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STARE: Real-Time, Wearable, Simultaneous
Gaze Tracking and Object Recognition

from Eye Images∗

Lotfi El Hafi

Abstract

This thesis proposes STARE, a wearable system to perform real-time, simul-
taneous eye tracking and focused object recognition for daily-life applications in
varied illumination environments. The proposed system extracts both the gaze
direction and scene information using eye images captured by a single RGB cam-
era facing the user’s eye. In particular, the method requires neither infrared
sensors nor a front-facing camera to capture the scene, making it more socially
acceptable when embedded in a wearable device. This approach is made possible
by recent technological advances in increased resolution and reduced size of cam-
era sensors, as well as significantly more powerful image treatment techniques
based on deep learning.

First, a model-based approach is used to estimate the gaze direction using
RGB eye images. A 3D eye model is constructed from an image of the eye by
fitting an ellipse onto the iris. The gaze direction is then continuously track
by rotating the model to simulate projections of the iris area for different eye
poses and matching the iris area of the subsequent images with the corresponding
projections obtained from the model. By using an additional one-time calibration,
the point of regard (POR) is computed, which allows to identify where a user is
looking in the scene image reflected on the cornea.

Next, objects in the scene reflected on the cornea are recognized in real time
using the gaze direction information. Deep learning algorithms are applied to

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science
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i



classify and then recognize the focused object in the area surrounding the re-
flected POR on the eye image. Additional processes using High Dynamic Range
(HDR) demonstrate that the proposed method can perform in varied illumination
conditions.

Finally, the validity of the approach is verified experimentally with a 3D-
printable prototype of a wearable device equipped with dual cameras, and a
high-sensitivity camera in extreme illumination conditions. Further, a proof-
of-concept implementation of a state-of-the-art neural network shows that the
focused object recognition can be performed in real time.

To summarize, the proposed method and prototype contribute a novel, com-
plete framework to 1) simultaneously perform eye tracking and focused object
analysis in real time, 2) automatically generate datasets of focused objects by
using the reflected POR, 3) reduce the number of sensors in current gaze track-
ers to a single RGB camera, and 4) enable daily-life applications in all kinds of
illumination. The combination of these features makes it an attractive choice
for eye-based human behavior analysis, as well as for creating large datasets of
objects focused by the user during daily tasks.

Keywords:

Eye model, Corneal image, Gaze tracking, Object recognition, Wearable device,
Real time
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ＳＴＡＲＥ：眼球画像を用いた実時間処理可能な

装着型デバイスによる視線追跡と物体認識∗

エル ハフィ ロトフィ

内容梗概

本論文では，日常生活の様々な照明環境下で利用可能であり，装着型デバイ

スを用いて視線追跡と注目物体の認識を同時に実時間で実行できるシステム「Ｓ

ＴＡＲＥ」を提案する．本システムは，単眼ＲＧＢカメラをユーザの眼球が見え

るように取り付け，撮影された眼球画像を用いて視線方向とシーン情報を抽出す

る．シーンを取得するためにフロントカメラを必要としないため，常時装着型で

あるにもかかわらず社会的（例：肖像権・プライバシー）に受け入れられやすい．

深層学習に基づく強力な画像処理技術だけでなく，カメラセンサの高解像度化お

よび小型化などの近年の技術進歩により，本アプローチは実現可能となった．

本手法では，はじめにモデルベースの手法を用いて，眼球ＲＧＢ画像から視

線方向を推定する．まず，眼球画像に映る虹彩の輪郭に楕円を当てはめることに

よって，眼球の 3Ｄモデルを構築する．推定の際，構築された眼球の３Ｄモデルを
回転させることにより，異なる眼球姿勢における虹彩領域を計算し，計測により

得られた画像に投影し照合することで，視線方向を推定する．時系列で得られる

眼球ＲＧＢ画像に適用することで，視線方向を連続的に追跡する．さらに，キャリ

ブレーションを１回おこなうことで，視線方向と角膜上で反射した画像中にユー

ザが注目した物体が映り込む領域との関係をモデル化することができる．

次に，角膜での反射を介して得られるシーン画像（角膜反射画像）と視線方

向情報とを組み合わせることで，注目物体を実時間で識別する．角膜反射画像上

で注目物体が映るであろう領域に深層学習アルゴリムを適用することで，物体を

分類し認識する．ハイダイナミックレンジ（ＨＤＲ）カメラを代わりに使用する

ことで，提案手法が様々な照明条件で実行できることを示す．

∗奈良先端科学技術大学院大学 情報科学研究科 博士論文, NAIST-IS-DD1461207, 2017年 9月
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最後に，カメラを２台装備し 3Ｄプリンタで製造可能な装着型デバイスのプ
ロトタイプを作成すること，および極端な照明条件下でハイダイナミックレンジ

カメラを用いることで，本アプローチの妥当性を多面的に検証する．さらに，本

アプローチの概念実証をおこなうため，実際にニューラルネットワークを用いて

実装し，注目物体の認識が実時間で実行できることを示した．

まとめると，本手法と装着型デバイスのプロトタイプは斬新で完全なフレー

ムワークを提供するものであり，以下のような特徴を持つ．１）視線追跡と注目

物体の認識を実時間で同時に実行できる．２）角膜反射画像中の注目領域を用い

て，注目物体のデータセットを自動的に生成できる．３）単眼ＲＧＢカメラのみ

で計測可能なシステムである．４）様々な照明環境下で利用可能であるため，提

案する装着型デバイスは日常生活で利用可能である．これらの特徴を実現できた

ことで，視線に基づいた人間の行動分析や，日常業務中にユーザが注視している

物体に関する膨大なデータセットの生成に適用できると考えている．

キーワード

眼球モデル，角膜画像，視線追跡，物体認識，装着型デバイス，実時間処理
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Stare: look fixedly or vacantly at someone or something with one’s eyes wide
open. ”He stared at her in amazement.” (Oxford Dictionary)
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1. Introduction
Tracking the gaze and movements of the eye using a wearable device is a way
to obtain natural data that can be used to analyze users’ interests, behaviors
and state of mind, Nitschke et al. [1]. Further, eye tracking can be used as
an intuitive augmented reality (AR) input, or used to reduce motion sickness
induced by ill-calibrated virtual reality (VR) devices, Geuss [2]. The growing
interest in the maturing fields of AR, VR and smart wearable devices has created
new momentum for eye tracking.

Today, most commercially available eye-tracking solutions are based on active
infrared (IR) illumination and the so-called Purkinje images: an IR light source
illuminates the eye and one or multiple IR camera sensors capture its reflections
on different eye layers, called Purkinje images, to compute the gaze direction.
Current state-of-the-art wearable eye trackers, such as the Tobii Pro Glasses 2,
advertise below 1◦ error of gaze tracking using this technique.

