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Data-efficient Learning of Robotic Clothing Assistance
using Bayesian Nonparametric Latent Variable Models∗

Nishanth Koganti

Abstract

Assistance with dressing is an essential care-giving task that could be performed
by robots and improve the independence of the elderly. However, robotic clothing
assistance is considered a highly challenging problem involving close interaction
of the robot with non-rigid clothing articles and with the assisted person whose
posture can vary. Design of an efficient clothing assistance framework involves
reliable state estimation and efficient motor skills learning.
In this thesis, Bayesian nonparametric latent variable models are applied to

tackle two problems of robotic clothing assistance. Firstly, the problem of reliable
cloth state estimation is addressed. Manifold Relevance Determination (MRD) is
used to learn a shared latent space for observations from a noisy depth sensor and
accurate motion capture system. This latent space is used to infer the accurate
cloth state given only the noisy depth sensor readings in a real-world setting. In
the second part, the problem of data-efficient motor skills learning for clothing
assistance is addressed. Bayesian Gaussian Process Latent Variable Model (BG-
PLVM) is used to learn a low dimensional latent space that can encode the task
specific motor skills for clothing assistance. It is demonstrated that performing
policy search reinforcement learning in this latent space outperforms learning in
the high-dimensional joint configuration space of the robot. Furthermore, this
framework is demonstrated as a user-friendly tool that can impart novel motor
skills to bulky humanoid robots.

∗Doctoral Dissertation, Department of Information Science, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD1461210, September 6, 2017.
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1. Introduction

In the recent years, there has been a tremendous increase in the elderly population
of the world. This has been seen especially in industrialized nations such as
Japan. These demographic trends have also been accompanied by a decreasing
work force which has caused a severe shortage in trained caregivers that can assist
the elderly. Assistive robots are a promising solution and are already playing
an increasing role in improving the living standards and independence of the
elderly and disabled. The long term goal for the robotics community is the
realization of caregiving robots that not only provide companionship but also
physical assistance with everyday activities. The major requirements for such a
caregiving robot includes safe and reliable human interaction and the ability to
manipulate a wide array of household items. Assistance with dressing is one such
basic caregiving task in the daily life of the elderly and disabled that could be
performed by assistive robots. Automating this task could greatly improve the
independence of the elderly as they would not have to rely on another person and
also alleviate the burden on caregivers. However, this task is highly challenging
as there are many factors that the robot needs to consider to ensure safe and
reliable execution. It remains an open problem with active ongoing research.

1.1. Research Motivation

Japan has the highest percentage of elderly population in the world. In 2011,
23.1% of the population were 65 and above, while 11.4% were already 75 and
above [8]. On the other hand, the Japanese Health Ministry estimates that
Japan’s total population will fall by 25% from 127.8 million in 2005, to 95.2
million by 2050 [9]. With the growing elderly population, there are two main
concerns that need to be addressed. First, it is expected that there will be a
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tremendous shortage of qualified healthcare personnel in the near future. Second,
people would prefer to live in their own homes instead of being institutionalized
in nursing facilities. To address these issues, we need a greater presence and
appliance of ICT-technology and robotics. In the recent years, many robotic
applications have been designed to assist the elderly and disabled people in their
daily life.
Broekens et al. [10] have conducted a comprehensive survey on some of these

developments and their impact on the lives of the elderly. Assistive robots are
broadly divided into three categories, i.e. social robots, rehabilitation robots and
service robots. The first category are systems that can communicate with the user
and provide companionship. The second category provides assistance to improve
physical well-being which need not be social. The third category includes projects
that have both assistive as well as social aspects such as service robots.
Service robots, provide functionalities that accommodate independent living to

users by supporting basic activities and providing household maintenance. One of
the earliest service robot is the nurse bot Pearl [11] which had two main functions
1) reminding the user about routine activities such as eating and drinking and
2) guiding the user through the household. This robot was successfully deployed
in retirement homes and has been effective in improving the quality of life for its
users. A similar but more recent project is the German Care-o-bot [12]. This
robot is similar to Pearl along with having a manipulator arm that can be used
to grasp household items and a sophisticated vision system to recognize specific
items in a cluttered household environment. It can be used for standard transport
tasks such as getting food or medicines and providing assistance to the user while
drinking water by holding the bottle.
Meanwhile, one of the major problems is the loss of motor functions to perform

highly dexterous tasks such as putting on clothes. Patients with bone and muscle
related diseases find it difficult to move their arms beyond a certain range and are
not able to wear clothes by themselves. Similarly patients with conditions like
Alzheimer’s disease face difficulty in performing fine movements such as putting
on buttons and are dependent on the caregiver. Although in most cases, the
patient is not entirely dependent on the caregiver and can perform the tasks
requiring some assistance. This task could ideally be performed by service robots
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as discussed above.
The long term goal for our research group is in the development of a framework

for clothing assistance that can address this need. The service robot needs to in-
teract with the users, understand their needs and provide “assistance-as-needed”.
The emphasis is on enabling generic humanoid robots to extract the important in-
formation from the environment and acquire the required motor skills to perform
the task.

1.2. Problem Overview

Robotic clothing assistance is considered an open problem by the robotics com-
munity. The challenges involved are the close interaction of the robot with non-
rigid clothing materials which are usually represented in a high dimensional space
and adaptation of robot’s trajectory to changes in posture of assisted person. A
promising approach is to treat it as a learning problem where an efficient formu-
lation enables the robot to learn the desired motor skills by itself.
In the recent years, there have been several studies that addressed robotic

clothing assistance as presented in Section 2.4. These studies considered various
subproblems such as human pose estimation, cloth state estimation and motor-
skills learning. However, they handled clothing tasks where there isn’t significant
coupling between the human and cloth. In tasks with tight coupling such clothing
a human with a T-shirt as shown in Figure 1.1, the problem becomes much more
challenging. The clothing article undergoes large changes in its shape and there
can also be occlusion from the human making state estimation challenging. The
robot needs to ensure safe human-robot interaction as it will operate in close
contact with the human. Furthermore, there can be significant variability in the
motor-skills required depending on the environmental settings such as the human
subject and clothing article used.
To ensure a real-world implementation of robotic clothing assistance, these

problems need to be addressed. Firstly, state estimation i.e. the relationship
between the human and cloth is crucial for efficient motor-skills learning. There
has been significant research on human pose estimation and the challenge lies
with cloth state estimation. On the other hand, existing learning frameworks for
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Figure 1.1.: Task setting for performing robotic clothing assistance.

robotics either require large number of interactions or rely on an accurate mod-
eling of the environment. Both these constraints are not applicable for clothing
assistance as it involves interaction with an elderly human and accurate modeling
of human-cloth interaction is challenging. There needs to be a learning frame-
work that is fast and can generalize to various settings using little or no expert
supervision.

1.3. Research Contribution

This thesis aims towards a practical implementation of a learning framework for
robotic clothing assistance building upon the work by Tamei et al. [1]. The main
contributions are as follows: (1) develop a framework for real-time estimation of
human-cloth relationship with an emphasis on reliable cloth state estimation and
(2) formulate a motor skills learning framework that is data-efficient as well as
flexible to adapt to various environmental conditions. These research problems
are addressed through the use of Bayesian nonparametric latent variable models
as it has several desired features. Dimensionality reduction is used to reduce
the high dimensionality and model the problems in a low dimensional space that
efficiently capture the underlying task. These models rely on the use of Gaussian
Processes [3] which leads to handling the inherent non-linearity and also perform
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model learning in a data-efficient manner.
In (1), the problem of reliable cloth state estimation is addressed by using a

depth sensor to overcome the problems faced with the motion capture system.
This thesis proposes the use of Manifold Relevance Determination (MRD) to learn
a shared latent space for observations from a noisy depth sensor and accurate
motion capture system. This latent space is used to infer the accurate cloth state
given only the noisy depth sensor readings in a real-world setting. In (2), the
problem of data-efficient motor skills learning for clothing assistance is addressed.
This thesis proposes the use of Bayesian Gaussian Process Latent Variable Model
(BGPLVM) to learn a low dimensional latent space, encoding the task specific
motor skills for clothing assistance. It is demonstrated that performing policy
search reinforcement learning in the latent space outperforms learning in the high-
dimensional joint configuration space of the robot. Furthermore, this framework is
also demonstrated as a user-friendly tool to impart novel motor skills to the robot.
The proposed frameworks are demonstrated for a T-shirt clothing task performed
by a Dual-arm robot with a soft mannequin used as the assisted person.

1.4. Thesis Overview

This thesis is organized and divided into six chapters. Chapter 2 gives an overview
of all the related works. Chapter 3 summarizes the theory of Bayesian nonpara-
metric latent variable models used for the modeling of the research problems in
this thesis. Chapter 4 describes the proposed framework for real-time cloth state
estimation. Chapter 5 describes the proposed framework on data-efficient motor
skills learning. Lastly, Chapter 6 concludes the thesis with directions for future
research and a road map to realize a practical implementation of robotic clothing
assistance.
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2. Related Works

This chapter summarizes studies related to the research problems addressed in
this thesis. The key challenge for robotic clothing assistance is with clothing ar-
ticles. There has been significant research related to state estimation and robotic
manipulation for rigid objects. However, clothing articles are inherently non-rigid
and difficult to model. In the recent years, there has been a lot of attention on
developing frameworks for robotic cloth manipulation. The studies tackle differ-
ent aspects of the problem and are presented here in two sections. Section 2.1
has studies on cloth state estimation which is related to the first problem handled
in this thesis. Section 2.2 includes frameworks for motor-skills learning and its
specific application to cloth manipulation related to the second problem.
In this thesis, Bayesian nonparametric latent variables are proposed to address

the research problems. Section 2.3 includes a literature survey on the use of
latent manifold learning in the domain of robotics and computer vision. Sec-
tion 2.4 presents studies that specifically tackled the problem of robotic clothing
assistance. Finally Section 2.5 describes the studies which form the basis of this
thesis and further elaborates upon the research motivation.

2.1. Cloth State Estimation

One of the popular approaches for robotic cloth handling is to rely on efficient
cloth state estimation and to perform static planning of the robot. Ramisa et
al. [37,38] designed efficient feature descriptors for detection and parts segmenta-
tion of clothing articles that relied on both appearance and depth features. They
proposed novel depth descriptors that performed well for clothing articles and
used Bag of Visual Words (BoVW) to efficiently encode the feature information.
Cusumano-Towner et al. [35] tackled the problem of bringing clothes to a desired
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Figure 2.1.: Robot performing interactive perception for efficient state estimation [41].

task-specific configuration using HMM to model the state transitions. The state
of clothing article was approximated using a triangulated mesh model which is
estimated by comparison of simulated and observed contour shapes.
Wang et al. [39] handled the problem of sock configuration detection for manip-

ulation and classification. They extracted texture- and shape-based local features
to estimate a global sock configuration which was used for planning robotic ma-
nipulation tasks. Willimon et al. [40,41] relied on the concept of interactive per-
ception, where the goal of the robot is to classify non-rigid objects in a cluttered
environment through perception and interaction with the objects. An example
of interactive perception on a non-rigid object is shown in Figure 2.1. The data
obtained from robotic interaction was used to construct a skeleton representation
of both rigid and non-rigid objects with which the objects could be efficiently
classified.
Another approach to cloth handling is to construct high-dimensional models of

clothing articles using depth sensors. Kita et al. [43,44] proposed a framework for
cloth state estimation using multiple observations of the cloth through rotation
along a vertical axis. A mesh-model was fit through optimization to the obser-
vations and was used for informed cloth manipulation as shown in Figure 2.2. Li
et al. [69], performed construction of 3D mesh models of clothing articles using
depth image segmentation and volumetric fusion. They proposed an efficient ap-
proach to estimate the 3D mesh model by relying on an offline database of mesh
models and computationally efficient feature representations for searching within
the database.
Maitin-Shepard et al. [36] proposed an end-to-end cloth folding system that
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Figure 2.2.: Dense cloth state representation for state estimation from depth sensor [44].

uses geometric cues to complete the folding task through a predefined sequence.
The framework relied on border geometry information to detect grasping points
that are most suitable for performing the folding task. Bersch et al. [42] proposed
a cloth folding framework starting from a crumpled state. The task was performed
using a T-shirt that was patterned with fiducial markers. These markers were
tracked to provide an accurate estimate of the cloth state which was used to
plan the next grasp motion of the robot. They also relied on a computationally
complex mesh-model to represent the cloth state.
Recently, there have been several studies that rely on the use of deep learning

for cloth state estimation. Tangseng et al. [47] proposed the use of fully convolu-
tional networks (FCN) for cloth parsing task. They designed a novel architecture
along with a conditional random field (CRF) that can explicitly encode cloth-
ing semantics to disambiguate between similar looking clothing articles. Liu et
al. [48] released a comprehensive dataset of clothing articles along with their se-
mantic and landmark annotation. They also proposed a novel deep model that
could simultaneously estimate global appearance, local features and landmarks.
This model could be used for several commercial purposes such as searching for
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Figure 2.3.: 3D garment shape estimation from single images using fully convolutional networks
(FCN) [49].

similar clothes within a database.
Danerek et al. [49] proposed a framework to predict the 3D shape of a garment

given a single image under various occlusions and lighting conditions. A synthetic
dataset was generated through physically based simulations between humans and
clothing articles which was used to train the model. This framework was applied
to predict the 3D shape in real-world examples with promising results. Gabas et
al. [50] performed classification of clothing articles using only depth images and
convolutional neural networks (CNN). They generated a dataset for five categories
of clothing articles while being manipulated by a robot arm. This comprehensive
dataset was used to train the model used for classification. The proposed frame-
work was able to obtain an accuracy of 80% even from a single observation of the
clothing article and with monotonic increase as more observations were provided.
The studies presented thus far have several limitations in the context of robotic

clothing assistance. These tasks rely on the use of high-dimensional cloth state
models and sometimes optimization-based techniques for fitting these models to
sensory observations. In most of the studies, planar assumption is taken for cloth-
ing articles to constrain state estimation. However, clothing assistance can not
use such assumptions and would require computationally efficient representations
to ensure real-time state estimation. There is also a significant effort in designing
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efficient features suitable for performing the task and these features usually do
not generalize to other related tasks.
Meanwhile, deep learning based studies avoid the need for feature design and

have provided promising results in this domain. However, the studies presented
here either rely on large datasets or generation of synthetic datasets. Data aug-
mentation for robotic clothing assistance is challenging as it is difficult to model
the human-cloth-robot interaction efficiently in a simulator. On the whole, these
studies also do not specifically handle the interaction between clothing articles
and human-subjects required for clothing assistance.

