < θk,l ≤ 2π

(4.14)

The multiplications with −1, j and −j are needed to recover all the elements in
other quadrants. However, the multiplication with −1, j and −j can be consid-
ered to be negligible compare to a full complex multiplication. By exploiting this
property, the Eq. 4.13 can be redefined as

U =
C−1∑
i=1

⌈
N

4GCD(ipL/C,N)

⌉
. (4.15)

The matrix strength reduction is done by decomposing matrix Γ into three
components as

Γ = Γ3Γ2Γ1. (4.16)

The first component Γ1 is a matrix which only consist of 1, −j, −1 and j com-
ponent. This matrix creates the quadrant symmetry property as shown in Eq.

37



4.14. The structure of Γ1 ∈ CU×T matrix is defined as

Γ1 =



1 1 1 1 1 · · · 1
1 0 −j 0 −1 · · · 0
0 1 0 −j 0 · · · j

...
0 j 0 −1 0 · · · 1


. (4.17)

Then we can multiply the output from Γ1 with the U unique coefficients, which
represented by Γ2 ∈ CU×U matrix as

Γ2 =



e
−j2π
N 0 0 0 0
0 e

−j4π
N 0 0 0

0 0 e
−j6π
N 0 0

0 0 0 . . . 0
0 0 0 0 e

−jπ
2


. (4.18)

The diagonal of Γ2 matrix is filled with U different elements in Γ matrix, which
values in range of e−j2π

N to e−jπ
2 . The last step is to sum the output from Γ2 that

corresponds to the same row at the original Γ matrix. This operation can be
described by the Γ3 ∈ CC×U matrix as

Γ3 =



1 1 0 0 0 · · · 0
0 0 1 1 0 · · · 0
0 0 0 0 1 · · · 0

...
0 0 0 0 0 · · · 1


. (4.19)

Here only the multiplication with matrix Γ2 matrix requires a full complex num-
ber multipliers.
Finally the total rnumber of multipliers required to compute the inner product

of Ω matrix is

Utot = (T + U)L
C

(4.20)

We also can consider this method as a column reduction where the strength
reduction technique decrease the column from L into Q as shown in Fig. 4.1.
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Where Q is defined as

Q = L

C
+ U

T
. (4.21)

4.3 Observation Vector Optimization

There are several criterion to define the number of observation vector needed in
the CS computation. The most common one is the restricted isometric property
(RIP). RIP shows that a matrix behaves as a orthonormal matrix when dealing
with sparse signal. For a channel estimation problem as shown in the Eq. (3.10),
the sensing matrix (Ψ) is RIP if there exist a constant δ (0 < δ < 1) for all sparse
vector (a) which satisfy below equation as

1− δ||a||22 ≤ ||Ψa||22 ≤ (1 + δ)||a||22. (4.22)

If the sensing matrix has the RIP, the minimum number of observation vector
required for the CS computation is 2κ, where κ is the sparsity level. However, in
the channel estimation problem an RIP matrix only can achieved when utilizing
random position pilot [66].
Mutual incoherence property (MIP) is another most used criterion for the CS

computation. Different with the RIP, every matrix will have a certain level of
MIP. The MIP level of matrix A is defined as

µ(A) = max
1≤l,k≤M,l 6=k

|aTl ak|
||al||2.|ak||2

, (4.23)

where al is the l-th column of matrix A. The mutual coherence will define the
maximum sparse element matrix A can recover

κmax =
⌊

1
2

(
1

µ(A) + 1
)⌋

. (4.24)

From Eq. (4.23) also we can specify the maximum MIP level to recover a certain
signal with sparsity κmax as

µmax = 1
2κmax − 1 . (4.25)

It can be seen here that the MIP level is inversely proportional to the κmax.
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Figure 4.3: Observation vector selection block diagram.