However, IR-based methods have drawbacks. First, IR active illumination is
mostly limited to indoor environments as sunlight interferences occur in direct
daylight. Second, as the reflected scene on the cornea is not visible in the IR spec-
trum, an additional front-facing RGB camera is required to match the computed
point of regard (POR) in the scene. Such front-facing cameras pose significant
social concerns which have proved to be an obstacle for smart eyewear efforts
such as the Google Glass.

To solve these problems, this thesis proposes STARE1, a new method to ex-
tract both the gaze direction and scene information using eye images captured
by a single RGB camera facing the user’s eye. In particular, the method does
not require a front-facing camera to capture the scene, making it more socially
acceptable when embedded in a wearable device. This approach is made possible
by recent technological advances: increased resolution and reduced size of camera
sensors, as well as significantly more powerful image treatment techniques based
on deep learning.

1Simultaneous Tracking and Attention Recognition from Eyes.
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1.1 Method Overview

To estimate the gaze direction, a model-based approach is used. First, a 3D eye
model is constructed from an image of the eye by fitting an ellipse onto the iris.
Then, the gaze direction is continuously tracked by rotating the model to simulate
projections of the iris area for different eye poses and matching the iris area of the
subsequent images with the corresponding projections obtained from the model.
By using an additional one-time calibration, the reflected POR on the cornea
can also be computed, which allows me to identify where a user is looking in the
scene image reflected on the cornea. Next, using the gaze direction information to
automatically build large datasets, deep learning algorithms are applied to classify
and then recognize the focused object in the area surrounding the reflected POR
on the eye image. Finally, experiments using a High Dynamic Range (HDR)
sensor demonstrate that the proposed method can perform in varied illumination
conditions.

In order to validate the method in daily-life situations, several experiments
have been conducted using different hardware such as a wearable prototype
equipped with dual cameras, and a high-sensitivity camera in extreme illumina-
tion conditions. Further, a proof-of-concept implementation of a state-of-the-art
neural network showed that the focused object recognition can be performed in
real time.

1.2 Contributions

Several contributions of this thesis have been published in peer-reviewed journals
and conference proceedings. In particular, the model approach for gaze tracking
based on eye images was proposed in [3], HDR processing of corneal images
was explored in [4, 5], and the method was further refined with preliminary
results of deep learning-based object recognition from eye images in [6]. This
thesis summarizes and extends the aforementioned previous works by proposing
simultaneous eye gaze extraction and focused object analysis in real time using
deep learning, as well as the design for the 3D printable prototype. The main
results have been published in [7].

To summarize, the proposed method and prototype contribute a novel, com-
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plete framework to:

1. Simultaneously perform eye tracking and focused object analysis in real
time.

2. Automatically generate datasets of focused objects by using the reflected
POR.

3. Reduce the number of sensors in current gaze trackers to a single RGB
camera.

4. Enable daily-life applications in all kinds of illumination.

The combination of these features makes it an attractive choice for eye-based
human behavior analysis, as well as for creating large datasets of objects focused
by the user during daily tasks. Finally, the simultaneity in the gaze tracking
and the focus analysis is an important step forward to provide an end-to-end
solution that includes the capture device, the gaze estimation, and the object
recognition in a single unified system and interface, without requiring additional
post-processing of gaze data.

1.3 Thesis Outline

The remainder of the thesis is structured as follows. Section 2 introduces the
related work and Section 3 the wearable prototype. Section 4 describes the ge-
ometric eye model derived from the main characteristics of the human eye, and
how to reconstruct a 3D eye model from an image of the eye to estimate both its
location and orientation relative to the camera. Section 5 proposes a method to
continuously track the gaze direction using the previously built model. Section 6
presents the deep learning techniques applied for real-time recognition of the fo-
cused object. Finally, Section 7 explores HDR imaging and Section 8 concludes
with an overview of potential future work and applications.

All the resources used in this project are available for download at http:
//robotics.naist.jp/stare/.
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2. Related Work
Gaze tracking has been studied over the past 30 years. Early efforts using RGB
eye images and pupil tracking were rapidly discarded in favor of more precise
and less computational-consuming IR imaging, based on the Purkinje images, as
initially proposed by Guestrin and Eizenman [8]: an IR light source illuminates
the eye and multiple IR camera sensors capture its reflections on different eye
layers to compute the gaze direction, as illustrated by Figure 1.

Iris

Lens

Cornea

Anterior chamber

Sclera

Light

P1
P2

P3
P4

Figure 1. Illustration of the four Purkinje images illuminated by an active
IR light source. Authorized reproduction and modification under the Creative
Commons Attribution-Share Alike 4.0 International license, courtesy of Z22.

However, the advances in camera sensor technology and computational power
have renewed the interest for the analysis of corneal reflections, also known as
corneal imaging. A comparison between RGB and IR eye images is given by
Figure 2.

Corneal imaging was first explored by Nishino and Nayar [9]. This early work
analyzed the information contained in the eye images and suggested to use corneal
reflections to obtain information about the surrounding environments. In partic-
ular, they showed that the combination of the cornea of an eye and the camera

5



Figure 2. Comparison between RGB (left) and IR (right) eye images.

viewing the eye form a catadioptric imaging system. They also demonstrated
that the structure of an object in the scene can be computed from the two eyes
of face picture. They concluded by suggesting to exploit the visual information
embedded in the appearance of eyes, which convey rich information about the
person’s intent and circumstances.

In a following effort, Nitschke et al. [1] conducted an extensive survey of the
potential applications for corneal imaging, including visual recognition, computer
graphics and vision, human-computer interaction and diagnostic studies. They
concluded that analyzing and exploiting the corneal reflections from eye images
can be beneficial to accomplish a wide range of tasks that involve information
about the environment and the observer as advancement in computational sys-
tems, devices and architectures demands for novel interfaces and forms of inter-
action.

More recent research by Nitschke et al. [10], Takemura et al. [11, 12], and
Plopski et al. [13] successively proposed new methods to calibrate the eye pose
relative to a camera under various circumstances.

This lead to the first practical use of corneal imaging for a wearable gaze
tracker by Takemura et al. [14]. They proposed a method for estimating the
POR using the corneal images captured from an eye camera, and the scene images

6



captured from a front-facing camera. Although they demonstrated that the POR
could be estimated continuously, their method was limited by the quality of the
corneal images which were dependent on ambient illumination, and therefore the
method could not be applied in low-light conditions. They concluded that the
POR should not be estimated using corneal images alone, reason why they used
an additional front-facing camera to capture the scene.