2.2. Motor Skills Learning

One of the major challenges in robotics is acquiring motor skills to perform com-
plex behaviors. This can be achieved using methods such as Imitation Learning
(IL) [51] where the robot mimics expert demonstrations of the task and reinforce-
ment learning (RL) [55] where the robot learns the behavior through a trial-and-
error process. These methods usually rely on using statistical machine learning
and the representation used to encode the robot’s motor skills play a crucial role.
Motor skills, usually a trajectory or a robot controller, are encoded using repre-
sentations such as Dynamic Movement Primitives (DMP) [32], Linear Quadratic
Regulator (LQR) and Neural Networks (NN). Over the past few years, there have
been several studies that applied these methods to various robotic applications.
Imitation Learning (IL) or Learning from Demonstration (LfD) is often used in

robotics to enable fast learning of complex behaviors. Schaal [51] provide an in-
troduction to the topic and its application towards autonomous humanoid robots.
He has drawn parallels between computational approaches and biological basis of
imitation learning in the human brain. Argall et al. [52] provide a comprehensive
survey of applying LfD to robotics. The robot usually extracts information from
expert demonstrations to reproduce the behavior. The extracted information can
either be the motor skills itself that directly mimics the expert [53] or it can be
a model of the environment using which the motor skills can be learned [54].
Usually LfD tends to overfit to the expert demonstrations and is used as an
initialization to reinforcement learning for generalization to novel settings.
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(a) (b)

Figure 2.4.: Examples of reinforcement learning in robotics: a) Helicopter learning controller for
inverted flight [57], b) Four legged little dog robot learning controller for climbing
stairs [59].

Reinforcement learning (RL) is a branch of machine learning wherein an agent
learns to interact with its environment so as to maximize its long-term rewards [55].
Kober et al. [56] provides a detailed survey on application of RL to robotics. The
challenges involved in applying RL to robotics is that the agent needs to handle a
continuous action space and usually has a partially observable setting with noisy
sensory data. RL is typically used when manual-coding or tele-operation of the
robot is infeasible. Some of the example applications are autonomous helicopter
flight [57], robot soccer [58], legged locomotion [59] and robotic table tennis [60]
as shown in Figure 2.4.
Data-efficiency is crucial for robotics applications as it is time consuming and

expensive to perform real-world experiments. This has been handled using two
approaches. Firstly, policy search methods have been proposed where the robot
directly searches for an optimal policy and usally does not rely on a value function.
Deisenroth et al. [61] have provided a survey on various policy search methods.
These methods firstly parametrize the motor skills of robot and directly optimize
the policy parameters for efficiently performing the task. Another approach are
model-based methods where a model of the environment is used to avoid unnec-
essary exploration in RL. Nguyen et al. [62] present some of the approaches used
for model learning and its application to robotics.
The representation used for motor skills play a crucial role in the efficiency

11



Figure 2.5.: POMDP formulation to sort clothing articles [70].

of LfD and RL algorithms. The representation can either be applied to an en-
tire trajectory or it can be in the form of a controller i.e. a mapping from state
space to robot’s action space. Several representations have been applied for robot
trajectories such as Via-points, Gaussian Mixture Models (GMM) and Dynamic
Movement Primitives (DMP) [32]. DMPs are nonlinear dynamical systems capa-
ble of movement generation. They are most commonly used in robotics [64, 65]
as they have several desired properties such as efficient teaching, task general-
ization [66] and sensory feedback [67]. Paraschos et al. [68] have also proposed
a probabilistic extension to DMP called ProMP where the motor primitive now
captures a distribution of trajectories.
Several studies have proposed motor skills learning specifically for cloth manip-

ulation to handle the inherent non-rigidity. Doumanoglou et al. [70] formulated
a Partially Observable Markov Decision Process (POMDP) framework for cloth
unfolding along with the use of random forests for cloth classification as shown
in Figure 2.5. Huang at al. [71] used depth and appearance features for detecting
graspable regions and generated trajectories through a warp function to bring
clothes to a desired configuration.
Lakshmanan et al. [72] used movement primitives to parametrize motion plan-

ning for performing robotic cloth folding. The planning algorithm can explicitly
handle robot constraints and it generates a sequence of motions for folding a given
clothing article. They evaluated the proposed framework in both simulation and
real-world experiments. Monso et al. [73] proposed a probabilistic motion plan-
ning framework for cloth separation by formulating the problem as a POMDP to
handle uncertainty during manipulation. They defined a low-dimensional state
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Figure 2.6.: Deep learning framework for robotic cloth folding [76].

representation to ensure fast and efficient learning of the task. Real-world evalua-
tion demonstrated that the partially observable setting has the best performance
as it could explicitly model the occlusion of clothing articles when present in a
heap.
Miller et al. [74, 75] performed robust robotic cloth folding for a wide variety

of clothing articles by generating motion trajectories for a 2D polygon approxi-
mation of the clothing article. They parametrized the shape of clothing articles
using skeletal models and performed parameter optimization to detect the cate-
gory as well as state of clothing article on being manipulated by a robot. Yang et
al. [76] proposed a deep learning based framework for autonomous cloth folding
shown in Figure 2.6. They relied on a convolutional autoencoder for task specific
feature extraction from raw images and a time delayed neural network to learn
the dynamics of cloth folding. Teleoperation was used to collect sequences of
cloth manipulation that were used as training data for the deep learning models.
The non-rigidity of clothing articles increases drastically for high dynamics

tasks. There have also been studies that proposed frameworks for handling such
complex dynamics. Balaguer et al. [77] proposed a reinforcement learning frame-
work that exploits the dynamics of clothing articles to perform a high momentum
folding task. They used a motion capture system for real-time cloth state esti-
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mation as the clothing article did not undergo much occlusion. Yamakawa et
al. [78] developed a high frequency visual-feedback control mechanism to control
a dual-arm setup to perform a towel folding task. The clothing article was mod-
eled using a linear flexible object model which is specified through an algebraic
equation.
There several problems to apply existing motor skill learning frameworks to

robotic clothing assistance. One of the major challenges is data-efficiency. The
existing policy-search methods do not scale well to high dimensional state spaces
and take prohibitively long time. Existing model-based studies rely on learning
an accurate model. However, it is very difficult to capture the human-cloth
interaction and model the nonlinear dynamics of clothing articles. DMP is a
promising policy representation for performing the task but the parameters for
DMP increase with dimensionality thereby increasing the learning time.
The frameworks presented for cloth manipulation mainly handle tasks that re-

quire point-to-point planning based on one-shot cloth state estimation decisions.
There are also studies that handle dynamical tasks, but the clothing articles do
not undergo severe occlusions and the cloth state was represented by tracking
specific positions of clothing articles such as the corners. However clothing as-
sistance tasks are highly dynamical requiring efficient cloth state estimation to
handle cloth occlusions and constraints due to coupling with the human.

2.3. Manifold Learning in Robotics

Robotics applications require learning motor skills with high-dimensional obser-
vations obtained using noisy sensors. Usually the inherent dimensionality of the
task is much lower and is nonlinearly related to the observation space. One ap-
proach is to use dimensionality reduction and obtain a low-dimensional manifold
that efficiently captures the task representation as well as variability in different
settings. This section is a survey of studies that employ manifold learning for
various robotics related applications.
A common approach is to use Principal Component Analysis (PCA) [15] as

a preprocessing step to extract a low dimensional manifold from the high di-
mensional observations and use this manifold to achieve the task. PCA is a
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Figure 2.7.: High dimensional sensory data mapped to low dimensional space using VAE for
manipulation of 5 DoF robot [87].

dimensionality reduction technique that performs an orthogonal transformation
and projects high dimensional data onto a subset of linearly uncorrelated vari-
ables called principal components. Some of the applications include robot local-
ization [79], learning from demonstration in humanoid robots [80], robotic hand
grasp planing [81] and EMG-based robot arm control [82].
One of the major problems with reinforcement learning (RL) is the curse of di-

mensionality. This is further amplified in robotics applications where conducting
real-world experiments can be time consuming. There have been some stud-
ies that combined RL with PCA. Luck et al. [83, 84] proposed a policy search
framework that inherently combines dimensionality reduction with RL through
an expectation-maximization (EM) formulation. They applied this framework to
various robotic applications and demonstrated sample efficiency in comparison
to traditional policy search algorithms. Curran et al. [85] used PCA as a pre-
processing step to efficiently represent expert demonstrations of various robotic
tasks. This latent manifold was used with existing value-based RL algorithms
and showed faster learning rates.
With the increasing popularity of deep learning, there have been several studies

that use neural network based autoencoders to learn low-dimensional manifolds
in various robotics applications. Watter et al. [86] used variational autoencoders

15



and a locally linear approximation of nonlinear dynamical systems to generate
high-dimensional image trajectories given current observations. They applied this
framework to various motor learning tasks such as balancing of a cart-pole. Hoof
et al. [87] proposed the use of autoencoders to learn a low dimensional feature
space of high dimensional tactile and visual information. This feature space was
used as the state space for performing reinforcement learning where a 5 DoF
robot learned to manipulate a pole as shown in Figure 2.7.
Veres et al. [88] trained a conditional variational autoencoder (CVAE) using

a synthetic dataset and learned object-action representations to generate grasps
for unseen objects. They demonstrated that CVAE was able to learn a com-
plex nonlinear mapping and model multi-modal distributions that represent the
variability of grasp configurations. Chen et al. [89,90] proposed the combination
of variational autoencoder (VAE) with dynamic movement primitives (DMP) by
embedding it into the latent space learned by VAE. They applied this approach
to complex human movements and demonstrated generalization ability as well as
the capability to switch between various tasks using the latent space.
There have been several studies that use Gaussian process latent variable model

(GPLVM) and their extensions to perform dimensionality reduction in various
settings. The use of Gaussian process leads to data-efficient learning and non-
linear covariance functions enables the learning of nonlinear mappings. Shon et
al. [91] formulated a shared Gaussian process latent variable model (SGPLVM)
for multiple observation spaces. They applied this model to learn a nonlinear
mapping from human degrees of freedom to a humanoid robot and performed
robotic imitation of human motion capture data. They demonstrated that the
proposed model is data-efficient and also robust to noisy observations.
Gupta et al. [92] proposed a framework for monocular human pose estimation

using GPLVM. They proposed the use of a back constraint to infer the human
pose using not just the image data but also information from other contextual
features. Ko et al. [94] formulated a generic framework for Bayes filters in settings
with incomplete ground truth data where a state sequence is generated using
GPLVM. They demonstrated the proposed framework to a wide range of robotics
task where obtaining ground truth information is difficult.
GPLVM has also been used in reinforcement learning to overcome the curse of
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Figure 2.8.: Latent space reinforcement learning performed using GPLVM [93].

dimensionality where the policy learning is done in a low-dimensional latent space
that captures task space constraints [93] as shown in Figure 2.8. Wang et al. [95]
proposed a dynamics extension to GPLVM that can infer the intention of a human
subject given task demonstrations in a human-robot interaction setting. They
further developed an online inference algorithm to overcome the computational
complexity of Gaussian process to perform real-time inference of human intention.
The studies presented in this section use various manifold learning techniques

depending on the application. For robotic clothing assistance, the robot has to
handle a non-rigid clothing article and the motor-skills vary largely depending on
the environmental setting. Linear models such as PCA are not suitable to handle
the nonlinear dynamics of clothing articles. On the otherhand, methods such as
variational autoencoders are capable of learning complex non-linear mappings but
are not very sample efficient. The studies using VAE that are presented in this
section rely on large training datasets which could be challenging in the domain
of assistive robotics.
The later part of this section covered studies that used GPLVM in complex

settings to perform data-efficient learning. Gaussian process mapping leads to
uncertainity estimates while performing test inference which was used as a mea-
sure of model uncertainity. Furthermore, various constraints and prior informa-
tion were placed on the latent space which depended on the application. These
studies demonstrate the applicability of GPLVM to robotic clothing assistance.
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Figure 2.9.: Use of haptic simulation for failure detection in real-world implementation [102].