In the CS based channel estimation, basically when reducing the number of
pilot will also make the MIP level become higher. We can reduce the number of
observation vector until the µmax is reached. In this paper we propose a sensing
matrix optimization method by selecting a reduced number of observation vector
at the receiver side. The block digram of the proposed method is shown in Fig.
4.3 above. In this proposal, changing the overall system standard is not necessary
as the observation vector reduction only exist in the CS computation.
Aliasing will occur when maintaining the same spacing in the observation vec-

tor selection [35]. Hence, we propose a observation vector selection with genetic
algorithm [56, 67]. Genetic algorithm (GA) is the optimization method that im-
itate the natural selection [68]. The observation vector chosen by GA will have
a non-uniform spacing to each others, so we can avoid the aliasing. The detail
of GA which we used in this paper is presented in the Alg. 5. Each R combina-
tion from a T set observation vector is treated as an individual. The observation
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Algorithm 5 Genetic Algorithm for Pilot Selection
Inputs:

1) Full observation vector number T ;
2) Reduce observation vector number R;
3) Crossover probability pc;
4) Mutation probability pm;
5) Number of individual in each generation nd;
6) Number of generation ng;
7) Discrete probability distribution Ω;

Process:
1: Create nd random combination from T observation vector into R subset.
2: while stopping criterion not met do
3: Calculate the fitness value of each individual.
4: Distribute the selection probability with Ω distribution based on

the fitness value.
5: for each pair of individual 1 to nd/2 do
6: Select two individuals based on selection probability.
7: For each different chromosome, exchange

chromosome with pc probability.
8: For each chromosome in an individual, perform

mutation with pm probability.
9: Get two new individuals as part of the next generation.

10: end for
11: Obtain new generation.
12: end while
13: Obtain the best fitness value in the new generation.

41



location in this R sub-set is considered as a chromosome. Each generation will
contain nd number of individuals. While, the first generation is created with a
brute force of a R random combination from T observation vector set.
In each generation, we will calculate the MIP level for each individual which

determine the fitness value. Then, we sort these individuals according to its fit-
ness value. In order to create the next generation, the two individual is created by
chromosome crossover and mutation of a pair individual in the previous genera-
tion. we choose a pair of individuals according to the chosen selection probability
Ω. For each pair, we try to exchange the chromosome with the probability pc.
Furthermore, for each chromosome in an individual we try to do a mutation with
a probability pm. The mutation will exchange the current observation in the sub-
set, with a observation outside the pair composite. The mutation probability will
be very small compare to the crossover probability. The process of GA will end
after a ng generation have been created, moreover the simulation also will stop if
the new generation already become similar to its previous. The fittest individual
at the latest generation will be chosen as the final result.

4.4 Simulation Results

To assess the effectiveness of the proposed methods, the ESPAR-OFDM system is
simulated with a MATLAB simulation. The quality is measured by using bit error
rate (BER) performance and number of multipliers. The simulation use OFDM
with 3 elements ESPAR antenna. The ITU-6 typical urban channel is chosen as
the channel model in the simulation. Because there will be 3 antenna elements,
the channel estimation needs to recover 18 channel impulses. The FFT size is
equal to 2048 and the CP length is 1/8 of the OFDM symbol. Correspondingly,
the sensing matrix will have a size of 128× 768. The simulation parameters are
shown in the Table. 4.1.

4.4.1 BER Performance

The first simulation is to show the comparison between SISO-OFDM and OFDM
system with 3 elements ESPAR antenna is shown in Fig. 4.4. In this simulation
we used the OFDM with QPSK modulation. It can be seen that ESPAR antenna
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Table 4.1: Simulation Parameters

Modulation OFDM with QPSK or 16 QAM
Channel model ITU 6 Typical Urban
FFT size 2048
Guard interval 1/8 or 1/16 of the OFDM symbol
Equalization MMSE-SQRD
Pilot 128 Subcarriers with 16 spacing
Data 1920 Subcarriers
Noise AWGN
Bandwidth 5.575 MHz
ESPAR Antenna 3 Elements
Observation vector optimization 50%
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Figure 4.5: MIP Convergent property of the proposed GA pilot selection

can obtain significantly better BER performance compare to the SISO-OFDM
system. In this figure, we also include the simulation of the ESPAR-OFDM
system with a CS based channel estimation. The performance of the CS based
channel estimation only has 1 dB different compared to this ESPAR-OFDM sim-
ulation with perfect CSI.
Before we can apply the observation vector optimization method, we need to