However, recent technological advances in size and resolution of the camera
sensors, as well as in machine learning, have made possible to estimate both the
POR and the focused object using corneal images alone, eliminating the need for
additional sensors such as a front-facing camera. A brief summary between RGB
and IR technologies for eye image analysis is given by Table 1.

Table 1. Comparison between RGB and IR technologies for eye image analysis.
RGB eye images IR eye images
Advantages Advantages
Feature-rich images. Purkinje images/reflections.
Scene reflection, no additional front camera
is required for scene analysis.

Lightweight processing mostly based on ge-
ometry properties.
Below 1◦ error is commonly achieved.
+30 years of research, commercially avail-
able.

Disadvantages Disadvantages
Inoperable in low-light conditions. Requires active IR illumination.
Heavy processing based on computer vision
algorithms.

No scene reflection, often requires an addi-
tional front camera for scene analysis.

Iris color contamination. Sunlight interferences in outdoor environ-
ments.

Spherical distortions.
Eyelid occlusions.

7



3. Wearable Prototype
To validate the research, an experimental eye tracker is required. Based on the
main requirements of the proposed method, the prototype has to:

1. Be wearable and suited for regular use in daily-life activities.

2. Use RGB cameras that can capture sharp and feature-rich eye images at
close range.

To achieve these, the prototype uses a pair of JINS MEME glasses, Kunze
et al. [15], as a base. On these, a 3D-printed frame is mounted to fix two Log-
itech C310 camera sensors, as shown in Figure 3. This prototype is the result
of the several iterations shown in Figure 6. The lens of the cameras has been
customized to achieve a sharp focus at very close range. Eye images from both
eyes are captured with a resolution of 1280× 960 pixels at 30 fps. The two video
streams are transmitted to a workstation using two USB 2.0 cables via an USB
Video Class (UVC) 1.1 standard interface. The total weight (excluding cables)
is 100 g. The JINS MEME glasses provide additional sensors: an electrooculo-
graph, an accelerometer, and a gyroscope for six-axis head movement tracking.
No front-facing camera is present as the scene is extracted from the reflections
captured by the eye cameras.

Note that although the prototype has two eye cameras, the proposed method
only requires one. The extra eye camera is mainly used to compare results from
both eyes. Also, the extra sensors provided by the JINS MEME are mainly used
for debug purpose when developing the solution. In particular, the electrooculo-
graph can be used to quickly validate the results of the proposed gaze tracking
method.

3.1 Software

All the modules related to vision are implemented using OpenCV 3.2 C++ func-
tions wrapped by a Python 3 frontend. This offers a good compromise between
the speed of C++ and the convenience of Python 3. Also, the OpenCV CUDA
modules are called whenever possible to benefit from GPU acceleration.

8



Logitech C310

Logitech C310

JINS MEME

Figure 3. 3D-printable wearable prototype built with a pair of JINS MEME and
two Logitech C310 cameras.
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Figure 4. Split views of the 3D-printable CAD resources.
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Figure 5. Example of feature-rich eye image obtained from the wearable proto-
type.

The framework used to implement the modules related to deep learning is
Google TensorFlow, developed by Abadi et al. [16] at Google Brain. This frame-
work is also implemented in Python 3 and offers a high level of abstraction to
work on multiple GPUs/CPUs and scale the solution on different hardware.

All the libraries used in this project are open-source.

3.2 Specifications

The full specifications of the wearable prototype are given in Table 2.

3.3 Deployment

The current version of the prototype still requires to be connected to a power-
ful workstation equipped with a CUDA-enable GPU to achieve real-time object
recognition. Therefore, although the prototype is wearable, it is not yet ready
for daily use and commercial deployment.

The next version will consider using a NVIDIA Jetson TX2 module to embed

11



Figure 6. Evolution of the prototype from a static setup to a wearable device.

Table 2. Detailed specifications of the wearable prototype.
Components Specifications Values Units
Frame: JINS MEME Sensors Accelerometer, gyroscope,

electrooculograph
1

Cameras: Logitech C310 Spectrum RGB 2
Resolution 1280× 960

Rate 30 fps

Minimum distance 15mm

Interface USB 2.0
CPU: Intel Core i5-7600 Architecture Quad-core 1

Clock 3.5GHz

GPU: NVIDIA GeForce
GTX 1080

CUDA cores 2560 1

Memory 8GB

12



power-efficient computing into the device, making it truly wearable. The main
challenge will be to provide the same real-time experience with 10 times less
CUDA cores than in the NVIDIA GeForce GTX 1080 used currently. However,
the computing speed of the recognition achieved in Section 6 will most certainly
allow to do so.

Finally, at the time of the writing, the JINS MEME and its sensors are not
strictly required outside development, and can be replaced by a passive 3D-
printable frame. Although never used during the development, this passive frame
has been completely designed and can be printed at any time.

13



4. Eye Model
This section describes the main characteristics of the human eye and how to
derive a geometric model from them.

4.1 Human Eye Anatomy

Figure 7 shows a cross-section of the human eye. When observing an eye from
the outside, the most distinctive parts are the colored iris, the pupil at its center,
and the white sclera that surrounds it, as described by Nitschke et al. [10]. The
outer layer of the eye is the cornea, which is more difficult to observe. It covers
the iris and fades into the sclera at the limbus. The cornea focuses images onto
the retina, or more precisely, onto the fovea which is the most sensitive part of
the eye. Important properties of the cornea are its transparency and its specular
reflection characteristics due to the film of tears that coats its surface. This
mirror-like characteristic will be particularly relevant for extracting information
about the scene and the POR.

4.2 Eye Geometric Model

The human eye can be subdivided into two overlapping spheres of different sizes:
a smaller cornea sphere that includes the cornea, the iris, the pupil and the lens,
and a bigger sclera sphere that includes the sclera, the vitreous humor and the
retina with its fovea. The two spheres intersect at the limbus which defines a
circle. This model is described in Figure 8:

• Points L, C and S are respectively the limbus, cornea and sclera centers.
A priori unknown.

• The vector g is the optical axis of the eye, crossing all the aforementioned
centers. It intersects the cornea sphere at the cornea apex designated by
A.

• The vector v is the visual axis that goes from the fovea to the actual POR.
The visual axis corresponds to the gaze direction and its estimation is the
purpose of any gaze tracking system.
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Figure 7. Cross-section of the human eye with the cornea and sclera spheres
indicated by the two dashed circles in red. Authorized reproduction and modi-
fication under the Creative Commons Attribution-Share Alike 4.0 International
license, courtesy of Z22.
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• Distances rL, rC and rS are respectively the limbus, cornea and sclera radii.
All are known anatomical parameters.