2.4. Robotic Clothing Assistance

Recently, there have been several studies that tackle the problem of clothing as-
sistance and it is considered an open problem by the robotics community. Assis-
tance with dressing involves several subproblems such as human pose estimation,
cloth state estimation and robot control for the actual assistance. The studies
presented here tackle one or several of these subproblems.
For people with cognitive impairments, dressing assistance mainly involves pro-

viding social cues to wear the appropriate clothes rather than physical assistance.
There have been several studies that tackled this problem. Burleson et al. [98]
proposed a framework to detect abnormal dressing states by tracking clothing ar-
ticles that have fiducial markers. The abnormal states examples such as wearing
clothes inside-out and wearing the backside front. The system could be used by
patients with cognitive disabilities but healthy physical state.
Orr et al. [99] developed a multi-agent system that relied on information from

various sensors to provide recommendations for clothing when the users were
about to leave their house. Klee et al. [97] proposed a clothing assistance frame-
work to communicate and coordinate with a human to complete clothing tasks.
They emphasized on human motion tracking and performed tasks such as putting
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Figure 2.10.: User modeling for constraint-aware motion planning of clothing assistance [105].

on a cap or a backpack onto the human. The motion planning was done through
a predefined sequence of poses.
Conducting clothing assistance experiments with human subjects is difficult

and eventual real-world implementations need to be safe and efficient. One ap-
proach to sidestep this problem is to develop a realistic simulator of the process
and use this as a testbed for implementing various strategies. Clegg et al. [100]
developed a framework to synthesize dressing motion performed by animated hu-
man characters. They extracted a set of primitive actions that could be combined
to generalize motion across different clothing articles. Erickson et al. [101] relied
on simulations of dressing a human hand with a shirt to infer the forces felt
by the human from the end effector forces of the robot. They generated large
amounts of data and used it to train deep neural networks for force estimation.
Yu et al. [102] used haptic information obtained from a simulation of dressing
assistance to train a classifier that could predict failure scenarios in a real-world
implementation of the same task as shown in Figure 2.9.
Dressing assistance is meant for users who have impaired motor functions and

it is crucial to perform human pose estimation while providing assistance with the
robot. Gao et al. [105, 106] tackled the problem through user-specific body con-
straints calibration to perform reliable motion planning for clothing assistance as
shown in Figure 2.10. They have considered the task of clothing a human with a
sleeve-less jacket and have modeled the human constraints using randomized de-
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Figure 2.11.: OVerview of Learning from Demonstration framework for dressing assistance [110].

cision forests. Twardon et al. [107] handled the problem of cloth state estimation
during dressing assistance. They relied on the use of active boundary compo-
nents to track the extremities of clothing articles and model the human-cloth
interaction using topology coordinate representation.
The main challenge towards implementing robotic clothing assistance is motor-

skills learning and generalization to novel settings. There have been some studies
which handled this problem. Colome et al. [109] performed clothing of a man-
nequin with a scarf using reinforcement learning. They relied on an accurate
inverse dynamics model and force feedback for reliable motion planning. Pignat
et al. [110] developed a learning from demonstration (LfD) framework to obtain
the desired motor-skills from a human performing clothing assistance tasks as
shown in Figure 2.11. They learned a joint distribution of human sensory in-
formation and robot control commands and encoded each of these sensorimotor
pattern as a state of hidden semi-Markov model (HSMM).
There have been several studies that simultaneously achieved several problems

and proposed end-to-end framework towards dressing assistance. Yamazaki et
al. [103, 104] have proposed a framework for clothing of subjects with pants. In
their framework, they relied on the use of optical flow and an offline database of
image streams to detect the current state of clothing task. Force-based informa-
tion along with dynamic state matching was used to detect failure and success
states. Chance et al. [108] relied on sensor-fusion for human tracking, proprio-
ceptive information for failure detection and human-robot interaction to recover
from failure scenarios. They applied this framework to cloth a mannequin with
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a clothing article.
The studies presented here tackle various aspects of dressing assistance moving

towards a real-world implementation. However, there are several aspects that
haven’t been handled thus far. Most of these studies do not handle tasks that
have tight coupling between the human and clothing article. For such tasks,
clothing articles undergo severe deformations and cloth state estimation becomes
challenging. Furthermore, offline motion planning of the robot would not suffice
to achieve the task and the dynamics of performing the task also need to be
considered. They do not specifically handle reliable cloth state estimation and
address other aspects of clothing assistance such as human-pose modeling, robot
dynamics handling.

2.5. Proposed Framework

In this thesis, we address the challenge where there is significant coupling between
the clothing article and the human such as the clothing with a T-shirt involving
severe cloth deformation and occlusion by the mannequin. This thesis builds upon
the clothing assistance frameworks proposed by Tamei et al. [1] and Matsubara
et al. [2], that treat the task as a learning problem.
Tamei et al. [1] developed a reinforcement learning-based clothing assistance

framework that addressed the challenges discussed above. In this framework, a
dual-arm robot learns the necessary motor skills to perform clothing tasks by
adapting to changes in the posture of the subject. They considered the task of
clothing a soft mannequin with a T-shirt that is initially resting on the man-
nequin’s arms as shown in Figure 1.1. The robot performs several clothing trials
before it successfully learned a suitable trajectory to perform clothing tasks. How-
ever, this framework has several limitations which need to be addressed towards
realizing a practical implementation in a real-world scenario.
In the framework by Tamei et al. [1], the human-cloth relationship is observed

using the motion capture (Mo-cap) system with optical markers placed on the
mannequin and T-shirt. Mo-cap system has a complex and expensive setup using
multiple infrared cameras and can provide location information of discrete mark-
ers in the environment. Furthermore, this system is not suitable for real-time

21



Figure 2.12.: Reinforcement learning framework for clothing assistance [1].

tracking of markers on non-rigid objects such as clothes. Due to these limita-
tions, only the final state of a clothing trial could be used forcing the robot to
perform multiple trials.
Another limitation is the policy representation used. The robot’s trajectory

is parametrized using Via-points [34] which represents the key points that en-
code the trajectory. The humanoid robot has two arms with 7 joints/degrees of
freedom (DoF) each. To ensure fast learning time, only one Via-point of one par-
ticular joint is used as a policy parameter that is optimized. Due to the inherent
variability of the task, such a constrained policy representation severely limits
the generalizability to different environmental conditions.
The common difficulties for both the research problems are the inherent non-

linearity and complexity in the task. Clothing articles are non-rigid objects that
lie in a high dimensional configuration space. The task of clothing assistance
follows non-linear dynamics with large variabilities between various environmental
conditions. Another difficulty is the inherent high dimensionality of the problems.
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The humanoid robot has 14 DoFs and skill learning in such high dimensional
continuous search space is a challenging problem. Another common constraint is
the emphasis on fast learning time due to its application in a health-care setting
wherein the robot needs to model the task using few observations in a data-
efficient manner.
In this thesis, we propose the use of Bayesian nonparametric latent variable

models to handle the high-dimensionality and perform data-efficient learning.
Firstly, we propose a framework for real-time cloth state estimation that relies on
the offline fusion of a depth sensor and a motion capture system. We use Manifold
Relevance Determination [7] to perform the shared manifold learning and handle
the non-rigid dynamics of clothing articles. We demonstrate the proposed cloth
state model can generalize to unseen environmental settings.
Second, we propose a framework for data-efficient motor-skills learning. We

use Bayesian Gaussian Process Latent Variable Model to learn a task-specific
latent space that efficiently encodes the required motor-skills using few or even
one demonstration. This latent space is used as a user-friendly interface for
imparting novel motor skills and as a search space for reinforcement learning.
The proposed frameworks are evaluated for the clothing task wherein a dual-arm
robot clothes a soft mannequin with a T-shirt which is initially resting on the
mannequin’s arms. These frameworks can also be extended to other related cloth
manipulation and assistive tasks.
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3. Bayesian Nonparametric
Latent Variable Models

The difficulties faced with robotic clothing assistance are its inherent non-linearity
and high dimensionality. Clothing articles are non-rigid objects that lie in a high
dimensional configuration space. The task of clothing assistance follows non-
linear dynamics with large variabilities between various environmental conditions.
Furthermore, it is necessary to have fast learning due to its application in a health-
care setting and the robot needs to efficiently model the task in a data-efficient
manner.
This thesis proposes the use of Gaussian Process (GP) [3] non-linear latent

variable models [5, 7] to address these difficulties. Dimensionality reduction is
used to reduce the high dimensionality and model the problems in low dimensional
spaces that efficiently capture the underlying task. These models rely on the use
of Gaussian Processes [3] which leads to handling the inherent non-linearity and
also perform model learning in a data-efficient manner. This chapter provides
the mathematical formulation of the models and discuss the applicability of these
models for robotic clothing assistance.
These models can extract the underlying latent space from high dimensional

and noisy observations. An intuitive understanding is provided in Figure 3.1
wherein high-dimensional observations lie on a complex non-linear manifold which
can be mapped from a planar latent space. These models are capable of extracting
the underlying latent space as well as learn a non linear mapping to the high
dimensional observation space.
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Figure 3.1.: Intuitive understanding of BGPLVM [5]

3.1. Bayesian Gaussian Process Latent Variable
Model

Bayesian Gaussian Process Latent Variable Model (BGPLVM) is a non-linear
dimensionality reduction technique proposed by Titsias et al. [5]. It is derived
from the generative model shown in Figure 3.2 where the observations, Y =
{y1,y2, · · · ,yN}, yn ∈ RD, are assumed to be generated through a noisy process
from latent variables X = {x1,x2, · · · ,xN}, xn ∈ RL,

yn = f(xn) + εn, εn ∼ N (0, β−1I),
p(yn|xn, f, β) = N (f(xn), β−1I)

(3.1)

where β denotes the inverse variance for the noise random variable ε and the
conditional distribution for an observation sample can be derived as a Gaussian
distribution. In this model, a prior on the mapping function f is placed using
a Gaussian Process (GP) [3] f(x) ∼ GP(0, k(x,x′)), where k(x,x′) is the co-
variance function. For performing automatic model selection of the latent space
dimensionality, the Automatic Relevance Detection (ARD) kernel [3] can be used,

kARD(xi,xj) = σ2
ARD exp

(
−1

2

L∑
l=1

αl(xi,l − xj,l)2
)

(3.2)

The ARD weights {αl}Ll=1 describe the relevance of each dimension and σARD

describes the scale of the GP mapping function. The relevance is usually deter-
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mined using a heuristic threshold such that dimensions with weights below the
threshold have insignificant contribution to reconstructing the observations [5,7].
The objective is to infer the unknown latent variables X and the model param-

eters Φ = {β, σ2
ARD, {αl}Ll=1} of the mapping function. The conditional likelihood

is derived by assuming D independent GP mappings evaluated on the latent
variables X,

p(Y:,d|X,Φ) = N (Y:,d|0,K),

p(Y|X,Φ) =
D∏
d=1

p(Y:,d|X,Φ),

= 1
(2π)DN

2 |K|D2
exp

(
−1

2tr((K)−1YYT )
) (3.3)

where K is the N ×N covariance matrix obtained from the covariance function
kARD(x,x′) and observation noise β, Y:,d represent columns of the observation
samples. A prior can be placed on the latent variables X and marginalization
w.r.t X leads to a full Bayesian treatment,

p(X) =
N∏
n=1
N (xn|0, I),

p(Y|Φ) =
∫
p(Y|X,Φ)p(X)dX

(3.4)

However, the integral for marginalization becomes intractable as X appears non-
linearly in the inverse of the kernel covariance matrix K as shown in Eqn. (3.2,3.3).
To make the marginalization tractable, approximate variational inference can be
applied wherein a variational distribution q(X) is used to approximate the true
posterior distribution p(X|Y) given by,

q(X) =
N∏
n=1
N (xn|µn,Sn) (3.5)

where {µn, Sn}Nn=1 are the variational parameters. A Jensen’s lower bound on the
log marginal likelihood log p(Y) can be derived as follows:

F (q) =
∫
q(X)log p(Y|X)p(X)

q(X) dX (3.6)
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Figure 3.2.: Graphical model of Bayesian Gaussian Process Latent Variable Model (BG-
PLVM) [5]

The hyper parameters Φ are dropped for notational simplicity. The lower bound
still remains intractable as the latent variables appear non-linearly in the condi-
tional likelihood term p(Y|X).
Titsias et al. [5] resolved this problem by introducing data augmentation which

is commonly used in sparse GP regression. Data augmentation involves addingM
extra observations U = {u1,u2, · · · ,uM}, um ∈ RD known as inducing variables.
These are evaluated at a set of pseudo inputs X̂ ∈ RM×L through the same GP
Prior as the latent variables, X. The joint probability density and the variational
distribution under this augmentation are modified as follows,

p(Y,U,X, X̂) = p(Y|U,X)p(U|X̂)p(X),
q(Θ) = p(Y|U,X)q(U)q(X)

(3.7)

where q(X) takes the form of Eqn. (3.5), q(U) is a variational distribution on the
inducing variables whose form needs to be optimized and p(Y|U,X) is the GP
likelihood constrained by the latent variables as well as the inducing variables.
This augmented probability model leads to a tractable Jensen’s lower bound
F̂ (q) through the removal of the non-linear factor p(Y|X) thereby making the
approximation tractable. Detailed derivations of the model are further presented
in [5].
The prediction of unseen test data y∗ is performed by evaluating p(y∗|Y),

p(y∗|Y) =
∫
p(y∗,Y|x∗,X)p(x∗,X)dXdx∗∫

p(Y|X)p(X)dX (3.8)

The predictive distribution is given by the ratio of two marginal likelihoods,
both of which can be approximated using the augmented probability model i.e.
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Figure 3.3.: a) Graphical model of Manifold Relevance Determination (MRD) [7], c) Overview
of test inference for MRD

exp(F̂ (q,X,x∗)), exp(F̂ (q,X)). Efficient computations to handle test data are
further described in [5].

3.2. Manifold Relevance Determination

Damianou et al. [7] proposed an extension to BGPLVM for learning a shared
latent space among multiple observation spaces called Manifold Relevance Deter-
mination (MRD). In this section, the formulation of MRD for two observation
spaces is presented as shown in Figure 3.3(a) i.e. Y ∈ RN×DY , Z ∈ RN×DZ

assumed to be generated from a single latent variable X ∈ RN×L through the GP
mappings fY : X → Y , fZ : X → Z,

yn = fY (xn) + εYn , ε
Y
n ∈ N (0, β−1

Y I),
zn = fZ(xn) + εZn , ε

Z
n ∈ N (0, β−1

Z I)
(3.9)

where εYn , εZn are the noise random variables parametrized by the inverse variance
parameters βY , βZ . The GP mappings for the Y observation space can be modeled
using the ARD kernel,

kY (xi,xj) = σ2
Y exp

(
−1

2

L∑
l=1

αYk (xi,l − xj,l)2
)

(3.10)

and similarly for the Z observation space. Learning the ARD weights {αYl , αZi }
results in not only inferring the latent space dimensionality but also partitioning
of the latent space into shared (XS) and private spaces (XY ,XZ). This is done
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using a heuristically set threshold δ on the normalized ARD weights to determine
a latent dimension’s relevance to each observation space,

XS = {xl}Ll=1 : xl ∈ X, αY > δ, αZ > δ,

XY = {xl}Ll=1 : xl ∈ X, αY > δ, αZ < δ,

XZ = {xl}Ll=1 : xl ∈ X, αY < δ, αZ > δ

(3.11)

The objective is to evaluate the shared latent variables as well as the GP map-
ping hyper parameters for each observation space Φ{Y,Z}. The joint conditional
likelihood is obtained by factorizing each observation space as follows,

p(Y,Z|X,ΦY ,ΦZ) =
∏

Γ={Y,Z}
p(Γ|X,ΦΓ) (3.12)

Marginalization of the latent variables, similar to BGPLVM, is intractable due to
its non-linear appearance in the kernel covariance matrix. Damianou et. al. [7]
proposed an approximate variational inference formulation that relies on the use
of an augmented probability model similar to BGPLVM (Eqn. (3.7)),

q(Θ) = q(X)
∏

Γ={Y,Z}
q(UΓ)p(fΓ|UΓ,X), (3.13)

(3.14)

where U{Y,Z} are the inducing variables for each observation space similar to the
BGPLVM formulation. The Bayesian formulation further enables test inference
in the form of p(z∗|y∗) i.e. inference of test sample in Z observation space (z∗)
given the Y observation space y∗. This inference is done by first estimating
the latent sample x∗ similar to test inference given in Eqn. (3.8) and using this
estimate through the GP mapping fZ .
The inference for a test sample follows a sequence as shown in Figure 3.3(b).