obtain a set of the observation vector index that correspond to the lowest MIP
level. While, the number of possible combination when reducing the vector from
128 to 64 is in order of 1037, thus a brute force random search might not give
an optimum solution for this problem. The GA algorithm which is presented in
the section 4.3 can provide a sub-optimum solution for selecting the observation
vector. In this paper, we run the GA with the total 100 generation ng, where
each generation contains of 100 individual nd. In each generation we select nd
pairs of individual to create the new generation. Each pair will interchange its
chromosome with the posibility of crossover pc equal to 0.5. While the mutation is
performed with much less probability which equal to 0.005. The GA method can
obtain the convergence of MIP level compared to the random brute force method
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Figure 4.6: BER performance comparison between GA and random method

as shown in Fig. 4.5. Here we can improve the MIP level from 0.153 to 0.126.
We also compare the BER performance of the GA and random method for the
observation vector optimization in the Fig. 4.6. Here it can be seen that for high
Eb/N0 condition (> 12dB), the random method will get worse BER performance
up to 1 dB.
Finally, we can compare the performance of the 4 approaches in the Fig. 4.7

for QPSK and Fig. 4.8 for 16-QAM modulation. In these figures, it can be seen
that the multi-column OMP and the DFT matrix strength reduction have almost
the same performance compare to the conventional OMP. The proposed pilot
selection technique has a slight 1 dB performance different at high Eb/N0 con-
dition more than 20dB for QPSK. However, almost the same BER performance
can be obtained in the system with QAM modulation. The implementation of
the observation vector optimization method can bring 30% complexity reduction
compared to the approach with multi-column OMP and DFT strength reduction
only. This method is useful in the implementation where hardware’s area become
an important aspect. Furthermore, the computation for the observation vector
optimization is done off-line as a pre-computation.
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4.4.2 Complexity Reduction

The computational requirement for each step of the channel estimation step from
Alg. 4 is shown in the Table 4.2. In this table An represent the number of the
antenna element. At this table, we only include multiplication, division, and
coordinate rotation digital computer (CORDIC). Here, the adder and subtractor
are considered to be negligible. There are some steps that not require any of
these resources. Step 3 is an index augmentation for the vector Ω which only
requires an addition operation and step 4 is an augmentation for the matrix Φ
which implemented by a memory fetcher. The matrix (ΦHΦ) in step 6 can be
obtained by taking the row and column of the matrix (ΨHΨ) that correspond
to the sparse locations. Thus, we can compute this matrix multiplication as an
off-line precomputation and save it into the memory. In this paper, we assume a
matrix inversion by QR decomposition with givens rotation technique is used to
solve the least squares problem. Here, the given rotations process is done by an
array of CORDIC [62]. A CORDIC only consists of a look up table (LUT) and
shifters.
We compare 4 approaches to implement the sensing matrix inner product com-

putation. The conventional method, the multi-column OMP, the multi column
OMP with DFT strength reduction and the combination of all the propose meth-
ods multi-column OMP, strength reduction and observation vector optimization.
The propose methods not only affect the inner product part, but also other steps
in the OMP computation. The search of maximum value from the step 2 will deal
with a shorter vector if we use the multi-column OMP method. The observation
vector optimization also will affect the size of the matrix and vector involve in
the multiplications at the step 5 and 9.
To show the effectiveness of our proposal, we simulate our system with the

simulation parameters are shown in the Table. 4.1. The simulation has a variation
of the guard interval length to assess different L parameter in the sensing matrix.
The parameter T is 128, L is 256 and R is 64. The inner product complexity
for the conventional method is 3TL which are 98, 304 and 49, 152 number of
multipliers for GI equal to 1/8 and 1/16 respectively. The multi-column OMP
will reduce the inner product complexity by 66%, where the total of required
multiplier are TL which translated into 32, 768 and 16, 384 number of multipliers
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Table 4.2: Estimated Computational Cost for the Proposed OMP per Iteration
No Term × / CORDIC
1. g = 〈ΨH

N , r〉
Conventional AnTL - -
method 1 TL - -
method 1 & 2 (T + U)L/C - -
method 1, 2 & 3 (R + U)L/C - -