• Distances dAL, dLC and dCS separate the different components of the model.
All are known anatomical parameters.

The anatomical parameters used in this thesis have been extensively studied
by Wandell [17]. His work provides average values of eye parameters between
multiple individuals. In the following, these values are used when referring to the
known parameters.

Optical axis

Visual axis
Anatomical data

Sclera

Cornea

Limbus

Fovea

Figure 8. Geometric model of the human eye.

The optical axis is easy to estimate from the geometric properties of the eye
but the visual axis is not. However, even though the visual axis, not the optical
axis, corresponds to the direction of the POR, the optical axis can be used as an
approximation of the visual axis. The angle formed by the two axes is denoted
by α and assumed to be constant.

This geometric model will be applied throughout this paper to estimate the
pose of the eye from an image. It will also be used to describe interactions
between the incident light and the cornea surface. By nature, such a model
can only approximate the reality: the actual shape of the eye is more complex
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than the one described by the model and its anatomical parameters vary between
individuals. However, the variation of parameters among individuals is assumed
to be sufficiently small.

4.3 Eye Model Construction

Both the location and orientation relative to the camera of the 3D eye model are
estimated from a single eye image following the method of Nitschke et al. [10].
An overview is given by Figure 9.

Corneal image 2D ellipse fitting 3D eye model

Iris contour Registered POR

Visual axis

Anatomical data

Image 1

Sclera

Cornea

Limbus

Camera

Visual axis

Optical axis

Figure 9. Overview of the 3D eye model construction.

First, weak perspective projection is assumed since the depth of the tilted
limbus is much smaller than the distance between the eye and the camera. Thus,
the almost circular limbus projects to an ellipse described by five parameters in
the image coordinates: the center coordinates (cu, cv), the radii rmax and rmin,
and the tilt φ as shown in Figure 10. Their values are estimated by fitting an
ellipse on a set of limbus points using Least Squares. Figure 11 shows an example
of the result.

Now that the limbus has been fully described on the image plane, a 3D model
of the eye can be constructed. Its pose in the world coordinate frame, i.e. the
coordinates of the limbus center L and the direction of the optical axis g, is
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Figure 10. 3D eye model construction from an eye image.

computed following the geometric construction originally proposed by Nitschke
et al. [10]. The origin O = (0, 0, 0)T is at the center of the camera lens as shown
in Figure 10. When the camera focus is assumed to be at infinity2, dOL can be
expressed as:

dOL = f
rL
rmax

,

where rL, rmax and the focal length of the camera f are known. If the limbus
center is defined as L = (Lx, Ly, Lz)

T, by similarity:

Lx

(iu − cu) sx
=
dOL

f
,

Ly

(iv − cv) sy
=
dOL

f
,

where sx and sy are the pixel-to-world-unit scaling coefficients, obtained from
camera calibration, respectively along the x and y directions. By combining

2 Which means f = dOI . At close range, this sometimes cannot be assumed depending on
the sizes of the sensor and the lens as described in preliminary work to this thesis [3]. To solve
this problem, the thin lens model is used:

1

f
=

1

dOI
+

1

dOL
,

where f 6= dOI and dOL is required to compute dOI . In the case of a head-mounted device, dOL

is assumed to be known and constant.
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Figure 11. Initial eye image used for model construction.
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these equations:

L =

(
dOL (iu − cu) sx

f
,
dOL (iv − cv) sy

f
, dOL

)T

.

The tilt τ of the limbus plane with respect to the image plane is estimated
from the shape of the ellipse up to a sign ambiguity:

τ = ± arccos
(
rmin

rmax

)
.

Indeed, two different limbus poses are possible from the projection alone: one
looking in the direction of positive values of y, and another looking in the direction
of negative values of y. In the case of a head-mounted camera, the ambiguity can
be easily solved by knowing the relative pose of the camera to the eye, which is
usually fixed and sufficiently tilted to avoid any ambiguity.

If not, this ambiguity can also be solved by attaching two LEDs to the camera,
as proposed in preliminary work of this thesis [18]. A line between the camera
origin O and the cornea center C intersects at a point where the camera origin is
reflected on the cornea, as shown in Figure 12. Therefore, the projected cornea
center location is obtained by finding the mean point of the two LEDs reflected
in the image and use this information to resolve the sign ambiguity of τ .

L
C

g
LED

LED

O

Figure 12. Solving the tilt ambiguity of the eye pose relative to the camera
using LEDs.

The optical axis g is then given by:

g = (sin τ sinφ, − sin τ cosφ, − cos τ)T,

where φ is already known as the rotation angle of the ellipse fitted on the limbus
in the image plane. Finally, the cornea center C and the sclera center S are given
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by:
C = L− dLCg, S = L− (dLC + dCS)g,

and the limbus is computed as the intersection between the cornea and sclera
spheres.

4.4 Visual Axis Calibration

To evaluate the gaze direction, i.e. the visual axis v, an additional one-time
calibration step is required to compute the angle α from the optical axis g. In
the current implementation, the user is asked to manually register the reflected
POR on the image.

Figure 13 describes the relationship between the visual axis and the incident
light coming from the POR, where P is the POR and R the reflected POR, i.e.
the POR in the scene reflected on the corneal image. n = xs + yl is the normal
at the reflected POR with l and s respectively the directions to the POR and to
the camera optical center. The normal parameters x and y are unknown.

C

v

P

R

l

n

sO

Figure 13. One-time visual axis calibration.

Assuming that the distance from the reflected POR to the POR is known,
which can be expected from the user during a calibration process, the direction
of the visual axis can be computed using a specular model of a sphere, Eberly
[19]. The first step is to compute the normal n in order to find R. This consists
of solving the following biquadratic equation:

4cdy4 − 4dy3 + (a+ 2b+ c− 4ac) y2 + 2 (a− b) y + a− 1 = 0,
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where a = s · s, b = s · l, c = l · l, d = ‖s × l‖2 are the coefficients. When
x = (−2y2 + y + 1) / (2by + 1) is defined, the normal n is computed from the
solution in x > 0 and y > 0. The reflected POR R and the visual axis v are then
computed by straightforward vector geometry.

Although the calibration is required to compute the visual axis, it appears
in the last results presented in Section 6 that the calibration of the visual axis
does not influence much the focused object recognition. This means that the
visual axis calibration can be skipped, relying exclusively on the optical axis as a
first approximation of the gaze, if the focused object analysis is ultimately more
important than the gaze direction precision alone.
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5. Gaze Tracking
From the model built previously using a single eye image, the pose of the eye con-
tinuously tracked in the subsequent images, thus enabling real-time gaze tracking.
An overview of the proposed algorithm is given by Figure 14.