Firstly, the latent state x∗Y , x∗S corresponding to test sample y∗. The shared
latent state x∗S is then used to find nearest neighbors among the latent points
corresponding to the training data and obtain the private dimensions information
for Z i.e. xNNZ . Finally, the full latent state x∗S, xNNZ is used to infer the test
pose state i.e. z∗. In this sequence, the computationally expensive operation is
inference of x∗Y , x∗S as it involves optimization of marginal likelihoods similar to the
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MRD model training. This makes real-time inference difficult and so alternative
strategies for the test inference are explored as presented in Section 4.1.3.
The latent variable models presented in this section are a powerful class of

models that can be used in a wide range of settings. The use of GP mappings leads
to data-efficient learning of complex mappings. Approximate Bayesian inference
along with ARD kernels avoids overfitting and enables automatic dimensionality
reduction.
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4. Real-time Cloth State
Estimation

Clothing articles inherently lie in a high dimensional configuration space and
feature extraction becomes a challenging task as the clothing article could have
large shape variations and occlusions. However, clothing articles follow consistent
deformations for a particular task thereby constrained to a low-dimensional man-
ifold which is task-specific. A possible approach for reliable cloth state estimation
is to constrain the search space within task-specific latent cloth models.
In this chapter, we propose to learn an offline cloth model that is used to per-

form informed cloth state estimation in real-time as shown in Figure 4.1. This
model is learned using the non-linear dimensionality reduction technique Mani-
fold Relevance Determination (MRD) [7] to handle the non-rigidity of clothing
articles and learn the cloth latent features in a Bayesian manner avoiding the
problem of over-fitting. MRD is used to learn an offline low-dimensional latent
manifold for data from simultaneous observation of clothing article using a motion
capture system and a depth sensor. Both sensory systems have complimentary
capabilities, when combined provide the most informative observation of clothing
articles. The motion capture system can provide accurate location information
of discrete markers in the environment, however, it is an expensive and complex
system that requires precise calibration and can not be used in real-time. On
the other hand, depth sensors are low-cost and calibration free, however, they
provide noisy point cloud information of the whole environment.
MRD provides a principled probabilistic framework for inferring the accurate

motion capture state when only the noisy depth sensor state is available in real-
time. In this chapter, we demonstrate that MRD is capable of learning task
specific latent features which can be interpretable. We show that MRD has
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Figure 4.1.: Proposed framework for cloth state modeling using MRD. Observations from a
depth sensor and the motion capture system are used to train a latent manifold
used in real-time to infer human-cloth relationship information.

the best predictive performance for accurate cloth state estimation. We further
investigate the effect of factors such as feature representations on the predictive
performance of the trained cloth state model.

4.1. Methods

Clothing articles are highly non-rigid and can undergo large deformations. The
deformations occurring during a cloth folding task can be significantly different
when compared to wearing the same clothing article. This makes general-purpose
modeling and state estimation of clothing articles not only difficult but also im-
practical. Poor feature extraction could also lead to model inaccuracies for motor
skills learning thereby restricting the learning rate for robotic applications to cloth
handling. To address this problem, we propose the use of Bayesian nonparametric
latent variable models described in Chapter 3. This leads to task-specific feature
extraction in a purely data driven manner.
Our framework is applied for the real-time tracking of human-cloth relationship
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using a depth sensor. A depth sensor is a low-cost solution to capture 3D shape
information without requiring any elaborate setup or calibration of the sensor.
These features are crucial to develop a real-world implementation of clothing
assistance wherein end-users and caregivers can easily setup the system. However,
depth sensors provide noisy information and there is also the problem of cloth
occlusion in our task setting. We tackle these problems by assuming that clothing
articles are constrained to a low-dimensional latent manifold specific to clothing
assistance tasks forming a task-specific cloth model.
We consider clothing assistance tasks for demonstrating our proposed method.

A mannequin was used as the subject and the clothing task is to cloth the man-
nequin with a T-shirt that is initially lying on its hands. We are interested in
real-time estimation of the relationship between the assisted subject and cloth
using a low-cost depth sensor for the implementation of a practical and efficient
robotic clothing assistance framework. However, this is a challenging task as
there are significant changes in the cloth state during clothing tasks along with
self-occlusions and occlusion by the mannequin. To address this problem, we
propose the learning of an offline cloth state model using information from both
the depth sensor and motion capture system.
The purpose of the cloth model is to learn a latent representation X = [x1, . . . ,xN ]T

corresponding to an aligned data set of clothing article observations from the
depth sensor Y = [y1, . . . ,yN ]T and motion capture system Z = [z1, . . . , zN ]T .
The motivation behind this modeling approach is that the motion capture system
can provide precise location information of markers placed on the cloth where as
the depth sensor can provide a generalized shape description. By learning a shared
latent structure, we are indirectly learning a mapping from the generic depth sen-
sor information to the more detailed motion capture information, which can be
used for constrained cloth state estimation in real-time using noisy depth sensor
observations. The predictive performance of the learned latent structure further
depends on several factors such as the representations used for the observation
spaces and the inference technique used. In the following subsections we describe
the approach used in handling these factors.
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Figure 4.2.: Topology Coordinate representation used for the Human-Cloth Relationship as
Pose Space Representation

4.1.1. Motion Capture Representations

The purpose of using motion capture system is to capture precise cloth state
information which is required for efficient motor skills learning. We consider the
clothing task where the robot has to cloth a mannequin with a T-shirt which is
initially on the mannequin’s hands. We assume that the details of clothes such
as wrinkles are not important to achieve clothing assistance tasks and hence used
low-dimensional topology coordinates [13] to capture the relationship between hu-
man subject and clothing article. Furthermore, we have previously demonstrated
that topology coordinates are robust to noise in the motion capture observations
and can efficiently capture the human-cloth interaction in a practical setting [113].
Topology coordinates [13] were formulated for synthesizing human-like mo-

tions that involve close interactions. Topology coordinates compactly define the
relationship between two curves in the Cartesian space using three different at-
tributes, i.e. writhe w, center of twist c = [c1 c2] and density d. Writhe w
measures the total twisting between two curves γ1, γ2 by using an approximation
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of the Gauss Linking Integral (GLI) [14]:

GLI(γ1, γ2) = 1
4π

∫
γ1

∫
γ2

(γ1 − γ2) · (dγ1 × dγ2)
‖γ1 − γ2‖3 (4.1)

The center of twist c, composed of two scalars explains the relative position of
twist with respect to each of these lines. The density d represents the relative
twisting between the two lines, i.e. which line is twisting around the other. These
parameters can be analytically computed by dividing the given curves into chains
of small line segments. The details for analytical computation of these parameters
along with examples are presented in Appendix A.
The motor skills required for the robot to complete the clothing task are 1) to

pull the T-shirt collar over the mannequin’s head and onto the mannequin’s body,
2) to pull the T-shirt sleeves along the mannequin’s arm towards its shoulder. To
achieve these motor skills, the following needs to be estimated and tracked by the
depth sensor: T-shirt collar, T-shirt sleeves and the mannequin’s posture. In this
chapter, the focus is on the cloth state estimation and therefore the mannequin’s
posture remains fixed during the task. The human-cloth relationship is given by
considering the writhe and center of twist of the T-shirt w.r.t the mannequin for
4 different topologies as shown in Figure 4.2: 1) T-shirt Collar - Mannequin’s
Head Topology, 2) Collar - Body, 3) Left Sleeve - Left Arm, 4) Right Sleeve
- Right Arm thereby forming a eight-dimensional representation Z ∈ R8. The
density parameter is not considered as the T-shirt will always twist around the
mannequin and this topology is never reversed for clothing assistance tasks.
The topology coordinate values were computed using the observations from

motion capture system. The setup had eight infrared (IR) cameras placed care-
fully around the experimental setting to maximally avoid occlusion of markers.
Six IR markers were attached on the T-shirt collar, three markers on each T-shirt
sleeve and five markers on the mannequin respectively to estimate the human-
cloth topological relationship. These markers were used to obtain approximate
curves of the T-shirt collar and sleeves which were used in the computation of
topology coordinates. The computation of topology coordinates for the T-shirt
clothing task are presented in the Appendix A.
To evaluate the effect of pose space representation on the predictive perfor-

mance of the cloth model, we considered two alternative representations along
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Figure 4.3.: Overview of the algorithm used to extract the point cloud corresponding to the
T-shirt from raw RGB-D data from depth sensor.

with topology coordinates:

• Marker Representation: given by the Cartesian position of each of the 12
markers placed on the collar and sleeves of the T-shirt forming a 36 dimen-
sional space.

• Circle Approximation: given by the parameters of a circle approximation
to the T-shirt collar and the sleeves obtained from the marker positions.
Each circle is parametrized by [C r ~n] ∈ R7 i.e. its center (C ∈ R3), radius
(r ∈ R) and normal (~n ∈ R3) thereby forming a 21 dimensional feature
representation.

4.1.2. Depth Sensor Representations

A depth sensor is capable of capturing shape information of clothing articles. The
purpose of the feature space representation is to capture the global cloth shape.
For this, we consider the point cloud representation of the clothing article. The
point cloud data can be used in real-time along with the proposed cloth modeling
approach to infer precise human-cloth relationship information. In this section
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we present the method used to preprocess the RGB-D data and obtain the point
cloud corresponding to the clothing article.
For the real-time estimation of human-cloth relationship, we need to track the

overall cloth shape during the clothing task. There have been several studies
that can reliably locate clothing articles within a cluttered environment [45, 46].
We assume that it is possible to obtain a seed bounding box for clothing articles
through the existing methods. In this framework, to simplify the process, we have
used clothing articles that are of a single color to reliably localize the clothing
article in an input frame.
The depth sensor provides a pair of RGB and depth images as each observation.

The RGB image is used to locate the clothing article and the depth image is
used to construct the cloth point cloud. Prior to the tracking, we perform hue-
saturation color calibration where in a histogram of hue and saturation values
is constructed from a region of interest (ROI) that corresponds to the T-shirt.
This histogram can be used to find pixels corresponding to the T-shirt in an
input image. For tracking of clothing article, we use the following approach as
illustrated in Figure 4.3:

• T-shirt hue-saturation histogram is applied to the input frame to obtain a
back projection image. The back projection image is computed using the
T-shirt histogram where the intensity of each pixel in the back-projection
image corresponds to the probability of belonging to the T-shirt.

• Back-projection image along with a seed T-shirt bounding box is provided
as input to the standard CAMshift algorithm [16] where the shift and scaling
of the bounding box between frames is estimated.

• To ensure feature consistency across multiple demonstrations, a bounding
box of fixed size (250 × 250 in this case) is computed with a center corre-
sponding to the bounding box obtained from the CAMshift algorithm.

• Back projection image within the bounding box represents the probability
of belonging to the T-shirt and is applied as a mask to both the RGB and
depth images and obtain the region corresponding to the T-shirt.
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• Point cloud from the T-shirt depth image pixels is constructed using the
intrinsic parameters of the sensor. This point cloud is further processed by
applying statistical outliers removal techniques.

The image processing functions were implemented using the OpenCV library [17]
and the point cloud processing was done using the Point Cloud Library (PCL) [18].
The point cloud constructed through preprocessing is down sampled to 50 × 50
forming a 7500 dimensional space (Ydepth ∈ R7500) with a triplet of 3 dimensions
capturing the Cartesian position of a point in the T-shirt point cloud.
We also considered two alternate representations for the RGB-D data to evalu-

ate the effect of feature space representation. Each representation for the feature
space captures different physical aspect of shape information.

• Color Pixel Data: The color pixel data from the bounding box of the T-
shirt is evenly down sampled to 50 × 50 and converted to single channel
thereby forming a 2500 dimensional space (Ycolor ∈ R2500) with each dimen-
sion representing the intensity of a pixel.

• Ensemble of Shape Functions: ESF is a global feature descriptor proposed
by Wohlkinger et al. [19] that is primarily used to represent the underlying
shape of a 3D point cloud. ESF is a fixed 640 dimensional feature histogram
(YESF ∈ R640), consisting of a concatenation of 10 histograms with 64 bins
each in them. These histograms are generated by repeated random sampling
of pairs or triplets of points from the point cloud and computing various
parameters of the resultant triangles and lines.

4.1.3. Real-time Implementation

The latent manifold learned by the MRD model includes two sets of ARD ker-
nel weight parameters. These parameters describe the relevance of each latent
dimension with respect to the corresponding observation space as described in
Section 3.2. The latent space is partitioned into three subspaces XS,XY ,XZ

where XS are the shared latent dimensions and XY ,XZ are the private latent
dimensions. The partitioning is done by placing manually set thresholds on the
ARD weights as shown in Eqn. 3.11.