2. α = arg max|g|
Conventional AnL - -
method 1 L - -
method 1 & 2 L - -
method 1, 2 & 3 L - -

3. Ω = [α + iL] - - -
4. Φt = Φt−1|ΨH

Ω - - -
5. bt = ΦHb

Conventional AnT - -
method 1 AnT - -
method 1 & 2 AnT - -
method 1, 2 & 3 AnR - -

6. S = ΦHΦ - - -
7. S−1 = inv(S) - - (A2

nκ
2+Anκ)
2

8. a = S−1bt (A2
nκ

2 − Anκ)/2 Anκ -
9. r = b−Φta

Conventional T - -
method 1 T - -
method 1 & 2 T - -
method 1, 2 & 3 R - -

Total
Conventional AnTL+ AnL+ An + T + (A2

nκ
2 − Anκ)/2 Anκ

(A2
nκ

2+Anκ)
2

method 1 TL+ L+ An + T + (A2
nκ

2 − Anκ)/2 Anκ
(A2
nκ

2+Anκ)
2

method 1 & 2 (T + U)L/C + L+ An + T + (A2
nκ

2 − Anκ)/2 Anκ
(A2
nκ

2+Anκ)
2
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Figure 4.9: Mean number of multipliers per row with different C parameter

for GI equal to 1/8 and 1/16 respectively.
First, we need to find the C parameter which can give a lowest complexity in

order to implement the DFT strength reduction. We calculate the mean of the
multiplier number per row with different C parameter as shown in the Fig. 4.9.
It can be seen in the Fig. 4.9 that with C equal to 32 will correspond to the
lowest number of multipliers. Now, using Eq. 4.15 we can find the U parameter
to be 87 and 171 for GI equal to 1/8 and 1/16 respectively. Furthermore, the
total number of multipliers for the inner product become much lower as 1720
for GI equal to 1/8 and 1196 for GI equal to 1/16. Finally, we can apply the
observation vector optimization to reduce the T parameter from 128 into 64.
The comparison of the complexity for the 4 approaches is shown in the Fig.

4.10. By reducing the length of the observation vector into 64, we can gain an
additional complexity reduction by 30%. The observation vector optimization
method reduces the number of multipliers from 2, 897 into 2, 001 for GI equal to
1/8 and from 2, 245 into 1, 518 for GI equal to 1/16. Finally, we can achieve a
total more than 90% of the multiplier reduction using the combination of all the
propose methods. For the GI equal to 1/8, we reduce the number of multipliers
from 99, 993 into 2001. While for GI equal to 1/16 we reduce the number of
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multipliers from 50, 457 into 1, 158.
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5 Hardware Implementation

This chapter shows the hardware implementation for the proposed low complexity
ESPAR-OFDM channel estimation. The hardware design methodology in this
dissertation is shown in the Fig. 5.1. The hardware architecture is designed
based on the the matlab model of the CS based of the channel estimation for the
ESPAR-OFDM system as described in the Chapter 4. The hardware then coded
into the Verilog hardware description language (HDL). To assess the hardware, a
behavior testbench using Modelsim software is utilized. In this chapter, the first
part shows the VLSI architecture of the proposed methods. At the second part we
provide a RAM optimization method by exploiting the DFT properties. The third
part provides the simulation result for fixed point model to find the minimum bit
requirement for the proposed hardware. The last part is the synthesis results for
the FPGA implementation.

5.1 VLSI Architecture

In order to simplify the problem, we first created the hardware of CS based chan-
nel estimation for conventional SISO OFDM. The hardware for SISO-OFDM
will become a base for the channel estimator for OFDM with 3-element ESPAR
antenna. Because of the modified 3-column OMP technique, the same inner prod-
uct and least square modules can be kept for the ESPAR-OFDM implementation.
The hardware for ESPAR-OFDM will have a bigger CORDIC array as the length
of the CIR become 3 times longer.
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Figure 5.2: Hardware block diagram for CS-based SISO-OFDM channel
estimation

5.1.1 CS Based Channel Estimator for SISO OFDM
System

There are two considerations in this proposed implementation, a fast execution
time to meet the real-time strict deadline and a low resource hardware to support
the mobility in ISDB-T one-seg service. Fig.5.2 shows the block diagram for the
proposed VLSI architecture. The hardware mainly consists of five processing
elements: inner product, maximum finder, ΦHΦ matrix updater, least squares
and residue unit.
Table 5.1 shows the theoretical memory usage in this hardware implementation.