Image n

Gaze directionPose matchingModel rotation

Greedy algorithm

Figure 14. Overview of the model-based gaze tracking.

5.1 Pose Matching

In order to track the optical axis direction from the current image of the eye, first
a pitch-yaw-roll reference frame is attached to the sclera center S of the 3D model
built previously. The yaw axis is aligned with the eye corners for convenience.
The pitch and yaw angles are respectively denoted by φ and ψ. By rotating the
model around the pitch and yaw axis, several limbus projections are simulated
for different eye poses, as shown in Figure 15. Note that the roll angle is not
considered, assuming that the human eye is not capable of such a rotation.

The limbus of the rotated model is then projected into a binary image to serve
as a mask. The projected area is set as binary 1s. The projection that matches
the current limbus pose is then detected by summing the logical products of the
inverted binary image of the current frame and the mask for each pitch and yaw
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Figure 15. Simulation of several limbus projections for different eye poses.
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values. The maximum value among the summed logical products corresponds to
the current pose of the eye, as shown in Figure 16.

0 200 400 600 800 1000 1200
x [px]

0

200

400

600

800

y
 [

p
x
]

pitch, yaw = -1°, 14°

Matched limbus

Optical axis
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Figure 16. Matching the projection of the rotated limbus into the image plane.

This method was initially proposed by Takemura et al. [12, 14]. The current
implementation moves toward a local minimum using a greedy algorithm, as
shown by Figure 17. The aim is to accelerate the matching by avoiding generating
unnecessary candidate poses.

From an initial guessed pose, the algorithm computes the poses of the adjacent
pitch and yaw values. The newly computed pose that matches the best the current
eye pose serves as the initial pose in the next iteration. The algorithm loops until
no more significant change is observed.

Although the greedy algorithm is relatively simple and cannot guarantee that
the result is a global minimum, it is nonetheless very fast and suited to this
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particular use case for the following reasons:

• Avoiding generating unnecessary projections, thus accelerating the overall
pose matching.

• As the eye shapes and features are well known, the local minimum is most
likely to be global.

• Since humans look straight most of the time, the pose corresponding to zero-
values of pitch and yaw is a strong initial guess, thus only a few iterations
are required to match the current eye pose and the matching is fast.

Note that the reflections on the iris area can result in white spots on the
binary image that may introduce errors when computing the sum of the logical
products.

Figure 17. Greedy algorithm moving toward a local minimum. Blue: selected,
green: computed, black: ignored.
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5.2 Tracking Results

To assess the precision of the method, a user is asked to sit in front of a computer
screen and look at 9 different targets displayed at each corner while staying still,
as shown in Figure 18. The camera position relative to the screen is measured
and assumed to be constant. The visual axis direction is computed from the
measurements and compared with the one given by the implementation of the
proposed method.

Figure 18. Experiment setup used to evaluate the precision of the gaze tracking.

Results obtained with a screen placed at 500mm indicate a mean angular
error of 2.5◦ and a maximum angular error of 5◦, as shown in Figure 19. A drop
of accuracy is observed as the eye looks toward the outside of the screen. This
drop was expected as the occlusions from the eyelids are more prevalent when
the eye approaches its maximal range of motion. However, although this drop is
significant, this situation does not often happen as humans usually compensate
reachability by moving their head while keeping a straight gaze with their eyes
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resting around the centered position.
It is important to remember that most commercial IR-based solutions adver-

tise higher precision, usually below 1◦ of angular error. However, they exclusively
focus on gaze direction estimation and require additional sensors to extract the
focused object from the scene. The proposed method makes up for the lower
precision of the RGB-based tracking by simultaneously extracting the focused
object on the corneal reflection. Ultimately, this information is regarded as more
important than gaze precision alone.
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Figure 19. Gaze tracking results for 9 targets displayed on a screen with user
sitting still at 500mm. Pitch and yaw values are shown inside the parentheses.
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6. Object Recognition
Preliminary works of this thesis [4, 5] proposed a method to match the 2D features
between the corneal images and a reference image using a combination of feature-
based algorithms. Unfortunately, the recognition suffered from noise due to iris
contamination and spherical distortions, could barely run in real time, and results
were prone to mismatches. Figure 20 illustrates these challenges. It was concluded
that directly using 2D features on highly-distorted eye images did not yield useful
results.

Color contamination

Spherical distortion

Low contrast

Figure 20. Typical eye image environment with overall low contrast, noise due
to iris contamination, and spherical distortions.

From this previous experience, further investigations were conducted in [6]
while moving toward deep learning strategies to address both the contamination
and distortion issues. Based on the framework proposed by Donahue et al. [20],
Transfer Learning was used to retrain Google Inception-v3 with new datasets
obtained from eye images. Although the training was fast and the recognition
accurate, the solution could not be used in real time.

This section first introduces more context by summarizing the previous un-
successful trials mentioned above. Then, both the accuracy and real-time issues
are addressed by training a new model based on You Only Look Once (YOLO),
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a state-of-the-art convolutional neural network (CNN) initially proposed by Red-
mon et al. [21] and improved by Redmon and Farhadi [22].

6.1 Feature Matching

The first explored idea consisted of matching 2D features between the corneal
images and a reference image as follows:

1. First, detecting features and extract descriptors using Speeded-Up Robust
Features (SURF), as described by Bay et al. [23].

2. Next, matching the descriptor vectors using Fast Library for Approximate
Nearest Neighbors (FLANN), as proposed by Muja and Lowe [24].

3. Then, removing outliers using both Random Sample Consensus (RANSAC),
Fischler and Bolles [25], and the gaze information obtained with the previ-
ously proposed method: incorrect matches outside an arbitrary-delimited
area around the reflected POR on the cornea are eliminated.

4. Finally, a bounding box is returned by computing a homography from the
filtered matches.

An overview is given by Figure 21.
Figure 22 shows a typical result obtained with this method while Table 3

details the average detection rates for 10 benchmark sequences, of 100 frames
each, containing the same reference object as Figure 22. The resulted detection
rate is low and the feature-based recognition suffers from multiple issues:

• The noise due to iris contamination and the distortions of the reflection
limit the number of correct matches. Even though incorrect matches can
be filtered out knowing the POR, further strategies should be applied to
increase the matching rate.

• The current implementation can barely run in real time using only one refer-
ence image. Increasing the number of reference images, thus the number of
potentially recognized objects, will prevent the system to achieve real time
in any daily-life situations were multiple-object recognition is required.
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Figure 21. Overview of the object recognition using 2D features.