38



The objective of trained cloth models is to infer accurate pose state (motion
capture space) given an unseen feature state (depth sensor space) in real-time.
The inference of pose state z∗ for an unseen feature state y∗ involves a sequence
of several steps as presented in Section 3.2. As this inference approach is not
suitable for real-time implementation, we considered two alternate strategies with
improved computational efficiency.
Optimization Approach: This is the standard strategy where optimization is

performed for each test sample y∗ to obtain the test latent state x∗Y , x∗S. This is
the most computationally expensive approach and is expected to have the best
predictive performance. Nearest Neighbor Regression: This is a naive strategy
where we obtain the nearest neighbors yNN to the test data y∗ in the training set
and approximate x∗Y , x∗S with mean of nearest neighbor latent points xNNY , xNNS .
This is the most computationally efficient approach and is expected to have the
least predictive performance.
Hybrid Approach: This strategy can be considered as a trade-off between the

two strategies presented above. The latent states obtained using the optimiza-
tion approach were found to have strong temporal correlation. This insight was
used to propose a hybrid inference strategy where an Unscented Kalman Filter
(UKF) [20] is applied to latent states predicted using the nearest neighbor strat-
egy. Furthermore, for every fixed number of observations, the internal state of
UKF is updated using the optimization inference technique. This approach pro-
vides more reliable estimates compared to the nearest neighbor approach with
similar computational efficiency and can be considered as a trade-off between
accuracy and time complexity.

4.1.4. Experimental Setup

Experimental setup includes the clothing assistance framework with Kinect V2
depth sensor and MAC3D motion capture system for cloth state estimation. We
designed a framework using Robot Operating System (ROS) [21] and socket pro-
gramming to integrate both devices and for synchronous data recording. Each
sensor device has a program or node running on the control PC to perform data
collection. We collected clothing trials with simultaneous observation of the T-
shirt state using both the depth sensor and motion capture system. The node for
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(a) (b) (c) (d)

Figure 4.4.: Four T-shirts were used for collecting clothing trials: a) T-shirt 1: Polyester and
V-neck, b) T-shirt 2: Polyester and round neck, c) T-shirt 3: Cotton and V-neck,
d) T-shirt 4: Cotton and round neck

motion capture system is designated as the master and other node as slave. Syn-
chronization for data collection was performed by the master node which sends
messages to the slave nodes for starting and stopping data collection.
The observations were temporally aligned ensuring point-to-point correspon-

dences in the training phase. Cloth state is observed using both the sensors at
a rate of 30 frames per second (FPS) during the clothing assistance tasks. The
observations were also spatially aligned by performing an absolute orientation cal-
ibration between the motion capture system and the depth sensor. The method
proposed by Umeyama [22] was used to compute the transformation between the
two reference frames. The source code for this framework is published online as
a ROS package for further reference [28].
The efficiency of MRD to learn cloth state models was evaluated for clothing

assistance tasks. Ideally, the learned cloth state model needs to be task specific
such as for clothing tasks and should generalize to various environmental settings.
For the case of robotic clothing assistance, the model needs to generalize to unseen
postures of mannequin and different clothing materials. To evaluate the general-
ization capability, we used four T-shirts with different features as shown in Figure
4.4. For each T-shirt, we collected several clothing trials for six different postures
of the mannequin obtained by varying the head inclination ({30o, 45o}) and the
shoulder elevation ({100o, 105o, 110o}) angles. The head inclination and shoulder
elevation angles were measured with respect to the positive and negative Z-axis
normal to the ground plane as shown in Figure 4.5. A clothing demonstration
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Figure 4.5.: Clothing trials were collected by varying the head inclination and shoulder elevation
angles of the mannequin.

along with the extracted feature representations and test inference for MRD is
shown in the video demonstration available at https://youtu.be/UuJGzhKb9KM.
The clothing trials in the dataset were collected through human demonstra-

tions to ensure subtle variations which can not be induced by a robot in the
demonstrations so that the dataset includes observations for different shapes of
clothing articles. The motivation behind creating such a dataset was that the
force applied by the robot changes largely for different T-shirts and different pos-
tures thereby imparting significant variations in the observed cloth state transi-
tions across the clothing trials. The performance of using BGPLVM and MRD
were evaluated using three metrics in all the experiments i.e. the Pearson cor-
relation coefficient, root mean square error (RMSE) and normalized root mean
square error (NRMSE). Given two univariate random variables x, y with sam-
ples xn, yn : n ∈ {1, · · · , N} having means x̄, ȳ, the metrics can be evaluated as
follows:

RMSE =
√∑N

n=1(xn − yn)2

N

NRMSE = RMSE

max({xn})−min({xn})

Corr =
∑N
n=1(xn − x̄)(yn − ȳ)√∑N

n=1(xn − yn)
√∑N

n=1(xn − yn)

(4.2)

Statistical significance was evaluated for all the experiments by using the one-
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sided Wilcoxon signed rank sum test [27].
The training of an MRD model is a computationally expensive task which

scales with the size of the training dataset as it is a kernel-based method. The
computational complexity of the model scales as O(NM2) where N is the size
of the training dataset and M are the number of inducing points used for the
variational approximation. For all our experiments we have set the number of
inducing points M = 100. We have conducted our experiments on a desktop
machine with an Intel i7 3.5 GHz processor. The training time for an MRD model
with 1275 observations took 3 hrs and 25 minutes for the model to converge. The
BGPLVM and MRD models were trained using the GPy python library [25] along
with the implementations for real-time inference. The source code to generate all
the presented results are published online for further reference [29].

4.2. Results

In this section, we describe the experiments conducted to evaluate the perfor-
mance of our proposed framework. Section 4.2.1 demonstrates the effectivity of
using Bayesian nonparametrics in handling the non-rigidity of clothing articles.
Section 4.2.2 shows the predictive performance of the trained cloth models for
various environmental settings. The computational complexity for the algorithm
along with real-time implementation for test inference is demonstrated in Sec-
tion 4.2.3. Finally, Section 4.2.4 demonstrates the generalization ability of MRD
cloth models to unseen environmental settings.

4.2.1. Latent Features Learned

In this section, we investigate the effectivity of using Bayesian nonparametrics
and non-linear modeling for cloth state estimation. We evaluated the effectivity
by only considering the depth sensor observation and by comparing the perfor-
mance of BGPLVM with a linear latent variable model, Principal Component
Analysis (PCA). We performed dimensionality reduction using both BGPLVM
and PCA on the point cloud observation space and inspected the learned latent
structures for both models. The BGPLVM model was optimized until there was
negligible increments in the likelihood function and the variational distribution
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Figure 4.6.: Comparison of Latent Dimension relevance learned by PCA and BGPLVM: a)
PCA relevance given by Eigen values, b) BGPLVM relevance given by ARD kernel
weights

Table 4.1.: Reconstruction Error for PCA and BGPLVM Models

Data
RMSE Correlation

PCA BGPLVM p-Val PCA BGPLVM p-Val

Train 0.016 0.012 0.05 0.646 0.800 0.05
Test 0.024 0.023 0.01 0.559 0.593 0.01

for the latent space was initialized using the positions of training data in the
latent space obtained from PCA.
For the observed data, we considered the point cloud representation from depth

sensor as presented in Section 4.1.2 which is a 7500 dimensional observation space.
The training data for the models was obtained from 5 clothing trials performed
over 5 different postures with T-shirt 1 from Figure 4.4. The test data for the
model was given by 1 clothing trial for an unseen posture with T-shirt 1 and
3 clothing trials each using T-shirt 2,3 forming a total of 7 test clothing trials.
Each clothing trajectory has about 100 samples measured at a frequency of 8
FPS, leading to 638 observations in the training data and 803 observations in the
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Figure 4.7.: Comparison of latent spaces learned by a) PCA and b) BGPLVM for the 1st, 2nd

significant latent dimensions. Blue dots indicate training data, red dots indicate test
data. Gray scale gradient for BGPLVM indicates the predictive variance obtained
from the GP mapping.

test data.
Figure 4.6 demonstrate the relevance of each dimension in the latent space after

training. The relevance for PCA is given by Eigen values and by the ARD kernel
weight parameters for BGPLVM (Eqn. 3.2). The relevance parameters for both
models are normalized such that the most significant dimension has a weight of 1.0
to demonstrate the relative importance between the dimensions. The relevance
weights indicate that PCA takes all 15 dimensions to capture cloth transitions
through the linear mapping, where as BGPLVM captures the underlying features
within 2 dimensions using the non-linear GP mapping.
Figure 4.7 shows the latent spaces for two most significant dimensions. The

latent space learned by BGPLVM is constrained to a task-specific manifold in
comparison to PCA. For BGPLVM, the samples from each clothing trial seem to
follow a two dimensional latent trajectory which is consistent across the clothing
trials with various environmental settings. The latent features explained by each
dimension were inspected by reconstructing the high dimensional data for latent
point variations only along that corresponding dimension. These dimensions ex-
plain the horizontal motion of the T-shirt collar and sleeves along the mannequin’s
hands and the vertical motion on the T-shirt collar onto the mannequin’s head.
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An inspection of the latent space is included as a video demonstration available
at https://youtu.be/A-EeXtpPLvA wherein BGPLVM was applied to motion
capture marker data and the latent feature represented by each dimension was
evaluated by generating the high-dimensional marker space for changes along a
single latent dimension.
To evaluate generalization capability, we compared reconstruction error be-

tween PCA and BGPLVM as shown in Table 4.1. Reconstruction error is given
by comparing the input data point and the reconstructed data point from the
latent point corresponding to the input,

Err = ‖yorg − ypred‖,
ypred = fmodel(f−1

model(yorg))
(4.3)

where yorg is an input sample from dataset, ypred is the predicted value after
reconstruction and fmodel is the forward mapping from latent space to observation
space. We evaluated Root Mean Square Error (RMSE) and Pearson correlation
as the metrics. The Wilcoxon signed rank sum test [27] was used to evaluate
statistical significance and the p-value was evaluated for a one-sided test. We used
an exact distribution over the W-statistic as the number of clothing trajectories
were few (5 for training and 7 for test). For the training data, BGPLVM has much
better performance as it is a kernel method and stores the complete training data
unlike PCA. However, BGPLVM also has significantly better performance (p-
value: 0.01) for the test data demonstrating its superior generalization capability
for high dimensional and noisy point cloud data.
The latent space learned by BGPLVM captures clothing demonstrations as con-

sistent low-dimensional trajectories which could correspond to the task-specific
dynamics. This indicates that the latent space could be a suitable state space
representation for reinforcement learning, thereby removing the need to estimate
topology coordinates. To evaluate this, we designed a reward function for rein-
forcement learning with different state representations as follows,

r(sstate
t ) = ‖sstate

T − sstate
t ‖,

state ∈ {Top. Coord,BGPLVM}

where sstate
T corresponds to a desired target state and the state representation

can either be the topology coordinate values estimated from the motion capture
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Figure 4.8.: Reward values for sample clothing demonstrated evaluated using different state
representations.

data or the BGPLVM latent state obtained from the noisy depth sensor readings.
The reward values were computed for the test clothing demonstrations using
both state representations with a sample demonstration shown in Figure 4.8.
By considering the rewards obtained using topology coordinates as the ground
truth, the error in estimated rewards was evaluated with Pearson correlation ρ

and normalized RMS error used as the metrics and summarized in Table 4.2

Table 4.2.: Reconstruction Error for PCA and BGPLVM Models

Metric BGPLVM

Correlation (ρ) 0.82±0.03
NRMSE 0.22±0.02

4.2.2. Predictive Performance of Cloth Models

Reliable cloth state estimation is a challenging problem due to the inherent ambi-
guity when observing from a single view point along with occlusion. We propose
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Figure 4.9.: Example MRD Model: a) ARD Kernel weights, b) Latent space for two significant
dimensions.

the learning of a shared latent manifold using Bayesian nonparametrics to dis-
ambiguate and solve the problem. In this section, we demonstrate the effectivity
of using MRD for modeling cloth state. An MRD model is trained over observa-
tions from a depth sensor (feature space) and motion capture system (pose space).
The trained model is then used to infer the human-cloth relationship information
given a test point cloud. Firstly, we present the latent features learned and the
predictive performance of an example cloth model. We further present compari-
son of MRD with standard regression techniques to investigate the advantage of
using a shared latent manifold for inferring cloth state.
Figure ?? illustrates an MRD model between the topology coordinate and point

cloud representations trained over five clothing trials for five different postures
with T-shirt 1 of Figure 4.4. A clothing trial on an unseen posture is used as
the test data. Figure 4.9(a) shows the sets of ARD kernel weights that are
learned. The threshold on ARD weights was set to 0.05 as shown by the red line
leading to two shared dimensions between the observation spaces and no private
dimensions for either observation space. However, this structure of the latent
space, especially the private space dimensionality, was found to vary depending on
the training data used. Figure 4.9(b) shows the latent manifold for the two most
significant dimensions. It can be seen that the model captures the dynamics of
performing clothing tasks through the well-formed trajectories in the latent space.
Figure 4.10(a)-(d) show the prediction of topology coordinate values for the test
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Figure 4.10.: Example MRD model: Test inference of four topology coordinates.

data where each figure indicates a particular topology presented in Section 4.1.1
demonstrating the predictive performance of MRD.
To validate the effectivity of using a shared latent manifold, we further com-

pared the predictive performance of MRD with standard regression techniques.
We considered four regression candidates i.e. linear regression, K nearest neighbor
regression, multi-layer perceptron and Gaussian process regression. For nearest
neighbor regression, we used five nearest neighbors for predictions. For neural
networks, we used a single hidden layer with 200 hidden nodes and Rectified Lin-
ear Unit (ReLU) activation function in the network. GP regression was performed
using the Radial Basis Function (RBF) kernel. All the models were trained until
there were insignificant changes in the objective function for optimization.
The models were evaluated over a dataset of 24 clothing trials collected for

six different postures of the mannequin using four T-shirts as described in Sec-
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Figure 4.11.: Comparison of predictive performance between MRD and standard regression
techniques. Evaluation on two metrics, a) Pearson correlation and b) Normal-
ized RMS error. ∗ ∗ ∗ indicates p < 0.001 for one-sided Wilcoxon signed rank sum
test [27].

tion 4.1.4. A set of six cloth models were trained for each T-shirt (total of 24
models) using leave-one-out cross validation wherein one clothing trial was used
as test data and remaining five were used as training data. Figure 4.11 shows
the comparison of MRD with regression techniques. Normalized RMS error and
Pearson correlation were used as the metrics for evaluation. Statistical signifi-
cance was evaluated using the one-sided Wilcoxon signed rank sum test [27]. An
approximate distribution over the W-statistic was used as the number of trials
was relatively large (N = 24). It can be seen that MRD has the best predictive
performance being significantly better (p < 0.001) over other regression tech-
niques.