In this table, κ defines the sparsity in the channel impulse response, where κ <<
N < M . We save the static variables in the dedicated block RAM (BRAM).
While the dynamic variables are saved in the registers, so it can be updated in
parallel. By utilizing the proposed memory reduction technique, we can avoid
to save the whole complex Ψ matrix which can significantly reduces the RAM
usage.
The least squares operation is realized in two steps as shown in the Fig. 5.4.

The first step is the QR decomposition using the givens rotations technique as
described in algorithm 2. This operation is done by the systolic array of CORDIC
as proposed in the [1]. The structure of the CORDIC array for the QR decom-
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Table 5.1: Theoretical memory requirement for CS based channel estimation of
SISO-OFDM system

Element b a g u R Ψ(1) ΨHΨ(0) ΦHΦ

Type RAM RAM Reg Reg Reg RAM RAM Reg

Size N κ M κ κκ N N κκ
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Figure 5.3: Inner product unit for CS-based SISO-OFDM Channel Estimation

position is shown in the Fig. 5.5. Input port x is for the matrix ΦHΦ, and the
input y is for Since ΨHΨ is a complex matrix, each processing unit in this sys-
tolic array is based on three angles complex rotation (TACR) CORDIC method
as proposed in [62]. The outputs from this systolic array are vector u which is
equal to QHΦHb and the triangular R matrix. As the second step, we utilize a
back substitution method to get the approximate solution for the channel impulse
response a in each iteration.

Figure 5.4: Least Square Implementation [1]
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Figure 5.5: CORDIC array structure for the QR decomposition [1]
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The details of hardware architecture for the proposed inner product unit is
shown in Fig. 5.3. This inner product unit is an iterative realization of the pro-
posed strength reduction method. To compute the inner product g = 〈ΨH , r〉,
this module will compute C number of ΨH rows at once in each iteration, thus the
whole inner product computation only require M/C clock cycles. This module
can be divided into 5 sub-modules. In this implementation, each part is sepa-
rated by a pipelined register to obtain faster clock speed. In this unit, only the
first and the fourth sub-modules that require the complex multiplication. The
first sub-module is the realization of diag(ψ0[k1]) multiplication from Eq. (4.10)
which requires N multipliers. While the fourth sub-module uses U number of
multipliers as the realization of Γ2 matrix multiplication from Eq. (4.18). The
second sub-module is implemented with parallel of radix 4 decimators to realize
the multiplication with Γ1 matrix from Eq. (4.17) which only contains 1, j, −1
and −j elements. The third and the fifth sub-modules are implemented with
adder threes to perform the summation computation.

5.1.2 CS Based Channel Estimator for OFDM System
with 3-Element ESPAR Atenna

The hardware block diagram for the proposed CS based channel estimation for
ESPAR-OFDM system is shown in the Fig. 5.6. The difference between the
ESPAR version with the SISO version is in the observation vector optimizer,
residue unit, and vector Θ processor as shown in the Fig. 5.7. Because of the
pilot tones in the matrix P are only consists of BPSK signal which are 1 and
-1, the multiplication with this matrix only requires 2’s complement negation.
Matrix Gp and matrix Gn are the shifting matrix in postive and negative direction
respectively. Finally, the vector Θ can be obtained by a series of three ports
adder for every adjacent elements in the Pr vector. Furthermore, the same inner
product module and maximum finder can be used in the ESPAR-OFDM channel
estimation.
In the ESPAR-OFDM channel estimation, the least square module need to have

a larger CORDIC array to accommodate CIR reconstruction for each antenna
element. In each iteration the maximum location from the inner product will be
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Figure 5.6: hardware Block Diagram for CS-based ESPAR-OFDM Channel
Estimation

Table 5.2: Theoretical memory requirement for CS based channel estimation of
ESPAR-OFDM system