• One potential way to improve the detection rate would be to use the 3D
model to unwrap/flatten the cornea reflections before applying the feature-
matching algorithms. However, this operation is computationally intensive
and will further prevent achieving real time.

It was concluded that directly using 2D features on highly-distorted eye images
did not yield useful results.

Table 3. Average feature-based recognition rate with 100-frame benchmark
sequences.

Benchmark sequence True detection
(avg)

No detection
(avg)

False detection
(avg)

Recognition
rate (avg)

Reference book 15.4 5.7 78.9 15.4%

6.2 Transfer Learning

From the previous feature-matching experience, moving toward deep learning has
been proven essential. There are two main reasons behind this move:

1. First, the image reflected on the cornea is highly distorted by its shape
and contaminated by the iris. Therefore, it is hard to determine which
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Figure 22. Matching 2D features between the corneal image and a reference
image with SURF, FLANN, and RANSAC. Incorrect matches outside the red
box are filtered out using the gaze information.
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2D features are important to achieve a successful recognition. Using deep
learning, the machine will select the most relevant features by itself during
the learning phase, if provided with enough corneal image data.

2. Second, although deep learning requires tremendous amounts of data to
obtain good prediction results from the training, the gaze information ob-
tained previously can be leveraged to automatically generate annotated
data using the wearable prototype.

Instead of training a new model from scratch, it was decided first to use
Transfer Learning to retrain Google Inception-v3, Szegedy et al. [26], with new
datasets obtained from eye images. This open-source model was initially trained
for the ImageNet Large Visual Recognition Challenge, Russakovsky et al. [27], to
classify entire image contents into 1000 classes. By using Transfer Learning, the
training process can be greatly accelerated by taking the fully-trained Inception-
v3 for a set of common objects and retrain from the existing weights for new
classes of eye images. Following this idea, only the final layer is retrained from
scratch, while leaving all the others untouched, as suggested by [20]. An overview
is given by Figure 23.

Deep learning

Object class
DatasetGaze tracker

ImageNet
Transfer Learning

Inception-v3

Figure 23. Overview of the object recognition using Transfer Learning.
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6.2.1 Dataset Generation and Training

Deep learning requires large amounts of data to obtain good prediction results
from the training, but creating and/or gathering these data is usually very time-
consuming. However, gaze information can be leveraged to make the whole pro-
cess more efficient.

Using the wearable prototype, a user is asked to look at several types of daily-
life objects while manipulating them during an experiment. Cornea images are
then automatically cropped with a 200×200 pixel area around the reflected POR
using the proposed gaze tracking method. During this experiment, at least 1000
images for each object of 10 different classes were generated: books, cups, toys,
screens, pens, money, phones, cans, snacks, and hands. Some data samples are
shown in Figure 24. Since the objects were manipulated one by one, it is very
easy to assign the whole cropped images of a sequence to their corresponding
labels, i.e. annotate the images, among the 10 different ones.

The proposed solution is implemented with Google TensorFlow, Abadi et al.
[16], and runs on a machine equipped with a CUDA-enabled GPU. The learn-
ing process takes about 30min for a dataset of 10 000 images (1000 per object
type) with 4000 training steps. Each step chooses 10 images at random from the
training dataset and feeds them into the final layer to get predictions. Those
predictions are then compared against the actual labels to update the final layer
weights through the back-propagation process. A final accuracy evaluation is run
on a set of images kept separate from the training and validation images.

6.2.2 Results and Discussion

Table 4 shows the results obtained with the four object types described in Fig-
ure 24. For each test image, the three highest predictions are returned. The
accuracy exceeds 80% in the cases of object manipulation, but dramatically falls
around 35% for empty hands. However, since hands are present on every images,
this case is the most challenging and low accuracy was expected.

Transfer Learning improved the accuracy of the recognition compared to the
feature-based method, but the solution still suffers from issues that make it im-
practical for daily-life applications:
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Figure 24. Data samples for books, cups, toys and hands (cropped and centered
around the POR).
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Table 4. Transfer Learning results with 4 benchmark images, each of a different
object type.

Book in hands Cup in hands Toy in hands Empty hands

Book: 0.9950 Cup: 0.8763 Toy: 0.8165 Cup: 0.3657
Snack: 0.0040 Can: 0.0857 Hand: 0.1317 Hand: 0.3412
Money: 0.0006 Hand: 0.0267 Can: 0.0191 Phone: 0.2293

• The whole cornea image is recognized a one item of the training datasets,
thus multiple-object detection with precise bounding boxes around the fo-
cused objects is impossible.

• The detection runs below 0.4 fps and is far from being real time. However,
contrary to the previous feature-based method, multiplying the number of
trained objects does not affect the performance at run time.

• Although adjusting the final layers of a model trained against ImageNet
using Transfer Learning enables fast and convenient retraining, it is ques-
tionable to not use cornea images from the start to train a new model more
adapted to eye images.

From these conclusions, it appeared that training a new model from scratch using
a state-of-the-art CNN could address both the accuracy and real-time issues.

6.3 Real-Time Recognition

To tackle the real-time issues of the previous methods, a new model is trained
based on the state-of-the-art CNN called You Only Look Once (YOLO), initially
proposed by Redmon et al. [21] and improved by Redmon and Farhadi [22]. An
overview is given by Figure 25.
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Figure 25. Overview of the object recognition using YOLO.

By using YOLO, only a single neural network is applied to the full eye image.
The network divides the image into regions and predicts bounding boxes and
probabilities for each region. These bounding boxes are weighted by the predicted
probabilities for each class of objects.

At run time, the model looks at the whole image and makes predictions
with a single-network evaluation. This makes it extremely fast, more than 100×
faster [22] than the more conventional Fast R-CNN, Girshick [28], which requires
multiple networks for a single image. In the proposed system, the YOLO detec-
tion runs above 70 fps, much faster than the 30 fps camera input.

6.3.1 Dataset Generation and Training

Using the wearable prototype, a user is asked to look at several variations of daily-
life objects while manipulating them. Each object belongs to one of the following
10 classes: books, cups, toys, screens, pens, money, phones, cans, snacks, and
hands. By using the proposed gaze tracking method, a 100×100 pixel area around
the reflected POR is then automatically annotated in all the corneal images to
generate the training datasets, as shown in Figure 26 with books. Contrary to
the previous method using Transfer Learning, only the bounding box around the
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focused object at the POR is annotated, thus avoiding annotating whole cropped
images that includes irrelevant background information.