4.2.3. Comparison of Inference Methods

The inference for test data is a computationally expensive task that involves the
optimization of a ratio of two marginal likelihoods similar to the training of the
MRD model. To ensure real-time estimation of the human-cloth relationship, we
considered two alternative strategies as presented in Section 4.1.3. In this section,
we present the relative predictive performance and computational complexity for
these strategies. Our experimental setup was implemented such that, we could
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Figure 4.12.: a) Estimates for shared latent dimensions of MRD model evaluated for three
inference strategies. b) Topology coordinate estimates from MRDmodel evaluated
for three different inference strategies compared with the ground truth values

obtain raw T-shirt point cloud from the depth sensor and broadcast at a rate
of 30 frames per second (fps) using the ROS framework. A separate program
subscribes to the point cloud streams and infers the human-cloth relationship
using one of the presented inference strategies.
The implementation details for each inference strategy is as follows. For the

nearest neighbor search, the number of neighbors was set to five and a KD-tree [26]
was used to search through the high dimensional training dataset. The optimiza-
tion strategy was implemented as described in Section 3.2 with the initialization
for latent point given by the nearest neighbor search. The hybrid strategy was ap-
plied by using an unscented Kalman filter to handle the non-linear transitions in
the latent points obtained using the nearest neighbor strategy. The filter was only
applied to the shared latent dimensions which vary from two to four depending on
the latent manifold learned for different datasets. The state transition function
was given by a constant velocity model with only the position used as observation
variables. The internal state of UKF was updated every 15 observations which
ensures a considerably good computational complexity. The parameters for the
filter such as the process and measurement noise covariances were manually tuned
minimizing the predictive error of the model.
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Figure 4.13.: Comparison of different inference strategies with MRD. Evaluation on two metrics,
a) Pearson correlation and b) Normalized RMS error. n.s: not significant, ∗:
p < 0.05, ∗∗: p < 0.01, ∗ ∗ ∗: p < 0.001 for one-sided Wilcoxon signed rank sum
test [27].

We considered the performance of inference strategies for two different scenarios
i.e. an unseen mannequin posture and for an unseen T-shirt. The MRD models
were trained between the point cloud (feature space) and topology coordinate
(pose space) representations. The evaluation dataset had 24 clothing trials as
described in Section 4.1.4. For the unseen posture scenario, we performed leave
one out cross-validation for each T-shirt with one posture as test data and the
remaining five postures used for training. For the unseen T-shirt scenario, we
used six clothing trials from three T-shirts as the training data and clothing
trials for the unseen T-shirt as the test data. The state estimated for the shared
latent dimensions along with the inferred topology coordinate values for an unseen
T-shirt clothing trial is presented for the three inference strategies in Figure
4.12(a),(b).
The performance of the inference strategies was evaluated using three metrics,

i.e. normalized RMS error, Pearson correlation and the computational complex-
ity as presented in Figure 4.13. The nearest neighbor strategy has an average
time complexity of processing 30 frames per second (fps), the hybrid method with
a complexity of 10 fps and the optimization method with about one fps. The re-
sults averaged over the test clothing trials have an intuitive trend, with nearest
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Figure 4.14.: Generalization capability of cloth model to unseen postures evaluated through
6-fold cross validation given by a) Normalized RMSE and b) Pearson Correlation
values

neighbor search having the least predictive performance and best computational
complexity and the optimization-based approach having the opposite trends. The
hybrid approach is a good trade-off as it has a computational complexity suitable
for a practical setting but with considerable improvements in the predictive per-
formance. However, for the unseen T-shirt setting, the problem becomes quite
difficult and there is no longer a significant improvement for the hybrid approach.
This indicates the requirement for stronger temporal constraints such as placing
a dynamics prior on the latent space as presented by Damianou et al. [6].

4.2.4. Generalizability of Cloth Models

In this section, we evaluate the generalizability of cloth models trained using MRD
for various environmental settings. Ideally, we would want the cloth model to
learn clothing task specific latent features and generalize to unseen postures of the
mannequin and unseen clothing articles. To evaluate the generalization capability,
we conducted two sets of experiments. In the first experiment, we evaluated
the generalization to unseen postures. For this we considered four sets of six
clothing trials corresponding to four T-shirts and six postures respectively. We
performed six-fold cross validation across postures for each T-shirt and evaluated
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Figure 4.15.: Generalization to clothing trials for seen and unseen T-shirts given by a) Normal-
ized RMSE and b) Pearson Correlation values. Horizontal dotted lines indicate
the mean values across the T-shirts.

the predictive performance as shown in Figure 4.14. The results show that the
trained cloth models can generalize well to unseen mannequin postures with mean
normalized RMSE 0.134 and mean Pearson correlation 0.925.
In the second experiment, we evaluated generalization to unseen T-shirts. We

considered a similar dataset as the posture experiment, however we performed
four-fold cross validation across the T-shirts and evaluated the predictive perfor-
mance to unseen T-shirts as shown in Figure 4.15. For each cross-validation, we
included six clothing trials from three T-shirts and trained an MRD model. The
predictive performance was evaluated for unseen clothing trials of both seen and
unseen T-shirts. The results indicate that the performance is slightly better for
seen T-shirts however the performance is also good for unseen T-shirts.

4.2.5. Comparison of Feature Representations

The latent features and predictive performance of MRD depends on the feature
representations used for the observation spaces. In this section, we consider
several representations for each observation space that are relevant to the clothing
assistance framework and evaluate their relative performance.
The feature representations used for an observation space capture different in-
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Figure 4.16.: Comparison of different feature representations for depth sensor observation space.
Evaluation on two metrics, a) Pearson correlation and b) Normalized RMS error.
n.s: not significant, ∗: p = 0.025 for one-sided Wilcoxon signed rank sum test [27].

formation about clothing articles thereby leading to different latent features on
training. For this purpose, we used several representations for each observation
space as presented in Sections 4.1.2 and 4.1.1. We compared the predictive per-
formance for each of the representation to evaluate the best representation in
each observation space for clothing assistance tasks. The representations for the
feature space were trained along with topology coordinate representation for com-
parison and the pose space representations were trained along with the point cloud
representation. Observations from six clothing trials for six different postures of
the mannequin with T-shirt 1 were used as the evaluation dataset. We performed
six-fold cross-validation on the dataset with a single clothing trial taken as test
data and the remaining five trials used as training data.
The results for comparison between the representations is shown in Figures 4.16

and 4.17 given by the mean values of normalized RMS error and Pearson cor-
relation across the six folds. Figure 4.16 indicates that the point cloud rep-
resentation and the color representations have almost similar performance and
are significantly better than the ESF representation. This indicates that both
color or point cloud representations are suitable for the task of clothing assis-
tance. However, the ESF representation being a feature histogram seems to drop
some crucial shape information that is necessary for reliable cloth state estima-
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Figure 4.17.: Comparison of different feature representations for motion capture observation
space. Evaluation on two metrics, a) Pearson correlation and b) Normalized RMS
error. n.s: not significant, ∗: p = 0.025 for one-sided Wilcoxon signed rank sum
test [27].

tion. Figure 4.17 indicates that the topology coordinate representation has the
best predictive performance. The marker and circle approximation representa-
tions have significantly lower performance (p = 0.025) as the variation between
clothing trials for specific marker positions is significantly higher in comparison
to topology coordinates which mainly captures the relationship between human
and cloth rather than specific cloth state.

4.3. Discussion

The experimental results presented in Section 4.2 demonstrate the effectivity of
using Bayesian nonparametrics to model cloth state and learn task-specific latent
features such as for clothing assistance. Section 4.2.1 presents results that demon-
strate the effectivity of using a non-linear dimensionality reduction technique i.e.
BGPLVM in comparison to a linear model such as principal component analysis
(PCA). Figure 4.7 demonstrates that the latent features learned in BGPLVM
were found to be consistent across various environmental settings and is much
more informative in comparison to PCA even without any information from the
motion capture system. This indicates that BGPLVM can be used to learn a task
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specific representation and the latent state can itself replace topology coordinates
as state representation for motor-skills learning.
Section 4.2.2 presents the predictive performance of learning a shared latent

manifold using Manifold Relevance Determination (MRD) between data obtained
from a depth sensor and a motion capture system. Firstly, the effect of the
state representation used for each observation space is demonstrated. The results
indicate the point cloud for depth sensor and topology coordinate representation
for motion capture system provide the most relevant features that are shared
between both the observation spaces. We further demonstrated the generalization
capability of MRD for unseen postures of the mannequin and unseen clothing
articles. The results indicate good predictive performance with some reduction for
drastic changes in the environmental settings. Finally, the predictive performance
was compared with standard regression techniques and MRD was found to have
the best predictive performance demonstrating the effectivity of learning a shared
latent manifold.
The predictive performance of MRD has been evaluated by comparison with

standard regression techniques and it was demonstrated that MRD has the best
performance using Pearson correlation and normalized root mean square error
as metrics. However, the performance by MRD was slightly better. One of the
reasons for this is that the current task setting does not include much variations in
cloth shape and are limited by the interaction with clothing articles. As the task
complexity increases, MRD could have better performance over other regression
techniques as it can effectively handle the non-linearity.
Section 4.2.3 provides details for real-time implementation of the proposed

method. The method relies on the use of MRD which is a kernel-based method
and therefore the computational complexity for both training and test inference
increases with the size of the training data. To handle this issue for real-time
implementation we proposed two alternate strategies for test inference and com-
pared the relative performance of the inference strategies. The filtering inference
strategy was found to be a good trade-off and suitable for real-time estimation
of human-cloth relationship from noisy point cloud observations. The compu-
tations for all the experiments were performed on a CPU of average computing
power. The predictive performance can further be improved by implementing the
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inference algorithm on a Graphical Processing Unit (GPU).
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5. Data-efficient Motor Skills
Learning

Enabling robots to learn motor skills for performing complex tasks is a major
goal of the AI community. However, existing methods require large number of
interactions to learn optimal behavior which is not suitable in practical scenarios
such as in the field of assistive robotics. Clothing assistance is one such task
which is a necessity in the daily life of the elderly and disabled people. Design
of a practical framework involves reliable cloth state estimation in real-time and
a motor skills learning framework that can detect and adapt to various failure
scenarios. A possible approach is to formulate robotic clothing assistance as a
reinforcement learning problem wherein the robot learns to recover from failure
scenarios and adapt to new settings from experience.
In this chapter, we propose an efficient representation of motor skills that relies

on the use of Bayesian Gaussian Process Latent Variable Model (BGPLVM) [5].
BGPLVM is capable of learning a data-efficient latent space for clothing tasks
performed by a dual-arm robot. Representation of clothing skills in a low dimen-
sional space enables the use of expressive policy update rules for generalization
to very different settings. We apply our proposed method in a practical setting
of robotic clothing assistance framework as shown in Figure 5.1. We demonstrate
that the learned space generates robot trajectories that maintain task space con-
straints required for clothing tasks. We further present the design of a real-time
controller from the BGPLVM latent space that can be used as a tool for Learning
from Demonstration (LfD). The experimental results indicate a promising policy
representation with reinforcement learning that can be used for robotic clothing
assistance.
The rest of the chapter is structured as follows. Section 5.1 introduces the
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Figure 5.1.: Overview of proposed framework for motor skills learning. Figure on the left shows
the setup for clothing assistance and the figure on the right shows the latent space
encoding the motor skills.

proposed framework. Section 5.2 includes experimental results and Section 5.3
provides discussion on the results.

5.1. Methods

Learning motor skills in a data-efficient manner is crucial for domains such as
assistive robotics where the robot needs to quickly adapt and reliably perform
the desired task. Tamei et al. [1] have proposed a reinforcement learning (RL)
framework for clothing assistance with a dual-arm robot as the agent and a man-
nequin as the subject. A limitation of this framework is that policy search is
performed in kinematic space which is considerably high dimensional for a seven
degrees of freedom (DoF) dual-arm robot. For tractable learning time, policy up-
date was done using finite difference policy gradient applied to a single via-point
of a single joint in each robot arm. This severely constrained the generalization
capability to very different environmental settings such as major changes in the
mannequin’s posture or using different clothing articles.
Motor skills for clothing assistance are given by high dimensional joint angle

trajectories of the dual-arm robot. Furthermore, the robot also has to maintain
several task space constraints such as coupling with a clothing article along with
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safe human-robot interaction as shown in Figure 5.1. In this thesis, we consider
an alternate representation that is more flexible and suitable for robust learning
of motor skills. We propose the use of dimensionality reduction (DR) to learn
a low-dimensional latent space that encodes clothing skills without losing any
generalization capability.
Reinforcement learning (RL) usually suffer from the curse of dimensionality

especially for continuous action spaces and a possible solution is the use of di-
mensionality reduction (DR). Some studies use DR as a preprocessing step and
perform RL in the reduced search space [93]. Others inherently combine DR and
RL wherein the dimensionality reduction is motivated by the rewards obtained
during the learning phase [83,96]. However, these studies either use linear models
for DR limiting the modeling capability or rely on a MAP estimate of the latent
space which tends to overfit to the training data.
We propose the use of Bayesian Gaussian Process Latent Variable Model (BG-

PLVM) [5] for learning a low dimensional latent space through a non-linear map-
ping to the kinematic space. The advantage of BGPLVM is that it relies on
variational inference to learn a posterior distribution on the latent space rather
than a MAP estimate as in GPLVM. This avoids over fitting to the training data,
thereby, improving the generalization capability of the model to unseen environ-
mental settings. We further explore various representations to the learning of
BGPLVM model specific to clothing assistance tasks. We implement our frame-
work on a practical setting of clothing assistance as formulated by Tamei et al. [1]
that involves tight coupling between human and the clothing article along with
high variability in policy depending on the task settings.