Element b a g u R Ψ(1) ΨHΨ(0) ΦHΦ Φ P

Type RAM RAM Reg Reg Reg RAM RAM Reg Reg Reg

Size T κ L κ κκ T T κκ T T
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Figure 5.7: VectorΘ processor.
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used to construct vector Ω which has a size of 3. Because of the DFT property,
the matrix (ΦH

t Φt) can be obtained by taking a row and column from matrix
(ΨH

t Ψt) that correspond to the sparse location in the vector Ω. While matrix
(ΨH

t Ψt) can be precomputed and save into the RAM. In result, we can avoid the
matrix-matrix multiplication with a simple memory fetching.
The matrix (ΨH

t Ψt) has a very large size of L × L which requires a big size
of RAM to store its data. However, because the it is from the DFT matrix the
structure of matrix (ΨH

t Ψt) is unique as shown in the Fig. 5.8. We can divide the
matrix into 9 sub-matrices where each part has a Toeplitz structure. Moreover,
the matrix value can be categorized as 4 matrices J1, J2, J3, and J4. The matrix
J1 will correspond to three sub-matrices, while J2, J3 and J4 each correspond
to two pair of a sub-matrix and its conjugate.
By exploiting the Toeplitz and the matrix structure in the Fig. 5.8, we can

reduce the RAM requirement by only store 4 array with the length of L, which
value are the first column of each matrix J1, J2, J3, and J4. A circular shifter
is used to obtain the value of others column in the sub-matrix. Finally, we can
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Figure 5.9: Fixed point simulation for SISO-OFDM

reduce the memory requirement to store matrix (ΨH
t Ψt) from L× L into 4L.

5.2 Fixed-point Simulation

We also use the MATLAB simulation to find the minimum fixed-point data rep-
resentation which will not affect our proposed system performance to benefit the
hardware implementation. Fig. 5.9 shows the bit error rate performance for this
simulation. It can be seen that by reducing the data representation to using 18
bits will not largely affect the BER performance. However, the BER will start
to increase if using 17 bits as fixed point for data representation, and the whole
system will fail to operate if using 12 bits for data representation.
While the fixed point simulation for the ESPAR-OFDM system using the pro-

posed channel estimation can be seen in the Fig. 5.10 and Fig. 5.11 Here it can
be seen that the number of bit can be reduced until 16 bits without a significant
changes in the BER performance. Using 14 bit will reduce the performance as
much as 3 dB for the low Eb/N0 region. Furthermore, using 12 bit reduce the
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BER performance more than 8 dB at the high Eb/N0 region.
The Matlab simulation is done in the order of 106 numbers of OFDM symbol.

The minimum and maximum value for each variable can be observed from the
Matlab simulation. Thus, we can optimized the fixed-point representation of each
variable according to its maximum and minimum value. Fig. 5.12 shows the data
representation for each variable used in the hardware and fixed-point simulation.
The fixed point data representation here use two’s complement format.

5.3 Synthesis Results

The proposed hardware is realized in Verilog HDL and synthesized into Xilinx
Virtex 6 FPGA. Based on the MATLAB simulation results, the hardware is
realized with specification C = 32 and data representation with 16 bits as fixed
points. The measurement matrix Ψ has a dimension of T = 128, R = 64 and
L = 256. The sparsity degree of the channel impulse response is κ = 6.
The synthesis results for the FPGA resources utilization can be seen in table

5.3. Using the proposed method, the hardware can be fit into Xilinx Virtex 6
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Table 5.3: FPGA Xilinx Virtex 6 Resource Utilization
Max Frequency 100 MHz
Occupied Slices 24,720 (11.67%)
DSP48 Cores 299(14.7%)
BRAM 61.4kb (1.6%)
Register 184 kb (31 %)

XC6VSX475T. The proposed architecture only require 1.6 % BRAM and 31%
register utilization. Moreover, this design is operated with 100 MHz clock speed.
The inner product multiplication execution time requirement can be calculated

as

Tip = (M
C

+ 5)× Tclock. (5.1)

Since C = 32 and M = 256, the M/C will be equal to 8, thus, it will require 13
clock cycles which is equal to 130 ns. While the least squares execution time can
be calculated as