The model is then trained to perform real-time, in-hands object recognition.
The graph of the complete network is shown in Figure 27. Using the wearable
prototype, at least 1000 images for each object variation, belonging to one of the
10 classes, were generated in 5 different locations to reduce the influence of the
illumination conditions during the training. The proposed method using YOLO
is then run against at least 5 benchmark videos, of 100 frames each, where a
user manipulates the objects. In order to validate the robustness of the system,
several experiments have been conducted in various environments and including
objects that, although belonging to one of the 10 experimental classes, were not
used to generate data and thus not trained.

6.3.2 Results and Discussion

The following section discusses the results obtained by training new models using
YOLO. Several experiments have been conducted to validate different aspects of
the recognition. In particular, the discussion compares the successful recognitions
between:

• Trained and untrained objects in a same environment for a specific class.

• Trained and untrained environments for the same objects of a specific class.

• Learning-based and feature-based methods for a trained object in a same
environment.

• Manual, human-made annotations and automatic, POR-based annotations
for a trained object in a same environment.

• Calibrated, visual axis-based annotations and uncalibrated, optical axis-
based annotations for a trained object in a same environment.

• Finally, 10 classes of trained and untrained objects in a same environment.

In all experiments, at least 5 trials (or benchmark videos), of minimum 100
frames, were used for each environment or object. The results presented hereafter
are the average successful recognitions across these trials.
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Figure 26. Data samples for book annotation (cropped and centered around the
POR).
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Figure 27. Graph of the complete YOLO network used for training.
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Trained versus Untrained Objects This experiment compares the recogni-
tion rates of trained and untrained objects for a specific class, books, in a same
environment. The aim is to validate the robustness of the system against not
only trained objects of a specific class, but also against untrained objects of the
same class.

In the experiment, 10 variations of books were used to train the model. Then,
a user was presented with both a subset of the trained books and a set new books,
not used for training. For each object, at least 5 trials were performed. An
example of trial results for a trained object is given in Figure 29, where one out
of every 10 frames are shown for readability. The average successful recognitions
are summarized in Figure 28.

The results show strong recognition rates for the trained objects. In the case
of untrained objects, a significant drop is observed. However, untrained objects
can still be recognized in more than half the total number of frames in average.

Trained versus Untrained Environments This experiment compares the
recognition rates in trained and untrained environments with trained objects of
specific class: books. The aim is to validate the robustness of the system across
different environments and illumination conditions, and especially untrained ones.

In the experiment, 10 variations of books were used to train the model, but
all the data were captured in the same indoor environment: a laboratory. Then,
a user was asked to manipulate the objects in 4 different locations under various
illuminations, such as artificial lighting, direct and indirect sunlight. For each
environment, at least 5 trials were performed. An example of trial results for 3
different locations is given in Figure 31, where one out of every 10 frames are
shown for readability. The average successful recognitions are summarized in
Figure 30.

The results show a strong recognition rate for the trained environment. Al-
though a drop is observed in the case of untrained locations and illuminations,
the system performs robustly and the objects are successfully recognized in more
than two thirds of the total number of frames used during the trials in average.

Learning-Based versus Feature-Based Methods Figure 32 shows the com-
parison between the previously described feature-based method, using SURF, and
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Figure 28. Comparison of successful recognitions between trained and untrained
objects in a same environment for a specific class (books). Average of 5 trials for
each object.
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Figure 29. Example of trial results for a trained object. One out of every 10
frames are shown for readability.
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Figure 30. Comparison of successful recognitions between trained and untrained
environments for the same objects of a specific class (books). Average of 5 trials
for each environment.
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Figure 31. Example of trial results in untrained environments. One out of every
10 frames are shown for readability.

46



the proposed learning-based method using YOLO. The average results obtained
with 5 trial using the same object, a book, show that the learning-based method
presents 5 times more successful recognitions than the feature-based one, thus
making deep learning essential in object recognition from corneal imaging.

Figure 32. Comparison of successful recognitions between learning-based and
feature-based methods. Average of 5 trials for each method.

Automatic versus Manual Annotations Figure 33 shows the comparison
between the proposed POR-based annotations and manually annotated data to
generate the datasets. The manually annotated data, more time-consuming but
also more precise than the proposed automatic POR-based method, can be seen
as an upper boundary of the expected recognition rates using YOLO.

The results obtained using the same trained object, a book, during the same
benchmark trial using both the automatic and manual annotated datasets for the
training, show that the automatic POR-based annotation method experiences
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less than 10% drop in accuracy. Moreover, the model using manual annotations
achieved almost 100% of successful recognitions. This important result means
that the proposed method can potentially approach perfect recognition rates by
further refining the automatic POR-based annotation method.

Figure 33. Comparison of successful recognitions between POR-based and man-
ual annotations. Evaluation of the two models in a single identical trial.

Calibrated versus Uncalibrated Annotations Figure 34 shows the com-
parison between a calibrated system using the visual axis to compute the POR
for automatic annotation and dataset generation, and an uncalibrated system
using the optical axis as a first approximation of the visual axis.

The results obtained using the same trained object, a book, during the same
benchmark trial, show that there is very little difference between the two methods.
It appears that the calibration of the visual axis does not influence the focused
object recognition. This interesting result means that the visual axis calibration

48



can be skipped if the focused object analysis is ultimately more important than
the gaze direction precision alone.

Figure 34. Comparison of successful recognitions between caloibrated (visual
axis) and uncalibrated (optical axis) annotations. Evaluation of the two models
in a single identical trial.

Comparison Between 10 Classes Finally, Figure 35 and Figure 36 show
the average results obtained with 10 classes of trained and untrained objects,
respectively, in a same environment. At least 10 variations of each class of objects,
books, cups, toys, screens, pens, money, phones, cans, snacks, and hands, were
used to train the model, and 5 trials were performed for each class.

All classes of objects experience a similar drop in successful recognitions when
tested against untrained objects. However, untrained objects can still be recog-
nized in more than half of the total number of frames in average, thus demon-
strating the robustness of the system with several kinds of daily-life objects.
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Figure 35. Comparison of successful recognitions between 10 classes of trained
objects in a same environment. Average of 5 trials for each object.
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Figure 36. Comparison of successful recognitions between 10 classes of untrained
objects in a same environment. Average of 5 trials for each object.
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Although the recognition rates are in overall lower for untrained objects and
environments, these results show that gaze tracking and focused object recogni-
tion can be performed in real time with sufficient precision for human behavior
analysis in daily life. Plus, increasing the size of the datasets overtime can greatly
improve the results for both trained and untrained objects. Finally, deep learning
as been proven essential over feature-based methods, and the model trained us-
ing YOLO can potentially achieve almost perfect recognition if given high-quality
annotated data.
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7. High Dynamic Range
Corneal images are highly sensitive to lighting conditions. Direct sunlight and
low-light conditions are particularly challenging for standard RGB cameras:

• On the one hand, low-light conditions require a high-sensitivity camera to
capture clear eye images which rapidly saturates under normal illumination.