5.1.1. Motor Skills Representation using BGPLVM

In this section, we present the formulation used to apply BGPLVM to clothing
assistance skills. We consider the clothing task where a dual-arm robot dresses
a soft mannequin with a T-shirt which is initially resting on the mannequin’s
arms. The training dataset is given by human demonstration through kinesthetic
movement while controlling the robot under gravity compensation mode. The
BGPLVM model learns a mapping from the low dimensional latent space to
the robot kinematic space such that a trajectory of points in the latent space
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generates a trajectory on the dual-arm robot. The Gaussian process mapping
leads to data-efficient learning, thereby requiring few demonstrations, possibly
one, for task generalization.
The latent features learned by BGPLVM depend on the input dataset provided.

We consider two alternate representations i.e. 1) kinematic representation (JA)
given by joint angles of 6 DoF for each arm of a dual-arm robot DK = 12 and 2)
task space representation (EE) given by the end-effector pose of both arms with
Cartesian position PX , PY , PZ ∈ R3 and orientation OX , OY , OZ , Oω ∈ R4 forming
a 14-dimensional space DT = 14. We set the dimension of the latent space as
q = 6 for all our experiments. However, the dimensionality is eventually inferred
through the training of the ARD kernel weights as explained in Section 3.1.

5.1.2. Real-time Controller for Skill Transfer

There can be several types of failure scenarios when the robot performs cloth-
ing tasks. To recover from these failures, not only is the trajectory of the robot
important, but also the speed of execution. Imparting these skills through kines-
thetic movement of the arms can be difficult for inexperienced users and could
lead to noisy demonstrations. To address this problem, we have implemented
a real-time controller as shown in Figure 5.2 that gets an input signal from the
BGPLVM latent space to control the robot. This interface can be used as a tool
for Learning from Demonstration (LfD) where the necessary clothing skills are
imparted to the robot by using cursor control over the latent space.
Real-time implementation of the controller was designed using Robot Oper-

ating System (ROS) software framework. A pipeline was formed where cursor
coordinates in the latent space were mapped through BGPLVM to generate a
robot joint angle pose which was provided as input to the low-level controllers
of the robot. Using this interface, a path traced in the latent space converts
to a trajectory performed on the dual-arm robot in real-time. An example sce-
nario for this interface is care-givers imparting motor skills to assistive robots in
a real-world health care facility.
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Figure 5.2.: Interface for imparting motor skills. Left: Simulator to plan trajectory, Right Top:
Robot performing trajectory. Right Bottom: BGPLVM latent space to control
robot.

5.1.3. Latent Space Reinforcement Learning

In this section, we formulate a policy search framework in the BGPLVM latent
space. The objective is to learn a high-dimensional robot trajectory for perform-
ing the clothing task on an unseen posture of the mannequin by searching within
this latent space. Firstly, a dataset of successful clothing assistance trajectories
is used to train a latent space that encodes the motor skills. Each of the tra-
jectory is now transformed into a sequence of points in the latent space forming
latent space trajectories. The policy search is performed using Policy learning
by Weighted Exploration with Returns (PoWER) [30] which is a commonly used
policy search algorithm. It has been widely used in robotics to learn controllers
for performing various tasks.
We consider Dynamic Movement Primitives (DMP) [32] as policy representa-

tion. It is the combination of a point attractor dynamical system and a non-linear
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forcing term (f(s)) learned using Locally Weighted Regression (LWR) [33]:

τ ẍ = K(g − x)−Dẋ+ (g − x0)f

f(s) =
∑
iwiψi(s)s∑
i ψi(s)

, where τ ṡ = −αs
(5.1)

We train a DMP on the latent points corresponding to one of the training tra-
jectory and the LWR weight coefficients are used as policy parameters which are
modified to generalize to unseen environmental settings. The cost function for
policy improvement is designed in the high-dimensional action space. In the cur-
rent setting, we obtain a demonstration for the unseen posture and consider this
as the optimized trajectory to be achieved. The optimized trajectory is efficiently
encoded by via-points extracted using the minimum jerk criterion [34] that the
robot needs to pass through. The cost function is given by the sum of all errors
between the reconstructed robot trajectory and the desired via-points:

R(τ) =
ndims∑
i=1

nvia∑
j=1
‖Vi,j − xreconsi (ti,j)‖2 (5.2)

where R(τ) is the total reward for trajectory τ , Vi,j is the jth via point of ith

dimension and xreconsi (t) is the value at time t for ith dimension of reconstructed
trajectory.

5.1.4. Experimental Setup

Experimental setup includes the clothing assistance framework with Kinect V2
depth sensor for state estimation and Baxter research robot used to perform
the clothing tasks. We designed a framework using Robot Operating System
(ROS) [21] to control the robot and for providing demonstrations. To impart the
motor skills for clothing task, the robot is controlled under gravity compensation
mode during which the demonstrator can provide a kinesthetic demonstration.
The robot is further controlled in a puppet mode wherein one of the arms (slave
)mimics the motion of the other arm (master) and the demonstrator interacts with
master arm as shown in Figure 5.3. This strategy is necessary as the robot is
too bulky and usually leads to noisy demonstrations when each arm is controlled
independently. The source code for this framework is published online as a ROS
package for further reference [28].
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Figure 5.3.: Human demonstrator imparting motor skills under puppet mode.

The efficiency of BGPLVM to encode motor skills is evaluated for clothing as-
sistance tasks. Ideally, the learned model needs to be task specific such as for
clothing tasks and should generalize to various environmental settings. Further-
more, the model needs to generalize to unseen postures of mannequin and to an
unseen demonstrator performing the task. The evaluation dataset contains kines-
thetic demonstrations performed by 3 experienced users i.e. graduate students
who have varying experience {2 years, 1 year, 6 months} interacting with Bax-
ter robot. For each demonstrator, clothing and unclothing demonstrations were
recorded for 6 different postures of the mannequin wherein the shoulder eleva-
tion {65o, 70o, 75o, 80o} and head elevation {30o, 45o} were varied. These postures
cover the entire range for which the robot can successfully perform clothing tasks
thereby spanning all feasible postures. The head inclination and shoulder eleva-
tion angles were measured with respect to the positive and negative Z-axis normal
to the ground plane as shown in Figure 4.5.
We consider the performance for the clothing and unclothing tasks of the T-

shirt. Each task follows different dynamics and need to be modeled independently.
Usually running a clothing demonstration backwards for unclothing leads to fail-
ure. The performance of using BGPLVM was evaluated using two metrics in
all the experiments i.e. the Pearson correlation coefficient and normalized root
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mean square error (NRMSE). Given two univariate random variables x, y with
samples xn, yn : n ∈ {1, · · · , N} having means x̄, ȳ, the metrics can be evaluated
as follows:

NRMSE = RMSE

max({xn})−min({xn})

Corr =
∑N
n=1(xn − x̄)(yn − ȳ)√∑N

n=1(xn − yn)
√∑N

n=1(xn − yn)

(5.3)

Statistical significance was evaluated for all the experiments by using the one-
sided Wilcoxon signed rank sum test [27].

5.2. Results

In this section, we present the performance of the proposed framework in a prac-
tical setting of robotic clothing assistance. Section 5.2.1 demonstrates the pre-
dictive performance of using BGPLVM to encode motor skills in comparison to
other latent variable models (LVMs). Section 5.2.2 provides an evaluation of the
real-time controller for imparting motor skills to the robot. Finally, Section 5.2.3
shows the effectivity of using BGPLVM as a search space in policy search rein-
forcement learning.

5.2.1. Comparison of Latent Variable Models

In this experiment, we inspect the motor skills i.e. latent features learned by
BGPLVM and evaluate the predictive performance in comparison to other latent
variable models (LVM) i.e. Principal Component Analysis (PCA) [15] and Gaus-
sian Process Latent Variable Model (GPLVM) [4]. Firstly, we consider the dataset
of demonstrations from the evaluation dataset for both clothing and unclothing
tasks. For each task, demonstrations for four postures were used as training data
and for two postures were used as test data. BGPLVM models were trained for
both the kinematic space (JA) and task space (EE) representations. The ARD
weights on training resulted in varying number of active latent dimensions for
different scenarios. For the clothing task, the JA representation resulted in three
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Figure 5.4.: Comparison of latent spaces learned by LVMs: a) PCA, b) GPLVM and c) BG-
PLVM

latent dimensions and two latent dimensions for the EE representation. This
implies that the encoded motor skills varies depending on the input observations.
It was observed that the latent space varied for different latent variable models

(LVMs). Latent spaces learned for the clothing task and JA representation is
shown in Figure 5.4. In general, all the LVMs resulted in latent trajectories for the
training data which correspond to the demonstrations. However, the variability
between demonstrations is larger for BGPLVM which implies it can capture the
posture specific variation efficiently. Furthermore, BGPLVM was able to obtain
a smooth latent trajectory for the test data as well where as GPLVM leads to a
fragmented trajectory which could indicate overfitting in the case of GPLVM.
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Figure 5.5.: Comparison of generalizability by LVMs over evaluation dataset a) Normalized
RMS error, b) Pearson Correlation

The predictive performance of BGPLVM was evaluated by comparing the re-
construction error with two other latent variable models (LVM) i.e. Principal
Component Analysis (PCA) [15] and Gaussian Process Latent Variable Model
(GPLVM) [4]. For each demonstrator, six-fold cross validation was performed
where four demonstrations were used as training data. The remaining two demon-
strations (Test Pose) along with demonstrations from an unseen demonstrator
(Test Demo) were used as test data. To evaluate generalization capability, we
evaluated reconstruction error given by comparing the input data and the recon-
structed data from the latent points corresponding to the input,

Err = ‖yorg − ypred‖,
ypred = fmodel(f−1

model(yorg))
(5.4)

where yorg is an input sample from dataset, ypred is the predicted value after
reconstruction and fmodel is the forward mapping from latent space to observation
space.
The results for reconstruction error are provided in Figure 5.5. We evaluated

Normalized Root Mean Square Error (NRMSE) and Pearson correlation as the
metrics. The Wilcoxon signed rank sum test [27] was used to evaluate statistical
significance and the p-value was evaluated for a one-sided test. It can be seen
that BGPLVM has the best predictive performance which can be considered
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Figure 5.6.: Variation in dynamics of performing clothing task using latent space controller.

as a measure of generalization capability of BGPLVM latent space to unseen
environmental settings.

5.2.2. Evaluation of Latent Space Controller

In this experiment, we evaluate the latent space controller for imparting motor
skills to the robot. For the evaluation, BGPLVM models were trained on kines-
thetic demonstrations of performing clothing and unclothing task for a given
posture of the mannequin. The model is used as an interface to control the robot
and reproduce the task by performing cursor control on the latent space of the
demonstration.
The latent dimensions learned by BGPLVM capture a specific aspect of the

clothing motor skills. For the joint angle scenario, the most significant dimension
captured the horizontal motion of the arms along the mannequin while maintain-
ing the constraints for clothing. The second dimension captured various vertical
motions of pulling up the T-shirt in the beginning and pulling it down along the
torso at the end. The third dimension captured variations in joint configurations
across the demonstrations and could explain the constraint of safe human-robot
interaction. A video demonstration with the exploration of the latent dimen-
sions is available at https://youtu.be/2TCZnt_qBHU. This makes the interface
intuitive to the users for planning a desired alteration to the robot trajectory.
Five subjects without prior experience of interacting with the robot were asked
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Figure 5.7.: Execution time of five novice users interacting with the latent space controller over
five trials.

to use the interface to reproduce the tasks. The joint angles along with pro-
prioceptive information were recorded while the interface was used. In general,
the subjects were able to reproduce the clothing demonstration even when the
latent trajectory was different from the training latent points. The subjects had
fast learning curves with the execution time for performing the demonstration
decreasing drastically within five trials of using the interface as shown in Fig-
ure 5.7. A video demonstration of an inexperienced subject interacting with the
real-time controller is available at https://youtu.be/2TCZnt_qBHU.
The subjects also learned to modulate the dynamics of performing the task

wherein crucial parts were performed slowly and parts without much human-
cloth interaction being performed quickly. Figure 5.6 shows the modulation in
the dynamics of performing the task for one of the subjects. The time normalized
trajectories for a single joint of the robot is shown for five trials of using the inter-
face along with the original kinesthetic demonstration. For the regions indicated
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Figure 5.8.: Learning curves with various policy search spaces for JA scenario.

in the red squares, it can be seen that the trajectories through the interface vary
drastically from the original demonstration. This indicates that novel motor skills
for performing complex tasks can be imparted by inexperienced users as well.

5.2.3. Latent Space Reinforcement Learning

In this section, we demonstrate the effectivity of performing policy search in the
BGPLVM latent space by comparison with search in the high-dimensional action
space and in latent spaces learned using PCA and GPLVM. PoWER algorithm
was implemented with the same state and reward representations and only the
policy search space varied depending on the scenario. For each demonstrator, six-
fold cross validation was performed where three demonstrations of the clothing
task were used as training data for learning latent spaces. The latent space of each
LVM was used as a search space for reinforcement learning to learn the policy
corresponding to the remaining three unseen demonstrations. Policy search was
run for 1000 iterations where 20 rollouts with the best overall rewards were used
to update the policy in each iteration. The initial policy was generated from
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Figure 5.9.: Comparison of different search spaces for policy search: a) Average learning curves
over the evaluation dataset, b) Rewards obtained at different stages of learning.

DMP that is fit on a latent space trajectory of one of the human demonstrations
used to train the latent space.
Figure 5.8 shows the learning curves for an example clothing task and JA sce-

nario. It can be seen that BGPLVM scenario outperforms all other search spaces.
The performance was exhaustively evaluated by considering the complete dataset.
The average learning curves over the entire dataset is shown in Figure 5.9. This
indicates that BGPLVM captures the necessary motor skills most efficiently and
also has the best generalizability in comparison to other LVMs.