Tls = 5κ× Tclock. (5.2)

The least squares will require 90 clock cycle or 900 ns. The residue vector can be
computed in every time a component of vector a can be obtained from the least
squares back substitution. The rest of the hardware modules execution time are
as follows. The maximum finder requires 8 clock cycle for M = 256, the ΦHΦ
needs κ clock cycle and the residue unit require 18 clock cycle. Therefore, the
total reconstruction time can be calculated as

Ttot = κ(Tip + Tls + 26 + κ)/3, (5.3)

for the sparsity degree as 18, the reconstruction time is 8.82µs. The comparison
of the proposed implementation compare to the existing design is shown in the
Table. 5.4. It was greatly reduce while the fastest available design requires 158.7
µs.
Peak signal-to-noise ratio (PSNR) is used to assess the hardware reconstruction

quality. PSNR show the ratio between the noise created by the hardware and the
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Table 5.4: Comparison to existing design

Hardware Matrix
Size

Sparsity Clock Process
Time

Data Format

Intel Core i7 [69] 64 x 512 12 3 GHz 25ms single precision
real data

NVIDIA GTX480 [70] 512x8192 64 N/A 15ms N/A

Virtex 6 [28] 256 x 1024 12 100MHz 158.7 µs 18 bit fixed point
real data

Virtex 6 [30] 256 x 1024 36 120MHz 350 µs 18 bit fixed point
real data

Virtex 7 [31] 512 x 2048 12 165MHz 391 µs 18 bit fixed point
real data

Virtex 6 (proposed ) 128 x 768 18 100MHz 8.82 µs 16 bit fixed point
real data

Table 5.5: Hardware PSNR comparison
Hardware Virtex 6 [28] Virtex 6 [30] Virtex 7 [31] Proposed
PSNR (dB) 23.5 38.8 N/A 49.7

original signal. PSNR is computed as

PSNR = 20log
(
MAX√
MSE

)
. (5.4)

Where mean square error (MSE) is defined as the mean square difference between
the reconstructed signal from OMP hardware and the original signal. MSE is
computed as

MSE = 1
L

L∑
i=0

[x(i)− x̂(i)]2 . (5.5)

The PSNR comparison between existing design is shown in the Table. 5.5.
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6 Conclusion

ESPAR antenna is a promising replacement for the conventional multi-antenna
system such as MIMO with lower power consumption and smaller hardware size
with only one RF front-end. However, the implementation of the ESPAR antenna
in the wireless communication system is hindered by its channel estimation com-
putational cost. This dissertation provided three methods for the computational
cost reduction for ESPAR-OFDM channel estimation. Moreover a parallel VLSI
architecture is proposed to achieve fast execution time in regards to the wireless
system real-time computation deadline.
Chapter 3 introduced the ESPAR antenna structure and its circuit model. Fur-

thermore, this chapter also shows the implementation of the ESPAR antenna to
the OFDM system. The ESPAR-OFDM channel characteristics and the available
CS based channel estimation were introduced in this chapter.
The main contribution of this dissertation was presented in the Chapter 4.

An implementation if the CS based algorithm for the channel estimation in the
OFDM system has several unique properties. Three methods were proposed to
reduce the CS inner product computational cost. First, the CIR has the same
delay profile for each ESPAR antenna elements. By exploiting this property, a
new multi-column CS algorithm was introduced. Furthermore, a matrix strength
reduction was applied by taking advantage the CS sensing matrix structure which
based on the DFT matrix. The third reduction was using the property of the
CS algorithm itself which can work with less sampling, here a observation vector
optimization method also introduced to gain lower complexity. The combination
of the proposed methods can reduce the CS inner product computational cost by
97.7%.
Beside algorithm based computational reduction, this dissertation also provided

the hardware implementation for the proposed ESPAR-OFDM channel estima-
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tion. The main purpose of the hardware implementation is to achieve a faster
execution time to met the wireless system deadline requirement as shown in the
Table 1.1. A VLSI architecture with a 32 level of parallelism was proposed in this
chapter. The proposed structure can achieve 1700% increment in the execution
time which can met any modern OFDM based wireless communication system
timing deadline.
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