• On the other hand, corneal reflections present a high dynamic under day-
light with some reflected sunlight that can also saturate the sensor, thus
obscuring the scene features.

An example of high dynamic is given in Figure 37.

Direct sunlight Indirect sunlight

Figure 37. Example of high dynamic: direct sunlight while reading outside
(left), indirect sunlight while reading inside a car (right). Details of the focused
object are lost in both case.

To address these issues, experiments using a ViewPLUS Xviii high-sensitivity
camera and HDR processing were conducted. The Xviii camera captures 11 8-
bit RGB images at increasing levels of sensitivity over an 18-bit dynamic range.
These images are combined using a HDR algorithm, Exposure Fusion by Mertens
et al. [29], to reveal the features reflected on the cornea in varied illumination
conditions. Figure 38 shows an example at night time.

To evaluate the gain offered by using HDR in very low-light conditions, the
YOLO-based recognition rate of two 100-frame benchmark sequences are com-
pared in Table 5. The two sequences were captured simultaneously using the
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Figure 38. Combining 3 frames obtained from the HDR camera (left) with
Exposure Fusion to reveal the full dynamic of the corneal image at night time
(right).

Xviii camera at night time while manipulating a book: one sequence have been
processed with HDR to reveal the full dynamic of the cornea while the other is
extracted from the first 8 bits of the Xviii that correspond to the lowest sensitivity
of the 18-bit dynamic of the camera, thus closely simulating the kind of images
obtained using a non-HDR camera at night.

Table 5. Comparison between HDR and non-HDR recognition rate at night
time with two 100-frame benchmark sequences.

Benchmark sequence True detection No detection False detection Recognition
rate

non-HDR 0 100 0 0%
HDR 24 71 5 24%

Without HDR processing, the corneal images are simply too dark to yield any
results. It is also important to notice that the recognition rate using HDR is lower
than the one using a non-HDR camera in a normal illumination environment.
However, augmenting the training datasets with eye images processed by HDR
could improve the results.

Using a high-sensitivity camera combined with HDR techniques allows to
apply the proposed method independently of the illumination conditions, thus
making the solution suited for application in daily-life activities. While the cur-
rent size of the Xviii camera is too large for embedding it in a wearable prototype,
the pace of progress in the miniaturization of both cameras and image sensors
makes me hopeful that a wearable HDR camera will be available in the not too
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distant future.
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8. Conclusion
This thesis proposed a wearable system to perform real-time, simultaneous eye
tracking and focused object recognition for daily-life applications in varied illumi-
nation environments. For this, a model-based approach was described to estimate
the gaze direction using a single RGB camera, and a method to recognize objects
in the scene images reflected on the cornea in real time, without any additional
sensors such as a front-facing camera. The automatic annotations using the re-
flected region of interest and the POR dramatically reduce the effort to create
very large datasets. As a result, deep learning approaches could be easily applied
to the corneal images to recognize the focused object. The experimental results
showed that gaze tracking and focused object recognition can be performed in real
time with sufficient precision in daily-life object manipulation, for both trained
and untrained objects, in both trained and untrained environments. Finally, deep
learning was proven essential over feature-based methods, and the model trained
using YOLO can achieve very high recognition rates if given enough data.

8.1 Future Work

This thesis explored the two important aspects of gaze tracking and focused
object recognition from eye images. However, these first steps are part of a
broader vision for the future of corneal imaging: proposing a low-complexity,
single-sensor approach to human attention, behavior and emotion analysis by
combining all the features contained in eye images.

To reach this ultimate goal, it is necessary to investigate how to combine
multiple eye information obtained from a single camera, such as the gaze direction,
the corneal reflections, the pupil size variations, the peripheral vision, the eyelid
movements and the eye saccades to create a full framework of human behavior
analysis from eye images.

Achieving such enterprise requires further developments in many different
areas, including but not limited to:

• Estimating human behavior and psychological state by tracking features
such as the pupil size variations that indicate changes in illumination and/or
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concentration, the eye saccades that express unconscious behaviors, and the
eyelid movements that give an estimation of the fatigue.

• Evaluating not only the direction of the gaze, but also the distance to the
POR. This could be achieved with stereo reconstruction from left and right
corneal images.

• Extracting the anatomical parameters of the user to improve accuracy, and
removing the extra step of visual axis calibration.

• Improving further the wearable prototype by embedding HDR-enabled cam-
eras as well as more computational power on the device.

• Scaling the method to non-wearable high-resolution cameras, such as dash-
board cameras, web cameras or surveillance cameras (CCTV), which could
remotely extract eye information.

8.2 Potential Applications

Potential applications are wide-ranging: daily-life support in attention activities,
new AR/VR interfaces, intuitive driving assistance, eye disease or neurological
disorder diagnosis, surveillance and forensics, and more. With the rapid devel-
opment of imaging sensor technology, particularly in terms of reduced size and
increased resolution, the same proposed method could also be applied to non-
wearable high-resolution cameras which could remotely extract eye information.
Taking all these aspects into consideration, the proposed method has wide appli-
cation prospects with potentially important impact, as illustrated by the following
examples:

• Developing the next generation of smart eyewear that could analyze the
user’s gaze and level of attention during daily-life activities, such as driv-
ing or manipulating machines. By using a single sensor, low production
cost and power consumption are expected to drive rapid adoption in smart
wearables. In addition, by eliminating the need for a front-facing camera,
the proposed system will avoid the social concerns that were an obstacle
for previous efforts in smart eyewear like the Google Glass.
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• In the context of the next-generation AI-powered factories, the proposed
research could be integrated into the workers’ protective eyewear to alert
them in the case of immediate danger due to inattention or fatigue, thus
increasing efficiency and safety.

• The proposed method and device could also be used in human-robot inter-
action studies by assessing the human and robot visual self-experience in
collaborative tasks or joint attention scenarios, thus enabling new research
on human-robot safety.

• The ease with which eye data and visual feedback can be collected using the
proposed device will enable researchers to build the large datasets that are
required to further develop AI-based object recognition and human behavior
analysis. In particular, eye movements could be analyzed to diagnose eye
diseases or neurological disorders early.

By contributing with STARE to the first steps toward an integrated, single-
sensor approach to human behavior analysis through eye images, the research
conducted in this thesis will hopefully enable a new generation of smart eyewear
and interfaces using natural eye-based controls.
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