5.3. Discussion

We presented the use of Bayesian Gaussian Process Latent Variable Model (BG-
PLVM) as a representation for encoding motor skills to perform clothing as-
sistance task. The experimental results indicate our method as a promising
approach for learning in combination with reinforcement learning. We further
demonstrated its applicability as an intuitive and user-friendly tool for Learning
from Demonstration (LfD).
The results in Section 5.2.1 indicate that non-linear mapping and Bayesian

inference are necessary for the most efficient encoding of motor skills. PCA relies
on a linear model thereby constraining its capability. GPLVM has the worst
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performance among the latent spaces as it relies on a MAP estimate of the latent
space and it is overfitting to the training data. This validates our hypothesis that
encoding motor skills using Bayesian nonparametric latent variable models is an
effective parametrization for learning.
The computational complexity of the proposed framework depends on the for-

ward mapping from the BGPLVM latent space to joint angle space which scales
with the size of the training dataset (n) and the number of inducing points used
to approximate the dataset (m) i.e. O(nm2) [5]. During test inference, the train-
ing dataset remains fixed and so precomputed values of the kernel matrix can
be used to reduce time-complexity to O(1) which makes it suitable for real-time
implementation.

5.3.1. Real-world Implementation

The long-term research goal is a real-world implementation of motor-skills learn-
ing that could be used in health-care settings. This would require efficient and
real-time state estimation and its integration along with the framework proposed
in this chapter. This can be achieved by designing a state space that incorpo-
rates the human-cloth relationship obtained from a depth sensor as well as the
proprioceptive information from the robot arms. BGPLVM is capable of learning
task-specific state models using few observations as shown in Section 4.2.1. The
latent space learned by BGPLVM can be used as a low-dimensional approxima-
tion of human-cloth relationship.
The next challenge would be to design a reward function from the state space

that enables fast learning. This can be a replacement to the reward function used
in Section 5.1.3. An expert demonstration of the robot performing the clothing
assistance task can be used to initialize the latent space. This latent space can
be used for policy search reinforcement learning as presented in Section 5.1.3.
The current formulation leads to an episodic implementation. However, this can
also be extended to be more reactive by replacing DMP with a controller such as
Linear Quadratic Regulator (LQR) as the policy representation.
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6. Conclusion

Recent demographic trends has led to a tremendous shortage of care-givers for
the elderly. Assistive robots are playing an increasing role in alleviating this
need. Assistance with clothing can greatly improve the quality of life as well
as independence of the elderly and disabled. However, robotic assistance is still
considered an open problem with several challenges involved. The robot has close
interaction with non-rigid clothing articles and with the assisted person whose
posture can vary during the task. A promising approach is to treat it as a learning
problem where the robot is enabled to learn the desired motor skills by itself.
Tamei et al. [1] have developed a reinforcement learning-based clothing assis-

tance robot that addressed the challenges discussed above. In this framework,
a dual-arm robot learns the necessary motor skills to perform clothing tasks by
adapting to changes in the posture of the subject. However, this framework has
several limitations towards a practical real-world implementation. The environ-
ment i.e. human-cloth relationship is observed using the motion capture (Mo-cap)
system which has a complex setup and is not suitable for real-time tracking of
markers on non-rigid objects such as clothes. The policy representation is highly
constrained reducing its generalizability to large variations in the environmental
setting.
This thesis addressed these problems moving towards a practical implementa-

tion of robotic clothing assistance. The main contributions were as follows: 1)
framework for real-time estimation of human-cloth relationship with an emphasis
on reliable cloth state estimation and 2) formulation of a motor skills learning
framework that is data-efficient as well as flexible to adapt to various environ-
mental conditions. These research problems are addressed through the use of
Bayesian nonparametric latent variable models as it has several desired features.
Dimensionality reduction is used to model the problems in low dimensional spaces
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that efficiently capture the underlying task and Gaussian Processes [3] lead to
handling the non-linearity and performing model learning in a data-efficient man-
ner.
Clothing articles are non-rigid and lie in a high dimensional configuration space.

We hypothesize that clothing articles undergo consistent deformations which vary
from task to task and thereby lie in a lower dimensional task specific latent space.
In this thesis, Manifold Relevance Determination (MRD) [7] is used to learn
the underlying latent features from high dimensional observations. A low-cost
depth sensor and the motion capture system are used to learn a shared latent
manifold that captures complementary latent features from both systems in an
offline manner. This shared model is incorporated to reliably infer cloth state
in real-time given high dimensional and noisy depth sensor observations. The
predictive performance and generalization capability of MRD was demonstrated
for estimating the human-cloth relationship from noisy depth sensor readings.
Similarly, the humanoid robot has two arms with seven degrees of freedom

(DoF) each. Fast learning of motor skills is challenging in such high dimensional
continuous action spaces. This thesis proposed the use of Bayesian Gaussian
Process Latent Variable Model (BGPLVM) to learn a low dimensional latent
space, encoding the task specific motor skills for clothing assistance. It was
demonstrated that performing policy search reinforcement learning in the latent
space outperforms learning in the high-dimensional joint configuration space of
the robot. Furthermore, this framework was also demonstrated as a user-friendly
tool to impart novel motor skills to the robot.

6.1. Future Work

This section provides directions for future work to the frameworks proposed in
this thesis. Section 6.1.1 provides some theoretical considerations that can be
addressed related to robotic clothing assistance. Section 6.1.2 provides a tentative
road map in realizing an end-to-end clothing assistance framework.
The advantage of using MRD is that a corresponding latent space manifold can

be learned for any observation space of the same underlying phenomenon. Based
on this flexibility, future work will be to learn models that incorporates T-shirt
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state as well as the assisted subject’s posture and mainly the proprioceptive infor-
mation of the robot. This is from the insight that while humans are performing
clothing tasks they rely more on the forces experienced from the clothing article
rather than the visual appearance of clothing articles. Furthermore, the frame-
work currently relies on using the motion capture system to obtain the ground
truth data. This need can be removed by using a cloth simulator to generate
the desired training data for the models. Finally, the proposed framework can
be applied to other cloth manipulation tasks which can have potential industrial
applications such as putting on seat covers for car seats.
For the second framework on data-efficient motor skills learning there can be

several promising extensions. The framework relies in expert demonstrations to
initialize the latent space. An interesting future work will be strategies to incor-
porate prior information such as the garment used and human safety constraints.
This will further reduce the exploration space in the latent space leading to faster
learning of control policies. The current experimental evaluation demonstrates
the effectivity of using BGPLVM as a preprocessing step to encode motor skills in
low dimensional spaces. It would be interesting to develop a framework that can
inherently combine policy search with dimensionality reduction where the learn-
ing of the latent space is motivated by the rewards observed during the policy
search. This derives from the framework by Luck et al. [83] wherein an EM-
formulation is proposed that treats the parameters for dimensionality reduction
as the latent variables.

6.1.1. Theoretical Considerations

There remain several open problems which need to be addressed before moving
towards a practical implementation. This thesis treats clothing assistance as
a learning problem. However, the current formulation requires a lot of human
oversight to initialize the learning framework. There can be two solutions to
avoid this where in the robot can 1) learn from humans performing the task and
2) learn from its own prior experience. This section provides some insight on how
these can be achieved.
For reinforcement learning, one of the most crucial component is the reward

function which requires significant amount of human engineering. When humans

75



perform clothing assistance, they have a rich internal reward structure which
relies on forces being applied on the finger tips, visual features of the cloth state
and an estimate of the comfort felt by the assisted person. Inverse Reinforcement
Learning (IRL) is a promising future work wherein these reward structures can
be extracted based on observing human demonstrations and used in forward
reinforcement learning.
In the current setting, the robot initializes the learning framework from a hu-

man kinesthetic demonstration which is adapted to various environmental set-
tings. A first step to remove this need for initialization is to build a database of
successful policies learned by the robot. This database can be used for a better
initialization of the initial policy based on the current environmental setting and
its similarity to previously seen settings. This could also be extended to share
the sensorimotor experience across multiple robots for even faster learning [111].
It would also be promising to implement a simulator for clothing assistance that

can capture the human-cloth-robot interaction reliably. This simulator can be
used for the robot to explore the search space and learn controllers in the simulator
that could potentially generalize to various settings. There has been several
studies recently that have addressed this issue. These studies were able to model
the complex interaction between human and cloth during clothing tasks [100,101]
and the experience gained in the simulator could be transferred to a real-world
implementation [102].
In Chapter 2, several studies were presented that used deep learning towards

cloth state estimation and robotic manipulation demonstrating their strength as
universal function approximators. However, existing methods in deep learning
are very sample inefficient and require large datasets to train the models which
motivated us to rely on Bayesian nonparametric models. This problem could be
handled by either generating datasets from a realistic simulator or with more
recent deep learning techniques such as transfer learning, generative modeling.
A promising future work is to explore the applicability of deep learning towards
robotic clothing assistance.
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Figure 6.1.: Flowchart for end-to-end implementation of clothing assistance

6.1.2. Towards Real-world Implementation

The ultimate goal remains the practical implementation of robotic clothing assis-
tance. For this, there needs to be an end-to-end implementation which involves
the following steps as shown in Figure 6.1. The robot needs to locate a desired
clothing article in a house-hold environment and differentiate it from other gar-
ments. This involves recognizing clothing articles when present in a clutter or in
a shelf. It then needs to manipulate the cloth and bring it to a desired initial
state with which the clothing assistance can be initialized. This involves fine
manipulation skills such as rolling up the sleeves of a sweater. Finally, the robot
needs to actually perform the clothing task by keeping track of several constraints
such as:

• Tracking the progress of the task by observing the human-cloth relationship.

• Estimating the pose of the human and ensuring safe human robot interac-
tion.

• Communicating with the human and estimating the intention of the human.

The last constraint is provide a social component to the assistance where assis-
tance is provided as needed.
Our research group is already tackling some of these problems. For the recogni-

tion of clothing articles, Gaurav et al. [115] proposed a framework to sort clothing
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articles from a pile by detecting the extremities. This relies on the use of BG-
PLVM [5] to learn a latent space that captures the shape variations in the cloth
extremities and classification is performed in this latent space to detect cloth ex-
tremities. For initialization of the clothing task, Joshi et al. [116] investigate the
applicability of using Dynamic Movement Primitives (DMP) [32] to parametrized
the motor skills required to put a T-shirt on the mannequin’s arms. This frame-
work can also be extended to real human subjects whose posture can vary during
the task. To ensure safe human-robot interaction, Yamaguchi et al. [117] pro-
posed the use of Support Vector Machine to detect failure scenarios based on
the proprioceptive information observed by the robot while performing clothing
assistance tasks.
Progress on each of these sub problems will be made and eventually integrated

to form an end-to-end framework of clothing assistance. The emphasis will be on
implementing a low-cost flexible framework that can be used in a care-home or
household environment.
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A. Computation of Topology
Coordinates

This appendix summarizes the computation of topology coordinates, as presented
in [13]. Given two continuous curves γ1 and γ2 in the euclidean space, the topology
coordinates are computed by approximating the Gaussian Linking Integral(GLI).
Firstly the curves need to be divided into a number of small line-segments. These
segments are used for constructing a writhe matrix T ∈ RN1×N2 where N1, N2 are
the number of line segments in the curves.
Let rab, rcd be two segments (one from each curve), where a, b, c, d ∈ R3 are the

end points of the segments. Firstly the following vectors are calculated:

na = rac × rad
‖rac × rad‖

, nb = rad × rbd
‖rad × rbd‖

nc = rbd × rbc
‖rbd × rbc‖

, nd = rbc × rac
‖rbc × rac‖

(A.1)

Using these vectors, the writhe between the line segments is given by:

Ti,j = arcsin(nTa nb) + arcsin(nTb nc) + arcsin(nTc nd) + arcsin(nTd na) (A.2)

where Ti,j is the (i, j)th element in the writhe matrix. Now the

• Writhe w of the two curves is given by summation over the writhe matrix
as a measure of the total amount of twisting between the curves: topology
coordinates are computed from the writhe matrix as follows:

w = GLI(γ1, γ2) =
N1∑
i=1

N2∑
j=1

Ti,j (A.3)

where N1,N2 are the number of segments for curves γ1 and γ2 respectively.
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Figure A.1.: Example showing the computation of topology coordinates for two configurations of
Cartesian curves shown in Fig. 14 (a) and (b): (Left) Curves in Euclidean Space
(Center) Writhe Matrix computed for both cases (Right) Topology coordinates
computed from writhe matrix.

• The center of twist c is given by two scalar values which indicate the center
of twist for each curve about the other curve. These values are given by
weighted summations of the writhe matrix:

c = (xg, yg)

=
(∑N1

i

∑N2
j iTi,j

w
− N2

2 ,

∑N1
i

∑n2
j jTi,j

w
− N1

2

) (A.4)

• The density d is given by computing the angle between the principal axis
of the writhe matrix and the diagonal line of the matrix.

An example of computing the topology coordinates is shown in Fig. A.1. The pane
on the left shows two examples of curves in the euclidean space, the pane in the
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center shows the writhe matrix computed for each case and the pane on the right
shows the computation of topology coordinates from the writhe matrix thereby
forming the topology space. It can be seen from this example that the parameters
change based on the topological relationship between the curves thereby capturing
the complex relationship using few scalar parameters.
For clothing assistance tasks, the motion capture system was used to obtain

the Cartesian position of markers placed on the mannequin and T-shirt. The
markers placed on the mannequin were used to approximate its posture using a
stick figure. For example, the left arm of the mannequin was approximated by
a line segment joining two markers placed on its wrist and shoulder joint. Each
line segment for the mannequin were divided into 20 segments Nmannequin = 20.
The markers placed on the T-shirt were used to obtain circle approximations of
its collar and sleeve shapes. The T-shirt collar curve was approximated using
40 segments and each of the sleeves were approximated with 20 segments i.e.
Ncollar = 40, Nsleeves = 20. This data was then used to compute the topology
coordinates given by the equations presented above.
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